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Sequential properties of ordered topological spaces

by

Paul R. Meyer 1

The concepts of Fréchet space and sequential space are known
[i ] to provide successive proper generalizations of first countable
spaces. It is also known that neither the Fréchet property nor
the sequential property is productive; in fact a product of two
Fréchet spaces need not be sequential. In the present paper
we show that for products of ordered topological spaces (products
in which each coordinate space has the order topology arising
from a total order), the situation is quite different. All three
properties (first countable, Fréchet, sequential) are equivalent,
and these properties are preserved under the formation of products
of a countably infinite number of coordinate spaces. Furthermore,
this approach yields higher cardinality versions of the above

statements so as to apply to arbitrary products of ordered spaces
without countability restrictions.

Background
We begin by summarizing some material from [5] which will

be needed here. It is sometimes of interest to know the extent

to which a topology is determined by its convergent m-nets.

(An m-net is a net whose directed set has cardinality  m,
where m is an infinite cardinal number. For nets, as well as other

topological concepts, we follow the terminology and notation of
Kelley [2].) In a topological space (X, t ) we form the m-losure
of a subset A (denoted m-cl A ) by adding to A all limits of

convergent m-nets in A. If m-cl A = t-cl A for all subsets A of X,
we say that (X, t) is an m-Fréchet space. More generally, if iv,e can
obtain the t-closure operator by iteration of the m-closure operator,
we say that (X, t) is an m-sequential space. For the case m = X(),
these definitions are equivalent to the usual ones [1], because
every non-trivial M.-net has a cofinal sequence.

1 The author gratefully acknowledges the support of the National Science
Foundation, under Grant GP 6411.
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This paper grew out of earlier work on spaces of real-valued

functions. For several classes of function spaces it is known that

the relative product topology (== pointwise topology) is sequential
iff it is Fréchet. Higher cardinality versions of this might have
bearing on the Aleksandrov-Urysohn problem about the cardinal-
ity of first countable compact Hausdorff spaces. For details see
[3] and [4].

THEOREM. Il X is a (totally) ordered topological space or is a
product of such spaces, then the following are equivalent:

a ) X is m-sequential.
b) X is m-Fréchet.

c) The point character of X, x(X), is  m (i.e., each point of X
has a neighborhood base of cardinality  m). Furthermore, if X
is the product of a f amily of (totally) ordered spaces (X, : i El},
then the least m for which the preceding statement holds is the larger
of the two numbers card I and sup (z(X,) : i El}.
REMARK. The proof also yields the following. Let X be the

product of a family of non-trivial topological spaces tXi : i e 7}.
In order that X be m-sequential it is necessary that each X be
m-sequential and card I  m. If, in addition, each X is an ordered
topological space, then these conditions are also sufficient.

PROOF. For arbitrary topological spaces it is true that c) + b)
[5, Prop. 3.IJ and b) + a) (trivial). We prove the opposite
implications first for a single ordered space and then for a product.
Assume that X is an ordered topological space; we show first

that b) =&#x3E; c). For an arbitrary point x in X, we construct a
neighborhood base of cardinality  m. Assume x is not isolated
from above or below (the other cases are easier ). Then by b ) there
exists a net {X,,, v E D} converging to x with xv  x for each v
and card D ç m. Similarly, there is a net {yP’ Il E E} converging
to x with y p &#x3E; x and card E Ç m. The open intervals

{z:0153vzyp} with (v, u) c- D x E form a neighborhood base
at x and card D X E  m . m == m.

Still assuming that X is an ordered space, we now show that
a) =&#x3E; b). Suppose that nets Sv = {0153vp, Il E E,} converge to xv and
S = {0153v, v E D} converges to x, with card Ev and card D not
greater than m. It certainly suffices to construct a net in the set
formed by the union of the ranges of the nets S," directed by D
or a subset of D, and converging to x. We may assume that all
of the given nets are strictly monotone and directed by ordinal
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numbers. (This simplifying assumption is justified in Lemma 1
below.) There are essentially two cases. For the first case, assume
that the nets Sv are increasing and that the net S is decreasing.
Since 0153v &#x3E; x for each v, we can choose fl(v) such that

Then {0153Vp(V), v E D} is the desired net; it converges to x since it is
bounded above by net S which converges down to x. For the
second case, assume that all of the nets are strictly increasing.
Let D’ denote the set of all isolated ordinals in D; clearly D’ is
cofinal in D. For v in D’, 0153V-l  xv and hence we may choose

M(v) such that 0153V-l  0153vp,(v). Then {0153Vp,(v), v E D’} is the desired
net which converges to x. This completes the proof for the case
in which X consists of one ordered space.
We now assume that X is the product of a family {Xi : i c- Il

and that each Xi is ordered. We prove directly that a) =&#x3E; c) for
such X. By a) and the fact that every quotient of an m-sequential
space is m-sequential [5, Cor. 2.2], it follows that each Xi is

m-sequential. By our earlier work, it follows that x(Xi)  m
for each i. From Lemma 2 below we have card I ç m. Thus,
by Lemma 3, x(X)  m, and c) holds. The proof of the theorem
will be complete if we establish the lemmas.

LEMMA 1. Let X be an ordered topological space and A a subset
of X. Il an m-net in A converges to x (with x in X but not in A ),
then there is a strictly monotone m-net in A which is directed by an
ordinal and converges to x. (However, the monotone net is not in

general a subnet of the original net - such a subnet does not always
exist. )

PROOF. Let A o be the intersection of A and the range of the
m-net in the hypothesis. This replacement is made to obtain the
inequality card A o :- m. Let

It follows that x e m-el Ai for 1 = 1 or i = 2; assume the former.
Al is directed by the order inherited from X, and thus the identity
mapping Al -* X is a net. (A, is both the directed set and the
range of this net.) This net is strictly monotone and converges
to x. Since A 1 is totally ordered, Zorn’s lemma can be used to
show that Ai has a cofinal well ordered subset A3. A3 is an

ordinal and the identity mapping A3 -* X is the desired net;
it is an m-net since card A3  card A o  m.
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For the next lemma in the case m == bto, see J. Novàk [6,
page 23].

LEMMA 2. Let X be a product of a f amily (X, : i e I) of non-
trivial topological spaces. (Here the spaces need not be ordered;
we assume only that each has at least one non-void proper open set.)
Il card I &#x3E; m, then X is not m-sequential. In particular, no un-
countable product of non-trivial spaces is a sequential space.
PROOF. The proof is patterned after a familiar argument about

sequences in spaces of real-valued functions. We may assume that
each Xi contains two points, which we denote by 0 and 1, and a
neighborhood of 1 not containing 0. This notation is chosen so
that some function space terminology can be used. Let e denote
the function in X whose i’th value is 1 for each i. Let S be the

subset of X consisting of all characteristic functions of finite
subsets of I (i.e., all functions which take the value 1 at a finite
number of coordinates and the value 0 elsewhere). Then e is a
limit point of S, but we can show that no iteration of m-nets in
S can converge to e. The functions in S have finite cozero sets.

(The cozero set of a function f is (1 e7 : f(i) -#- O}; we denote it
by coz f . ) If we show that by forming iterated limits of m-nets in
5 we get only functions whose cozero sets have cardinality ç m,
it follows that e cannot be so approached and the product topology
is not m-sequential. The assertion is verified by the following:
If {fv, v E D) converges to f with card D  m and card (coz fy )  rn
for each v, then

(because coz feu {coz f v : v E D) ).
LEMMA 3. Assume as in Lemma 2 that X is the product of a

f amily (X, : i e I) of non-trivial topological spaces (not necessarily
ordered spaces). Then the point character o f X, z(X), is the larger
of the two numbers card I and sup {X(Xi) : i c- I}.
PROOF. This is a generalization of the fact that a countable

product of first countable spaces is first countable, and the proof
is similar. We omit the details.
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