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1. Introduction

This paper is concerned with an explicit solution of the Cauchy problem

for the differential equation

where k is a real parameter. When k is a positive integer, equation (2) is
simply the wave equation in the variables x1, ···, xm-2, t, Xm, ···, xm + k
with its solution being axially symmetric in the last (k + 1) variables,
that is,

where x = (x2m+ ··· + x2m+k).
When 9 = 0 and F = 0, (1), (2) can be transformed to a particular case

of a problem treated by Fox [1 ] in which a device due to Bureau was em-
ployed. In the present problem where g and F are not necessarily zero, we
shall solve the problem by a method developed by Riesz [2]. Riesz’

method has also been used by Davis [3 ] and Young [4], [5 ], among others.
The uniqueness of our solution of (1), (2) will follow from the use of
Green’s formula.

For convenience we shall replace the differential operator in (2) by
the self-adjoint operator L

which is derived from (2) by the substitution u = x’’v with v = k/2. Here
Li denotes the Laplacian in the variables x, xi,’ ’ ·, xm-2. Morover, it
sufhces to consider the problem

* This work was supported by NSF grant GP-11543.
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since the solution of the general problem Lu = F with the initial condi-
tions (1 ) can be obtained from the solution of (4) by the use of the Stokes’
rule and Duhamel’s principle [6, p. 370].

2. The kernel function and Green’s formula

The Riesz method consists in determining a kernel function V03B1(x, t;
e, i), depending on two points (x, t) and (e, 03C4) and on a parameter a,
which vanishes together with its first derivatives on the characteristic cone

and satisfies the relation

Here we have written

Now from [4] we readily deduced that for sufficiently large a, the func-
tion

where F is a hypergeometric function,

and

satisfies the equation

with L* being the differential operator

Clearly the function (6) is also defined for complex values of the varia-
bles Xi’ t, 03BEi, r. In particular, if we replace the variables xm-1 and t in
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(6) by it and ix, respectively, and make corresponding replacement for
the variables 03BEm- 1 and r, we obtain

where T is as defined in (5). Under this change of variables it is clear that
the operator L* becomes the operator L given in (3). It therefore follows
from (7) that the function (8) satisfies the equation

and vanishes together with its first derivatives on the characteristic cone
r = 0, provided a is sufficiently large. Thus (8) is the kernel function
for our operator L.

Consider now the Green’s formula

taken over the domain D bounded by the retrogade characteristic cone
0393 = 0, 03C4-t &#x3E; 0 for x &#x3E; t and the hyperplane t = 0. Here C denotes
the surface on the characteristic cone that is cut off by the hyperplane
t = 0 and is the part on t = 0 that is intercepted by the characteristic
cone. In fact S is an (m-1) dimensional sphere with radius r and center
at (03BE, 03BE1, ···, Çm-2) in the hyperplane t = 0. The derivative bulôn in-
dicates the conormal derivative on C and S. If we substitute the kernel
function (8) for v in (10) and use the fact that for a &#x3E; m+2 V03B1 vanishes

together with its derivatives on C, then in view of (4) and (9) we have

Setting

and

we can write equation (11) in the compact form

It is clear that for oc &#x3E; m the integrals (12) and (13) both converge in
the domain x &#x3E; t &#x3E; 0. Under the same condition it follows from (9)
that in the variables (03BE, r)
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As will be shown in the next section, under sufficient differentiability re-
quirement it is possible to perform analytic continuation with respect
to a for a ~ m such that

Thus (15) will yield the result

which verifies that I0u(03BE, r) satisfies the differential equation in (4). Fur-
ther, the analytic continuation of (14) will yield the explicit solution

which will be shown to satisfy the initial conditions in (4). It is in this
sense that formula (14) provides the solution of the problem (4).

3. The analytic continuation of I03B1u(03BE, r) and G03B1(03BE, r)

In establishing (16) we need to distinguish the cases m even and m odd.
Here we shall concern ourselves only with the case m even as the same
procedure applies to the case m odd. Let us first establish (16a). We ex-
pand the hypergeometric function appearing in VIX of (12) in infinite se-
ries and consider the leading term

This is the generalized Riemann-Liouville integral considered by Riesz in
[2] for which he proved that

under the assumption that u is m/2 times continuously differentiable.
Hence we need only show that the remaining terms in the expansion of
I"u vanish as a is continued analytically to zero. But this can be carried
out by the same procedure used in [3 ].
To establish (16b) we consider the general term of the first (m - 2)/2

terms in the expansion of G", namely
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where

0 ~ j ~ (m-2)/2. If we introduce polar coordinates

where P = (03B2, 03B21, ···, 03B2m-2) denotes the outward normal vector on S,
then (19) becomes

where

We now assume that g is at least m/2 times continuously differentiable.
Then we may integrate (21) by parts (m - 2j - 2)/2 times, 0 ~ j ~
(m - 2)/2, to obtain

where

with A and the ai denoting numerical constants. In order that we may
set oc = 0 we need to integrate (23) by parts one more time. We find that

is now convergent for oc &#x3E; -2. Thus letting rx ~ 0 we see that G0j(03BE, 03C4)
= 0, 0 ~ j ~ (m-2)/2, since Cj(0) = 0 in view of the factor 0393(03B1/2)
in Hm(03B1).
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The remaining terms in the expansion of G’ can be expressed as

where B(a) denotes constant factor, 03930 = h at t = 0, and F* is a general-
ized hypergeometric function with Zo = 03930/4x03BE. It is clear that (24) con-
verges for a &#x3E; -2 so that as oc tends to zero R0(03BE, r) = 0.
By what we have just proved we can therefore conclude from (15) that

(14) indeed satisfies the differential equation in (4).

4. The explicit solution

We now perform the analytic continuation with respect to a in (14)
to arrive at an explicit solution of the problem (4). For this purpose we
require the function g to have continuous derivatives up to the order

[(m+2)/2]. In the cases m = 2, 3, we readily obtain the solution of (4)
by simply setting a = 0 in (14). We have for m = 2

where 03930 - 03C42 - (X-03BE)2-(y-~)2, zo = 03930/4x03BE, and S is the disk (x-03BE)2
+ (y-~)2 ~ r2. It is easily shown that (25) and (26) indeed satisfy the
initial conditions in (4) for m = 2 and m = 3 respectively.
Hence we need to perform the analytic continuation of (14) only when

m ~ 4. We shall carry out here the continuation in the case when m is

even, since the case m odd, m ~ 5, can be done in the same fashion. As
in the preceding section we expand G03B1+2 in infinite series and consider the
first (m - 4)/2 terms given by
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Introducing the polar coordinates (20), equation (27) becomes

where we have set s = ’t2, p2 - r, and M is as defined in (22). In view
of the differentiability condition imposed on g, we may integrate (28) by
parts with respect to r(m - 2 - 2j)/2 times to obtain

which converges for oc &#x3E; - 2. Thus letting a - 0, we find

with

0 ~ j ~ (m - 4)/2.
Next, let a = v, b = 1- v, c = (03B1+4-m)/2, z = rf4xç, and n =

(m - 2)/2. Then the remaining terms in the expansion of the hyper-
geometric function appearing in V03B1+2 can be expressed as

where (03BB)n = r(À+n)/r(À) and F* is a generalized hypergeometric func-
tion. Since for x &#x3E; t ~ 0, z  1, the function F* converges uniformly in
z for z ~ 03C3 with any 6  1. Hence the remaining terms in the expansion
of G03B1+2 can be written in the form

with A denoting all constant factors. This integral converges for oc &#x3E; - 2.
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Therefore, as a is allowed to approach zero, we have

with

Thus for m even, m ~ 4, our explicit solution is given by

where Zo = [03C42 - (x - 03BE)2]/4x03BE and M(g) as defined in (22) with p replaced
by si.
The case m odd, m ~ 5, can be continued analytically with respect to

rx in the same manner and we obtain the result

where the notations zo and M(g) have the same definition as for (31).
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5. Verification of initial data and remarks

That (31) or (32) satisfies the initial data in (4) can be readily verified.
We shall demonstrate this for (31) when m is even, m ~ 4. By intro-
ducing polar coordinates the second term in (31) involving an integral is
easily seen to vanish together with its derivative with respect to r at
i = 0. This is also true of each of the terms in the finite sum for 1 ~j~
(m-4)f2 since each summand is at least of order 0(sl) where we recall
s = "e2. The term corresponding to j = 0 is

which obviously tends to zero as s - 0 since each term after differen-
tiation is at least of order 0(s). The derivative with respect to s of each
term in (33) also tends to zero with s except for the term involving the
lowest power of s, namely,

Since ~w/~03C4 = 2s-lôwlôs, we see that as s - 0

which yields

Thus (31 ) indeed satisfies the initial conditions in (4).
An inspection of (31 ) also reveals that for v an integer, - (m-4)/2 ~

v ~ (m - 2)/2, Huygens’ principle holds, that is, the solution depends only
on the initial values on the surface of S. But for m odd there is no Huy-
gens’ principle as (32) shows that the solution depends always on all
initial values in the domain S. However, when v is an integer - [(m - 4)/2]
~ v  [(m - 2)j2] the second term involving an integral in (32) drops out
so that in this case (31) or (32) is just a generalization of a well known
formula of Poisson for the wave equation.
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