IAN STEWART

The Lie algebra of endomorphisms of an infinite-dimensional vector space

Compositio Mathematica, tome 25, no 1 (1972), p. 79-86

<http://www.numdam.org/item?id=CM_1972__25_1_79_0>
THE LIE ALGEBRA OF ENDMORPHISMS
OF AN INFINITE-DIMENSIONAL VECTOR SPACE

by

Ian Stewart

1. Introduction

The structure of the Lie algebra of all endomorphisms of a finite-dimensional vector space is well known. The purpose of this paper is to investigate the infinite-dimensional case, and in particular to find the lattice of Lie ideals. Rosenberg [6] has carried out the analogous programme for the infinite general linear group.

Notation for Lie algebras will follow that of [9, 10]. Let \(\mathfrak{f} \) be any field. Let \(c \) be any infinite cardinal, with successor \(c^+ \). Let \(V \) be a vector space over \(\mathfrak{f} \) of dimension \(c \), and for any infinite cardinal \(d \leq c^+ \) define \(E(c, d) \) to be the set of all linear transformations \(\alpha : V \to V \) such that the image of \(\alpha \) has dimension \(< d \). Then \(E(c, d) \) is an associative \(\mathfrak{f} \)-algebra. Under commutation \([\alpha, \beta] = \alpha\beta - \beta\alpha \) \((\alpha, \beta \in E(c, d))\) it becomes a Lie algebra which we shall denote \(L(c, d) \).

Inside \(L(c, c^+) \) we let \(F = L(c, \mathbb{K}_0) \), \(T \) = the set of endomorphisms of trace zero (in the sense of [9] p. 306), \(S \) = the set of scalar multiplications \(v \to vk \) \((v \in V, k \in \mathfrak{f})\). We shall prove:

Theorem (A). Let \(L = L(c, c^+) \). Then the ideals of \(L \) are precisely the following:

a) \(L(c, d) \) for \(\mathbb{K}_0 \leq d \leq c^+ \)
b) \(L(c, d) + S \) for \(\mathbb{K}_0 \leq d \leq c \)
c) Any subspace \(X \) of \(L \) such that \(T \leq X \leq F + S \)
d) \(S \)
e) \{0\}.

The lattice of ideals has the form as shown on the next page.

Further, every subideal of \(L \) is an ideal, so that \(L \) lies in the class \(\Xi \) of [9].

An immediate corollary of theorem 3 is that \(L(c, c^+) \) satisfies the minimal condition for subideals, Min-si. We shall use this to show that theorem 3.3 of [9] p. 305 is in a sense best possible.

Finally we apply our results to prove that any Lie algebra can be embedded in a simple Lie algebra.
I am grateful to the referee for many helpful remarks which have simplified and improved the exposition.

2. The endomorphism algebra

We attack the problem through the associative ideal structure of $E(c, d)$, which is easily determined. By Jacobson [5] p. 108 an associative algebra A is simple if and only if it is simple considered as a ring. This remark combines with a theorem of Herstein [3] (see also Baxter [1]) to yield:

Lemma (1). If A is a simple associative \mathcal{T}-algebra and $[A, A] = A$ then any proper Lie ideal of the Lie algebra associated with A is contained in the centre of A, unless A is of dimension 4 over its centre which is a field of characteristic 2.

In the sequel all algebras considered will be infinite-dimensional over their centres, so the exceptional case never arises. By a slight extension of Jacobson [5] p. 93 theorem 1 we have:

Lemma (2). Let c, d be infinite cardinals with $d \leq c^+$. Then any non-zero associative ideal of $E(c, d)$ is of the form $E(c, e)$ where $\aleph_0 \leq e \leq d$.

Corollary. If $c \geq d$ are infinite cardinals then

$$ E(c, d^+)/E(c, d) $$

is a simple non-commutative associative algebra.

Lemma (3). Let $E = E(c, d)$ where $\aleph_0 < d \leq c^+$. Then

$$ [E, E] = E. $$
PROOF. Let \(a \in E \). Decompose \(V \) into a direct sum
\[
V = X \oplus \bigoplus_{i \in \mathbb{Z}} V_i
\]
in such a way that \(\dim V_i = \dim \text{im}(a) \) for all \(i \) and that \(\text{im}(a) \cong W = \bigoplus_{i \in \mathbb{Z}} V_i \). For each \(i \) let \(t_i : V_i \to V_{i+1} \) be an isomorphism. Let the automorphism \(u : W \to W \) be defined by \(u|_{V_i} = t_i \) and let \(t : V \to V \) be defined by \(t|_W = u \) and \(t(X) = \{0\} \). We shall show that there exists \(b \in E \) such that
\[
[b, t] = a.
\]
More precisely we show that there is a unique endomorphism \(b \) of \(V \) satisfying (1) such that
\[
b(V_0) = \{0\}
\]
and
\[
b(V) \leq W
\]
(hence \(b \in E \)).

We set \(a_i = a|_{V_i} \) and \(b_i = b|_{V_i} \). In view of (3) the restrictions of (1) to \(X \), to \(V_{i-1} \) (\(i > 0 \)) and to \(V_i \) (\(i < 0 \)) are respectively equivalent to the following equations:
\[
b|_X = -u^{-1}a|_X
\]
\[
b_i = (a_{i-1} + t_i b_{i-1}) t_{i-1}^{-1} \quad (i > 0)
\]
\[
b_i = t_{i+1}^{-1}(a_i + b_{i+1} t_i) \quad (i < 0)
\]
and now the assertion is obvious since (5) and (6) constitute inductive definitions for the \(b_i \).

Note that if \(d = \mathfrak{a}_0 \) the lemma is false, for then \([E, E]\) is the set of trace zero maps which is smaller than \(E \).

For any associative algebra \(A \) we let \(Z(A) \) denote the centre of \(A \). We then have:

LEMMA (4). If \(c \geq d \) are infinite cardinals, then
\[
Z(E(c, d^+)/E(c, d))
\]
is trivial except when \(c = d \). It then has dimension 1 and consists of scalar multiplications (modulo \(E(c, d) \)).

This follows from:

LEMMA (5). If \(c \geq d \) are infinite cardinals and \(z \in L(c, c^+) \) satisfies
\[
[z, L(c, d^+)] \leq L(c, d) + S
\]
then \(z \in L(c, d) + S \).
The proof of this lemma is more intricate than one might wish, and will be postponed until later.

Putting together the results so far obtained we have:

Lemma (6). If $c \geq d$ are infinite cardinals then the Lie algebra

$$L(c, d^+)/L(c, d)$$

is simple unless $c = d$; when its only nontrivial proper ideal is the centre, which has dimension 1 and consists of scalar multiplications (modulo $L(c, d)$).

The next result is implicit in [9] (p. 310):

Lemma (7). Let L be a Lie algebra, σ an ordinal, and $(G_\alpha)_{\alpha \leq \sigma}$ an ascending series of ideals such that for all $\alpha < \sigma$

1) $G_{\alpha+1}/G_\alpha$ is simple non-abelian,
2) $C_{L/G_\alpha}(G_{\alpha+1}/G_\alpha) = G_\alpha/G_\alpha$.

Then the only subideals of L are the G_α. Consequently $L \in \text{Min-si} \cap \mathfrak{T}$.

Proof. Let M be a proper subideal of L and let α be the least ordinal such that $G_\alpha \subseteq M$. It is easy to see that α cannot be a limit ordinal, so $\alpha = \beta + 1$ for some β. Thus $(M + G_\beta)/G_\beta$ is a subideal of L/G_β not containing $G_{\beta+1}/G_\beta$. As the latter is a simple non-abelian ideal of L/G_β we have

$$(M + G_\beta)/G_\beta \cap G_{\beta+1}/G_\beta = G_\beta/G_\beta$$

so by [9] lemma 4.6 p. 309 M centralises $G_{\beta+1}/G_\beta$. By part (2) of the hypothesis $M \subseteq G_\beta$, whence $M = G_\beta$.

Obviously $L \in \mathfrak{T}$, and $L \in \text{Min-si}$ since the ordinals are well-ordered.

Now we shall show that $L(c, d) \in \text{Min-si} \cap \mathfrak{T}$. The presence of trace zero and scalar maps causes complications, so we study a suitable quotient algebra. Let $L = L(c, d)$, let F, S, T be as in theorem A, and put $I = F + S$. Then $L^* = L/I$ has an ascending series of ideals

$$O = L^*_0 \leq L^*_1 \leq \cdots \leq L^*_\alpha \leq \cdots \leq L^*_\delta = L^*$$

for a suitable ordinal δ; the L^*_α being the ideals $(L(c, e) + S)/I$ arranged in ascending order.

Now I has a series $O \leq T \leq F \leq I$ of ideals. But T is simple ([9] lemma 4.1 p. 306) and F/T and I/F are 1-dimensional. Therefore $I \in (\text{Min-si})(\mathfrak{T})(\mathfrak{X}) \leq \text{Min-si}$, by [9] lemma 2.2 p. 303. By the same lemma, in order to prove that $L \in \text{Min-si}$, it suffices to show that $L^* \in \text{Min-si}$.

This will follow from lemma 7 provided we can prove that

$$C_{L^*/L_\alpha}(L^*_{\alpha+1}/L^*_\alpha) = L^*_\alpha/L^*_\alpha$$

which is equivalent to the statement of lemma 5.
We now come to the proof of lemma 5. To simplify the notation we let \(L = L(c, c^+), E = L(c, d), G = L(c, d^+) \). To prove lemma 5 we must show that if \(z \in L \) and \([z, G] \subseteq E + S\), then \(z \in E + S\).

If \(V \) is a vector space with basis \((v_\lambda)_{\lambda \in \Lambda}\) and \(a \) is an endomorphism of \(V \), we define \(a_{\alpha\beta}(\alpha, \beta \in \Lambda) \) by:

\[
v_\alpha a = \sum a_{\alpha\beta} v_\beta.
\]

Lemma (8). If \(V \) is a vector space with basis \((v_\lambda)_{\lambda \in \Lambda}\) where \(\Lambda \) is infinite, and if \(a \) is an endomorphism of \(V \) such that \(\dim \text{im}(a) = e \) is infinite, then the set

\[
B = \{ \beta : a_{\alpha\beta} \neq 0 \text{ for some } \alpha \in \Lambda \}
\]

has cardinality \(|B| = e \).

Proof. Let \(W = \sum_{\lambda \in B} v_\lambda \). By definition \(\dim(W) = |B| \), and since \(\text{im}(a) \subseteq W \) we have \(e \leq |B| \). If \((i_\mu)_{\mu \in M}\) is a basis for \(\text{im}(a) \), then each \(i_\mu \) is a linear combination of finitely many \(v_\lambda (\lambda \in B) \). Therefore \(|B| \leq |Z \times M| = \aleph_0 \cdot e = e \) since \(e \) is infinite.

We now suppose that \(z \) is as above, and that \(V \) is a vector space with basis \((v_\lambda)_{\lambda \in \Lambda}\) where \(|\Lambda| = c \).

Lemma (9). There exists \(z' \) such that \(z'_{\alpha\beta} = 0 \) \((\alpha \in A)\), \([z', G] \subseteq E + S\), and \(z - z' \in E + S\).

Proof. Let \(\mathcal{M} \) be the set of all pairs \((M, <)\) where \(M \) is a subset of \(\Lambda \) and \(<\) is a well-ordering on \(M \), such that if \(\alpha \in M \) then \(z_{\alpha\beta} \neq z_{\alpha+1, \beta+1} \) (where \(\alpha + 1 \) is the successor to \(\alpha \) in the ordering \(<\)). Then \(\mathcal{M} \) is partially ordered by \(\ll \), where \((M_1, <_1) \ll (M_2, <_2)\) if and only if \(M_1 \) is an initial segment of \(M_2 \). Clearly \(\mathcal{M} \) is not empty and satisfies the hypotheses of Zorn's lemma. Let \((M, <)\) be a maximal element of \(\mathcal{M} \). Suppose for a contradiction that \(|M| \geq d \). Take an initial segment \(I \) of \(M \) with \(|I| = d \), and consider

\[
t = \left[z, \sum_{\alpha \in I} e_{\alpha, \alpha+1} \right]
\]

where \(e_{\alpha\beta} (\alpha, \beta \in \Lambda) \) is the elementary transformation sending \(v_\alpha \) to \(v_\beta \) and all other basis elements to zero. By hypothesis \(t \in E + S \), yet

\[
t = \sum z_{\alpha\beta} e_{\beta, \beta+1} - \sum z_{\alpha\beta} e_{\alpha-1, \alpha} e_{\alpha\beta}
\]

\[
= \sum (z_{\alpha, \beta-1} - z_{\alpha+1, \beta}) e_{\alpha\beta}
\]

(where terms involving \(\alpha - 1 \) for limit ordinals \(\alpha \) are deemed to be zero).

Now the coefficient of \(e_{\alpha, \alpha+1} \) is \(z_{\alpha\beta} - z_{\alpha+1, \beta+1} \) which is non-zero for \(d \) values of \(\alpha \). By lemma 8 \(t \notin E + S \) which is a contradiction.

Thus after choosing fewer than \(d \) values of \(\alpha \) all the remaining \(z_{\alpha\beta} \) are equal. Thus \(\sum z_{\alpha\beta} e_{\alpha\beta} \in E + S \). Define \(z' = z - \sum z_{\alpha\beta} e_{\alpha\beta} \).
LEMMA (10). Suppose that \(z' \notin E + S \). Then there exist subsets \(A, A' \) of \(\Lambda \) and a bijection \(\phi : A \to A' \) such that
1) \(A \cap A' = \emptyset \)
2) If \(\phi(\alpha) = \alpha' (\alpha \in A) \) then \(z_{\alpha \alpha'} \neq 0 \)
3) \(|A| = |A'| = d \).

PROOF. Let \(\mathcal{S} \) be the collection of all triples \((A, A', \phi) \) satisfying (1) and (2). Partially order \(\mathcal{S} \) by \(\ll \) where \((A, A', \phi) \ll (B, B', \Psi) \) if and only if \(A \subseteq B, A' \subseteq B' \), and \(\Psi|_A = \phi \). By Zorn’s lemma there is a maximal element \((A, A', \phi) \) of \(\mathcal{S} \). For brevity let \(\phi(\alpha) = \alpha' (\alpha \in A) \). We claim that \(|A| = d \).

Suppose not. Then \(|A| = d' < d \). Let
\[
D = \{ \delta : z_{\delta \delta} \neq 0, \gamma \in A \cup A' \}.
\]
Since \(d \) is infinite we have \(|D| < d \). By lemma 8 there must exist \(\gamma' \notin (A \cup A' \cup D) \) such that \(z_{\gamma' \gamma} = 0 \) for some \(\gamma \neq \gamma' \) (since \(z' \notin E + S \)). Then \(\gamma \notin (A \cup A') \) since \(\gamma' \notin D \). Therefore \(\gamma \neq \gamma', \gamma \notin (A \cup A'), \gamma' \notin (A \cup A') \).
Define
\[
B = A \cup \{ \gamma \}
\]
\[
B' = A' \cup \{ \gamma' \}
\]
\[
\Psi(\beta) = \beta' (\beta \in A)
\]
\[
\Psi(\gamma) = \gamma'.
\]
Then \((B, B', \Psi) \in \mathcal{S} \) and is greater than \((A, A', \phi) \), a contradiction. Hence \(|A| \geq d \) as claimed.

We may now derive the final contradiction required to prove lemma 5.
Suppose for a contradiction that \(z' \notin E + S \). Then there exists \((A, A', \phi) \) as in lemma 10. Define \(\pi : V \to V \) by
\[
v_\alpha \pi = v_{\alpha'} \quad (\alpha \in A)
\]
\[
v_{\alpha'} \pi = v_{\alpha'} \quad (\alpha' \in A')
\]
\[
v_\beta \pi = 0 \quad (\beta \in A \setminus (A \cup A')).
\]
By definition \(\pi \in G \). By hypothesis \(u = [z', \pi] \in E + S \). But for \(\alpha \in A \) we have
\[
v_\alpha (z' \pi - \pi z') = \sum z_{\alpha \beta} v_\beta \pi - \sum z_{\alpha' \beta} v_{\alpha'} \cdot
\]
The coefficient of \(v_{\alpha'} \) is
\[
z_{\alpha \alpha'} + z_{\alpha' \alpha'} - z_{\alpha' \alpha'} = z_{\alpha \alpha'} \neq 0
\]
so that \(u_{\alpha \alpha'} \neq 0 \) if \(\alpha \in A \). Since \(|A| = d \) and \(\alpha \neq \alpha' \) we have \(u \notin E + S \), a contradiction.
Hence \(z' \in E + S \), whence \(z \in E + S \), and lemma 5 is proved. By lemma 7 we have:

Lemma (11).
1) \(L(c, c^+) \in \text{Min-si} \),
2) **Every subideal of** \(L(c, c^+) \) **which contains** \(F + S \) **is of the form** \(L(c, d) + S \).

Lemma (12). \(L(c, c^+) \in \mathcal{E} \).

Proof. Suppose \(L = L(c, c^+) \) has a proper ideal \(J \) of finite codimension. Now \(L \) has an ascending series, the finite-dimensional factors of which are abelian, the rest simple. Hence \(L/J \) is soluble, so that \([L, L] < L \), contrary to lemma 3. Therefore by theorem 3.1 of [9] p. 305 we have \(L \in \mathcal{E} \).

We now proceed to the:

Proof of Theorem (A).

All the subalgebras listed are ideals; the only case requiring comment being (c). Since \(L = L(c, c^+) \) has no ideals of finite codimension (proof of lemma 12) the factor \((F + S)/T \) is central (see [9] p. 305, proof of theorem 3.1). Therefore any subspace \(X \) between \(T \) and \(F + S \) is an ideal.

Suppose now that \(I \) is an ideal of \(L \). If \(I \geq F + S \) then by lemma 11 \(I \) is in the given list. Therefore we may assume \(I \supseteq F + S \). If \(I \cap T = \{0\} \) then \([I, T] = \{0\} \). But it is easy to see that the only elements of \(L \) centralising every elementary transformation \(e_{\alpha} \) (\(\alpha \neq \beta \)) are the elements of \(S \). Hence \(I \leq S \). Since \(\dim S = 1 \) we have \(I = \{0\} \) or \(S \). But \(T \) is simple ([9] lemma 4.1 p. 306) so if \(I \cap T \neq \{0\} \) then \(T \leq I \). Now \(I + F + S \triangleleft L \), and by lemma 11 \(I + F + S = L(c, d) + S \) for some \(d \). If \(d = \mathfrak{u}_0 \) then \(T \leq I \leq F + S \), which is case (c) of the list. There remains the case \(d > \mathfrak{u}_0 \). Then we have \((I + F + S)/(T + S) = (L(c, d) + S)/(T + S)\) so that \((I + T + S)/(T + S)\) is of codimension \(\leq 1 \) in \((L(c, d) + S)/(T + S) \cong (L(c, d))/T\) which has no proper ideals of finite codimension by the argument of lemma 12. Therefore \(I + T + S = L(c, d) + S \). Now \(T \leq I \) so we have \(I + S = L(c, d) + S \). If \(I \neq L(c, d) + S \) and \(I \neq L(c, d) \) then \(I \cap L(c, d) \) is of codimension 1 in \(L(c, d) \), contradicting lemma 3. Hence \(I = L(c, d) \) or \(I = L(c, d) + S \).

We have already remarked (in lemma 12) that \(L \in \mathcal{E} \); which completes the proof of the theorem.

3. Applications

In [9] it is proved that any Lie algebra satisfying \(\text{Min-si} \) and having no ideals of finite codimension has an ascending series of ideals whose factors are either infinite-dimensional simple or 1-dimensional central. The re-
results of theorem A show that the 1-dimensional central factors cannot in general be dispensed with. In [9] this question was left open. The algebras $L(c, d)$ also provide new examples of Lie algebras in $\text{Min-si } \cap \mathfrak{L}$.

Following the general lines of Scott [7] p. 316 section 11.5.4 (for groups) we can prove:

Theorem (B). Any Lie algebra can be embedded in a simple Lie algebra.

Proof. Let K be a Lie algebra over a field k. By Jacobson [4] p. 162 cor. 4 K has a faithful representation by endomorphisms of a vector space V over k. By enlarging V if necessary we may embed K in $L(c^+, c^+)$ for some infinite cardinal c. If we split V into c subspaces of dimension c^+ and copy the K-action on each of these we may assume that K is represented by endomorphisms whose image has dimension $\geq c$. Then the composite embedding

$$K \to L(c^+, c^+) \to L(c^+, c^+)/L(c^+, c)$$

maps K into a simple Lie algebra.

One might ask about Lie analogies of other embedding theorems for groups. For example, Dark [2] has proved that every group can be embedded as a subnormal subgroup of a perfect group. Strangely, the analogue of this is false for Lie algebras – an example may be found in [8], p. 98.

References

W. E. Baxter

R. S. Dark

I. N. Herstein

N. Jacobson

A. Rosenberg

W. R. Scott

I. N. Stewart

(Oblatum 7-I-1971) Mathematics Institute University of Warwick
29-VII-1971 Coventry, England