Compositio Mathematica

A. J. Stam

On shifting iterated convolutions I

Compositio Mathematica, tome 17 (1965-1966), p. 268-280
http://www.numdam.org/item?id=CM_1965-1966__17__268_0
© Foundation Compositio Mathematica, 1965-1966, tous droits réservés.

L'accès aux archives de la revue «Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme

On shifting iterated convolutions I

by
A. J. Stam

1. Introduction

Throughout this paper P, Q, R, with or without indices, denote probability measures on the Borel sets of the real line, $P Q$ denotes the convolution of P and Q and P^{n} the $n^{\text {th }}$ iterated convolution of P. So $U_{a} P^{n}$, where U_{a} is the probability measure degenerate at a, is the $n^{\text {th }}$ convolution of P, shifted to the right over a distance a.

The problem considered in this paper is to describe the set L_{0} of those values a for which

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|P^{n}-U_{a} P^{n}\right\|=0 \tag{1.1}
\end{equation*}
$$

Here $\|M\|$, for any finite signed measure M, is the total variation of M. It is well known that, for any two finite signed measures M and N,

$$
\begin{gather*}
\|M+N\| \leqq\|M\|+\|N\|, \tag{1.2}\\
\|M N\| \leqq\|M\|\|N\|, \tag{1.3}
\end{gather*}
$$

$M N$ denoting convolution as before.
In section 5 we consider the following property, weaker than (1.1):

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|P^{n} Q-U_{a} P^{n} Q\right\|=0 \tag{1.4}
\end{equation*}
$$

for every absolutely continuous Q. This holds for every a if P is not a lattice distribution.

Our main results on (1.1) are the following. The limit in (1.1) always exists and is either 0 or 2 . The set L_{0} is the real line if and only if P^{n} for some n has an absolutely continuous component. If P is purely discrete, L_{0} is the additive group generated by the set of differences of those y for which $P(\{y\})>0$.

For the case that every P^{n} is purely singular, the author only found examples of a countable L_{0} and an uncountable L_{0}.

The restriction to probability measures is essential. If $\|P\|<1$, the problem is trivial since then $\lim _{n \rightarrow \infty}\left\|P^{n}\right\|=0$. If P is a measure with $P(-\infty,+\infty)>1$, we may expect $L_{0}=\{0\}$, since for probability measures the convergence in (1.1) and (1.4), if present, is of order $n^{-\frac{1}{2}}$ (see lemma 6 below).

2. Preliminary results

Lemma 1. The set of all a for which

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|P^{n} R-U_{a} P^{n} R\right\|=0, \tag{2.1}
\end{equation*}
$$

is an additive group.
Proof. The additivity is immediate by (1.2). Moreover, if (2.1) holds for a, the same is true for $-a$.

Lemma 2. The sequence $\left\|P^{n} R-U_{a} P^{n} R\right\|, n=1,2, \ldots$, is nonincreasing.

Proof. The assertion follows from (1.3) since $\|P\|=1$.
Lemma 3. Let Q be any probability measure on the real line. Then $\left\|Q-U_{a} Q\right\|<2$ if and only if there exist probability measures Q_{0} and Q_{1} and real numbers α, β with $\alpha>0, \beta \geqq 0, a+\beta=1$, such that

$$
\begin{equation*}
Q=\alpha\left(\frac{1}{2} U_{0}+\frac{1}{2} U_{a}\right) Q_{0}+\beta Q_{1} . \tag{2.2}
\end{equation*}
$$

Proof. That (2.2) is sufficient follows from the inequality

$$
\begin{aligned}
\left\|Q-U_{a} Q\right\| & =\left\|\frac{1}{2} \alpha U_{0} Q_{0}+\beta Q_{1}-\frac{1}{2} \alpha U_{2 a} Q_{0}-\beta U_{a} Q_{1}\right\| \\
& \leqq \frac{1}{2} \alpha+\beta+\frac{1}{2} \alpha+\beta=1+\beta<2 .
\end{aligned}
$$

To prove necessity, let A, B be a Hahn decomposition of ($-\infty$, $+\infty$) with respect to $Q-U_{a} Q$. (Halmos [1], § 29). Then for every Borel set E we have, putting $R \stackrel{\text { df }}{=} U_{a} Q$:

$$
Q(E)=M_{1}(E)+M_{0}(E), \quad R(E)=M_{2}(E)+M_{0}(E),
$$

with

$$
\begin{aligned}
& M_{1}(E) \stackrel{\text { df }}{=} Q(A E)-R(A E), \\
& M_{2}(E) \stackrel{\text { did }}{=} R(B E)-Q(B E), \\
& M_{0}(E) \stackrel{\text { df }}{=} Q(B E)+R(A E) .
\end{aligned}
$$

By definition of a Hahn decomposition, M_{1} and M_{2} are (nonnegative) measures. The measure M_{0} does not vanish, since this
would imply $Q(B)=R(A)=0$ in contradiction with the assumption $\|Q-R\|<2$.

From $Q=M_{1}+M_{0}$ and $Q=U_{-a} R=U_{-a} M_{2}+U_{-a} M_{0}$ it follows that

$$
Q=\left(\frac{1}{2} U_{0}+\frac{1}{2} U_{a}\right) U_{-a} M_{0}+\frac{1}{2}\left(M_{1}+U_{-a} M_{2}\right) .
$$

Since M_{0}, M_{1}, M_{2} are measures and M_{0} does not vanish, (2.2) holds with $Q_{0}=U_{-a} M_{0} /\left\|M_{0}\right\|$ and Q_{1} either vanishing or equal to $\left(M_{1}+U_{-a} M_{2}\right) /\left\|M_{1}+M_{2}\right\|$.

Lemma 4. If $P=P_{1} P_{2}$ and $\lim _{n \rightarrow \infty}\left\|P_{1}^{n} R-U_{a} P_{1}^{n} R\right\|=0$, then

$$
\lim _{n \rightarrow \infty}\left\|P^{n} R-U_{a} P^{n} R\right\|=0
$$

Proof. Since $\left\|P_{2}\right\|=1$, the lemma follows immediately by (1.3) and the relation

$$
P^{n} R-U_{a} P^{n} R=P_{2}^{n}\left(P_{1}^{n} R-U_{a} P_{1}^{n} R\right)
$$

Lemma 5. For some m let

$$
\begin{equation*}
P^{m}=\alpha P_{1}+\beta P_{2}, \tag{2.3}
\end{equation*}
$$

with P_{1} and P_{2} probability measures and α, β constants with $\alpha>0$, $\beta \geqq 0, \alpha+\beta=1$. If P_{1} satisfies (2.1), the same is true for P. In fact, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|P^{n} R-U_{a} P^{n} R\right\| \leqq \lim _{n \rightarrow \infty}\left\|P_{1}^{n} R-U_{a} P_{1}^{n} R\right\| . \tag{2.4}
\end{equation*}
$$

Proof. By lemma 2, with $Q \stackrel{\mathrm{df}}{=} P^{m}$

$$
\lim _{n \rightarrow \infty}\left\|P^{n} R-U_{a} P^{n} R\right\|=\lim _{n \rightarrow \infty}\left\|Q^{n} R-U_{a} Q^{n} R\right\|
$$

Since the case $\beta=0$ is trivial, we assume $\alpha<1$.
By (1.2) and (1.3)

$$
\begin{aligned}
\left\|Q^{n} R-U_{a} Q^{n} R\right\| & =\left\|\sum_{k=0}^{n}\binom{n}{k} \alpha^{k} \beta^{n-k} P_{1}^{k} P_{2}^{n-k}\left(R-U_{a} R\right)\right\| \\
& \leqq \sum_{k=0}^{n}\binom{n}{k} \alpha^{k} \beta^{n-k}\left\|P_{1}^{k} R-P_{1}^{k} U_{a} R\right\| .
\end{aligned}
$$

Now $\lim _{k \rightarrow \infty}\left\|P_{1}^{k} R-P_{1}^{k} U_{a} R\right\|$ exists, so by the Toeplitz theorem (Loève [2], § 16.3, p. 238) the relation (2.4) follows.

Lemma 5 will be fundamental in our proofs. If (2.3) holds, we will say that P^{m} contains P_{1}.

Lemma 6. Let $P=\frac{1}{2} U_{b}+\frac{1}{2} U_{a+b}$. Then, for $n \rightarrow \infty$,

$$
\begin{equation*}
\left\|P^{n}-U_{a} P^{n}\right\| \sim c n^{-1} \tag{2.5}
\end{equation*}
$$

Proof. Since P^{n} is a binomial distribution concentrated in the points $n b+k a, k=0,1, \ldots, n$,

$$
\begin{aligned}
& \left\|P^{n}-U_{a} P^{n}\right\|=\binom{n}{0} 2^{-n}+\sum_{k=1}^{n}\left|\binom{n}{k}-\binom{n}{k-1}\right| 2^{-n}+\binom{n}{n} 2^{-n} \\
& =\frac{4}{n+1} \sum_{k=0}^{n+1}\binom{n+1}{k} 2^{-n-1}\left|k-\frac{n+1}{2}\right| \\
& =\frac{4}{n+1} \int|x| d B_{n+1}(x)=2(n+1)^{-\frac{1}{2}} \int|y| d B_{n+1}\left(\frac{1}{2} y \sqrt{n+1}\right),
\end{aligned}
$$

where B_{m} is the distribution function of the binomial distribution $\boldsymbol{b}\left(\frac{1}{2}, m\right)$ centered at zero. Since $B_{n}\left(\frac{1}{2} y \sqrt{ } n\right)$ converges completely to the distribution function of $N(0,1)$ and has second moment bounded with respect to n, we have (see Loève [2], § 11.4)

$$
\lim _{n \rightarrow \infty} \int|y| d B_{n+1}\left(\frac{1}{2} y \sqrt{n+1}\right)=(2 \pi)^{-\frac{1}{2}} \int|y| \exp \left(-\frac{1}{2} y^{2}\right) d y
$$

which concludes the proof.

3. The set $\boldsymbol{L}_{\mathbf{0}}$

In this section we consider the set L_{0} of those a for which (1.1) holds.

Theorem 1. The-value of $\lim _{n \rightarrow \infty}\left\|P^{n}-U_{a} P^{n}\right\|$ is either 0 or 2.
Proof. Obviously the limit is in [0,2]. If it is not 2, then for some n

$$
\left\|P^{n}-U_{a} P^{n}\right\|<2
$$

and P^{n} by lemma 3 contains a probability measure of the form $\left(\frac{1}{2} U_{0}+\frac{1}{2} U_{a}\right) Q_{0}$. So by applying lemma 6, 4 and 5 respectively, we see that $\lim _{n \rightarrow \infty}\left\|P^{n}-U_{a} P^{n}\right\|=0$.

Theorem 2. The set L_{0} is the real line if and only if P^{n} for some n has an absolutely continuous component.

Proof. Sufficiency: If P is absolutely continuous with density $p(x)$, then

$$
\lim _{a \rightarrow 0}\left\|P-U_{a} P\right\|=\lim _{a \rightarrow 0} \int|p(x)-p(x-a)| d x=0,
$$

so that $\left\|P-U_{a} P\right\|<2$ if $a \in(-\varepsilon, \varepsilon)$ for some $\varepsilon>0$. Therefore $L_{0} \supset(-\varepsilon, \varepsilon)$ by lemma 2 and theorem 1 . It follows from lemma 1 that $L_{0}=(-\infty,+\infty)$.

If $P^{\boldsymbol{n}}$ has an absolutely continuous component, the assertion $L_{0}=(-\infty,+\infty)$ follows from lemma 5 and what has been shown above. Necessity: Let Q be any absolutely continuous probability measure with density $q(y)$. Then A_{n}, B_{n} being a Hahn decomposition for $P^{n}-Q P^{n}$, we have

$$
\begin{align*}
& \left\|P^{n}-Q P^{n}\right\|=P^{n}\left(A_{n}\right)-Q P^{n}\left(A_{n}\right)+Q P^{n}\left(B_{n}\right)-P^{n}\left(B_{n}\right) \\
& \quad=\int q(y)\left\{P^{n}\left(A_{n}\right)-U_{y} P^{n}\left(A_{n}\right)+U_{y} P^{n}\left(B_{n}\right)-P^{n}\left(B_{n}\right)\right\} d y \tag{3.1}\\
& \quad \leqq 2 \int q(y)\left\|P^{n}-U_{y} P^{n}\right\| d y
\end{align*}
$$

Here $\left\|P^{n}-U_{y} P^{n}\right\|$ is a Borel function of y. This is seen by the following relation, $F(x)$ being the distribution function of P^{n} :

$$
\left\|P^{n}-U_{y} P^{n}\right\|=\sup \sum_{i=1}^{N-1}\left|F\left(b_{i+1}\right)-F\left(b_{i+1}-y\right)-F\left(b_{i}\right)+F\left(b_{i}-y\right)\right|
$$

where the supremum is taken over $N=2,3, \ldots$ and rational b_{1}, \ldots, b_{N}, since $F(x)$ is continuous from the left.

By our assumption and the Lebesgue dominated convergence theorem the right hand side of (3.1) tends to zero for $n \rightarrow \infty$. So $\left\|P^{n}-Q P^{n}\right\|<2$ for $n \geqq n_{1}$ and, since $Q P^{n}$ is absolutely continuous, P^{n} for $n \geqq n_{1}$ must have an absolutely continuous component.

Theorem 3. If P is purely discrete, L_{0} is the additive group generated by the difference set of the set J of all those x with $P(\{x\})>0$.

Proof. Let $J=\left\{c_{1}, c_{2}, \ldots\right\}$. Then P^{n} is restricted to the set of all x of the form

$$
x=\sum_{k=1}^{n} c_{i_{k}},
$$

where some or all i_{k} may be equal. In order that $\left\|P^{n}-U_{a} P^{n}\right\|<2$ for some n, it is necessary that

$$
a=\sum_{k=1}^{n} c_{i_{k}}-\sum_{k=1}^{n} c_{j_{k}}=\sum_{k=1}^{n}\left(c_{i_{k}}-c_{j_{k}}\right)
$$

for some $i_{1}, i_{2}, \ldots, i_{n}, j_{1}, j_{2}, \ldots, j_{n}$, which shows that L_{0} is a subset of the additive group generated by the $c_{i}-c_{g}$.

On the other hand, if $x \in J, y \in J$, the measure P contains the measure $\frac{1}{2} U_{x}+\frac{1}{2} U_{y}$, so that $x-y \in L_{0}$ by lemma 6 and lemma 5. So by lemma 1 the additive group generated by the $c_{i}-c_{j}$ is a subset of L_{0}.

Theorem 4. The set L_{0} is an F_{σ}.
Proof. If P is purely discrete, L_{0} is a countable set by theorem 3. Assume, then, that P has a nondiscrete component. Writing D_{n}, C_{n} for the discrete and nondiscrete component of P^{n}, we have

$$
\begin{align*}
& \left|\left\|P^{n}-U_{a} P^{n}\right\|-\left\|C_{n}-U_{a} C_{n}\right\|\right| \\
& \quad \leqq\left\|P^{n}-U_{a} P^{n}-\left(C_{n}-U_{a} C_{n}\right)\right\| \tag{3.2}\\
& \quad=\left\|D_{n}-U_{a} D_{n}\right\| \leqq 2\left\|D_{n}\right\|=\mathbf{2}\left\|D_{1}\right\|^{n},
\end{align*}
$$

with $\left\|D_{1}\right\|<1$. Let

$$
V_{n}(x) \stackrel{\mathrm{df}}{=}\left\|C_{n}-U_{x} C_{n}\right\|, \quad n=1,2, \ldots, \quad-\infty<x<\infty .
$$

By (3.2) and theorem 1

$$
L_{0}=\bigcup_{n=n_{0}}^{\infty}\left\{x: V_{n}(x) \leqq 1\right\} .
$$

Here n_{0} is chosen so that $2\left\|D_{1}\right\|^{n_{0}}<\frac{1}{2}$, say. Let $G_{n}(y)$ denote the distribution function of C_{n}. Then

$$
\begin{equation*}
V_{n}(x)=\sup \sum_{i=1}^{N-1}\left|G_{n}\left(b_{i+1}\right)-G_{n}\left(b_{i+1}-x\right)-G_{n}\left(b_{i}\right)+G_{n}\left(b_{i}-x\right)\right|, \tag{3.3}
\end{equation*}
$$

where the supremum is taken over $N=2,3, \ldots$ and $b_{1}, b_{2}, \ldots, b_{N}$:

$$
V_{n}(x)=\sup _{\alpha} V_{n, \alpha}(x), \quad-\infty<x<\infty, \quad n=1,2, \ldots
$$

where the $V_{n, \alpha}(x)$ are of the form occurring in (3.3). The $V_{n, \alpha}(x)$ are continuous functions of x. So the sets $\left\{x: V_{n, \alpha}(x) \leqq 1\right\}$ are closed, and

$$
\dot{L_{0}}=\bigcup_{n=n_{0} \alpha}^{\infty} \bigcap\left\{x: V_{n, \alpha}(x) \leqq 1\right\}
$$

is an F_{σ}.

4. Examples of singular distributions

If P^{n} is purely singular for every n, the problem of characterizing the set L_{0} is still open. Here we present two examples of purely singular $P^{n}, n=1,2, \ldots$, where L_{0} is countable and where L_{0} has the power of the continuum, respectively.

Example 1. For P we take the probability distribution of the random variable

$$
\begin{equation*}
x \stackrel{\text { df }}{=} \sum_{n=1}^{\infty} x_{n} 3^{-n^{2}}, \tag{4.1}
\end{equation*}
$$

where the x_{n} are independent nonnegative integer valued random variables. Moreover it is assumed that there exist natural numbers n_{1} and m such that the x_{k} for $k \geqq n_{1}$ have the same distribution restricted to $\{0,1, \ldots, m\}$ with $P\left\{x_{k}=j\right\}>0, j=0,1, \ldots, m$.

As shown by (4.1), the range of x is an uncountable set W and for every $c \in W$ we have $P\{x=c\}=0$. So P cannot have a discrete component and the same then is true for all P^{n}. It will be shown below, from the conditions on P stated above, that $\left\|P-U_{a} P\right\|=2$, except for countably many a. But then this must hold also for every P^{n}, since, as is easily seen, P^{n} is of the same type as P. So L_{0} is a countable set. By theorem 2 no P^{n} can have an absolutely continuous component, so every P^{n} is purely singular.

To prove our assertion on $\left\|P-U_{a} P\right\|$ we show that

$$
P\{x+a \in W\}=\mathbf{0}
$$

which implies mutual singularity of P and $U_{a} P$, for all but countably many a. It is no restriction to assume $a \geqq 0$. Let

$$
a=\sum_{n=1}^{\infty} a_{n} 3^{-n^{2}}
$$

where the a_{n} are chosen so that

$$
\begin{equation*}
a_{n}<3^{n^{2}-(n-1)^{2}}=3^{2 n-1}, \quad n=2,3, \ldots \tag{4.2}
\end{equation*}
$$

The event $\{x+a \in W\}$ implies the existence of (random) integers b_{1}, b_{2}, \ldots such that

$$
\begin{align*}
\sum_{n=1}^{\infty}\left(a_{n}+x_{n}\right) 3^{-n^{2}}=\sum_{n=1}^{\infty} b_{n} 3^{-n^{2}}, & \tag{4.3}\\
0 \leqq b_{n} \leqq m, & n \geqq n_{1} \tag{4.4}
\end{align*}
$$

It will be shown that (4.3) and (4.4), for all but countably many a, imply the occurrence of a sequence of events $\left\{x_{\nu_{k}} \in A\right\}$, with $\nu_{1}<\nu_{2}<\ldots$ and $P\left(x_{\nu_{k}} \in A\right\}<1, k=1,2, \ldots$, from which follows, by the independence and equidistribution of the x_{n} for $n \geqq n_{1}$, that $P\{x+a \in W\}=0$.

First we note that there is n_{2} such that for $n \geqq n_{2}$ the carry c_{n} from the $n^{\text {th }}$ to the $(n-1)^{\text {th }}$ place in the addition in (4.3) is at most 1.

We now distinguish the following cases:
a. There is an infinite sequence $\nu_{1}<\nu_{2}<\ldots$ such that

$$
1 \leqq a_{\nu_{k}} \leqq 3^{2 \nu_{k}-1}-m-2, \quad k=1, \quad \ldots .
$$

Since for $\boldsymbol{v}_{k} \geqq \max \left(n_{1}, n_{2}\right)$

$$
a_{\nu_{k}}+x_{\nu_{k}}+c_{1+\nu_{k}} \leqq 3^{2 \nu_{k}-1}-m-2+m+1<3^{2 \nu_{k}-1}
$$

$c_{\nu_{k}}=0$ for $v_{k} \geqq \max \left(n_{1}, n_{2}\right)$, and for (4.3) and (4.4) to hold we must have

$$
x_{\nu_{k}}+a_{\nu_{k}}+c_{1+\nu_{k}} \leqq m,
$$

implying $x_{\nu_{k}} \leqq m-1$ and we may take $A=\{0,1, \ldots, m-1\}$.
b. There is n_{3} such that $a_{n}=0$ or $a_{n} \geqq 3^{2 n-1}-m-1$ for $n \geqq n_{3}$.
b1. All but a finite number of the a_{n} are zero. The corresponding a form a countable set.
b2. There is n_{4} with $a_{n} \geqq 3^{2 n-1}-m-1$ for $n \geqq n_{4}$. To satisfy (4.3) and (4.4) we must have $c_{n}>0$ for $n \geqq \max \left(n_{1}, n_{4}\right)$, so

$$
\begin{aligned}
& x_{n}+a_{n}+c_{n+1} \geqq 3^{2 n-1} \\
& x_{n} \geqq 3^{2 n-1}-1-a_{n}
\end{aligned}
$$

which by (4.2) implies $x_{n} \geqq 1$ for infinitely many n, except if $a_{n}=3^{2 n-1}-1$ for all but a finite number of n. But the set of a satisfying the latter condition is countable.
$b 3$. The sets of n with $a_{n}=0$ and with $a_{n} \geqq 3^{2 n-1}-m-1$ are both infinite. Then we may select a sequence $\nu_{1}<\nu_{2}<\ldots$ with

$$
a_{\nu_{k}} \geqq 3^{2 n-1}-m-1, \quad a_{1+\nu_{k}}=0, \quad k=1,2, \ldots
$$

To satisfy (4.3) and (4.4) we must have $c_{\nu_{k}}>0, k=1,2, \ldots$, or, since $c_{1+\nu_{k}}=0$ for $k \geqq k_{1}$,

$$
x_{\nu_{k}}+a_{\nu_{k}} \geqq 3^{2 v_{k}-1}, \quad k \geqq k_{1}
$$

which by (4.2) implies the events $\left\{x_{\nu_{k}} \geqq 1\right\}, k \geqq k_{1}$.
Example 2. This example is taken from a paper by Wiener and Young [4], section 7. Let n_{1}, n_{2}, \ldots be an increasing sequence of natural numbers, such that

$$
\begin{equation*}
\sum_{k=1}^{\infty} n_{k}^{-1}<\infty \tag{4.5}
\end{equation*}
$$

and consider the expansion of $x \in(0,1)$:

$$
\begin{equation*}
x=\frac{m_{1}}{n_{1}}+\frac{m_{2}}{n_{1} n_{2}}+\frac{m_{3}}{n_{1} n_{2} n_{3}}+\ldots \tag{4.6}
\end{equation*}
$$

the m_{i} being nonnegative integers with $m_{i}<n_{i}$, ambiguity being removed by taking the terminating expansion whenever possible. The n_{k} are assumed even, $n_{k}=2 r_{k}, k=1,2, \ldots$ Let $F(x)$ be defined by

$$
\begin{aligned}
& F(x)=0, \quad x \leqq 0, \quad F(x)=1, \quad x \geqq 1 \\
& F(x)=\frac{m_{1} / 2}{r_{1}}+\frac{m_{2} / 2}{r_{1} r_{2}}+\frac{m_{3} / 2}{r_{1} r_{2} r_{3}}+\ldots
\end{aligned}
$$

if every m_{k} in (4.6) is even, and

$$
F(x)=\frac{m_{1} / 2}{r_{1}}+\frac{m_{2} / 2}{r_{1} r_{2}}+\ldots+\frac{m_{n-1} / 2}{r_{1} r_{2} \ldots r_{n-1}}+\frac{\left[m_{n} / 2\right]+1}{r_{1} r_{2} \ldots r_{n}}
$$

if m_{n} is the first odd m_{k} in (4.6).
It was shown by Wiener and Young, that $F(x)$ is the distribution function of a purely singular probability measure P and that the set of a with $\left\|P-U_{a} P\right\|<2$ has the power of the continuum. So by our lemma 2 and theorem 1 the set L_{0} for this P has the power of the continuum. For the sake of our example we only have to show that P^{n} for every n is purely singular. To this end we note that F is the distribution function of the random variable

$$
\begin{equation*}
x=\sum_{k=1}^{\infty} x_{k}\left(n_{1} n_{2} \ldots n_{k}\right)^{-1} \tag{4.7}
\end{equation*}
$$

where the x_{k} are independent and

$$
\begin{equation*}
P\left\{x_{k}=j\right\}=r_{k}^{-1}, \quad j=0,2, \ldots, n_{k}-2, \quad k=1,2, \ldots \tag{4.8}
\end{equation*}
$$

Clearly P^{n} for every n is a convergent infinite convolution of discrete distributions. By a theorem of Wintner, [5], p. 89, no. 148, such a distribution is of pure type. Since P is not discrete, it is sufficient to show that P^{n} is not purely absolutely continuous. This will follow from the fact that

$$
\begin{equation*}
\limsup _{u \rightarrow \infty}|\varphi(u)|>0 \tag{4.9}
\end{equation*}
$$

where $\varphi(u)$ denotes the characteristic function of P, since, if P^{n} were absolutely continuous, its characteristic function $\varphi^{n}(u)$ would tend to zero for $|u| \rightarrow \infty$ by the Riemann-Lebesgue lemma.

From (4.7) and (4.8) we have

$$
\varphi(u)=\prod_{k=1}^{\infty} \varphi_{k}(u), \quad-\infty<u<\infty
$$

with

$$
\begin{equation*}
\varphi_{k}(u)=\frac{1}{r_{k}} \sum_{h=0}^{r_{k}-1} \exp \left(\frac{2 h i u}{n_{1} n_{2} \ldots n_{k}}\right), \tag{4.11}
\end{equation*}
$$

so that

$$
\begin{equation*}
\varphi_{k}\left(n_{1} n_{2} \ldots n_{H} \pi\right)=1, \quad k=1,2, \ldots, H \tag{4.12}
\end{equation*}
$$

$$
\begin{equation*}
\varphi_{H+1}\left(n_{1} n_{2} \ldots n_{H} \pi\right)=2 r_{H+1}^{-1}\left\{1-\exp \left(2 \pi i / n_{H+1}\right)\right\}^{-1} \tag{4.13}
\end{equation*}
$$

$\varphi_{H+m}\left(n_{1} n_{2} \ldots n_{H} \pi\right)=\frac{1}{r_{H+m}} \sum_{h=0}^{r_{H+m}^{-1}} \exp \left(\frac{2 \pi i h}{n_{H+1} \ldots n_{H+m}}\right)$,

$$
m=2,3, \ldots
$$

$\prod_{m=2}^{M} \varphi_{H+m}\left(n_{1} n_{2} \ldots n_{H} \pi\right)$

$$
=\frac{1}{r_{H+2} \ldots r_{H+M}} \sum_{h_{2}=0}^{r_{H+2}} \cdots \sum_{h_{M}=0}^{r_{H+M}-1} A\left(h_{2}, h_{3}, \ldots, h_{M}\right),
$$

with

$$
A\left(h_{2}, h_{3}, \ldots, h_{M}\right)=\exp \left(2 \pi i \sum_{m=2}^{M} \frac{h_{m}}{n_{H+1} \ldots n_{H+m}}\right) .
$$

Now

$$
\begin{aligned}
& \left|1-A\left(h_{2}, \ldots, h_{M}\right)\right| \\
& \qquad \leqq \pi \sum_{m=2}^{M} \frac{h_{m}}{n_{H+1} \ldots n_{H+m}} \leqq \pi \sum_{m=2}^{M} \frac{1}{n_{H+1} \ldots n_{H+m-1}},
\end{aligned}
$$

so that

$$
\begin{equation*}
\left|1-\prod_{m=2}^{M} \varphi_{H+m}\left(n_{1} n_{2} \ldots n_{H} \pi\right)\right| \leqq \pi \sum_{m=2}^{M} \frac{1}{n_{H+1} \ldots n_{H+m-1}} \tag{4.14}
\end{equation*}
$$

From (4.10)-(4.14) and $\lim _{H \rightarrow \infty} n_{H}=+\infty$ it follows that

$$
\lim _{H \rightarrow \infty} \varphi\left(n_{1} n_{2} \ldots n_{H} \pi\right)=-2 / \pi i
$$

which proves (4.9).

5. The relation (1.4)

For fixed probability measure P let

$$
\begin{equation*}
D_{n}(x, Q) \stackrel{\text { df }}{=}\left\|P^{n} Q-U_{x} P^{n} Q\right\|, \quad n=1,2, \ldots \tag{5.1}
\end{equation*}
$$

with Q absolutely continuous,

$$
\begin{equation*}
D(x, Q) \stackrel{\text { df }}{=} \lim _{n \rightarrow \infty} D_{n}(x, Q), \tag{5.2}
\end{equation*}
$$

the limit existing by lemma 2 , and

$$
\begin{equation*}
D(x) \stackrel{\mathrm{df}}{=} \sup D(x, Q) \tag{5.3}
\end{equation*}
$$

the supremum being taken over all absolutely continuous probability measures Q.

Lemma 7. $D_{n}(x, Q)$ and $D(x, Q)$ are continuous functionals of Q, uniformly in x and n, in fact

$$
\begin{aligned}
& \left|D_{n}\left(x, Q_{1}\right)-D_{n}\left(x, Q_{2}\right)\right| \leqq 2\left\|Q_{1}-Q_{2}\right\|, \\
& \left|D\left(x, Q_{1}\right)-D\left(x, Q_{2}\right)\right| \leqq 2\left\|Q_{1}-Q_{2}\right\| .
\end{aligned}
$$

Proof. By (1.2) and (1.3)

$$
\begin{aligned}
&\left|D_{n}\left(x, Q_{1}\right)-D_{n}\left(x, Q_{2}\right)\right| \leqq\left\|P^{n} Q_{1}-U_{x} P^{n} Q_{1}-\left(P^{n} Q_{2}-U_{x} P^{n} Q_{2}\right)\right\| \\
& \leqq\left\|P^{n}\left(Q_{1}-Q_{2}\right)\right\|+\left\|U_{x} P^{n}\left(Q_{1}-Q_{2}\right)\right\| \leqq 2\left\|Q_{1}-Q_{2}\right\| .
\end{aligned}
$$

Lemma 8. Let $Q_{k}, k=1,2, \ldots$, be a sequence of probability measures with densities $q_{k}(y), k=1,2, \ldots$, such that

$$
q_{k}(y)=k q_{1}(k y), \quad-\infty<y<\infty, \quad k=1,2, \ldots
$$

Then

$$
D(x)=\sup _{k} D\left(x, Q_{k}\right) .
$$

Proof. By definition of $D(x)$

$$
\begin{equation*}
S(x) \stackrel{\mathrm{df}}{=} \sup _{k} D\left(x, Q_{k}\right) \leqq D(x), \quad-\infty<x<\infty . \tag{5.4}
\end{equation*}
$$

For any Q we have by (1.3)

$$
D_{n}\left(x, Q Q_{k}\right) \leqq D_{n}\left(x, Q_{k}\right),
$$

so, for $n \rightarrow \infty$,

$$
\begin{equation*}
D\left(x, Q Q_{k}\right) \leqq D\left(x, Q_{k}\right) \leqq S(x), \quad k=1,2, \ldots . \tag{5.5}
\end{equation*}
$$

Since Q is absolutely continuous, $\left\|Q-Q Q_{k}\right\|$ tends to zero for $k \rightarrow \infty$, so from (5.5) and lemma 7 it follows that $D(x, Q) \leqq S(x)$ for every absolutely continuous Q, implying

$$
\begin{equation*}
D(x) \leqq S(x) \tag{5.6}
\end{equation*}
$$

and the lemma follows from (5.4) and (5.6).
Theorem 5. If P is not a lattice distribution,

$$
\begin{equation*}
D(x)=0, \quad-\infty<x<\infty . \tag{5.7}
\end{equation*}
$$

If P is a lattice distribution with span c,

$$
\begin{align*}
& D(x)=0, \quad x=n c, \quad n \text { integer }, \tag{5.8}\\
& D(x)=2, \\
& \text { elsewhere }
\end{align*}
$$

By a lattice distribution is meant here a discrete distribution concentrated in a subset of $\{a+n d, n$ integer $\}$ for some a and d, the span being the largest value that may be taken for d.

Proof of (5.7). By lemma 8 it is sufficient to prove that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} D_{n}\left(x, Q_{k}\right)=0, \quad k=1,2, \ldots \tag{5.9}
\end{equation*}
$$

for a suitable sequence $Q_{k}, k=1,2, \ldots$, of the form considered in lemma 8. We choose Q_{1} in such a way that it is symmetric about zero and has finite second moment, that its density $q_{1}(y)$ belongs to L_{2} and its characteristic function $\vartheta_{1}(u)$ satisfies

$$
\begin{equation*}
\vartheta_{1}(u)=0, \quad|u| \geqq 1 . \tag{5.10}
\end{equation*}
$$

This may be accomplished by taking

$$
q_{1}(y)=\alpha\left(4 y^{-1} \sin \frac{1}{4} y\right)^{4}, \quad-\infty<y<\infty,
$$

with α a norming constant, as will be seen by applying the Fourier inversion formula to the characteristic function of the fourfold convolution of the uniform distribution on $\left[-\frac{1}{4}, \frac{1}{4}\right]$.

By lemma 5 it is no restriction to assume that P has finite second moment. We also center P at its first moment.

For fixed k let $p_{n}(x)$ and $r_{n}(x)$ be the densities of $P^{n} Q_{k}$ and $U_{a} P^{n} Q_{k}$, respectively. Then

$$
\begin{aligned}
& D_{n}\left(a, Q_{k}\right)=\int\left|p_{n}(x)-r_{n}(x)\right| d x, \\
& D_{n}\left(a, Q_{k}\right) \leqq \int_{-A}^{A}\left|p_{n}(x)-r_{n}(x)\right| d x+2 \int_{|x| \geqq A-a} p_{n}(x) d x .
\end{aligned}
$$

Here A is allowed to depend on n. By the inequality between arithmetic and quadratic mean and by Chebychev's inequality

$$
D_{n}\left(a, Q_{k}\right) \leqq\left[2 A \int_{-\infty}^{+\infty}\left\{p_{n}(x)-r_{n}(x)\right\}^{2} d x\right]^{\frac{1}{2}}+2 \frac{n d^{2}+v^{2} k^{-2}}{(A-a)^{2}},
$$

where d^{2} is the variance of P and v^{2} the variance of Q_{1}. Since $q_{1} \in L_{2}$, also $q_{k} \in L_{2}$ and therefore $p_{n} \in L_{2}, r_{n} \in L_{2}$. So by Parseval's formula

$$
D_{n}\left(a, Q_{k}\right) \leqq\left[\frac{A}{\pi} \int_{-\infty}^{+\infty}\left|\left(1-e^{i u a}\right) \varphi^{n}(u) \vartheta_{k}(u)\right|^{2} d u\right]^{\frac{1}{2}}+2 \frac{n d^{2}+v^{2} k^{-2}}{(A-a)^{2}},
$$

where $\varphi(u)$ denotes the characteristic function of P and $\vartheta_{k}(u)=\vartheta_{1}(u / k)$ the characteristic function of Q_{k}. Making use of (5.10) and the inequality $\left|\vartheta_{k}(u)\right| \leqq 1$, and putting $A=C n^{\frac{1}{2}}$, we find for n suitably large

$$
D_{n}\left(a, Q_{k}\right) \leqq\left[\frac{C n^{\frac{1}{2}}}{\pi} \int_{-k}^{k}|\varphi(u)|^{2 n}\left|1-e^{i u a}\right|^{2} d u\right]^{\frac{1}{2}}+3 d^{2} C^{-2} .
$$

Since P is not degenerate and has finite second moment, there are $\varepsilon \in(0,1)$ and $\beta \in(0,1)$ such that

$$
|\varphi(u)|^{2} \leqq 1-\beta u^{2}, \quad|u| \leqq \varepsilon .
$$

Moreover, P being not a lattice distribution, there is a constant $\boldsymbol{\gamma} \in[0,1)$ so that

$$
|\varphi(u)| \leqq \gamma, \quad \varepsilon \leqq|u| \leqq k .
$$

(See Lukacs [3], theorem 2.1.4). So, since also

$$
\begin{aligned}
& \left|1-e^{i u a}\right|^{2} \leqq a^{2} u^{2} \leqq a^{2}|u| \text { for }|u| \leqq \varepsilon, \\
& \underset{n}{\lim \sup } D_{n}\left(a, Q_{k}\right) \leqq 3 d^{2} C^{-2}+\underset{n}{\lim \sup }\left[\frac{2 a^{2} C n^{\frac{1}{2}}}{\pi} \int_{0}^{\varepsilon}\left(1-\beta u^{2}\right)^{n} u d u\right]^{\frac{1}{2}} \\
& =8 d^{2} C^{-2}+\limsup _{n}\left[\frac{a C n^{\frac{1}{2}}}{\beta \pi(n+1)}\left\{1-\left(1-\beta \varepsilon^{2}\right)^{n+1}\right\}\right]^{\frac{1}{2}}=3 d^{2} C^{-2} .
\end{aligned}
$$

Since this holds for every $C>0$, the proof of (5.9) is concluded.
Proof of (5.8) That $D(x)=0$ for $x=n c$, follows from theorem
8. That $D(x)=2$ for $x \neq n c$, is seen by taking for Q the uniform distribution on $[-h, h]$, with h so small that no intervals $[n c-h, n c+h]$ and $[m c+x-h, m c+x+h], m, n$ integer, overlap.

REFERENCES

Halmos, P. R.,
[1] Measure Theory, Sec. ed. Van Nostrand, 1950.
Loève, M.,
[2] Probability Theory, Sec. ed. Van Nostrand, 1960.
Lukacs, E.,
[8] Characteristic Functions. Griffin, 1960.
Wiener, N. and R. C. Young,
[4] The Total Variation of $g(x+h)-g(x)$. Trans. Amer. Math. Soc. 35 (1933), 827-340.

Wintiner, A.,
[5] The Fourier Transforms of Probability Distributions. Baltimore, 1947.
(Oblatum 4-10-65).

