Two theorems for the n-dimensionality of metric spaces
Compositio Mathematica, Volume 15 (1962-1964), p. 227-237
@article{CM_1962-1964__15__227_0,
     author = {Nagata, Jun-Iti},
     title = {Two theorems for the $n$-dimensionality of metric spaces},
     journal = {Compositio Mathematica},
     publisher = {Kraus Reprint},
     volume = {15},
     year = {1962-1964},
     pages = {227-237},
     zbl = {0116.14402},
     mrnumber = {164320},
     language = {en},
     url = {http://www.numdam.org/item/CM_1962-1964__15__227_0}
}
Nagata, Jun-Iti. Two theorems for the $n$-dimensionality of metric spaces. Compositio Mathematica, Volume 15 (1962-1964) pp. 227-237. http://www.numdam.org/item/CM_1962-1964__15__227_0/

J. De Groot, [1] On a metric that characterizes dimension, Canadian J. of Math. 9 (1957),511-514. | Zbl 0079.16704

M. Katětov, [2] On the dirraension of non-separable spaces I, Czechoslovak Mathematical J. 2(77) (1952), 333-368. | Zbl 0052.39605

K. Morita, [8] Normal families and dimension theory for metric spaces, Math. Annalen 128 (1954), 350-362. | Zbl 0057.39001

J. Nagata, [4] On a metric characterizing dimension, Proceedings of Japan Academy 86 (1960), 827-881. | Zbl 0115.40201

J. Nagata, [5] On the countable sum of zero-dimensional metric apaces, Fund. Math. 48 (1960), 1-14. | MR 114203 | Zbl 0107.40003

J. Nagata, [6] On a relation between dimension and metrization, Proc. Japan Acad. 81 (1956), 237-240. | Zbl 0071.16004

J. Nagata, [7] Note on dimension theory for metric spaces, Fund. Math. 45 (1958), 143-181. | Zbl 0082.16303

E. Szpilrajn, [8] La dimension et la mesure, Fund. Math. 28 (1937), 81-89. | JFM 63.0559.01 | Zbl 0015.32202

W. Hurewicz and H. Wallman, [9] Dimension Theory, 1941. | JFM 67.1092.03 | MR 6493