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Convergence of interpolatory polynomials
on Tchebycheff abscissas

by

A. K. Varma 1

1

A systematic study of Lacumary interpolation2 was first ini-
tiated by Suranyi, J. and Turàn, P. [8] and Balàzs and Turàn, P.
[1, 2, 3] in the special case when the values and second deriva-
tives are prescribed on the zeros of nn(x) = (I-X2)P:-l(X) where
Pn-l(0153) is the Legendre polynomial of degree ç n-1 while the
existence and uniqueness have been shown for the abscissas as
the zeros of ultraspherical polynomials P(A)(x), A è-&#x3E;- --i the ex-
plicit representation and convergence theorems have been proved
for yr abscissas only. Later the convergence theorem of Balàzs and
Turàn [3] is sharpened by Freud, G. [4] in the sense that the inter-
polatory polynomials of Balàzs and Turàn converges uniformly
to given f(0153) in [ -1, +1] if f(0153) satisfies the Zygmund condition

Other interesting results are due to Saxena and Sharma [7, 8],
Kis [5, 6], Varma and Sharma [11, 12] and Varma [15, 16].
The object of this paper is to consider the problem of existence,

uniqueness, explicit representation and convergence of the sequence
R,,(x) of polynomials of degree  3n+3 such that R,,(x), R:(0153) are
prescribed at the zeros of (l-01532)un(0153) where

while R"’ (x) is prescribed at all the above abscissas except at
-1 and +l. We shall call this "modified" (0, 1, 3) interpolation.

In § 2 we state the existence theorem and give the explicit rep-

1 The author is thankful to Prof. P. Turàn and Prof. A Sharma for some valuable

suggestions.
2 They called it (0, 2) case.



8

resentation of these polynomials in a most suitable form and in
§ 3 and onwards we prove convergence theorem. It is interesting
to remark that in modified (o, 2 ) interpolation [15] we require for
the uniform convergence of the sequence of polynomials R,,(x) to
f(0153) is that f’(x) E Lip a, a &#x3E; !, and this is best possible in a cer-
tain sense. So one would be inclined to think that in modified

(0, 1, 3) interpolation, we may require f(0153) to be twice differen-
tiable or at least f’(0153) E Lip ex, a &#x3E; 2 [compare corresponding
theorem of Saxena and Sharma [7]]. But our theorem 3.1 asserts
that this is not really the case. Here we need only f’(x) E Lip a,
a &#x3E; 0. Although we could not prove that this is best possible, it
seems quite plausible that this is really so in view of other known
results in this direction [7, 8].

2

Let us consider the set of numbers

by which we shall denote the zeros of (l-01532)un(0153), where

Then we have the following
THEOREM 2.1 1 f n == 2k, then to prescribed values f(0153i)’ f’(xi)

(i = 1, 2, ... n+ 2 ) and ôi (i = 2, 3, ..., n+l) there is a uniquely
determined polynomial Rn(x) of degree  3u+3 such that

But if n is odd, (n = 2k+l) there is in general no polynomial
Rn(x) of degree  3u+3 which satisfies (2.2) and (2.3) and if there
exists such a polynomial then there is an in f inity of them.
From the uniqueness theorem it follows that Rn(0153) is given by

where the polynomials Ai(0153), Bi(0153) and Ci(0153) are the fundamental
polynomials of degree  3n+3. Their explicit forms are given by
the following
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THEOREM 2.2 For n even, the fundamental polynomials have the
following representation

(a) For i = 2, 3, ..., n+ i we have

where

and f or i = 2, 3, ..., n+ i we have

where
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and for i == 2, 3, ..., n+l we have

where

In view of the uniqueness theorem 2.1, it remains to verify that
the fundamental functions Ai(0153), Bi(x) and Ci(x) are polynomials
of degree Ç 3n+3 and satisfy the following conditions.
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To verify that the above conditions are satisfied by Ai(x), Bi(0153),
and Ci(x) as given in the above theorem, we proceed on the lines
of [15] and show that they are polynomials of degree Ç 3n+3.

3

Let f(x) be continuously differentiable in [ -1, +1] and con-
sider the sequence of polynomials

with arbitrary numbers ôi.. We shall prove the following

THEOREM 3.1 Let f(0153) have a continuous first derivative in

[-l, + i] and let f’(0153) E Lip ce, oc &#x3E; 0 and i f

then the sequence Rn(x, f) converges uniformly to f(x) in [-l, + 1 ] .

4. Preliminary results

LEMMA 4.1 For 0153 == cos 0 we have

LEMMA 4.2 For -l  0153  +1, 0153 == cos 0 we have
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where pi,,(t) is defined by (2.10).
PROOF. Inequality (4.6) is due to P. Szasz [9]. (4.3) is immediate

from (4.1) and (4.2). Since

we get (4.7) from (4.9) and (4.3). From a result of Fejer we have

Now using (4.3) we get (4.4) and (4.5). From (2.10) we have

where

Further using (4.3) we get (4.8).
lu the estimation of zi+/ IAin(0153)1 we need the following results.

Let
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where

Now we prove the following

LEMMA 4.3 For -1  x  +1, we have

and

PROOF. Proof of (4.16) and (4.17) are similar to (4.8). A simple
computation leads

where

and

Using (4.15), (4.7) and (4.3) we have

and

Therefore
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LEMMA 4.4 For -1 Ç x  +1 we have

where qi,,(t) is defined by (2.18).

PROOF. It can be shown that [15]

Now using (4.7) and Lemma (4.3) we get (4.20).

5

Here we shall investigate the estimation of the fundamental
polynomials.
LEMMA 5.1 For -1 Ç x Ç +1 we have

LEMMA 5.2 For n = 4, 6, ... and for -1  0153  -(-1 tve have

and

The proof of these two lemmas follows very easily from Lemma
4.2 aiid (2.3)- (2.12).
LEMMA 5.3 For -1  x  +1 tve have
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and

PROOF. (5.6) follows easily from (2.13), (2.14) and (4.7). From
(2.16)-(2.18) and (4.20) we have

Therefore using (5.4), lemma 4.2

LEMMA 5.4 Let f’(x) E Lip a, 0  a  1 in [-l, +IJ. Then there
exists a sequence of polynomial {!Pn(0153)} o f degree at most n with the
following properties for -1  x  +1

PROOF. The existence of gg,,(x) satisfying (5.12) and (5.13) are
well known [see Timan [14]]. (5.14) follows closely on the lines
of Freud G. [4].

6

PROOF OF THEOREM 3.1 From the uniqueness theorem we have

say.
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From (5.8) and (5.12) Il = c/nl+l 1616 n logn = 0(1).
From (5.13) and (5.5) we have 12 = o(i ).
Using (5.2) and (3.2), and (5.14) we have immediately

and lastly from (5.12) 14 = 0(1).
Thus Rn(f, ae)-f(0153) = o(i ) which proves the theorem.

7

Here we shall consider existence and uniqueness theorem for
modified (0, 1, 3) interpolation when nodes are taken as zeros of
ultraspherical polynomials. Since Â and n are fixed, we shall de-
note P( ) (--) = C/ln(ae). It is well known [11] that the differential
equation for lpn(ae) for all non-negative integers n’s is given by

(7.1) (1-xl)gg"(x)-(2Â+l)xp’(x)+n(n+2Â)p.(x) = 0. 

It is also known [ll] that all the zeros of C/ln(ae) are real, simple and
lying in -l  0153  1.

We shall prove the following theorem (a special case of which is
theorem 2.1 which corresponds to Â == i ).

THEOREM 7.1 Let n = 2k, and Â :A ::f:i,

then to prescribed values ai, bi, (i == l, 2, ..., n + 2), ci (i = 2, 3, ...,
n+l) there is a uniquely determined polynomial f (x ) of degree
. 3n+3 such that

Here xi’s are zeros of (l-01532)lpn(0153)

PROOF. Proof of theorem 7.1 is on the lines of the paper [9] by
J. Suranyi and P. Turàn. We shall show that in the case
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the only polynomial of degree  3n+3 is f(0153) - 0. Thus, using
first part of (7.5) we have

where rn _1 (x ) is a polynomial in x of degree ç n -1. Also,
tlll(xi) = 0, i = 2, 3, ..., n+l and since the zeros of qJn(0153) are
simple, we obtain

Since the polynomial

is of degree  n, and by (7.’i) all its zeros are the same as those of
p,,(x), we obtain

with numerical c.

Now we have to investigate whether or not the equation (7.8)
has a polynomial solution of degree  n -1 (n even). We try to
solve the equation by

We shall be using the identities for i &#x3E; 1 [see Szego [11]].

and

Substituting (7.9) in (7.8) we obtain

and using (7.10) (7.11)
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We have to compare the coefficients of CPi(0153) in (7.12). Comparing
the coefficient of CPn-l(0153) we find for n &#x3E; 4

If n &#x3E; 4 and n :A 2Â-1 then (7.13) implies

Comparing the coefficients of q0(x) in (7.12) we obtain

From the conditions imposed in À in theorem 7.1

we have

If n &#x3E; 4 and i = 1, 2, ..., n - 2, the comparison of the coeffi-
cients of q,(x) in (7.12) gives

Evidently Ci+l can be expressed always by ci-, from (7.16).
Starting from cl == 0 we have
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Similarly starting from (7.14) (i.e. Cn_2 = 0) and using (7.16) we
have

Here we remark that (7.19) was possible owing to the condition
À -#- (m2013l)/2 m = 1, 2, n+2. Therefore we conclude from (7,10 )
and (7.19) that r.-,(x) == 0. This implies that f(0153) =:= 0. There-
fore in general equations (7.2) and (7.3 ) determines a unique poly-
nomial f(0153) degree ç 3n+3. This proves the theorem.

This research has been supported by the University of Alberta
Post-Doctoral Fellowship, Dept. of Mathematics, Edmonton
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