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by

R. K. Getoor and H. Kesten 1

COMPOSITIO MATHEMATICA, Vol. 24, Fasc. 3, 1972, pag. 277-303
Wolters-Noordhoff Publishing
Printed in the Netherlands

1. Introduction

Local times have become a useful tool in the investigation of Markov
processes (see for instance [2], [11], [12] and [18]). They have also been
investigated for Gaussian, but not necessarily Markovian, processes
(e.g. in [1 ]). In some sense the local time Lt at the point x for a Markov
process {Xt}t~ 0 measures the amount of time X spent at x during the time
interval [0, t]. For standard Markov processes {Xt}, Blumenthal and
Getoor [2], or [3], Ch. V.3 showed that Lx0t exists if xo is regular for
{x0}. Thus, one can define rt for each regular point x. If all points x are
regular one would like to know whether rt can be defined such that it
has measurability and continuity properties in x and such that L; is the
density of the occupation time measure 2

= measure of amount of time spent in B by {XS}0~s~t.
Berman [1 ] showed some interesting consequences of the existence of
such a continuous density of 03BCt(·). Trotter [19] was the first to construct
a local time Lt for Brownian motion which is continuous in (x, t) and
satisfies a. s. 2

Boylan [4] and later Meyer [14] gave a similar construction for more
general processes (see also [3], V.3.22-31), whereas Blumenthal and
Getoor [2], sect. 3) showed that (1.2) is satisfied under mild assumptions

1 The research of the first author was supported by the Air Force Office of Scientific
Research, under AFOSR Grant AF-AFOSR-1261B, and of the second author by the
N.S.F. under grant GP 7128.

2 IA(·) is the indicator function of the set A. a.s. stands for almost surely (see [3],
def. I.5.7). Ex denotes expectation w.r.t. Px, the measure corresponding to a process
starting at x [see [3 ], sect. 1.3). Throughout we shall use the notation and terminology
of [3 ].
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(which, however, do not necessarily imply the existence of a continuous
version of the function x ~ Lxt; see sect. 3 below).
The results of [4] and [14] concern a standard process X with state

space E, an interval of the real line, and all points regular. As usual

Assume that there exists a function h : [0, oo ) ~ [0, 1 ] such that h(x) 10
as x J, 0 and such that for all M &#x3E; 0 there exists a C = C(M)  oo for

which

It is proved in [14] (see also [3], V.3.30; also [4], where the hypotheses
have a slightly different form) that if in addition

then the local time L: ( úJ) can be chosen continuous in (x, t) for all cv.

We shall show in sect. 2 that the factor n in the sum in (1.5) can be
dropped, i.e., that

is already sufficient for the existence of a continuous local time.
In sect. 3 we derive a necessary condition for the existence of a con-

tinuous local time. Roughly speaking if

in some uniform sense, then the local time Lxt cannot be continuous in x.
The conditions of the theorems become particularly simple for

processes with stationary independent increments. For such processes
we know exactly when all points are regular, [6], and all conditions can
be expressed in terms of the characteristic function (and Lévy measure
ôf the process). The precise result is as follows:

THEOREM 4. Let {Xt}t~0 be a right continuous one-dimensional process
with stationary independent increments and characteristic function

where

If (12 &#x3E; 0 or v(R - {0}) = oo and 0 is regular for {0}, then for a &#x3E; 0 there

exists a bounded continuous density u(1. for the potential kernel i.e.
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for non-negative measurable f. There also exists for each x a continuous
additive functional lxt (a local time at x) such that

and such that for t ~ 0 the map (x, co) - lx is oo x Ft measurable 3 and
a.s.

The probability that 1: has a version which is a continuous function of (x, t)
equals zero or one. If

satisfies

then one can take lxt(03C9) continuous in (x, t) for all co. On the other hand, if

then no continuous version ofx - lt exists (see (4.11)).

Examples illustrate the gap between the sufficient condition (1.11) and
the necessary condition

It would be interesting to close this gap and to find a necessary and
sufficient condition for the existence of a continuous local time for

processes with stationary independent increments. Another open prob-
lem is whether such processes can have a bounded version of the local
time in the case where no continuous version exists.

3 Here lff is the a-algebra of Borel sets of R.
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2. A sufficient condition for the existence of a continuous local time

Throughout, we use the terminology and notation of [3 ]. In particular,
X = {Xt}t~ o will always be a standard Markov process with state space
(E, é) and measure P’ for the process starting at x. àfi is a suitable
completion of 03C3{Xs: s ~ t} (see Sect. 1.3 and I. 5 of [3 ]). For a positive 8
measurable function f 

For A ~ E, TA = inf {t &#x3E; 0 : Xt E A} and T, = T{x}. We call x regular
provided that x is regular for {x}; that is if

If y is regular, Lyt(03C9) is a local time at y, i.e., a continuous additive
functional with support {y}; such a local time exists and is unique up to
a multiplicative factor ([3], theorem V.3.13). Moreover, it has a bounded
a-potential for any a &#x3E; 0 and we usually normalize it by

If y is regular we define for a &#x3E; 0

We sometimes write gl§(x) = tf¡(1.( x, y) when we want to regard tf¡(1.( x, y)
as function of x depending on the parameter y. It follows easily from
(2.2) and the fact that the support of LY is {y} that

A straightforward computation (see [2] lemma 1.1 and [3] proposition
IV.2.3) yields

We now assume that each x in E is regular. Under mild assumptions
one can choose a version of the local time which is a.s. the density of the
occupation time measure. More precisely one has

THEOREM 1. Assume that tj¡l(X, y) is jointly Borel measurable, i.e.,
03C81 E lff x E. Then one can choose the local time Lxt(03C9) to satisfy (2.2) and
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such that for each t &#x3E; 0 the map (s, x, 03C9) - Lxs(03C9)from [0, t ] x E x 03A9 ~
[0, oo) is Wt x é x Ft measurable where e, t is the a-algebra of Borel
subsets of [0, t], and for each (x, co), t - Lxt(03C9) is left continuous and
increasing. (Of course, for each x, Lx is a continuous additive functional.)
Assume further that X has a reference measure 03BE 4. Then there exists a
strictly positive finite Borel function g on E such that lxt(03C9) def g(x) Lxt(03C9)
almost surely satisfies

. for all t ~ 0 and B ~ E simultaneously. Moreover, if for each oc &#x3E; 0 we

define u03B1(x, y) = v03B1(x, y) g(y), then

for each f E d", u03B1(·, y) is uniformly a-excessive for each y, Ul(y, y) = g(y)
and

Finally

PROOF. This theorem is due to Blumenthal and Getoor (theorem 3.2
and corollary 3.4 in [2], and V-3.41 of [3]). However, Blumenthal and
Getoor make several extraneous assumptions and are not very explicit
at several stages in their argument. Consequently we will make several
comments on the proof.
Arguing more or less as in [2] (gn(x, y) in the proof of Theorem 3.2

should now be replaced by

compare also Theorem IV.3.8 in [3]) one constructs for each x a multi-
plicative function M’ such that for each t the map (x, co) - Mxt(03C9) is
é x 3Ç measurable and such that for each x and t, Mt - exp(-Lxt)
almost surely, where for each x, Lx is a local time at x satisfying (2.2).
In particular t ~ EÂ(Mt) is continuous for any initial measure À, and so
if we define

where the infimum is over all rationals r  t, then Mxt = Mxt almost

4 Essentially, 03BE is a reference measure if it is equivalent to U03B1(x, A) = U03B1IA(x)
(viewed as a measure in A) for all x. See [3], definition V.1.1.
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surely for each x and t. However Mx(co) is clearly left continuous and
decreasing in t for all (x, 03C9) and still é x 3Ç measurable in (x, co) for
each t. We let Lxt(03C9) = -log Mxt(03C9). This has the desired measurability
properties and is left continuous. But for fixed x and t, Lx = r, almost
surely and since Lx is a continuous additive functional it follows that for
each x, t ~ Lx is almost surely continuous. Thus Lo(cv) has all of the
properties claimed for the local time in the second sentence of Theorem 1.
We now drop the bar ’-’ from our notation and let Lxt(03C9) denote a
version of the local time with these properties.
Now let 03BE be a fixed reference measure for X. Let ~ be a finite measure

equivalent to 03BE. Define

This exists for each t and the map (s, Q)) - Ls(03C9) from [0, t] x 03A9 to
[0, oo ] is Bt  Ft measurable. Also, by (2.5),

Therefore t ~ Lt is finite almost surely. A standard argument using
Fubini’s theorem now shows that L is a continuous additive functional.

Next let f~E+ and suppose that UL f = 0 (see [3 ], IV.2.1 for notation).
Then r

and so for each x, 03C81(x, y)f(y) = 0 a.e. in y. But 03C81 is jointly measur-
able and so a.e. in y, 03C81(x, y) f (y) = 0 a.e. in x. Suppose that {f &#x3E; 01
has positive measure. Then there exists a y such that 1/11 (- , y) = 0 a.e.,
and hence everywhere because 1/11(., y) is 1-excessive (see [2] lemma 1.1
and [3], II.3.2). But 03C81(y, y) = 1 because y is regular, and so f = 0
a.e. Therefore U1f = 0. Let At = t^03BE, where ( is the ’lifetime’ of X.
It follows from (V.2.8) of [3] and the above calculation that A = hL for
some h ~ E+. Consequently

where 9 ~ E+. This means that a.s., t - At and t - j g(y) Lyt 03BE(dy) are
identical functions of t. Now define lxt(03C9) = g(x) Lt (co), and observe
that by [3], V.3.9, one has for each y a.s. for all t
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Thus, by virtue of (2.13) and (2.14) one has a.s. for all B c- e and all t

i.e. (2.8). It is also clear that g &#x3E; 0 a.e., and hence we may assume that

g is strictly positive. Using (2.13) again we see that for any oc &#x3E; 0 and

f E fff+

and the remaining assertions in Theorem 1 are easy consequences of

this, lemma 1.1 in [2], (2.5), and (2.6).
In the remainder of this section we assume that

(2.15) (E, d) is an interval of the real line with its usual Borel structure.

We come now to the main result of this section.

THEOREM 2. Let X be a standard process with state space (E, E) of the
form (2.15) and such that each x in e is regular. Define for u &#x3E; 0

Assume that

Then the local time Lxt(03C9) may be chosen so that almost surely (x, t) ~
Lxt(03C9) is continuous and increasing in t.

Before coming to the proof of Theorem 2 let us observe that p(.) is
increasing so that (2.17) holds if and only if

while the condition in the Boylan theorem is essentially

See page 225 of [3]. Also it will appear from the proof that if for each
positive integer M &#x3E; 0 one defines
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then it would suffice to assume that for each M the function PM satisfies

(2.17).
Our proof of theorem 2 is based on the following beautiful lemma

which is due to Garsia, Rodemich, and Rumsey [9]. See [10] for an
extremely simple proof.

LEMMA 1. Let [a, b] be a compact interval. Let p(u) be an even function
defined on [a - b, b - a ] that is increasing on [0, b - a ] and satisfies
limu~0p(u) = 0. Let peu) be an even convex function defined on
( - oo, oo) which is increasing on [0, ~ ] and satisfies limu~~ 03A8(u) = 00.
Let f be a measurable function on [a, b] such that

Then for (Lebesgue) almost all (x, y) in [a, b] x [a, b] one has

In [9] and [10] this lemma is stated for the unit interval [0, 1]; but a
simple change of variable yields the above statement.

We are now ready for the proof of Theorem 2. For simplicity we assume
that E = R ; the case in which E is an interval requires only notational
changes. Note that

Thus 03C81(·, .) is lower semicontinuous and E E measurable. We may
therefore begin by assuming that Lxt(03C9) is a local time satisfying the con-
ditions in the second sentence of Theorem 1. Fix positive integers N
and M and define

Then using the estimate (V.3.28) of [3] we obtain for each z and ô &#x3E; 0

Then for any 03BB &#x3E; 0
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and so

We now are ready to apply lemma 1. Let tl’(x) = exp[lxl/2]. Then by
(2.22) for each t ~ N we have

But from (2.24) and Fubini’s theorem

for all z, and so BN,M is finite almost surely. Applying Lemma 1 to the
estimate (2.25) we find that for each t in [0, N]

for almost all (x, y) in [ - M, M]2, where the exceptional set may depend
on t and 03C9. Define

Then (2.17) implies that 0 is finite and continuous with ~(u) ~ 0 as
u - 0. Now simple manipulations show that (2.26) may be rewritten
as follows : There exists a random variable cN,M(W) which is finite almost
surely and such that for each t E [0, N]

almost everywhere (Lebesgue) on [-M,M]2 and the exceptional set
may depend on both t and 03C9. However, it is important that cN, M(03C9)
does not depend on t.
We now define

for all x, t, and 0). Clearly for each t the map (s, x, 03C9) ~ LxS(03C9) from
[0, t]  E  03A9 to [0, oo ] is Bt x d’ x Ft measurable. It is straightforward
to check that for each t E [0, N] and Q) with cN, M(cv)  ~ one has
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for all x in [ - M, M],

for all x, y in [ - M, M], and

almost everywhere in x on [ - M, M] where the exceptional set may
depend on t and cv. It is now a routine, but slightly tedious, exercise in the
use of Fubini’s theorem to show that almost surely (t, x) ~ Lxt(03C9) is

continuous and that for each x, Lx is a continuous additive functional

equivalent Lx. This establishes Theorem 2.

REMARK 1. Note that (2.31) is an explicit Hôlder condition for the
local time.

3. A necessary condition for the existence of a continuous local time

Again X is a standard process and 1/1(1. as in (2.3). This time the state
space (E, E) does not have to be part of the real line but we assume that
it is a locally compact metric space with distance function d(., .) such
that

We now show that under simple conditions no continuous local time
exists, not even when the spatial argument is restricted to a countable
dense set. When interpreting Theorem 3 and Corollary 1 one should take
into account that (by right continuity of X) there exist a.s. a t = t(03C9) &#x3E; 0

and a compact set K = K(03C9) such that Xs e K for s ~ t and consequently
Lxs = 0 for all x ~ K, x E F and s ~ t. Thus (3.6) and (3.36) really deal
with the continuity of Ls on K, not just the uniform continuity on E.

THEOREM 3. Let X be a standard process with metric state space (E, E)
satisfying (3.1), and such that all points x E E are regular. Let Lxt be a
local time at x with

(Note that we do not insist on (2.2) here.) Moreover, let F = {x1, x2, ···}
be a countable dense subset of E and FN c F such that
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and if there exists a 03B4 &#x3E; 0 such that for all y o &#x3E; 0 there exists a y 1  oo

with

then for all t, d &#x3E; 0 and xo E E

PROOF. Fix xo E E, d &#x3E; 0 and choose 0  8  1. Also, for each
x i ~ F pick a yi E F with d/2 ~ d(xi, yi) ~ d (see 3.1 ). By (3.4) there
exists a 03B2 such that

By (3.5) and (3.3) there now exist 03B2 ~ yo  yl  00, ai and N such that

andforallxEE

Finally, let {Rij: i ~ 1, j ~ 1} be a family of independent exponentially
distributed random variables, which is independent of the X process and
satisfies

(it may be necessary to enlarge the probability space in order to construct
such random variables, but we do not dwell on this standard construction,
see [14] sect. 3 and [15] sect. XIV.39). We take

and, similarly
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A sequence of stopping times is now defined as follows:

Notice, that

Therefore, if

then, by the strong Markov property and the independence properties
of the Rij,

where Si is an exponential variable independent of the X process and with
mean 03B1-1(zi). The distribution of

for an exponential variable S(a) with mean a-1 and independent of the
X process was explicitly computed by Meyer, [14] theorem 2 (see also
[3], V.3.26), under the hypothesis v (1. ( x, x) = v03B1(y, y) = 1. But a trivial
change in their computations gives in general

where

But, if x = xj ~ F, y = y(x) = YjEF and 03B1 ~ fl, one has by [3],
V.3.16 and (3.7)
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and simple computations show that (3.5), (3.16) and (3.17) imply

Explicit inversion of the characteristic function (3.15) finally gives

We apply these results to x = xi E F, y = y(x) = yj E F, a = 03B1j. Then,
by (3.10) and (3.18),

0

If

then also

and

If, however, (3.21) fails, then, by (3.20), a ~ 1 2 and

We now define

Notice that b is Ji-1 measurable and that
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since 03B4i ~ yl 2 by (3.9). Therefore, by virtue of (3.14), (3.22) and (3.23)

and by lemma (6) in [8 ] with a = 1 2, b = (403B5)-1,

Equivalently

However, the Rij are a.s. finite and clearly, if

then

It follows that

It remains to show that VM is small with high probability. But

and (see (3.12))

Therefore (see (3.8), (3.9), (3.24) and (3.25))
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whence

Similarly, taking into account (3.26) and (3.11)

It follows from (3.27)-(3.29) that

Since 0  s  1 was arbitrary and y ~ F with d(xi, yi) ~ d the theorem
is proved.

REMARK 2. If

then there exists a 03B41 &#x3E; 0 and a sequence {yk} ~ x with Px{Tyk ~ 03B41} &#x3E;

03B41. Hence if

then

and by Blumenthal’s zero one law

Then, for any fixed s &#x3E; 0,

(Recall that a.s. Ls = 0 for s ~ Ty, see [3], V.3.5.)
Taking first s small, then ô small, we can make the right hand side

of (3.33) as close to 1 as desired, (see (3.32) and Prop. V.3.5 in [3]).
Thus under (3.31), we have for all t &#x3E; 0
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i.e., the local time is not continuous at x a.e. [Px]. It is not unreasonable
therefore to assume in addition

uniformly as d(x, y) - 0, x in a compact subset of E.
Under condition (3.34) it is proved in [14], sect. 3, or [3], V.3.29,

that for each t &#x3E; 0, 5

Consequently, if for some sequence {yk} ~ x

then for each t &#x3E; 0

Thus it is also reasonable to assume

vl(x, x) is continuous in x.

With (3.34) and (3.35) added one can sharpen (3.6) as in the following

COROLLARY 1. If (3.34) and (3.35) hold, in addition to the assumptions
of theorem 3, and if FN is discrete, then for each t &#x3E; 0, x o E E

PROOF. Fix a &#x3E; 0 and f &#x3E; 0. Let 0  t0 ~ t and let K be a compact
set so large that

Let v(K) = maxx~K v1(x, x). There exists a 0  d  f such that for all
x E K, d(x, y) ~ d, 

as well as

5 Some modifications have to be made in the argument below in case v 1 (x, x) = 0,
i.e. when L’ = 0.
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Lastly, let yi be chosen as in the proof of theorem 3 (with the d as just
constructed) and

By (3.30), for suitable N

But FN = FN is discrete, hence FN ~ K finite and thus a.e. [Px°] on

there exists (by [3], V.3.8) a zN E FN ~ K such that XRN = zN or XRN =
y(zN) and

Now, on {RN  t0} one has for any xi E FN ~ K with v1(xi, xi) ~ sô/64

By [3], V.3.28, and (3.38) the first term in the last member of (3.42) does
not exceed

whereas, by (3.39), Chebychev’s inequality and [3], V.3.16, the second
term in the last member of (3.42) is for xi E K with v1(xi, xi) ~ 8 ô/64
bounded by
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Thus

(3.43) is also valid when

For then

Similarly, when (3.44) holds Vl(Yi’ yi) ~ 2aô/64 and

(3.45) and (3.46) give (3.43) in case (3.44) holds. Now, by (3.37), (3.40)
and (3.43)

but

Since 0  d  f, and f &#x3E; 0, 8 &#x3E; 0 were arbitrary (3.36) follows.

4. Processes with stationary independent increments

In this section we take X = {Xt}t ~ o to be a one dimensional process
with stationary independent increments and characteristic function

with

v a Borel measure on R- {0} such that



295

We may restrict ourselves to one dimensional processes, since ’honestly
higher dimensional’ processes do not hit points and have no regular
points. ([13], theorem 3.) Returning to the one dimensional case, one
easily sees that if 62 = 0 and v(R- {0})  00 then

and a. s. there exists a t &#x3E; 0 such that

(see [13], sect. 2, (iv)). Thus X has regular points only if a’ = 0. In this
case every point is a holding point and for each t &#x3E; 0, the range
{XS : 0 ~ s ~ t} is a.s. finite. Xo is not an accumulation point of this
range and consequently

Thus in this case the local time is a. s. not continuous and we shall not

consider this case any further. Instead we turn to the

PROOF OF THEOREM 4. (This theorem was stated in the introduction.)
The existence of a bounded continuous density u03B1 satisfying (1.7) is

shown in [6], or [17], sect. 6,7. Indeed, if 03C32 &#x3E; 0 or v(R - {0}) = oo and
0 is regular for 0, then all points are regular, and the density of the
potential kernel u03B1 is continuous and satisfies

Thus

is continuous and the Lebesgue measure 03BE(dy) = dy is a reference

measure. Thus, by theorem 1, there exists a local time Lxt(03C9) satisfying
(2.2) and such that the map (s, x, co) ~ Li(cv) from [0, t] Rx03A9 ~
[0, ~) is Bt  E  Ft measurable3). There also exists a Borel function
g with the properties described in theorem 1. Since both g(y)v03B1(x, y)
and u(1.(y-x) are densities for the potential u(1., they are for each x equal
for almost all y. Hence
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In particular (see (4.4)), for a = 1,

Without effect on (2.8) we may take

For this choice, the u(1.(x, y) = g(y) v"(x, y) of theorem 1 becomes

identical with the present u03B1(y - x). Indeed,

and as observed u"(x, y) = u(1.(y-x) for almost all y for all x. Thus, by
(2.10), for each x for almost all y

But both sides of (4.6) are continuous in y, so that (4.6) holds everywhere.
Thus again by (2.10) u"(x, y) =- u(1.(y-x) and lx = ul(O)L: satisfies (2.8)
and (2.11), or equivalently (1.9) and (1.8), as required.
The continuity properties of 1 follow from theorems 2 and 3. Indeed,

if 0 is regular, then X hits points and by [13], theorem 2, or [6],

The inversion formula for characteristic functions (theorem 6.2.1 in [7])
together with (4.7) therefore gives

For the density u" of U" we find
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Thus

Consequently, if (1.11) holds, then so thus (2.18), and by theorem 2 there
is a version of Lxt as well as of lt - ul(O)L: which is continuous in (x, t).
On the other hand,

by (2.11) and (4.9). Thus, if (1.12) holds

uniformly in y, for some suitable ô &#x3E; 0. Also with

(3.1), (3.2) and (3.4) become obvious. To obtain (3.3) and (3.34) note
that

by the continuity of 03C8 and the regularity of 0. Finally (3.35) is immediate
again from (2.2). Thus, if (1.12) holds, the conclusions of theorem 3 and
corollary 1 hold, and for each t &#x3E; 0, xo E R.

(4.11) Px0(l’t is continuous on the dyadic rationals} = 0.

Lastly we show that 1; has a continuous version with probability zero
or one. Let F, FN be as in (4.10) and

Since a.s. l.x is a continuous function of t for all x E F

Thus the T(m, k, N) are stopping times, increasing in m and decreasing
in N, k. Hence also
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is a stopping time, and clearly lt when restricted to F is uniformly con-
tinuous for each t  T. Moreover, P{T = 01 = 0 or 1 by Blumenthal’s
zero-one law. First consider a process with

and fix t &#x3E; 0, B &#x3E; 0. There then exists a k = k(e, t) and for each m an
N = N(m, k) = N(m, k, c, t) such that

From here on one proves essentially as in corollary 1 that 1; will not be
continuous on F. At time T(m, k, N) there exist a.s. x, y E FN with

and for sufficiently large m this entails  with probability
at least (1-03B5) (compare (3.42) and the estimates following it). One
concludes that for each e &#x3E; 0 there exists a k such that for all large m,

and hence

Po for arbitrary large m there exist x, y E F with

This holds for each e &#x3E; 0 and hence (4.12) implies (4.11). Assume now
that

Then, for some ô &#x3E; 0 and all k

Hence for each k there exists an m(k) such that

Actually we may write P’ instead of P° in (4.15), for any x E R. Firstly,
since FN - FN = FN we may take the starting point x in FN. Secondly, if
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so that for any x

This together with (4.15) and the fact that T(m, k, N) is decreasing in
N immediately implies

(and by Blumenthal’s zero-one law limN~~ T(m(k), k, N) &#x3E; 0 a.e. [P’l).
Put

By the definition of T(m, k, N), and the continuity of l’ for x E F one has
a.s.

(the important point is that (4.17) also holds for s 
= S). If we define

the iterates of S(k) for some fixed k by

then also

a.s. for all x, y ~ F, |x-y| ~ (m(k))-1. For any 03C9 which satisfies (4.18)
for all j also

But by (4.16),

and hence
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Just as in [3], V.3.30, let 4J:: F , C[0, N] be the map which takes
x E F into the continuous function lx(cv) on [0, N]. Then for each
N &#x3E; 0, 4J: is a.s. uniformly continuous by (4.19) (using the sup norm on
C[0, N]). As in [3], V.3.31, this shows that under (4.14) 1 a.s. has a

version such that the map (x, t) ~ lxt(03C9) is continuous for all 03C9.

The following corollary is immediate from Remark 1.

COROLLARY 2. If {Xt}t~ o is as in theorem 4 and (1.11) holds, then a
continuous version of lt satisfies the Hôlder condition

for some CN(ccy which is a.s. finite. ( We do not need the restriction Ixl,
Iyl ~ M here since the closed range Rt(03C9) = {XS(03C9) : 0 ~ s ~ t} is a.s.
contained in some bounded [-M(ro), + M(03C9)] and ls - 0 for s  t,
x e Rt(03C9).)
EXAMPLES.

a) If U2 &#x3E; 0, Xt has a bounded continuous density p, which is the
convolution of the normal density (203C003C32t)-12 exp{-x2(2t03C32)-1 2} and
some probability distribution ([13], proof of theorem la, p. 17). Hence

and

In this case all points are regular (since E0e-Tx ~ l, x ~ 0; see also
[6] or [17] sect. 6,7) and a continuous local time exists, even by Boylan’s
theorem, [4].
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b) An asymmetric Cauchy processs has characteristic function (4.1 )
with

for some a, Cl &#x3E; 0, 0  |C2| ~ 2C1/03C0. This satisfies (4.7) and all points
are regular ([16], [6]). Thus lt exists as a density of the occupation time
measure ,ut (i.e. satisfying (1.9)). But (1.12) also holds, since

By theorem 4 no continuous version of 1; exists.

for some slowly varying function L as x - 0 as well as x - oo. Then
Xt has a symmetric distribution with characteristic function (4.1) and

If L is such that (4.7) holds then all points are regular ([13], corollary
3.2, or [6]), but if in addition

then, by (4.21),

Thus (4.22) implies (1.12) and by theorem 4 no continuous version of
1; exists in this case. On the other hand, if

for some e, C* &#x3E; 0 and small Ixl,

then, by (4.21), (4.7) holds and
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Hence, if (4.23) holds, (1.11) is satisfied and a continuous local time

exists by Theorem 4. By Corollary 2 a continuous version 1§ even satisfies
a.s.

for |u| ~ e-1 and some C*  oo, or
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