@article{CM_1972__24_3_329_0, author = {Chapman, T. A.}, title = {On the structure of {Hilbert} cube manifolds}, journal = {Compositio Mathematica}, pages = {329--353}, publisher = {Wolters-Noordhoff Publishing}, volume = {24}, number = {3}, year = {1972}, mrnumber = {305432}, zbl = {0246.57005}, language = {en}, url = {http://www.numdam.org/item/CM_1972__24_3_329_0/} }
Chapman, T. A. On the structure of Hilbert cube manifolds. Compositio Mathematica, Volume 24 (1972) no. 3, pp. 329-353. http://www.numdam.org/item/CM_1972__24_3_329_0/
On sigma-compact subsets of infinite-dimensional spaces, Trans. Amer. Math. Soc. (to appear).
[1]A complete elementary proof that Hilbert space is homeomorphic to the countable infinite product of lines, Bull. Amer. Math. Soc. 74 (1968), 771-792. | MR | Zbl
[2]Extending homeomorphisms to Hilbert cube manifolds, Pac. J. of Math. 38 (1971), 281-293. | MR | Zbl
[3]A factor theorem for Fréchet manifolds, Bull. Amer. Math. Soc., 75 (1969), 53-56. | MR | Zbl
AND [4][5] Factors of infinite-dimensional manifolds, Trans. Amer. Math. Soc. 142 (1969), 315-330. | MR | Zbl
Dense sigma-compact subsets of infinite-dimensional manifolds, Trans. Amer. Math. Soc. 154 (1971), 399-426. | MR | Zbl
[6]Deficiency in F-manifolds, preprint. | MR | Zbl
[7]Open subsets of Hilbert space, Compositio Math. 21 (1969), 312-318. | Numdam | MR | Zbl
[8]Infinite-dimensional manifolds are open subsets of Hilbert space, Bull. Amer. Math. Soc. 75 (1969), 759-762. | MR | Zbl
[9]Topological classification of infinite-dimensional manifolds by homotopy type, Bull. Amer. Math. Soc. 76 (1969), 121-124. | MR | Zbl
[10]On spaces having the homotopy of a CW-complex, Trans. Amer. Math. Soc. 90 (1959), 272-280. | MR | Zbl
[11]Homotopy theory of infinite-dimensional manifolds, Topology 5 (1966), 1-16. | MR | Zbl
[12]An infinite-dimensional Schoenflies theorem, Trans. Amer. Math. Soc. 148 (1970), 33-39. | MR | Zbl
[13]Algebraic topology, McGraw-Hill, New York, 1966. | MR | Zbl
[14]Infinite products which are Hilbert cubes, Trans. Amer. Math. Soc. 150 (1970), 1-25. | MR | Zbl
[15]Simplicial spaces, nuclei, and m-groups, Proc. Lond. Math. Soc. (2) 45 (1939), 243-327. | JFM | Zbl
[16]Extending homeomorphisms by means of collarings, Proc. Amer. Math. Soc. 19 (1968), 1443-1447. | MR | Zbl
[17]