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1. Introduction

The theory of formations of finite solvable groups, developed by
Gaschütz [6], Carter and Hawkes [5], and Schunck [12], provides some
general methods for investigating conjugate classes of subgroups in
solvable groups. In some situations their methods depend on the

Theorem of Galois on primitive solvable groups, hence their methods
can not be applied to the class of all finite groups. However, using forma-
tions of rc-closed groups, Lausch [11 ] has extended some of the results
of Gaschütz [6] and Carter and Hawkes [5] to rc’-solvable groups.

Let F be a homomorph and let 03C0 denote a set of prime numbers.
Denote by F(03C0) the class of all finite groups G which contain a normal
Hall 03C0’-subgroup and a normal Hall 03C0-subgroup belonging to F.
Lausch [10] investigated F(03C0) in the case when F is a formation. It is
our purpose in the present paper to consider F(03C0) in some detail.
Among other things, we extend several results of Lausch [10] and
Gaschütz [6].
The main purpose of this paper is to prove the following theorem:

Let 57 be a homomorph such that F(03C0) is a saturated formation. If G is
a 03C0-solvable group, then G possesses an F(03C0)-covering subgroup and any
two such subgroups are conjugate.

Let 03C0 denote the set of all primes. Then F(03C0) = F and our theorem
is a generalization of the following theorem of Gaschütz (see Satz 7.10
of [9, p. 700]) which states: Let 57 be a saturated formation. If G is a
solvable group, then G possesses an 57-covering subgroup and all such
subgroups are conjugate.

In the final section we consider the formation N(03C0), where N is the
saturated formation of nilpotent groups. A subgroup H of a n-solvable
group G is termed a K,-subgroup of G provided 1) H ~ N(03C0),
2) NG(H) = H, and 3) H contains a Hall 03C0’-subgroup of G. We prove:
If L is a K1t-subgroup of the n-solvable group G, then L is N(03C0)-covering
subgroup of G. This result generalizes Proposition 1 of [10].

1 The author was supported by National Science Foundation Grant G.P. 8627.
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2. Preliminaries

The only groups considered here are finite. If H is a subset of the group
G, then

{H} is the subgroup generated by H,
NG(H) is the normalizer of H in G,
CG(H) is the centralizer of H in G,
Hx - xHx-1 for each x belonging to G,
H  G means H is a proper subgroup of G,
H ~ G means H is a subgroup of G,
|H| is the order of H,
Hn is the set of 03C0-elements of H, 03C0 is a set of prime numbers.

If H ~ G, then [G : H] will denote the index of H in G, core (H)
will denote the core of H in G, and ~(G) will denote the Frattini sub-
group of G.

Throughout the present paper 7T will denote a set of prime numbers
and 03C0’ will denote the complement of 7C in the set of all prime numbers.
A positive integer n is called a 03C0-number if the only prime divisors of n
belong to 03C0. A subgroup H of the group G is termed a Hall 03C0-subgroup
if |H| is a 03C0-number and [G : H] is a 7r’-number. Throughout this paper
Hall03C0(G) will denote the set of all Hall 03C0-subgroups of G. The group G
is termed 03C0-closed if it posesses a normal Hall 03C0-subgroup. The group
G is 03C0-closed if and only if G03C0 is a normal subgroup of G. The group G is
termed n-separated if all the chief factors of G are either n-groups or
03C0’-groups. In [4] and [8] 03C0-separated groups are called 03C0-serial. The

group G is termed n-solvable if G is 03C0-separated and the 03C0-chief factors
are solvable. We mention that 03C0-separated groups are discussed in [2],
[3] and [9, p. 659-661 ].
The group G is said to satisfy condition D x (see [4] and [8]) if

1) Hall,(G) is nonempty, 2) Hall,(G) is a class of conjugate subgroups
of G, and 3) if M is a 03C0-sugbroup of G, then M ~ H for some
H ~ Hall,(G). Because of Satz 5 of [4] a n-separated group satisfies D03C0.

Let F denote a nonempty class of finite groups. Then 57 is called a

homomorph if F is closed under epimorphic images. Schunck [12] has
investigated homomorphs of solvable groups. A homomorph 57 is

called a saturated homomorph if G/~(G) belongs to 57 implies G belongs
to 5. A subgroup H of the group G is termed a -97-covering subgroup
of G if and only if H E F and for H ~ L ~ G and K a normal subgroup
of L such that L/K E F implies L = KH.

Let e7 be a homomorph. The F-commutator, denoted [G, F], of G
is the intersection of all normal subgroups K of G such that G/K ~ F

(see [1, p. 126]). F is called a formation if G/[G, e7] c- 5’ for each group
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G. The reader is referred to [5], [6], [7] and [9, p. 696-711 ] for a study
of the basic properties of formations of finite solvable groups.
A formation is called a saturated formation if it is a saturated homo-

morph [9, p. 696]. We note that the concept of saturated formation
used is slightly weaker than that used by Lausch [10]. Lausch [10] called
the formation F saturated if G ~ F but G/N E F, N a minimal normal

subgroup of G, implies N is complemented in G. However, in the case
of formations of solvable groups the above definitions of saturated forma-

tion are equivalent. This fact is included in Satz 4.2 of [14].
Let F be a homomorph and let vr be a set of prime numbers. Through-

out this paper F(03C0) will denote the class of finite groups which are rc-
closed and z’-closed and G03C0 belongs to F. The class F(03C0) has recently
been studied by Lausch [10] in the case F is a formation of finite groups.
In the present paper we provide several more general theorems than given
by Lausch [10] and also extend Satz 2.1 of [6].
LEMMA 2.1. If 57 is a homomorph, then F(03C0) is also a homomorph.

PROOF. Let G belong to F(03C0) and let H be a normal subgroup of G.
Since (GIH)n = G03C0 H/H and (GIH)n’ = Gn,HIH, it follows that GIH is
both 7r-closed and z’-closed. We also note that GnHIH E ff since F is
a homomorph. Thus G/H E 57(n) and the proof is complete.
The next result follows from the proof of Theorem 1 of [10].
LEMMA 2.2. If F is a formation, then F(03C0) is also a formation.
A homomorph F is said to be subgroup-inherited if G E F and H  G

implies H E F.

LEMMA 2.3. If F is a homomorph which is subgroup-inherited, then

F(03C0) is also a homomorph which is subgroup-inherited.
PROOF. Because of Lemma 2.1 F(03C0) is a homomorph. Let G E 57(n)

and let H be a subgroup of G. Then Hn = H n G03C0 and so H is n-closed.
Similarly, H is n-closed. Since G03C0 E ff it follows that H03C0 also belongs
to F. This completes the proof.
A homomorph 57 is said to be closed under normal products if M and

N are normal subgroups of G both of which belong to F, then MN also
belongs to F. Let 0 denote the formation of all rc-closed groups. Then 0
is closed under normal products (see [1, p. 129]). We also note that 0 is
closed under direct products. Hence, we have the following lemma.

LEMMA 2.4. Let J7 be a homomorph.
(a) If 57 is closed under normal products, then 5(n) is also closed

under normal products.
(b) If 57 ils closed under direct products, then F(03C0) is also closed under

direct products.



350

THEOREM 2.1. If F is a saturated homomorph, then F(03C0) is also a

saturated homomorph.

PROOF. Because of Lemma 2.1 F(03C0) is a homcmorph. Let G/~(G)
belong to F(03C0). Because of Proposition 3 of [1, p. 132] G is n-closed
and 03C0’-closed. Hence, G = Gn x Gn, and because of Theorem 7.3.23 of
[13] it follows that ~(G) = ~(G03C0) x ~(G03C0’). From this we conclude that
(~(G))03C0 = ~(G03C0) and since G03C0~(G)/~(G) belongs to je7, it follows that
G03C0/~(G03C0) also belongs to F. This shows that G E F(03C0) and the proof
is complete.

Because of Lemma 2.2 and Theorem 2.1 we obtain the theorem which

follows.

THEOREM 2.2. If F is a saturated formation, then F(n) is also a

saturated formation.
We conclude this section with a lemma which is useful in the following

sections.

LEMMA 2.5. Let M be a normal subgroup of G and let 03A9 denote a class

of conjugate subgroups of G. Let S’ E 03A9 and assume that the members of
03A9 which are contained in SM are conjugate in SM. Then NG(SM) -
NG(S)M.

PROOF. We note that NG(S)M ~ NG(sM). Let y E NG(SM). Then
SyM = SM, hence sym = S for some m E M. From this it follows that
ym E NG(S) and so y E NG(S)M. This completes the proof.

3. The main theorem

In this section we establish the main theorem which was mentioned

in the introduction. We begin with the following lemma.

LEMMA 3.1. Let ff be a homomorph and let G be a n-separated group.
If G is 03C0’-closed and contains a Hall n-subgroup H from F, then NG(H)
is an F(03C0)-covering subgroup of G.

PROOF. We use induction on IGI. Let N = NG(H) and note that since
G is 7r’-closed it follows that N is also 7r’-closed. Hence, N belongs to

F(03C0) since I-I e 57.
Let N ~ B ~ G and let M be a normal subgroup of B such that

BIM E F(03C0). Assume that B  G. Then NB(H) = NG(H), H E Hall 03C0(B)
and B is 03C0’-closed. By induction N is an F(03C0)-covering subgroup of
the 03C0-separated group B. Hence, we can assume that B = G. We can
also assume that M ~ 1. For if M = 1, then G E F(03C0) and it follows
that NG(H) = G.
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Next we note that G/M is n-closed and HMjM is a Hall n-subgroup
of the n-separated group G/M. Since F is a homomorph it follows that
HM/M ~ F. By induction it follows that NG/M(HMIM) is an F(03C0)-
covering subgroup of G/M. Since G/M E F(03C0), G/M = NG/M(HM/M).
Because of Satz 5 of [4] and Lemma 2.5, it follows that NGlm(HMIM) =
NG(HM)/M = NG(H)M/M, hence G = NM. This shows that N =
NG(H) is an F(03C0)-covering subgroup of G and the proof is complete.
THEOREM 3.1. Let F be a homomorph such that F(03C0) is a saturated

formation. If G is a 03C0-solvable group, then G possesses an F(03C0)-covering
subgroup.

PROOF. Let M be a minimal normal subgroup of G. By induction on
1 Gi, it follows that the 03C0-solvable group G/M possesses an F(03C0)-covering
subgroup L/M. Assume that L  G. Then by induction L possesses an
F(03C0)-covering subgroup H. Because of Hilfssatz 1.8 of [14] H is an

F(03C0)-covering subgroup of G. Hence, we can assume that G/M E F(03C0)
for each minimal normal subgroup M of G. Since F(03C0) is a formation
we can also assume that M is the unique minimal normal subgroup of G.
Since G is n-solvable, M is either a 03C0-group or a 03C0’-group. We distinguish
two cases.

CASE 1. M is a n-group. Then M is an elementary abelian p-group,
p a prime number from 03C0. Since 57(n) is a saturated formation we can
assume ~(G) = 1, hence there is a maximal subgroup B of G such that
M  B. Hence, G = MB and since M is abelian it follows that

M n B = 1. Thus B E F(03C0) and since B is a maximal subgroup of G
and M is the unique minimal normal subgroup of G, it follows that B
is an F(03C0)-covering subgroup of G.

CASE 2. M is a z’-group. Since G/M E F(03C0), there exists subgroups K
and W of G such that K/M = (G/M)n and W/M = (G/M)n’. Since M
is a 03C0’-group, it follows that W = G03C0’, hence G is 03C0’-closed. Further, by
the Schur-Zassenhaus theorem ([13, p. 224]) it follows that K = MH
with M n H = 1 and H E Hall03C0(K). We note that H E Hal1n(G) and
also H ~ KJM c- 57.

Hence, G is 03C0’-closed and contains a Hall n-subgroup H which belongs
to 57. Because of Lemma 3.1 NG(H) is an F(03C0)-covering subgroup of G.

This completes the proof of the theorem.
Because of Theorems 2.2 and 3.1 we obtain the following result.

THEOREM 3.2. Let 57 be a saturated formation and let G be a n-solvable
group. Then G possesses an F(03C0)-covering subgroup.
We now proceed to show that F(03C0)-covering subgroups of n-solvable.

groups are conjugate. We begin with the following lemma.
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LEMMA 3.2. Let 57 be a homomorph and let G be a n-separated group
which is n’-closed. Let G contain a Hall 03C0-subgroup H ~ F. If L is an

F(03C0)-covering subgroup of G, then L is conjugate to NG(H).
PROOF. Let L be an F(03C0)-covering subgroup of G and let M be a

minimal normal subgroup of G. Because of Hilfssatz 1.7 of [14] LM/M
is an F(03C0)-covering subgroup of G/M. We also note that NG/M(HMIM)
is an F(03C0)-covering subgroup of G/M by Lemma 3.1. Because of Satz 5
of [4] and Lemma 2.5 it follows that NG/M(HM/M) = NG(H)M/M. By
induction on |G|, there is an element x E G such that NG(Hx) ~ LM.
Hence, we can assume that NG(H) ~ LM. Assume that LM  G. By
Hilfssatz 1.7 of [14] L and NG(H) = NLM(H) are F(03C0)-covering sub-
groups of LM. Hence, by induction it follows that Land NG(H) are
conjugate subgroups of LM.

Hence, we can assume that LM = G. We note that G/M E F(03C0).
Since G is a 03C0-separated group, M is either a 03C0-group or a 03C0’-group.
Hence, we distinguish two cases.

CASE 1. M is a 03C0-group. Because of Satz 5 of [4], M ~ H and it follows
that H = G03C0. From this we conclude that G = L = NG(H).

CASE 2. M is a n-group. Then L n M is a 03C0’-subgroup of L and
G/M = LM/M ~ L/M n L. Hence, L contains a Hall 03C0-subgroup W
of G. Because of Satz 5 of [4] there is an element x of G such that
Hx - W, and so we can assume that H ~ L. Since L is an F(03C0)-covering
subgroup of G, L E F(03C0) and so H is a normal subgroup of L. Therefore,
L ~ NG(H) E F(03C0), and it now follows that L = NG(H). This completes
the proof.

THEOREM 3.3. Let F be a homomorph and let G be a n-solvable group.
Then any two F(03C0)-covering subgroups of G are conjugate.

PROOF. Let K and L be F(03C0)-covering subgroups of G and let M be a
minimal normal subgroup of G. Because of Hilfssatz 1.7 of [14] KM/M
and LM/M are F(03C0)-covering subgroups of G/M. By induction on 1 GI,
there is an element x E G such that Lx ~ KM. Assume that KM  G.

Because of Hilfssatz 1.7 of [14] L’ and K are F(03C0)-covering subgroups
of KM, hence by induction L’ and K are conjugate subgroups of KM.
Hence, we can assume that KM = LM = G for each minimal normal

subgroup M of G. We note that G/M E F(03C0) for each minimal subgroup
M of G. Further, we can assume core(L) = 1. For if core(L) ~ 1, then
L = L core(L) = G, hence G E F(03C0) and so G = K = L.

Let M be a minimal normal subgroup of G. Then M is either a n-group
or a 03C0’-group. We distinguish two cases.
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CASE 1. M is a 03C0’-group. Let W be the normal subgroup of G such that
W/M (GIM),,,,. Then W = Gn,. Let X be a subgroup of G such that
X/M = (G/M)03C0. Then X/M ~ F and by the Schur-Zassenhaus theorem
([13, p. 224]) it follows that there is a subgroup H of X such that X = MH
and M n H = 1. We note that H E Hall,(G) and H &#x26;é X/M E F, hence
because of Lemma 3.2 K and L are both conjugate to N G(H). Therefore,
K and L are conjugate subgroups of G.

CASE 2. M is a n-group. Then M is an elementary abelian p-group with
p ~ 03C0. We note that core(L) = core(K) = 1 and G = KM = LM. Since
M is abelian, it follows that K and L are maximal subgroups of G and
K ~ M = L ~ M = 1.

Assume that K. = 1. Since K £r G/M ~ L, K and L are Hall n-sub-
groups of G. Because of Satz 5 of [4], K and L are conjugate in G. Hence,
we can now assume that K03C0 ~ 1, and it follows that K is a maximal

subgroup of G of core 1 which contains a solvable normal subgroup
K03C0 ~ 1. Because of Lemma 4, part (a), of [1, p. 123 ] K contains a normal
subgroup, not 1, whose order is relatively prime to [G : K]. Since L is a
maximal subgroup of G of core 1, it follows by Lemma 4, part (b), of
[1, p. 123] that L and K are conjugate subgroups of G. This completes
the proof.

REMARK 3.1. Let ff be a homomorph and let denote the set of all
prime numbers. Then F(03C0) = 57 and G is n-solvable if and only if G
is solvable. Therefore, Theorem 3.3 is a generalization of Satz 3.5 of [12].

Because of Theorems 3.1 and 3.3 we obtain the main theorem of the

present paper.

THEOREM 3.4. Let 57 be a homomorph such that F(03C0) is a saturated
formation. If G is n-solvable, then G possesses an F(03C0)-covering subgroup
and all such subgroups are conjugate.

REMARK 3.2. Let 57 be a saturated formation and let je denote the set

of all prime numbers. Then F(03C0) = 57 and we note that Theorem 3.4
is a generalization of part (b) of Satz 7.10 of [9, p. 700].
From Theorems 2.2 and 3.4 we obtain the following theorem.

THEOREM 3.5. Let e7 be a saturated formation. Then every n-solvable
group possesses an F(03C0)-covering subgroup, and all such subgroups are
conjugate.

4. The formation JV(n)

In this section we take 57 to be the class JV of finite nilpotent groups.
Since N is a saturated formation it follows from Theorem 2.2 that
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X(7r) is also saturated formation. We now give a set of conditions under
which a subgroup H of the rc-solvable group G is an N(03C0)-covering
subgroup.
A subgroup H of the 03C0-solvable group G is called a K03C0-subgroup of G

if and only if 1) H ~ N (03C0), 2) NG(H) = H, and 3) H contains a Hall
03C0’-subgroup of G.
We now give a theorem which extends Proposition 1 of Lausch [10]

to the class of 03C0-solvable groups. We note that the method of proof is
very similar to that used by Lausch.

THEOREM 4.1. Let G be a 03C0-solvable group. If L is a K03C0-subgroup of G,
then L is an N(03C0)-covering subgroup of G.

PROOF. We use induction on |G|. Let L be a K,-subgroup of G and let
M denote the N (03C0)-commutator of G.

Let L ~ H  G and note that L is a K,-subgroup of the 03C0-solvable
group H. By induction it follows that L is an N(03C0)-covering subgroup
of H, hence it sufhces to show G = LM.
Assume that M = 1. Then G ~ N(03C0), hence G, is a nilpotent normal

subgroup of G. Since G03C0’ is a normal subgroup of G, it follows that

G03C0’ ~ L, hence we must show that Ln - Gn . Assume that Ln  G, .
Since Gn is nilpotent, there is a 03C0-element x E G03C0, x ~ L03C0, such that
x E NGn(Ln). Hence, x ~ NG(L) = L which is a contradiction. Hence,
L03C0 = Gn and it follows that G = L.
We can now assume that M ~ 1. Let W be a minimal normal subgroup

of G such that W ~ M. We also assume that L W  G. We now show

LW/W is a K,-subgroup of G/ W. We note that LW/W ~ N (03C0) and also
LW/W contains a Hall 03C0’-subgroup of G/ W. Now let x ~ NG(L W).
Then L and L" are K,-subgroups of L W. Hence, by induction, L and Lx
are %(n)-covering subgroups of LW. Because of Theorem 3.5 there
is an element y E W such that L Lxy, hence xy E NG(L). From this

we conclude that NG/W(LW/W) = NG(LW)jW = NG(L) W/ W, hence
NG/w(LWjW) = L W/ W. Thus L W/ W is a K03C0-subgroup of G/ W and it
follows by induction that LW/W is an %(n)-covering subgroup of G/W.
Because of Lemma 1 of [1, p. 128] M/W is the N(03C0)-commutator of
G/ W, hence G/ W = (LW/W)M/W and it follows that G = LM. This

completes the proof of the theorem.
We now list several corollaries which follow immediately from

Theorem 4.1.

COROLLARY 4.1.1. Let G be a 03C0-solvable group. Then any two K03C0-sub-
groups of Gare conjugate.

COROLLARY 4.1.2. Let G be a 03C0-solvable group which contains a self
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normalizing Hall 03C0’-subgroup L of G. Then L is an %(n)-covering sub-
group of G.

REMARK 4.1. We note that Corollary 4.1.2 extends the corollary to
Proposition 1 of Lausch [10].

Let G denote the symmetric group on four symbols and let 03C0 = {2}.
Then the 2-Sylow subgroups are the %(n)-covering subgroups of

G. Let L be a 2-Sylow subgroup of G. Then L = NG(L), but L
does not contain a Hall 03C0’-subgroup of G. Hence, L is not a K,-sub-
group.
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