COMPOSITIO MATHEMATICA

A. J. STAM On shifting iterated convolutions I

Compositio Mathematica, tome 17 (1965-1966), p. 268-280 http://www.numdam.org/item?id=CM_1965-1966_17_268_0

© Foundation Compositio Mathematica, 1965-1966, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

$\mathcal N$ umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

On shifting iterated convolutions I

by

A. J. Stam

1. Introduction

Throughout this paper P, Q, R, with or without indices, denote probability measures on the Borel sets of the real line, PQ denotes the convolution of P and Q and P^n the n^{th} iterated convolution of P. So $U_a P^n$, where U_a is the probability measure degenerate at a, is the n^{th} convolution of P, shifted to the right over a distance a.

The problem considered in this paper is to describe the set L_0 of those values a for which

(1.1)
$$\lim_{n\to\infty}||P^n-U_aP^n||=0.$$

Here ||M||, for any finite signed measure M, is the total variation of M. It is well known that, for any two finite signed measures M and N,

$$(1.2) ||M+N|| \leq ||M||+||N||,$$

$$(1.8) ||MN|| \leq ||M|| \, ||N||,$$

MN denoting convolution as before.

In section 5 we consider the following property, weaker than (1.1):

(1.4)
$$\lim_{n\to\infty} ||P^nQ - U_a P^nQ|| = 0$$

for every absolutely continuous Q. This holds for every a if P is not a lattice distribution.

Our main results on (1.1) are the following. The limit in (1.1) always exists and is either 0 or 2. The set L_0 is the real line if and only if P^n for some *n* has an absolutely continuous component. If *P* is purely discrete, L_0 is the additive group generated by the set of differences of those *y* for which $P(\{y\}) > 0$.

For the case that every P^n is purely singular, the author only found examples of a countable L_0 and an uncountable L_0 .

The restriction to probability measures is essential. If ||P|| < 1, the problem is trivial since then $\lim_{n\to\infty} ||P^n|| = 0$. If P is a measure with $P(-\infty, +\infty) > 1$, we may expect $L_0 = \{0\}$, since for probability measures the convergence in (1.1) and (1.4), if present, is of order $n^{-\frac{1}{2}}$ (see lemma 6 below).

2. Preliminary results

LEMMA 1. The set of all a for which

(2.1)
$$\lim_{n\to\infty} ||P^n R - U_a P^n R|| = 0,$$

is an additive group.

PROOF. The additivity is immediate by (1.2). Moreover, if (2.1) holds for a, the same is true for -a.

LEMMA 2. The sequence $||P^nR-U_aP^nR||$, n = 1, 2, ..., is non-increasing.

PROOF. The assertion follows from (1.3) since ||P|| = 1.

LEMMA 3. Let Q be any probability measure on the real line. Then $||Q-U_aQ|| < 2$ if and only if there exist probability measures Q_0 and Q_1 and real numbers α , β with $\alpha > 0$, $\beta \ge 0$, $a+\beta = 1$, such that

(2.2)
$$Q = \alpha(\frac{1}{2}U_0 + \frac{1}{2}U_a)Q_0 + \beta Q_1.$$

PROOF. That (2.2) is sufficient follows from the inequality

$$\begin{aligned} ||Q - U_a Q|| &= ||\frac{1}{2} \alpha U_0 Q_0 + \beta Q_1 - \frac{1}{2} \alpha U_{2a} Q_0 - \beta U_a Q_1|| \\ &\leq \frac{1}{2} \alpha + \beta + \frac{1}{2} \alpha + \beta = 1 + \beta < 2. \end{aligned}$$

To prove necessity, let A, B be a Hahn decomposition of $(-\infty, +\infty)$ with respect to $Q-U_aQ$. (Halmos [1], §29). Then for every Borel set E we have, putting $R \stackrel{\text{de}}{=} U_aQ$:

$$Q(E) = M_1(E) + M_0(E), \quad R(E) = M_2(E) + M_0(E),$$

with

$$M_1(E) \stackrel{\text{df}}{=} Q(AE) - R(AE),$$

$$M_2(E) \stackrel{\text{df}}{=} R(BE) - Q(BE),$$

$$M_0(E) \stackrel{\text{df}}{=} Q(BE) + R(AE).$$

By definition of a Hahn decomposition, M_1 and M_2 are (non-negative) measures. The measure M_0 does not vanish, since this

would imply Q(B) = R(A) = 0 in contradiction with the assumption ||Q-R|| < 2.

From $Q = M_1 + M_0$ and $Q = U_{-a}R = U_{-a}M_2 + U_{-a}M_0$ it follows that

$$Q = (\frac{1}{2}U_0 + \frac{1}{2}U_a)U_{-a}M_0 + \frac{1}{2}(M_1 + U_{-a}M_2).$$

Since M_0 , M_1 , M_2 are measures and M_0 does not vanish, (2.2) holds with $Q_0 = U_{-a}M_0/||M_0||$ and Q_1 either vanishing or equal to $(M_1+U_{-a}M_2)/||M_1+M_2||$.

LEMMA 4. If $P = P_1P_2$ and $\lim_{n\to\infty} ||P_1^n R - U_a P_1^n R|| = 0$, then

$$\lim_{n\to\infty}||P^nR-U_aP^nR||=0.$$

PROOF. Since $||P_2|| = 1$, the lemma follows immediately by (1.8) and the relation

$$P^n R - U_a P^n R = P_2^n (P_1^n R - U_a P_1^n R).$$

LEMMA 5. For some m let

$$(2.3) P^m = \alpha P_1 + \beta P_2,$$

with P_1 and P_2 probability measures and α , β constants with $\alpha > 0$, $\beta \ge 0$, $\alpha + \beta = 1$. If P_1 satisfies (2.1), the same is true for P. In fact, we have

(2.4)
$$\lim_{n\to\infty} ||P^n R - U_a P^n R|| \leq \lim_{n\to\infty} ||P_1^n R - U_a P_1^n R||.$$

PROOF. By lemma 2, with $Q \stackrel{\text{df}}{=} P^m$

$$\lim_{n\to\infty}||P^nR-U_aP^nR|| = \lim_{n\to\infty}||Q^nR-U_aQ^nR||.$$

Since the case $\beta = 0$ is trivial, we assume $\alpha < 1$. By (1.2) and (1.3)

$$||Q^{n}R - U_{a}Q^{n}R|| = ||\sum_{k=0}^{n} {n \choose k} \alpha^{k} \beta^{n-k} P_{1}^{k} P_{2}^{n-k} (R - U_{a}R)||$$

$$\leq \sum_{k=0}^{n} {n \choose k} \alpha^{k} \beta^{n-k} ||P_{1}^{k}R - P_{1}^{k}U_{a}R||.$$

Now $\lim_{k\to\infty} ||P_1^k R - P_1^k U_a R||$ exists, so by the Toeplitz theorem (Loève [2], § 16.3, p. 238) the relation (2.4) follows.

Lemma 5 will be fundamental in our proofs. If (2.3) holds, we will say that P^m contains P_1 .

LEMMA 6. Let
$$P = \frac{1}{2}U_b + \frac{1}{2}U_{a+b}$$
. Then, for $n \to \infty$,
(2.5) $||P^n - U_a P^n|| \sim cn^{-\frac{1}{2}}$.

PROOF. Since P^n is a binomial distribution concentrated in the points nb+ka, k = 0, 1, ..., n,

$$\begin{split} ||P^{n} - U_{a}P^{n}|| &= \binom{n}{0} 2^{-n} + \sum_{k=1}^{n} \left| \binom{n}{k} - \binom{n}{k-1} \right| 2^{-n} + \binom{n}{n} 2^{-n} \\ &= \frac{4}{n+1} \sum_{k=0}^{n+1} \binom{n+1}{k} 2^{-n-1} \left| k - \frac{n+1}{2} \right| \\ &= \frac{4}{n+1} \int |x| dB_{n+1}(x) = 2(n+1)^{-\frac{1}{2}} \int |y| dB_{n+1}(\frac{1}{2}y\sqrt{n+1}), \end{split}$$

where B_m is the distribution function of the binomial distribution $b(\frac{1}{2}, m)$ centered at zero. Since $B_n(\frac{1}{2}y\sqrt{n})$ converges completely to the distribution function of N(0, 1) and has second moment bounded with respect to n, we have (see Loève [2], § 11.4)

$$\lim_{n\to\infty}\int |y|dB_{n+1}(\frac{1}{2}y\sqrt{n+1}) = (2\pi)^{-\frac{1}{2}}\int |y|\exp((-\frac{1}{2}y^2)dy),$$

which concludes the proof.

3. The set L_0

In this section we consider the set L_0 of those *a* for which (1.1) holds.

THEOREM 1. The value of $\lim_{n\to\infty} ||P^n - U_a P^n||$ is either 0 or 2.

PROOF. Obviously the limit is in [0, 2]. If it is not 2, then for some n

$$||P^n - U_a P^n|| < 2,$$

and P^n by lemma 3 contains a probability measure of the form $(\frac{1}{2}U_0 + \frac{1}{2}U_a)Q_0$. So by applying lemma 6, 4 and 5 respectively, we see that $\lim_{n\to\infty} ||P^n - U_a P^n|| = 0$.

THEOREM 2. The set L_0 is the real line if and only if P^n for some n has an absolutely continuous component.

PROOF. Sufficiency: If P is absolutely continuous with density p(x), then

$$\lim_{a\to 0} ||P - U_a P|| = \lim_{a\to 0} \int |p(x) - p(x-a)| dx = 0,$$

so that $||P-U_aP|| < 2$ if $a \in (-\varepsilon, \varepsilon)$ for some $\varepsilon > 0$. Therefore $L_0 \supset (-\varepsilon, \varepsilon)$ by lemma 2 and theorem 1. It follows from lemma 1 that $L_0 = (-\infty, +\infty)$.

If P^n has an absolutely continuous component, the assertion $L_0 = (-\infty, +\infty)$ follows from lemma 5 and what has been shown above. Necessity: Let Q be any absolutely continuous probability measure with density q(y). Then A_n , B_n being a Hahn decomposition for $P^n - QP^n$, we have

$$||P^{n}-QP^{n}|| = P^{n}(A_{n})-QP^{n}(A_{n})+QP^{n}(B_{n})-P^{n}(B_{n})$$

$$(3.1) = \int q(y)\{P^{n}(A_{n})-U_{y}P^{n}(A_{n})+U_{y}P^{n}(B_{n})-P^{n}(B_{n})\}dy$$

$$\leq 2\int q(y)||P^{n}-U_{y}P^{n}||dy.$$

Here $||P^n - U_y P^n||$ is a Borel function of y. This is seen by the following relation, F(x) being the distribution function of P^n :

$$||P^{n}-U_{y}P^{n}|| = \sup \sum_{i=1}^{N-1} |F(b_{i+1})-F(b_{i+1}-y)-F(b_{i})+F(b_{i}-y)|,$$

where the supremum is taken over $N = 2, 3, \ldots$ and rational b_1, \ldots, b_N , since F(x) is continuous from the left.

By our assumption and the Lebesgue dominated convergence theorem the right hand side of (3.1) tends to zero for $n \to \infty$. So $||P^n - QP^n|| < 2$ for $n \ge n_1$ and, since QP^n is absolutely continuous, P^n for $n \ge n_1$ must have an absolutely continuous component.

THEOREM 3. If P is purely discrete, L_0 is the additive group generated by the difference set of the set J of all those x with $P(\{x\}) > 0$.

PROOF. Let $J = \{c_1, c_2, \ldots\}$. Then P^n is restricted to the set of all x of the form

$$x = \sum_{k=1}^{n} c_{i_k},$$

where some or all i_k may be equal. In order that $||P^n - U_a P^n|| < 2$ for some *n*, it is necessary that

$$a = \sum_{k=1}^{n} c_{i_{k}} - \sum_{k=1}^{n} c_{j_{k}} = \sum_{k=1}^{n} (c_{i_{k}} - c_{j_{k}})$$

for some $i_1, i_2, \ldots, i_n, j_1, j_2, \ldots, j_n$, which shows that L_0 is a subset of the additive group generated by the $c_i - c_j$.

On the other hand, if $x \in J$, $y \in J$, the measure P contains the measure $\frac{1}{2}U_x + \frac{1}{2}U_y$, so that $x - y \in L_0$ by lemma 6 and lemma 5. So by lemma 1 the additive group generated by the $c_i - c_j$ is a subset of L_0 . **THEOREM 4.** The set L_0 is an F_{σ} .

PROOF. If P is purely discrete, L_0 is a countable set by theorem **3.** Assume, then, that P has a nondiscrete component. Writing D_n , C_n for the discrete and nondiscrete component of P^n , we have

(3.2)
$$\begin{array}{c} \left| ||P^{n} - U_{a}P^{n}|| - ||C_{n} - U_{a}C_{n}|| \right| \\ & \leq ||P^{n} - U_{a}P^{n} - (C_{n} - U_{a}C_{n})|| \\ & = ||D_{n} - U_{a}D_{n}|| \leq 2 ||D_{n}|| = 2||D_{1}||^{n}, \end{array}$$

with $||D_1|| < 1$. Let

$$V_n(x) \stackrel{\text{df}}{=} ||C_n - U_x C_n||, \quad n = 1, 2, \ldots, -\infty < x < \infty.$$

By (3.2) and theorem 1

$$L_0 = \bigcup_{n=n_0}^{\infty} \{x : V_n(x) \leq 1\}.$$

Here n_0 is chosen so that $2 ||D_1||^{n_0} < \frac{1}{2}$, say. Let $G_n(y)$ denote the distribution function of C_n . Then

(3.3)
$$V_n(x) = \sup \sum_{i=1}^{N-1} |G_n(b_{i+1}) - G_n(b_{i+1} - x) - G_n(b_i) + G_n(b_i - x)|,$$

where the supremum is taken over $N = 2, 3, \ldots$ and b_1, b_2, \ldots, b_N :

$$V_n(x) = \sup_{\alpha} V_{n,\alpha}(x), \quad -\infty < x < \infty, \quad n = 1, 2, \ldots,$$

where the $V_{n,\alpha}(x)$ are of the form occurring in (3.3). The $V_{n,\alpha}(x)$ are continuous functions of x. So the sets $\{x: V_{n,\alpha}(x) \leq 1\}$ are closed, and

$$L_0 \stackrel{\cdot}{=} \bigcup_{n=n_0}^{\infty} \bigcap_{\alpha} \{x : V_{n,\alpha}(x) \leq 1\}$$

is an F_{σ} .

4. Examples of singular distributions

If P^n is purely singular for every n, the problem of characterizing the set L_0 is still open. Here we present two examples of purely singular P^n , n = 1, 2, ..., where L_0 is countable and where L_0 has the power of the continuum, respectively.

Example 1. For P we take the probability distribution of the random variable

$$(4.1) x \stackrel{\text{df}}{=} \sum_{n=1}^{\infty} x_n \, 3^{-n^2},$$

where the x_n are independent nonnegative integer valued random variables. Moreover it is assumed that there exist natural numbers n_1 and m such that the x_k for $k \ge n_1$ have the same distribution restricted to $\{0, 1, \ldots, m\}$ with $P\{x_k = j\} > 0, j = 0, 1, \ldots, m$.

As shown by (4.1), the range of x is an uncountable set W and for every $c \in W$ we have $P\{x = c\} = 0$. So P cannot have a discrete component and the same then is true for all P^n . It will be shown below, from the conditions on P stated above, that $||P-U_aP|| = 2$, except for countably many a. But then this must hold also for every P^n , since, as is easily seen, P^n is of the same type as P. So L_0 is a countable set. By theorem 2 no P^n can have an absolutely continuous component, so every P^n is purely singular.

To prove our assertion on $||P-U_aP||$ we show that

 $P\{x+a\in W\}=0,$

which implies mutual singularity of P and $U_a P$, for all but countably many a. It is no restriction to assume $a \ge 0$. Let

$$a=\sum_{n=1}^{\infty}a_n\,3^{-n^2},$$

where the a_n are chosen so that

$$(4.2) a_n < 3^{n^2 - (n-1)^2} = 3^{2n-1}, n = 2, 3, \ldots$$

The event $\{x+a \in W\}$ implies the existence of (random) integers b_1, b_2, \ldots such that

(4.3)
$$\sum_{n=1}^{\infty} (a_n + x_n) 3^{-n^2} = \sum_{n=1}^{\infty} b_n 3^{-n^2},$$

$$(4.4) 0 \leq b_n \leq m, n \geq n_1$$

It will be shown that (4.3) and (4.4), for all but countably many a, imply the occurrence of a sequence of events $\{x_{\nu_k} \in A\}$, with $\nu_1 < \nu_2 < \ldots$ and $P(x_{\nu_k} \in A\} < 1$, $k = 1, 2, \ldots$, from which follows, by the independence and equidistribution of the x_n for $n \ge n_1$, that $P\{x+a \in W\} = 0$.

First we note that there is n_2 such that for $n \ge n_2$ the carry c_n from the n^{th} to the $(n-1)^{\text{th}}$ place in the addition in (4.3) is at most 1.

We now distinguish the following cases:

a. There is an infinite sequence $v_1 < v_2 < \ldots$ such that

$$1 \leq a_{\nu_k} \leq 3^{2\nu_k-1} - m - 2, \qquad k = 1, \dots$$

Since for $v_k \geq \max(n_1, n_2)$

 $a_{\nu_k} + x_{\nu_k} + c_{1+\nu_k} \leq 3^{2\nu_k - 1} - m - 2 + m + 1 < 3^{2\nu_k - 1},$

 $c_{\nu_k} = 0$ for $\nu_k \ge \max(n_1, n_2)$, and for (4.3) and (4.4) to hold we must have

 $x_{\nu_k} + a_{\nu_k} + c_{1+\nu_k} \leq m,$

implying $x_{\nu_{k}} \leq m-1$ and we may take $A = \{0, 1, \ldots, m-1\}$.

b. There is n_3 such that $a_n = 0$ or $a_n \ge 3^{2n-1} - m - 1$ for $n \ge n_3$.

b1. All but a finite number of the a_n are zero. The corresponding a form a countable set.

b2. There is n_4 with $a_n \ge 3^{2n-1} - m - 1$ for $n \ge n_4$. To satisfy (4.3) and (4.4) we must have $c_n > 0$ for $n \ge \max(n_1, n_4)$, so

$$x_n + a_n + c_{n+1} \ge 3^{2n-1},$$

 $x_n \ge 3^{2n-1} - 1 - a_n,$

which by (4.2) implies $x_n \ge 1$ for infinitely many *n*, except if $a_n = 3^{2n-1}-1$ for all but a finite number of *n*. But the set of *a* satisfying the latter condition is countable.

b3. The sets of *n* with $a_n = 0$ and with $a_n \ge 3^{2n-1} - m - 1$ are both infinite. Then we may select a sequence $v_1 < v_2 < \ldots$ with

$$a_{\nu_k} \geq 3^{2n-1} - m - 1, \quad a_{1+\nu_k} = 0, \quad k = 1, 2, \ldots,$$

To satisfy (4.3) and (4.4) we must have $c_{\nu_k} > 0$, $k = 1, 2, \ldots$, or, since $c_{1+\nu_k} = 0$ for $k \ge k_1$,

$$x_{\nu_k} + a_{\nu_k} \ge 3^{2\nu_k - 1}, \qquad \qquad k \ge k_1,$$

which by (4.2) implies the events $\{x_{\nu_k} \ge 1\}, k \ge k_1$.

Example 2. This example is taken from a paper by Wiener and Young [4], section 7. Let n_1, n_2, \ldots be an increasing sequence of natural numbers, such that

$$(4.5) \qquad \qquad \sum_{k=1}^{\infty} n_k^{-1} < \infty,$$

and consider the expansion of $x \in (0, 1)$:

(4.6)
$$x = \frac{m_1}{n_1} + \frac{m_2}{n_1 n_2} + \frac{m_3}{n_1 n_2 n_3} + \ldots,$$

the m_i being nonnegative integers with $m_i < n_i$, ambiguity being removed by taking the terminating expansion whenever possible. The n_k are assumed even, $n_k = 2r_k$, $k = 1, 2, \ldots$ Let F(x) be defined by

$$F(x) = 0, \quad x \leq 0, \quad F(x) = 1, \quad x \geq 1,$$

$$F(x) = \frac{m_1/2}{r_1} + \frac{m_2/2}{r_1r_2} + \frac{m_3/2}{r_1r_2r_3} + \dots,$$

if every m_k in (4.6) is even, and

$$F(x) = \frac{m_1/2}{r_1} + \frac{m_2/2}{r_1r_2} + \ldots + \frac{m_{n-1}/2}{r_1r_2\ldots r_{n-1}} + \frac{[m_n/2]+1}{r_1r_2\ldots r_n},$$

if m_n is the first odd m_k in (4.6).

It was shown by Wiener and Young, that F(x) is the distribution function of a purely singular probability measure P and that the set of a with $||P-U_aP|| < 2$ has the power of the continuum. So by our lemma 2 and theorem 1 the set L_0 for this Phas the power of the continuum. For the sake of our example we only have to show that P^n for every n is purely singular. To this end we note that F is the distribution function of the random variable

(4.7)
$$x = \sum_{k=1}^{\infty} x_k (n_1 n_2 \dots n_k)^{-1},$$

where the x_k are independent and

$$(4.8) \quad P\{x_k=j\}=r_k^{-1}, \quad j=0, 2, \ldots, n_k-2, \quad k=1, 2, \ldots$$

Clearly P^n for every *n* is a convergent infinite convolution of discrete distributions. By a theorem of Wintner, [5], p. 89, no. 148, such a distribution is of pure type. Since *P* is not discrete, it is sufficient to show that P^n is not purely absolutely continuous. This will follow from the fact that

$$\limsup_{u\to\infty} |\varphi(u)| > 0,$$

where $\varphi(u)$ denotes the characteristic function of P, since, if P^n were absolutely continuous, its characteristic function $\varphi^n(u)$ would tend to zero for $|u| \to \infty$ by the Riemann-Lebesgue lemma.

From (4.7) and (4.8) we have

(4.10
$$\varphi(u) = \prod_{k=1}^{\infty} \varphi_k(u), \quad -\infty < u < \infty,$$

with

(4.11)
$$\varphi_k(u) = \frac{1}{r_k} \sum_{h=0}^{r_k-1} \exp\left(\frac{2hiu}{n_1 n_2 \dots n_k}\right),$$

so that

(4.12)
$$\varphi_k(n_1n_2...n_H\pi) = 1, \qquad k = 1, 2, ..., H,$$

 $\mathbf{276}$

[10]

(4.13)
$$\varphi_{H+1}(n_1n_2...n_H\pi) = 2r_{H+1}^{-1} \{1 - \exp(2\pi i/n_{H+1})\}^{-1},$$

 $\varphi_{H+m}(n_1n_2...n_H\pi) = \frac{1}{r_{H+m}} \sum_{h=0}^{r_{H+m}-1} \exp\left(\frac{2\pi i h}{n_{H+1}...n_{H+m}}\right),$
 $m = 2, 3, ...,$

$$\prod_{m=2}^{M} \varphi_{H+m}(n_1 n_2 \dots n_H \pi) = ----$$

4

$$=\frac{1}{r_{H+2}\cdots r_{H+M}}\sum_{h_{s}=0}^{r_{H+s}-1}\cdots\sum_{h_{M}=0}^{r_{H+M}-1}A(h_{2},h_{3},\ldots,h_{M}),$$

with

$$A(h_2, h_3, \ldots, h_M) = \exp\left(2\pi i \sum_{m=2}^M \frac{h_m}{n_{H+1} \ldots n_{H+m}}\right).$$

Now

$$\begin{aligned} |1-A(h_2,\ldots,h_M)| \\ &\leq 2\pi \sum_{m=2}^M \frac{h_m}{n_{H+1}\ldots n_{H+m}} \leq \pi \sum_{m=2}^M \frac{1}{n_{H+1}\ldots n_{H+m-1}}, \end{aligned}$$

so that

(4.14)
$$|1 - \prod_{m=2}^{M} \varphi_{H+m}(n_1 n_2 \dots n_H \pi)| \leq \pi \sum_{m=2}^{M} \frac{1}{n_{H+1} \dots n_{H+m-1}}$$

From (4.10)-(4.14) and $\lim_{H\to\infty} n_H = +\infty$ it follows that

$$\lim_{H\to\infty}\varphi(n_1n_2\ldots n_H\pi)=-2/\pi i,$$

which proves (4.9).

5. The relation (1.4)

For fixed probability measure P let

(5.1)
$$D_n(x, Q) \stackrel{\text{df}}{=} ||P^n Q - U_x P^n Q||, \quad n = 1, 2, \ldots,$$

with Q absolutely continuous,

(5.2)
$$D(x, Q) \stackrel{\text{df}}{=} \lim_{n \to \infty} D_n(x, Q),$$

the limit existing by lemma 2, and

$$(5.3) D(x) \stackrel{\mathrm{df}}{=} \sup D(x, Q),$$

the supremum being taken over all absolutely continuous probability measures Q.

LEMMA 7. $D_n(x, Q)$ and D(x, Q) are continuous functionals of Q, uniformly in x and n, in fact

$$|D_n(x, Q_1) - D_n(x, Q_2)| \le 2 ||Q_1 - Q_2||,$$

$$|D(x, Q_1) - D(x, Q_2)| \le 2 ||Q_1 - Q_2||.$$

PROOF. By (1.2) and (1.3)

$$\begin{aligned} |D_n(x,Q_1) - D_n(x,Q_2)| &\leq ||P^nQ_1 - U_x P^nQ_1 - (P^nQ_2 - U_x P^nQ_2)|| \\ &\leq ||P^n(Q_1 - Q_2)|| + ||U_x P^n(Q_1 - Q_2)|| \leq 2 ||Q_1 - Q_2||. \end{aligned}$$

LEMMA 8. Let Q_k , $k = 1, 2, ..., be a sequence of probability measures with densities <math>q_k(y)$, k = 1, 2, ..., such that

$$q_k(y) = kq_1(ky), \quad -\infty < y < \infty, \quad k = 1, 2, \ldots$$

Then

$$D(x) = \sup_{k} D(x, Q_{k})$$

PROOF. By definition of D(x)

(5.4)
$$S(x) \stackrel{\text{df}}{=} \sup_{k} D(x, Q_{k}) \leq D(x), \quad -\infty < x < \infty.$$

For any Q we have by (1.3)

$$D_n(x, QQ_k) \leq D_n(x, Q_k),$$

so, for $n \to \infty$,

$$(5.5) D(x, QQ_k) \leq D(x, Q_k) \leq S(x), k = 1, 2, \ldots$$

Since Q is absolutely continuous, $||Q-QQ_k||$ tends to zero for $k \to \infty$, so from (5.5) and lemma 7 it follows that $D(x, Q) \leq S(x)$ for every absolutely continuous Q, implying

$$(5.6) D(x) \leq S(x),$$

and the lemma follows from (5.4) and (5.6).

THEOREM 5. If P is not a lattice distribution,

$$(5.7) D(x) = 0, -\infty < x < \infty.$$

If P is a lattice distribution with span c,

(5.8)
$$D(x) = 0, \quad x = nc, \quad n \text{ integer}, \\ D(x) = 2, \quad elsewhere.$$

By a lattice distribution is meant here a discrete distribution concentrated in a subset of $\{a+nd, n \text{ integer}\}$ for some a and d, the span being the largest value that may be taken for d.

PROOF OF (5.7). By lemma 8 it is sufficient to prove that

(5.9)
$$\lim_{n \to \infty} D_n(x, Q_k) = 0, \qquad k = 1, 2, ...,$$

for a suitable sequence Q_k , $k = 1, 2, \ldots$, of the form considered in lemma 8. We choose Q_1 in such a way that it is symmetric about zero and has finite second moment, that its density $q_1(y)$ belongs to L_2 and its characteristic function $\vartheta_1(u)$ satisfies

$$(5.10) \qquad \qquad \vartheta_1(u) = 0, \qquad |u| \ge 1.$$

This may be accomplished by taking

$$q_1(y) = \alpha (4y^{-1} \sin \frac{1}{4}y)^4, \qquad -\infty < y < \infty,$$

with α a norming constant, as will be seen by applying the Fourier inversion formula to the characteristic function of the fourfold convolution of the uniform distribution on $\left[-\frac{1}{4}, \frac{1}{4}\right]$.

By lemma 5 it is no restriction to assume that P has finite second moment. We also center P at its first moment.

For fixed k let $p_n(x)$ and $r_n(x)$ be the densities of P^nQ_k and $U_a P^nQ_k$, respectively. Then

$$D_n(a, Q_k) = \int |p_n(x) - r_n(x)| dx,$$

$$D_n(a, Q_k) \le \int_{-A}^{A} |p_n(x) - r_n(x)| dx + 2 \int_{|x| \ge A-a} p_n(x) dx.$$

Here A is allowed to depend on n. By the inequality between arithmetic and quadratic mean and by Chebychev's inequality

$$D_n(a, Q_k) \leq \left[2A \int_{-\infty}^{+\infty} \{p_n(x) - r_n(x)\}^2 dx\right]^{\frac{1}{2}} + 2 \frac{nd^2 + v^2k^{-2}}{(A-a)^2},$$

where d^2 is the variance of P and v^2 the variance of Q_1 . Since $q_1 \in L_2$, also $q_k \in L_2$ and therefore $p_n \in L_2$, $r_n \in L_2$. So by Parseval's formula

$$D_n(a, Q_k) \leq \left[\frac{A}{\pi} \int_{-\infty}^{+\infty} |(1 - e^{iua})\varphi^n(u)\vartheta_k(u)|^2 du\right]^{\frac{1}{2}} + 2 \frac{nd^2 + v^2k^{-2}}{(A-a)^2},$$

where $\varphi(u)$ denotes the characteristic function of P and $\vartheta_k(u) = \vartheta_1(u/k)$ the characteristic function of Q_k . Making use of (5.10) and the inequality $|\vartheta_k(u)| \leq 1$, and putting $A = Cn^{\frac{1}{2}}$, we find for n suitably large

$$D_n(a, Q_k) \leq \left[\frac{Cn^{\frac{1}{2}}}{\pi} \int_{-k}^k |\varphi(u)|^{2n} |1 - e^{iua}|^2 du\right]^{\frac{1}{2}} + 3d^2C^{-2}.$$

Since P is not degenerate and has finite second moment, there are $\varepsilon \in (0, 1)$ and $\beta \in (0, 1)$ such that

$$|\varphi(u)|^2 \leq 1 - eta u^2, \qquad |u| \leq \varepsilon.$$

Moreover, P being not a lattice distribution, there is a constant $\gamma \in [0, 1)$ so that

$$|\varphi(u)| \leq \gamma, \quad \varepsilon \leq |u| \leq k.$$

(See Lukacs [3], theorem 2.1.4). So, since also

$$\begin{aligned} \mathbf{1} - e^{ius}|^{2} &\leq a^{2}u^{2} \leq a^{2}|u| \text{ for } |u| \leq \varepsilon, \\ \limsup_{n} D_{n}(a, Q_{k}) \leq 3d^{2}C^{-2} + \limsup_{n} \left[\frac{2a^{2}Cn^{\frac{1}{2}}}{\pi} \int_{0}^{\varepsilon} (1 - \beta u^{2})^{n}u du\right]^{\frac{1}{2}} \\ &= 8d^{2}C^{-2} + \limsup_{n} \left[\frac{aCn^{\frac{1}{2}}}{\beta\pi(n+1)} \{1 - (1 - \beta\varepsilon^{2})^{n+1}\}\right]^{\frac{1}{2}} = 3d^{2}C^{-2}. \end{aligned}$$

Since this holds for every C > 0, the proof of (5.9) is concluded.

PROOF OF (5.8) That D(x) = 0 for x = nc, follows from theorem 8. That D(x) = 2 for $x \neq nc$, is seen by taking for Q the uniform distribution on [-h, h], with h so small that no intervals [nc-h, nc+h] and [mc+x-h, mc+x+h], m, n integer, overlap.

REFERENCES

HALMOS, P. R.,[1] Measure Theory, Sec. ed. Van Nostrand, 1950.

Loève, M.,

[2] Probability Theory, Sec. ed. Van Nostrand, 1960.

LUKACS, E.,

[8] Characteristic Functions. Griffin, 1960.

WIENER, N. and R. C. YOUNG,

[4] The Total Variation of g(x+h)-g(x). Trans. Amer. Math. Soc. 35 (1933), 827-840.

WINTNER, A.,

[5] The Fourier Transforms of Probability Distributions. Baltimore, 1947.

(Oblatum 4-10-65).