COMPOSITIO MATHEMATICA

YUM-TONG SIU Analytic sheaf cohomology with compact supports

Compositio Mathematica, tome 21, nº 1 (1969), p. 52-58

<http://www.numdam.org/item?id=CM_1969_21_1_52_0>

© Foundation Compositio Mathematica, 1969, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Analytic sheaf cohomology with compact supports

by

Yum-Tong Siu

Among many other results Andreotti and Grauert proved in [2] the following:

(1) Suppose *n* is a non-negative integer and \mathscr{F} is a coherent analytic sheaf on a Stein space X such that $\operatorname{codh} \mathscr{F} \ge n$ (where $\operatorname{codh} \mathscr{F} = \operatorname{homological}$ codimension of \mathscr{F}). Then $H^p_*(X, \mathscr{F}) = 0$ for p < n. (Cf. Prop. 25, [2]).

Reiffen proved in [6] the following:

(2) Suppose *n* is a non-negative integer and \mathscr{F} is a coherent analytic sheaf on a complex space X such that dim Supp $\mathscr{F} \leq n$ (where Supp $\mathscr{F} =$ support of \mathscr{F}). Then $H^p_*(X, \mathscr{F}) = 0$ for p > n. (Cf. Satz 3, [6]).

In this note we prove converses of these statements:

THEOREM 1. Suppose *n* is a non-negative integer. If \mathscr{F} is a coherent analytic sheaf on an open subset *G* of a Stein space *X* and $H^p_*(G, \mathscr{F}) = 0$ for p < n, then codh $\mathscr{F}_x \ge n$ for $x \in G$.

THEOREM 2. Suppose n is non-negative integer, \mathcal{F} is a coherent analytic sheaf on a Stein space X, and G is an open subset of X. If $H^p_*(G, \mathcal{F}) = 0$ for p > n, then dim $(G \cap \text{Supp } \mathcal{F}) \leq n$.

For the proofs of Theorems 1 and 2 we need the following Lemmata:

LEMMA 1. Suppose G is an open subset of \mathbb{C}^N , $x \in G$, and A is an at most countable subset of $G - \{x\}$. Then there exists a holomorphic function f on \mathbb{C}^N such that f(x) = 0 and $f(y) \neq 0$ for $y \in A$.

PROOF. Let F be the vector space of all holomorphic functions on \mathbb{C}^N vanishing at x. F is a Fréchet space with the topology of uniform convergence on compact subsets of \mathbb{C}^N . For $y \in A$ let $\varphi_y: F \to \mathbb{C}$ be defined by $\varphi_y(f) = f(y)$ for $f \in F$. Let $K_y = \text{Ker } \varphi_y$. K_y is a nowhere dense closed subspace of F. For, if we take $g \in F$ such that $g(y) \neq 0$, then for any open neighborhood U in F of $h \in K_y$ we have $\lambda g + h \in U - K_y$ for $\lambda \in \mathbb{C} - \{0\}$ with $|\lambda|$ sufficiently small. By Baire category theorem $\bigcup_{y \in A} K_y \neq F$. $f \in F - \bigcup_{y \in A} K_y$ satisfies the requirement. q.e.d.

LEMMA 2. Suppose \mathscr{G} is a coherent analytic sheaf on an open subset G of \mathbb{C}^N . There exist subvarieties X_p in G, either empty or of pure dim p, $0 \leq p \leq N-1$, such that, for every $x \in G$, if a nonidentically-zero holomorphic function-germ f at x does not vanish identically on any non-empty branch-germ of X_p at x for any p, then f is not a zero-divisor for the stalk \mathscr{G}_x of \mathscr{G} at x.

PROOF. For $0 \leq p \leq N-1$, define a subsheaf \mathscr{G}_p of \mathscr{G} on Gas follows: for $x \in G$, $(\mathscr{G}_p)_x = \{s \in \mathscr{G}_x | \text{ for some subvariety } A_s \text{ of}$ dimension $\leq p$ in some open neighborhood U_s of x in G there exists $t \in \Gamma(U_s, \mathscr{G})$ such that $t_x = s$ and $t_y = 0$ for $y \notin A_s\}$. \mathscr{G}_p is a coherent analytic subsheaf of \mathscr{G} and dim $\text{Supp } \mathscr{G}_p \leq p$. For, if $\varphi : {}_N \mathscr{O}^q \to \mathscr{G}$ is a sheaf-epimorphism on an open subset D of G (where ${}_N \mathscr{O} = \text{structure-sheaf}$ of \mathbb{C}^N) and $(\text{Ker } \varphi)_p$ is the p^{th} step gap-sheaf of Ker φ in the sense of Thimm (Def. 9, [9]), then $\mathscr{G}_p = \varphi((\text{Ker } \varphi)_p)$ on D and by Satz 3, [9] (Ker $\varphi)_p$ is coherent and dim $\{x \in D | ((\text{Ker } \varphi)_p)_x \neq (\text{Ker } \varphi)_x\} \leq p$. Let X_p be the union of p-dimensional branches of Supp \mathscr{G}_p . We claim that these satisfy the requirement.

Suppose f is a non-identically-zero holomorphic function-germ at a point x of G not vanishing identically on any non-empty branch-germ of X_p at x for any p. We have to prove that f is not a zero-divisor for \mathscr{G}_x . Suppose the contrary. Then there exist $g \in \Gamma(U, {}_N \mathscr{O})$ and $h \in \Gamma(U, \mathscr{G})$ for some connected open neighborhood U of x in G such that $g_x = f$, $h_x \neq 0$, and gh = 0. Let Z = Supp h and let p be the dimension of the germ of Z at x. $0 \leq p \leq N-1$. By shrinking U we can assume that dim Z = p. $h \in \Gamma(U, \mathscr{G}_p)$ and $Z \subset \text{Supp } \mathscr{G}_p$. Since dim Supp $\mathscr{G}_p \leq p$ and at x Z has dimension p, Z and X_p have a branch-germ A in common at x. gh = 0 implies that f vanishes identically on A. Contradiction. q.e.d.

LEMMA 3. Suppose \mathscr{S} is a torsion-free coherent analytic sheaf on a normal reduced irreducible complex space Z_0 . Then the set Eof points in Z_0 where \mathscr{S} is not locally free is a subvariety of codimension ≥ 2 .

PROOF. Let $m = \dim Z_0$. *D* is a subvariety in Z_0 (Prop. 8, [1]). Suppose the Lemma is false. Then *D* contains an (m-1)-dimensional branch *A*. Let *M* be the set of all regular points of Z_0 . Since dim $(Z_0 - M) \leq m-2$, there exists $x \in M \cap A$. There is a non-identically-zero holomorphic function f on some connected open neighborhood U of x in M such that f vanishes identically on $A \cap U$. Since \mathscr{S} is torsion-free, for $y \in U$ f_y is not a zerodivisor for \mathscr{S}_y . Let $\mathscr{I} = \mathscr{S}/\mathfrak{f} \mathcal{S}$ on U. $F = \{y \in U | \operatorname{codh} \mathscr{I}_y \leq m-2\}$ is of dimension $\leq m-2$ (Satz 5, [7]). There exists $z \in U \cap A - F$. codh $\mathscr{S}_z = m$. \mathscr{S} is locally free at z, contradicting that $z \in D$. q.e.d.

LEMMA 4. Suppose P is an m-dimensional complex manifold. Suppose O is the structure-sheaf of P, S is a locally free sheaf on P, and \mathcal{L} is the sheaf of germs of holomorphic (m, 0)-forms on P. If $H^{*}_{*}(P, S) = 0$, then $\Gamma(P, \operatorname{Hom}_{\mathcal{O}}(S, \mathcal{L})) = 0$.

PROOF. Let *B* and *B*^{*} be respectively the holomorphic vectorbundles canonically associated with the locally free sheaves \mathscr{S} and $\operatorname{Hom}_{\mathscr{O}}(\mathscr{S}, \mathscr{L})$. For $0 \leq p \leq m$ let $\lambda(0, p)$ denote the vectorbundle of (0, p)-forms on *P*. Let $\mathscr{A}^{(0, p)}(B)$ denote the sheaf of germs of infinitely differentiable sections in $B \otimes \lambda(0, p)$ and let $\mathscr{D}^{(0, p)}(B^*)$ denote the sheaf of germs of distribution-sections in $B^* \otimes \lambda(0, p)$. Let $\Gamma_*(P, \mathscr{A}^{(0, p)}(B))$ denote the set of all global sections in $\mathscr{A}^{(0, p)}(B)$ with compact supports.

$$0 \to \mathscr{S} \to \mathscr{A}^{(0,0)}(B) \xrightarrow{\overline{\mathfrak{d}}} \cdots \xrightarrow{\overline{\mathfrak{d}}} \mathscr{A}^{(0,m-1)}(B) \xrightarrow{\overline{\mathfrak{d}}} \mathscr{A}^{(0,m)}(B) \to 0$$

and

$$0 \to \operatorname{Hom}_{\mathscr{O}}(\mathscr{S}, \, \mathscr{L}) \to \mathscr{D}^{(0,0)}(B^*) \xrightarrow{\overline{\mathfrak{d}}} \mathscr{D}^{(0,m)}(B^*) \xrightarrow{\overline{\mathfrak{d}}} \mathscr{D}^{(0,m)}(B^*) \to 0$$

are fine-sheaf-resolutions for \mathscr{S} and $\operatorname{Hom}_{\mathscr{O}}(\mathscr{S}, \mathscr{L})$ respectively. $H^m_*(P, \mathscr{S}) = 0$ means that

$$\alpha: \Gamma_*(P, \mathscr{A}^{(0,m-1)}(B)) \to \Gamma_*(P, \mathscr{A}^{(0,m)}(B))$$

induced by

$$\overline{\partial}: \mathscr{A}^{(0,m-1)}(B) \to \mathscr{A}^{(0,m)}(B)$$

is surjective. $\Gamma(P, \mathscr{D}^{(0,0)}(B^*))$ and $\Gamma(P, \mathscr{D}^{(0,1)}(B^*))$ are respectively the duals of $\Gamma_*(P, \mathscr{A}^{(0,m)}(B))$ and $\Gamma_*(P, \mathscr{A}^{(0,m-1)}(B))$.

$$\beta: \Gamma(P, \mathscr{D}^{(0,0)}(B^*)) \to \Gamma(P, \mathscr{D}^{(0,1)}(B^*))$$

induced by $\overline{\partial}: \mathscr{D}^{(0,0)}(B^*) \to \mathscr{D}^{(0,1)}(B^*)$ is the transpose of α (Cf. [8]). β is therefore injective. $\Gamma(P, \operatorname{Hom}_{\mathscr{O}}(\mathscr{S}, \mathscr{L})) = 0$. q.e.d.

PROOF OF THEOREM 1: Since X is Stein, by imbedding X and extending \mathscr{F} trivially we can assume w.l.o.g. that $X = \mathbb{C}^N$ and

n > 0. Fix $x \in G$. For $0 \le m \le n$ we are going to construct by induction on m holomorphic functions $f_0 \equiv 0, f_1, \dots, f_m$ on G such that $f_1(x) = \dots = f_m(x) = 0, (f_1)_x \ne 0, \dots, (f_m)_x \ne 0$, and for $1 \le k \le m$

$$(3) \qquad 0 \to \mathscr{F}/\sum_{i=0}^{k-1} f_{i}\mathscr{F} \xrightarrow{\varphi_{k}} \mathscr{F}/\sum_{i=0}^{k-1} f_{i}\mathscr{F} \to \mathscr{F}/\sum_{i=0}^{k} f_{i}\mathscr{F} \to 0$$

is an exact sequence on G, where φ_k is defined by multiplication by f_k .

The case m = 0 is trivial. Suppose we have constructed $f_0 \equiv 0$, f_1, \dots, f_m for some $0 \leq m < n$. (3) implies that

(4)
$$H^p_*(G, \mathscr{F}/\sum_{i=0}^{k-1} f_i \mathscr{F}) \to H^p_*(G, \mathscr{F}/\sum_{i=0}^k f_i \mathscr{F})$$

 $\to H^{p+1}_*(G, \mathscr{F}/\sum_{i=0}^k f_i \mathscr{F})$ is exact for $p \ge 0$.

Since $H^p_*(G, \mathscr{F}) = 0$ for p < n, by induction on k we obtain from (4) that, for $0 \leq k \leq m$

$$(5)_k \qquad \qquad H^p_*(G, \mathscr{F}/\sum_{i=0}^k f_i \mathscr{F}) = 0 \quad \text{for} \quad p < n-k.$$

Let $\mathscr{G} = \mathscr{F} / \sum_{i=0}^{m} f_i \mathscr{F}$. For the coherent analytic sheaf \mathscr{G} on Gwe have in G subvarieties X_p , of pure dim p or empty, $0 \leq p \leq N-1$, satisfying the requirement of Lemma 2. Since $H^0_*(G, \mathscr{G}) = 0$ by $(5)_m$, from the construction in the proof of Lemma 2 we can choose $X_0 = \emptyset$. Let $X_p = \bigcup_{i \in I_p} X_p^i$ be the decomposition into irreducible branches, $1 \leq p \leq N-1$. For $X_p \neq \emptyset$ take $x_p^i \in X_p^i - \{x\}$. Let $G - \{x\} = \bigcup_{i \in J} G_i$ be the decomposition into topological components. Take $x_j \in G_j$. Let

$$A = \{x_p^i | i \in I_p, 1 \leq p \leq N-1, X_p \neq \emptyset\} \cup \{x_j | j \in J\}.$$

A is at most countable. There exists by Lemma 1 a holomorphic function f on G such that f(x) = 0 and $f(y) \neq 0$ for $y \in A$. For $z \in G$ f_z cannot vanish identically in any non-empty branch-germ of X_p at z for any p. Therefore for $z \in G$ f_z is not a zero-divisor for \mathscr{G}_z . Set $f_{m+1} = f$. The sequence $f_0 \equiv 0, f_1, \dots, f_m, f_{m+1}$ satisfies the construction requirement. The construction is complete. $(f_1)_x, \dots, (f_n)_x$ is an \mathscr{F}_x -sequence in the sense of (27.1), [5]. codh $\mathscr{F}_x \geq n$.

PROOF OF THEOREM 2. Again w.l.o.g. we can assume that $X = \mathbb{C}^N$. Let $Y = \text{Supp } \mathscr{F}$, $D = G \cap Y$, and dim D = m. We have to prove that $m \leq n$. Suppose the contrary. Then n < m and $H^p_*(G, \mathscr{F}) = 0$ for $p \geq m$.

Let \mathscr{I} be the annihilating ideal-sheaf for \mathscr{F} , i.e. for $x \in \mathbb{C}^N$, $\mathscr{I}_x = \{s \in {}_N \mathscr{O}_x | s \mathscr{F}_x = 0\}$. Let $\mathscr{H} = {}_N \mathscr{O} / \mathscr{I}$. The sheaf of modules \mathscr{F} can be regarded as over the sheaf of rings \mathscr{H} . Let \mathscr{K} be the subsheaf of all nilpotent elements of \mathscr{H} . The exactness of

$$0 o \mathscr{KF} o \mathscr{F} o \mathscr{F} | \mathscr{KF} o 0$$

implies the exactness of

$$H^p_*(G,\mathscr{F}) o H^p_*(G,\mathscr{F}/\mathscr{KF}) o H^{p+1}_*(G,\mathscr{KF}) \quad ext{for} \quad p \geqq 0.$$

Since

 $\dim G \cap (\operatorname{Supp} \mathscr{KF}) \leq m, H^{p+1}_{*}(G, \mathscr{KF}) = 0 \quad \text{for} \quad p \geq m$

by Satz 3, [6]. Hence

$$H^p_{oldsymbol{*}}(G, \mathscr{F}/\mathscr{KF}) = 0 \quad ext{for} \quad p \geqq m.$$

Supp $(\mathcal{F}/\mathcal{KF}) =$ Supp \mathcal{F} . For, if for some $x \in \mathbb{C}^N$ $\mathcal{F}_x = \mathcal{K}_x \mathcal{F}_x$, then, since \mathcal{K}_x is contained in the maximal-ideal of the local ring \mathcal{H}_x , we have $\mathcal{F}_x = 0$ by Krull-Azumaya Lemma ((4.1), [5]).

Let $\mathscr{G} = (\mathscr{F}/\mathscr{KF})|Y$ and $\tilde{\mathscr{O}} = (\mathscr{H}/\mathscr{K})|Y$. \mathscr{G} is a coherent analytic sheaf on the *reduced* Stein space $(Y, \tilde{\mathscr{O}})$. Supp $\mathscr{G} = Y$ and $H^p_*(D, \mathscr{G}) = 0$ for $p \geq m$.

Let $\pi: \mathbb{Z} \to Y$ be the normalization of $(Y, \tilde{\mathcal{O}})$. Let \mathscr{G}' be the inverse image of \mathscr{G} under π (Def. 8, [3]) and let \mathscr{G}'' be the zeroth direct image of \mathscr{G}' under π . There exists a natural sheaf-homomorphism $\lambda: \mathscr{G} \to \mathscr{G}''$ (Satz 7 (b), [3]). λ is bijective at regular points of Y. Let $\mathscr{R} = \text{Ker } \lambda$ and $\mathscr{Z} = \lambda(\mathscr{G})$. The exactness of $\mathbf{0} \to \mathscr{R} \to \mathscr{G} \to \mathscr{L} \to \mathbf{0}$ implies the exactness of

$$H^p_{m{\ast}}(D,\,\mathscr{G}) o H^p_{m{\ast}}(D,\,\mathscr{Z}) o H^{p+1}_{m{\ast}}(D,\,\mathscr{R}) \quad ext{for} \quad p\geqq 0.$$

Since dim $D \cap \text{Supp } \mathscr{R} < m$, $H^{p+1}_*(D, \mathscr{R}) = 0$ for $p \ge m-1$. $H^p_*(D, \mathscr{Z}) = 0$ for $p \ge m$. The exactness of

$$0 \to \mathscr{Z} \to \mathscr{G}^{\prime\prime} \to \mathscr{G}^{\prime\prime}/\mathscr{Z} \to 0$$

implies the exactness of

$$H^p_{\boldsymbol{\ast}}(D,\, \mathscr{Z}) \to H^p_{\boldsymbol{\ast}}(D,\, \mathscr{G}^{\prime\prime}) \to H^p_{\boldsymbol{\ast}}(D,\, \mathscr{G}^{\prime\prime}/\mathscr{Z}) \quad \text{for} \quad p \ge 0.$$

Since dim $D \cap \text{Supp } \mathscr{G}''/\mathscr{Z} < m$, $H^p_*(D, \mathscr{G}''/\mathscr{Z}) = 0$ for $p \ge m$. $H^p_*(D, \mathscr{G}'') = 0$ for $p \ge m$. Let $L = \pi^{-1}(D)$. Since

$$H^p_*(L, \mathscr{G}') \approx H^p_*(D, \mathscr{G}'') \text{ for } p \ge 0,$$

 $H^p_*(L, \mathscr{G}') = 0$ for $p \ge m$.

Let \mathscr{I} be the torsion subsheaf of \mathscr{G}' and let $\mathscr{S} = \mathscr{G}'/\mathscr{I}$. On Z \mathscr{S} is coherent and torsion-free (Prop. 6, [1]). Since Supp $\mathscr{G} = Y$,

[5]

Supp $\mathscr{S} = Z$. The exact sequence $0 \to \mathscr{I} \to \mathscr{G}' \to \mathscr{S} \to 0$ gives rise to the exact sequence

$$H^p_{m{\ast}}(L,\,\mathscr{G}') o H^p_{m{\ast}}(L,\,\mathscr{S}) o H^{p+1}_{m{\ast}}(L,\,\mathscr{I}) \quad ext{for} \quad p\geqq 0.$$

Since dim $L \cap \text{Supp } \mathscr{I} < m$, $H_*^{p+1}(L, \mathscr{I}) = 0$ for $p \ge m-1$. $H_*^p(L, \mathscr{S}) = 0$ for $p \ge m$. Let Z_0 be an *m*-dimensional branch of Z intersecting L. $H_*^p(L \cap Z_0, \mathscr{S}) = 0$ for $p \ge m$. Let M be the set of all regular points of Z_0 and let E be the set of points in Z_0 where \mathscr{S} is not locally free. By Lemma 3 dim $E \le m-2$. Since Z_0 is normal, dim $(Z_0 - M) \le m-2$. By Satz 3, [6],

$$H^p_*(L \cap (M-E), \mathscr{S}) = 0 \text{ for } p \ge m.$$

Let \mathscr{O} be the structure-sheaf of Z_0 and let \mathscr{L} be the sheaf of germs of holomorphic (m, 0)-forms on M. By Lemma 4 $\Gamma(L \cap (M-E),$ $\operatorname{Hom}_{\mathscr{O}}(\mathscr{S}, \mathscr{L})) = 0$. Take $x \in L \cap (M-E)$. Since $\mathscr{S}_x \neq 0$ and Z_0 is Stein, there exists $s \in \Gamma(Z_0, \operatorname{Hom}_{\mathscr{O}}(\mathscr{S}, \mathscr{O}))$ such that $s_x \neq 0$. Since Z_0 is Stein, there exist holomorphic functions g_1, \dots, g_m on Z_0 such that the map $(g_1, \dots, g_m) : Z_0 \to \mathbb{C}^m$ has rank m at x. $dg_1 \wedge \dots \wedge dg_m$ defines an element f of $\Gamma(M, \mathscr{L})$. $f_x \neq 0$. Since $\operatorname{Hom}_{\mathscr{O}}(\mathscr{S}, \mathscr{L}) \approx \operatorname{Hom}_{\mathscr{O}}(\mathscr{S}, \mathscr{O}) \otimes_{\mathscr{O}} \mathscr{L}$ on M, $s \otimes f|L \cap (M-E)$ is a nonzero element of $\Gamma(L \cap (M-E),$ $\operatorname{Hom}_{\mathscr{O}}(\mathscr{S}, \mathscr{L}))$. Contradiction. q.e.d.

REMARK. In Theorems 1 and 2 the assumption that X is Stein cannot be dropped altogether. Counter-examples can easily be constructed by letting X be a complex projective space and by using Theorem von Serre in [3]. However, easy modifications in the proof can show that Theorem 1 holds under the weaker assumption that holomorphic functions on X separate points.

REFERENCES

- A. ANDREOTTI
- [1] "Théorèmes de dépendance algébrique sur les espaces complexes pseudoconcaves", Bull. Soc. Math. France 91 (1963), 1-38.
- A. ANDREOTTI and H. GRAUERT
- [2] "Théorèmes de finitude pour la cohomologie des espaces complexes", Bull. Soc. Math. France 90 (1962), 193-259.
- H. GRAUERT and R. REMMERT
- [3] "Bilder und Urbilder analytischer Garben", Ann. Math. 68 (1958), 393-443.
- R. C. GUNNING and H. ROSSI
- [4] Analytic Functions of Several Complex Variables, Prentice-Hall, Englewood Cliffs, N.J., 1965.

M. NAGATA

 $\mathbf{58}$

- [5] Local Rings, Interscience, N.Y., 1962.
- H.-J. REIFFEN
- [6] "Riemannsche Hebbarkeitssätze für Cohomologieklassen mit kompakten Träger", Math. Ann. 164 (1966), 272-279.
- G. Scheja
- [7] "Fortsetzungssätze der komplex-analytischen Cohomologie und ihre algebraische Charakterisierung", Math. Ann. 157 (1964), 75-94.
- J.-P. SERRE
- [8] "Un théorème de dualité", Comm. Math. Helv. 29 (1955), 9-26.
- W. Тнімм
- [9] "Lückengarben von kohärenten analytischen Modulgarben", Math. Ann. 148 (1962), 372-394.

(Oblatum 16-11-67)

Math. Dept. Univ. of Notre Dame, Notre Dame Indiana 46556, U.S.A.

.