Compositio Mathematica

Yum-Tong Siu

Analytic sheaf cohomology with compact supports

Compositio Mathematica, tome 21, n 1 (1969), p. 52-58
http://www.numdam.org/item?id=CM_1969_21_1_52_0
© Foundation Compositio Mathematica, 1969, tous droits réservés.
L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Analytic sheaf cohomology with compact supports

by
Yum-Tong Siu

Among many other results Andreotti and Grauert proved in [2] the following:
(1) Suppose n is a non-negative integer and \mathscr{F} is a coherent analytic sheaf on a Stein space X such that codh $\mathscr{F} \geqq n$ (where codh $\mathscr{F}=$ homological codimension of $\mathscr{F})$. Then $H_{*}^{p}(X, \mathscr{F})=\mathbf{0}$ for $p<n$. (Cf. Prop. 25, [2]).

Reiffen proved in [6] the following:
(2) Suppose n is a non-negative integer and \mathscr{F} is a coherent analytic sheaf on a complex space X such that dim Supp $\mathscr{F} \leqq n$ (where Supp $\mathscr{F}=$ support of \mathscr{F}). Then $H_{*}^{p}(X, \mathscr{F})=0$ for $p>n$. (Cf. Satz 3, [6]).

In this note we prove converses of these statements:
Theorem 1. Suppose n is a non-negative integer. If \mathscr{F} is a coherent analytic sheaf on an open subset G of a Stein space X and $H_{*}^{p}(G, \mathscr{F})=0$ for $p<n$, then $\operatorname{codh} \mathscr{F}_{x} \geqq n$ for $x \in G$.

Theorem 2. Suppose n is non-negative integer, \mathscr{F} is a coherent analytic sheaf on a Stein space X, and G is an open subset of X. If $H_{*}^{p}(G, \mathscr{F})=0$ for $p>n$, then $\operatorname{dim}(G \cap \operatorname{Supp} \mathscr{F}) \leqq n$.

For the proofs of Theorems 1 and 2 we need the following Lemmata:

Lemma 1. Suppose G is an open subset of $\mathbb{C}^{N}, x \in G$, and A is an at most countable subset of $G-\{x\}$. Then there exists a holomorphic function f on \mathbb{C}^{N} such that $f(x)=0$ and $f(y) \neq 0$ for $y \in A$.

Proof. Let F be the vector space of all holomorphic functions on \mathbb{C}^{N} vanishing at $x . F$ is a Fréchet space with the topology of uniform convergence on compact subsets of \mathbb{C}^{N}. For $y \in A$ let $\varphi_{y}: F \rightarrow \mathbb{C}$ be defined by $\varphi_{y}(f)=f(y)$ for $f \in F$. Let $K_{y}=\operatorname{Ker} \varphi_{y}$. K_{y} is a nowhere dense closed subspace of F. For, if we take $g \in F$ such that $g(y) \neq 0$, then for any open neighborhood U in F of
$h \in K_{y}$ we have $\lambda g+h \in U-K_{y}$ for $\lambda \in \mathbf{C}-\{0\}$ with $|\lambda|$ sufficiently small. By Baire category theorem $\bigcup_{y \in A} K_{y} \neq F . f \in F-\bigcup_{y \in A} K_{v}$ satisfies the requirement.
q.e.d.

Lemma 2. Suppose \mathscr{G} is a coherent analytic sheaf on an open subset G of \mathbb{C}^{N}. There exist subvarieties X_{p} in G, either empty or of pure $\operatorname{dim} p, 0 \leqq p \leqq N-1$, such that, for every $x \in G$, if a non-identically-zero holomorphic function-germ f at x does not vanish identically on any non-empty branch-germ of X_{p} at x for any p, then f is not a zero-divisor for the stalk \mathscr{G}_{x} of \mathscr{G} at x.

Proof. For $0 \leqq p \leqq N-1$, define a subsheaf \mathscr{G}_{p} of \mathscr{G} on G as follows: for $x \in G,\left(\mathscr{G}_{p}\right)_{x}=\left\{s \in \mathscr{G}_{x} \mid\right.$ for some subvariety A_{s} of dimension $\leqq p$ in some open neighborhood U_{s} of x in G there exists $t \in \Gamma\left(U_{s}, \mathscr{G}\right)$ such that $t_{x}=s$ and $t_{y}=0$ for $\left.y \notin A_{s}\right\}$. \mathscr{G}_{p} is a coherent analytic subsheaf of \mathscr{G} and $\operatorname{dim} \operatorname{Supp} \mathscr{G}_{p} \leqq p$. For, if $\varphi:{ }_{N} \mathcal{O}^{q} \rightarrow \mathscr{G}$ is a sheaf-epimorphism on an open subset D of $G\left(\right.$ where ${ }_{N} \mathcal{O}=$ structure-sheaf of $\left.\mathbb{C}^{N}\right)$ and $(\operatorname{Ker} \varphi)_{p}$ is the $p^{\text {th }}$ step gap-sheaf of Ker φ in the sense of Thimm (Def. 9, [9]), then $\mathscr{G}_{p}=\varphi\left((\operatorname{Ker} \varphi)_{p}\right)$ on D and by Satz 3, [9] $(\operatorname{Ker} \varphi)_{p}$ is coherent and $\operatorname{dim}\left\{x \in D \mid\left((\operatorname{Ker} \varphi)_{p}\right)_{x} \neq(\operatorname{Ker} \varphi)_{x}\right\} \leqq p$. Let X_{p} be the union of p-dimensional branches of $\operatorname{Supp} \mathscr{G}_{p}$. We claim that these satisfy the requirement.

Suppose f is a non-identically-zero holomorphic function-germ at a point x of G not vanishing identically on any non-empty branch-germ of X_{p} at x for any p. We have to prove that f is not a zero-divisor for \mathscr{G}_{x}. Suppose the contrary. Then there exist $g \in \Gamma\left(U,{ }_{N} \mathcal{O}\right)$ and $h \in \Gamma(U, \mathscr{G})$ for some connected open neighborhood U of x in G such that $g_{x}=f, h_{x} \neq 0$, and $g h=0$. Let $Z=\operatorname{Supp} h$ and let p be the dimension of the germ of Z at x. $\mathbf{0} \leqq p \leqq N-\mathbf{1}$. By shrinking U we can assume that $\operatorname{dim} Z=p$. $h \in \Gamma\left(U, \mathscr{G}_{p}\right)$ and $Z \subset \operatorname{Supp} \mathscr{G}_{p}$. Since $\operatorname{dim} \operatorname{Supp} \mathscr{G}_{p} \leqq p$ and at $x Z$ has dimension p, Z and X_{p} have a branch-germ A in common at x. gh $=0$ implies that f vanishes identically on A. Contradiction.

Lemma 3. Suppose \mathscr{S} is a torsion-free coherent analytic sheaf on a normal reduced irreducible complex space Z_{0}. Then the set E of points in Z_{0} where \mathscr{S} is not locally free is a subvariety of codimension $\geqq 2$.

Proof. Let $m=\operatorname{dim} Z_{0} . D$ is a subvariety in Z_{0} (Prop. 8, [1]). Suppose the Lemma is false. Then D contains an ($m-1$)-dimensional branch A. Let M be the set of all regular points of Z_{0}.

Since $\operatorname{dim}\left(Z_{0}-M\right) \leqq m \mathbf{- 2}$, there exists $x \in M \cap A$. There is a non-identically-zero holomorphic function f on some connected open neighborhood U of x in M such that f vanishes identically on $A \cap U$. Since \mathscr{S} is torsion-free, for $y \in U f_{y}$ is not a zerodivisor for \mathscr{S}_{y}. Let $\mathscr{I}=\mathscr{S} \mid f \mathscr{S}$ on $U . F=\left\{y \in U \mid \operatorname{codh} \mathscr{I}_{y} \leqq m-\mathbf{2}\right\}$ is of dimension $\leqq m-2$ (Satz 5, [7]). There exists $z \in U \cap A-F$. $\operatorname{codh} \mathscr{S}_{z}=m . \mathscr{S}$ is locally free at z, contradicting that $z \in D$. q.e.d.

Lemma 4. Suppose P is an m-dimensional complex manifold. Suppose \mathcal{O} is the structure-sheaf of P, \mathscr{S} is a locally free sheaf on P, and \mathscr{L} is the sheaf of germs of holomorphic $(m, 0)$-forms on P. If $H_{*}^{m}(P, \mathscr{S})=\mathbf{0}$, then $\Gamma\left(P, \operatorname{Hom}_{\mathcal{O}}(\mathscr{S}, \mathscr{L})\right)=\mathbf{0}$.

Proof. Let B and B^{*} be respectively the holomorphic vectorbundles canonically associated with the locally free sheaves \mathscr{S} and $\operatorname{Hom}_{\mathcal{O}}(\mathscr{S}, \mathscr{L})$. For $0 \leqq p \leqq m$ let $\lambda(0, p)$ denote the vectorbundle of $(0, p)$-forms on P. Let $\mathscr{A}^{(0, p)}(B)$ denote the sheaf of germs of infinitely differentiable sections in $B \otimes \lambda(0, p)$ and let $\mathscr{D}^{(0, p)}\left(B^{*}\right)$ denote the sheaf of germs of distribution-sections in $B^{*} \otimes \lambda(0, p)$. Let $\Gamma_{*}\left(P, \mathscr{A}^{(0, p)}(B)\right)$ denote the set of all global sections in $\mathscr{A}^{(0, p)}(B)$ with compact supports.

$$
0 \rightarrow \mathscr{S} \rightarrow \mathscr{A}^{(0,0)}(B) \xrightarrow{\bar{a}} \cdots \xrightarrow{\bar{a}} \mathscr{A}^{(0, m-1)}(B) \xrightarrow{\bar{a}} \mathscr{A}^{(0, m)}(B) \rightarrow 0
$$

and

$$
\begin{aligned}
0 \rightarrow \operatorname{Hom}_{\mathcal{O}}(\mathscr{P}, \mathscr{L}) & \rightarrow \mathscr{D}^{(0,0)}\left(B^{*}\right) \\
& \xrightarrow{\bar{a}} \mathscr{D}^{(0,1)}\left(B^{*}\right) \xrightarrow{\overline{\mathrm{a}}} \cdots \xrightarrow{\overline{\mathrm{a}}} \mathscr{D}^{(0, m)}\left(B^{*}\right) \rightarrow \mathbf{0}
\end{aligned}
$$

are fine-sheaf-resolutions for \mathscr{S} and $\operatorname{Hom}_{\mathscr{O}}(\mathscr{S}, \mathscr{L})$ respectively. $H_{*}^{m}(P, \mathscr{S})=0$ means that

$$
\alpha: \Gamma_{*}\left(P, \mathscr{A}^{(0, m-1)}(B)\right) \rightarrow \Gamma_{*}\left(P, \mathscr{A}^{(0, m)}(B)\right)
$$

induced by

$$
\bar{\partial}: \mathscr{A}^{(0, m-1)}(B) \rightarrow \mathscr{A}^{(0, m)}(B)
$$

is surjective. $\Gamma\left(P, \mathscr{D}^{(0,0)}\left(B^{*}\right)\right)$ and $\Gamma\left(P, \mathscr{D}^{(0,1)}\left(B^{*}\right)\right)$ are respectively the duals of $\Gamma_{*}\left(P, \mathscr{A}^{(0, m)}(B)\right)$ and $\Gamma_{*}\left(P, \mathscr{A}^{(0, m-1)}(B)\right)$.

$$
\beta: \Gamma\left(P, \mathscr{D}^{(0,0)}\left(B^{*}\right)\right) \rightarrow \Gamma\left(P, \mathscr{D}^{(0,1)}\left(B^{*}\right)\right)
$$

induced by $\bar{\partial}: \mathscr{D}^{(0,0)}\left(B^{*}\right) \rightarrow \mathscr{D}^{(0,1)}\left(B^{*}\right)$ is the transpose of α (Cf. [8]). β is therefore injective. $\Gamma\left(P, \operatorname{Hom}_{\mathscr{O}}(\mathscr{S}, \mathscr{L})\right)=0 . \quad$ q.e.d.

Proof of Theorem 1: Since X is Stein, by imbedding X and extending \mathscr{F} trivially we can assume w.l.o.g. that $X=\mathbf{C}^{N}$ and
$n>0$. Fix $x \in G$. For $0 \leqq m \leqq n$ we are going to construct by induction on m holomorphic functions $f_{0} \equiv 0, f_{1}, \cdots, f_{m}$ on G such that $f_{1}(x)=\cdots=f_{m}(x)=0,\left(f_{1}\right)_{x} \neq 0, \cdots,\left(f_{m}\right)_{x} \neq 0$, and for $\mathbf{1} \leqq k \leqq m$

$$
\begin{equation*}
\mathbf{0} \rightarrow \mathscr{F} / \sum_{i=0}^{k-1} f_{i} \mathscr{F} \xrightarrow{\varphi_{k}} \mathscr{F} / \sum_{i=0}^{k-1} f_{i} \mathscr{F} \rightarrow \mathscr{F} / \sum_{i=0}^{k} f_{i} \mathscr{F} \rightarrow \mathbf{0} \tag{3}
\end{equation*}
$$

is an exact sequence on G, where φ_{k} is defined by multiplication by f_{k}.

The case $m=0$ is trivial. Suppose we have constructed $f_{0} \equiv 0$, f_{1}, \cdots, f_{m} for some $0 \leqq m<n$. (3) implies that

$$
\begin{align*}
& H_{*}^{p}\left(G, \mathscr{F} / \sum_{i=0}^{k-1} f_{i} \mathscr{F}\right) \rightarrow H_{*}^{p}\left(G, \mathscr{F} / \sum_{i=0}^{k} f_{i} \mathscr{F}\right) \tag{4}\\
& \rightarrow H_{*}^{p+1}\left(G, \mathscr{F} \mid \sum_{i=0}^{k-1} f_{i} \mathscr{F}\right) \text { is exact for } p \geqq 0 .
\end{align*}
$$

Since $H_{*}^{p}(G, \mathscr{F})=0$ for $p<n$, by induction on k we obtain from (4) that, for $0 \leqq k \leqq m$

$$
\begin{equation*}
H_{*}^{p}\left(G, \mathscr{F} / \sum_{i=0}^{k} f_{i} \mathscr{F}\right)=0 \quad \text { for } \quad p<n-k \tag{5}
\end{equation*}
$$

Let $\mathscr{G}=\mathscr{F} / \sum_{i=0}^{m} f_{i} \mathscr{F}$. For the coherent analytic sheaf \mathscr{G} on G we have in G subvarieties X_{p}, of pure $\operatorname{dim} p$ or empty, $\mathbf{0} \leqq p \leqq N-1$, satisfying the requirement of Lemma 2. Since $H_{*}^{0}(G, \mathscr{G})=0$ by (5) , from the construction in the proof of Lemma 2 we can choose $X_{0}=\emptyset$. Let $X_{p}=\bigcup_{i \in I_{p}} X_{p}^{i}$ be the decomposition into irreducible branches, $1 \leqq p \leqq N-1$. For $X_{p} \neq \emptyset$ take $x_{p}^{i} \in X_{p}^{i}-\{x\}$. Let $G-\{x\}=\bigcup_{j \in J} G_{j}$ be the decomposition into topological components. Take $x_{j} \in G_{j}$. Let

$$
A=\left\{x_{p}^{i} \mid i \in I_{p}, 1 \leqq p \leqq N-1, X_{p} \neq \emptyset\right\} \cup\left\{x_{j} \mid j \in J\right\}
$$

A is at most countable. There exists by Lemma 1 a holomorphic function f on G such that $f(x)=0$ and $f(y) \neq 0$ for $y \in A$. For $z \in G f_{z}$ cannot vanish identically in any non-empty branch-germ of X_{p} at z for any p. Therefore for $z \in G f_{z}$ is not a zero-divisor for \mathscr{G}_{z}. Set $f_{m+1}=f$. The sequence $f_{0} \equiv 0, f_{1}, \cdots, f_{m}, f_{m+1}$ satisfies the construction requirement. The construction is complete. $\left(f_{1}\right)_{x}, \cdots,\left(f_{n}\right)_{x}$ is an \mathscr{F}_{x}-sequence in the sense of (27.1), [5]. $\operatorname{codh} \mathscr{F}_{x} \geqq n$.
q.e.d.

Proof of Theorem 2. Again w.l.o.g. we can assume that $X=\mathbb{C}^{N}$. Let $Y=\operatorname{Supp} \mathscr{F}, D=G \cap Y$, and $\operatorname{dim} D=m$. We have to prove that $m \leqq n$. Suppose the contrary. Then $n<m$ and $H_{*}^{p}(G, \mathscr{F})=0$ for $p \geqq m$.

Let \mathscr{I} be the annihilating ideal-sheaf for \mathscr{F}, i.e. for $x \in \mathbb{C}^{N}$, $\mathscr{I}_{x}=\left\{s \in{ }_{N} \mathcal{O}_{x} \mid s \mathscr{F}_{x}=0\right\}$. Let $\mathscr{H}={ }_{N} \mathcal{O} \mid \mathscr{I}$. The sheaf of modules
\mathscr{F} can be regarded as over the sheaf of rings \mathscr{H}. Let \mathscr{K} be the subsheaf of all nilpotent elements of \mathscr{H}. The exactness of

$$
\mathbf{0} \rightarrow \mathscr{K} \mathscr{F} \rightarrow \mathscr{F} \rightarrow \mathscr{F} \mid \mathscr{K} \mathscr{F} \rightarrow \mathbf{0}
$$

implies the exactness of

$$
H_{*}^{p}(G, \mathscr{F}) \rightarrow H_{*}^{p}(G, \mathscr{F} \mid \mathscr{K} \mathscr{F}) \rightarrow H_{*}^{p+1}(G, \mathscr{K} \mathscr{F}) \quad \text { for } \quad p \geqq 0 .
$$

Since
$\operatorname{dim} G \cap(\operatorname{Supp} \mathscr{K} \mathscr{F}) \leqq m, H_{*}^{p+1}(G, \mathscr{K} \mathscr{F})=0 \quad$ for $\quad p \geqq m$
by Satz 3, [6]. Hence

$$
H_{*}^{p}(G, \mathscr{F} \mid \mathscr{K} \mathscr{F})=0 \quad \text { for } \quad p \geqq m
$$

$\operatorname{Supp}(\mathscr{F} \mid \mathscr{K} \mathscr{F})=\operatorname{Supp} \mathscr{F}$. For, if for some $x \in \mathbb{C}^{N} \mathscr{F}_{x}=\mathscr{K}_{x} \mathscr{F}_{x}$, then, since \mathscr{K}_{x} is contained in the maximal-ideal of the local ring \mathscr{H}_{x}, we have $\mathscr{F}_{x}=0$ by Krull-Azumaya Lemma ((4.1), [5]).

Let $\mathscr{G}=(\mathscr{F} \mid \mathscr{K} \mathscr{F}) \mid Y$ and $\tilde{\mathcal{O}}=(\mathscr{H} \mid \mathscr{K}) \mid Y . \mathscr{G}$ is a coherent analytic sheaf on the reduced Stein space $(Y, \tilde{\mathcal{O}}) . \operatorname{Supp} \mathscr{G}=Y$ and $H_{*}^{p}(D, \mathscr{G})=0$ for $p \geqq m$.

Let $\pi: Z \rightarrow Y$ be the normalization of $(Y, \tilde{\mathcal{O}})$. Let \mathscr{G}^{\prime} be the inverse image of \mathscr{G} under π (Def. 8, [3]) and let $\mathscr{G}^{\prime \prime}$ be the zero ${ }^{\text {th }}$ direct image of \mathscr{G}^{\prime} under π. There exists a natural sheaf-homomorphism $\lambda: \mathscr{G} \rightarrow \mathscr{G}^{\prime \prime}$ (Satz 7(b), [3]). λ is bijective at regular points of Y. Let $\mathscr{R}=$ Ker λ and $\mathscr{Z}=\lambda(\mathscr{G})$. The exactness of $\mathbf{0} \rightarrow \mathscr{R} \rightarrow \mathscr{G} \rightarrow \mathscr{Z} \rightarrow \mathbf{0}$ implies the exactness of

$$
H_{*}^{p}(D, \mathscr{G}) \rightarrow H_{*}^{p}(D, \mathscr{Z}) \rightarrow H_{*}^{p+1}(D, \mathscr{R}) \quad \text { for } \quad p \geqq \mathbf{0}
$$

Since $\operatorname{dim} D \cap \operatorname{Supp} \mathscr{R}<m, \quad H_{*}^{p+1}(D, \mathscr{R})=\mathbf{0}$ for $p \geqq m-1$. $H_{*}^{p}(D, \mathscr{Z})=0$ for $p \geqq m$. The exactness of

$$
0 \rightarrow \mathscr{Z} \rightarrow \mathscr{G}^{\prime \prime} \rightarrow \mathscr{G}^{\prime \prime} \mid \mathscr{Z} \rightarrow 0
$$

implies the exactness of

$$
H_{*}^{p}(D, \mathscr{Z}) \rightarrow H_{*}^{p}\left(D, \mathscr{G}^{\prime \prime}\right) \rightarrow H_{*}^{p}\left(D, \mathscr{G}^{\prime \prime} \mid \mathscr{Z}\right) \quad \text { for } \quad p \geqq \mathbf{0}
$$

Since $\operatorname{dim} D \cap \operatorname{Supp} \mathscr{G}^{\prime \prime} \mid \mathscr{Z}<m, H_{*}^{p}\left(D, \mathscr{G}^{\prime \prime} \mid \mathscr{Z}\right)=0$ for $p \geqq m$. $H_{*}^{p}\left(D, \mathscr{G}^{\prime \prime}\right)=0$ for $p \geqq m$. Let $L=\pi^{-1}(D)$. Since

$$
H_{*}^{p}\left(L, \mathscr{G}^{\prime}\right) \approx H_{*}^{p}\left(D, \mathscr{G}^{\prime \prime}\right) \text { for } p \geqq \mathbf{0}
$$

$H_{*}^{p}\left(L, \mathscr{G}^{\prime}\right)=0$ for $p \geqq m$.
Let \mathscr{I} be the torsion subsheaf of \mathscr{G}^{\prime} and let $\mathscr{S}=\mathscr{G}^{\prime} \mid \mathscr{I}$. On Z \mathscr{S} is coherent and torsion-free (Prop. 6, [1]). Since Supp $\mathscr{G}=Y$,

Supp $\mathscr{S}=Z$. The exact sequence $0 \rightarrow \mathscr{I} \rightarrow \mathscr{G}^{\prime} \rightarrow \mathscr{S} \rightarrow 0$ gives rise to the exact sequence

$$
H_{*}^{p}\left(L, \mathscr{G}^{\prime}\right) \rightarrow H_{*}^{p}(L, \mathscr{S}) \rightarrow H_{*}^{p+1}(L, \mathscr{I}) \quad \text { for } \quad p \geqq \mathbf{0}
$$

Since $\operatorname{dim} L \cap \operatorname{Supp} \mathscr{I}<m, \quad H_{*}^{p+1}(L, \mathscr{I})=\mathbf{0}$ for $p \geqq m-\mathbf{1}$. $H_{*}^{p}(L, \mathscr{S})=0$ for $p \geqq m$. Let Z_{0} be an m-dimensional branch of Z intersecting $L . H_{*}^{p}\left(L \cap Z_{0}, \mathscr{S}\right)=0$ for $p \geqq m$. Let M be the set of all regular points of Z_{0} and let E be the set of points in Z_{0} where \mathscr{S} is not locally free. By Lemma $3 \operatorname{dim} E \leqq m-2$. Since Z_{0} is normal, $\operatorname{dim}\left(Z_{0}-M\right) \leqq m-2$. By Satz 3, [6],

$$
H_{*}^{p}(L \cap(M-E), \mathscr{S})=0 \quad \text { for } \quad p \geqq m
$$

Let \mathcal{O} be the structure-sheaf of Z_{0} and let \mathscr{L} be the sheaf of germs of holomorphic ($m, 0$)-forms on M. By Lemma $4 \Gamma(L \cap(M-E)$, $\left.\operatorname{Hom}_{\mathcal{O}}(\mathscr{S}, \mathscr{L})\right)=0$. Take $x \in L \cap(M-E)$. Since $\mathscr{S}_{x} \neq 0$ and Z_{0} is Stein, there exists $s \in \Gamma\left(Z_{0}, \operatorname{Hom}_{\mathscr{O}}(\mathscr{S}, \mathcal{O})\right)$ such that $s_{x} \neq 0$. Since Z_{0} is Stein, there exist holomorphic functions g_{1}, \cdots, g_{m} on Z_{0} such that the map $\left(g_{1}, \cdots, g_{m}\right): Z_{0} \rightarrow \mathbb{C}^{m}$ has rank m at $x . d g_{1} \wedge \cdots \wedge d g_{m}$ defines an element f of $\Gamma(M, \mathscr{L})$. $f_{x} \neq 0$. Since $\operatorname{Hom}_{\mathcal{O}}(\mathscr{P}, \mathscr{L}) \approx \operatorname{Hom}_{\mathcal{O}}(\mathscr{S}, \mathcal{O}) \otimes_{\mathcal{O}} \mathscr{L} \quad$ on M, $s \otimes f \mid L \cap(M-E)$ is a nonzero element of $\Gamma(L \cap(M-E)$, $\left.\operatorname{Hom}_{\mathcal{O}}(\mathscr{S}, \mathscr{L})\right)$. Contradiction.
q.e.d.

Remark. In Theorems 1 and 2 the assumption that X is Stein cannot be dropped altogether. Counter-examples can easily be constructed by letting X be a complex projective space and by using Theorem von Serre in [3]. However, easy modifications in the proof can show that Theorem 1 holds under the weaker assumption that holomorphic functions on X separate points.

REFERENCES

A. Andreottit
[1] "Théorèmes de dépendance algébrique sur les espaces complexes pseudoconcaves", Bull. Soc. Math. France 91 (1963), 1-38.
A. Andreotti and H. Grauert
[2] "Théorèmes de finitude pour la cohomologie des espaces complexes", Bull. Soc. Math. France 90 (1962), 193-259.
H. Grauert and R. Remmert
[3] "Bilder und Urbilder analytischer Garben", Ann. Math. 68 (1958), 393-443.
R. C. Gunning and H. Rossi
[4] Analytic Functions of Several Complex Variables, Prentice-Hall, Englewood Cliffs, N.J., 1965.
M. Nagata
[5] Local Rings, Interscience, N.Y., 1962.
H.-J. Reiffen
[6] "Riemannsche Hebbarkeitssätze für Cohomologieklassen mit kompakten Träger'', Math. Ann. 164 (1966), 272-279.
G. Scheja
[7] "Fortsetzungssätze der komplex-analytischen Cohomologie und ihre algebraische Charakterisierung', Math. Ann. 157 (1964), 75-94.
J.-P. SERRE
[8] "Un théorème de dualité", Comm. Math. Helv. 29 (1955), 9-26.
W. Thimm
[9] 'Lückengarben von kohärenten analytischen Modulgarben', Math. Ann. 148 (1962), 372-394.
(Oblatum 16-11-67)
Math. Dept.
Univ. of Notre Dame, Notre Dame Indiana 46556, U.S.A.

