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The first draft of these notes was written by K. Lonsted at the Nordic
summer school in algebraic geometry, Oslo 1970; 1 like to thank him and
several other participants for their contributions when studying and sup-
plementing the oral exposition. Acknowledgement is due to A. Grothen-
dieck and D. Mumford for conversation and correspondence in which
they communicated their results (and sketched the proofs), which can
be found in sections 2.2, 2.3, 2.4 (but, of course, they cannot be blamed
for mistakes or obscurities in the proofs of this paper). We didn’t change
the informal style of the paper (excercises and motivational remarks) when
writing the final version, because it reflects the atmosphere at the confer-
ence.

Notation: the set of morphisms from an object X to an object Y in a
category W will be denoted by (X, Y), with the exceptions: HOM (-, -)
for groups chemes, and Mor (-, -) for schemes.

1. Introduction

These lectures are mainly concerned with lifting problems in algebraic
geometry, and to fix the ideas let us make a preliminary definition.

DEFINITION. Let R - R o be a surjective ringhomomorphism, and
X0 ~ So - Spec (Ro) a smooth scheme over So, respectively a finite
flat group scheme over So , resp. an abelian scheme over So , resp. ’ ’ ’; we
say that Xo can be lifted to R or to S = Spec (R) (in the strong sense),
if there exists a smooth scheme X ~ Spec (R), resp. ···, such that:
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The scheme X is called a deformation of Xo; in case Ro = k is a field and R
is a local artin ring, we call X an infinitesimal deformation of Xo.

In 1959 Grothendieck proved (cf. FGA, page 182-14, coroll. 4) that
a smooth curve over a field k can be lifted to any complete local ring hav-
ing k as residue class field. In the case of higher dimensions the answer is
negative in general, as can be seen from an example constructed by Serre,
cf. [13], of a smooth variety over a field of characteristic p ~ 0 that
cannot even be lifted to characteristic zero in the following weak sense
(the example given by Serre has dimension 3, but as Mumford remarked,
along the same lines one can construct already an example with the same
properties of dimension 2):

DEFINITION. Let k be a field of char (k) = p ~ 0, and Vo - Spec (k)
a smooth variety, resp. ’ ’ ’; we say that Vo can be lifted to characteristic
0 (in the weak sense), if there exists an integral domain R of character-
istic zero, a surjective ringhomomorphism R ~ k, and a smooth scheme
V - Spec (R), resp. ···, such that Y ~Rk ~ Vo (both definitions essen-
tially can be found in [13 ]).

It is easy to see that finite group schemes cannot be lifted to charac-
teristic 0, for example:

EXERCISE. Let p a prime numer, k a field of char(k) = p. Construct
a finite, non-commutative group scheme Go over k of rank p2 . Prove that
there exists no flat group scheme over any characteristic zero domain
which lifts Go [Hint: a finite group scheme over an algebraically closed
field of characteristic zero is the constant group scheme attached to an

abstract group A. However, a group A if order p2 is commutative. Con-
struct Go by finding a finite group scheme of rank p that acts non-trivially
on another finite group scheme of rank p ; cf. [8 ], p. 318, example ( - B);
cf. [14], pp. 6/7, remark],
Some information about the lifting problem is showed in the summary

on the next page.
A possible attempt for solving a lifting problem reads as follows:
a) Consider all infinitesimal deformations of Vo and find a universal

family; its parameter space is called ’the local moduli scheme’ for Yo; it
turns out to be a formal scheme over a noetherian, complete (integral?)
ring (9 (of characteristic zero?) with residue class field k.

b) Pick an embedding V0  Pnk, and try to lift the divisor class of a
hyperplane section L 0 - V0 · H~ to (9, or to some quotient (91a.

c) Show that (9la admits a characteristic zero integral quotient (9la - R,
and apply EGA, Ill’ . 5.4.5: ’a formal scheme with a polarization is al-
gebraizable’.
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- means : in general the answer is negative;
+ means: the answer is positive in case R is a complete local ring (strong sense),

respectively the answer is positive (weak sense);
* means : the case is discussed in this paper.

This method works for smooth curves over a field, because the obstruc-
tion for lifting the scheme as well as the one for lifting any (ample) di-
visor lies in some second cohomology group over Vo, hence they are
zero, and (9 = (9la is a characteristic zero integral domain.

In the steps (a) and (b) the liftings can be split into a succession of
liftings over surjections of artin rings, and to illustrate (b) we give an
excercise, which was already long time ago noticed by Serre and others:

EXERCISE. Given a surjection of local artin rings R ~ R’, a scheme X
over R, an invertible sheaf L’ E H1(X’, (9*,) x over X’ = X ~RR’. Suppose
char (R/mR) = p ~ 0. Show the existence of a q = p" such that (L’)"
lifts to X [Hint: suppose I = Ker (R - R’) has the property 1. MR = 0,
compute the obstruction for lifting L’ to R, and prove it is killed under
multiplication by p].
The answer in step (a) in case of an abelian variety can be guessed from

the work of Kodaira and Spencer, cf. [3 ], especially II, section 14y. A com-
plex torus of dimension g is isomorphic to the complex analytic space
C91F, where 0393 ~ Z2g is a lattice in Cg, i.e. a free additive subgroup of
Cg which spans Cg ~ R2g as a real vectorspace. We choose a C-base

{e1, ···, eg} for Cg such that
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the choice of this Z-base for r is unique up to a unimodular transfor-
mation, hence it is intuitively plausible that any small change of the Pi
will yield a variation of the complex structure; in fact the local moduli
space of an abelian variety turns out to be smooth on g2 parameters (cf.
theorem 2.2.1), which is the algebraic analogue of the theory of Kodaira
and Spencer (cf. [3], II, section 14y, especially theorem 14.3). These
considerations lead to the following

REMARK. The condition char (R/mR) ~ 0 in the previous exercise is
necessary. In fact, for any abelian variety Xo over a field of characteristic
zero such that dim (X0) = g ~ 2, there exists an infinitesimal defor-
mation of X over R = k[03B5] which admits no projective embedding over
Spec (R). This can be seen as follows (also cf. [9], remark XII.4.2, page
191): an abelian variety (or a complex torus) of dimension g defines a local
moduli space Spf(k[[t1,1···tg,g]]) (cf. theorem 2.2.1 below; this is

canonically the completion of the local ring of xo E S, cf. [3], p. 408); a
polarization L o on Xo defines an ideal a = a(L0) ce tP = k[[··· ti,j ···]]
generated by tg(g -1) elements (cf. theorem 2.3.4 below), and because
char (k) = 0, the ring (9la is formally smooth (cf. theorem 2.4.1 below,
i.e. the classical Riemann equations, cf. [1 ], p. 69, theorem 2, p. 70,
p. 86 last two lines and p. 90, are the correct defining equations infinite-
simally) ; thus L o can be lifted to Xt , where Xt is an infinitesimal defor-
mation of Xo defined by t : Spec (k[E]) ~ Spec «9), if and only if t is
tangent to the locus defined by a(L o), i.e. iff

t E kg(g+1) = (tangent space of O/a)  kg2 = (tangent space of (9),
where ~ holds because 2. Because there are countably many polar-
ization types on Xo, we can choose t ~kg2 not tangent to O/a(L0) for
any polarization L o on Xo, and we have proved the existence of X,
Spec (k[s]) which does not admit a projective embedding.

In section 2 we reproduce theorems of Grothendieck and Mumford
which show that the proposed attempt for solving the lifting problem
works for separably polarized abelian varieties. However it seems not to
be powerful enough to solve the lifting problem in the case of abelian
varieties or in the case of finite commutative group schemes. It was Mum-

ford who proposed studying equal characteristic deformation theory.
In fact, this new method works; section 3 illustrates this in case of commu-
tative finite group schemes.

2. Local moduli for (polarized) abelian varieties

2.1. Pro-representable functors
This section is mainly taken from [10]. We define the notion of pro-
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representability only in a restricted sense, referring to [10] and FGA, 195
for more general definitions; also cf. [4].

Fix a field k and a complete, local (noetherian) ring W with maximal
ideal mW and residue class field k = W/mW (the interesting cases are:
char (k) = 0 &#x26; W = k, or char (k) = p ~ 0 &#x26; W = W~(k), the ring of
infinite Witt-vectors over k).

DEFINITION. We denote by lW (or by ) the category of local artinian
W algebras R, together with an isomorphism k Rlm, making commu-
tative the diagram

and W(R, R’) consists of all local W-algebra homomorphisms from
R to R’.

EXERCISES. 1) Prove that W is a full subcategory of Wtyw.
2) Show that a local W-algebra R is an artinian ring iff R is an arti-

nian W-module. In particular, all R E Ww are finitely generated W-mo-
dules, and every sub-algebra of R in Ww is again in Ww.

3) Prove that Ww has fibered products, and that k is a final object.
Hence all finite projective limits exist in W.

4) Prove that a morphism R - R’ is epimorphic in Ww iff it is a surjec-
tive map.

DEFINITION. We denote by lêw the category of all complète, local,
noetherian W-algebras O, such that (91m" e E W for every integer n. The
morphisms in W are local W-algebra homomorphisms. A functor

is called pro-representable, if there exists an O ~ W and an isomorphism
of functors

EXAMPLE. Let T ~ Spec (W) be a noetherian scheme over W, with a
k-rational point t e T(k). For any R e W denote by T(R) the set of W-
morphisms from Spec (R) to T. We define a functor F :  ~ éns as the
subfunctor of T given by: r E T(R) belongs to F(R) iff the following dia-
gram is commutative:
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This functor is pro-representable, because

This’ shows that from information about F(R), without knowing T, one
is able to predict some of the properties of (9T,, that can be read of from its
completion, e.g. regularity and dimension.

In general, given a category W, one can define its pro-category Pro (),
cf. FGA, 195; in this way one arrives at a more general definition of pro-
-representability. Note that in our case W ~ Pro (W.). We are going to
mention necessary and sufficient conditions for a functor on Ww to be
pro-representable. The following one is clearly necessary.

DEFINITION. Let W be a category with a final object 0 and fibred prod-
ucts. A covariant functor F :  ~ éns is called left exact iff

(i) F(0) = {pt}, and
(ii) F commutes with fibred products, i.e. the natural map

is bijective.

DEFINITION. A category is called noetherian (respectively artinian) if for
every object X ~ C, the set of sub-objects of X satisfies the ascending (resp.
descending) chain condition. [Note the confusion caused by the contra-
variant aspect of the functor Spec: a noetherian ring defines a so-called
noetherian scheme, and the category of noetherian schemes is an arti-
nian category].

It turns out that representability in the category of noetherian schemes
in case of a contravariant functor (many of the functors in algebraic
geometry are contravariant) is a delicate affair, cf. [6], whereas (pro-)
representability of the same functor restricted to a noetherian sub-cate-
gory usually is much easier to test because of the following:

’General principle’ 1. A contravariant functor on a noetherian category
is (pro-)representable iff it is left exact.

1 A ’general principle’ is a statement which is true under mild extra conditions,
depending on the special situation.
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For example, if A is a noetherian, abelian category, its dual category
A0 is artinian, and Gabriel proved that the left exact functors in this case
are precisely the pro-representable ones:

(cf. [2], in particular the last 5 lines of page 356).

EXERCISE. Suppose F : W ~ 03B5ns is left exact; denote by k[03B5] the
ring of dual numbers of k, i.e. k[03B5] = k[E]/(E2). Show that F(k[8]) na-
turally is equiped with the structure of a vectorspace over k (cf. [10],
lemma 2.10).

DEFINITION. A functor F : W - éns is called formally smooth if for
every surjection 03C0 : R  R’ in , the map F03C0 : FR  FR’ is surjective.
[Note that in case F is pro-(represented by O ~ , then F is formally
smooth iff O is a formally smooth W-algebra (cf. EGA, OIV. 22.1.4).]

DEFINITION. A surjection R - R’ in Ww is called small, if I : = Ker
(R - R’) has the property 1. MR = 0. [Note that a ’small extension’ in
the terminology of [10] is slightly different from the notion of ’small sur-
jection’ defined here.]

EXERCISE. Show that any surjection in W is the composition of a finite
number of small surjections.

THEOREM (2.1.1) (Schlessinger criterion, cf. [10], Th. 2.11, Prop. 2.5
also cf. FGA, p. 195-06, coroll.) A covariant functor F : W ~ 03B5ns is

pro-representable if and only if F is left exact and

It suffices to check left exactness in case R1 ~ R2 ~ R3 , when the first
arrow is a small surjection. If F is pro-represented by O ~ W, is formally
smooth, and dimk(F(k[03B5])) = m, then there exists an isomorphism
O ~ WI[t, t.1].

2.2. Local moduli for abelian varieties

DEFINITION. A group object in a category  is a contravariant functor
0 ~ gr such that after forgetting structure, the functor 0 ~ ens
i s representable. Equivalently, one has an object G E Y, and a group law
on (X, G) for each X E Y, such that for every morphism f in f/, the
map 9(f, G) is a homomorphism of groups.

EXERCISE. Suppose Y has a final object p, and suppose the product
GII G exists in . Then G is a group object in  iff there exist morphisms
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(multiplication),
(inverse),
(neutral element),

fitting into some obvious commutative diagrams.

DEFINITION. An A-algebra E is called an A-hyperalgebra, respectively
an A-bialgebra, iff Spec (E) is a group scheme over Spec (A), resp. a com-
mutative group scheme over Spec (A). Equivalently: there existe A-algebra
homomorphisms s : E - E (8) A E, 1 : E - E, and 8 : E - A, such that
..., cf. CGS, p. 1. 1-4.

EXERCISE. Let E be an A-hyperalgebra, and put IE = Ker (a : E - A).
Then E = A ~ IE (as A-modules). Show that x E IE satisfies

Suppose moreover that A = k is a field of characteristic zero. Show that
every local k-hyperalgebra is reduced [hint: if xn = 0, xn-1 ~ 0, compute
(s(x))n]. Conclude that every finite group scheme over a field of charac-
teristic zero is reduced. [Any algebraic group scheme in characteristic
zero is reduced (Cartier); for references, cf. Inv. Math. 5 (1968), p. 80].

DEFINITION. Let S be a (locally noetherian) scheme and f : X ~ S a
morphism which is locally of finite presentation; f is said to be smooth
if for every affine scheme Z, for every closed subscheme Z’  Z defined
by a sheaf of nilpotents ideals in r9z, and for every morphism Z ~ S the
map

is surjective.

REMARK. cf. EGA, IV.17.3.1 &#x26; 17.1.1; as ’test objects’ Z it sufhces
to consider only schemes of the form Spec (A), where A is a local artin ring
cf. EGA, IV.17,5.4 or SGA, 1960, exp. III, th. 3.1 &#x26; coroll. 6.8.

DEFINITION. (cf. GIT, chap. 6, def. 6.1 ). Let f : X ~ S be a morphism
of schemes. We say X is an abelian scheme (abbreviation AS) over S, if
X is an S-group scheme, and if f is smooth, proper, and has geometrical-
ly connected fibres [Note that s : XIIX ~ X automatically is commutative,
cf. GIT, 6.4. coroll. 6.5; in case S = Spec (k), where k is a field we call
X an abelian variety (A V) over k].

For the rest of this section we fix an abelian variety Xo over k, and we
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define the local moduli functor M = MX0 of Xo as the covariant functor
M : W ~ ens given by:

M(R) = {isomorphism classes of pairs (X, ~0), where X is an AS
over R, and go an isomorphism ~0 : X QR k  Xol.

THEOREM (2.2.1) (Grothendieck). The functor M = Mxo is pro-repre-
sentable by (9 = W[[t1,1, ···, tg,9]], i.e. there exists an isomorphism

where g = dim (Xo ).
The proof of this theorem can be constructed by putting together

hints and results from FGA 182-12/13, 195-19, 236-19/20, SGA chap.
III, and GIT chap. 6. We gather together some preliminary steps which
sufhce to make the Schlessinger criterion applicable.

LEMMA (2.2.2) (cf. SGA, III, lemma 4.2). Let R - R’ be a surjection in
W, and f : Y - X a morphism of schemes over R such that f’ : = f (8) R R’
is an isomorphism. Suppose Y is flat over R. Then f is an isomorphism.

PROOF. Certainly f induces a homeomorphism on the topological
spaces, and the lemma follows from:

Let R - R’ be as before, I : = Ker (R ~ R’ ), and u : M ~ P a morphism
of R-modules. Suppose P is R-flat, and assume u’ : = u QR R’ : Mil. M
 P/I · P is an isomorphism. Then u is an isomorphism.
Put N = Ker (u), and Q = P/u(M). Applying - Q9R R’ to the exact

sequence

we obtain Q/I.Q - 0, so Q = IQ = ... InQ = 0 for some n, as I is
nilpotent. Thus

because P is R-flat. Hence N/IN = 0, hence N = 0 as before, and the
lemma is proved.

LEMMA (2.2.3). Let R - R’ be a small surjection of local artin rings with
kernel I, k = RlmR, S = Spec (R), S’ = Spec (R’), S0 = Spec (k). Let
Z ~ S be a flat morphism of finite type, Z’ = Z x s S’, Zo = Z x s So,
and denote by Oz. the sheaf of germs of k-derivations from OZ0 into it-

self. We write Auts(Z, S’) for the set of S-automorphisms of Z which in-
duce the identity on Z’. There is a canonical isomorphism
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Sketch of the PROOF: The elements D E F(Zo, l3zo) Ok I and f ~ Auts
(Z, S’) correspond to each other in the following way:

(with the obvious identifications made).
LEMMA (2.2.4) (cf. SGA, exp. III, th. 4.1). Let R be a noetherian ring,

I c 0 a nilpotent ideal, and R’ = Rjl; let X’ ~ S’ = Spec (R’) be a
smooth scheme. For every x E X’ there exists an open neighbourhood
x ~ U’ c X’ and a smooth morphism U - S = Spec (R) such that

U (8)R R’ -- U’ ; if moreover x E U’ n V’, V ~ S smooth and V’ = V (8)R R’,
then for every affine neighbourhood x E W’ c U’ n V’ there exists an
isomorphism making commutative the diagram

(’locally X’ can be lifted to R, and the lift is unique locally up to a (non-
canonical) isomorphism’).

This follows directly from the following statements:
EGA IV4. 17.11.4: a morphism Y - S is smooth in y ~ Y iff there exists

an open neighbourhood y E U c Y, an integer g and an étale S-morphism
U ~ S[t1, ···, tg];
EGA IV4.18.1.2: 1 c J0 ce A - A’ - A/I; the functor Y H Y (8) A A’

is an equivalence of the categories of schemes étale over Spec (A), respec-
tively étale over Spec (A’).

NOTATION. Let R - R’ be a surjection of local artin rings, S = Spec (R),
and X’ ~ S’ = Spec (R’) a smooth scheme over S’. We write:
L = L(X’; R - R’) = {isomorphism classes of pairs (X, ~’) such that

X ~ S is smooth, and ~’ : X x s S’ ~ X’ an

isomorphism}.
PROPOSITION (2.2.5) (cf. FGA, 182-12/13, SGA, III, th. 6.3, prop. 5.1).

Take the same notations as above, and suppose I = Ker (R ~ R’), I · MR = 0.
i) There exists an element
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ii) If o = 0, then any (X, cp’) E L yields a bijection

iii) For any S’-isomorphism 03C8’ : Y’  X’ of smooth S’-schemes, one
has a diagram

and

PROOF. i) By (2.2.4) we can choose an open, affine covering {U’03B1} of
X’ such that every U§ - S" can be lifted to a smooth, affine scheme Z03B1 ~ S.
We write U’03B103B2 = U’03B1 n U’03B2, and similarly for more indices; because X’
is separated over S’, we conclude U’03B103B2 is affine (cf. EGA, 1. 5.5.6), hence
there exists a morphism

which reduces to ~-103B2 · ~03B1 over S’, where the isomorphisms ~03B1 : Za x s S’
 U’ are given by the lifting. Note that 03BE03B103B2 is an isomorphism by (2.2.2).
We define

and we write

Clearly Capy x S S’ is the identity on U’03B103B203B3, hence by (2.2.3) Capy defines
an element of r«UaPy)o, 0398X0) (8)kI, also denoted by Capy. We claim c =
= {c03B103B203B3} is a 2-cocycle, and hence it defines a cohomology class

To prove this we compute the coboundary of c. For every pair (oc, 03B2) the
following diagram is commutative

where the vertical map sends an automorphism a of Z03B2|U’03B103B2 to (03BE03B203B1)-1·
a . çpa. Note that the group Auts (Z03B1, S’ ) is commutative for every et;
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is represented on ZJ |U’03B103B203B303B4 by the automorphism

The 4 square brackets commute mutually; call them B1, B2, B3 and B4.
If we write them up in the order B2 · B3 - B1 . B4 the factors cancel, thus
proving De = 0.

It is not difficult to check that the class [c] does not depend on the choi-
ces of Ua. and ç pa..

It is equally clear that c is a coboundary iff the isomorphisms çpa. can
be changed so as to define a schematic glueing-together of the pieces
Z03B1| U«10 -

ii) Suppose given L =1= 0, take (X, ç’ ) E L, and consider

a cocycle on a covering {U03B1}. As the cocycle condition is fulfilled the system
(X03B1, d03B103B2) defines a scheme Xd together with an isomorphism Xd QR R’ 
X’. Moreover Xd is isomorphic to X (inducing the identity on X’) iff d is a
coboundary, and another set of representatives for the class [d] yields
the same element of L. Thus the map d H Xd is well-defined, and clearly
it is injective. To see it is a bijection, we define its inverse: suppose

(Y, t/1’) E L. Choose

Clearly we have thus defined an element rd] E H1(X0, OX.) Qk I, and
we have given the inverse of the map

which is therefore bijective. 
iii) We define d03C80 : 0398Y0 ~ t/lri exo by 03C80 = 03C8’ QR,k, and a ~ 03C80 · a ·

03C8-10. The map 03C8*0 is defined as follows: on an open set Uo c Yo, by de-
finition 0393(U0, 03C8*00398X0) ~ 0393(03C80(U0), 0398X0), because 03C80 is an isomorphism.
Suppose o(X’)is given by the cocycle {c(X’)03B103B203B3} as in the first part of the proof;
we arrive at a cocycle {c(Y’)03B103B203B3} on Y0 simply by ’conjugating’ all isomor-
phisms with 03C8’. This cocycle defines the element o(Y’), which proves the
proposition.

PROPOSITION (2.2.6). Let 03C0 : R - R’ be a small surjection in , Xo an
AV over k, M the moduli functor defined by Xo, and (X’, ~0) ~MR’.
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Forgetting the group structure on the abelian varieties involved yields a
bijection :

(we write 03C0 instead of M03C0).
PROOF. Suppose given (Y, 03C80) ~ MR such that 03C0(Y, 03C80) = (X’, ~0); we

choose an isomorphism 03C8’ : Y ~ R’ ~ X’ such that ~0 · (03C8’ O k) = 03C80,
and we define

This map K is well defined: in fact, suppose 03BC’ : Y Q R’  X’ has the
property ~0 · (03BC’ Q k) = 03C80 ; then

is an automorphism of the abelian scheme X’, in particular a(O) = 0,
such that a Q k is the identity; hence by GIT, p. 116, coroll. 6.2 we
conclude 03C8’ = Il, thus the map 03BA is well defined.

Injectivity of K: suppose 03BA(Y, 03C80) = K(Z, 03BC0), i.e. there exists a mor-
phism of S-schemes b : Y - Z, S = Spec (R), such that

Denote by fy, respectively ey the structural morphism, resp. the zero sec-
tion of Y ; consider h : = b - b . 8y . fY; clearly

and because .J¡ 0 and po are isomorphisms of abelian varieties:

hence by GIT, p. 117, coroll. 6.4 we conclude b is a homomorphism
(and hence an automorphism) of abelian schemes over S, thus (Y, t/1 0) and
(Z, po) define the same element of MR.

Surjectivity of K : apply GIT, p. 124, prop. 6.15. q.e.d.

PROOF of theorem (2.2.1), by checking the conditions appearing in
the Schlessinger condition. Obviously Mk = one element.

Consider a commutative square (not necessarily cartesian) in W:

such that x and p are small surjections. Write I = Ker (03C0), J = Ker (p);
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clearly x(J) c I, thus we arrive at a commutative diagram with exact
columns:

Applying M to (*) we obtain a new commutative diagram, which de-
fines a map cv : MQ ~ MT x MR’ MR. In this situation we have a natural
map

let (Y, 03C80) E MT, and (X’, ~0) = 03BC(Y, 03C80)(we write y instead of M03BC, etc.).
We claim

In fact, let Z be a lifting of an open subset of Y of Q; then the following
diagram commutes:

and the statement follows immediately, using the definition of the

obstruction elements given in the proof of (2.2.5). Now suppose the
diagram (*) to be cartesian, and assume 03C0 is a small surjection; then
automatically J  I is an isomorphism, and p is a small surjection. If
MT  MR’ MR = 0, certainly co is bijective; thus suppose we can choose
((Y, 03C80), (X, ~0)) ~ MT x MR, MR. Then by (2.2.5), and by what is just
said,

thus, again by (2.2.5), there exists (Z, 03C80) lifting Y to Q. Thus we arrive
at a diagram:
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with (X’, (fJo) = 03C0(X,~0), and with the middle horizontal arrow being
defined by base change; direct verification shows the upper square to be
commutative, and commutativity of the lower square follows from the
construction, cf. (2.2.6). Hence by (2.2.5ii) and (2.2.6) we conclude that
x induces a bijection 

and thus left exactness of the functor M is proved.
Next we check the finite dimensionality of M(k[03B5]). Because k[03B5] ~ k

has a section, obstruction for lifting Xo is zero, and by (2.2.5ii) we con-
clude

hence finite dimensionality; note that Xo is a group scheme, hence 0398X0 ~
~ (!)xo Q9k t, thus

(canonical isomorphisms), where t is the tangent space at the zero ele-
ment of Xo, and Hl (Xo, lPxo) = e is the tangent space of the zero ele-
ment of the dual abelian variety Xo’; conclusion:

The last point to be proven is the smoothness. Suppose R ~ R’ is a
small surjection in W with kernel I, and (X’, ~0) ~ MR’. We know that
D(X’; R - R’) is ’invariant under automorphisms" (cf. 2.2.5.iii); consi-
der the inverse map i : X’ ~ X’. As Xo is an abelian variety,

(cf. GA, VII.31, prop. 16), and the effect of i on each of the first three
factors of the right hand side of

is to change the sign, hence
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if char (k) ~ 2, this proves the obstruction vanishes, thus proving that
MR ~ MR’ is surjective. In order to deal with the case of characteristic
two also, we present another proof.

Write P’ - X’ x s, X’; this is an AS over S’, and its lifting is obstructed
by o(P’) E H2 (Po , epo) (8) 1. The two projections of Po on its two factors
give two injections:

Denote il ~ idI by il and similarly for the index 2; one checks

(take an affine covering of both factors, construct the obstruction elements
of both factors, lift the products of one open set of the first and one open
set of the second covering, and take the transition function as for the
factors; the cocycle thus obtained defines o(P’), because the cohomology
class does not depend on all these choices, and the formula is proved). De-
fine a’ E AutS’(P’) by

and apply (2.2.5iii):

thus i1(D(X’)) = 0, or D(X’) = 0, which proves that the functor M is
formally smooth, and the proof of theorem (2.2.1) is concluded.

Let Vo be a smooth variety over k. We define N = Nv. : W ~ 03B5ns,
the local moduli functor given by V0:

Suppose HO(Vo, Byo) = 0 ; any a E AutR(V), (V, ~0) E NR, such that
a (8)R k - idyo is the identity itself, a = idy , and hence:

PROPOSITION. (2.2.7). Let n : R - R’ be a small surjection in W, Vo a
smooth variety over k such that H0(V0, Byo) = 0, N the moduli functor
given by Vo, and (V’, ~0) E NR’. The natural map

is bijective.
Thus the arguments given above prove the following

THEOREM (2.2.8) (cf. FGA, 195-18, prop. 4.1). Let Vo be a smooih
variety over k, with HO(Vo, eyo) = 0, and dimkHl(Vo, 0398V0) = m  00.

The local moduli functor N = Nyo is pro-representable. If H2(V0 , evo)=
= 0 the functor is formally smooth, and
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For the complex analytic analogue, cf. M. Kuranishi - New proof for
the existence of locally complete families of complex structures. Proc.
Conf. Complex Analysis (Minneapolis, 1964), 142-154. Springer Ver-
lag, Berlin, 1965.

2.3. Local moduli for polarized abelian varieties.

Let S be a prescheme and rc : X - S be a morphism of finite type
such that 03C0*(OX) = OS; suppose 03C0 admits a section. For any prescheme
Y we write

and we define

by

If this functor is representable, the resulting ,S’-prescheme is called the
Picard scheme of X over S, denoted by Picx/s. In case X is an abelian
scheme over S, we define

Various properties, such as the last equality and such as the smoothness of
Xt ~ S will be used (cf. [12], th. 5, or LAV, p. 100, coroll. 3; cf. GIT,
p. 117, prop. 6.7). For any L E Pic(X) we define

(sometimes denoted by

LEMMA (2.3.1) (cf. MAV, p. 74). For any R ~ W, and any abelian
scheme X over Spec (R) = S there is an exact sequence:

and for any surjection R  R’ in CC, we write X’ = X Q9 R R’, and the
following diagram is commutative and exact:
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PROOF. The map Xt(R) ~ Pic (X) is given by

If (2) is commutative, has exact columns and exact bottom row, exact-
ness of (1) follows. So all we need to prove is exactness of (1) in case
R = k, and commutativity plus ’vertical’ exactness of (2) in all cases.

In case R = k, a field, exactness of the sequence (1) is known (cf. LAV,
p. 90, th. 2). Commutativity of the diagram (2) is obvious from the de-
finitions. Because Xt is smooth over S, surjectivity of Xt(R) ~ X’t(R’)
follows. The last fact to be proved follows from GIT, p. 116, coroll. 6.2:

which concludes the proof of the lemma.

REMARK. If we work over k = C, the field of complex numbers, an ana-

logous sequence can be derived as follows. From the exact sequence

we derive

An algebraic structure on the complex torus X exists iff there exists a
class in

which comes from an ample sheaf. This notion of polarization can be
defined over any field via  as pointed out above.

DEFINITION. Let R be a local artin ring, and 03C0 : X ~ S = Spec (R) an
abelian scheme. A homomorphism À : X - Xt is called a quasi-polari-
zation if there exists a divisor class L E Pic (X) such that (L) = 03BB. If

moreover L is relatively ample for rc, we say 03BB is a polarization on X.

REMARK. This definition coincides with GIT, page 120, definition 6.2,
in case R is a local artin ring because of the following:

LEMMA (2.3.2). Let R - R’ be a small surjection, L’ E Pic (X’), and sup-
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pose there exsists a homomorphism À: X ~ Xt which lifts L’ = À’ to R;
then there exists L E Pic (X) such that AL = À.

PROOF. First we show 03BB’ can be lifted to R if and only if L’ can be lifted
to R. In case char (R/mR) ~ 2 this is easy, using GIT, page 121, prop. 6.10
(because the obstructions for lifting 03BB’ and L’ are elements of vector spaces
over k). In the general case one considers the following diagram:

where

is defined by A = s*-p*1-p*2, which is known to be an injective homo-
morphism (cf. [11], p. IX. 8, lemma 2.4), and where q is defined as the
kernel map of

(and analogously for q’). As

is the zero map, A : Pic (X) ~ Pic (X x X) factors through q, and be-
cause of functoriality of the A-operation on the exact sequences involving
Pic, we obtain

and by injectivity of ll ~ idI this implies 03B41(L’) = 0. Thus L’ can be
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lifted to R, and by (2.3.1 ) this lift can be chosen such that L = 03BB. q.e.d.

DEFINITION. Let Xo be an abelian variety over k, and ALo = 03BB0 ~
HOM (Xo, Xt0) a quasi-polarization. We define a functor

by

quasi-polarized abelian scheme over R, and

THEOREM (2.3.3) (Mumford). Fix the notations k, W, Xo, Ao, 9 =
= dim(Xo),(9 = W[[t11, ···, tgg]] as above, and d : = dimk H2 (X0 , OX0);
the functor P is a subfunctor of M, and there exist d elements al’ ...,
ad E (9, a : = (al’ ..., ad) O, so that (9la pro-represents P:

PROOF. From the ’rigidity lemma’ GIT, p. 116, Corollary 6.2 we
conclude that P is a subfunctor of M (this is the advantage of working
with L = 03BB, rather than with L). Clearly P(k) = {pt}. Consider a car-
tesian square

with x (and hence p) a small surjection. Thus we obtain

and we show the top line to be surjective (injectivity being obvious):
let ((Y, 03BC, 03C80), (X, À, ~0)) be an element of the right hand upper corner,
and let (Z, oeo) e MQ correspond with «Y,,yo), (X, ~0)). There exists

K E Pic (Y) with AK = 03BC; as y 0 Q R’ = 03BB OR R’ by the previous lemma
we can choose L ~ Pic (X) such that L QR R’ = K QQ R’. We consider
the following commutative diagram of sheaves on Xo :
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thus we obtain a commutative exact diagram

as b(L Q9R R’) = 0, we conclude b(K) = 0; so there exists a divisor class
D e Pic (Z) lifting K to Q, and because P c M we conclude (Z, AD, ao)
maps onto the pair ((Y, ,u, 03C80), (X, 03BB, ~0)). Thus P is pro-representable.

EXERCISE. Let P c M be two functors from Ww into 03B5ns; suppose both
are pro-representable, say W(O, - )  M( - ), then there exists an ideal
a c (9, such that P c M is pro-represented by (9la  (9.

So we are given a c (2 such that (2/a pro-represents P. By the Artin-
-Rees lemma (cf. [7], p. 7, th. 3.7) we can choose an integer n &#x3E; 0 so that

(here m denotes the maximal ideal of O). Note the exact sequence

We are going to find a set of generators for a by finding their initial terms
in a/ma. Let R : = O/(ma+mn), R’ : = O/a+mn, and

As (9la pro-represents P, the surjection (9la - R’ transforms the universal
object over O/a into (X’, L’ = 03BB’, ~0) ~ PR’. Thus by the exact sequence

and by choosing a k-base {03BE1, ···, 03BEd} for H2(X, OX0) ~ kd, we yield

then we choose ai E a so that ai = ai mod ma, and we write b = (a1, ···,
ad) O c a. Consider R" = O/b+ma+mn, and the commutative diagram
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Thus we obtain

and by commutativity we obtain

as ai ~ b. Thus (X’, 03BB’, ~0) can be lifted to R", and the result defines a
W-morphism

because of universality of a/a. Thus a ~ b+ma+mn, and one easily
concludes a = b, which proves the theorem.

In general it seems difficult to give an explicit description of a. In par-
ticular it does not seem easy to determine whether p E . Ja or not in case
char (k) = p, and W a characteristic zero domain. However in special
cases one can achieve the result and thus prove the existence of a lifting
to characteristic zero.

2.4. Abelian varieties having a separable polarization

THEOREM (2.4.1) (Grothendieck). Let (Xo, Ào) be a polarized abelian
variety. Its moduli functor P is formally smooth if and only if the polariza-
tion 03BB0 is separable.

REMARK. It can be proved (cf. MAV, p. 234, Coroll. 1) that any po-
larization ALo = 03BB0 can be obtained from an isogeny ~ : X ~ Y and a
principal polarization AKO = 03BC0 : Y  yt (a polarization /l is called

principal if it is an isomorphism), 03BB0 = ~t03BC0~ =  (~*K0). Clearly a
polarization 03BB0 is smooth if and only if Ker (03BB0) is an étale group scheme
over k; it can be proved that 03BB0 is smooth if and only if the degree of
03BB0, which is the rank of Ker (Ào), is prime to char (k).
We sketch the proof of the implication in the theorem we need. Sup-
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pose 03BB0 to be separable. The polarization 03BB0 yields a map f : H1(X, Oxo)
~ H2 (X, (gXo) (‘cup product with the fundamental class of L0’), which
can be defined by the commutativity of the following diagram:

where t is the tangent space at 0 e Xo, and tt the tangent space at 0 e Xt0.
Let R - R’ be a small surjection, (X’, Â, ço) e PR’, and choose some
(X,(fJo)EMR which lifts (X’,(fJo)eMR’. Let (Y, 03C80) ~ MR, be some
lift of (X’, ~0), and write

Direct verification shows that

where

is the homomorphism defined in (2.2.5), and (Y, 4(’) the pair correspond-
ing to (Y, 03C80) via (2.2.6). As Ào is separable, f is surjective, so given L’,
we can choose Y so that ôy(L’) = 0, which proves smoothness of the
functor P.

COROLLARY (2.4.2). Any abelian variety which admits a separable
polarization (in particular any AV which admits a principal polarization)
can be lifted to characteristic zero.

PROOF. Choose a separable polarization Ào: X0 ~ Xt0 and take

W = W. (k). As the functor PX0, 03BB0 is formally smooth, (Xo, Ào) can be
lifted to a formal abelian scheme with a polarization (X, À) over W, i.e.
there exists a system (Xi, Ài) of polarized abelian schemes over Wi =
= W/(pi+1), so that

By EGA, III1.5.4.5 the formal scheme XT is algebraizable, i.e. there exists
an abelian scheme (with a polarization) X ~ Spec(W) such that

X ~W Wi ~ Xi, which proves the liftability for abelian varieties admit-
ting a separable polarization to characteristic zero.

REMARK. Let P = PX0, 03BB0 be pro-represented by a/a; clearly the pair
(Xo, Ao) can be lifted to characteristic zero iff Ë 0 a for all n, i.e. p ~ a,
where p = char (k).
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REMARK. (Grothendieck and Mumford) Theorem (2.4.1 ) can be made
more precise in the following sense: let P ~ W(O/a, - ) be the local mo-
duli functor defined by the separably polarized A V (Xo, 03BB0); the isomor-
phism O ~ W[[t11, ···, tij, ···, tgg]] can be choosen in such a way that

3. Commutative finite group schemes can be lifted to characteristic zero 2

In case the local moduli scheme defined by a smooth projective variety
V0 (or by a polarized abelian variety, or by a finite group scheme) is not
formally smooth over W, a solution of the lifting problem does not fol-
low directly from the unequal characteristic case obstruction calculus.
However, an entirely different method might yield the answer, and in
fact it does in case of abelian schemes, and of commutative finite group
schemes. In this section we outline this idea in the last case.

Let k be a field of characteristic p, and let ap be defined by

Although this group scheme cannot be lifted in the strong sense

(cf. [8 ], p. 317/18, example (-A)), we try to convince the reader in three
different ways it can be lifted to characteristic zero in the weak sense.

FIRST METHOD. Suppose first p = 2, and try to classify all R-bialgebra’s
E = R · 1 Q IE, where IE = Ker (e : E ~ R) is free of rank one (so Spec
(E) is a group scheme of rank p = 2 over Spec (R), where R is any (com-
mutative, 1 E R) ring. Let IE = R - 03C4, s03C4 = i ~ 1 + 1 ~ 03C4 - c03C4 ~ 7:, i2 -
= a03C4, ir = yr. We show ac = p = 2 if and only if E is an R-bialgebra
with these definitions. In fact

and

so ac = 2. This proves that OE2 can be lifted to characteristic zero, e.g.
choose R = Zp[A, C]/(AC-p), p = 2. In fact in the same way we can

2 This chapter is of an expository nature, and the reader should not expect more
than easy examples.
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prove ap can be lifted to characteristic zero, using the following classi-
fication due to Tate:

THEOREM (cf. [14]). Let p be a prime number. There exists a polynomial
Dp E Zp[X, Y], such that for any complete, local ring R, of residue charac-
teristic p, any group scheme G of rank p over R can be given in the form

and conversely these formulas determine a group scheme of rank p.

In this method it becomes clear ’how much ramification’ we have to

impose on R in order to get a lifting of ap. However, this method does
not seem the appropriate one to be generalized (classification of all group
schemes of rank p2 already seems a difficult question).

SECOND METHOD. Let k be an algebraically closed field of characteristic
p, such that there exists an elliptic curve Co, whose Hasse invariant is
zero. The group Co (k) has no points of order p, and hence

is the only subgroup scheme of Co of rank p. By the methods of chapter
2 we know that Co is liftable (use 2.3.3, or 2.4.2), so choose a characte-
ristic zero integral complete local ring R with residue class field R/mR = k,
and choose an abelian scheme of dimension 1 C - Spec (k), such that
C ~R k ~ C0.

Let K = Q(R), the field of fractions of R; as char (K) = 0, we know
that C has points of order p rational over the algebraic closure of K,
so we can choose a finite extension K c L, and t E C(L) such that
t ~ 0 and p - t = 0. Let B be the integral closure of R in L, let NL be con-
stant group over L defined by the abstract group Z/pZ ~ {0, t, 2t, ···,
(p-1)t} c C(L), and let M be the B-group scheme defined as the ker-
nel of [p] : CB ~ CB (it is B-flat, cf. GIT, p. 122, lemma 6.12). Then
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and we use:

LEMMA (Tate). Let B be a complete discrete valuation ring, L = Q(B) its
field of fractions, and M, respectively ML = M (8)B L, NL finite group
schemes as indicated above flat over B, resp. flat over L ; then there exists
a B-flat subgroup scheme i : N  M such that N Q9 B L = NL and i Q9 B L
iL-
Once arrived at this point, we are done, because No = N Q9 B k 
M Q B k y Co, and the rank of No is p, so N0 ~ Î1p.

In this method again ramification has to show up, indeed it does in
the extension Ky L. Also this method does not seem very fruitful for

generalizations, hence we try another one:

THIRD METHOD. Let char (k) = p, T = Spec (k[t]) = A’, and con-
sider the additive linear group over T,

We define the T-homomorphism

and clearly

N = Ker (p) is a finite flat T-group scheme of rank p (it is defined by

Clearly No = (k[t] ~ k, t H 0)*(N), the fibre over the point t = 0, is

No zg ap, and for any point 03BE E k, 03BE ~ 0, N4 = (k[t] ~ k, t H 03BE)*(N)
is the constant group scheme given by ZIPZ over k (N4 is separable be-
cause XP - çX is a separable polynomial). Thus we have constructed a
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deformation of ap into a group scheme which clearly can be lifted. Hence
we can conclude ap can be lifted to characteristic zero in the following
way: let K = k(t),11 E T(K) given by the inclusion k [t] ~ K, W = W~(K)
the ring of infinite Witt vectors over K, and R : =k[t] X K W those Witt
vectors of which the first coordinate is in k[t]

As Xp - tX ~ K[X] is separable, the group scheme NK = N ~k[t] K
is étale over K, hence there exists a lift of it to W. It is clear that this lift
can be defined by equations whose reductions by p have coefficients in
k[t], thus there exist a finite flat group scheme M ~ Spec (R) such that
M Qk k[t] ~k[t] k = ap and as R is an integral domain of characteristic
zero, we have proved liftibility of rxp. In this method again the information
about the ramification of the ’smallest ring R’ which could be used seems
to go beyond control, but this last method at least turned out to be ge-
neralizable to arbitrary rank. The main conclusion of this last method is:

GENERAL PRINCIPLE. Let X0 ~ Spec (k) be given (where Xo is a finite
group scheme, or a polarized smooth variety or ... ), suppose there exist
an integral scheme T ~ Schk, with t : Spec (k) ~ T, and X ~ T (where
X is a finite flat T group scheme, or a polarized smooth variety over T, or
...) Such that:

(i) X x T (t : Spec (k) ~ T) ~ Xo, (i.e. X is an equal characteristic
deformation of Xo) and

(ii) X x T ({~} ~ T, generic point) = X~ is liftable to characteristic
zero.

Then Xo is liftable to characteristic zero.

The proof of this principle in the case of finite group schemes was out-
lined above (and cf. [8 ], lemma 2.1 ), in other cases the proof can be given
using existence of the (global or local) moduli scheme. This new method
of reducing lifting questions to equal characteristic deformation indeed
solves the problems we encountered in chapter 2: Mumford can show
(cf. [5]), that any polarized abelian variety Xo in characteristic p &#x3E; 0

admits an equal characteristic deformation such that the generic fibre X,,
is an ’ordinary’ abelian variety (an abelian variety Y over a field K of cha-
racteristic p &#x3E; 0 is called ordinary, if Y(K) has exactly pdim Y - 1 points
of order p ; that is the maximum); comparing the lifting theory of abelian
varieties and their associated p-divisible groups Serre and Tate proved
that ordinary abelian varieties are liftable (together with the polarization).
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Thus modulo many details which still have to be published, Mumford
concludes all abelian varieties can be lifted to characteristic zero.

The good choice for the integral scheme T plus X ~ T is the difficult
point, and we illustrate the difhculties by trying to do a good choice in the
case of finite commutative group schemes.

FIRST TRY. Fix k, char (k) = p, fix an integer n &#x3E; 0, and let

be defined by

03A8(T) = {~ classes of N ~ T,
finite flat commutative group scheme of rank n}.

If W were representable by an integral scheme we would be done, be-
cause the generic fibre is an étale group scheme. But, in general 03A8 is not
representable: let k = k, n = p, and consider N = Ker (03C1) ~ T as in the
third method. Then No -= (Xp, and Nt ~ Z/pZ for all 0 ~ t ~ k; this jump
phenomenon certainly prevents P from being representable (because, sup-
pose 03A8 ~ Mork(-, S), then NE peT) defines a morphism fN = f:
T ~ S, and f(0) ~ f(t) for all t ~ 0 and f(t1) = f(t2) for all t1 ~ 0 ~
t2 , which is impossible).

This certainly is not a difficult obstacle, so:

SECOND TRY: Data as above, and

is defined by: fix E = R.1 Q Rr2 (9 ... E9 R03C4n, eri = 0, for each R, and

03A6(Spec (R)) = {all R-bialgebra structures on El

(E E AlgR is called an R-bialgebra, if and only if, Spec (E) ~ Spec (R) is
a commutative group scheme). Claim: this functor is representable by a
noetherian affine scheme T - Spec (k) ; namely write out all possible R-
-linear maps m : E ~RE ~ E, s : E - E QR E, i : E - E ; these are given
by a finite number of coefficients, and imposing the conditions for
the R-bialgebra structure provides us with a number of equations among
these coefficients, which proves representability of 0. However, the
result 03A6 ~ Mork( -, T) in general is not an integral scheme. For example
take p = 2 = n; we have seen in the first method that
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the resulting T is given by: T = Spec (k[A, C]/(AC - 2», S7: = 03C4 Q9 1 + 1

~ 7:-C7: Q r, m(r ~ r) = A7:, and 17: = 03C4. This suggests we should de-
lete all but one of the components of T. This surgery we can do directly
on the functor level, and as we are mainly interested in local group sche-
mes, and as every local group scheme over a perfect field is given by a
truncated polynomial ring (Dieudonné and Cartier (cf. SGAD, Exp.
VIIB, 5.4)), we define:

THIRD TRY. Let k be a perfect field, char (k) = p, and fix integers
v 1 , ..., V m , vi ~ 1. Define

R-bialgebra structures on .

Certainly this functor is representable 0 -= Mor, ( -, T), and nice fact:
T is ’contractible’ in the following sense: The multiplicative semigroup
Ak acts on T such that the zero point of each orbit equals 0 E T, where 0
corresponds to s03C4i = ri Q 1 + 1 ~ ii, 03C4i = Xi mod (Xp exp v); this can be
seen as follows: if s E 0398(R),

(we use multi-index notation

and Â E k, then define

Clearly sz e e (R) (compute s( ’CdÀ) for À =1= 0, or write out coassociativity
of s), and for every s we obtain so = 0 e 0398(k). Thus in order to prove T to
be irreducible, it suffices to show 0 e T(k) = O(k) is a nonsingular point.
In fact this is true in case m = 1 (local group schemes with tangent di-
mension one) as we might guess from the example of the second try (we
have deleted the horizontal axis), but T is not smooth at 0 if m &#x3E; 1 and
not all vi equal:

check this is a coassociative comultiplication; the important point to
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note is, that s : E’ - E’ ~ E’, E’ = R’[03C41, 03C42] is a ring homomorphism,
because

However there does not exist any R-algebra homomorphism s :
E ~ E O E such that s ~ R’ = s’, because

because 03B4p ~ 0 (all these calculations are so easy because we still are in
the ’equal characteristic case’). Thus O(p) : 0398R ~ eR’ is not surjective,
and T is not smooth at s’ (8)R’ k = 0 E T(k).

LAST TRY. Fix data as before, and remark that for any reduced R E Algk,

(2alp exp vi ~ 0 &#x26; (03C403B2)p exp Vi ~ 0 imply aia/J = 0. Thus we can proceed
the surgery, we can produce the scheme Tred by changing the functor as
follows:

is defined by: for any R e Algk (not necesserily reduced)

such thay S1: i satisfies condition(Pv)i},
where

is said to satisfy condition (Pvi) if aj - pvi  p’i and 03B2j · pvi  p’J imply
aia.p = 0 (this is the same condition as explained abcve to be true auto-
matically in case R is reduced).

Using the lifting theory of Lazard of formal groups, we were able to
prove:

THEOREM (cf. [8 ], theorem 3.1 ). 03A3 : ch0k ~ éns is represented by an
affine space T = Ank, in particular T is irreducible.
From this we conclude easily liftability of finite commutative group

schemes to characteristic zero (for details, cf. [8 ]). In fact, we only need
to prove the case No is local. Then No = Spec (Eo), and Eo t k[03C41, ···,
im], ip exp Vi = 0; the resulting T has a point which corresponds to (a rigi-
difacation of) the finite group scheme

From this one concludes that the generic point of T corresponds to a group
scheme whose dual is étale, hence which certainly can be lifted to charac-
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teristic zero. This solves the lifting problem for finite commutative group
schemes, and we conclude by thanking the nordic countries for their hos-
pitality and friendship crystalized during the nordic summer school in
algebraic geometry 1970.
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