COMPOSITIO MATHEMATICA

B. S. TAVATHIA

Certain theorems on unilateral and bilateral operational calculus

Compositio Mathematica, tome 22, nº 1 (1970), p. 58-66

http://www.numdam.org/item?id=CM_1970__22_1_58_0

© Foundation Compositio Mathematica, 1970, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http://http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Certain theorems on unilateral and bilateral operational calculus

by

B. S. Tavathia ¹

1. Introduction

A generalization of the Laplace-transform is given [5] as

(1.1)
$$F(p) = p \int_0^\infty e^{-\frac{1}{2}pt} W_{k+\frac{1}{2}, m}(pt)(pt)^{-k-\frac{1}{2}} f(t) dt,$$

where $W_{k,m}(t)$ is the confluent hypergeometric function. F(p) is called the Meijer-transform of f(t) and is symbolically denoted by

(1.2)
$$f(t) \xrightarrow{k+\frac{1}{2}} F(p) \quad \text{or} \quad F(p) \xleftarrow{k+\frac{1}{2}} f(t).$$

For k = m, it reduces to the Laplace-transform.

In two variables f(t) and F(p) will be replaced by $f(t_1, t_2)$ and $F(p_1, p_2)$, where $F(p_1, p_2)$ is defined by the double integral

$$\begin{split} F(p_1,p_2) &= p_1 p_2 \int_0^\infty \! \int_0^\infty e^{-\frac{1}{2} p_1 t_1 - \frac{1}{2} p_2 t_2} W_{k_1 + \frac{1}{2}, m_1}(p_1 t_1) W_{k_2 + \frac{1}{2}, m_2}(p_2 t_2) \\ & \times (p_1 t_1)^{-k_1 - \frac{1}{2}} (p_2 t_2)^{-k_2 - \frac{1}{2}} f(t_1, t_2) dt_1 dt_2, \end{split}$$

and this relation will be symbolically denoted by

(1.4)
$$f(t_1, t_2) \xrightarrow{\frac{k_i + \frac{1}{2}}{m_i}} F(p_1, p_2), \qquad i = 1, 2.$$

Further, if the range of integration in (1.3) is $-\infty$ to ∞ in place of 0 to ∞ , it will be denoted symbolically as

(1.5)
$$f(t_1, t_2) \xrightarrow{k_i + \frac{1}{2}} F(p_1, p_2), \qquad i = 1, 2.$$

For $k_i = m_i$, i = 1, 2, (1.4) and (1.5) reduce to the Laplace-transform of two variables where the range of integration is 0 to ∞ and $-\infty$ to ∞ respectively. When the range of integration is 0 to ∞ , we call either transform (Laplace or Meijer) unilateral two dimensional transform and when the range of integration is

¹ This research was supported by N.R.C. Grant.

 $-\infty$ to ∞ , it is called bilateral two dimensional transform. The right hand sides of (1.1) and (1.3) are defined by $L_{II}\{f\}$ and $L_{II}^{2}\{f\}$. The integrals are taken in the sense of Lebesgue. The domain of convergence is the domain of absolute convergence as explained in Die Dimensionale Laplace-transformation by Doetsch and Voelker [6] and also in the paper of Gupta [3].

In this paper, we have proved certain theorems in unilateral and bilateral two dimensional Meijer-transform and a self-reciprocal property. Examples are given in one variable as an application.

2

THEOREM 1. (a). Let

(i)
$$t_1^{n_1}t_2^{n_2}f(t_1, t_2) \xrightarrow{k_i+\frac{1}{2}} F(p_1, p_2),$$

where $L_{II}^{2}\{t_{1}^{n_{1}}t_{2}^{n_{2}}f(t_{1},t_{2})\}$ is absolutely convergent in a pair of associated half-planes $H_{p_{1}}$, $H_{p_{2}}$ which may be defined by $\operatorname{Re}(p_{i}) > 0$, (i = 1, 2).

$$(ii) \quad h_i(\lambda_i,\,t_i) \xrightarrow[m_i]{k_i+\frac{1}{2}} e^{-\frac{1}{2}\lambda_i\psi_i(p_i)}\,W_{k_i+\frac{1}{2},\,m_i}[\lambda_i\psi_i(p_i)][\lambda_i\psi_i(p_i)]^{-k_i-\frac{1}{2}},$$

where $\psi_i(p_i) = \phi_i^{-1}(\log p_i)$, $\lambda_i > 0$ and $L_{II}(h_i)$ is absolutely convergent in the half-planes D_{p_i} (say) defined by $\text{Re}(p_i) > 0$ and

$$(iii) e^{-\frac{1}{2}\lambda_i\psi_i(p_i)}W_{k,+\frac{1}{2},m_i}[\lambda_i\psi_i(p_i)][\lambda_i\psi_i(p_i)]^{-k_i-\frac{1}{2}}$$

and $h_i(\lambda_i, t_i)$ are bounded and integrable in $(0, \infty)$ in p_i and t_i respectively and $t_1^{n_1-1} t_2^{n_2-1} f(t_1, t_2)$ is absolutely integrable in t_1 , t_2 in $(0, \infty)$.

(iv) $\phi_i(t_i)$ is monotonic, varying from $-\infty$ to ∞ at t_i varies from $-\infty$ to ∞ .

(v) $(F(t_1, t_2))/t_1t_2$ is absolutely integrable in t_1, t_2 in $(0, \infty)$. Then (2.1)

$$\begin{split} G(t_1,\,t_2) &\equiv f\{e^{\phi_1(t_1)},\,e^{\phi_2(t_2)}\}e^{n_1\phi_1(t_1)+n_2\phi_2(t_2)}\phi_1'(t_1)\phi_2'(t_2) \xrightarrow[m_i]{k_i+\frac{1}{2}} T(p_1,\,p_2) \\ &\equiv p_1p_2\int_0^\infty \int_0^\infty h_1(p_1,\,t_1)h_2(p_2,\,t_2) \,\frac{F(t_1,\,t_2)}{t_1t_2} \,dt_1dt_2, \end{split}$$

provided that $L^2_H\{G\}$ is absolutely convergent in a pair of associated convergent strips S_{p_1} and S_{p_2} which are common regions of H_{p_1} , D_{p_1} and H_{p_2} , D_{p_2} respectively.

PROOF. Let us consider the image-integral

$$\begin{split} I &\equiv p_1 p_2 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{1}{2} p_1 t_1 - \frac{1}{2} p_2 t_2} W_{k_1 + \frac{1}{2}, m_1}(p_1 t_1) W_{k_2 + \frac{1}{2}, m_2}(p_2 t_2) \\ & \times (p_1 t_1)^{-k_1 - \frac{1}{2}} (p_2 t_2)^{-k_2 - \frac{1}{2}} f\{e^{\phi_1(t_1)}, e^{\phi_2(t_2)}\} e^{n_1 \phi_1(t_1) + n_2 \phi_2(t_2)} \\ & \times \phi_1'(t_1) \phi_2'(t_2) dt_1 dt_2. \end{split}$$

Suppose it to be absolutely convergent in a pair of associated convergence domains.

Let us put $y_i = e^{\phi_i(t_i)}$. Then, by virtue of (iv), y_i varies from 0 to ∞ and $t_i = \phi_i^{-1}(\log y_i)$.

But $\phi_i^{-1}(\log y_i) = \psi_i(y_i)$, $\therefore t_i = \psi_i(y_i)$, i = 1, 2. Therefore, we have

$$\begin{split} I &\equiv p_1 p_2 \int_0^\infty \int_0^\infty e^{-\frac{1}{2} p_1 \psi_1(y_1) - \frac{1}{2} p_2 \psi_2(y_2)} W_{k_1 + \frac{1}{2}, m_1} [p_1 \psi_1(y_1)] \\ &\times W_{k_2 + \frac{1}{2}, m_2} [p_2 \psi_2(y_2)] [p_1 \psi_1(y_1)]^{-k_1 - \frac{1}{2}} [p_2 \psi_2(y_2)]^{-k_2 - \frac{1}{2}} \\ &\times f(y_1, y_2) y_1^{n_1 - 1} y_2^{n_2 - 1} dy_1 dy_2, \end{split}$$

which remains absolutely convergent for Re $(p_1) > 0$ and Re $(p_2) > 0$.

Now using (ii) in (2.2), we have

$$\begin{split} I &\equiv p_1 p_2 \int_0^\infty \int_0^\infty f(y_1, y_2) y_1^{n_1 - 1} y_2^{n_2 - 1} \left[y_1 y_2 \int_0^\infty \int_0^\infty e^{-\frac{1}{2} y_1 x_1 - \frac{1}{2} y_2 x_2} \right] \\ &(2.3) \qquad \times W_{k_1 + \frac{1}{2}, m_1}(y_1 x_1) W_{k_2 + \frac{1}{2}, m_2}(y_2 x_2) (y_1 x_1)^{-k_1 - \frac{1}{2}} (y_2 x_2)^{-k_2 - \frac{1}{2}} \\ &\times h_1(p_1, x_1) h_2(p_2, x_2) dx_1 dx_2 dx_2 dy_1 dy_2. \end{split}$$

On changing the orders of integration in (2.3), which is permissible as y- and x-integrals are absolutely and uniformly convergent due to assumptions in (i) and (ii), we get

$$\begin{split} I &\equiv p_1 p_2 \int_0^\infty \int_0^\infty h_1(p_1,\,x_1) h_2(p_2,\,x_2) \left[\int_0^\infty \int_0^\infty e^{-\frac{1}{2}y_1x_1 - \frac{1}{2}y_2x_2} \right. \\ & \times W_{k_1 + \frac{1}{2},\,m_1}(y_1x_1) \, W_{k_2 + \frac{1}{2},\,m_2}(y_2x_2) (y_1x_1)^{-k_1 - \frac{1}{2}} (y_2x_2)^{-k_2 - \frac{1}{2}} \\ & \times y_1^{n_1} y_2^{n_2} f(y_1,\,y_2) \, dy_1 dy_2 \right] \, dx_1 dx_2, \end{split}$$

from which the result follows by using (i).

THEOREM 1. (b). Let

(i)
$$f(t_1, t_2) \xrightarrow{k_i + \frac{1}{2}} F(p_1, p_2),$$

where $L_{II}^{2}\{f\}$ is absolutely convergent in a pair of associated half-planes $H_{p_{1}}$, $H_{p_{2}}$ which may be defined by Re $(p_{i}) > 0$, i = 1, 2.

(ii)
$$h_i(\lambda_i, t_i) \xrightarrow{k_i + \frac{1}{2}} e^{-\frac{1}{2}\lambda_i \psi_i(p_i)} W_{k_i + \frac{1}{2}, m_i} [\lambda_i \psi_i(p_i)] [\lambda_i \psi_i(p_i)]^{-k_i - \frac{1}{2}},$$
 where

$$\psi_i(p_i) = \phi_i^{-1} \left\{ \frac{\log p_i}{\log a_i} \right\}, \ \lambda_i > 0$$

and $L_{\Pi}\{h_i\}$ is absolutely convergent in the half-planes D_{p_i} (say) defined by Re $(p_i) > 0$ and

(iii)
$$e^{-\frac{1}{2}\lambda_i\psi_i(p_i)}W_{k_i+\frac{1}{2},m_i}[\lambda_i\psi_i(p_i)][\lambda_i\psi_i(p_i)]^{-k_i-\frac{1}{2}}$$

and $h_i(\lambda_i, t_i)$ are bounded and integrable in $(0, \infty)$ in p_i and t_i respectively and $1/(t_1t_2)f(t_1, t_2)$ is absolutely integrable in t_1 , t_2 in $(0, \infty)$.

(iv) $\phi_i(t_i)$ is monotonic and $a_i^{\phi_i(t_i)}$ tends to zero as t_i tends to $-\infty$ and to ∞ as t_i tends to ∞ .

(v) $(F(t_1, t_2))/t_1t_2$ is absolutely integrable in t_1, t_2 in $(0, \infty)$. Then

(2.4)

$$G(t_1, t_2) \equiv f[a_1^{\phi_1(t_1)}, a_2^{\phi_2(t_2)}] \phi_1'(t_1) \phi_2'(t_2) \xrightarrow{k_i + \frac{1}{2}}$$

$$T(p_1, p_2) \equiv \frac{p_1 p_2}{\log(a_1) \log(a_2)} \int_0^\infty \int_0^\infty h_1(p_1, t_1) h_2(p_2, t_2) \frac{F(t_1, t_2)}{t_1 t_2} dt_1 dt_2,$$

$$a_i > 0,$$

provided that $L_{II}^2\{G\}$ is absolutely convergent in a pair of associated convergence strips S_{p_1} , S_{p_2} which are common region of H_{p_1} , D_{p_1} and H_{p_2} , D_{p_2} respectively.

The proof is on the same lines as in Theorem 1(a).

If we substitute $k_i = m_i$, i = 1, 2 and $a_1 = a_2 = a$ in the above theorem, we get Gupta's theorem [3, p. 197].

We now give a general theorem which can be used both in unilateral and bilateral transforms.

THEOREM 2. Let

(i)
$$t_1^{1/\mu_1}t_2^{1/\mu_2}f(t_1, t_2) \xrightarrow[m_t]{k_t + \frac{1}{2}} F(p_1, p_2),$$

where $L_H^2\{t_1^{1/\mu_1}t_2^{1/\mu_2}f(t_1, t_2)\}$ is absolutely convergent in a pair of associated half-planes H_{p_1} , H_{p_2} which may be defined by $Re(p_i) > 0$, i = 1, 2.

$$(ii) \quad h_i(\lambda_i,\,t_i) \xrightarrow[m_i]{k_i+\frac{1}{2}} e^{-\frac{1}{2}\lambda_i\psi_i(p_i)}W_{k_i+\frac{1}{2},\,m_i}[\lambda_i\psi_i(p_i)][\lambda_i\psi_i(p_i)]^{-k_i-\frac{1}{2}},$$

where $\psi_i(p_i) = \phi_i^{-1}(p_i^{1/\mu_i})$, $\lambda_i > 0$ and $L_{II}\{h_i\}$ is absolutely convergent in the half-planes D_{p_i} , i = 1, 2 (say) defined by $\operatorname{Re}(p_i) > 0$ and

(iii)
$$e^{-\frac{1}{2}\lambda_i\psi_i(p_i)}W_{k_i+\frac{1}{2},m_i}[\lambda_i\psi_i(p_i)][\lambda_i\psi_i(p_i)]^{-k_i-\frac{1}{2}}$$

is bounded and integrable in p_i in $(0, \infty)$ and $t_1^{(1/\mu_1)-1}t_2^{(1/\mu_2)-1}f(t_1, t_2)$ is absolutely integrable in t_1 , t_2 in $(0, \infty)$.

(iv) $\phi_i(t_i)$ is monotonic in t_i and varies from 0 to ∞ as t_i varies from $-\infty$ to ∞ or from 0 to ∞ as the case may be. Then

$$G(t_{1}, t_{2}) \equiv f[\phi_{1}^{\mu_{1}}(t_{1}), \phi_{2}^{\mu_{2}}(t_{2})] \phi_{1}'(t_{1}) \phi_{2}'(t_{2}) \text{ or }$$

$$\downarrow t_{1} + \frac{1}{2} \\ m_{t}$$

$$T(t_{1}, t_{2}) \equiv \frac{p_{1}p_{2}}{\mu_{1}\mu_{2}} \int_{0}^{\infty} \int_{0}^{\infty} h_{1}(p_{1}, t_{1})h_{2}(p_{2}, t_{2}) \frac{F(t_{1}, t_{2})}{t_{1}t_{2}} dt_{1} dt_{2},$$

$$\mu_{1} > 0, \ \mu_{2} > 0,$$

provided that $L_H^2\{G\}$ is absolutely convergent in a pair of associated strips S_{p_1} , S_{p_2} which are common regions of H_{p_1} , D_{p_1} and H_{p_2} , D_{p_2} respectively and the integral on the right hand side is absolutely convergent in t_1 , t_2 in $(0, \infty)$.

A self-reciprocal property:

Let us consider the above theorem in one variable. We also take the image integral in which t varies from 0 to ∞ .

Let
$$y = \phi^{\mu}(t) = 1/t$$
, so that $t = \phi^{-1}(y^{1/\mu}) = \psi(y)$.

$$\therefore t = \frac{1}{y} = \psi(y),$$

here $t \to 0$, $y \to \infty$ and when $t \to \infty$, $y \to 0$.

Now

$$f[\phi^{\mu}(t)]\phi'(t) = f\left(\frac{1}{t}\right)\left(-\frac{1}{\mu}t^{-1-(1/\mu)}\right) \xrightarrow{\frac{k+\frac{1}{2}}{m}} \frac{p}{\mu}\int_{0}^{\infty}h(p,t)\frac{F(t)}{t}\,dt$$

 \mathbf{or}

$$t^{-(1/\mu)-1}f\left(\frac{1}{t}\right)\xrightarrow[m]{k+\frac{1}{2}}-p\int_{0}^{\infty}h(p,\,t)\,\frac{F(t)}{t}\,dt.$$

But

$$t^{1/\mu}f(t) \xrightarrow{k+\frac{1}{2}} F(p).$$

So if we take

$$t^{1/\mu}f(t) = t^{-(1/\mu)-1}f\left(\frac{1}{t}\right)$$
 i.e. $f\left(\frac{1}{t}\right) = t^{(2/\mu)+1}f(t)$,

we get

(2.6)
$$\frac{F(p)}{p} = \int_0^\infty h(p, t) \, \frac{F(t)}{t} \, dt,^2$$

i.e. F(p)/p is self-reciprocal under the kernel h(p, t), provided F(p) and $\int_0^\infty h(p, t) (F(t)/t) dt$ are continuous functions of p in $(0, \infty)$.

Now

$$h(\lambda, t) \xrightarrow{k+\frac{1}{2}} e^{-\frac{1}{2}(\lambda/p)} W_{k+\frac{1}{2}, m} \left(\frac{\lambda}{p}\right) \left(\frac{\lambda}{p}\right)^{-k-\frac{1}{2}}, \text{ where } \psi(p) = \frac{1}{p}.$$

$$\therefore h(\lambda, t) = \left\{ (\lambda t)^{m-k} \frac{\Gamma(-2m)\Gamma(1-3k+m)}{\Gamma(-m-k)\Gamma(1-2k)\Gamma(1-2k+2m)} \right.$$

$${}_{2}F_{3} \begin{bmatrix} 1+m-3k, 1+m+k; \\ 1+2m, 1-2k, 1+2m-2k; \end{bmatrix}$$

$$+(\lambda t)^{-m-k} \frac{\Gamma(2m)\Gamma(1-3k-m)}{\Gamma(m-k)\Gamma(1-2k)\Gamma(1-2k-2m)}$$

$${}_{2}F_{3} \begin{bmatrix} 1-m-3k, 1-m+k; \\ 1-2m, 1-2k, 1-2m-2k; \end{bmatrix}$$

provided 2m is not an integer and

$$\operatorname{Re}(1-3k+m) > 0$$
, $\operatorname{Re}(1-3k-m) > 0$.

Application of the above:

Let $t^{1/\mu}f(t)=t^{-2k}(1+t)^{4k-1}$, which has the property that

$$t^{1/\mu}f(t) = t^{-(1/\mu)-1}f\left(rac{1}{t}
ight) \cdot$$

But

$$t^{1/\mu}f(t) \xrightarrow{k+\frac{1}{2}} F(p).$$

Therefore, we have [2, p. 237]

$$\frac{F(p)}{p} = \frac{\Gamma(1-3k+m)\Gamma(1-3k-m)}{\Gamma(1-4k)} \, p^{-k-\frac{1}{2}} e^{p/2} W_{3k-\frac{1}{2},m}(p),$$

i.e. $p^{-k-\frac{1}{2}}e^{p/2}W_{3k-\frac{1}{2},m}(p)$ is self-reciprocal under the kernel $h(\lambda,t)$ given by (2.7).

If we substitute k=m, we see that $p^{-m-\frac{1}{2}}e^{p/2}W_{3m-\frac{1}{2},m}(p)$ is self-reciprocal under the kernel $J_0(2\sqrt{\lambda t})$ which is a known result [2, p. 84].

² The negative sign is omitted in view of the fact that when $t \to 0$, $y \to \infty$ and when $t \to \infty$, $y \to 0$.

3

Example on Theorem 2

We take the range of integration from 0 to ∞ and consider the case in one variable only.

Let $y = \phi^{\mu}(t) = 1/t$ so that $\psi(y) = 1/y$.

Further let $t^{1/\mu}f(t) = t^{4m-\frac{3}{2}}e^{-(a/t)}$, then taking $k = m - \frac{1}{2}$, we have [1, p. 217]

$$F(p) = rac{2}{\sqrt{\pi}} \, a^{2m} p^{rac{3}{2} - 2m} [K_{2m}(\sqrt{ap})]^2.$$

From (2.7), we have

$$egin{aligned} h(\lambda t) &= \left\{ (\lambda t)^{rac{1}{2}} rac{\Gamma(-2m)\Gamma(rac{5}{2}-2m)}{\Gamma(rac{1}{2}-2m)\Gamma(2-2m)} \,_2F_3 \left[rac{5}{2}-2m, rac{1}{2}+2m; \\ 2, \, 1+2m, \, 2-2m; \end{array} - \lambda t
ight] \ &+ (\lambda t)^{rac{1}{2}-2m} rac{\Gamma(2m)\Gamma(rac{5}{2}-4m)}{\sqrt{\pi}\Gamma(2-2m)\Gamma(2-4m)} \ &_2F_3 \left[rac{1}{2}, rac{5}{2}-4m; \\ 1-2m, \, 2-2m, \, 2-4m; \end{array} - \lambda t
ight]
brace. \end{aligned}$$

Then, according to Theorem 2, we have

$$\begin{split} t^{\frac{1}{2}-4m}e^{-at} & \xrightarrow{m} \frac{2a^{2m}}{\sqrt{\pi}} p \int_{0}^{\infty} \left\{ (pt)^{\frac{1}{2}} \frac{\Gamma(-2m)\Gamma(\frac{5}{2}-2m)}{\Gamma(\frac{1}{2}-2m)\Gamma(2-2m)} \right. \\ & \left. {}_{2}F_{3} \begin{bmatrix} \frac{5}{2}-2m, \frac{1}{2}+2m; \\ 2, 1+2m, 2-2m; \end{bmatrix} - pt \right] \\ & \left. + (pt)^{\frac{1}{2}-2m} \frac{\Gamma(2m)\Gamma(\frac{5}{2}-4m)}{\sqrt{\pi}\Gamma(2-2m)\Gamma(2-4m)} \right. \\ & \left. {}_{2}F_{3} \begin{bmatrix} \frac{1}{2}, \frac{5}{2}-4m; \\ 1-2m, 2-2m, 2-4m; \end{bmatrix} \right\} [K_{2m}(\sqrt{at})]^{2} t^{\frac{1}{2}-2m} dt, \\ & \operatorname{Re}\left(p\right) > 0, \operatorname{Re}\left(a\right) > 0, \operatorname{Re}\left(m\right) < \frac{1}{3}. \end{split}$$

Evaluating the left hand side [4, p. 387], we get after arranging properly

$$\int_{0}^{\infty} \left\{ (pt)^{\frac{1}{2}} \frac{\Gamma(-2m)\Gamma(\frac{5}{2}-2m)}{\Gamma(\frac{1}{2}-2m)\Gamma(2-2m)} \, {}_{2}F_{3} \left[\begin{matrix} \frac{5}{2}-2m, \, \frac{1}{2}+2m; \\ 2, \, 1+2m, \, 2-2m; \end{matrix} - pt \right] \right. \\ \left. + (pt)^{\frac{1}{2}-2m} \frac{\Gamma(2m)\Gamma(\frac{5}{2}-4m)}{\sqrt{\pi}\Gamma(2-2m)\Gamma(2-4m)} \right. \\ \left. \left. \left. \left(3.1 \right) \, {}_{2}F_{3} \left[\begin{matrix} \frac{1}{2}, \, \frac{5}{2}-4m; \\ 1-2m, \, 2-2m, \, 2-4m; \end{matrix} - pt \right] \right\} \left[K_{2m}(\sqrt{at}) \right]^{2} t^{\frac{1}{2}-2m} dt$$

 $(3.1) = \frac{\sqrt{\pi \Gamma(2-4m)\Gamma(2-6m)}}{\sqrt{\pi \Gamma(2-4m)\Gamma(2-6m)}}$

 $=\frac{\sqrt{\pi \Gamma(2-4m)\Gamma(2-6m)}}{2a^{2m}\Gamma(\frac{5}{2}-6m)}\,p^{4m-\frac{3}{2}}\,{}_2F_1\bigg[\frac{2-6m,\,2-4m;}{\frac{5}{2}-6m;}-\frac{a}{p}\bigg],$

Re(p) > 0, Re(a) > 0, $Re(m) < \frac{1}{3}$.

If we substitute $m = \frac{1}{4}$ in (3.1), we get a known result [1, p. 182].

4

THEOREM 3. Let

[8]

(i)
$$f(t_1, t_2) \xrightarrow{k_i + \frac{1}{2}} F(p_1, p_2), \qquad i = 1, 2$$

where $L_{II}^{2}\{f\}$ is absolutely convergent in a pair of associated domains $S_{p_{\bullet}}$ and $S_{p_{\bullet}}$.

(ii)
$$h_i(\lambda_i, t_i) \xrightarrow{k_i + \frac{1}{2}} \phi_i(p_i) e^{-\frac{1}{2}\lambda_i \psi_i(p_i)} W_{k_i + \frac{1}{2}, m_i} [\lambda_i \psi_i(p_i)] \times [\lambda_i \psi_i(p_i)]^{-k_i - \frac{1}{2}}, \quad i = 1, 2,$$

where λ_i denotes a real parameter and $L_{\Pi}\{h_i\}$ is absolutely convergent in t_i in the domain D_{p_i} (say) and $\psi_i(p_i) \in S_{p_i}$ and $\phi_i(p_i) \in S_{p_i}$. (iii) $f(t_1, t_2)$ is absolutely convergent in $(0, \infty)$ and $h_1(\lambda_1, t_1)$ and $h_2(\lambda_2, t_2)$ are bounded and integrable in λ_1, λ_2 and t_1, t_2 in $(0, \infty)$.

Then

(4.1)
$$G(t_1, t_2) \equiv \int_0^\infty \int_0^\infty h_1(\lambda_1, t_1) h_2(\lambda_2, t_{\lambda}) f(\lambda_1, \lambda_2) d\lambda_1 d\lambda_2 \frac{k_{i+\frac{1}{2}}}{m_i} \frac{\phi_1(p_1) \phi_2(p_2)}{\psi_1(p_1) \psi_2(p_2)} F[\psi_1(p_1), \psi_2(p_2)],$$

provided that $L_{II}^2\{G\}$ is absolutely convergent in a pair of associated domains Ω_{p_1} and Ω_{p_2} where Ω_{p_1} is the common part (suppose it exists) of S_{p_1} and D_{p_1} in the complex p_1 plane and Ω_{p_2} is a similar common part of S_{p_2} and D_{p_3} in the complex p_2 plane.

PROOF: We replace p_1 and p_2 in (i) by $\psi_1(p_1)$ and $\psi_2(p_2)$ and rest of the proof is simple.

REFERENCES

- A. Erdélyi and others
- [1] Tables of Integral Transforms, Vol. 1 (1954) McGraw Hill.
- A. Erdélyi and others
- [2] Tables of Integral Transforms, Vol. 2 (1954) McGraw Hill.
- R. K. GUPTA
- [3] Certain transformations on unilateral and bilateral operational calculus, Bull. Calcutta Math. Soc. (1959), p. 191—198.

- J. P. JAISWAL
- [4] On Meijer Transform, Mathematische Zeitschrift, Band 55, Heft 3 (1952), p. 385—398.
- C. S. MEIJER
- [5] Eine neve Erweiterung der Laplace Transformation, Proc. Ned. Acad. v. Wetensch., Amsterdam 44, (1941a), p. 727—737.
- D. VOELKER and D. DOETSCH
- [6] Die Zweidiminsionale Laplace-transformation, Verlag Birkhäuser Basel, (1950).
- B. VAN DER POL and H. BREMMER
- [7] Operational calculus based on two sided Laplace Integral, Cambridge University Press, 1955.

(Oblatum 3–XII–68) (Revised version 25–7–69) Department of Mathematics B.I.T.S. Pilami Rajasthia, India