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1. Introduction

In [4], Bers proved that the Poincaré series in one variable
defines a surjective map between certain function spaces in the
unit disk (or in any bounded homogeneous domain in CI).
Ahlfors [1] indicated a short proof of Bers’ theorem, in the special
case of quadratic differentials, relying on an integral reproducing
formula. The author [7] made Ahlfors’ argument more explicit
and extended it to forms of higher weight. Using similar methods,
Bell [3] proved Bers’ theorem for any product of classical domains.
A closer examination of [7] revealed two facts: First, the

crucial integral formula can be easily verified with the help of
Godement’s theorem [8] on the boundedness of Poincaré series.
Second, the reasoning in [7] conceals a very simple proof of
Godement’s theorem. That proof is offered here in a quite general
setting: the argument holds in any bounded homogeneous domain
B C Cn whose Bergman kernel function satisfies a certain uniform
growth condition (2.1).

After devoting § 2 to some preliminary matters, patterned on
Selberg [10], we offer our proof of Godement’s theorem in § 3.
The integral reproducing formula is obtained in § 5. That formula
and a projection operator introduced in § 4 enable us to prove in
§ 6 that certain spaces of holomorphic automorphic forms are
conjugate. Finally, in § 7 we prove an extension of the theorems
of Bers and Bell on the surjectivity of the Poincaré series map.

It would be interesting to know whether there are bounded
homogeneous domains B C Cn in which (2.1) fails. It holds in

homogeneous tube domains (oral communication from O. S. Rot-
haus) and in all bounded symmetric domains, as H. L. Resnikoff
has shown in the supplement to this paper [11].

1 This research was supported by NSF Grant GP-6145.
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Much of this paper, including the crucial condition (2.1), took
shape as a result of a series of discussions with H. L. Resnikoff.
The author wishes to express his gratitude.

2. Preliminaries

Consider a bounded homogeneous domain B in Cn with

Bergman kernel function k(z, 03B6). (As usual, z and 03B6 represent
n-tuples (z1, ···, zn) and (03B61, ···, 03B6n).) We assume that k(z, 03B6)
satisfies the following condition:
For each 03B6 e B there exist an open set U C B and a positive

number M such that

We call y : B ~ B an automorphism if y and y-1 are holomor-
phic maps of B onto itself. If r’(z) is the complex Jacobean of
the automorphism y at z, then

Hence the volume element dm(z) = k(z, z)dz is invariant under
automorphisms of B, where dz is the euclidean volume élément
in B.

Let T be a discrete group of automorphisms. Choose a funda-
mental domain D for 0393 so that bD n B has zero volume. Choose
t &#x3E; 0 such that the functions 03B3’(z)t are well defined in h. (For
example, t may be a positive integer.) For 1  p ~ oo, we define
Lp(t, 0393) as the Banach space of complex-valued measurable
functions f(z) in B such that

and

The Lp(t, D norm of f, written ~f~0393p,t, is defined as the Lp(D, dm)
norm of f(z)k(z, z)-t/2. The subspace HP(t, I’) is defined as the
set of holomorphic functions f E LP(t, 0393). If T is the trivial group
we use the notations ~f~p,t, LP(t), and Hp(t).

REMARK. The function |f(z)|k(z, z)-t/2 is 0393 - automorphic for
all f which satisfy (2.3). Hence the norm ~f~0393p,t t is independent
of the choice of D. Moreover, ~f~0393~,t = ~f~~,t for all f in L~(t, 0393),
so that L~(t, 0393) is a closed subspace of L~(t).
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If 1 ~ p  00 and 1/p+1/q = 1, then Lq(t, F) is identified
with the conjugate space of LP(t, rt’) by the Petersson inner

product

If 0393 is the trivial group we write (f, g)t t for ( f , g)0393t. The space
H2(t) is a Hilbert space with the inner product ( f , g)t. Since
the point evaluations are bounded linear functionals, H2(t) has
a kernel function kt(z, 03B6). The homogeneity of B implies (see [10])
that kt(z,03B6) = c(t)k(z,03B6)t. H2(t) is non-trivial if and only if

c(t) ~ 0. In fact

Following Selberg [10], we sha.ll assume t so large that

Then c(t) and c(t/2) are non-zero, k(·, z)t/2 ~ H2(t/2) for each

fixed z E B, and

Since c(1) - 1, all our conditions on t are satisfied by the integers
~ 2.

3. Godement’s theorem

If f(z) is a complex-valued function on B, the Poincaré series
Pt f is defined by

Godement’s theorem asserts that for suitable functions f,
Pt f E HOO(t, F). We give this formulation:

THEOREM 3.1. (Godement). For each 03B6 E B there is a number K,
depending on 03B6, t, and the discrete group T, such that

PROOF. Let U be an open set satisfying (2.1). Choose a funda-
mental domain D so that U n D has non-empty interior. Define
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Then, for any y ~ 0393,

by (2.2). Hence, by (2.8)

To complete the proof we need to bound f(z)|k(z, 03B6)|-t away from
zero. (2.1) yields

since D n U has positive volume. The theorem is proved.

COROLLARY 3.2. For 03B6 E B and f E LP(t, F) let

Then At : LP(t, 0393) ~ Ll(2t) is continuous, 1  p Ç 00.

PROOF. For p = oo the continuity of A t is immediate from

(2.8). For p = 1 we compute

by Theorem 3.1. The Riesz convexity theorem shows that A t is
continuous for all p.

REMARK. Special cases of Corollary 3.2 were proved by Earle
[7] and Bell [3]. Other statements of Godement’s theorem can
be found in [8] and [2, § 5].
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4. A projection operator

Corollary 3.2 implies that for any f E LP(t, F), 1 ~ p ~ oo,
the function

is defined as an absolutely convergent integral. Of course Tt is
the orthogonal projection of L2 (t ) onto H2(t). More generally
we have

LEMMA 4. Tt : LP(t, 0393) ~ LP(t, 0393) is a bounded linear map,
1 ~ p ~ 00. Moreover, Tif E Hp(t, 0393), T2t = Tt, and

PROOF. If f E C20(B), then Tif is holomorphic (hence measur-
able!) in B. It follows readily from (2.8) and (4.2) that

For any f ~ L~(t) there is a sequence ( f n ) in C20(B) such that
~fn~~,t ~ ~f~~,t and fn - f in the weak* sense. Then of course,
Ttfn - T t f pointwise. Since the sequence (Tfn) is norm bounded
in H°° (t ), a subsequence conv erges uniformly on compact sets in B;
the limit is of course Tif. We conclude that Tt:L~(f) ~ L~(t)
is a bounded map into H~(t).
Next we verify that Tt maps L~(t, T) into itself. For f E L~(t, T)

we have, by (2.2) and ( 2 .3 ),

Ttf(03B3z)03B3’(z)t

for all y E 0393, as required. If in addition f e L1(t, 0393) we find
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Once more the Riesz convexity theorem implies that

is continuous for 1 ~ p ~ oo. Tt f is holomorphic for all f because
L°°(t, 0393) n Lp(t, 0393) is dense in LP(t, 0393) for all p. That Tt = Tt
is a simple consequence of the Fubini theorem and the identity

a special case of (2.6). Finally, (4.2) amounts to the identity

which is proved by writing the integral over B as a sum of integrals
over y(D ) and changing variables (compare Ahlfors [1]). We omit
the details.

REMARKS. Irwin Kra has pointed out to us that our proof of
Lemma 4 (which he found independently) makes no essential
use of Corollary 3.2. The proof that T t is bounded on L1 (t, 0393)
implies that the intégral (4.1) converges absolutely for almost all
03B6 E B. Thus Lemma 4 holds in any bounded homogeneous domain
B, whether or not (2.1) holds.
Lemma 4 has the immediate consequence that the Petersson

inner product identifies TtLq(t, h) with the conjugate space of
TtLP(t, r) for all finite p ~ 1. In the next section we shall prove
that Tt f = f for all f E HP(t, F), so that TtLP(t, 0393) = HP(t, F).

5. Reproducing formulas

LEMMA 5.1. Hp(t), 1 ~ p  oo, is contained in H~(t) with a
continuous inclusion map.

PROOF. Fix z0 in B. Let K be a ball centered at zo and contained
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in a compact subset of B. Let m (K ) be the euclidean volume of K.
Since iliv is plurisubharmonic in B for all f in HP(t),

But k(z, z) is bounded away from zero and infinity in K, so

and |f(z0)k(z0, z0)-t/2| ~ C~f~p,t for all f in Hp(t).
Now let Zl in B be any point, and let y be an automorphism

of B such that 03B3z0 == z1. If f E Hp(t), then f1 == ( f o y ) ( y’ ) e Hp(t)
also, and ~f~p,t = ~f03B3~p,t. Hence

That proves the lemma.

COROLLARY 5.2. The functions k(-, z)t, z EUe B, span a dense
subspace of Hl(t) if U is open in B.

PROOF. By Lemma 5.1, Hl(t) C H2(t). Thus (2.6) holds in

Hl(t), and TtL1(t) = Hl(t). Now suppose g E L°°(t) is such that

(fz, g), = 0 for all fz = k(·, z)t, z E U. It follows that the holo-
morphic function Ttg vanishes in U and hence in B; thus

g E ker Tt = H1(t)~.
LEMMA 5.3. For each f e Hl(t) and each 03B6 E B,

PROOF. The integral defines a bounded linear funetional 1 on
Hl(t). Choose an open set U C B satisfying (2.1). By Corollary
5.2, it suffices to prove that 1(/,,) = fw(03B6)k(03B6, 03B6)-t/2 for the func-
tions fw(z) = k(z, w)t, W e U. For such w, (2.1) implies that

and (2.6) gives

The lemma is proved.

PROPOSITION 5.4. The formula (2.6) holds whenever f is holo-
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morphic and the integral converges absolutely. Hence, in particular,
(2.6) holds for f E HP(t, 0393) and 03B6 E B.

PROOF. The absolute convergence means that

Hence, by Lemma 5.3

The remaining assertion is a consequence of Corollary 3.2.

REMARK. Proposition 5.4 extends theorems of Innis [9] and
Bell [3].
As another application of (2.6), we shall find the norm of the

inclusion map from Hp(t) to H°° (t ).

PROPOSITION 5.5. The inclusion map of Hp(t) in H~(t) has norm
c(pt/2)1/p, 1 ~ p C oo. The norm is attained at the functions
k(z, 03B6)t.

PROOF. Let f03B6 = k(·, 03B6)t e Hp(t). Using (2.8) one verifies easily
that 1 1 fç 1 1 ce, t = c(pt/2)1/p~f03B6~p,t. To see that

apply Holder’s inequality to

That identity is proved by applying (2.6) to

REMARK. For each g on the unit sphere of Hp(t), 1 ~ p  oo,
the unique linear funetional 1 on Hp(t) of norm one with 1(g) - 1 is

Thus Lemma 5.3 is equivalent to the assertion that the functional
1(f) = f(’) on H1(t) attains its norm at k(z, 03B6)tk(03B6, 03B6)-t/2.

6. Conjugate spaces of forms

THEOREM 6. Hq(t, r) is identified with the conjugate space of
HP(t, r) through the Petersson inner product (2.5) whenever
1 ~ p  00.
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Theorem 6 is an immédiate consequence of Lemma 4 and

Proposition 5.4. It extends earlier theorems of Godement [8],
Bers [4], and Bell [3].

7. An application to Poincaré series

It is well known that the Poincaré series (3.1) is a continuous
map from Hl (t) into H1(t, F).

THEOREM 7. Pt : H1(t ) - H1(t, 0393) is surjective.

REMARK. That was proved in less generality by Bers [4] and
Bell [3].

PROOF. It suffices to prove that the adjoint map

is one-to-one with closed range [6, p. 488]. But for f E Hl(t ) and
g e HOO(t, T)

In other words Pi is the inclusion map of H’ (t, F) in HOO(t). Since
H~(t, 0393) is a closed subspace, the theorem is proved.

REMARK. For another proof of Theorem 7 one can show that

provides a bounded right inverse of Pt . Its adjoint Si, of course,
is a bounded projection of H~(t ) on HOO(t, F). Explicitly

where
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The functions k0393t(·, 03B6), 03B6 ~ B, span a dense subspace of H1 (t, T),
by virtue of Corollary 5.2 and Theorem 7. Theorem 3.1 implies
that H1(t, 0393) n H°°(t, 0393) is dense in H1(t, 0393). We don’t know
whether Hl(t, l’) is contained in HOO(t, 0393). For a partial answer
in the one variable case see [5].
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