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Fredholm formulae and the Riesz theory 1

by

A. F. Ruston

1. Introduction

In a well-known paper [31], F. Riesz studied the behaviour
of compact (= completely continuous) linear operators on the
Banach space of continuous functions on a closed interval. His

arguments can readily be applied in any Banach space, real or
complex, and the Riesz theory has been discussed by many
writers (see, for instance, [1] pp. 151-157, [3, 5, 15, 23, 30],
[32] pp. 178-182, [36, 51, 52, 53, 54, 55] and [56] pp. 330-344;
see also [13] pp. 577-580).
The classical Fredholm theory, as expounded for instance in

[14] 2, expresses the solution of an integral equation such as

where y and k are given continuous functions and the continuous
function x is to be determined, in terms of the Fredholm minors

which (for fixed si, S2’ ..., s n; tl , t2 , ..., tn ) are integral func-
tions of Â. This theory, like the Riesz theory, has been placed in a
more general setting by a number of writers (see, for instance,
[17, 22, 24, 25, 29, 33, 34, 35, 40, 41, 42, 43, 44, 45, 46, 47], [48]
pp. 79-105 and [56] pp. 261-278).
Use has already been made (cf. [35] and [36]) of the Riesz

theory in discussing the Fredholm theory. The purpose of the
present paper is to delve more deeply into the relation between

1) A sketch of part of the theory given in this paper, for the space of continuous
functions on a closed interval, was presented (under the same title) before the
International Congress of Mathematicians 1954 at Amsterdam (cf. [37]).

1) Other references are given in [34]. See also [48].
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the two theories. In particular, we shall establish a relation 3

between the dimension numbers of certain subspaces occurring
in the Riesz theory and the orders of the corresponding zero of
certain Fredholm formulae (Theorem 3.4; cf. [37]), and we shall
identify the null space and nucleus space of the Riesz theory with
the range and kernel of a certain operator in the Fredholm theory
(Theorem 4.2).
Throughout this paper, the Banach space 58 under consideration

can be either real or complex.

2. Fredholm formulae

As in previous papers, we shall make constant use of the
theory of n-operators developed in [34] (which was based on
Schatten’s notion of direct product - cf. [39] ). An n-operator on
a Banach space 2 was defined ([34], p. 352) to be a continuous
linear 4 operator on SK into 58À. This definition was chosen
because it led to a simple formula for the bound-norm ([34]
Theorem 3.1.1, p. 352), which enabled us to obtain some im-
portant inequalities ([34] § 3.7, pp. 370-376) used in proving
the convergence of certain series ([34] Theorem 3.8.1, p. 376).
In later work ([35] and [36]) a different method was used to
prove the convergence of the series concerned. For this later work,
we could 5 have used (for instance) continuous linear operators
on Bn03B3 into 33", or continuous linear operators on Bn03BB into 58À.
To avoid confusion, however, I shall continue to use n-operators
as defined above. For further information on the theory of n-
operators, the reader is referred to [34] (see also [38]).

DEFINITION 2.1 6. A continuous linear operator K on a Banach
space 58 into itself will be called a Fredholm operator on 58 iff7
there is a scalar integral function 03940(03BB) = 03A3~r=0 0394r003BBr o f the scalar

3) I am indirectly indebted to Professor D. E. Littlewood in this connection.
It was a (somewhat hazy) recollection of his Part III lectures at Cambridge which
first put me on to the nature of this relation.

4) In my earlier papers (e.g. [33-38]) 1 used the word "linear" (following
Banach, cf. [1] p. 23, [32] p. 149) to imply continuity. More recently 1 have come
into line with most modern writers, and use it in a purely algebraic sense (cf.
[13] pp. 36-37, [21] p. 16, [49] p. 18, [56] p. 134).

5) I am indebted to A. M. Deprit for drawing my attention to this fact.
6) Cf. [36] Definition 2.1, p. 319.
’) Following Halmos, 1 use "iff" in a definition where the meaning is "if and

only if".
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03BB, not identically zero, such that I’o 0394rn03BBr is an absolutely con-
vergent series o f n-operators for every scalar À and every non-
negative integer n, where 8 0394rn = 03A3rs=0 0394r-s0Ks+1n. The integral
function 03940(03BB) will be called a Fredholm determinant for K, and
the n-operators {0394rn} will be called the Fredholm coefficients cor-
responding to 03940(03BB).

REMARK. If 93 is n-dimensional, and K is represented by the
n n matrix K, we can take 03940(03BB) = det (In-Âic) (cf. [34] p. 365).
The Cayley-Hamilton theorem 9 then tells us that 03A3nr=0 03944003BAn-r = 0,
from which it follows that 03A3nr=0 0394r0Kn-r = 0 (the zero operator).
For a Fredholm operator K with Fredholm determinant 03940(03BB)
on a general Banach space B, we have (by Cauchy’s test) a
generalization of the Cayley-Hamilton theorem, namely that 10

From the absolute convergence of 03A3~r=00394rn03BB4 for any scalar
follows at once (by the comparison test) the absolute convergence
of the series

for any non-negative integer r and any scalar Â.

DEFINITION 2.2. Let K be a Fredholm operator on a Banach

space B, and let 03940(03BB) be a Fredholm determinant for K. Then we
define

where {0394rn} are the Fredholm coefficients corresponding to 03940(03BB).
We call {0394rn(03BB)} the Fredholm formulae corresponding to 03940(03BB).

Clearly 0394rn(03BB) is a skew n-operator ([34] Definition 3.1.1,
p. 353) for any scalar À, 0394rn(0) = 0394rn, and 039400(03BB) = 03940(03BB) for any
scalar À.

8) We recall that

where summation is over all sets of positive integers 03BC1, 03BC2, ..., lÀ. with

03BC1+03BC2+... +p" = n+s (cf. [34] Theorem 3.1.4, p. 356).
’) Cf. [2] p. 320, [13] p. 562, [18] p. 169, [19] p. 106, [26] p. 105, [27] p. 18

and [28] p. 206.
10) Here I use ~.~ to denote the bound-norm (of a continuous linear operator),

denoted in some of my earlier papers by 03B2(.).
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Elsewhere we have called 03940n(03BB) a Fredholm minor, and have
denoted it by 0394n(03BB) (cf. [35] Definition 2.3, p. 372). In this paper
we shall frequently have occasion to consider the Fredholm

formulae for other values of r, and the value r = 0 will not in

general be singled out for special treatment.

NOTE. In an alternative treatment, one could consider {r!0394rn}
in place of the Fredholm coefficients, and {r!0394rn(03BB)} in place of
the Fredholm formulae. The above equation would then be
replaced by a slightly simpler one (say Drn(03BB) = !:o Dr+sn03BBs/s!).
To avoid confusion, however, I shall continue to use the notation
1 have used elsewhere.
The fundamental properties of the Fredholm formulae on

which the calculations in this paper are based are given in the
next two theorems, which are immediate consequences of the
definitions (cf. [34] Theorems 3.8.2 and 3.8.5, pp. 377 and 379).
THEOREM 2.1.

for any scalar Âo, the series on the right being absolutely convergent
in bound-norm for every scalar Â.

THEOREM 2.2. Il n ~ 1 and r &#x3E; 1, then

We may note, in passing, that (i) and (ii) of this theorem can
be expressed in the form (iii) and (iv) by putting, conventionally,
0394rn(03BB) = e when r  0.

We shall be concerned with relations between the Fredholm
formulae with particular reference to a fixed (but arbitrary)
value Âo of the parameter. Considerable light will be thrown on
these relations by our discussion of the Riesz theory, but before
starting that discussion we prepare the ground.
We shall be interested, in particular, in the order of 03BB0 as a

zero of the integral function 03940n(03BB) of the scalar 03BB. In view of
Theorem 2.1, this order can be expressed in terms of the vanishing
of the Taylor coefficients 0394rn(03BB0). 1 now introduce some notations
to describe the situation (for brevity, the dependence on Âo will
not be made explicit).
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DEFINITION 2.3. For each integer n &#x3E; 0, we define the number
p(n) to be the smallest integer p for which 0394pn(03BB0) ~ 0, with the
convention that, when no such integer p exists, then p(n) = 00.
Thus p(n) is the order referred to above.
In order to study the variation of p(n) with n, we introduce

some further notation.

DEFINITION 2.4. For every integer n &#x3E; 0, we define the number
q(n) to be p(n-1)-p(n), with the conventions 11 that q(o) = 00
and that q (n) = - oo when p(n) = 00.

It is convenient to represent the situation diagrammatically.
The Fredholm formulae (for the parameter Âo) can be conveniently
arranged in a doubly infinite array:

Here the formulae {0394rn(03BB0)} in any row are the Taylor coefficients
of the corresponding Fredholm minor 03940n(03BB), higher rows correspond-
ing to Fredholm minors of higher order. Then the orders of the
zeros can be represented by putting a white spot to represent
4£(Ào) for r  p (n ) (when 41(Ào) = 0398), and possibly a black
spot to represent 0394p(n)n(03BB0) (which does not vanish) if p (n ) is
finite.
On the face of it, the diagram so obtained might be infinite

in extent. However, it has certain properties which enable us to
concentrate our attention on a finite part of it. These properties
we now discuss (others will appear when we discuss the Riesz
theory). To this end 1 now prove two lemmas.

LEMMA 2.1. Il X A A = e, where A is an n-operator and X a
1-operator, then either A = e or X is of rank at most n.
Let us suppose that X A A = 0398, but that A ~ 0398. Then we

can choose elements x(1), x(2), ..., x(n) of B and continuous linear
functionals f(1), f(2), ..., f(n) on ? so that

11) These conventions are consistent, since by hypothesis p(0) is finite (cf. Defini-
tion 2.1).
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Then, for any x ~ B, we have

and so Xx is a linear combination of Xx(1), Xx(2), ..., Xx(n).
It follows that the range of X is spanned by Xx(1), Xx(2), ..., Xx(n),
and so that X is of rank at most n. In fact (using the notation
of [33] p. 110)

NoTE. The condition is not sufficient, as can be seen by taking
X to be a 1-operator of rank precisely unity and A to be a 1-
operator of rank greater than unity.

LEMMA 2.2. Xrn+1 = e f or all r ~ 1 il (and only if) X is 0f
rank at most n.

By [34J Theorem 3.1.5 (p. 356) X1n+1 = e if and only if X

is of rank at most n. But, if X1n+1 = e, then

for any set of positive integers 03BC1, 03BC2, ..., 03BCn+1, and so (by [34]
Theorem 3.1.4, p. 356) Xrn+1 = 0 for any positive integer r.

THEOREM. 2.3. If q(n)  0, then q(m) = -~ for every m &#x3E; n.

In other words, p(n) p(n-1) unless p(n) = ao, and then
p (m ) = oo for every m ~ n.

Let us suppose that q(n)  0, and let no be the smallest positive
integer with q(no)  0 (so that n &#x3E; no). Then p(no-1) must be
finite (else q(n0-1) = -~  0). Since q(no)  0, we have

p(no) &#x3E; p(no-1), and so 0394rn0(03BB0) = e when r  p(no-1). It

follows (by Theorem 2.2 (iii) - or (i) if p(no-1) = 0) that
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But, by definition of p(no-1),

Hence, by Lemma 2.1, K is of rank at most no -1. It now follows,
by Lemma 2.2, that K. = 0398 whenever m ~ no, r &#x3E; 1. Hence

03940m(03BB) is identically zero for all m :2= no, and so for all m &#x3E; n.
Thus p (m ) = ao and q (m ) = -00 for ah m &#x3E; n.

NOTE. The rank of K is, in fact, precisely n0-1, else we should
have q(n0-1) = -~  0 by the above argument.
We now introduce two more numbers.

DEFINITION 2.5. We define 03BC to be the smallest non-negative in-
teger such that 039403BCn(03BB0) ~ 0398 f or some non-negative integer n, and we
define d to be the least such integer n.

Cf. [34] Theorem 4.2.1, p. 380. Clearly p = p(d).
The number d is known in German as the "Defekt" of 03BB0.

In the past I have translated this "defect" (cf. [34] loc. cit.,
[35] Theorem 2.4, p. 373), but "deficiency" would be a more
idiomatic translation. The number p is of the nature of a "coef-
ficient of irrelevancy", since the integral functions 039400(03BB), 039401(03BB),
039402(03BB), ... have a common factor (03BB-03BB0)03BC, which could be divided
out and contributes nothing to the Fredholm theory (indeed we
could do this simultaneously for alt scalar 03BB0 by dividing by a
suitable scalar integral function of 03BB). It will be observed that
,u = 0 for the formulae "constructed" in [35] (see [35] Theorem
2.4, p. 373) 12. It is still an open question whether the same is
always true for the formulae constructed for operators in the trace
class (cf. [34] Corollary to Theorem 4.2.1, p. 381; see also [16]
Chap. 1 § 5, pp. 164-191).
We can now see how it is that we can concentrate our attention

on a finite part of the diagram of spots mentioned above. For,
in the first place, either q(n) = 0 for all n &#x3E; d, or there is an
integer ro &#x3E; d such that q(n) = 0 for d  n ~ r0 and q(n) = - ~
for n &#x3E; ro (this can be proved by induction, using Theorem 2.3
and the definition of d). In the first case K is not of finite rank;
in the second case it is of rank ro. Thus the "shape" of the part
of the diagram of spots corresponding to n &#x3E; d depends only
on the rank of K, and is of no great interest in connection with
the Riesz theory. Thus we need only concern ourselves with the
part of the diagram corresponding to n  d, for which values of

11) It is also true (in effect) for the classical Fredholm theory.
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n (again appealing to Theorem 2.3) q(n) &#x3E; 0 (of course q(d) &#x3E; 0).
In the second place, the diagram includes 03BC columns of white
spots, which are (as we have seen) not really significant, and
these can be omitted. What is left is that part of the diagram
of spots corresponding to n ~ d and r ~ 03BC. I call this the spot
diagram. This will be a diagram such as

It will have d+1 rows; the bottom row (which we call row 0
since it corresponds to n = 0) will have p(0)-03BC white spots, the
next row (row 1) will have p(1)-03BC white spots, and so on.

3. The Riesz theory

We shall continue to concentrate our attention on a fixed
scalar 03BB0, which will not be mentioned explicitly in our notations.

If T is a continuous linear operator on 2 into itself, then we
call T-1 (e) (the set of solutions x of the equation Tx = 0398) the
kernel. of T (following common usage in algebra 13 - 1 have
elsewhere called this the "zerospace" of T), and we call TB (the
set of values taken by Tx for x in B) the range of T.

DEFINITION 3.1. For each integer n ~ 0, we denote by M. the
kernel, and by Rn the range, o f the operator (I-03BB0K)n.
We have seen elsewhere ([36] Lemma 2.1, p. 320) that 9R, is

finite-dimensional for every non-negative integer n (this will also
follow from Lemma 3.2). The principal aim of this paper is to
show how the structure of these spaces is related to the Fredholm

formulae, and in particular how the number of dimensions of M.
can be read off from the spot diagram.
DEFINITION 3.2. For each integer n ~ 0, we denote by mn the

number o f dimensions o f mn.
It has been known for some time that 14 ml = d, that is the

number of white spots in the first column of the spot diagram,
and that 15 m, = p(0)-03BC, that is the number of white spots in

13) Cf. [2] p. 151, [13] p. 39, [21 p. 470. This use of the word "kernel’ should
not be confused with that in connection with intégral équations, cf. [48] p. 2,
[56] p. 177.

1’) Cf. [34] Theorem 4.2.2, p. 381.
15) This lay behind the argument in [35].
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the bottom row of the spot diagram (where v is the index in the
Riesz theory - cf. [31] p. 81, [32] p. 179 - such that mn = mv
when n h v and mn  mn+1 when n  v). It was these facts
that led me to suspect a connection between the dimension
numbers {mn} and the spot diagram.
The main tools we shall use in our investigations are given in

Lemmas 3.1 and 3.2.

Let n be any integer with 1 ~ n ~ d, and let p = p (n ),
q = q(n) and q’ - q(n+1). By definition of p(n), 0394pn(03BB0) ~ e.
Let us then choose elements x(n)1, x(n)2, ..., x(n)n of 58 and con-
tinuous linear functionals fi""), f(n)2, ...,f(n)n on 58 so that lg

Then we put

and

for

LEMMA 3.1 With the above notation,

are elements of mr linearly independent modulo 17 mr-1 whenever
1  r  q.
We know that

whenever r  p+q = p(n-1). It follows, by repeated application
of Theorem 2.2 (iii), that

18) It would be sufficient to arrange for this expression to be non-zero, but making
it unity simplifies our calculations. Note, however, that, when this argument is
adapted for the classical Fredholm theory, we must be content with arranging
for the corresponding "kernel"

to be non-zéro (the duplicated notes for my talk at Amsterdam [cf. 87] require
amendment accordingly).

17) That is to say 03A3n03B8=1 03B103B8(I201303BB0K)q-r03BE(n)03B8 e mr-1 only if03B11 = 03B12 = ... = 03B1n = 0.



34

and so that

But

and

that is

Now

for q = 1, 2, ..., n. It follows 18 that

then
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are linearly independent modulo mr-1. The lemma is thus proved.
The corresponding result for n = 0 is trivial.

COROLLARY 1. Il 1  r  q(n), then mr-mr-1 &#x3E; n.

COROLLARY 2. 0394rn(03BB0) =1= e when p(n)  r  p(n-1).
Thus the spot diagram may be augmented by adding a black

spot above any white spot which has not already a spot above
it. These black spots correspond to formulae which cannot

vanish.

LEMMA 3.2. With the above notation, m1 n ffir-1 is contained in
the subspace of B spanned by iîl , ~(n)2, ..., ~(n)n whenever r &#x3E; q’. .
Let (I-03BB0K)r-1x be any element of ml n Rr-1. Then

(I-03BB0K)rx = 0. But, by repeated application of Theorem 2.2
(iv), we have

(unless q’ - 0 or - oo, when we draw the same conclusion more
directly, since then 0394p-1n+1(03BB0) = 0398). Hence

and so (since 
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This proves the lemma.

COROLLARY. Il r &#x3E; q(n+1 ), then mr-mr-1 ~ n.
Suppose that n is positive. We have just seen that 3Ri n 9!r-l

is contained in a space of dimension n. It follows that it is spanned
by a set of n of its elements (not necessarily linearly independent),
say

(e.g. we could augment a base of the space by adding as many
zeros as are needed to make up n elements; if r ~ q = q(n),
we can clearly take 03B603B8 = (I-03BB0K)q-r03BE(n)03B8).
Now let x be any element of mr. Then (I-03BB0K)r-1x belongs

to m1 n ffir-1’ and so we can write

Thus

that is

where y is a member of mr-1. It follows that ID1r is spanned by
CI, C2, ..., Cn modulo mr-1, and so that m,.  mr-1+n. This

proves the corollary when n &#x3E; 0.

The proof when n = 0 is similar (cf. [36] Lemma 2.2, p. 320).

THEOREM 3.1. I f 0  m  n  d, then

In other words, the number of "new" white spots in any row
of the spot diagram is at least as great as the corresponding
number in any higher row.

It will be sufficient to prove that

when 0 s n  d. Suppose, on the contrary, that

By Theorem 2.3, q(n) &#x3E; 0, and so r &#x3E; 1. Hence, by Corollary 1
to Lemma 3.1 and the Corollary to Lemma 3.2,
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This contradiction proves the theorem.
The values of n of most interest are those for which

q(n+1)  q(n) ~ 0, since then mr-mr-1 = n whenever

q(n+1)  r  q(n). In fact we have

THEOREM 3 then

form a base for W1r modulo mr-1.
DEFINITION 3.3. We denote the values of n for zvhich

q(’n+1)  q(n) =1= 0, arranged in descending order o f magnitude,
by d1( = d), d2,.., dN,dN+1 (= 0), and put q0 = 0 and q03C1 = q(d03C1)
f or p = 1, 2,..., N +1.
The most important Fredholm formulae (in view of Theorem

3.2) are 0394p(d03C1)d03C1(03BB0). The corresponding spots on the spot diagram
can be thought of as the points where a string stretched round
the black spots (from ’In = oo" to "r = ~") would bend.

In view of Theorem 3.1 and the definition of dp+1, we have

for p = 1, 2, ..., N. Hence we have

whenever qp-1  r  q p . But

Hence, given any positive integer r, there is a unique integer p
between 1 and N+1 such that

Thus we can calculate mr-mr-1, and so mr (since clearly mo = 0),
for any positive integer r. In fact
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and so on. In general we have

where p is chosen so that q03C1-1  r ~ q03C1 - in fact this equation
also holds if r = q03C1-1.
We can find another formula for m, as follows. Assuming that

q03C1-1 ~ r ~ qP , we have

THEOREM 3.3. The number of dimensions mn of the kernel W1n of
(I-03BB0K)n is given by the equations

where p is such that q03C1-1  n  q03C1.
In particular, if n &#x3E; qN, we have (since dN+1 = 0)

Thus qN(= q(1)) is the index v of the Riesz theory referred to
early in this section 19.
We can express Theorem 3.3 in terms of conjugate partitions

(cf. [20] p. 271, [26] p. 94).

THEOREM 3.4. The sums

and

are conjugate partitions o f m, = p(0)-03BC.
Cf. [37].

19) Cf. [31 p. 81. We also have, in terms of notations used elsewhere, di = d(Âo)
([34] p. 380), p(d1) = 03BC(03BB0) ([34] p. 380), p(0) = p(Âo), ([36] p. 320), mqN = m(03BB0)
([35] p. 369).


