
COMPOSITIO MATHEMATICA

A. J. STAM
On shifting iterated convolutions I
Compositio Mathematica, tome 17 (1965-1966), p. 268-280
<http://www.numdam.org/item?id=CM_1965-1966__17__268_0>

© Foundation Compositio Mathematica, 1965-1966, tous droits réser-
vés.

L’accès aux archives de la revue « Compositio Mathematica » (http:
//http://www.compositio.nl/) implique l’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utili-
sation commerciale ou impression systématique est constitutive d’une
infraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=CM_1965-1966__17__268_0
http://http://www.compositio.nl/
http://http://www.compositio.nl/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


268

On shifting iterated convolutions I

by

A. J. Stam

1. Introduction

Throughout this paper P, Q, R, with or without indices, denote
probability measures on the Borel sets of the real line, PQ denotes
the convolution of P and Q and pn the n’ iterated convolution
of P. So !7.P", where Ua is the probability measure degenerate
at a, is the nth convolution of P, shifted to the right over a
distance a.
The problem considered in this paper is to describe the set Lo

of those values a for which

Here ~M~, for any finite signed measure M, is the total variation
of M. It is well known that, for any two finite signed measures
M and N,

MN denoting convolution as before.
In section 5 we consider the following property, weaker than

(1.1 ):

for every absolutely continuous Q. This holds for every a if P
is not a lattice distribution.
Our main results on (1.1) are the following. The limit in (1.1)

always exists and is either 0 or 2. The set Lo is the real line if
and only if P" for some n has an absolutely continuous component.
If P is purely discrète, Lo is the additive group generated by the
set of differences of those y for which P({y}) &#x3E; 0.

For the case that every P" is purely singular, the author only
found examples of a countable Lo and an uncountable Lo.
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The restriction to probability measures is essential. If Il Pli |  1,
the problem is trivial since then limn~~ ~Pn~ = 0. If P is a

measure with P(-~, +~) &#x3E; 1, we may expect Lo = {0},
since for probability measures the convergence in (1.1) and (1.4),
if present, is of order n-1 (see lemma 6 below).

2. Preliminary results

LEMMA 1. The set o f all a f or which

is an additive group.

PROOF. The additivity is immediate by (1.2). Moreover, if

(2.1) holds for a, the same is true for -a.

LEMMA 2. The sequence IlpnR-UapnRII, n = 1, 2, ..., is non-
increasing.
PROOF. The assertion follows from (1.3) since tlP11 = 1.

LEMMA 3. Let Q be any probability measure on the real line.
Then IIQ-U aQ11 |  2 i f and only i f there exist probability measures
Qo and Q, and real numbers 03B1, 03B2 with 03B1 &#x3E; 0, 03B2 ~ 0, a+p = 1,
such that

PROOF. That (2.2) is sufficient follows from the inequality

To prove necessity, let A, B be a Hahn decomposition of (- 00,
+~) with respect to Q-UaQ. (Halmos [1], § 29). Then for every
Borel set E we have, putting R df UaQ :

with

By definition of a Hahn decomposition, M1 and M2 are (non-
negative) measures. The measure Mo does not vanish, since this
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would imply Q(B) = R(A) = 0 in contradiction with the as-
sumption ~Q-R~  2.

From Q = M1+M0 and Q = U-aR = U-aM2+U-aM0 it

follows that

Since Mo, Ml, M2 are measures and Mo does not vanish, (2.2)
holds with Qo = U-aMoIIIMoll and Q, either vanishing or equal to
(M1+U-aM2)/~M1+M2~-

LEMMA 4. If P=PiP2 and limn~~~Pn1R-UaPn1R~ = 0,
then

PROOF. Since IIP211 = 1, the lemma follows immediately by
(1.8) and the relation

LEMMA 5. For some m let

mith Pl and P 2 probability measures and 03B1, 03B2 constants with 03B1 &#x3E; 0,
03B2 ~ 0, 03B1+03B2 = 1. I f Pl satisfies (2.1), the same is true f or P.
In fact, zae have

PROOF. By lemma 2, with Q af pm

Since the case P = 0 is trivial, we assume 03B1  1.

By (1.2) and (1.8)

Now limk~~ ~Pk1R-Pk1UaR~ exists, so by the Toeplitz theorem
(Loève [2], § 16.8, p. 238) the relation (2.4) follows.
Lemma 5 will be fundamental in our proofs. If (2.8) holds, we

will say that pm contains Pi.
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PROOF. Since Pn is a binomial distribution concentrated in the

points nb+ ka, k = 0, 1,..., n,

where Bm is the distribution function of the binomial distribution
b(2, m) centered at zero. Since B,.(-2!y-,/n) converges completely
to the distribution function of N(0, 1) and has second moment
bounded with respect to n, we have (see Loève [2], § 11.4)

which concludes the proof.

3. The set Lo

In this section we consider the set Lo of those a for which (1.1)
holds.

THEOREM 1. The · value of lim,_,, ~Pn-UaPn~ is either 0 or 2.

PROOF. Obviously the limit is in [0, 2]. If it is not 2, then for
some n

and Pn by leinma 3 contains a probability measure of the form
(1 2U+1 2Ua)Q0. · So by applying lemma 6, 4 and 5 respectively,
we see that limn~~ ~Pn-UaPn~ = 0.

THEOREM 2. The set Lo is the real line il and only i f Pn f or
some n has an absolutely continuous component.

PROOF. Sufficiency: If P is absolutely continuous with density
p(x), then
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so that ~P-UaP~  2 if a e (-e, e) for some e &#x3E; 0. Therefore

Lo ~ (-e, s) by lemma 2 and theorem 1. It follows from lemma 1
that Lo = ( - oo, +~).

If pn has an absolutely continuous component, the assertion
Lo = (- oo, +~) follows from lemma 5 and what has been
shown above. Necessity: Let Q be any absolutely continuous
probability measure with density q(y). Then An’ Bn being a
Hahn décomposition for Pl-QP", we have

Here ~Pn-UyPn~ is a Borel function of y. This is seen by the
following relation, F(x) being the distribution function of Pl,:

where the supremum is taken over N = 2, 3, ... and rational

bl, ..., bN, since F(x) is continuous from the left.

By our assumption and the Lebesgue dominated convergence
theorem the right hand side of (3.1) tends to zero for n ~ oo. So
~Pn-QPn~  2 for n &#x3E; ni and, since QPn is absolutely con-
tinuous, P" for n ~ n1 must have an absolutely continuous
component.
THEOREM 8. Il P is purely discrete, Lo is the additive group

generated by the difference set o f the set J of all those x with P({x}) &#x3E; 0.

PROOF. Let J = (ci, c2, ...}. Then P" is restricted to the set
of all x of the form

where some or all ik may be equal. In order that 11 Pn - U,P’n 11  2

for some n, it is necessary that

for some i1, i2, ..., in, j1,j2,...,jn, which shows that LO is a
subset of the additive group generated by the c,-c,.
On the other hand, if x E J, y ~ J, the measure P contains

the measure 1 2Ux+1 2Uy, so that x-y e Lo by lemma 6 and lemma
5. So by lemma 1 the additive group generated by the ci - cj
is a subsets of Lo.
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THEOREM 4. The set Lo is an F03C3.
PROOF. If P is purely discrète, Lo is a countable set by theorem

8. Assume, then, that P has a nondiscrete component. Writing
Dn, Cn for the discrète and nondiscrete component of Pn, we have

with ~D1~  1. Let

By (3.2) and theorem 1

Here no is chosen so that 2 ~D1~n0  2, say. Let G"(y ) denote
the distribution function of C,.. Then

where the supremum is taken over N = 2, 3, ... and bl, b2, ..., bN:

where the Vn,03B1(x) are of the form occurring in (3.3). The Vn,03B1(x)
are continuous functions of x. So the sets {x : Vn,03B1(x)  1} are
closed, and

n=n0 a

is an F03C3.

4. Examples of singular distributions

If Pn is purely singular for every n, the problem of characterizing
the set Lo is still open. Here we present two examples of purely
singular Pn, n = 1, 2, ..., where Lo is countable and where Lo
has the power of the continuum, respectively.

Example 1. For P we take the probability distribution of the
random variable
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where the xn are independent nonnegative integer valued random
variables. Moreover it is assumed that there exist natural numbers

nl and m such that the xk for k ~ n, have the same distribution
restricted to {0, 1, ..., m} with P{xk = j} &#x3E; 0, i = 0, 1, ..., m.
As shown by (4.1), the range of x is an uncountable set W and

for every c E W we have P{x = c} = 0. So P cannot have a
discrete component and the same then is true for all Pn. It will
be shown below, from the conditions on P stated above, that
Il P - U aP11 I = 2, except for countably many a. But then this
must hold also for every Pn, since, as is easily seen, Pn is of the
same type as P. So Lo is a countable set. By theorem 2 no Pl
can have an absolutely continuous component, so every Pl is
purely singular.
To prove our assertion on IIP-UaPIl | we show that

which implies mutual singularity of P and UaP, for all but
countably many a. It is no restriction to assume a ~ 0. Let

where the an are chosen so that

The event {x+a e W} implies the existence of (random) integers
bl, h2, ... such that

It will be shown that (4.3) and (4.4), for all but countably many a,
imply the occurrence of a sequence of events {xvk E A}, with
Vl  v2 C ... and P(xvk E A}  1, k = 1, 2, ..., from which

follows, by the independence and equidistribution of the xn for
n ~ nl, that P(x+a E W} = 0.

First we note that there is n2 such that for n ~ n2 the carry cn
from the nth to the (n-1)th place in the addition in (4.3) is at
most 1.

We now distinguish the following cases:
a. There is an infinite sequence vl C v2  ... such that
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Since for Pi, max (nl, n2)

CV1c = 0 for vk ~ max (nl, n2), and for (4.3) and (4.4) to hold we
must have

implying xvk ~ m-1 and we may take A = {0, 1, ..., m-1}.
b. There is n3 such that an = 0 or an ~ 32n-1-m-1 for

n ~ n3’
bl. All but a finite number of the an are zero. The corresponding

a form a countable set.

b2. There is n4 with an ~ 82n-I_m-l for n &#x3E; n4. To satisfy
(4.3) and (4.4) we must have cn &#x3E; 0 for n ~ max (nl, n4), so

which by (4.2) implies xn ~ 1 for infinitely many n, except if

an = 32n-1-1 for all but a finite number of n. But the set of a

satisfying the latter condition is countable.
b3. The sets of n with an = 0 and with an ~ 32n-l-m-l are

both infinite. Then we may select a sequence vl  v2  ... with

To satisfy (4.3) and (4.4) we must have c,,k &#x3E; 0, k = 1, 2, ..., 
or, since cl+,,t = 0 for k ~ kl, 

which by (4.2) implies, the events {xvk ~ 1}, k &#x3E; k1.

Example 2. This example is taken from a paper by Wiener and
Young [4], section 7. Let ni , n2, ... be an increasing sequence of
natural numbers, such that

and consider the expansion of x e (0, 1):

the mi being nonnegative integers with mi  ni, ambiguity
being removed by taking the terminating expansion whenever
possible. The nk are assumed even, nk = 2rt, k = 1, 2, .... Let
F(x) be defined by
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if every mie in (4.6) is even, and

if mn is the first odd mx in (4.6).
It was shown by Wiener and Young, that F(x) is the distribu-

tion function of a purely singular probability measure P and that
the set of a with pP-UaPll  2 has the power of the con-

tinuum. So by our lemma 2 and theorem 1 the set Lo for this P
has the power of the continuum. For the sake of our example we
only have to show that P" for every n is purely singular. To
this end we note that F is the distribution function of the random
variable

where the xk are independent and

Clearly P n for every n is a convergent infinité convolution of
discrète distributions. By a theorem of Wintner, [5], p. 89, no.
148, such a distribution is of pure type. Since P is not discrete,
it is sufficient to show that Pn is not purely absolutely continuous.
This wil l follow from the fact that

where ~(u) denotes the characteristic function of P, since, if P"
were absolutely continuous, its characteristic function ~n(u)
would tend to zero for lui - oo by the Riemann-Lebesgue lemma.
From (4.7) and (4.8) we have
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with

Now

so that

From (4.10)-(4.14) and limH~~nH = +00 it follows that

which proves (4.9).

5. The relation (1.4)

For fixed probability measure P let

with Q absolutely continuous,

the limit existing by lemma 2, and

the supremum being taken over all absolutely continuous prob-
ability measures Q.
LEMMA 7. Dn(x, Q) and D(x, Q) are continuous functionals of

Q, uniformly in x and n, in fact
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PROOF. By (1.2) and (1.3)

LEMMA 8. Let Qk’ k = 1, 2, ..., be a sequence of probability meas-
ures with densities qk(y), k = 1, 2, ..., such that

Then

PROOF. By définition of D(x)

For any Q we have by (1.3)

so, for n ~ oo,

Since Q is absolutely continuous, ~Q-QQk~ tends to zero for
k ~ oo, so from (5.5) and lemma 7 it follows that D(x, Q) ~ S(x)
for every absolutely continuous Q, implying

and the lemma follows from (5.4) and (5.6).
THEOREM 5. Il P is not a lattice distribution,

1 f P is a lattice distribution with span c,
n integer,

elsewhere.

By a lattice distribution is meant here a discrete distribution concen-
trated in a subset of {a+nd, n integer} for some a and d, the span
being the largest value that may be taken for d.

PROOF OF (5.7). By lemma 8 it is sufficient to prove that
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for a suitable sequence Qk, k = 1, 2, ..., of the form considered
in lemma 8. We choose Q, in such a way that it is symmetric
about zero and has finite second moment, that its density q1(y)
belongs to L2 and its characteristic function ~1(u) satisfies

This may be accomplished by taking

with a a norming constant, as will be seen by applying the
Fourier inversion formula to the characteristic function of the
fourfold convolution of the uniform distribution on [- 1 4, 4
By lemma 5 it is no restriction to assume that P has finite

second moment. We also center P at its first moment.
For fixed k let pn(x) and rn(x) be the densities of PnQk and

Ua PnQk, respectively. Then

Here A is allowed to depend on n. By the inequality between
arithmetic and quadratic mean and by Chebychev’s inequality

where d2 is the variance of P and v2 the variance of Ql. Since
ql E L2, also qk E L2 and therefore p. E L2, rn E L2. So by Par-
seval’s formula

where ~(u) denotes the characteristic function of P and

t9,,(u) =: ~1(u/k) the characteristic function of Qk. Making use of
(5.10) and the inequality |~k(u) ~ 1, and putting A = Cnt, we
find for n suitably large

Since P is not degenerate and has finite second moment, there are
03B5 ~ (0, 1) and fl e (0, 1) such that
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Moreover, P being not a lattice distribution, there is a constant
y e [0, 1 ) so that

(See Lukacs [8], theorem 2.1.4). So, since also

Since this holds for every C &#x3E; 0, the proof of (5.9) is concluded.

PROOF OF (5.8) That D(x) = 0 for x = nc, follows from theorem
8. That D(x) = 2 for x ~ nc, is seen by taking for Q the uniform
distribution on [-h, h], with h so small that no intervals

[nc-h, nc+h] and [mc+x-h, mc+x+h], m, n integer, overlap.
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