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1. Introduction

In this paper we shall present a sharpening of a theorem of I. N.
Stewart [1 ] which states that if L is a Lie algebra over a field of arbitrary
characteristic such that every subalgebra of L is an n-step subideal of
L, then L is nilpotent of order ~ M(n) for some function y : N - N, where
N is the set of all positive integers. The dimension of L may be finite or
infinite.

It turnes out to be possible to shorten Stewart’s argument considerably
by replacing lemma 3.3.14 [1 ] by a stronger one. Then some definitions
and theorems can be omitted and we obtain a better bound for the order
of nilpotency of L. Nevertheless our bound also takes astronomical
values for n = 3, 4,··· but in the case of n = 2 the value of the bound
is 7, an improvement of which will be given in the last section.

In order to prove our result we shall first give an exposition of the
requisite basic concepts in a preceding chapter. We remark that notation
and terminology in the domain of infinite-dimensional Lie algebras are
non-standard in part and sometimes we shall use other symbols than
Stewart does.

2. Preliminary definitions

Let L be a Lie algebra (possibly of infinite dimension) over a field k of
.arbitrary characteristic. If x, y E L we write [x, y] for the Lie product of
x and y.

If H, K are subspaces of L we write H + K for the subspace of L consist-
ing of all sums h + k, h E H, k~K and [H, K] for the subspace of L
consisting of all finite sums 03A3[hi, ki], hi e H, ki E K. A useful notation is
[H, iK] instead of

A subspace S of L is a subalgebra of L if [S, S] c S and a subspace I
of L is an ideal of L if [I, L] c I. We write respectively S  L and 1  L.
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H is called an n-step subideal of L if we have

In this case we write H a "L.

Suppose A, B c L. (A) is the smallest subalgebra of L containing A
and we say A generates (A) . (AB) is the smallest subalgebra of L which
contains A and which is invariant under multiplication by elements of B.
L is finitely generated if L = (X) for some finite subset X of L.
The lower central series L1, L2,··· of L is inductively defined by

L1 = L, Ln+1 = [L", L]. We say L is nilpotent if Ln+1 = 0 for some n.
The least such n is the order of nilpotency of L.
A concept which is weaker than the preceding one now follows. L is

locally nilpotent if every finitely generated subalgebra of L is nilpotent.
The derived series L("), L(1),··· of L is inductively defined in a similar

way by L(0)=L, L(n+1) = [L(n), L(n)] and L is solvable if L(n) = 0 for
some n. In this case the least such n is called the derived length of L. It is
a well-known fact (see [2] theorem 0.1) that L(n)  L2n, n = 0, 1,···
and consequently

where iî is the least integer log, n.
The upper central series C(L) = Cl (L), C2(L),··· of L is defined by

All Cn(L) are characteristic ideals of L.
Finally we introduce a number of classes of Lie algebras which we

shall need in the following.
The classes of Lie algebras we consider are

FDr = the class of Lie algebras of dimension ~ r
FG, = the class of Lie algebras generated by ~ s elements

NILc = the class of nilpotent Lie algebras of order ~ c

SOLd = the class of solvable Lie algebras of derived length ~ d
SIn:L~SIn iff H ~ L ~ H nL
NCm : L e NCm iff H ~ L ~ HL&#x3E;m ~ H.

3. A sharpening of Stewart’s theorem

In this chapter we shall derive a result which yields a better bound for
the order of nilpotency of a Lie algebra, all of whose subalgebras are
n-step subideals. The fundamental step in our argument is theorem 1.

All results of Stewart used by us will be called lemmas and proofs are to
be found in [1 ].
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LEMMA 1. If H  L, H E FDn and L is locally nilpotent, then H  Cn(L).

LEMMA 2. If H a L, H ~ NILC and L/H2 E NILd , then L ~ NILM1(c,d)
where M1(c,d) = cd+(c-1)(d-1).
We note that this bound is best possible. See [1] p. 318.

LEMMA 3. If L E FGr n NILS then L ~ FDM2(r,s) where M2 (r, s) =
r+r2+···-+r’.
We now state and prove an important theorem.

THEOREM 1. NCn c NILM3(n) where M3(1) = 1 and M3(n) = n -1 +
M2(n, n2 - n) for n = 2, 3,···.
PROOF. Let L ~ NC1. If H ~ L then HL&#x3E; ~ H and therefore

H = (HL)  L. Hence L E SI,. The converse is also true and conse-

quently NC1 - SI1. We show that L is Abelian if L ~ SI1. Suppose
x, y E L then kx, ky a L since L E SI1 . If x and y are linearly independent
then [x, y] E kx n ky = 0. If x and y are linearly dependent then
[x, y] ] = 0 by the definition of the Lie product.
Let now L E NCn where n &#x3E; 1.

We assert x ~ L ~ (XL) E NILn-1.
The proof is as follows. If x E L then kx ~ L and consequently

xL&#x3E;n ~ kx. Now suppose (xL)n =1= 0, then we have kx = xL&#x3E;n  L

and therefore kx = xL&#x3E; = XL&#x3E;n, but this is impossible. Hence we
conclude xL&#x3E;n= 0.

Let x1,···,xn~L, then X = x1,··· xn&#x3E;~ (xf) +... + xLn&#x3E; E NILn2-n
since (xf) E NILn-1. By applying lemma 3 we obtain X E FDr where
r = M2(n, n2-n).
Now we have [x1,···,xn]&#x3E;L ~ XL&#x3E;n ~ X since L E NCn and

therefore [x1,···,xn]L&#x3E; ~ FDr.
Since X is an arbitrary finitely generated subalgebra of L we have also

proved L is locally nilpotent. Hence by lemma 1 ([x1,···, xn]L&#x3E;  Cr(L)
and consequently Ln = 03A3xi~L[x1,···, xn]L&#x3E; « C,(L); thus Ln+r =

[Ln, rL] = 0 and this concludes the proof of the theorem.

LEMMA 4. SOL2 n SIn c NCn.

THEOREM 2. SOLk n S’In c NILM4(k,n) where M4(1, n) = 1 and

M4(k+ 1, n) = Ml (M4 (k, n), M3(n)).
PROOF. This theorem is the same as lemma 3.3.10 of Stewart [1 ] p. 320,

but our bound is something better because in our proof we can refer to
theorem 1. For the sake of completeness the proof now follows.
We use induction on k.

k = 1 : SOL 1 ~ SIn c NIL1
k = 2: SOL2 ("B SIn c NCn ~ NILM3(n) by lemma 4 and theorem 1
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2~k~k+1: If L ~ SOLk+1 n SIn then H = L(k-1) E ,SOL2 n SIn and
therefore H E NILM3(n). But LIH2 E SOLk n SIn and

consequently by induction LIH2 E NILM4(k,n). Finally we
apply lemma 2.

Suppose H ~ L.
The series L = H0  H1 ···, inductively defined by Ho = L,

Hi+1 = HHi&#x3E;, is called the ideal closure series of H.

LEMMA 5. H a "L iff H = Hn .

LEMMA 6. H ~ L E SIn ~ Hi/Hi + 1 e SIn - i for i = 0,···, n - 1.
This lemma is of the first importance for the proof of the main

theorem.

THEOREM 3. SIn c NILM(n) where M(1) = 1 and

PROOF. By induction on n.

n =&#x3E; n + 1 : Let L ~ SIn + 1. If H ~ L then because of lemma 6 and by
induction Hï! Hi+ 1 E SIn+1-i i ce SIn ~ NILM(n) for i = 1,···, n. Therefore
Hi/Hi+1 E SOLM(n)+1. By lemma 5 H = Hn  Hn-1 ···  Ho = L
where (Hi) is the ideal closure series of H and it follows now easily that
H(r)1 ~ H where r = nM(n) + 1. Moreover we have

since SIn+1 is closed under taking subalgebras and quotient algebras. By
applying theorem 2 we now obtain H1/H1(r)~NILs where s = M4(r, n+1)
and therefore Hs+11 ~ H(r)1~ H. Thus HL&#x3E;s+1~ H. Hence L ~NCs+1.
We finish the proof by applying theorem 1.

4. The class SI2

but this bound can be improved still further.
For the following result 1 am indebted to my referee.

PROPOSITION. If the characteristic of the field k is not 3, then SI2 = NIL2
and if the characteristic is 3, then NIL2 c SI2 ce NIL3.

PROOF. Let x E L E SI2, then kx  K a L for some K. Therefore kx

is a minimal ideal of H = xL&#x3E;, which we know already is nilpotent
(theorem 3); so by Lemma 1 x ~ C1(H) which is a characteristic ideal in
H and hence a L. Therefore H = C1(H) is Abelian.
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If now y E L it follows that [[x, y], x] = 0, so L has Engel 2-condition.
By a result of Higgins [3] we now conclude that L E NIL2, if char. ~ 3
and L E NIL 3 if char. = 3.
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