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In this paper two major questions concerning finite dihedral groups of
order 2n, n odd, and distributively generated (d. g.) near rings are

investigated. It is shown that the d. g. near rings generated, respectively,
by the inner automorphisms, automorphisms, and endomorphisms of
such a group aie identical, the order being 2n3. Results are also obtained
about the ideal structure of these near rings. The radical is displayed
and it is shown that the endomorphism near ring modulo the radical is
isomorphic to the ring I/(q), where q depends on n. The number of non-
isomorphic d. g. near rings which can be defined on such a dihedral
group is determined. This number is 1 + 2r, where r is the number of
distinct primes occurring in the factorization of n. Finally, some results
on embeddings are given.

1. Properties of D2n

The finite dihedral group of order 2n will be designated by D2n and
will be presented as (a, blan, b2, abab). Elements of D2n will be given in
the form aXbs, 0 ~ x ~ n - l, 0 ~ s ~ 1. For the remainder of this paper
it is assumed that n is odd.

LEMMA 1.1) The subgroups of (a) are normal in D2n. These are the only
proper normal subgroups of D2n .

2) Let k|n, k &#x3E; 1. Then D2n/(ak) ~ D2k. D 2n contains n/k = t distinct
copies of D2k .

PROOF. 1) The normality of the subgroups of (a) is clear. lf H a D2n
and a"b E H, x ~ 0, then a2 E H and H = D2n .

2) In D2n/(ak) the class containing at serves as the generator of order k
and the class containing b serves as the generator of order 2. For any
value of x, (at, axb) ~ D2k. For 0 ~ x ~ t-1, these subgroups are
distinct.

THEOREM 2. D2n has (n)~·n automorphisms, 2n inner automorphisms,
and n2 + 1 endomorphisms.
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PROOF. Under an automorphism a, a must map to some a’’, with

(n, y) = 1 and b must map to an element of order 2, say aZb. Thus (a’b-’)a
= axy+szbs. It is a routine matter to show that any such a is an auto-

morphism. There are (n)~ possibilities for y and n possibilities for z.
D2n is centerless. Thus distinct elements generate distinct inner auto-

morphisms.
As was noted above, D2n contains n/k = t copies of D2k. The number

of ways D2n/(ak) may be mapped onto any of these is the same as the
number of automorphisms of D2k, namely (k)~· k. Thus the number of

endomorphisms with (ak) as the kernel is t· (k)~·k = n· (k)~. For
k = 1, D2n/(ak) ~ C2 which has n copies in D2n. Write n = n . (1)~. For
k = n, we have (e) as the kernel and are considering the automorphisms.
The only other normal subgroup is D2n itself, which as a kernel, gives
the 0 map. Thus the number of endomorphisms of D2n is

2. Properties of E(D2n)

E(D2n) (A(D2n), I(D2n)) designates the d. g. near ring generated
additively by the endomorphisms (automorphisms, inner automorphisms)
of D2n . (In cases where no confusion would arise, En or An or In will be
used.) In this section we use the theory developed in [8] to find the
properties of E(D2n). For terminology used but not defined in this

section, see [8].
Let the inner automorphism generated by axbs be designated by [axbs].

In general, let the endomorphism oc such that (axbs)a = axy+szbs, 0 ~ y,
z ~ n -1, be denoted by [aY, aZb ] where the given elements are respective-
ly, the images of a and b. Note that [ax] = [a, a-2xb] and [axb] =
la-l, a2x]. The function on D2n which maps each power of a to e and
each element of order 2 to some fixed d ~ D2n will be given as (e, d).
If d has order 2, (e, d) = [e, d].

THEOREM 3. I(D2n) = A(D2n) = E(D2n) and IEnl = 2n3.

PROOF. We use the technique of Theorem 2.3 of [8 ] to study In . (If R
is a near ring such that (R, + ) is generated by the elements of S, S ~ R,
and e is an idempotent of R, then R = Ae + Me where Ae is the normal
subgroup of (R, + ) generated by {s - es|s E S} and Me is the subgroup
of (R, +) generated by {es|s ~ S}. In fact, Ae is a right ideal of R and
Me is a subnear ring of R.) First we need an idempotent of In which will
induce a non-trivial decomposition of In . This is furnished by
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So [e, b] is the ’e’ of Theorem 2.3.
Working with the inner automorphisms as the generating set of the

d. g. near ring In , we see that [e, b][ax] = [e, a- 2xb and [e, b][a’b] =
(e, a2x). Thus Me = {(e, d)|d ~ D2n} and !Me! = 2n. Also

where the 2n-tuple is used to indicate, in order, the images of

The bar 1 is inserted as matter of convenience between the images of
an -1 and b. In addition, [aXb]-(e, a2x) = (n-1)03B2. Thus Ae is the normal
subgroup generated by fi. Consider that

is in Ae and that

is in Ae . It follows that Ae = (y) E9 (03B4) and IAel = n2. Thus |In| = 2n3.
An arbitrary automorphism [aY, aZb], ( y, n) = 1, is given as yy +yô +

[e, azb]. Thus In = An.
Note that all endomorphisms with kernel (a) are in Me . Consider

then an endomorphism ’JI with kernel (ak), kin, 1  k  n. The image
of IF (see Lemma 1, part 2) is generated by at, t = n/k, and axb, x a
fixed integer such that 0 ~ x ~ t-1. Thus a IF = a’’t, (y, k) = 1, and
b03A8 = ax+mtb, 0 m ::g k -1. However, [ayt, ax+mtb] = yt03B3 + yt03B4 +
[e, ax+mt]. Thus In = En and the theorem is proved.
Since a subnear ring of a d. g. near ring need not be d. g. it is of interest

to note that Corollary 2.4 of [8] shows that Me is d. g. Moreover,
M+e ~ D2n. The near ring (03B4) is a zero ring whose group part is Cn .
The near ring (y) is isomorphic to E(Cn), i.e. it is isomorphic to the
ring I/(n). Thus Ae is a commutative ring.

3. Ideals in E(D2n)

Several authors have characterized the radical of a near ring (for
instance, [1] and [3]). This radical is the analogue of the Jacobson
radical of ring theory and has the usual radical properties.

DEFINITION 4. A subgroup H of the near ring R is an R-subgroup if
HR c H. The radical J(R) is the intersection of the right ideals of R
which are maximal R-subgroups.
We now find all maximal right ideals of En . The set of all elements of

En of odd order, namely (03B3) + (03B4) + ((e, a)), is easily seen to be a right
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(left) ideal of order n3. Obviously, this is the only maximal right (left)
ideal of odd order. Since this ideal is, in particular, a maximal subgroup
of En’ it is a maximal En-subgroup.

Let 03C4 E En be an element of order 2 not of the form (e, d ) and let
a E En be an element of order 2 of the form (e, d). Then the products
1: . 6 and 03C3· 1: each have the form (e, d ) and it follows that the right (left)
ideal generated by an element of order 2 must contain an element of the
form (e, axb). Let J1 = 03B4 + (e, b). Then the right (left) ideal generated by
an element of order 2 must contain

In En the elements of order 2 form a multiplicative semigroup in which
Il is an identity. We claim that v is a unit in this semigroup, that p =
(03B4 + (e, ax)) [a(n+ 1 )/2, b] + [e, b] is the inverse of v. Note that

where t = (n + 1 )/2. In particular (ayb)03C1 = at(x+y)b, 0 ~ y ~ n -1. For
v we have that (aYb)v = a2y-xb. Thus

and

So p and, consequently, each element of order 2 is in the right (left)
ideal generated by an element of order 2. It follows that this ideal is

K = (c5)+Me. We summarize this discussion in

THEOREM 5. K = (c5)+Me is the principal right (left) ideal generated
by an arbitrary element of order 2.

Recall that (03B3) ~ I/(n). Since En - (03B3) + (03B4) + Me it follows that any
subgroup of (03B3)+ is actually a right (but not left) ideal in En . Adjoining
any element to K+ is equivalent to adjoining an element of (03B3) to K + .
Thus the number of non-zero even ordered right ideals of En is equal to
the number of divisors of n. If Y+ is a maximal subgroup of (y), then
Y+K is a maximal right ideal which, automatically, is maximal as an
En-subgroup. Each even ordered maximal right ideal of En is of this form.
Let n = pr11pr22 ··· prnn. The m maximal subgroups of (y) are given by
((eapa2p ··· a(n-1)p|e ··· e)) as p ranges over the distinct prime factors
of n. The intersection of all these maximal subgroups is

But this says that k is nilpotent in II(n) and that
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is nilpotent in En . Hence the intersection is

where w = p1p2···pm, and |03BE| = n/w. The intersection of all the

maximal right ideals of even order is K+ (03BE) which has order 2n3/w. It
is interesting to note that K+ (03BE) consists of all elements of En which
are either nilpotent or of order 2 (the ’or’ is exclusive). Intersecting
K+ (03BE) with the ideal of order n3, we find that J(En) = (03BE) + (03B4) + ((e, a))
so that J(En) has order n3/w, consists of all nilpotent elements of En’
and, as a sum of rings, is a ring.

THEOREM 6.

PROOF. Let H + be the subgroup of order n3. Then the order of E+n/H+
is prime and H+ itself is abelian so that E’ is a solvable group. By (2.2)
Theorem of [2] En/J(En) is a ring. But the class containing [a, b] has
order q in the quotient structure so that EnIJ(En) is a rmg with identity
whose group part is a cyclic group of order q. Thus, by the corollary of
p. 147 of [4], En/J(En) ~ I/(q).

4. D. g. near rings on D2a

In this section we display all non-isomorphic d. g. near rings which
can be defined on the group D2n . Since two binary operations on D2n
will be studied, the group D2n will be written in additive notation in
this section and the second operation will be referred to as the multiplica-
tion. One near ring of the type we seek is the zero near ring on D2n, i.e.
each product is 0. Unless otherwise stated, in what follows it is presumed
that the near rings dealt with are not zero near rings.

Let (D2n, +, ’) be a near ring. In what follows the properties of multi-
plication in such a near ring are studied. Each endomorphic image of
D2n other than the subgroup {0} must contain an element of order 2.
Hence, in order for d E D2n to be right distributive and not be a right
annihilating element in the near ring D = (D2n, +, ·), {xd|x E D} must
contain an element of order 2. But, since the near ring obeys the left
distributive law, each row in the multiplication table represents an endo-
morphism of D + . Since no element of order 2 can be an endomorphic
image of an element of (a)+, no element of (a)+ can be right distributive
without being a right annihilator. Thus the generating (in the d. g. near
ring sense) set must contain at least one element of order 2. Let d E D
be a right distributive element of order 2. Each element xd, x E D,
looked at from the viewpoint of the rows of the multiplication table is
an endomorphic image of d and so xd is either 0 or is an element of order
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two. In particular, we have ad = 0. Since not every generating element
is a right annihilator, we have for at least one d that the kemel of the
endomorphism of D+ determined by right multiplication by d is precisely
(a)+. Thus this endomorphism is onto a subgroup of order 2. Another
way of saying this is that fd = gd for any f and g of order 2 in D. In fact
this condition holds for any d in the generating set, not just for d of
order 2. If d~ (a), fd = 0 = gd. Thus we see that the multiplication
table row of any element of (a) consists of 0 entries and that the rows of
any two elements of order 2 are identical. This row common to the ele-

ments of order 2 will be called the 2-row. Because of the additive arith-
metic of D + and because no element of order 2 can be in the kemel of the
2-row endomorphism, it follows that the product of two elements of
order 2 is an element of order 2 and that each element of order two is

right distributive. Thus, without loss of generality, we may identify the
generating set with the set of elements of order 2.
We proceed to determine the form of the 2-row. Let (xa + b)(xa + b) =

za + b. Then it is also true that (za + b)(xa + b) = za + b. But za + b =
(za + b)(xa + b) = (za + b)(xa + b)(xa + b) = (za + b)(za + b) shows that
an element of order 2 in the range of the 2-row endomorphism is idem-
potent. Now let (xa)2 = ya and let d be an idempotent element of order 2.
Then ya = d(xa) = dd(xa) = d(ya) and ya is fixed by the 2-row endo-
morphism. Since any element occurring in the 2-row is a fixed point for
the endomorphism, the 2-row endomorphism is an idempotent endo-
morphism of D+ and, in particular, the restriction to (a)+ is an idem-

potent endomorphism of a cyclic group of order n.
But these last maps are determined by mapping a to ka, where k is an

idempotent in I/(n). As is well known, II(n) has 2r idempotents where
r is the number of distinct prime factors in the factorization of n. (An
outline of the proof of this fact is given later in this section.) To finish
the determination of a 2-row endomorphism, we must find the product
db, d any element of order 2. Let da = ka and db = ya+b. Then
ya+b = (ya+b)2 - (ya+b)ya+(ya+b)b = kya+ya+b. Thus n|ky.
Let y be selected to satisfy this condition. Then the 2-row endomorphism
has the form [ka,ya+b] and (xa + sb) [ka, ya + b] = (xk+sy)a+sb.
Moreover,

((xk + sy)a + sb) [ka, ya+b] = (k(xk+sy)+sy)a+sb = (xk+sy)a+sb,
so that each endomorphism satisfying the conditions on k and y has each
element in its range as a fixed point.
The multiplication being defined is certainly left distributive. Consider

associativity. Let d, f, g E D. If d E (a) or if d has order 2 and f ~ (a),
then d(fg) = 0 = (df)g. Let d and f be of order 2. Then fg is an element
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in the range of the 2-row endomorphism and d(fg) = fg. On the other
hand, df is an element of order 2 as is f, so that (df)g = fg. So, indeed,
the systems we have constructed are d. g. near rings.

Recall that the idempotents of I/(n) are found two at a time by consider-
ing integers mi, m2 such that m1m2 = n and (m1, m2) - 1. For ml and

m2 there exist integers cl and c2 such that cl ml + c2 m2 - 1. Then cl ml
and c2 m2 are idempotents of I/(n). Since (c1, m2) = (c2, m1) = 1,
|c1m1| = m2 and |c2m2| = ml in I/(n). If, for a given ml and m2 , there
exist ci and ci such that c’1m1 + c’2m2 = 1, then cl ml - c’1m1 and
c2 m2 - c’2m2 (mod n). Thus two 2-row endomorphisms having different
values of k lead to non-isomorphic near rings since the two k’s have dif-
ferent orders. We now show that the near rings corresponding to
[ka, yl a + b] and [ka, y2 a + b] are isomorphic. Thus, for a fixed k, we may
as well use [ka, b] as the 2-row endomorphism and we may say that the
non-isomorphic d. g. near rings are the zero near ring and those deter-
mined by the [ka, b] as k ranges over the 2r idempotents of I/(n).

Let iD = (D2n’ +, ·i) be determined by [ka, yia + b]; i = 1, 2. To
show 1D ~ 2D, define a map 03A8 on 1D to 2D such that all’ = a. We also
want (y1a+b)03A8 = y2 a + b. But, having fixed a, it is seen that this is

equivalent to having b03A8 = (y2-y1)a+b. As ll’ then, take the group
automorphism [a, (y2 - y1)a+b]. If d, f ~ iD and de (a), then (df)P =
0 = (dP)(fP). If Idl = 2 and f = xa, then (df)03A8 = kxa = (d03A8)(f03A8).
If Idl = 2 and f = xa+b, then (df)03A8 = (Y2 + xk)a + b = (d03A8)(f03A8). We
summarize with

THEOREM 7. The number of non-isomorphic d. g. near rings definable on
D2n is 1 + 2’’, where r is the number of distinct primes occurring in the
factorization of n.

5. Comments on embeddings

The theorem given in [7] has as a corollary the statement that any finite
d. g. near ring can be embedded in some E(G). However, certain of the
d. g. near rings of the last section can be embedded in E(G1 ) where |G1|
is much smaller than IGI, with G is as given in [7].
Note that D2n Q C2 ~ D4n. Then Proposition 2 of [5] says that the

zero near ring on D2n embeds in E(D4n). The d. g. near ring with 2-row
endomorphism [a, b] can be embedded in E(D2n) by the technique of
’right multiplications’ that is used in embedding a ring R with identity
in E(R+). The embedding given in [6] shows, essentially, how to embed
the near ring with 2-row endomorphism [0, b] in E(D4n). One wonders
if each of the d. g. near rings of Section 4 can be embedded in E(D4n).
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