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This paper, and the one immediately following it, form the 1 st, 2nd,
3rd, and 5th chapters of the author’s Ph.D. thesis (Warwick 1969).
Part of chapter 4 has already appeared in [17] and parts of later chapters
are in the process of publication [18, 19].
The present paper gives a ’bare-hands’ method of constructing, for

any locally nilpotent Lie algebra over the rational field, the corresponding
Lie Group (in an obvious sense), which is a complete locally nilpctent
torsion-free group. Thus we have a purely algebraic version of the
theorems of A. I. Mal’cev [14]. The paper following this one develops
two lines of thought. The first is a Lie algebra version of a theorem of
Roseblade [16] on groups in which all subgroups are subnormal. The
other deals with certain chain conditions in special classes of Lie algebras,
and should be considered as a sequel to [17].

These results arose from a general attack on the structure of infinite-
dimensional Lie algebras, in the spirit of infinite group theory. For
completeness, and to put them into a suitable context, we first give a
brief outline of the main results of the thesis. (Unfortunately, since certain
theorems have already been extracted as separate papers, it has not been
possible to publish the thesis as a whole.)

Abstract of Thesis

Chapter 1 sets up notation.
Chapter 2 gives an algebraic treatment of Mal’cev’s correspondence

between complete locally nilpotent torsion-free groups and locally nilpo-
tent Lie algebras over the rational field. This enables us to translate
certain of our later results into theorems about groups. As an application
we prove a theorem about bracket varieties.

Chapter 3 considers Lie algebras in which every subalgebra is an

n-step subideal and shows that such algebras are nilpotent of class
bounded in terms of n. This is the Lie-theoretic analogue of a theorem of
J. E. Roseblade about groups.
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Chapter 4 considers Lie algebras satisfying certain minimal conditions
on subideals. We show that the minimal condition for 2-step subideals
implies Min-si, the minimal condition for all subideals, and that any Lie
algebra satisfying Min-si is an extension of a Z-algebra by a finite-dimen-
sional algebra (a Z-algebra is one in which every subideal is an ideal).
We show that algebras satisfying Min-si have an ascending series of ideals
with factors simple or finite-dimensional abelian, and that the type of
such a series may be made any given ordinal number by suitable choice
of Lie algebra. We show that the Lie algebra of all endomorphisms of a
vector space satisfies Min-si. As a by-product we show that every Lie
algebra can be embedded in a simple Lie algebra (and a similar result
holds for associative algebras). Not every Lie algebra can be embedded as
a subideal in a perfect Lie algebra.

Chapter 5 considers chain conditions in more specialised classes of Lie
algebras. Thus a locally soluble Lie algebra satisfying Min-si must be
soluble and finite-dimensional. A locally nilpotent Lie algebra satisfying
the maximal condition for ideals is nilpotent and finite-dimensional.
A similar result does not hold for the minimal condition for ideals. All

of these results can be combined with the Mal’cev correspondence to
give theorems about groups.

Chapter 6 develops the theory of %-algebras., and in particular classifies
such algebras under conditions of solubility (over any field) or finite-
dimensionality (characteristic zero). We also classify locally finite Lie
algebras, every subalgebra of which lies in Z, over algebraically closed
fields of characteristic zero.

Chapter 7 concerns various radicals in Lie algebras, analogous to
certain standard radicals of infinite groups. We show that not every
Baer algebra is Fitting, answering a question of B. Hartley [5]. As a
consequence we can exhibit a torsion-free Baer goup which is not a

Fitting group (previous examples have all been periodic). We show that
under certain circumstances Baer does imply Fitting (both for groups
and Lie algebras). The last section considers Gruenberg algebras.

Chapter 8 is an investigation parallelling those of Hall and Kulatilaka
[4, 10] for groups. We ask: when does an infinite-dimensional Lie algebra
have an infinite-dimensional abelian subalgebra? The answer is: not
always. Under certain conditions of generalised solubility the answer is
’yes’ and we can make the abelian subalgebra in question have additional
properties (e.g. be a subideal). The answer is also shown to be ’yes’ if
the algebra is locally finite over a field of characteristic zero. This implies
that any infinite-dimensional associative algebra over a field of charac-
teristic zero contains an infinite-dimensional commutative subalgebra.
It also implies that a locally finite Lie algebra over a field of characteristic
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zero satisfies the minimal condition for subalgebras if and only if it is
finite-dimensional.
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1. Notation and Terminology

Throughout this paper we shall be dealing mainly with infinite-dimen-
sional Lie algebras. Notation and terminology in this area are non-stan-
dard ; the basic concepts we shall need are dealt with in this preliminary
chapter. In any particular situation all Lie algebras will be over the same
fixed (but arbitrary) field f; though on occasion we may impose further
conditions on f.

1.1 Subideals

Let L be a Lie algebra (of finite or infinite dimension) over an arbitrary
field f. If x, y E L we use square brackets [x, y] to denote the Lie product
of x and y. If H is a (Lie) subalgebra of L we write H ~ L, and if H is
an ideal of L we write H « L. The symbol ~ will denote set-theoretic
inclusion.

A subalgebra H ~ L is an ascendant subalgebra if there exists an ordinal
number and a collection {H03B1 : 0 ~ a ~ ul of subalgebras of L such
that H0 = H, H03C3 = L, H03B1  H03B1+1 for all 0 ~ 03B1  03C3, and H03BB = ~03B103BBH03B1
for limit ordinals 03BB ~ 6. If this is the case we write H 03C3 L. H asc L
will denote that H 03C3 L for some a. If H a n L for a finite ordinal n we

say H is a subideal of L and write H si L. If we wish to emphasize the
rôle of the integer n we shall refer to H as an n-step subideal of L.

If A, B ~ L, X 9 L, and a, b E L we define ~X~ to be the subalgebra
of L generated by X; [A, B] to be the subspace spanned by all products
[a, b] (a E A, b E B) [A, nB ] = [[A,n-1B], B] and [A, 0B] = A ; [a, nb] =
[[a,n-1b], b] and [a, ob ] = a. We let ~XA~ denote the ideal closure of X
under A, i.e. the smallest subalgebra of L which contains X and is invari-
ant under Lie multiplication by elements of A.

1.2 Derivations

A map d : L - L is a derivation of L if it is linear and, for all x, y E L,
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The set oî all derivations of L forms a Lie algebra under the usual vector
space operations, with Lie product [dl , d2 ] - d1d2-d2d1. We denote
this algebra by der (L) and refer to it as the derivation algebra of L. If
x ~ L the map ad(x) : L ~ L defined by

is a derivation of L. Such derivations are called inner derivations. The

map x ~ ad(x) is a Lie homomorphism L ~ der (L).

1.3 Central and Derived Series

L" will denote the n-th term of the lower central series of L, so that

L1 - L, Ln+1 = [Ln, L]. L(2) (for ordinals oc) will denote the oc-th

term of the (transfinite) derived series of L, so that L(0) = L, L(a.+ 1) =
[L(03B1),L(03B1)], and L(03BB) = ~03B103BBL(03B1) for limit ordinals À r (L) will

denote the a-th term of the (transfinite) upper central series of L, so
that 03B61(L) is the centre of L, 03B603B1+1(L)/03B603B1(L) = 03B61(L/03B603B1(L)), 03B603BB(L) =
~03B103BB (a.(L) for limit ordinals 03BB.

Ln, L(a.), and 03B603B1(L) are all characteristic ideals of L in the sense that
they are invariant under derivations of L. We write I ch L to mean that
I is a characteristic ideal of L. The important property of characteristic
ideals is that I ch K a L implies I  L (see Hartley [5] p. 257).
L is nilpotent (of class ~ n) if Ln+1 = 0, and is soluble (of derived

length  n) if L(n) = 0.

1.4 Classes of Lie Algebras

We borrow from group theory the very useful ’Calculus of Classes
and Closure Operations’ of P. Hall [2].
By a class of Lie algebras we shall understand a class Y in the usual

sense, whose elements are Lie algebras, with the further properties

Cl ) {0} E X,
C2) L ~ X and K ~ L implies K E X.

Familiar classes of Lie algebras are:

D = the class of all Lie algebras
9t = abelian Lie algebras
R = nilpotent Lie algebras
Rc = nilpotent Lie algebras of class ~ c
J = finite-dimensional Lie algebras
iJm = Lie algebras of dimension ~ m
@ = finitely generated Lie algebras
Br = Lie algebras generated by ~ r elements.

We shall introduce other classes later on, and will maintain a fixed
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symbolism for the more important classes. The symbols XI V will be
reserved for arbitrary classes of Lie algebras. Algebras belonging to the
class 3i will often be called 3i-algebras.
A (non-commutative non-associative) binary operation on classes of

Lie algebras is defined as follows: if X and D are any two classes let X D
be the class of all Lie algebras L having an ideal I such that I ~ X and
L/I E D. Algebras in this class will sometimes be called X-by-D-algebras.
We extend this definition to products of n classes by defining

We may put all 3i; = X and denote the result by Xn. Thus in particular
3T is the class of soluble Lie algebras of derived length ~ n.

(0) will denote the class of 0-dimensional Lie algebras.

1.5 Closure Operations

A closure operation A assigns to each class X another class AI (the
A-closure of I) in such a way that for all classes X, D the following
axioms are satisfied:

(~ will denote ordinary inclusion for classes of Lie algebras). 3i is said
to be A-closed if X = AI. It is often easier to define a closure operation
A by specifying which classes are A-closed. Suppose !7 is a collection of
classes such that (0) E !7 and Y is closed under arbitrary intersections.
Then we can define, for each class X, the class

(where the empty intersection is the universal class Z). It is easily seen
that A is a closure operation, and that 3i is A-closed if and only if X E J.
Conversely if A is a closure operation the set J of all A-closed classes
contains (0), is closed under arbitrary intersections, and determines A.

Standard examples of closure operations are s, I, Q, E, No, L defined
as follows : 3i is s-closed (i-closed, Q-closed) according as every subalgebra
(ideal, quotient algebra) of an 3i-algebra is always an X-algebra. X is
E-closed if every extension of an 3i-algebra by an 3i-algebra is an X-algebra,
equivalently if 3i = X2. X is No-closed if I, J  L, I, J ~ X implies
1 + J E X. Finally L E LX if and only if every finite subset of L is contained
in an X-subalgebra of L. LX is the class of locally 3i-algebras.

Clearly s3i consists of all subalgebras of X-algebras, I3i consists of all
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subideals of 3i-algebras, and Q3i consists of all epimorphic images of
X-algebras; while EX = U:’: 1 In and consists of all Lie algebras having
a finite series of subalgebras

with Li  Li+1 (0 ~ i ~ n-1) and Li+1/Li ~ X (0 ~ i ~ n -1 ).
Thus EU is the class of soluble Lie algebras, L9è the class of locally

nilpotent Lie algebras, and LJ the class of locally finite (-dimensional)
Lie algebras.
Suppose A and B are two closure operations. Then the product AB

defined by AB3i = A(B3i) need not be a closure operation - 03 may fail
to hold. We can define {A, BI to be the closure operation whose closed
classes are those dasses 3i which are both A-closed and B-closed. If we

partially order operations on classes by writing A ~ B if and only if
AX ~ B3i for any class X, then {A, BI is the smallest closure operation
greater than both A and B. It is easy to see (as in Robinson [15] p. 4)
that AB = {A, BI (and is consequently a closure operation) if and only if
BA ~ AB. From this it is easy to deduce that ES, El, QS, QI, LS, LI, EQ, LQ
are closure operations.

2. A Correspondence between
Complète Locally Nilpotent Torsion-free Groups and

Locally Nilpotent Lie Algebras

In [14] A. I. Mal’cev proves the existence of a connection between
locally nilpotent torsion-free groups and locally nilpotent Lie algebras
over the rational field, which relates the normality structure of the group
to the ideal structure of the Lie algebra. This connection is essentially
the standard Lie group - Lie algebra correspondence in an infinite-dimen-
sional situation. Mal’cev’s treatment is of a topological nature, involving
properties of nilmanifolds; but since the results can be stated in purely
algebraic terms, it is of interest to find algebraic proofs. In [12, 13]
M. Lazard outlines an algebraic treatment of Mal’cev’s results, using
’typical sequences’ (suites typiques) in a free group. Here we present a
third approach, via matrices.

2.1 The Caynpbell Hausdorff Formula
Let G be a finitely generated nilpotent torsion-free group. It is well-

known (Hall [3] p. 56 lemma 7.5, Swan [20]) that G can be embedded
in a group of (upper) unitriangular n x n matrices over the integers Z for
some integer n &#x3E; 0. This in turn embeds in the obvious manner in the

group T of unitriangular n x n matrices over the rational field Q. Let U
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denote the set of n x n zero-triangular matrices over Q. With the usual
operations U forms an associative Q-algebra, and this is nilpotent; in-
deed Un = 0.

For any t E T we may use the logarithmic series to define

for if t E T then t -1 E U so (t - 1)n = 0, and the series (1) has only
finitely many non-zero terms. If t E T then log (t) E U.

Conversely if u E U we may use the exponential series to define

and exp (u) E T if u E U.
Standard computations reveal that the maps log: T ~ U and exp :

U ~ T are mutual inverses; in particular they are bijective.
U can be made into a Lie algebra over Q by defining a Lie product

As usual we define [u1, ···, um] (ui E U, i = 1, ..., m) inductively to be
[[u1, ···, um-1], um ] (m ~ 2).
LEMMA 2.1.1 (Campbell-Hausdorff Formula)
If x, y E U then

where each term is a rational multiple of a Lie product [Zl’ ..., zm] of
length m such that each zi is equal either to x or to y, and such that only
finitely many products of any given length occur.

The proof is well-known, and can be found in Jacobson [6] p. 173.

COROLLARY

1) If a, b E U and ab = ba then log (exp (a) exp(b)) = a + b.
2) If t E T, n E Z then log(tn) = n log(t). These may also be proved

directly.
A group H is said to be complete (in the sense of Kuros [11 ] p. 233)

of for every n E Z, h E H there exists g E H with gn = h. H is an R-group
(Kuros [11 ] p. 242) if g, h E H and n E Z, together with gn = hn, imply
g = h.

If H is a complete R-group, h E H, and q E Q, then it is easy to see that
we may define hq as follows: if q = min, m, n E Z, then hq is the unique
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g E H for which g" = hm. Further, if h E H, q, r E Q, we can show that

(hq)r = hqr hq+r = (hq)(hr).

LEMMA 2.1.2

T is a complete R-group.

PROOF:

1) T is complete: let t E T, n E Z. Define s = exp (1/n log(t)) and use
corollary to lemma 2.1.1 to show that s" = t.

2) T is an R-group: suppose s, t E T, n E Z, and s" = t". Then n · log(s)
= n . log(t) so s = t.

This gives us easy proofs of two known results:

PROPOSITION 2.1.3

Let H be a finitely generated nilpotent torsion-free group. Then H is
an R-group, and can be embedded in a complete R-group (which may be
taken to be a group of unitriangular matrices over Q).
PROOF:

It suffices to note that a subgroup of an R-group is itself an R-group.

2.2 The Matrix Version

Suppose T is as above, and let G be a complete subgroup of T. Let
U be equipped with the Lie algebra structure defined by (3). Define
two maps , # as follows:

The aim of this section is to prove

THEOREM 2.2.1

With the above notation,

1) The maps ,  are mutual inverses.
2) If H is a complete subgroup of G then H is a Lie subalgebra of L.
In particular L is a Lie algebra.
3) If M is a subalgebra of L then Me is a complete subgroup of G.
4) If H is a complete normal subgroup of a complete subgroup K of G,
then Hb is an ideal of K.
5) If M is an ideal of a subalgebra N of L, then Me is a complete normal
subgroup of N.

The proof requires several remarks:
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REMARK 2.2.2

L is contained in a nilpotent Lie algebra, since U is nilpotent as an
associative algebra and hence as a Lie algebra.

REMARK 2.2.3

Let g E G, 03BB E Q, and define gl as suggested immediately before lemma
2.1.2. Then (gl» = 03BBg. For let 03BB = mIn, m, n E Z. By definition

(gÂ)" = gm. Taking logs and using part 2 of the corollary to lemma
2.1.1 we find n · log (g03BB) = m - log (g). Thus we have (g03BB) log (g’)
m/n log (g) = 03BBg.
REMARK 2.2.4

Denoting group commutators by round brackets (to avoid confusion
with Lie products) thus:

and inductively (x1, ···, xm) = ((x1, ···, xm-1), xm) then the Campbell-
Hausdorff Formula implies that for g1, ···, gm E G,

where each PW is a rational linear combination of products [gi1, ···, giw]
with w &#x3E; m and i. c- {1, ···, ml for 1 ~ 03BB ~ w, such that each of

1, ’ ’ ’ , m occurs at least once among the i. (1 ~ 03BB ~ w). The exact
form of the Pw is determined by the Campbell-Hausdorff Formula.
The proof is by induction on m and can be found in Jennings [7] 6.1.6.

REMARK 2.2.5

We now describe a special method of manipulating expressions with
terms of the form h’p, where h lies in some subset H of G, which will be
needed in the sequel. Suppose we have an expression

where each Cj is a Lie product of length ~ r of elements of H’. We can
write this as

where the Dj are of length r, the Ei of length r + 1. Take one of the
terms Dj, say

By remark 2.2.4 we may replace D by the expression

where each Fk is a product of length r + 1 of elements of H. Let
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(hl, ..., hr) = 9 E G. By the Campbell-Hausdorff Formula and remark
2.2.3

where the G, are products of length 2 of elements equal either to
hb or to gb. But gb - D - 1 03B1kFk, each term of which is a product of
~ r elements of H.
Thus we may remove the terms Dj one by one to obtain a new expression

for (6), of the form

where the gj are group commutators of length r in elements of H, and
the Hi are products of length ~ r + 1 in elements of H.
We are now ready for the

PROOF OF THEOREM 2.2.1

1) Follows from the definitions of b, .
2) Any element of the Lie algebra generated by H is of the form (6)
with r = 1, h = 0. Using remark 2.2.5 over and over again, we can
express this element as

where, since H is a subgroup of G and is complete, h’ E H ; and the Ji are
products of length &#x3E; c, the class of nilpotency of U. But then Ji = 0,
and the element under consideration has been expressed as an element
of H. Thus H ’ is a Lie algebra. In particular so is L = G.
3) Let m, n E M, 03BB E Q. We must show that (m#)03BB and m#n# are elements
of Me. Now (m#)03BB = (03BBm)# ~ Me. Further, the Campbell-Hausdorff
Formula implies that (m#n#) = m + n + 1 2[m, n] + ··· E M. By part (1)
of this theorem m’n’c- M’.
4) Let h E H, k E K. We must show that [hb, k] ~ H. We prove, using
descending induction on r, that any product of the form [a1, ···, ar with
aj ~ K for all j and at least one ai E H is a member of Hb. This is trivially
true for r &#x3E; c, the class of nilpotency of U. The transition from r + 1 to r
follows from remark 2.2.4, noting that if a group commutator (k1, ···, km)
with all kj e K has some element ki E H, then the whole commutator
lies in H (since H is a normal subgroup of K). The case r = 2 gives the
result required.
5) Let m ~ M, n E N. Then (m#, n#) = [m, n]+products of length
~ 3 of elements of M and N, each term containing at least one element
of M (Remark 2.2.4). Since M is an ideal of N each such term lies in M,
so that (m#, ne)’ E M. By part (1) (m#, n#) E ,V’, whence Me is normal
in N#.
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2.3 Inversion of the Campbell-Hausdorff Formula

A given finitely generated nilpotent torsion-free group can in general
be embedded in a unitriangular matrix group in many ways. In order to
extend our results to locally nilpotent groups and Lie algebras we need
a more ’natural’ correspondence. This comes from a closer examination
of the matrix situation; the method used is to effect what Lazard [13] ]
refers to as ’inversion of the Campbell-Hausdorff formula’. To express the
result concisely we must briefly discuss infinite products in locally nil-
potent groups. The set-up is analogous to that in Lie algebras with regard
to infinite sums (such as the right-hand side of the Campbell-Hausdorff
formula) which make sense provided the algebra is locally nilpotent; for
then only finitely many terms of the series are non-zero.

Suppose we have a finite set of variables {x1, ···, xf}. A formal
infinite product

is said to be an extended word in these variables if

El) Âi E Q for all i,
E2) Each Ki is a commutator word Ki(Xl, ..., xf) = (xj1, ···, Xjr)

(r depending on i ) in the variables xi , ..., xf,
E3) Only finitely many terms Ki have any given length r.

Suppose G is a complete locally nilpotent torsion-free group, and

g1, ···, gf ~ G. G is a complete R-group (Proposition 2.1.3) so that

is defined in G. The group H generated by g1, ···, g f is nilpotent of class
c (say) so if Ki has length &#x3E; c Ki(g1, ···, gf) = 1. Thus only finitely
many values of (Ki(g1, ···, gf))03BBi ~ 1 and we may define cv(gl , ’ ’ ’ , g f)
to be the product (in order) of the non-1 terms. Thus if 03C9(x1, ···, x f)
is an extended word, and G is any complete locally nilpotent torsion-free
group, then we may consider co to be a function 03C9 : Gf ~ G.

Similarly we may define an extended Lie word to be a formal sum

where

Dl) Jlj E Q for allj,
D2) Each Jj is a Lie product Jj(w1, ···, we) = [wi1, ···, Wis] (s de-

pending on j) in the variables wl, - - ’, we,
D3) Only finitely many terms Jj have any given length s.
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Then if L is any locally nilpotent Lie algebra over Q, we may consider
03B6 to be a function ( : Le ~ L.

Let us now return to the matrix group/matrix algebra correspondence
of section 2.2. Suppose we ’lift’ the Lie operations from L to G by defining

(g, h E G, 03BB e Q). Then G with these operations forms a Lie algebra which
we shall denote by .P(G). Similarly we may ’drop’ the group operations
from G to L by defining

(1, m E L, 03BB E Q). L with these operations forms a complete group J(L).
2 (G) is isomorphic to L and J(L) is isomorphic to G.
The crucial observation we require is that these operations can be

expressed as extended words (resp. extended Lie words). This is Lazard’s
’inversion’.

LEMMA 2.3.1

Let G be a complete subgroup of T, and let L = G’ as described in
section 2.2. Then there exist extended words 03B503BB(x) (À E Q), u(x, y),
03C0(x, y) such that for g, h E G, À E Q,

(where the operations on the left are those defined above).
Further there exist extended Lie words 03B403BB(x) (À E Q), J1(x, y), y(x, y)

such that

(l, m E L, À E Q) (operations on left as above).
These words can be taken to be independent of the particular G, L chosen.

PROOF : 

1) 8;.: .

(03BBg) = exp (À . log(g)) = g-1, so 8).( x) = xl has the required properties.
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2) 0’:

Here we must do more work. We show that there exist words ui(x, y)
satisfying

where 03B3i+1 is a word of the form

with each Kj a commutator word (zj1, ···, zji+1) of length i+1 with
zjk = x or y (1 ~ k ~ i + 1); such that if G is a complete subgroup of
the group of c x c unitriangular matrices over Q (c ~ 1) then

The existence of these words is a consequence of the manipulation
process described in remark 2.2.5. This enables us to take an expression
of the form

where h lies in some subset H of G, and the Cj are Lie products of
length ~ r in elements of H’, and replace it by an expression

where the gj are commutator words in elements of H of length r, and
the Hi are Lie products of elements of H of length r + 1.
We obtain the (fi by systematically applying this procedure to the

expression g + h. We choose a total ordering  of the left-normed Lie

products in x, y in such a way that the length is compatible with the
ordering. Next we apply the process of section 2.2.5 to the expression
g + h (with g playing the role of h in (7), 03BB1 = 1, C1 = h) and at each
stage in the process

1) Express all Lie products in g, h’ as sums of left-normed commu-
tators (using anticommutativity and the Jacobi identity),

2) Collect together all multiples of the same left-normed product,
3) Operate on the term D (in the notation of Remark 2.2.5) which is

smallest in the ordering « .

At the i-th stage we will have expressed g + h in the form

where 03C3i is a word in g, h and the terms Ik are Lie products in gb, hb of
length &#x3E; i. At the (i + 1 )-th stage this will have been modified to


