R. J. Warne

Some properties of simple I-regular semigroups

<http://www.numdam.org/item?id=CM_1970__22_2_181_0>
Let S be a regular semigroup and let E_S denote its set of idempotents. As usual, E_S is partially ordered in the following manner: if $e, f \in E_S$, $e \leq f$ if and only if $ef = fe = e$. We then say that E_S is under or assumes its natural order. Let I denote the integers. If E_S, under the natural order, is order isomorphic to I under the reverse of the usual order, we call S an I-regular semigroup. We determined the structure of I-regular semigroups mod groups in [10].

In section 1, we develop the ideal extension theory of simple I-regular semigroups. In section 2, we obtain the maximal group homomorphic image of a simple I-regular semigroup including the defining homomorphism. In section 3, we determine the nature of the congruences admitted by a simple I-regular semigroup, and we describe the idempotents separating congruences.

In the special case S is bisimple, the results of this paper reduce to the corresponding results for I-bisimple semigroups (bisimple semigroups S such that E_S is order isomorphic to I under the reverse of the usual order) [6, 7].

Unless otherwise specified, we utilize the definitions, terminology, and notation of [1].

1. Ideal extension theory

In this section, we determine the translational hull \bar{S} of a simple I-regular semigroup S. All ideal extensions of S by a semigroup T with zero, o, can then be described if one knows the structure of T and the partial homomorphisms θ of $T^* = T \setminus 0$ into \bar{S} such that $AB = 0$ in T implies that $A\theta B\theta \in S$ [1]. This determination is carried out if T is a completely 0-simple (Brandt) semigroup. We also completely determine the extensions of a Brandt semigroup with finite index set by a simple I-regular semigroup (with zero appended) by specializing our general determination of the extensions of a Brandt semigroup by an arbitrary semigroup [5, theorem 1].

Before commencing, let us state the structure theorem for simple I-regular semigroups.
Let \(C^*_1 = IxI \) under the multiplication \((a, b)(c, d) = (a + c - \min(b, c), b + d - \min(b, c))\). We called \(C^*_1 \) the extended bicyclic semigroup in [6].

Theorem 1.1 (Warne, [10]). \(S \) is a simple \(I \)-regular semigroup if and only if \(S = (U(G_j : j = 0, 1, \cdots, d-1)) \times C^*_1 \), where \(d \) is a positive integer, \(\{G_j : 0 \leq j \leq d-1\} \) is a collection of pairwise disjoint groups, and \(C^*_1 \) is the extended bicyclic semigroup, under the multiplication

\[
(g_s, (m, n))(h_r, (p, q)) = (t, (m, n)(p, q))
\]

(*)

where

\[
g_s \in G_s, g_r \in G_r \quad (0 \leq r, s \leq d-1) \quad \text{and} \quad t = \frac{d}{p+d+r-1} \sum_{j=0}^{d-1} \gamma_j (f^n_{p-n, p} \prod_{j=0}^{d-1} \gamma_j) (f^n_{p-n, p} \prod_{j=0}^{d-1} \gamma_j) (f^n_{p-n, p} \prod_{j=0}^{d-1} \gamma_j) h_r,
\]

\(::j=n\sum_{j=n}^{d-1}-1 \prod_{j=0}^{d-1} \gamma_j) (f^n_{p-n, p} \prod_{j=0}^{d-1} \gamma_j) h_r,
\]

\(:v=-1 \prod_{j=0}^{d-1} \gamma_j) (v = \text{max}(r, s))
\]

according to whether \(n > p, p > n, \) or \(p = n \) where \(\gamma_j = \gamma_{j \text{mod } d}(j \in I, j \geq 0) \) is a homomorphism of \(G_{j \text{mod } d} \) into \(G_{(j+1) \text{mod } d} \). Juxtaposition denotes multiplication in \(C^*_1 \) and in the appropriate \(G_j \). For \(m \in I^0 \), the non-negative integers, \(n \in I, f_0, n = k_0, \) the identity of \(G_0 \), while, for \(m > 0, \)

\[
f_{m, n} = u_{(n+1)d} \prod_{j=0}^{d-1} \gamma_j u_{(n+2)d} \prod_{j=0}^{d-1} \gamma_j \prod_{j=0}^{d-1} \gamma_j u_{(n+m)d}
\]

where \(\{u_{kd} : k \in I\} \) is a collection of elements of \(G_0 \) with \(u_{kd} = k_0 \) for \(k > 0 \). In (*) \(\prod_{j=0}^{d-1} \gamma_j \) will denote the identity automorphism of \(G_{a \text{mod } d} \).

Let \(S \) be a simple \(I \)-regular semigroup. In connection with theorem 1.1, we write \(S = (d, G_0, G_1, \cdots, G_{d-1}, C^*_1, \gamma_0, \gamma_1, \cdots, \gamma_{d-1}, u_{id}) \).

For convenience, we write \(\alpha_{m, n} = \gamma_m \gamma_{m+1} \cdots \gamma_{n-1} \) if \(m < n \) and let \(\alpha_{m, n} \) denote the identity automorphism of \(G_{n \text{mod } d} \).

Lemma 1.1. A simple \(I \)-regular semigroup is left and right reductive.

Proof. This lemma is an immediate consequence of theorem 1.1. We will utilize the multiplication of theorem 1.1 without explicit mention.

Theorem 1.2 Let \(S = (d, G_0, G_1, \cdots, G_{d-1}, C^*_1, \gamma_0, \gamma_1, \cdots, \gamma_{d-1}, m_{id}) \) be a simple \(I \)-regular semigroup. Let \(W = \{(\theta, p) : \theta : I \to G_0, p \in I, \) and \((i+1)\theta = m_{(i+1)d} (\theta \prod_{j=0}^{d-1} \gamma_j) m_{(i+p+1)d} \) for all \(i \in I\). Let \(\rho_i (i \in I) \) denote the inner right translation of \((I, +)\) determined by \(i \cdot W \), under the multiplication

\[
*(\theta, w)(\eta, p) = (\theta \circ \rho_w \eta, w + p),
\]
where \(\circ \) denotes pointwise multiplication of mappings and juxtaposition denotes iteration of mappings is a group. Let \(\mathcal{S} \) be the translational hull of \(S \). Then, \(\mathcal{S} = W \cup S \) (\(W \cap S = \emptyset \)), under the multiplication

\[
(\theta, a) \cdot (\eta, p) = (\theta, a)(\eta, p)
\]

\[
(g_s, a, b) \cdot (h_r, c, d) = (g_s, a, b)(h_r, c, d)
\]

where juxtaposition denotes multiplication in \(W \) and \(S \) and

\[
(\theta, p) \cdot (g_r, a, b) = ((a-p)\theta \prod_{j=0}^{r-1} g_j g_r, a-p, b)
\]

\[
(g_r, a, b) \cdot (\theta, p) = (g_r(b\theta \prod_{j=0}^{r-1} g_j), a, b+p).
\]

Proof. Let \(\lambda \) be a left translation of \(S \). Then, if \(e_0 \) is the identity of \(G_0 \),

\[
(e_0, i, i)\lambda = (i\delta, i\delta_1, i+ip_1)
\]

where \(\delta : I \to U(G_j : 0 \leq j \leq d-1) \); \(\delta_1 : I \to I \); and \(p_1 : I \to I^0 \) the non-negative integers. Since \((e_0, i, i)(e_0, i+1, i+1) = (e_0, i+1, i+1) \), we have the following two possibilities: If \(ip_1 = 0 \),

\[
(i+1)\delta = m_{(i+1)\delta}^{i\delta \alpha_{r, d}} m_{(i+1)d} \quad \text{where} \quad \delta \in G_r,
\]

\[
(i+1)p_1 = 0, \quad \text{and}
\]

\[
(i+1)\delta_1 = i\delta_1 + 1
\]

while, if \(ip_1 \geq 1 \),

\[
(i+1)\delta = i\delta
\]

\[
(i+1)p_1 = ip_1 - 1
\]

\[
(i+1)\delta_1 = i\delta_1.
\]

Let us first consider the case \(ip_1 = 0 \) for all \(i \in I \). In this case it is easily seen that \(\lambda|D_0 \), where \(D_0 = \{(g_0, m, n) : g_0 \in G_0, m, n \in I \} \), is a left translation of \(D_0 \). Hence, since \(D_0 \) is the I-bisimple semigroup \((G_0, C_1^*, \alpha_{0, d}, m_d) \) [6, theorem 1.2] (notation of [6]),

\[
(e_0, i, i)\lambda = (i\delta, i+p, i)
\]

where \(p \in I \) and \(\delta \) is a mapping of \(I \) into \(G_0 \) such that

\[
(i+1)\delta = m_{(i+p+1)d}^{-1} i\delta \alpha_{0, d} m_{(i+1)d}
\]

by virtue of [7, 8] or by [9, proof of theorem 1]. Hence, since \((g_r, i, j) = (e_0, i, i)(g_r, i, j) \),

\[
(g_r, i, j)\lambda_{(\delta, p)} = ((i\delta)\alpha_{r, g_r, i+p, j})
\]
where \(\lambda = \lambda(\delta, \rho) \), \(p \in I \) and \(\delta \) is a mapping of \(I \) into \(G_0 \) satisfying (1.3).

Conversely, (1.3) and (1.4) define a left translation of \(D_0 \) by [7] or by [9, proof of theorem 1]. By (1.3),

\[
(g_r, a, b)\lambda(\delta, \rho)(g_r, a, b) = (e_0, a, a)\lambda(\delta, \rho)(g_r, a, b).
\]

Thus,

\[
((g_r, a, b)(h_s, c, d))\lambda(\delta, \rho) = (e_0, a, a)\lambda(\delta, \rho)(g_r, a, b)(h_s, c, d)
\]

Hence, \(\lambda(\delta, \rho) \) is a left translation of \(S' \).

Next, suppose that there exists \(u \in I \) such that \(u \rho_1 \neq 0 \). Utilizing (1.1) and (1.2), we obtain: \((t+i)\rho_1 = 0\), where \(t \) is a unique element in \(I \), for \(i \geq 0 \), and \((t+i)\rho_1 = -i\) for \(i < 0 \); \((t+i)\delta_1 = a+i\), where \(a \in I \), for \(i \geq 0 \), and \((t+i)\delta_1 = a\) for \(i < 0 \); and \((t+i)\delta = f_i^{-1}g_s a x_i a^{-1} f_i\), for \(i > 0 \), and \((t+i)\delta = g_s \in G_s \) for \(i \leq 0 \). Since \((e_0, i, i)(e_0, i+n, i) = (e_0, i+n, i)\) for all \(n \geq 0 \), we are able to determine \((e_0, i+n, i)\). Next, since \((g_r, i+n, i+m) = (e_0, i+n, i)(g_r, i, i+m)\) for \(i \in I, m, n \in I^0 \), we are able to determine \((g_r, i+n, i+m)\) by [3] and theorem 1.1, every element of \(S \) may be written in the form \((g_r, i+n, i+m)\) where \(g_s \in G_r, i \in I, m, n \in I^0 \). We let \(i = t+q \) and determine \((g_r, t+q+n, t+q+m)\) in terms of the values of \(\delta, \rho_1 \), and \(\delta_1 \) given above. In this calculation, we utilize the identity \(f_m+c,n f_c^{-1} f_{m+n} = f_{m+n} a x_c a^{-1} f_{m+n}\) for \(m, c \in I^0 \) and \(n \in I \) [10]. (This identity may be developed by a routine calculation.) Finally, if \(a_1 = t+q+n \) and \(b_1 = t+q+m \), we show that \((g_r, a_1, b_1)\lambda = (g_s, a, t)(g_r, a_1, b_1)\), i.e. \(\lambda \) is an inner left translation. (We omit the details of these calculations as they parallel calculations given in [7] and [9]).

In a similar manner, it may be shown that the semigroup of right translations of \(S \) consists of the inner right translations of \(S \) and the transformations of \(S \) defined by

\[
(g_r, i, j)\rho(\theta, w) = (g_r(j \theta x_0, r), i, j+w)
\]

where \(w \in I \) and \(\theta \) is a mapping of \(I \) into \(G_0 \) such that

\[
(i+1)\theta = m_{(i+1)d}(i \theta x_0, d) m_{(i+w+1)d} \quad \text{for all} \quad i \in I.
\]
are linked. Thus, by the proof of [9, theorem 1] or [7], $w = -p$ and $\delta = \rho_{-w,0}$. By the proof of [9, theorem 1] or [7], $\rho_{(\theta, w)}D_0$ and $\lambda_{(p_{-w}, -w)} |D_0$ are linked. Thus, $(g_s, a, b)_{D_0}((e_0, b, b))$

$$\rho_{(\theta, w)}(h_r, c, d) = (g_s, a, b)((e_0, b, b)\rho_{(\theta, w)}(e_0, c, c))(h_r, c, d) = (g_s, a, b)_{D_0}(e_0, c, c)\lambda_{(p_{-w}, -w)}(h_r, c, d) = (g_s, a, b)((h_r, c, d)\lambda_{(p_{-w}, -w)}).$$

Thus, $\rho_{(\theta, w)}$ and $\lambda_{(p_{-w}, -w)}$ are linked. The mapping $\rho \to (\lambda, \rho)$, where ρ is a right translation of S and λ is the left translation of S linked with ρ, is an isomorphism of the semigroup of right translations of S onto \mathcal{S}. If $\rho_{(\theta, q)}, \rho_{(\eta, p)} \in S \setminus \mathcal{S}$, $\rho_{(\theta, q)}\rho_{(\eta, p)} = \rho_{(\theta \circ \rho_{(\eta, q+p)}}$ by (1.5) and (1.6). Hence $S \setminus \mathcal{S}$ is a semigroup. The mapping $(\theta, p) \to \rho_{(\theta, p)}$ is an isomorphism of W, under the multiplication \ast, onto $S \setminus \mathcal{S}$. Clearly, W is a group. The remainder of the theorem is a consequence of [1, p. 12, lemma 1.2], (1.4), and (1.5).

Remark 1.1. In the case $d = 1$, we obtain [7, theorem 1] (see also [8]).

Corollary 1.1. Let S be a weakly reductive semigroup and let S be its translational hull. Let T be a 0-simple semigroup having proper divisors of zero. If $S = S$ or $S \setminus S$ is a subsemigroup of S, then every extension of S by T is given by a partial homomorphism [4].

Proof. Replace \mathcal{S} by \mathcal{S} in the proof of [7, theorem 3].

Remark 1.2. Let $S = (d, G_0, G_1, \cdots, G_{d-1}, \gamma_0, \gamma_1, \cdots, \gamma_{d-1}, m_{id})$ be a simple I-regular semigroup. S has d \mathcal{S}-classes, $D_0, D_1, \cdots, D_{d-1}$. $D_r = \{(g_r, a, b) : g_r \in G_r, a, b \in I\}$ is the I-bisimple semigroup $(G_r, C_r^1, \alpha_r, \beta_r, m_{id}^0)$. (Notation of [6]). Let T be a 0-bisimple semigroup. To determine the partial homomorphisms of $T \setminus 0$ into S one must just determine the partial homomorphisms of $T \setminus 0$ into D_r for each $r \in \{0, 1, 2, \cdots, d-1\}$. In the case T is a completely 0-simple semigroup, (a Brandt semigroup), these determinations are given mod groups by [7, theorem 2] ([7, corollary 1]). By lemma 1.1, theorem 1.2, and Corollary 1.1, if T is a 0-simple semigroup with proper divisors of zero, every extension of S by T is given by a partial homomorphism. In particular, this is valid if T is a completely 0-simple semigroup (Brandt Semigroup) with proper divisors of zero.

Corollary 1.2. Let $S = (d, G_0, G_1, \cdots, G_{d-1}, C^*, \delta_0, \cdots, \delta_{d-1}, m_{id})$ be a simple I-regular semigroup and let $T = M^0(R; K; A; P)$ be a completely 0-simple semigroup (with zero, $0'$) without proper divisors of zero. Let V be an extension of S by T. Then, either V is given by a partial homomorphism and an explicit multiplication is thus given by employing remark 1.2. (Conversely, every partial homomorphism of $T \setminus 0'$ into S determines an extension of S by T), or $V = (T \setminus 0') \cup S$ under the multiplication
A) \((a; s, \lambda)^*(g_r, m, n)\)
\begin{align*}
&= ((m - k_s - i_a - t_\lambda)(\beta_s \circ \rho_{k_s} \theta_a \circ \rho_{k_s + i_a} \gamma_\lambda) \prod_{j=0}^{r-1} \delta_j g_r, m - k_s - i_a - t_\lambda, n) \\
B) \((g_r, m, n)^*(a; s, \lambda)\)
&= (g_r((n \beta_s \circ \rho_{k_s} \theta_a \circ \rho_{k_s + i_a} \gamma_\lambda) \prod_{j=0}^{r-1} \delta_j), m, k_s + i_a + t_\lambda + n)
\end{align*}

where \((g_s, m, n) \in S\) and \((a; s, \lambda) \in T'\), \(\circ\) denotes pointwise multiplication of mappings, \(a \mapsto i_a\) is a homomorphism of \(R\) into \((I, +)\), \(a \mapsto \theta_a\) is a mapping of \(R\) into \(H = \{\beta : (\beta, a) \in W\} \) (see statement of theorem 1.2) such that \(\theta_{ab} = \theta_a \circ \rho_{ia} \theta_b\) for all \(a, b \in R\), \(s \mapsto \beta_s\) is a mapping of \(K\) into \(H\), \(s \mapsto k_s\) is a mapping of \(K\) into \(I\), \(\lambda \mapsto t_\lambda\) is a mapping of \(\Lambda\) into \(I\), and \(\lambda \mapsto t_\lambda\) is a mapping of \(\Lambda\) into \(I\) such that \(i_{p, a_e} = t_\lambda + k_s\) and \(\theta_{p, a_e} = \gamma_\lambda \circ \rho_{t_\lambda} \beta_s\). Conversely, \((A)\) and \((B)\) define an extension of \(S\) by \(T\).

Proof. The proof utilizes theorem 1.1, theorem 1.2, corollary 1.1, and [1, theorem 4.20 and theorem 4.22]. It is similar in nature to the proof of [7, theorem 4] (see also [8]) and [9, theorem 4] and it will be omitted.

Remark 1.3. In the case \(d = 1\), we obtain [7, theorem 4] [see also [8]].

Remark 1.4. In the special case that \(T'\) is a group \(R\), \(V\) is either given by a partial homomorphism or \((A)\) and \((B)\) become

\[a^*(g_r, m, n) = ((m - i_a) \theta_a \prod_{j=0}^{r-1} \gamma_j g_r, m - i_a, n) \]
\[(g_r, m, n)^*a = (g_r((n \theta_a) \prod_{j=0}^{r-1} \gamma_j), m, n + i_a). \]

Remark 1.5. If \(T\) is a 0-simple semigroup without proper divisors of zero, an extension of \(S\) by \(T\) is either given by a partial homomorphism or by the equations in the above remark with \(a \mapsto \theta_a\) a mapping of \(T'\) into \(H\) and with \(a \mapsto i_a\) a homomorphism of \(T'\) into \((I, +)\).

We close this section by giving a specialization of [5, theorem 1]. The theorem is obtained by combining theorem 3.1 (below), [5, theorem 1], and [5, lemma 1]. The theorem is quite similar to [9, theorem 7].

In the theorem below, capital roman letters will denote elements of \(T^*\).

Theorem 1.3. Let \(S = \mathcal{M}^0(G; J; J; \Delta)\), where \(J\) is a finite set, be a Brandt semigroup; let \(T^* = (d, U_0, U_1, \ldots, U_{d-1}, C_1, \gamma_0, \gamma_1, \ldots, \gamma_{d-1}, m_a)\) be a simple \(I\)-regular semigroup; and let \(V\) be an extension of \(S\) by \(T\). Then, there exists a homomorphism \(w : A \to w_A\) of \(T^*\) into \(H_r\), the full symmetric group on some \(r\) element subset \(Q\) of \(J\). This homomorphism is explicitly given by theorem 2.4. For each \(A \in T^*\), there exists a mapping \(\psi_A\) of \(Q\) into the group \(G\) such that
The products in V are given by

\[(i\psi_A)(iw_A\psi_B) = i\psi_{AB} \text{ for all } i \in Q.\]

The major purpose of this section is to determine the maximal group homomorphic image of a simple I-regular semigroup including the defining homomorphism.

To do this, we first determine the homomorphisms of a simple regular ω-semigroup (a simple regular semigroup S such that E_S is order isomorphic to \mathbb{Z}^0, the non-negative integers, under the reverse of the usual order) into a group (theorem 2.1). Utilizing this result and our determination of the maximal group homomorphic image of an ω-bisimple semigroup (a bisimple semigroup S such that E_S is order isomorphic to \mathbb{Z}^0 under the reverse of the usual order) [6, theorem 3.4], we determine the maximal group homomorphic image a simple regular ω-semigroup including the defining homomorphism (theorem 2.2). Finally, utilizing theorem 2.1, theorem 2.2, and ‘an inverse limit process’ and ‘an inductive process’ (introduced in [6]), we determine the maximal group homomorphic image of a simple I-regular semigroup. We also completely determine the homomorphisms of a simple I-regular semigroup into a group. This result was used in section 1.

The multiplication for a simple regular ω-semigroup S (due to Munn [2]) may be obtained from theorem 1.1 by considering the triples \[\{(g_r, m, n) : g_r \in G_r (0 \leq r \leq d-1), m, n \in \mathbb{Z}^0\}.\] Thus, we may write $S = (d, G_0, G_1, \cdots, G_{d-1}, C_1, \gamma_0, \gamma_1, \cdots, \gamma_{d-1})$ where C_1 is the bicyclic semigroup.
THEOREM 2.1. Let $S = (d, G_0, G_1, \cdots, G_{d-1}, C_1, \gamma_0, \gamma_1, \cdots, \gamma_{d-1})$ be a simple regular ω-semigroup and let H be a group. For each $i \in \{0, 1, \cdots, d-1\}$, let f_i be a homomorphism of G_i into H and let $z \in H$ such that

$$f_{d-1}C_x = \gamma_{d-1}f_0,$$

where $xC_x = xz^{-1}$ for $x \in H$, \hspace{1cm} (2.1)

and

$$f_r = \gamma_r f_{r+1} \hspace{1cm} \text{for} \hspace{0.5cm} 0 \leq r \leq d-2.$$ \hspace{1cm} (2.2)

Then,

$$(g_r, m, n)\phi = z^{-m}(g_r f_r)z^n \hspace{1cm} \text{(2.3)}$$

is a homomorphism of S into H and, conversely every such homomorphism is obtained in this fashion.

PROOF. Let ϕ be a homomorphism of S into H. Define $(g_r, 0, 0)\phi = g_r f_r$. Clearly, f_r is a homomorphism of G_r into H. Let $(e_0, 0, 1)\phi = z$, where e_0 is the identity of G_0. Hence $(g_r, m, n)\phi = z^{-m}g_r f_r z^n$ and (2.3) is valid. Since $(g_{d-1} \gamma_{d-1}, 0, 0)(e_0, 0, 1) = (e_0, 0, 1)(g_{d-1}, 0, 0)$, (2.1) is valid. Since, for $0 \leq r \leq d-2$, $(g_r, 0, 0)(e_{r+1}, 0, 0) = (g_r \gamma_r, 0, 0)(e_{r+1}, 0, 0)$, (2.2) is valid.

Conversely, let us show that (2.3) subject to the conditions (2.1) and (2.2) defines a homomorphism of S into H. Clearly, ϕ is a well defined mapping of S into H. Form (2.1) and (2.2), we obtain

$$\alpha_{j, d} f_0 = f_j C_x \hspace{1cm} \text{(2.4)}$$

By induction, we obtain

$$r'b_j f_j = b_j \alpha_{j, r} f_0 z^r \hspace{1cm} \text{(2.5)}$$

for each positive integer r and each $b_j \in G_j \ (0 \leq j \leq d-1)$.

Utilizing (2.5) and (2.2), it is easy to show that (2.3) defines a homomorphism of S into H.

REMARK 2.1 In the case $d = 1$, we obtain [6, theorem 3.5].

THEOREM 2.2. Let $S = (d, G_0, G_1, \cdots, G_{d-1}, C_1, \gamma_0, \gamma_1, \cdots, \gamma_{d-1})$ be a simple regular ω-semigroup. Let $N = \{g \in G_0 \mid g(g_0 \gamma_1 \cdots \gamma_{d-1})^n = k_0$, the identity of G_0, for some $n \in I^0\}$. Then, N is a normal subgroup of G_0. Let $g \rightarrow \tilde{g}$ be the natural homomorphism of G_0 onto G_0/N. Define $\bar{x} = x\gamma_0 \gamma_1 \cdots \gamma_{d-1}$ for $x \in G_0$. Then, θ is an endomorphism of G_0/N. Define a relation σ on $G_0/N \times (I^0)^2$ by the rule $((\bar{g}_0, a, b), (\bar{h}_0, c, d)) \in \sigma$ if and only if there exist $x, y \in I^0$ such that $x + a = y + c$, $x + b = y + d$ and $\bar{g}_0 \theta x = \bar{h}_0 \theta y$. Define a binary operation on $V = G_0/N \times (I^0)^2/\sigma$ by the rule

$$(\bar{g}_0, a, b) \sigma (\bar{h}_0, c, d)_\sigma = (\bar{g}_0 \theta^c \bar{h}_0 \theta^d, a + c, b + d)_\sigma.$$
Then, V is a group which is the maximal group homomorphic image of S. The canonical homomorphism of S onto V is given by

$$(g_r, m, n)x = (g_r, \prod_{j=r}^{m-1} y_j, m+1, n+1)$$

where $g_r \in G_r$.

Proof. For simplicity, let $\alpha_{n,m} = \prod_{j=n}^{m-1} y_j$ if $m > n$ and let $\alpha_{n,n}$ denote the identity automorphism of $G_{n(\text{mod } d)}$. Let $T = \{(g_0, a, b) : g_0 \in G_0; a, b \in I^0\}$. Then, T is the ω-bisimple semigroup $(G_0, C_1, \alpha_{0,d})$ by theorem 1.1 and [6, theorem 1.1] (notation of [6]). Thus, by [6, theorem 3.4], σ is an equivalence relation and V is a group. By a routine calculation $(k_0, 0, 0)_\sigma$ is the identity of V and $(\bar{g}_0^{-1}, b, a)_\sigma$ is the inverse of $(\bar{g}_0, a, b)_\sigma$. We first employ theorem 2.1 to show that ξ is a homomorphism of S into V. Let $z = (k_0, 0, 1)_\sigma$ and $g_rf_r = (g_r, \alpha_{r,d}, a, b)_\sigma$ for $0 \leq r \leq d-1$. By a straightforward calculation, (2.1) and (2.2) of theorem 2.1 are valid, and $(g_r, m, n)z = z^{-m}g_rf_rz^n$.

Since

$$(g_0, m, n)z = (g_0, \alpha_{0,d}, m+1, n+1)\sigma = (g_0, b, m+1, n+1)\sigma = (\bar{g}_0, m, n)\sigma,$$

ξ maps S onto V.

Let δ be a homomorphism of S onto a group X. We show that $\delta|T$ is a homomorphism of T onto X. By theorem 2.1, for each $r \in \{0, \ldots, d-1\}$, there exists a homomorphism δ_r of G_r into X and $a_p \in X$ such that (2.1) and (2.2) of theorem 2.1 are valid and

$$(g_r, m, n)\delta = p^{-m}g_r\delta_r p^n$$

where $g_r \in G_r$. Thus, if $x \in X$, there exists $g_r \in G_r$, $a, b \in I^0$, such that $x = p^{-a}g_r\delta_r p^{b}$. Hence, utilizing (2.1) and (2.2) of theorem 2.1,

$$x = p^{-a}g_r\gamma_r\delta_{r+1} p^{b} = p^{-a}g_r\gamma_r \cdots \gamma_{d-2}\delta_{d-1} p^{b} = p^{-(a+1)}g_r\alpha_{r,d} \delta_0 p^{(b+1)} = (g_r\alpha_{r,d}, a+1, b+1)\delta.$$

By [6, theorem 3.4], V is the maximal group homomorphic image of T under the homomorphism

$$(g_0, a, b)\phi = (g_0, a, b)_\sigma.$$

Hence, there exists a homomorphism η of V onto X such that $\phi\eta = \delta|T$.

[9] Some properties of simple I-regular semigroups 189
We will show that \(V \) is the maximal group homomorphic image of \(S \) under the homomorphism \(\xi \). We note that
\[
(g_0, m, n)\eta = (g_0, m, n)\phi \eta = (g_0, m, n)\delta.
\]
(2.6)

Hence, by (2.6), (2.2), and (2.1),
\[
(g_r, m, n)\zeta \eta = (g_r\alpha_{r,d}, m+1, n+1)\eta
= p^{-(m+1)}(g_r\alpha_{r,d})\delta_0 p^{n+1}
= p^{-m}g_r\delta_r p^n
= (g_r, m, n)\delta.
\]

REMARK 2.2. In the case \(d = 1 \), we obtain [6, theorem 3.4].

The following remarks will be utilized in giving the canonical homomorphism in theorem 2.3 (below) a convenient form.

Let \(S = (d, G_0, G_1, \cdots, G_{d-1}, C_1^*, \gamma_0, \gamma_1, \cdots, \gamma_{d-1}, u_{id}) \) be a simple \(I \)-regular semigroup. Let \(\alpha_{m,n} = \gamma_m\gamma_{m+1} \cdots \gamma_{n-1} \) for \(m < n \) let \(\alpha_{m,m} \) denote the identity automorphism of \(G_m(\mod d) \). Let \(a_k \) denote a non-negative integer. Define
\[
t_{id,a_k} = \begin{cases} f_{a_1-1,i+1}^{-1}u_{(i+1)d}^{-2}u_{(i+1)d}^{-1}a_0u_{(i+1)d} & \text{if } a_1 \geq 2 \\
k_0, \text{ the identity of } G_0, \text{ otherwise.} \end{cases}
\]
(2.7)

By the proof of [10, theorem 1] *, \(S \cong (U(S_{id} : i \in I, i \leq 0))\lambda \) where \(S_{id} \) is the simple regular \(\omega \)-semigroup \(S_{id} = (d, G_0, \cdots, G_{d-1}, C_1, \gamma_{id}, 0, \gamma_{id}, 1 \cdots, \gamma_{id,d-1}) \) the congruence \(\lambda \) defined in [10],
\[
\gamma_{id,d-1} = \gamma_{d-1}C_{u_{(i+1)d}},
\]
(2.8)
and
\[
\gamma_{id,s} = \gamma_s \text{ for } 0 \leq s \leq d-2
\]
(2.9)
under an isomorphism \(\Psi \) (defined in [10]).

For \(g_r \in G_r \) for \(0 \leq r \leq d-1 \),
\[
(g_r, m, n)_{(i+1)d} = ((s_{id}^{-1}\alpha_{id,0,d}^{-1} \cdots s_{id}^{-1}\alpha_{id,0,d}^{-1})_{(i+1)d} x_{id,0,r} g_r
= ((s_{id} \cdot s_{id} \alpha_{id,0,d} \cdots s_{id} \alpha_{id,0,d})_{(i+1)d} x_{id,0,r}, m+1, n+1)_{id} \lambda
\]
(2.10)
where if \(m = 0 \) \((n = 0) \) the right (left) multiplier of \(g_r \) is \(k_r \), the identity of \(G_r \) and
\[
s_{id} = u_{(i+2)d}^{-1}u_{(i+1)d},
\]
(2.11)
\[
g_{d-1} \gamma_{id,d-1} = s_{id}^{-1}(g_{d-1} \gamma_{(i+1)d,d-1} s_{id}
\]
(2.12)

By the proof of [10, theorem 1], if \(\Psi_{id} \) is as in [10],

* In [10], \(S_{id} \) is denoted by \(X_{id} \).
THEOREM 2.3. Let $S = (d, G_0, G_1, \ldots, G_{d-1}, C^*, \gamma_0, \gamma_1, \ldots, \gamma_{d-1}, u_{id})$ be a simple I-regular semigroup. Let $N = \{g \in G_0 | g(\gamma_0, \gamma_1, \ldots, \gamma_{d-1})^n = k_0, \text{the identity of } G_0, \text{for some } n \in I^0\}$. Then, N is a normal subgroup of G_0. Let φ be the natural homomorphism of G_0 onto G_0/N. Define $0 \delta = x\gamma_0, \gamma_1, \ldots, \gamma_{d-1}$ for $x \in G_0$. Then, δ is an endomorphism of G_0/N. Define σ on $G_0/N \times (I^0)^2$ by the rule $((\bar{g}_0, a, b), (\bar{h}_0, c, d)) \in \sigma$ if and only if there exist $x, y \in I^0$ such that $x + a = y + c, x + b = y + d,$ and $\bar{g}_0 \theta^2 = \bar{h}_0 \theta^2$. Define a binary operation on $H = G_0/N \times (I^0)^2/\sigma$ by the rule $(\bar{g}_0, a, b)(\bar{h}_0, c, d) = (\bar{g}_0 \theta^2 \bar{h}_0, a + c, b + d)$. Then, H is a group which is the maximal group homomorphic image of S. The canonical homomorphism of S onto V is given by

\[
(g_r, a, b) \bar{\phi} = \begin{cases} (x_{id}^{-1} \theta a_{i-1}^{-1} \cdots x_{id}^{-1} \theta x_{id}^{-1} (t_{id, a_{i-r}} g_r (t_{id, b_{i-r}} \alpha_0, r)), a_{i-r}, b_{i-r}) & \text{for } i \leq -1, \\
(g_r, a_{i+1}, b_{i+1}) & \text{for } i = 0,
\end{cases}
\]
where $(g_r, a, b) \in (k_0, i, i)S(k_0, i, i)$ and where

1. $x_0 = k_0$,
2. $x_{-d} = \bar{u}_0^{-1}$ while for $i \leq -2$,
3. $x_{id} = \bar{u}_0^{-1}(\bar{u}_{i-1}^{-1} \theta) \cdots \bar{u}_{(i+1)d}^{-1} \theta \bar{(i+1d)} \bar{u}_{(i+2)d} \theta \bar{(i+2d)} \cdots \bar{u}_0 \theta$,
4. $g_r \delta_{id} = g_r x_{r, d}$ while for $i \leq -1$,
5. $g_r \delta_{id} = \bar{u}_0^{-1} \bar{u}_{-d}^{-1} \theta \cdots \bar{u}_{(i+1)d}^{-1} \theta \bar{(i+1d)} \bar{g_r x_{r, d}} \theta \bar{(i+1d)} \cdots \bar{u}_{-d} \theta \bar{u}_0$.

Proof. As our proof parallels that of [6, theorem 3.6], we will just give a sketch of the proof. We first use theorem 2.1 to determine a homomorphism ϕ_{id} of S_{id} into H for each $i \in I$ with $i \leq 0$. Let x_{id} and δ_{id} be defined as in the statement of the theorem. In the notation of theorem 2.1, let $z_{id} = (x_{id}, 0, 1), g_r f_r = (g_r \delta_{id}, 1, 1)$ and $g_r f_{r, id} = (g_r \delta_{id}, 0, 0)$ for $i \leq -1$ where $g_r \in G_r (0 \leq r \leq d - 1)$. Utilizing (2.8), we show that (2.1) and (2.2) are valid.

Hence, by (2.3),

\[
(g_r, a, b) \phi_{id} = \begin{cases} (x_{id}^{-1} \theta a_{i-1}^{-1} \cdots x_{id}^{-1} \theta x_{id}^{-1} (g_r \delta_{id})(x_{id} \cdot x_{id} \theta \cdots x_{id} \theta a_{i-1}^{-1}), a_{i-r}, b_{i-r}) & \text{if } i \leq -1, \\
(g_r x_{r, d}, m+1, n+1) & \text{if } i = 0,
\end{cases}
\]
defines a homomorphism of S_{id} into H.

We note that $(g, m, n)_{0} \phi_{0} = (g_{r}, m + 1, n + 1)_{o}$. Hence, by theorem 2.2, ϕ_{0} is a homomorphism of S_{0} onto H.

Let us define $x \lambda \phi = x \phi_{id}$ if $x \in S_{id}$. We will show that ϕ is a homomorphism of S_{Ψ} onto H. We note that $(g_{r}, 1, 1)_{id} \phi_{id} = (g_{r}, 0, 0)_{(i+1)d} \phi_{(i+1)d}$. Utilizing (2.11), we obtain $(s_{id}, 1, 2)_{id} \phi_{id} = (k_{0}, 0, 1)_{(i+1)d} \phi_{(i+1)d}$. The desired result is then a consequence of (2.10).

Let G^{*} be an arbitrary group and let ρ be a homomorphism of S_{Ψ} onto G^{*}. We denote $\lambda \rho | S_{id}$ by ρ_{id}. Thus, ρ_{id} is a homomorphism of S_{id} into G^{*}. Since H is the maximal group homomorphic image of S_{0} under the homomorphism ϕ_{0} by virtue of theorem 2.2, there exists a homomorphism γ of H onto the subgroup $S_{0} \rho_{0}$ of G^{*} such that $(g, m, n)_{0} \phi_{0} \gamma = (g, m, n)_{0} \rho_{0}$ for all $(g, m, n)_{0} \in S_{0}$.

Next suppose that $(g, m, n)_{(i+1)d} \phi_{(i+1)d} \gamma = (g, m, n)_{(i+1)d} \rho_{(i+1)d}$ where γ is a homomorphism of H onto $S_{(i+1)d} \rho_{(i+1)d}$.

By virtue of theorem 2.1, there exists v_{id} in G^{*} and a homomorphism η_{r}, id of G_{r} into G^{*} for each $r \in \{0, 1, 2, \cdots, d-1\}$ such that $v_{id}(g_{r-1}) \eta_{r-1, id}^{-1} = g_{r-1} \eta_{r-1, id}^{-1} \eta_{0, id}$ and $g_{r} \eta_{r, id} = g_{r} \eta_{r, id} \eta_{r+1, id}$ for $0 \leq r \leq d-2$. Furthermore $(g_{r}, m, n)_{id} \rho_{id} = v_{id}^{-1}(g_{r}, m, n)_{id} \eta_{r, id}$ for $(g_{r}, m, n)_{id} \in S_{id}$. Since $(g_{r}, 0, 0)_{(i+1)d} \lambda = (g_{r}, 1, 1)_{id} \lambda$, when $g_{r} \in G_{r}$, by (2.10), $(g_{r}, 0, 0)_{(i+1)d} \rho_{(i+1)d} = (g_{r}, 1, 1)_{id} \rho_{id}$. Thus, $g_{r} \eta_{r, id} = v_{id}(g_{r}, m, n)_{id} \eta_{r, id}^{-1}$.

Next suppose that $(g_{r}, m, n)_{(i+1)d} \phi_{(i+1)d} \gamma = (g_{r}, m, n)_{(i+1)d} \rho_{(i+1)d}$ where γ is a homomorphism of H onto $S_{(i+1)d} \rho_{(i+1)d}$.

By virtue of theorem 2.1, there exists v_{id} in G^{*} and a homomorphism $\eta_{r, id}$ of G_{r} into G^{*} for each $r \in \{0, 1, 2, \cdots, d-1\}$ such that $v_{id}(g_{r-1}) \eta_{r-1, id}^{-1} = g_{r-1} \eta_{r-1, id}^{-1} \eta_{0, id}$ and $g_{r} \eta_{r, id} = g_{r} \eta_{r, id} \eta_{r+1, id}$ for $0 \leq r \leq d-2$. Furthermore $(g_{r}, m, n)_{id} \rho_{id} = v_{id}^{-1}(g_{r}, m, n)_{id} \eta_{r, id}$ for $(g_{r}, m, n)_{id} \in S_{id}$. Since $(g_{r}, 0, 0)_{(i+1)d} \lambda = (g_{r}, 1, 1)_{id} \lambda$, when $g_{r} \in G_{r}$, by (2.10), $(g_{r}, 0, 0)_{(i+1)d} \rho_{(i+1)d} = (g_{r}, 1, 1)_{id} \rho_{id}$. Thus, $g_{r} \eta_{r, id} = v_{id}(g_{r}, m, n)_{id} \eta_{r, id}^{-1}$.

Next suppose that $(g_{r}, m, n)_{(i+1)d} \phi_{(i+1)d} \gamma = (g_{r}, m, n)_{(i+1)d} \rho_{(i+1)d}$ where γ is a homomorphism of H onto $S_{(i+1)d} \rho_{(i+1)d}$.

By virtue of theorem 2.1, there exists v_{id} in G^{*} and a homomorphism $\eta_{r, id}$ of G_{r} into G^{*} for each $r \in \{0, 1, 2, \cdots, d-1\}$ such that $v_{id}(g_{r-1}) \eta_{r-1, id}^{-1} = g_{r-1} \eta_{r-1, id}^{-1} \eta_{0, id}$ and $g_{r} \eta_{r, id} = g_{r} \eta_{r, id} \eta_{r+1, id}$ for $0 \leq r \leq d-2$. Furthermore $(g_{r}, m, n)_{id} \rho_{id} = v_{id}^{-1}(g_{r}, m, n)_{id} \eta_{r, id}$ for $(g_{r}, m, n)_{id} \in S_{id}$. Since $(g_{r}, 0, 0)_{(i+1)d} \lambda = (g_{r}, 1, 1)_{id} \lambda$, when $g_{r} \in G_{r}$, by (2.10), $(g_{r}, 0, 0)_{(i+1)d} \rho_{(i+1)d} = (g_{r}, 1, 1)_{id} \rho_{id}$. Thus, $g_{r} \eta_{r, id} = v_{id}(g_{r}, m, n)_{id} \eta_{r, id}^{-1}$.

Remark 2.3. In the case $d = 1$, we obtain [6, theorem 3.6].

The following result is needed to give an explicit determination of the extensions of a Brandt semigroup by a simple I-regular semigroup (theorem 1.3).

Theorem 2.4. Let $S = (d, G_{0}, G_{1}, \cdots, G_{d-1}, C_{1}^{*}, \cdots, C_{d-1}^{*}, \gamma_{0}, \gamma_{1}, \cdots, \gamma_{d-1}, u_{id})$ be a simple I-regular semigroup and let X be a group. Let $\{z_{id} : i \in I, i \leq 0\}$ be a sequence of elements of X and for each $r \in \{0, 1, \cdots, d-1\}$ let $\{s_{id,r} : i \in I, i \leq 0\}$ be a sequence of homomorphisms of G_{r} into X such that
For each \((g_r, a, b) \in (k_0, i, i)S(k_0, i, i)\), define \((g_r, a, b) \sim = z_{id}^{-1}(a-i)\) \((t_{id}^{-1}(a-i) \in \sigma_{id}(t_{id}, b-i))g_{id}(t_{id}, b-i)\)) \(fr, id z_{id}^2\), and let \(f_{id, (i+1)d} = f_{id} id Cz_{id}\)

For each \((g_r, a, b) \in (k_0, i, i)S(k_0, i, i)\), define \((g_r, a, b) \sim = z_{id}^{-1}(a-i)\) \((t_{id}^{-1}(a-i) \in \sigma_{id}(t_{id}, b-i))g_{id}(t_{id}, b-i)\)) \(f_{id} id z_{id}^2\). Then, \(\phi\) defines a homomorphism of \(S\) into \(X\) and conversely every such homomorphism is defined in this fashion.

Proof. We utilize theorem 2.1, (2.14), and the ‘inverse limit’ process (see [10]).

3. The congruences

In this section, we show that each congruence \(\rho\) on a simple I-regular semigroup \(S\) is a group congruence (\(S/\rho\) is a group), an idempotent separating congruence (each \(\rho\)-class contains at most one idempotent) or that \(S/\rho\) is a simple I-regular semigroup with fewer \(\mathcal{D}\)-classes than \(S\). We determine the idempotent separating congruences in terms of certain normal subgroups of the structure groups of \(S\). The group congruences of \(S\) are in a 1-1 correspondence with the normal subgroups of the maximal group homomorphic image of \(S\).

Theorem 3.1. Let \(S\) be a simple I-regular semigroup. Let \(\rho\) be a congruence on \(S\). Then \(\rho\) is a group congruence, \(\rho\) is an idempotent separating congruence, or \(S/\rho\) is a simple I-regular semigroup with \(t\) \(\mathcal{D}\)-classes where \(t < d\), the number of \(\mathcal{D}\)-classes of \(S\).

Proof. Let \(\{(f_i, n, n) : 0 \leq i \leq d-1, n \in I\}\) denote the set of idempotents of \(S\). Each \(D_i = \{(g_i, m, n) : g_i \in G_i, m, n \in I\}\) is an \(I\)-bisimple semigroup for \(0 \leq i \leq d-1\). Thus, by [6, theorem 4.2], \(\rho|D_i\) is a group congruence or an idempotent separating congruence for \(0 \leq i \leq d-1\).

Suppose that \(\rho\) is not an idempotent separating congruence. First suppose that \(\rho|D_i\) is a group congruence for some \(i\). Hence, \((f_i, 0, 0)\rho = (f_i, k, k)\rho\) for all \(k \in I\). Let \((f_j, n, n) \in E_{D_j}\) and \((f_k, p, p) \in E_{D_k}\) and suppose that \((f_j, n, n) < (f_k, p, p)\). Thus, \((f_i, n+1, n+1) < (f_j, n, n) < (f_k, p, p)\). Hence, \((f_i, n, n)\rho = (f_k, p, p)\rho\) and \(\rho\) is a group congruence. Next, suppose that \(\rho|D_i\) is an idempotent separating congruence for each \(0 \leq i \leq d-1\). Then, there exist \((f_i, n, n), (f_r, q, q)\) \(\in E_\mathcal{D}\) such that \((f_i, n, n)\rho = (f_k, q, q)\rho\). Thus, \(D_i\rho\) and \(D_k\rho\) lie in the same \(\mathcal{D}\)-class of \(S/\rho\). Hence, \(S/\rho\) is a simple I-regular semigroup with \(t\) \(\mathcal{D}\)-classes with \(t < d\).

Remark 3.1. In the case \(d = 1\), we obtain [6, theorem 4.2].
REMARK 3.2. We may replace ‘simple I-regular’ by ‘simple \(\omega\)-regular’ in theorem 3.1. The proof is analogous.

We next determine the idempotent separating congruences of a simple I-regular semigroup.

Let \(G_0, G_1, \ldots, G_{d-1}\) be a collection of disjoint groups and let \(\gamma_i\) be a homomorphism of \(G_i\) into \(G_{i+1}\) for \(0 \leq i \leq d-2\) and let \(\gamma_{d-1}\) be a homomorphism of \(G_{d-1}\) into \(G_0\). Let \(V_i\) be a normal subgroup of \(G_i\) for \(0 \leq i \leq d-1\) such that \(V_i \gamma_i \subseteq V_{i+1}\) for \(c \leq i \leq d-2\) and \(V_{d-1} \gamma_{d-1} \subseteq V_0\). Then, \((V_0, V_1, \ldots, V_{d-1})\) will be called a \(\gamma_0-\gamma_1-\cdots-\gamma_{d-1}\) invariant \(d\)-tuple of \((G_0, G_1, \ldots, G_{d-1})\). Let \((V_0, V_1, \ldots, V_{d-1})\) and \((U_0, U_1, \ldots, U_{d-1})\) be \(\gamma_0-\gamma_1-\cdots-\gamma_{d-1}\) invariant \(d\)-tuples of \((G_0, G_1, \ldots, G_{d-1})\). Then, we say \((V_0, V_1, \ldots, V_{d-1}) \subseteq (U_0, U_1, \ldots, U_{d-1})\) if and only if \(V_i \subseteq U_i\) for \(0 \leq i \leq d-1\).

In the proof of the following theorem, we will utilize a theorem of Preston [6, theorem 4.3]. We also utilize the notation of this theorem. We will sketch the following proof where it parallels the proof of [6, theorem 4.4].

THEOREM 3.2. Let \(S = (d, G_0, G_1, \ldots, G_{d-1}, C^*, \gamma_0, \gamma_1, \ldots, \gamma_{d-1},\ m_1d)\) be a simple I-regular semigroup. There exists a 1-1 correspondence between the idempotent separating congruences on \(S\) and the \(\gamma_0-\gamma_1-\cdots-\gamma_{d-1}\) invariant \(d\)-tuples of \((G_0, G_1, \ldots, G_{d-1})\). If \(\rho(V_0, V_1, \ldots, V_{d-1})\) is the idempotent separating congruence corresponding to the \(\gamma_0-\gamma_1-\cdots-\gamma_{d-1}\) invariant \(d\)-tuple \((V_0, V_1, \ldots, V_{d-1})\), \((g_r, a, b)\rho(V_0, V_1, \ldots, V_{d-1}) (h_s, c, d)\) if and only if \(r = s, a = c, b = d\) and \(V_r g_r = V_r h_s\). If \((V_0, V_1, \ldots, V_{d-1})\) and \((U_0, U_1, \ldots, U_{d-1})\) are two \(\gamma_0-\gamma_1-\cdots-\gamma_{d-1}\) invariant \(d\)-tuples \((V_0, V_1, \ldots, V_{d-1}) \subseteq (U_0, U_1, \ldots, U_{d-1})\) if and only if \(\rho(V_0, V_1, \ldots, V_{d-1}) \subseteq \rho(U_0, U_1, \ldots, U_{d-1})\).

PROOF. Let \((V_0, V_1, \ldots, V_{d-1})\) be a \(\gamma_0-\gamma_1-\cdots-\gamma_{d-1}\) invariant \(d\)-tuple of \((G_0, G_1, \ldots, G_{d-1})\). Let \(N_{(\nu_r, a, a)} = \{v_r, a, a : v_r \in V_r\}\) and let \(N = U(N_{(\nu_r, a, a)}) : 0 \leq r \leq d-1, a \in I\). By a routine calculation, \(N_{(\nu_r, a, a)}\) is a subgroup of \(S\) isomorphic to \(V_r\). By [6, theorem 4.3] \(\rho_N\) is an idempotent separating congruences of \(S\). We denote \(\rho_N\) by \(\rho(V_0, V_1, \ldots, V_{d-1})\).

Let \(\rho\) be an idempotent separating congruence of \(S\). Then, by [6, theorem 4.3] \(\rho = \rho_N\) where \(N\) is given in the statement of [6, theorem 4.3]. \(N_{(\nu_r, a, a)} = \{v_r, a, a : v_r \in V_r\}\), where \(V_r\) is an invariant subgroup of \(G_r\). Since \((e_{r+1}, 0, 0)(e_r, 0, 0) = (e_{r+1}, 0, 0), (e_{r+1}, 0, 0)(v_r, 0, 0) \in N_{(e_{r+1}, 0, 0)}\). Thus \(V_r \gamma_r \subseteq V_{r+1}\) for \(0 \leq r \leq d-2\). Since \((e_0, 0, 1)(e_{d-1}, 0, 0)(e_0, 1, 0) = (e_0, 0, 0), (e_0, 0, 1)(v_{d-1}, 0, 0)(e_0, 1, 0) = N_{(e_0, 0, 0)}\). Thus, \(V_d-1 \gamma_{d-1} \subseteq V_0\). Hence, \(\rho = \rho(V_0, V_1, \ldots, V_{d-1})\) and we have the desired correspondence.

REMARK. In the case \(d = 1\), we obtain [6, theorem 4.4].
REMARK. We may replace ‘simple I-regular semigroup’ by ‘simple regular ω-semigroup’ in theorem 3.2. The proof is analogous.

REFERENCES

A. H. Clifford and G. B. Preston

W. D. Munn,

R. J. Warne

R. J. Warne
[8] Errata to [7].

R. J. Warne

R. J. Warne

(Oblatum 24-XII-68) West-Virginian University
Dept. of Mathematics
Morgantown, W.-Virginia
U.S.A.