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by
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Wolters-Noordhoff Publishing
Printed in the Netherlands

1. Introduction

R. D. Anderson and R. Schori prove in [2] and [3 ] the following theo-
rem that will be referred to as Theorem I. If M is a separable metric mani-
fold modeled on s, the countable infinite product of lines, then M x s is
homeomorphic (~) to M. The proof of this theorem uses the product
structure of s very crucially. However, since s is homeomorphic to each
infinite-dimensional separable Fréchet space [1 ], we may replace s in
the statement of Theorem 1 by any such Fréchet space, for example, se-
parable infinite-dimensional Hilbert space, l2 . A Fréchet space is a locally
convex, complete, metric topological vector space and a Fréchet manifold
is a metrizable manifold modeled on an infinite dimensional Fréchet

space. In [8] and [9], David W. Henderson proves that if M is any se-
parable Fréchet manifold, then M x 12 can be embedded as an open sub-
set of l2 . Thus, using the result that M x 12 éé M Henderson has the
open embedding theorem for separable Fréchet manifolds.

In this paper we give a substantial generalization of Theorem I. The
following is a main theorem of this paper and is stated as Corollary 5.5.
If M is a paracompact manifold modeled on a metrizable topological vec-
tor space F such that F éé Fw (the countable infinite product of F), then
M F ~ M. (For more general results see Theorems 5.4 and 5.10) The
proof of this theorem is shorter than but follows in broad outline the
proof of Theorem I. However, it should be noted that all references to
separability, completeness, and local convexity that are implicit in the hy-
pothzsis of Theorem 1 have been deleted. The condition F éé F03C9 is

obviously satisfied by all separable infinite-dimensional Fréchet spaces
as they are all homeomorphic to s. Furthermore, it is known that many
of the non-separable spaces (see section 4) also satisfy the condition;
for example, the space of all bounded sequences, h , and all infinite-di-
mensional Hilbert and reflexive Banach spaces. There are no known in-

1 The research for this paper was partially supported by NSF grant GP-8637.
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finite dimensional Fréchet spaces for which the condition is not satisfied.

In order to utilize the product structure on F that is imposed by this con-
dition, as the product structure on s is used, it is necessary to identify
some special conditions that are formalized in Definition 4.1 of this paper.
Many of the techniques in the proof of Theorem 1 were strongly de-

pendent upon separable metric properties and a large portion of this
paper is devoted to developing alternative procedures. For example, the
separable metric property of quaranteeing the existence of certain star
finite open covers was used extensively in [3 ]. A theorem of E. A. Michael
[13, Theorem 3.6] bridges one of these gaps and is used to obtain some
rather general conditions for spaces Y and Z such that Y Z ~ Z.

Another important tool in generalizing from the separable to the non-
separable case is Lemma 5.2 of this paper.
Henderson has strongly generalized and supplemented his previously

mentioned results. The author and Henderson, in a joint paper [12],
combine the results of this paper and those in [10] and [11 ] to prove the
following theorems: If M is a connected paracompact manifold modeled
on a metric locally convex TVS, F xé F03C9, then M can be embedded as an
open subset of F. If M and N are connected paracompact manifolds
modeled on a normed TVS, F ~ F03C9, then M and N are homeomorphic
if and only if they have the same homotopy type.
The author thanks R. D. Anderson for introducing the problem to

him, James Eells for suggesting the hypothesis F ~ F03C9, and David W.
Henderson and the members of his seminar at Cornell for many helpful
comments.

2. Stability for open subsets of F

This section is included to give the reader an introduction to the lan-
guage and methods of the rest of the paper and, in addition, yields
some useful corollaries.

By a space we will mean a topological space. By TVS we will mean a
Hausdorff topological vector space. Let F be a TVS, let F03C90 = F x F03C9,
and let 03C0 : F F03C9 ~ F03C9 be the natural projection onto Fw. For n &#x3E; 0,
let 03C0n : F03C9 ~ F03C9 be defined by 7Un(Z) = (z1, ···, zn , 0, 0, ···) where
z = (z1, z2 ,···) ~ F03C9. Also, for Y a space and g : F03C9 ~ Y, define
g* : F x F03C9 ~ Y by g* = g03C0. Let I be the closed unit interval.
By a map we will mean a continuous function. For spaces X, Y, and Z,

a map h : X x Y - Z is an invertible isotopy if the map h2 : X x Y -
Z x Y defined by h2(x, Y) = (h(x, y), y) is a homeomorphism.

2.1 LEMMA. There exists a function h : Fô x [1, ~) ~ Fw such that
a) h is an invertible isotopy, and
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b) if u ~ [1, oo) is fixed and n ~ u, then H : F03C90 ~ F’ defined by H(x) =
h(x, u) has the property that 03C0*n = 03C0nH.

PROOF. Let x = (x0, Xl’ x2 ,···) E Fô and for n &#x3E; 0, let

Extend h linearly, that is, for n &#x3E; 1, n -1  u  n, and s = u - (n -1 ),
let

The corresponding function h2, from the definition of invertible isotopy,
is continuous and is seen to be a homeomorphism by showing that it
has a continuous inverse function. To do this it is sufficient, by Cramer’s
Rule, to verify that the determinant of the following matrix is non-zero
for all s e I.

The determinant is equal to (1-s)2+s2 which is positive for all s E I.
Thus, condition a) is satisfied and condition b) is observed to be true by
noticing in the definition of h(x, n) that the x1,···, xn coordinates of x
remained fixed.

Before proving stability for open subsets of F, we need a few concepts.
Let X = 03C0i&#x3E;0 Xi be the product of spaces X1, X2 , ···. By an n-basic
subset of X we will mean the product of a subset in 03C0ni=1 Xi with 03C0i&#x3E;n Xi.
Note that if B is n-basic and m ~ n, then B is also m-basic. A basic set
is an n-basic set for some n. If B is a subset of a space X, then by ClXB,
IntxB, and BdX B we mean the closure, interior, and boundary, respec-
tively, of B in X.
A space X is perfectly normal if it is normal and each open set is an Fa.

It is known [6; Theorem 30A.6] that a perfectly normal space is hereditarily
perfectly normal, that is, every subspace is also perfectly normal. Further-
more, it is well known that every metric space is perfectly normal.

2.2 THEOREM. If M is an open subset of a perfectly normal TVS, F ~ FW,
then F x M xé M.

PROOF. Assume M c Fw and cover M with a collection B of basic open
sets contained in M. By Lemma 5.2 of this paper there exists a collection
{Kn}n&#x3E;0 of closed sets in F03C9 such that M = ~n&#x3E;0 Kn, Kn c Int Kn+1 for
n &#x3E; 0, and each Kn is n-basic and a subset of ~{b E B : b is n-basic}.

Define g : M ~ [1, ~) inductively as follows. Let g(K1) = 2, let

n &#x3E; 1, and assume g has been defined on Kn-1. Note that BdKn =



90

03C0-1n03C0n(BdKn). Let g(BdKn) = n + 1 and extend g to 03C0n(Kn) with the Tietze
extension theorem where the range of g is restricted to the interval

[n, n + 1 ]. Then extend g to the rest of Kn by the product structure. That is,
for x E Kn where g(x) has not been previously defined, let g(x) = g(03C0n(x)).
Thus, by induction we have defined g on M = n&#x3E;0Kn where g has the
local product property with respect to the {Kn}, that is, if x E M and

m = min {i : x E Kil, then g(x) = g(03C0m(x)) ~ m.
Now define H : Fx M --+ F03C9 by H(x) = h(x, g*(x)) where h is the

function of 2.1 and x ~ F x M. The map H takes F x M into M since g
has the local product property and since property b) of 2.1 holds. We
now show that H maps F x M onto M. If y E M, then Hy : F03C90 ~ F03C9 de-

fined by Hy(x) = h(x, g(y)), for x ~ Fô , is a homeomorphism by a) of
2.1. Thus, there exists z ~ F03C90 such that Hy(z) = y. By b) of 2.1 and since
g has the local product property we have g*(z) = gHy(z) = g(y) and
hence y = h(z, g*(z)) = H(z). Clearly z E Fx M. We now verify that
H is a homeomorphism. Observe the following diagram

where i is the injection of F x M into F x F03C9, A = image (i, g*), B = image
(h2IA), and p is the projection map. Note that H is the composition of
these three maps. Each of (i, g*) and h21A is automatically a homeomor-
phism onto its image and we will show thatplB is a homeomorphism onto
M since it has a continuous inverse. The map pIB takes (H(x), g*(x))
to H(x) where x E F x M and thus the map taking H(x) to (H(x), g(H(x))
= (h(x), g*(x)) is a continuous inverse. Hence, H : Fx M ~ M is a

homeomorphism.

2.3 COROLLARY. Let M be an open subset of a perfectly normal TVS,
F ~ F°’, and let G be an open cover of M. There exists a homeomorphism
H : F x M ~ M such that for each x ~ F x M, there exists V E G containing
each of n (x) and H(x).
PROOF. In the proof of 2.2 pick the collection B of basic open sets so

it refines G. If z E b E B and y E F, then H(y, z) E b since g has the local
product property and b) of 2.1 holds. Since B refines G, the result follows.

2.4 COROLLARY. The same hypothesis as 2.3 with the additional assump-
tion that F is locally convex. Then the homeomorphism H : F x M ~ M
can be chosen to have the addition property of being homotopic to the
projection n.

PROOF. We may assume that the members of the collection G of 2.3
were convex sets and define the homotopy 03C8 from H to 03C0 by 03C8(x, t) =
(1-t)H(x)+t03C0(x) for x E Fx M and t ~ 1.
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3. A product theorem criterion

In this section we give some rather general conditions for spaces Y and
Z such that Y  Z ~ Z. A function is an embedding if it is a homeomor-
phism onto its image. If f : Y x I ~ Y and t E I, then f : Y ~ Y is defined
by ft(y) = f(y, t), for y E Y.

3.1 DEFINITION. A space Y is strongly contractible if there exists yo E Y
and a map f : Y x I ~ Y such that

1) fo(Y) = {y0}
2) f, = idY and
3) ft(y0) = .Yo for all tEl.

We will sometimes say that the triple (Y, y0,f) is strongly contractible.

3.2 DEFINITION. Let Y and Z be spaces where (Y, y0,f) is strongly con-
tractible and let r : Z - I be a map. Then the variable product of Y by Z
with respect to r

Yx rZ = {(f(y, r(z)), z) E Yx Z : (y, z) E Yx Z}.
If U c Z, then by Y x r U we mean the variable product of Y by U with
respect to r| U and call it the restricted variable product above U, sometimes
abbreviated by above U. Note that if r = 1, then Y rZ = Y x Z.

3.3 DEFINITION. Let (Y, y0,f) be a strongly contractible space. A space Z
has Property Py if each open subset U of Z is normal and satisfies the
following condition: If F roU is a variable product of Y by U and
K c W c U where is closed in U and W is open, then there exists a

homeomorphism H of Y roU onto a variable product Y x r U such that
r(K) = 0, r ~ ro, r = ro on U- W, and H = id above U- W.
A space has Property Py locally if each of its points has a neighbor-

hood with Property Py. A locally finite collection of sets in a space is
discrete if the closures of its elements are pairwise disjoint.
The following too often neglected theorem of E. A. Michael will be used

to prove the next theorem.

3.4 THEOREM (Michael [13, Theorem 3.6]). Let Z be a paracompact
space and let P be a property of topological spaces such that

a) if X is a subspace of Z and has Property P, then every open subset
of X has Property P,

b) if X is the union of two open subsets of Z both of which have Property
P, then X has Property P, and

c) if X is the union of a discrete collection of open subsets of Z all of
which have Property P, then X has Property P.
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Then, Z having Property P locally implies that Z has Property P.
We are now ready for the main theorem of this section.

3.5 THEOREM. If Y is strongly contractible and Z is a paracompact space
having Property Py locally, then Y x Z ~ Z.

PROOF. By 3.4 it sufhces to prove that if X = Ul u U2 where each
of U1 and U2 is an open subset of Z and has Property P = Py, then X has
Property P. It then will follow that Z has Property P and the theorem
follows by letting ro = 1 and K = Z in the condition of Property P.

Let U be an open subset of X, let F roU be a variable product of Y
by U and let K c W c U where K is closed in U and W is open. Without
loss of generality we may assume U = U1 U U2. Let V1 and Tl2 be disjoint
open sets in U containing the disjoint closed sets U- U2 and U- U1,
respectively. Let K1 = K-V2 and let Wl be an open set such that K1 c

W1 c Cl Wl c W n Ul . Since U1 has Property P there exists a homeo-
morphism Hl of YXroU1 onto a variable product Y soU1 where
s0(K1) = 0, s0 ~ ro, so - ro on U1 - Wl , and Hl = id above Ul - Wl .
Let Y r1 U2 be the variable product where rl = ro on U2-U1 and
rl = so on U1 n U2. Let K2 = K- Vi and let W2 be an open set such
that K2 c W2 c Cl W2 c W n U2. Since U2 has Property P there exists
a homeomorphism H2 of Y r1U2 onto a variable product Yx Si U2
where s1(K2) = 0, s1 ~ rl , sl - rl on U2 - W2, and H2 = id above
U2 - W2. Let Y r U be the variable product where r = so on U1 - U2
and r = sl on U2. Then H defined on Y r0 U by H = H2 o Hl above
Ul n U2, H = Hl above U1 - U2, and H = H2 above U2 - U1 is the
desired homeomorphism onto Y x r U.

4. Topological vector spaces

Every TVS, F, is strongly contractible to the origin by the map f : F x I
- F defined by f(y, t) = ty. In the proof of the main theorem of this
paper we will need a stronger version of strongly contractible.

4.1 DEFINITION. A strongly contractible space (Y, y0,f) is an S-space
if the following three conditions are satisfied.

1) The map f2 : Y I ~ Y x I defined by f2(y, t) = (f(y,t), t) is an

embedding when restricted to Y x (0, 1 ].
2) For each neighborhood U of yo there exists t E (0, 1 ] such that if

0  s  t, then fs(Y) c U, and
3) f(f(y, t), u) = f(y, tu) for all y E F and t, u E I.

4.2 THEOREM. Every metrizable TVS (denoted MTVS) is an S-space.
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PROOF. Eidelheit and Mazur [7] prove that each MTVS, F, admits a
strictly monotonic metric d in the sense that if x E F and x ~ 0, then
0  s  t iff d(sx, 0)  d(tx, 0). Furthermore, we may assume d is
bounded by 1 since the equivalent metric d1 = d(1 + d)-1 is also strictly
monotonic.

We will define f : F x I ~ F such that it pulls F linearly, with respect
to the metric, to the zero vector. Let A = {(x, y) E F x F : (x, y) = (0, 0)
or y belongs to the ray from 0 through x ~ 01 and define ~ : A - I by
~(x, y) = d(y, 0). For x ~ F, let Ax = A n ({x} x F) and define 9, : Ax --+ I
by ~x(y) = ~p(x, y). Then 9., is an embedding since d is strictly mono-
tonic. Since ~2 : A - Fx I defined by ~2(x, y) = (x,~(x, y)) is an em-
bedding it is easy to see that f : F x I ~ F defined byf(x, t) = qJ; 1 (t~x(x))
satisfies all the conditions for an S-space.

It was observed in section 2 that every metric space is perfectly normal.
However, not every TVS is perfectly normal; by [15, Theorem 4] is it
known that any uncountable product of real lines is not normal.

In this paper we are also concerned with TVS’s F ~ F03C9. We have the

following theorem that is the combined work of several people.

4.3 THEOREM. If F is one of the following spaces, then F ~ F03C9.

a) Any infinite-dimensional separable Fréchet space.
b) Any infinite-dimensional Hilbert or reflexive Banach space.
c) The space of bounded sequences, 100.
PROOF. Part a) follows since each infinite-dimensional separable

Fréchet space is homeomorphic to s by [1]. For part b) and more
general theorems see [4]. Part c) follows from b) and [5, Corollary 5,
p. 760] which says that 100 is homeomorphic to a Hilbert space.

5. Stability for non-separable manifolds

5.2 LEMMA. Let X = 03C0i&#x3E;0 Xi be a product of spaces where each finite
product nn= 1 Xi is perfectly normal. If W is an open subset of X and B is
a cover of W with basic open sets contained in W, then there exists a col-
lection of closed sets {Kn}n&#x3E;0 such that W = ~n&#x3E; 0 Kn, Kn C Int Kn+ 1 for
n &#x3E; 0, and each Kn is n-basic and contained in U {b E B : b is n-basic}.

PROOF. For each n &#x3E; 0, let Wn = U {b E B : b is n-basicl. Then
Wl c W2 ~ ···, W = ~n&#x3E;0 Wn, and each Wn is open and n-basic.
Thus Wn = En 03C0i&#x3E;nXi where En is open in 03C0ni=1 Xi . Since 03C0ni=1 Xi
is perfectly normal we have En = ~i&#x3E;0 Cni where each Ci is closed in
n7=lXi. Using normality, let Ui be an open set in n7=lXi such that
Cn1 ~ Un1 c Cl Un1 c En . Let k ~ 1, assume Uk has been defined, and
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let U: + 1 be an open set such that CI Unk ~ Cnk+ 1 ce Uk + 1 c CI Uk + 1 C En.
For Vnm = Cl Unm 03C0i~n Xi we have Wn = ~m&#x3E;0 Vnm and for each m &#x3E; 0,
Vnm c Int Vn If Kn = ~m~n Yn , then {Kn}n&#x3E;0 satisfies the conclusion
of the lemma.

The function h of the following lemma is essentially the h that is geome-
trically described in [3] by Anderson and Schori.

5.3 LEMMA. Let F be a TVS and let f : Fx I ~ F be a map such that
(F, 0, f) is an S-space. There exists a function h : Fô x I x [1, 00) Fô
such that

a) the function h2 from Fô x I x [1, ~) to itself defined by h2 (x, t, u) =
(h(x, t, u), t, u) is an embedding,
b) if t E I and u E [1, oo ) are fixed, the map H : F03C90 ~ Fô defined by

H(x) = h(x, t, u) is a homeomorphism of Fô onto f(F, 1- t) x Fw where
H = id if t = 0, and

c) if n ~ u, then H defined above has the property that n: = n*H.
PROOF. We will first define h’ and then modify it to obtain h. Define

h’:F03C90 I {n} ~ Fô for a fixed n &#x3E; 0 as follows : If x = (x0 , x1, x2,···)
E Fô , let h’ (x, 0, n) = x. If i &#x3E; 0 let

and let 

Extend h’ linearly as follows. For n &#x3E; 0, i ~ 0, 1-2-i  t 
1-2-(i+1), and r = r(t) a linear functional in t where r(1- 2-i) = 0
and r(1-2-(i+1)) = 1, let

h’(x, t, n) = (1-r)h’(x, 1-2-B n)+rh’(x, 1-2-(i+1), n). We give the
coordinate presentation of this for the case i = 0, that is 0  t  1 2, as
follows:

We will now extend h’ to all of Fô x I x [1, oo ). For t E I, n &#x3E; 1, n -1
 u  n, and s = u - (n -1 ), let

Note that h’|F03C90  {1}  [1, ~) is actually the function h of Lemma 2.1
and hence is a homeomorphism onto {0} x F03C9  {1} x [1, ~). We claim
that the function h’|F03C90 x [0, 1) x [1, ~) is an invertible isotopy. There are
three cases: 1)0 ~ t ~ 1 2, 2) 1 2 ~ t ~ 3 4 and 3) 1-2-i ~ t ~ 1-2-(i+1)
for i &#x3E; 1. We will give the coordinate-wise presentation of h’ for case 1).
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If 0 ~ t ~ 1 2, u ~ [1, ~) where n-1  u  n, r = 2t, and s = u-(n-1),
then

To guarantee a continuous inverse function for the corresponding func-
tion h2 in this case, it is sufficient by Cramer’s Rule, to verify that the de-
terminant of the following matrix is non-zero for all values of r, s ~ I.

The determinant is equal to (1-r)(1-r+rs)(1-rs)+r2(1-s)2(1-rs)+
r2s2(1-r+rs) which is positive for all values of r, s E I.

CASE 2) is handled similarly where the corresponding matrix is 4 x 4.
Likewise for case 3) where we have independent 2 x 2 and 3 x 3 matrices.
Thus h’2|F03C90 x [0, 1) x [1, oo ) has a continuous inverse and hence is a home-
omorphism. However, h’ is not continuous for t = 1. To remedy this we
define 03BC : Fô  I ~ Fô by 03BC(x, t) = (f(x0, 1-t), x1 , x2, ···) and define
h : F03C90 x I x [1, oo ) ~ Fô by h(x, t, u) = J.l(h’(x, t, u), t). Since f satisfies
condition 2) of 4.1 we have that h is continuous. We now must show
that the corresponding h2 is an embedding. Since f satisfies condition
1) of 4.1 we have that h2|F03C90 x [0, 1) x [1, oo ) is an embedding and since
h2 = h’ on Fô x {1} x [1, oo ) we have that h2 restricted to this set is an
embedding. Hence h2 is both continuous and one-to-one. Thus, all that
remains is to show that its inverse function is continuous. Since

{0} x pro  {1} x [1, oo ) is closed it is sufficient to show that if {(x03B1, t03B1, u")l
is a generalized sequence in F. x [0, 1 ) x [1, oo ) and (x, 1, u) E Fô x
{1}  [1,~) where {h2(x03B1, t", u03B1)} ~ h2(x, 1, u), then {(x03B1, t", u03B1)} ~
(x, 1, u). We automatically have t03B1 ~ 1 and u03B1 ~ u. Since t’ ~ 1 implies
that for each i &#x3E; 0, t" is eventually greater than 1-2-i, we can see from
(*) that for each k &#x3E; 0 (where the Oth coordinate is the F coordinate) that
the kth coordinate of the inverse of h2(x03B1, t03B1, u") converges to the kth co-
ordinate of the inverse of h2(x, 1, u), which says that {(x03B1, t", u03B1)} ~
(x, 1, u) and hence the inverse of h2 is continuous. Thus h2 is an embed-
ding.

Part b)of 5.3 follows since h’2|F03C90 x [0, 1) x [1, oo) is a homeomorphism
and f satisfies 2) and 4) of 3.1. Finally, part c) is true since as seen in (*)
the x1, ···, xn coordinates are left fixed.

If B is a collection of sets, let B* be the setwise union of the elements of B.
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5.4 THEOREM. If M is a paracompact manifold modeled on a perfectly
normal TVS, F, where F is an S-space and F ~ F03C9, then F x M ~ M.

PROOF. By 3.5 it sufhces to show that if U is an open subset of F03C9, then
U satisfies the condition of Property PF. Let f be a map so that (F, 0, f) is
an S-space, let F x ro U be a variable product of F by U, and let K c W
c U where K is closed in U and W is open. Let V be open such that

K c V c Cl V c W, let A = r-10 (0), and let X’ = X - A for X c U.
Using normality, construct collections B, and B2 of basic open sets in
F03C9 such that (closure will mean closure in W’)W’ = B* U B*2 , K’ c
Bi c CI Bi c V, and K’NCIB* =0.
By 5.2 take a collection of closed sets {Kn}n&#x3E;0 such that W’ = ~n&#x3E;0Kn,

Kn c Int Kn+1 for n &#x3E; 0, and each Kn is n-basic and contained in

~{b E B1 ~ B2 : b is n-basicl.
Define g : W’ - [1, oo) exactly as done in 2.2. Thus, if x E W’ and

m = min {i:x ~ Ki}, then g(x) = g(03C0m(x)) ~ m. Furthermore, g is

unbounded near A, that is, if x E A n Clu W’ and n &#x3E; 0, there exists a

neighborhood N of x such that g(N n W’) &#x3E; n.

We now need a function ~ such that i) 9 : W’ ~ I is continuous; ii)
~(K’) = 1; iii) ~ satisfies the local product property with respect to the
{Kn}, that is, if x ~- W’ and m = min {i : x E Kil, then ~(x) = ~(03C0m(x));
and iv) ~ goes to zero near Bdu, W’, that is, if x ~ Bdu, W’ and a &#x3E; 0

there exists a neighborhood N of x such that ~(N n W’)  a.

We define ~ as follows. For n &#x3E; 0, let Dn = Cl (~{b E B2 : b is n-ba-
sic}) and thus K’ n Dn = 0. Note that each of Dn , Kn, and Bd Kn is
n-basic. Let ~(K’ ~ Ki) = 1 and for n &#x3E; 1, let ~(Bd Kn n Dn ) = I In.
(If Kl - 0, let m = min {i : Ki :0 0} and go directly to the mth stage
of the construction.) We will first extend ~ to K’ U K1 u (~i&#x3E;0Di)
inductively as follows. We have ~(03C02(K1 n D1)) = 1 and ~(03C02(Bd K2 ~
D2)) = 1 2. Extend ~ to the rest of 03C02(K2 ~ D2) with the Tietze extension
theorem where the range is restricted to [1 2, 1 ] and then extend ~ to all of
K2 u D2 by the product structure. Let n &#x3E; 2 and assume ~ has been ex-

tended to Kn-1 n Dn-1. We have ~(03C0i(Bd Ki n Di)) = 1/i for i = n -1,
n. Extend (p to 03C0n[(Kn - Int Kn-1) n Dn ] with the Tietze theorem where
the range of ç is restricted to [1/n, 1/n-1] and then extend to (Kn -
Int Kn-1) n Dn by the product structure. Thus ~ has been defined on
K’ ~ K1 u (~i&#x3E;0Di).
We now extend ~ to the rest of W’. Since K’ ~ Dn = 0 and Dn is

n-basic we have for all n that 03C0n(K’) n 03C0n(Dn) = 0. Henceforth, when
extending ç, the range of ~ will be restricted to I. Since (p has been de-
fined on Kl , the first step of the induction has been done. Let n &#x3E; 1 and

assume ~ has been extended to K’~(~n-1i=1 Ki) Let
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qJ(nn(K’ n Kn)) = 1 and extend ç to the rest of nn(Kn) with the Tietze
theorem and then extend ç to the rest of Kn by the product structure.
Thus, by induction cp has been defined on W’. Conditions i), ii), and iii)
are automatically satisfied from the definition of ~. To see condition iv)
note that a) we can assume N c U’-Cl V, b) W’ - Cl V c B2 c
Ui&#x3E;0Di which implies that if y E Kn n ( W’ - Cl V), then y E Kn n Dn ,
and c) if y E (Kn-Int Kn-1) n Dn , then 1/n ~ ~(y) ~ 1 /n -1.
The map k : F x ro W’ ~ F x W’ defined by k(y, z) = (f-1ro(z) (y), z) is a

homeomorphism. Let h be the map of 5.3 and define Hl : F x W’ ~ F x W’
by Hl (x) = h(x, 9*(x), g*(x)) for x E Fx W’. By essentially duplicating
the argument given in the proof of 2.2 we can prove that Hl is a homeo-
morphism of F x W’ onto F 1-~W’. Now, define the map H2 on

F0 r0 W’ by H2 = k-1  H1  k. Thus, H2 is a homeomorphism
and furthermore, since (H1  k)(F r0W’) = F 1-~W’, we have

H2(F roW’) = F (1-~)roW’ since f satisfies the condition 3) of 4.1.
Define H : F  ro U ~ F r U, where r = (1-~)r0 on W’ and r = r0 on
(U- W ) u A, by H = H2 above W’ and H = id above (U- W) ~ A.
The function r is continuous since ~ goes to zero near Bdu, W’ and ro = 0
on A. We now show that H is continuous. Since ç goes to zero near
BdU, W’, then the identity above ( U- W)-A and H2 above W’ are com-
patible. To show that these are compatible with the identity above A
we check the coordinatewise continuity of H. The continuity of ro to-
gether with condition 2) of 4.1 gives the continuity of H on the first or F
coordinate, and g being unbounded near A yields the continuity of H
on the second, or U, coordinate. Thus H is continuous and one-to-one.
We must show that H-1 is continuous.

Since ( U- W) ~ A is closed in U it is sufficient to show that if {x03B1}
is a generalized sequence of points in F r0(W-A) where {H(x03B1)} con-
verges to H(x) = x ~ F r[(U- W) ~ A], then X03B1 ~ x. For each oc, let
x03B1 = (u", v"), H(x’) = (y", z"), and x = (y, z). We have two cases; the
first is when x E F x ro A. Here, y = 0 and z E A. Since z" ~ z and g(z") ~
oo, we also have v" ~ z. The continuity of ro implies r0(v03B1) ~ 0 and thus
u" ~ 0 since u" ~ f(F, ro(va» and f satisfies condition 2) of 4.1. Thus,
in this case x03B1 ~ x. The other case is when x ~ ( U- W)-A. Here we
have 9*(x") -+ 0 since ~*H(x03B1) does. Furthermore, since the h of 5.3 is
continuous and h(w, 0, u) = w for all w E Fô and u E [1, oo), we have
x03B1 ~ x since H(x") does. Thus, H-1 is continuous and hence H is a ho-
meomorphism.

5.5 COROLLARY. If M is a paracompact manifold modeled on a metri-
zable TVS, F ~ Fm, then M  F ~ M.


