D. W. CURTIS

Simplicial maps which stabilize to near-homeomorphisms

Compositio Mathematica, tome 25, no 2 (1972), p. 117-122

<http://www.numdam.org/item?id=CM_1972__25_2_117_0>
SIMPLICIAL MAPS WHICH STABILIZE TO NEAR-HOMEOMORPHISMS

by

D. W. Curtis

1. Introduction

Let U be an open cover of a space Y. Maps $f, g : X \rightarrow Y$ are U-close if for each x in X, $f(x)$ and $g(x)$ lie in some member of U. A map $f : X \rightarrow Y$ is a near-homeomorphism if it can be uniformly approximated by homeomorphisms – i.e., for every open cover U of Y there exists a homeomorphism $h : X \rightarrow Y$ such that f and h are U-close. If $f \times \text{id} : X \times Q \rightarrow Y \times Q$ is a near-homeomorphism, where $Q = \prod_{i=1}^{\infty} [0, 1]_i$ is the Hilbert cube, then f stabilizes to a near-homeomorphism.

The recognition of (stable) near-homeomorphisms, and their application in inverse limit calculations (see below), play an important role in the recent proof by Schori and West [7] that 2^I is homeomorphic to Q. It seems likely that techniques involving near-homeomorphisms will be useful in further investigations of hyperspaces.

Our main theorem (3.2) characterizes the stable near-homeomorphisms in the simplicial category as the surjections with compact and contractible point-inverses. The proof is by means of Q-factor decompositions, discussed in § 2.

Brown showed in [3] that if (X_i, f_i) is an inverse sequence such that each X_i is a copy of a compact metric space X and each f_i is a near-homeomorphism, then $\lim (X_i, f_i)$ is homeomorphic to X. In § 4 we note some immediate applications using (3.2), and extend Brown’s theorem to complete metric spaces.

2. Q-factor decompositions

A space X is a Q-factor if $X \times Q \cong Q$. Note that if $X \times Y \cong Q$, then $X \times Q \cong X \times (X \times Y)^\omega \cong (X \times Y)^\omega \cong Q$, and X is a Q-factor. Every Q-factor is a compact metric AR; it is not known whether the converse is true. West [8] has shown that every compact contractible polyhedron is a Q-factor.

A closed subset A of X is a Z-set in X if for every nonempty open
homotopically trivial \((n\text{-}connected \text{ for all } n \geq 0)\) subset \(U\) of \(X\), \(U \setminus A\) is nonempty and homotopically trivial. Z-sets were introduced by Anderson [2], who showed that every homeomorphism between Z-sets in \(Q\) extends to a homeomorphism of \(Q\). The endslice \(W = \{0\} \times \prod_{i=0}^{\infty} [0, 1]_i \subset Q\) is a Z-set; in general, boundaries and collared sets are Z-sets. One useful technique for verifying the Z-set property is the following:

2.1. LEMMA (cf. [8], Lemma 2.2). A closed subset \(A\) of a metric ANR, \(X\) is a Z-set in \(X\) if for each \(\varepsilon > 0\) there exists a map \(f : X \to X \setminus A\) with \(d(f, \text{id}) < \varepsilon\).

PROOF. Clearly \(A\) is nowhere dense. Let \(U\) be open and homotopically trivial, and \(g : S^n \to U \setminus A\) a map of the \(n\)-sphere. There exists an extension \(\tilde{g} : C^{n+1} \to U\) of \(g\) to the \((n+1)\)-cell. As a metric ANR, \(X\) is locally equiconnected, and therefore has the property that for every open cover \(\mathcal{V}\) there exists an open cover \(\mathcal{W}\) such that maps into \(X\) which are \(\mathcal{W}\)-close are \(\mathcal{V}\)-homotopic (paths of the homotopy lie in members of \(\mathcal{V}\)) [6]. By the compactness of \(C^{n+1}\) there exists \(\varepsilon > 0\) such that for any map \(f : X \to X \setminus A\) with \(d(f, \text{id}) < \varepsilon\), \(f\tilde{g}(C^{n+1}) \subset U \setminus A\) and \(g\) is homotopic to \(f \circ g\) in \(U \setminus A\). This homotopy together with the map \(f \circ \tilde{g}\) provides an extension \(\tilde{g} : C^{n+1} \to U \setminus A\) of \(g\).

2.2. DEFINITION. \(\{X_\alpha\}\) is a Q-factor decomposition of a Hausdorff space \(X\) if:

i) \(\{X_\alpha\}\) is a locally finite cover of \(X\) by Q-factors,
ii) \(X_1, X_2 \in \{X_\alpha\}\) and \(X_1 \cap X_2 \neq \phi\) imply \(X_1 \cap X_2 \in \{X_\alpha\}\),
iii) \(X_1, X_2 \in \{X_\alpha\}\) and \(X_1 \sqsubseteq X_2\) imply \(X_1\) is a Z-set in \(X_2\).

The spaces admitting Q-factor decompositions comprise a proper subclass of the class of locally compact metrizable ANR's, and include the locally compact polyhedra.

2.3. DEFINITION. Q-factor decompositions \(\{X_\alpha\}\) and \(\{Y_\beta\}\) indexed by the same set are similar if \(X_1 \cap X_2 \neq \phi\) is equivalent to \(Y_1 \cap Y_2 \neq \phi\). \(\{X_\alpha\}\) and \(\{Y_\beta\}\) are isomorphic if \(X_1 \subset X_2\) is equivalent to \(Y_1 \subset Y_2\).

Isomorphic decompositions are similar: if \(X_1 \cap X_2 \neq \phi\), then \(X_1 \cap X_2 = X_3 \in \{X_\alpha\}\), \(X_3 \subset X_1\) and \(X_3 \subset X_2\), therefore \(Y_3 \subset Y_1\) and \(Y_3 \subset Y_2\), and \(Y_1 \cap Y_2 \cap Y_3 \neq \phi\).

For any space \(X\), \(\tau^n : X \times Q \to I^n\) will denote the projection onto the first \(n\) factors of \(Q\).

2.4. THEOREM. Let \(\{X_\alpha\}\) and \(\{Y_\beta\}\) be isomorphic Q-factor decompositions of \(X\) and \(Y\), respectively, and let a function \(p : A \to Z^+\) from the indexing set into the positive integers be given. Then there exists a homeomorphism \(H : X \times Q \to Y \times Q\) such that \(H(X_\alpha \times Q) = Y_\beta \times Q\) and \(\tau^{p(\alpha)}|X_\alpha \times Q = \tau^{p(\beta)}|H|X_\alpha \times Q\) for each \(\alpha\).
PROOF. Since $X_\alpha = X_\beta$ is equivalent to $Y_\alpha = Y_\beta$, and since \{X_\alpha|X_\alpha = X_\beta\} is a finite collection for each X_β, there is no loss of generality in assuming that the isomorphic decompositions \{X_\alpha\} and \{Y_\alpha\} are faithfully indexed – i.e., $X_\alpha = X_\beta$ only if $\alpha = \beta$. For any subcollection \{X_\alpha|\alpha \in B \subseteq A\} of \{X_\alpha\}, let $\text{Min} \{X_\alpha|\alpha \in B\} = \{X_\alpha|\alpha \in B; \beta \in B \text{ with } X_\beta \subseteq X_\alpha \text{ implies } \alpha = \beta\}$, the collection of minimal elements. Inductively define $X^{(i)} = X^{(i-1)} \cup \text{Min} \{X_\alpha|X_\alpha \notin X^{(i-1)}\}$, $i \geq 0$, with $X^{(-1)} = \phi$. Then \{X_\alpha\} = \bigcup X^{(i)}; similarly \{Y_\alpha\} = \bigcup Y^{(i)}$. It is easily seen that $X_\alpha \subseteq X^{(i)}$ is equivalent to $Y_\alpha \subseteq Y^{(i)}$. Since the indicator function $p : A \to \mathbb{Z}^+$ can be redefined by setting $p'(\alpha) = \max \{p(\beta)|X_\alpha \subseteq X_\beta\}$, we may assume that $X_\alpha \subseteq X_\beta$ implies $p(\alpha) \leq p(\beta)$.

For each α, let \mathcal{H}_α denote the non-empty collection of homeomorphisms of $X_\alpha \times Q$ onto $Y_\alpha \times Q$ of the form $h_\alpha = \tilde{h}_\alpha \times \text{id}_\alpha$, where $\tilde{h}_\alpha : X_\alpha \times \prod \{I_i|i > p(\alpha)\} \to Y_\alpha \times \prod \{I_i|i > p(\alpha)\}$ and id_α is the identity map on $I^{p(\alpha)} = \prod \{I_i|i > p(\alpha)\}$. Suppose inductively that there exists a homeomorphism $H_i : \bigcup \{X_\alpha|X_\alpha \subseteq X^{(i)}\} \times Q \to \bigcup \{Y_\alpha|Y_\alpha \subseteq Y^{(i)}\} \times Q$ such that $H_i/X_\alpha \times Q$ is in \mathcal{H}_α for each $X_\alpha \subseteq X^{(i)}$. Consider $X_\beta \subseteq X^{(i+1)} \setminus X^{(i)} = \text{Min} \{X_\alpha|X_\alpha \notin X^{(i)}\}$, and set $X_\beta = \bigcup \{X_\alpha|X_\alpha \subseteq X_\beta\}$. Then X_β, as a finite union of Z-sets, is a Z-set in X_β (it may be empty), and $X_\beta = X_\beta \cap (\bigcup \{X_\alpha|X_\alpha \subseteq X^{(i)}\})$. Similarly for Y_β; note that $H_i(X_\beta \times Q) = Y_\beta \times Q$. Since $p(\beta) \leq p(\alpha)$ for each $X_\alpha \subseteq X_\beta$, an application of Anderson’s homeomorphism extension theorem to $X_\beta \times \prod \{I_i|i > p(\beta)\}$ and $Y_\beta \times \prod \{I_i|i > p(\beta)\}$ shows there exists $h_\beta \in \mathcal{H}_\beta$ such that $h_\beta/X_\beta \times Q = H_i/X_\beta \times Q$. For distinct elements X_α and X_β of $X^{(i+1)} \setminus X^{(i)}$, either $X_\alpha \cap X_\beta = \phi$ or $X_\alpha \cap X_\beta \subseteq X^{(i)}$. Since \{X_\alpha\} is a locally finite closed cover of X, we may define $H_{i+1} : \bigcup \{X_\alpha|X_\alpha \subseteq X^{(i+1)}\} \times Q \to \bigcup \{Y_\alpha|Y_\alpha \subseteq Y^{(i+1)}\} \times Q$ by requiring that H_i extend H_i and $H_{i+1}/X_\alpha \times Q = h_\alpha$ for each $X_\alpha \subseteq X^{(i+1)} \setminus X^{(i)}$. Then $H : X \times Q \to Y \times Q$ defined by $H/X_\alpha \times Q = H_i/X_\alpha \times Q$ for $X_\alpha \subseteq X^{(i)}$, $i \geq 0$, is the desired homeomorphism.

In [5] we obtain an extension of (2.4) to similar Q-factor decompositions, in which the requirement $H(X_\alpha \times Q) = Y_\alpha \times Q$ is replaced by $H(X_\alpha \times Q) \subseteq \text{St} (Y_\alpha) \times Q$. This result promises to be useful in recognizing stable near-homeomorphisms in situations where Theorem 3.2 (see below) does not apply.

3. Stable near-homeomorphisms

In this section we shall be dealing with simplicial maps between locally finite complexes. A map $f : K \to L$ is compact or contractible if $f^{-1}(x)$ is compact or contractible for each x in L.

3.1. Lemma. Let $f : K \to L$ be a compact contractible simplicial surjection, and let U be an open cover of L. Then there exist isomorphic Q-
factor decompositions \(\{K_a\} \) of \(K \) and \(\{L_a\} \) of \(L \) such that \(\{L_a\} \) refines \(\mathcal{U} \) and \(K_a = f^{-1}(L_a) \) for each \(a \).

Proof. It is well-known that there exist subdivisions \(K_\ast \) of \(K \) and \(L_\ast \) of \(L \) such that \(f : K_\ast \to L_\ast \) is simplicial and the cover by vertex stars of \(L_\ast \) refines \(\mathcal{U} \). For notational convenience assume that \(K = K_\ast \) and \(L = L_\ast \). We show that the dual structures on \(K \) and \(L \) described by Cohen [4] are the desired \(Q \)-factor decompositions.

Let \(L' \) be the standard barycentric subdivision of \(L \), and let \(K' \) be a barycentric subdivision of \(K \) chosen so that \(f : K' \to L' \) is simplicial. The barycenter of a simplex \(\sigma \) is denoted by \(\bar{\sigma} \). If \(\sigma_0 \subset \cdots \subset \sigma_q \), then \(\bar{\sigma}_0 \cdots \bar{\sigma}_q \) is the simplex spanned by the barycenters. If \(\alpha \) is a simplex of \(L \), then \(D(\alpha, L) \), the dual to \(\alpha \) in \(L \), and its subcomplex \(\check{D}(\alpha, L) \) are defined by \(D(\alpha, L) = \{\bar{\sigma}_0 \cdots \bar{\sigma}_q | \alpha \subset \sigma_0 \subset \cdots \subset \sigma_q\} \), \(\check{D}(\alpha, L) = \{\bar{\sigma}_0 \cdots \bar{\sigma}_q | \alpha \supset \sigma_0 \subset \cdots \subset \sigma_q\} \). \(D(\alpha, f) \), the dual to \(\alpha \) with respect to \(f \), is a subcomplex of \(K' \) defined by \(D(\alpha, f) = \{\bar{\tau}_0 \cdots \bar{\tau}_q | \alpha \subset f(\tau_0), \tau_0 \subset \cdots \subset \tau_q\} \); similarly for \(\check{D}(\alpha, f) \). Each dual \(D(\alpha, L) \) is a finite subcomplex of \(L' \), and since \(f \) is a compact surjection each \(D(\alpha, f) \) is also finite and non-empty. Clearly \(D(\alpha, L) \) is the join \(\check{D}(\alpha, L) \). It is known [4] that \(D(\alpha, f) = f^{-1}D(\alpha, L) \), \(\check{D}(\alpha, f) = f^{-1}\check{D}(\alpha, L) \), and \(D(\alpha, f) \) collapses to \(f^{-1}(\check{\alpha}) \).

Set \(\{K_a\} = \{D(\alpha, f)\} \) and \(\{L_a\} = \{D(\alpha, L)\} \), where \(\alpha \) runs through all the simplexes of \(L \). Then \(\{K_a\} \) and \(\{L_a\} \) are isomorphic locally finite covers of \(K \) and \(L \), and \(\{L_a\} \) refines \(\mathcal{U} \). Each dual \(D(\alpha, L) \) is contractible, and since \(f \) is contractible each dual \(D(\alpha, f) \) is contractible. It follows from West’s theorem (see § 2) that each \(\delta \) is a \(\mathcal{Q} \)-factor.

3.2. **Theorem.** A simplicial map \(f : K \to L \) stabilizes to a near-homeomorphism if and only if \(f \) is a compact contractible surjection.

Proof. Suppose \(f \) is a compact contractible surjection. Let \(\mathcal{W} \) be an open cover of \(L \times \mathcal{Q} \). There exists an open cover \(\mathcal{U} \) of \(L \) and a function \(m : \mathcal{U} \to \mathbb{Z}^+ \) such that for \((x_1, q_1) \) and \((x_2, q_2) \) in \(L \times \mathcal{Q} \) with \(\{x_1, x_2\} \subset U \in \mathcal{U} \) and \(\tau^m_U(q_1) = \tau^m_U(q_2) \), \(\{(x_1, q_1), (x_2, q_2)\} \subset W \in \mathcal{W} \). By (3.1)
there exist isomorphic \(Q\)-factor decompositions \(\{K_\alpha\}\) of \(K\) and \(\{L_\alpha\}\) of \(L\) such that \(\{L_\alpha\}\) refines \(\mathcal{U}\) and \(K_\alpha = f^{-1}(L_\alpha)\). Define \(p : A \to \mathbb{Z}^+\) by \(p(a) = \min \{m(U) | L_\alpha \subset U \in \mathcal{U}\}\). By (2.4) there exists a homeomorphism \(H : K \times Q \to L \times Q\) such that \(H(K_\alpha \times Q) = L_\alpha \times Q\) and \(\tau^{p(a)}|K_\alpha \times Q = \tau^{p(a)}H/K_\alpha \times Q\) for each \(a\). Clearly \(H\) and \(f \times \text{id}\) are \(\mathcal{U}\)-close.

Conversely, suppose that \(f \times \text{id}\) is a near-homeomorphism. Since the image of \(f \times \text{id}\) must be dense in \(L \times Q\), \(f\) is surjective. Consider a point \(x\) in \(L\) and the inverse \(f^{-1}(x) \subset K\). Since there exists a homeomorphism of \(K \times Q\) onto \(L \times Q\) taking \(f^{-1}(x) \times Q\) into a compact neighborhood of \(\{x\} \times Q\), \(f^{-1}(x)\) is compact. (The same argument shows that the inverse image of every compact set is compact.) Since \(f\) is simplicial \(f^{-1}(x)\) is polyhedral and therefore a retract of some neighborhood \(U\) in \(K\). Using compactness of the inverse image of a compact neighborhood of \(x\), we obtain a neighborhood \(V\) of \(x\) such that \(f^{-1}(V) \subset U\). Then there exists a contractible neighborhood \(W\) of \(x\) and a homeomorphism \(H : K \times Q \to L \times Q\) such that \(H(f^{-1}(x) \times Q) \subset W \times Q \subset H(U \times Q)\). Thus \(f^{-1}(x) \times Q\) is contractible in the neighborhood \(U \times Q\) which retracts onto it, and therefore \(f^{-1}(x)\) is contractible.

A non-piecewise linear map \(f : K \to L\) which stabilizes to a near-homeomorphism may not be contractible (although it follows from the proof above that point-inverses must have the shape of a point). For example, it is easily seen that there exists a map \(f : I^2 \to I\) such that \(f^{-1}(t)\) is an arc if \(t \neq \frac{1}{2}\), \(f^{-1}(\frac{1}{2})\) is a topologist's sine curve containing \(I \times \{0, 1\}\), and \(f\) is the uniform limit of piecewise-linear maps satisfying the conditions of (3.2). Hence \(f\) itself stabilizes to a near-homeomorphism.

4. Inverse limit applications

Brown's theorem (see § 1) and Theorem (3.2) imply that if \((K_i, f_i)\) is an inverse sequence of finite complexes with simplicial contractible surjections as bonding maps, then \(\text{Lim } (K_i, f_i) \times Q\) is homeomorphic to \(K \times Q\). Since a dendron is an inverse limit of finite trees with elementary collapses as bonding maps, this technique provides a quick proof of the fact, announced in [1] and demonstrated in [8], that every dendron is a \(Q\)-factor.

Let \(J^\infty = \coprod_i [-1, 1]_i\), and let \(J^\infty/R\) be the quotient space obtained by identifying \((x_i)\) with \((-x_i)\). Schori and Barit have recently used the same technique to show that \(J^\infty/R\) is a \(Q\)-factor.

The following extension of Brown's theorem to complete metric spaces permits the application of (3.2) in the non-compact case.

4.1. Theorem. If \((X_i, f_i)\) is an inverse sequence of copies of a complete metric space \(X\) with near-homeomorphisms as bonding maps, then \(\text{Lim } (X_i, f_i)\) is homeomorphic to \(X\).
PROOF. We inductively choose homeomorphisms \(h_i : X_{i+1} \to X_i, i \geq 1 \), such that \(\text{Lim} (X_i, f_i) \) is homeomorphic to \(\text{Lim} (X_i, h_i) \). For \(i < j \) let \(f_{ij} = f_i \circ \cdots \circ f_{j-1} \) and \(h_{ij} = h_i \circ \cdots \circ h_{j-1} \) be compositions of the bonding maps, and let \(f_{i\infty} : \text{Lim} (X_i, f_i) \to X_i \) and \(h_{i\infty} : \text{Lim} (X_i, h_i) \to X_i \) be the projections. Suppose that \(h_1, \ldots, h_{j-1} \) have been chosen. Then there exists an open cover \(\mathcal{U}_j \) of \(X_j \) such that mesh \(f_{ij}(\mathcal{U}_j) < 2^{-j} \) and mesh \(h_{ij}(\mathcal{U}_j) < 2^{-j} \) for \(1 \leq i < j \). Choose a homeomorphism \(h_j : X_{j+1} \to X_j \) such that \(f_j \) and \(h_j \) are \(\mathcal{U}_j \)-close.

A straight-forward verification shows there exists a map \(F : \text{Lim} (X_i, f_i) \to \text{Lim} (X_i, h_i) \) such that \(h_{i\infty} F(x) = \lim_{n \to \infty} h_{in} f_{i\infty} (x) \) for each \(i \). Likewise there exists a map \(H : \text{Lim} (X_i, h_i) \to \text{Lim} (X_i, f_i) \) such that \(f_{i\infty} H(x) = \lim_{n \to \infty} f_{in} h_{i\infty} (x) \). We show that \(H \circ F \) and \(F \circ H \) are the identity maps. Let \(1 \leq i < n \) and \(x \in \text{Lim} (X_i, f_i) \) be given. Then \(d(f_{i\infty} H F(x), f_{in} h_{i\infty} F(x)) < 2^{-n+1} \), and for each \(m > n \), \(d(f_{i\infty} (x), f_{in} h_{nm} f_{m\infty} (x)) < 2^{-n+1} \). Since \(h_{n\infty} F(x) = \lim_{m \to \infty} h_{nm} f_{m\infty} (x) \), there exists \(m > n \) such that \(d(f_{in} h_{nm} F(x), f_{in} h_{nm} f_{m\infty} (x)) < 2^{-n} \). Thus \(d(f_{i\infty} H F(x), f_{i\infty} (x)) < 3 \cdot 2^{-n+1} \), and since \(n \) was arbitrary \(H \circ F = \text{id} \). Similarly \(F \circ H = \text{id} \).

REFERENCES

R. D. ANDERSON

M. BROWN

M. M. COHEN

D. W. CURTIS

J. DUGUNDJI

R. SCHORI and J. E. WEST

J. E. WEST

(Oblatum 19–III–1971) Louisiana State University
3–II–1972) Baton Rouge, Louisiana 70803