Compositio Mathematica

I. M. JAMES

On the maps of one fibre space into another

Compositio Mathematica, tome 23, no 3 (1971), p. 317-328
http://www.numdam.org/item?id=CM_1971__23_3_317_0
© Foundation Compositio Mathematica, 1971, tous droits réservés.
L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

ON THE MAPS OF ONE FIBRE SPACE INTO ANOTHER

by

I. M. James

1. Introduction

The purpose of this note is to study, in special cases, the Puppe exact sequence of ex-homotopy theory (for details ${ }^{1}$, see [4]). We begin by recalling the basic notions of the category of ex-spaces and ex-maps, with respect to a fixed base space B. By an ex-space we mean a space X together with a pair of maps

$$
B \xrightarrow{\sigma} X \xrightarrow{\rho} B
$$

such that $\rho \sigma=1$. We refer to ρ as the projection, to σ as the section, and to (ρ, σ) as the ex-structure. Let $X_{i}(i=0,1)$ be an ex-space with ex-structure $\left(\rho_{i}, \sigma_{i}\right)$. We describe a map $f: X_{0} \rightarrow X_{1}$ as an ex-map if

$$
\begin{equation*}
f \sigma_{0}=\sigma_{1}, \rho_{1} f=\rho_{0}, \tag{1.1}
\end{equation*}
$$

as shown in the following diagram.

In particular, we refer to $\sigma_{1} \rho_{0}$ as the trivial ex-map. We describe a homotopy $f_{t}: X_{0} \rightarrow X_{1}$ as an ex-homotopy if f_{t} is an ex-map at every stage. The set of ex-homotopy classes of ex-maps is denoted by $\pi\left(X_{0}, X_{1}\right)$. Further notions, such as ex-homeomorphism and ex-homotopy equivalence, are defined in the obvious way.

Let B be a pointed space, with basepoint $e \in B$. A functor Φ can be defined, as follows, from the category of ex-spaces to the category of pointed spaces. If X is an ex-space with ex-structure (ρ, σ), then ΦX is the space $\rho^{-1} e$ with σe as basepoint. If $f: X_{0} \rightarrow X_{1}$ is an ex-map, where X_{0}, X_{1} are ex-spaces, then $\Phi f: \Phi X_{0} \rightarrow \Phi X_{1}$ is the map determined by

[^0]restriction of f. We refer to Φ as the fibre functor. Note that Φ determines a function
$$
\varphi: \pi\left(X_{0}, X_{1}\right) \rightarrow \pi\left(\Phi X_{0}, \Phi X_{1}\right)
$$
where the codomain means the set of pointed homotopy classes of pointed maps.

In some cases this function φ is both surjective and injective. For example, let A be a pointed space. Regard the wedge-sum $A \vee B$ as an ex-space with section the inclusion and projection constant on A. Then $\Phi(A \vee B)=A$ and we have at once

Proposition (1.2). Let X be an ex-space with fibre $\Phi X=Y$. Then the function

$$
\varphi: \pi(A \vee B, X) \rightarrow \pi(A, Y)
$$

is bijective.
By a fibre ex-space we mean an ex-space with a fibration as projection. When X_{0} and X_{1} are fibre ex-spaces there is a useful necessary condition for an element of $\pi\left(\Phi X_{0}, \Phi X_{1}\right)$ to belong to the image of φ. This condition involves the brace product, a pairing of homotopy groups derived from the Whitehead product as follows. Let X be a fibre ex-space with ex-structure (p, s) and fibre Y. Consider the short exact sequence

$$
0 \rightarrow \pi_{*}(Y) \underset{i *}{\rightarrow} \pi_{*}(X) \underset{p *}{\rightarrow} \pi_{*}(B) \rightarrow 0
$$

where $i: Y \subset X$. Given elements $\beta \in \pi_{*}(B), \eta \in \pi_{*}(Y)$ we form the Whitehead product $\left[s_{*} \beta, i_{*} \eta\right.$]. This element of $\pi_{*}(X)$ lies in the kernel of p_{*}, since $p_{*} i_{*}=0$, and so by exactness there exists a (unique) element $\{\beta, \eta\}$, say, of $\pi_{*}(Y)$ such that

$$
\begin{equation*}
i_{*}\{\beta, \eta\}=\left[s_{*} \beta, i_{*} \eta\right] \tag{1.3}
\end{equation*}
$$

This operation $\{$,$\} , which we refer to as the brace product, is studied in$ [5] and [9], where various examples are given. From (1.1), (1.3) and the naturality of the Whitehead product we obtain

Proposition (1.4). Let $X_{i}(i=0,1)$ be a fibre ex-space with fibre Y_{i}. If $\alpha \in \pi\left(Y_{0}, Y_{1}\right)$ belongs to the image of φ then

$$
\alpha \circ\{\beta, \eta\}=\{\beta, \alpha \circ \eta\}
$$

for all $\beta \in \pi_{*}(B), \eta \in \pi_{*}\left(Y_{0}\right)$.
Here the brace product on the left refers to X_{0} while that on the right refers to X_{1}. In certain cases, as we shall see, the condition is sufficient as well as necessary.

It appears that sphere-bundles play a special role in ex-homotopy theory just as spheres do in ordinary homotopy theory. Let O_{q} ($q=$
$1,2, \cdots$) denote the group of orthogonal transformations of euclidean q-space. For $m \geqq q$ we regard the $(m-1)$-sphere S^{m-1} as an O_{q}-space, in the usual way. Given a principal O_{q}-bundle over B let E_{m} denote the associated $(m-1)$-sphere bundle. When $m>q$ we regard E_{m} as an exspace by choosing a cross-section of the bundle. When $m>q+1$ we give $\pi\left(E_{m}, X\right)$ a natural group-structure, as described in $\S 2$ bslow, so that

$$
\varphi: \pi\left(E_{m}, X\right) \rightarrow \pi\left(S^{m-1}, Y\right)=\pi_{m-1}(Y)
$$

constitutes a homomorphism. We do not give a group-structure to $\pi\left(E_{q+1}, X\right)$.

Now consider the case when B is a sphere, say $B=S^{n}(n>1)$. Let $E_{m}(m=q+1, q+2, \cdots)$ be associated with an O_{q}-bundle over S^{n}, as above, and let X be a fibre ex-space over S^{n} with fibre Y. Let $\boldsymbol{t}_{r} \in \pi_{r}\left(S^{r}\right)$ $(r=1,2, \cdots)$ denote the homotopy class of the identity map and let

$$
\psi: \pi_{r}(Y) \rightarrow \pi_{r+n-1}(Y) \quad(r \geqq q)
$$

denote the operator given by

$$
\begin{equation*}
\psi(\alpha)=\alpha \circ\left\{\imath_{n}, l_{r}\right\}-\left\{\imath_{n}, \alpha \circ l_{r}\right\} \quad\left(\alpha \in \pi_{r}(Y)\right) . \tag{1.5}
\end{equation*}
$$

Here the brace products are to be interpreted as in (1.4). It follows from (1.7) below that ψ is a homomorphism for $r>q$ but this is not true, in general, for $r=q$. Our aim is to set up an exact sequence containing ψ, as in (1.5), the fibre function φ, and a third operator

$$
\theta: \pi_{m+n}(Y) \rightarrow \pi\left(E_{m+1}, X\right)
$$

which can be defined as follows. Recall (see § 3 of [7]) that

$$
E_{m+1}=\left(S^{m} \vee S^{n}\right) \cup e^{m+n}
$$

as a cell-complex, where S^{m} is the fibre and S^{n} is embedded by the cross-section. If $f: E_{m+1} \rightarrow X$ is an ex-map such that Φf is constant then the separation element $d(f, c) \in \pi_{m+n}(X)$ is defined, with respect to this cell-structure, where c denotes the trivial ex-map. Since $p f=p c$ we have $p_{*} d(f, c)=0$ and so $d(f, c)=i_{*} \beta$, by exactness, where $\beta \in \pi_{m+n}(Y)$. Conversely, given β, there exists an ex-map f, as above, such that $d(f, c)=i_{*} \beta$. We define $\theta(\beta)$ to be the ex-homotopy class of f in $\pi\left(E_{m+1}, X\right)$. It is not difficult to check that θ constitutes a homomorphism for $m>q$. Having made the necessary definitions we are now ready to state our main result

Theorem (1.6). The sequence

$$
\begin{aligned}
\cdots \rightarrow \pi\left(E_{m+1}, X\right) & \xrightarrow[\rightarrow]{\varphi} \pi_{m}(Y) \xrightarrow{\psi} \pi_{m+n-1}(Y) \xrightarrow{\theta} \pi\left(E_{m}, X\right) \\
& \rightarrow \cdots \rightarrow \pi_{q}(Y) \xrightarrow{\psi} \pi_{q+n-1}(Y),
\end{aligned}
$$

is exact.

It is possible to prove (1.6) by using the methods of Barcus and Barratt [2]. However the proof we give shows, in my opinion, the advantages of exploiting the elementary properties of ex-homotopy theory.

Before we embark on the proof it is convenient to make a few further observations. Suppose that the original q-sphere bundle has classifying element $\beta \in \pi_{n-1}\left(O_{q}\right)$. By (3.7) of [7] the brace product in the case of E_{m+1} is given by

$$
\begin{equation*}
\left\{l_{n}, l_{m}\right\}=S_{*}^{m-q} J \beta, \tag{1.7}
\end{equation*}
$$

where S_{*} denotes the suspension functor and $J \beta \in \pi_{n+q-1}\left(S^{q}\right)$ is defined by the Hopf construction in the usual way. Suppose that $Y=S^{r}(r \geqq 1)$, regarded as a pointed O_{r}-space, and that X is the r-sphere bundle with cross-section associated with a principal O_{r}-bundle. Then $\left\{l_{n}, l_{r}\right\}=J \gamma$, similarly, where $\gamma \in \pi_{n-1}\left(O_{r}\right)$ is the classifying element, and hence $\left\{t_{n}, \alpha\right\}=J \gamma \circ S_{*}^{n-1} \alpha$, where $\alpha \in \pi_{m}\left(S^{r}\right)$. Thus

$$
\begin{equation*}
\psi(\alpha)=\alpha \circ S_{*}^{m-q} J \beta-J \gamma \circ S_{*}^{n-1} \alpha . \tag{1.8}
\end{equation*}
$$

Where the relevant information on the homotopy groups is available we can calculate the kernel and cokernel of ψ, for a range of values of m, and hence calculate $\pi\left(E_{m}, X\right)$ to within a group extension.

For example, take $n=2, q=2$. Take E_{m} to be the ($m-1$)-sphere bundle associated with the Hopf bundle over S^{2}. Using standard results on the homotopy groups of spheres we find that $\pi\left(E_{8}, E_{6}\right) \approx Z_{2}$, in this case. If instead we take E_{m} to be the trivial ($m-1$)-sphere bund le we find that $\pi\left(E_{8}, E_{6}\right) \approx Z_{2} \oplus Z_{2}$.

2. The Puppe sequence

Let (K, B) be a $C W$-pair, such that B is a retract of K, and let $\rho: K \rightarrow B$ be a cellular retraction. We regard K as an ex-space with the retraction as projection and the inclusion as section. Let ΣK denote the complex obtained from the union of $K \times I$ and B by identifying $(x, t) \in K \times I$ with $\rho x \in B$ if either $x \in B$ or $t=0,1$. A retraction of ΣK on B is given by $(x, t) \mapsto \rho x$. We give ΣK cell-structure, in the obvious way, so that B is a subcomplex and the retraction is cellular. We refer to ΣK as the suspension of K, in the ex-category. The r-fold suspension $(r=1,2, \cdots)$ is denoted by $\Sigma^{r} K$. Suppose, for simplicity, that K is locally finite.

Let $\varphi_{X} K$, for any ex-space X, denote the function-space of ex-maps $K \rightarrow X$, with the trivial ex-map as basepoint. By taking adjoints, in the usual way, we identify the homotopy group $\pi_{r}\left(\varphi_{X} K\right)$ with $\pi\left(\Sigma^{r} K, X\right)$. Thus $\pi\left(\Sigma^{r} K, X\right)(r=1,2, \cdots)$ receives a natural group-structure. This group is abelian for $r \geqq 2$ but not, in general, for $r=1$.

Now suppose that we have a locally finite complex K^{\prime} containing K as a subcomplex and suppose that ρ can be extended to a cellular retraction $\rho^{\prime}: K^{\prime} \rightarrow B$. Let $K^{\prime \prime}$ denote the complex obtained from K^{\prime} by identifying points of K with their images under ρ. Let $\rho^{\prime \prime}: K^{\prime \prime} \rightarrow B$ denote the retraction induced by ρ^{\prime}. We regard K^{\prime} and $K^{\prime \prime}$ as ex-spaces, with the retractions as projections and the inclusions as sections. Then

$$
K \xrightarrow{i} K^{\prime} \xrightarrow{j} K^{\prime \prime}
$$

are ex-maps, where i is the inclusion and j is the identification map. Consider the maps

$$
\varphi_{X} K^{\prime \prime} \xrightarrow{j^{*}} \varphi_{X} K^{\prime} \xrightarrow{i^{*}} \varphi_{X} K
$$

given by functional composition. By a straightforward application of the covering homotopy property we obtain

Theorem (2.1). If X is a fibre ex-space then $i^{*}: \varphi_{X} K^{\prime} \rightarrow \varphi_{X} K$ is a fibration.

Notice that the fibre, over the trivial ex-map, can be identified with $\varphi_{X} K^{\prime \prime}$ by means of j^{*}. Hence the homotopy exact sequence of the fibration can be written in the form

$$
\cdots \rightarrow \pi\left(\Sigma^{r} K^{\prime \prime}, X\right) \xrightarrow{j^{*}} \pi\left(\Sigma^{r} K^{\prime}, X\right) \xrightarrow{i^{*}} \pi\left(\Sigma^{r} K, X\right) \rightarrow \cdots
$$

This is an example of the generalization to ex-homotopy theory of the notion of Puppe sequence. An alternative approach (see § 7 of [4]) is to construct a sequence of ex-maps

$$
K \rightarrow K^{\prime} \rightarrow K^{\prime \prime} \rightarrow \Sigma K \rightarrow \Sigma K^{\prime} \rightarrow \Sigma K^{\prime \prime} \rightarrow \cdots
$$

and apply the functor $\pi(, X)$.
The Puppe sequence gives useful information if one of the three domain ex-spaces is ex-contractible. For example we have

Corollary (2.2). Suppose that $K^{\prime \prime}$ is ex-contractible. If X is a fibre ex-space then

$$
i^{*}: \pi\left(\Sigma^{r} K^{\prime}, X\right) \rightarrow \pi\left(\Sigma^{r} K, X\right)
$$

is bijective, for $r \geqq 1$, and

$$
i^{*}: \pi\left(K^{\prime}, X\right) \rightarrow \pi(K, X)
$$

is monic.
Here the term monic is used to mean that the kernel of i^{*} is trivial; it is not true that i^{*} is injective, in general.

In $\S 1$ we are given a principal O_{q}-bundle over B, and consider the associated $(m-1)$-sphere bundle $E_{m}(m=q, q+1, \cdots)$. We regard E_{m+1} as the fibre suspension of E_{m} in the usual way (see § 7 of [7]). Let $m>q$.

Then E_{m} admits a cross-section and so can be regarded as an ex-space. The suspension ΣE_{m} is defined, as above, and the natural ex-map

$$
r: E_{m+1} \rightarrow \Sigma E_{m}
$$

is an ex-homotopy equivalence, as shown in $\S 6$ of [4]. We identify $\pi\left(E_{m+1}, X\right)$ with $\pi\left(\Sigma E_{m}, X\right)$ under the bijection induced by r, where X is any ex-space. Thus $\pi\left(E_{m+1}, X\right)$ receives a group-structure, for $m>q$.

3. The operators in the sequence

Let $D^{r}(r=1,2, \cdots)$ denote the r-ball bounded by S^{r-1}. Choose a $\operatorname{map} b_{r}: D^{r} \rightarrow S^{r}$ which is constant on S^{r-1} and non-singular ${ }^{2}$ on the interior of D^{r}. Given q, we regard D^{m} and S^{m-1} as O_{q}-spaces for $m \geqq q$, in the usual way, and choose b_{m} to be an O_{q}-map.

We recall that an O_{q}-bundle over $S^{n}(n \geqq 2)$ corresponds to a map $T: S^{n-1} \rightarrow O_{q}$, in the standard classification. Let $m \geqq q$. Write $g(x, y)=$ $T(y) \cdot x\left(x \in S^{m-1}, y \in S^{n-1}\right)$ so that $g: S^{m-1} \times S^{n-1} \rightarrow S^{m-1}$. Let E_{m} denote the space obtained from the union of $S^{m-1} \times D^{n}$ and S^{m-1} by identifying points of $S^{m-1} \times S^{n-1}$ with their images under g, so that the identification map

$$
h:\left(S^{m-1} \times D^{n}, S^{m-1} \times S^{n-1}\right) \rightarrow\left(E_{m}, S^{m-1}\right)
$$

is a relative homeomorphism. Write $\pi h(x, y)=b_{n} y$, where $x \in S^{m-1}$, $y \in D^{n}$, so that $\pi: E_{m} \rightarrow S^{n}$. We recall (see § 3 of [7]) that E_{m}, with this projection, can be identified with the ($m-1$)-sphere bundle corresponding to T, i.e. the ($m-1$)-sphere bundle associated with the given O_{q}-bundle. If we replace $S^{\boldsymbol{m - 1}}$ by D^{m}, in this construction, we obtain the associated m-ball bundle E_{m}^{\prime} with projection π^{\prime}, say. We regard E_{m} as a subspace of E_{m}^{\prime}, in the obvious way, so that $\pi=\pi^{\prime} u$, where $u: E_{m} \subset E_{m}^{\prime}$.

Let F_{m}, F_{m}^{\prime} denote the spaces obtained from E_{m}, E_{m}^{\prime} by collapsing S^{m-1} to a point. Then $p^{\prime} u=v p$, as shown below, where v is the inclusion and p, p^{\prime} are the collapsing maps.

Write $s y=h(e, y)$, where $y \in D^{n}$, so that $s: D^{n} \rightarrow E_{m}$. We regard F_{m} as an ex-space with projection $\rho=\pi p^{-1}$ and section $\sigma=s b_{n}^{-1}$. Similarly

[^1]we regard F_{m}^{\prime} as an ex-space with ex-structure $\left(\rho^{\prime}, \sigma^{\prime}\right)$ so that v is an ex-map. Using the method described in §3 of [7] we can endow these spaces with cell-structure so as to satisfy the preliminary conditions of § 2. Consider, therefore, the Puppe sequence associated with the pair $\left(F_{m}^{\prime}, F_{m}\right)$. Recall that $F_{m}^{\prime \prime}$, in the notation of $\S 2$, is obtained from F_{m}^{\prime} by identifying points of F_{m} with their images under the projection ρ. Now p determines a homeomorphism $p^{\prime \prime}: E_{m}^{\prime \prime} \rightarrow F_{m}^{\prime \prime}$, where $E_{m}^{\prime \prime}$ denotes the space obtained from E_{m}^{\prime} by identifying points of E_{m} with their images under the projection π. We endow $E_{m}^{\prime \prime}$ with ex-structure so as to make $p^{\prime \prime}$ an ex-homeomorphism. The 0_{m}-map $b_{m}: D^{m} \rightarrow S^{m}$ is constant on S^{m-1} and so determines an ex-homeomorphism between $E_{m}^{\prime \prime}$ and E_{m+1}. By composing this with the inverse of $p^{\prime \prime}$ we obtain an ex-homeomorphism $\beta: F_{m}^{\prime \prime} \rightarrow E_{m+1}$. Now ΦF_{m} is a point-space, and $\Phi F_{m}^{\prime}=S^{m}=\Phi E_{m+1}$, where Φ denotes the fibre functor. We use $\Phi \beta$ to identify $\Phi F_{m}^{\prime \prime}$ with S^{m}. Let ω denote the composition
$$
F_{m}^{\prime} \xrightarrow{j} F_{m}^{\prime \prime} \xrightarrow{\beta} E_{m+1},
$$
where j is the identification ex-map. Then $\Phi \omega=\Phi$ and hence
\[

$$
\begin{equation*}
\varphi \omega^{*}=\varphi \tag{3.1}
\end{equation*}
$$

\]

as shown in the following diagram where X is a fibre ex-space with fibre Y.

The fibre of F_{m}^{\prime} has been identified with S^{m}. We embed the base space S^{n} in F_{m}^{\prime} by means of the section. Let $S^{m} \vee S^{n}$ denote the union of these two spheres, with the standard ex-structure. If, in F_{m}^{\prime}, we identify points of $S^{m} \vee S^{n}$ with their images under the projection, we obtain an ex-space which is ex-contractible. Thus (2.2) applies to τ^{*}, as shown below, where $\tau: S^{m} \vee S^{n} \subset F_{m}^{\prime}$.

By using (1.2) φ is bijective, on the right of the above diagram, and so we obtain

Lemma (3.2). The fibre function

$$
\varphi: \pi\left(F_{m}^{\prime}, X\right) \rightarrow \pi\left(S^{m}, Y\right)
$$

is bijective for $m>q$, monic for $m=q$.
The next step is to set up a bijection between $\pi\left(F_{m}, X\right)$ and $\pi\left(S^{m+n-1}, Y\right)$. Certainly F_{m} and $S^{m+n-1} \vee S^{n}$, as spaces, have the same homotopy type; however in general they do not, as ex-spaces, have the same ex-homotopy type. Situations of this kind can be dealt with as follows. Consider the induced fibration $\rho^{*} X$ over F_{m}. The section of X over S^{n} determines a cross-section of $\rho^{*} X$ over S^{n}. The extensions over F_{m} of this partial cross-section correspond to the ex-maps of F_{m} into X. Similarly the vertical homotopies of cross-sections, rel S^{n}, correspond to ex-homotopies. By standard theory (see [1]) such crosssections are classified by elements of $\pi_{m+n-1}(Y)$. The corresponding result, in our situation, is that

$$
\xi: \pi\left(F_{m}, X\right) \rightarrow \pi_{m+n-1}(Y)
$$

is bijective, where ξ is given as follows. Let $f: F_{m} \rightarrow X$ be an ex-map of class $\gamma \in \pi\left(F_{m}, X\right)$, and let $c: F_{m} \rightarrow X$ denote the trivial ex-map. Let $i: Y \subset X$. Then

$$
\begin{equation*}
i_{*} \xi(\gamma)=d(f, c) \tag{3.3}
\end{equation*}
$$

where the separation element is defined with respect to the pair (F_{m}, S^{n}). Let $l: S^{m+n-1} \rightarrow F_{m}$ be a map ${ }^{3}$ of degree 1 such that $\rho l: S^{m+n-1} \rightarrow S^{n}$ is nul-homotopic. By consideration of the induced fibration $l^{*} \rho^{*} X$ over S^{m+n-1} we obtain the relation

$$
\begin{equation*}
i_{*} \xi(\gamma)=\gamma_{*}(\lambda) \tag{3.4}
\end{equation*}
$$

where $\lambda \in \pi_{m+n-1}\left(F_{m}\right)$ denotes the homotopy class of l.
We identify S^{m+n-1} with the boundary of $D^{m} \times D^{n}$ in the usual way. Let

$$
h^{\prime}:\left(D^{m} \times D^{n} ; D^{m} \times S^{n-1}, S^{m-1} \times D^{n}\right) \rightarrow\left(E_{m}^{\prime} ; D^{m}, E_{m}\right)
$$

denote the identification map used in the construction of the m-ball bundle E_{m}^{\prime}. By restricting $p^{\prime} h^{\prime}$ to the boundary of $D^{m} \times D^{n}$ we obtain a map

$$
H: D^{m} \times S^{n-1} \cup S^{m-1} \times D^{n} \rightarrow F_{m}^{\prime}
$$

Notice that H is constant on $S^{m-1} \times S^{n-1}$. Also H maps $D^{m} \times S^{n-1}$ into S^{m} and $S^{m-1} \times D^{n}$ into F_{m}. Let $\kappa \in \pi_{m+n-1}\left(S^{m}\right)$ denote the class of the map

[^2]$$
k: D^{m} \times S^{n-1} \cup S^{m-1} \times D^{n} \rightarrow S^{m}
$$
which agrees with H on $D^{m} \times S^{n-1}$ and is constant on $S^{m-1} \times D^{n}$. Also let $\lambda \in \pi_{m+n-1}\left(F_{m}\right)$ denote the class of the map
$$
l: D^{m} \times S^{n-1} \cup S^{m-1} \times D^{n} \rightarrow F_{m}
$$
which agrees with H on $S^{m-1} \times D^{n}$ and is constant on $D^{m} \times S^{n-1}$. By (3.9) of [10] the class of H in $\pi_{m+n-1}\left(F_{m}^{\prime}\right)$ is equal (with suitable conventions) to
$$
j_{*}(\kappa)+v_{*}(\lambda)-\tau_{*}\left[l_{n}, l_{m}\right],
$$
where τ, j, v are the inclusion maps and where $t_{m}, l_{n} \in \pi_{*}\left(S^{m} \vee S^{n}\right)$ are the classes of the inclusion maps of S^{m}, S^{n} respectively. But H is nulhomotopic, since h^{\prime} extends over $D^{m} \times D^{n}$, and so we conclude that
\[

$$
\begin{equation*}
v_{*}(\lambda)=\tau_{*}\left[l_{n}, l_{m}\right]-j_{*}(\kappa) . \tag{3.5}
\end{equation*}
$$

\]

It is easy to check that l, as above, is a map of degree 1 , and that

$$
\rho l: D^{m} \times S^{n-1} \cup S^{m-1} \times D^{n} \rightarrow S^{n}
$$

is nul-homotopic. Moreover it follows from the basic theory of the Hopf construction (see [10]) that

$$
\pm_{\kappa}=S_{*}^{m-q} J \alpha=\left\{l_{n}, l_{m}\right\}
$$

where $\alpha \in \pi_{n-1}\left(O_{q}\right)$ denotes the homotopy class of T and the brace product is defined with respect to E_{m}. We arrange our orientation conventions so that $\kappa=\left\{l_{n}, l_{m}\right\}$.

The next step in the proof of our main theorem is to establish that

$$
\begin{equation*}
\psi \varphi=\xi v^{*} \tag{3.6}
\end{equation*}
$$

as shown in the following diagram, where ψ is defined by means of the brace product, as in (1.5).

Let $\gamma^{\prime} \in \pi\left(F_{m}^{\prime}, X\right)$. Write $\varphi \gamma^{\prime}=\eta \in \pi_{m}(Y), v^{*}\left(\gamma^{\prime}\right)=\gamma \in \pi\left(F_{m}, X\right)$. By naturality $\gamma_{*}^{\prime} \tau_{*}\left[l_{n}, l_{m}\right]=\left[s_{*} l_{n}, i_{*} \eta\right]=i_{*}\left\{l_{n}, \eta\right\}$, by (1.3), where s : $S^{n} \rightarrow X$ denotes the section. Also $\gamma_{*}^{\prime} j_{*}(\kappa)=i_{*} \eta_{*}(\kappa)=i_{*} \eta_{*}\left\{l_{n}, l_{m}\right\}$, as we have just seen. Now compose both sides of (3.5) with γ^{\prime} and we obtain the relation

$$
i_{*} \psi \phi\left(\gamma^{\prime}\right)=\gamma_{*}^{\prime} v_{*}(\lambda)=\gamma_{*}(\lambda)=i_{*} \xi(\gamma)
$$

by (3.4). Since i_{*} is injective this proves (3.6).

It follows at once from (3.3) by naturality that

$$
\begin{equation*}
\theta \xi=p^{*} \tag{3.7}
\end{equation*}
$$

as shown in the following diagram, where θ is defined by means of the separation element as in $\S 1$.

Now we are ready to complete the proof of (1.6). As we have seen, the Puppe sequence associated with the pair $\left(F_{q}^{\prime}, F_{q}\right)$ can be written in the form

$$
\cdots \rightarrow \pi\left(E_{m+1}, X\right) \xrightarrow{\omega^{*}} \pi\left(F_{m}^{\prime}, X\right) \xrightarrow{\nu^{*}} \pi\left(F_{m}, X\right) \xrightarrow{p^{*}} \pi\left(E_{m}, X\right) \rightarrow \cdots .
$$

We use φ and ξ to replace the terms in the middle by homotopy groups of Y. We recall that φ is monic for $m=q$, bijective for $m>q$; also ξ is bijective for $m \geqq q$. Hence and from (3.1), (3.6) and (3.7) we obtain the exact sequence of $\S 1$.

4. Proper cross-sections

The above theory can be used to give an alternative proof of the main result of [3], which concerns the following problem. Let B be a pointed space. Let $X_{i}(i=0,1)$ be an ex-space of B with fibre $\Phi X_{i}=Y_{i}$, say. Suppose we have an ex-map $p: X_{1} \rightarrow X_{0}$ which, as an ordinary map, constitutes a fibration with fibre Z, say, over the basepoint of $Y_{0} \subset X_{0}$. Write $\Phi p=q$. Then $q: Y_{1} \rightarrow Y_{0}$ can be regarded as a fibration with fibre Z so that we have the situation indicated in the following diagram, where u, v and u_{i} are the inclusions.

Under what conditions does the fibration p admit a cross-section? As in [3] we describe such a cross-section $f: X_{0} \rightarrow X_{1}$ as proper if

$$
\begin{equation*}
f \sigma_{0}=\sigma_{1} \tag{4.1}
\end{equation*}
$$

Note that proper cross-sections are ex-maps, since p is an ex-map. If f is proper then $g: Y_{0} \rightarrow Y_{1}$ constitutes a cross-section of q, where $g=\Phi f$. As in [3] we describe g, or its vertical homotopy class, as the type of f. We approach our problem by asking, for each cross-section g of q, whether p admits a proper cross-section of type g.

Now let B be a (pointed) $C W$-complex. Suppose that $\left(X_{i}, Y_{i}\right)$ is a $C W$-pair, and that the section σ_{i} embeds B as a subcomplex. Then ($X_{i}, B \vee Y_{i}$) forms a $C W$-pair, and the answer to our question is independent of the choice of g in its class, by the homotopy lifting property. Consider the homomorphism

$$
\theta: \pi_{r}(B) \oplus \pi_{r}\left(Y_{0}\right) \rightarrow \pi_{r}\left(X_{0}\right)
$$

given by $\sigma_{0^{*}}$ on the first summand and $\tau_{0^{*}}$ on the second. Certainly θ is an isomorphism for $r \geqq 2$, since σ_{0} is a right inverse of ρ_{0}. Suppose that θ is also an isomorphism for $r=1$. This is the case, for example, if $\pi_{1}\left(X_{0}\right)$ is abelian, or if $\pi_{1}(B)$ is trivial. Under this hypothesis we prove

Lemma (4.2). Let $f: X_{0} \rightarrow X_{1}$ be an ex-map such that $\Phi f: Y_{0} \rightarrow Y_{1}$ is a cross-section of q. Then there exists a proper cross-section f^{\prime} of p such that $\Phi f^{\prime}=\Phi f$.
Since $p f: X_{0} \rightarrow X_{0}$ maps $B \vee Y_{0}$ identically we have $(p f)_{*} \theta=\theta$, where θ is as above and

$$
(p f)_{*}: \pi_{*}\left(X_{0}\right) \rightarrow \pi_{*}\left(X_{0}\right)
$$

Hence $(p f)_{*}=1$, since θ is an isomorphism, and so $p f$ is a homotopy equivalence, by Theorem 1 of [11]. Hence $p f$ determines a homotopy equivalence of the pair ($X_{0}, B \vee Y_{0}$) with itself, by (3.1) of [6], since $p f$ maps $B \vee Y_{0}$ identically. Therefore there exists an inverse homotopy equivalence $k: X_{0} \rightarrow X_{0}$, say, which also maps $B \vee Y_{0}$ identically. Write $f^{\prime \prime}=f k: X_{0} \rightarrow X_{1}$. Then $f^{\prime \prime}$ agrees with f on $B \vee Y_{0}$. Let $l_{t}: X_{0} \rightarrow X_{0}$ be a homotopy of $p f^{\prime \prime}$ into the identity such that $l_{t}\left(B \vee Y_{0}\right) \subset B \vee Y_{0}$. By composing with $h=f \mid B \vee Y_{0}$ we lift $l_{t} \mid B \vee Y_{0}$ to a homotopy $l_{t}^{\prime}: B \vee Y_{0} \rightarrow X_{1}$ such that $l_{0}^{\prime}=h=l_{1}^{\prime}$. We extend l_{t}^{\prime} over X_{0} so as to cover l_{t}, using the homotopy lifting property, and thus deform $f^{\prime \prime}$ into f^{\prime}, say. Then f^{\prime} is a proper cross-section of p and $\Phi f^{\prime}=\Phi f^{\prime \prime}=\Phi f$, as required.

To apply (4.2) we return to the situation considered in $\S 1$, where E_{m+1} is an m-sphere bundle over S^{n}. The fundamental group is abelian, since $n>1$. We apply (4.2) with $\left(X_{0}, Y_{0}\right)=\left(E_{m+1}, S^{m}\right)$ and write $\left(X_{1}, Y_{1}\right)=(X, Y)$, so that $p: X \rightarrow E_{m+1}$ and $q: Y \rightarrow S^{m}$. Hence and from the exactness of our sequence we obtain

Corollary (4.3). Let $\gamma \in \pi_{m}(Y)$ be the class of a cross-section of q. Then p admits a proper cross-section of type γ if and only if

$$
\gamma \circ\left\{l_{n}, l_{m}\right\}=\left\{l_{n}, \gamma\right\} .
$$

In particular, suppose that Y is a pointed O_{m}-space, and that q is a pointed 0_{m}-map. Suppose that X and E_{m+1} share the same principal 0_{m}-bundle and that p is the map associated with q. To obtain the main result of [3] from (4.3) it is only necessary to convert the brace products into the kind of product used in [3], as shown in [5].

REFERENCES

W. D. Barcus

[1] Note on cross-sections over CW-complexes, Quart. J. Math. Oxford (2), 5 (1954), 150-160.
W. D. Barcus and M. G. Barratt
[2] On the homotopy classification of extensions of a fixed map, Trans. Amer. Math. Soc. 88 (1958), 57-74.
I. M. JAMES
[3] On fibre bundles and their homotopy groups, J. Math. Kyoto Univ. 9 (1969), 5-24.
I. M. JAMES
[4] Ex-homotopy theory I, Illinois J. of Math. 15 (1971), 324-337.
I. M. James
[5] Products between homotopy groups, Comp. Math. 23 (1971), 329-345.
I. M. James and J. H. C. Whitehead
[6] Note on fibre spaces, Proc. London Math. Soc. (3), 4 (1954), 129-137.
I. M. James and J. H. C. Whitehead
[7] The homotopy theory of sphere bundles over spheres I, Proc. London Math. Soc. (3), 4 (1954), 196-218.
I. M. James and J. H. C. Whitehead
[8] The homotopy theory of sphere bundles over spheres II, Proc. London Math. Soc. (3), 5 (1955), 148-166.
G. S. McCarty, Jr.
[9] Products between homotopy groups and the J-morphism, Quart. J. Math. Oxford (2), 15 (1964), 362-370.
G. W. Whitehead
[10] A generalization of the Hopf invariant, Ann. of Math. 51 (1950), 192-237.
J. H. C. Whitehead
[11] Combinatorial homotopy I, Bull. Amer. Math. Soc. 55 (1949), 213-245.
(Oblatum 17-XI-1969)
Oxford University, Mathematical Institute 24-29 St. Giles OXFORD, England

[^0]: ${ }^{1}$ Theories of this type have been developed independently by J. C. Becker and J. F. McClendon, amongst others.

[^1]: ${ }^{2}$ Here, and elsewhere, it is unnecessary to specify orientation conventions since the validity of (1.6) is independent of the signs of the operators.

[^2]: ${ }^{3}$ We use the phrase which follows to mean that l determines a homeomorphism when $S^{n} \subset F_{m}$ is collapsed to a point.

