J. de Groot
R. H. McDowell

Autohomeomorphism groups of 0-dimensional spaces

<http://www.numdam.org/item?id=CM_1962-1964__15__203_0>

L’accès aux archives de la revue « Compositio Mathematica » (http://http://www.compositio.nl/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.
Autohomeomorphism Groups of 0-dimensional Spaces

by

J. de Groot and R. H. McDowell 1)

If T is a topological space, we denote by $A(T)$ the group of all homeomorphisms of T onto itself. In [2], it was shown that given an arbitrary group G, one can find a topological space T such that G and $A(T)$ are isomorphic; in fact, such a T can be found among the compact connected Hausdorff spaces. In general, no such T can be found among the spaces with a base of open and closed sets, i.e., the spaces T such that $\dim T = 0$. The present paper investigates the following question. What can be said, in general, about $A(T)$ if T is a completely regular Hausdorff space and $\dim T = 0$?

If α is any cardinal ≥ 1, we shall denote by S_α the restricted permutation group on α objects; that is, the group of all those permutations which involve only finitely many objects. We will find it convenient to let S_0 denote the group of one element. ΣC_2 will denote the direct sum of \aleph_1 groups of order two. Throughout this paper, “space” will be used to mean “completely regular Hausdorff space”. For any 0-dimensional space T, we shall show that $A(T)$ must

1) consist of a single element (in which case we say T is “rigid”),
2) contain a subgroup S_α for some α,
3) contain a subgroup of the form $S_\alpha + \Sigma C_2$. This result is best possible, in the sense that for any cardinal α, we can construct spaces whose autohomeomorphism group is precisely S_α or $S_\alpha + \Sigma C_2$. We produce examples of arbitrarily high weight, 2) but we leave open the problem of constructing compact rigid 0-dimensional spaces of arbitrarily high weight.

In particular, if T is dense in itself, $A(T)$ equals the unit

1) The second author is grateful to the Charles F. Kettering Foundation for its support during the preparation of this paper.
2) The weight of a space is m if there exists an open base of m and not less than m sets.
element or contains a subgroup \(\sum C_2 \). On the other hand, one can construct compact 0-dimensional Hausdorff spaces \(H \), dense in itself, for which \(A(H) = 1 \) or \(A(H) \) equals the direct sum of continuously many groups of order two (in the last case one takes the Čech-Stone compactification of \([2; \S \, 5, \text{example I}]\)).

Some of the results of this paper were announced in \([3]\).

I. \(A(T) \) for 0-dimensional Spaces

1.1. Lemma. Let \(\{x_i\} \) and \(\{y_i\}, i \in N \) (the natural numbers) be sets of distinct isolated points in the space \(T \) such that, for every \(J \subseteq N \), \(\{x_j\}, j \in J \), have identical boundaries in \(T \); then \(T \) admits of uncountably many distinct autohomeomorphisms of order two.

Proof. It is easy to see that the map interchanging \(x_i \) and \(y_i \) for each \(i \) in \(N \), and leaving all other points of \(T \) fixed, is an autohomeomorphism; the same is clearly true for every subset \(J \) of \(N \), and there are uncountably many such subsets.

In what follows, we shall need the following well known (and easily proved) result from group theory.

1.2. Proposition. If \(G \) is a group in which all elements distinct from the identity have order two, then \(G \) can be represented as the direct sum of cyclic groups of order two.

1.3. Theorem. Let \(T \) be a 0-dimensional completely regular Hausdorff space, containing \(\alpha \) isolated points (\(\alpha \) may be 0). Then either \(A(T) = S_\alpha \), or \(A(T) \) contains a subgroup of the form \(S_\alpha + \Sigma C_2 \).

Proof. \(A(T) \) clearly contains a subgroup isomorphic to \(S_\alpha \), since every one – one onto map moving a finite number of isolated points, and leaving all other points fixed, is a homeomorphism. Thus we need only show that if \(T \) admits any autohomeomorphism which does more than this, then \(T \) contains a subgroup isomorphic to \(S_\alpha + \Sigma C_2 \).

Note first of all that if \(\alpha > \aleph_0 \), there is no problem, since \(S_\alpha \) itself contains such a subgroup. So we assume \(\alpha \leq \aleph_0 \), and we distinguish two cases.

(1) There is an autohomeomorphism \(\varphi \) on \(T \) which moves a non-isolated point \(p \). Then we can find an open – and – closed set \(U \) containing \(p \) such that \(U \cap \varphi(U) = \emptyset \). If \(U \) has no countable base, we can find more than \(\aleph_0 \) distinct open- and -closed subsets \(K \subseteq U \), and interchanging \(K \) and \(\varphi(K) \) gives us an autohomeo-
morphism of order two. If U has a countable base, let $D = \{x_i\}$ be the set of all isolated points in U. If D is finite, then $M = (U \setminus D) \cup \varphi(U \setminus D)$ is open-and-closed, dense in itself, separable, metrizable and 0-dimensional, and is therefore homeomorphic to a dense-in-itself subset of the Cantor set. Since M is not rigid, $A(M)$ (and hence $A(T)$) contains a subgroup of the form ΣC_2, by [2; p. 90, (i)]. If D is infinite and closed, let $\{x_i\}$ be any enumeration of D; then $\{x_i\}$ and $\{\varphi(x_i)\}$ satisfy the hypotheses of Lemma 1.1; if D is not closed, it has a limit point q and a subsequence $\{y_i\}$ converging to q. In that case, $\{y_{2i-1}\}$ and $\{y_{2i}\}$ satisfy the hypotheses of 1.1.

(2) No autohomeomorphism moves a non-isolated point. Let φ be a homeomorphism moving an infinite set of isolated points $\{y_i\}$. If we can find a set of isolated points $\{x_i\}$ such that $\{x_i\} \cap \{\varphi(x_i)\} = \emptyset$, then $\{x_i\}$ and $\{\varphi(x_i)\}$ clearly satisfy the hypotheses of 1.1. But such a set $\{x_i\}$ is easily found, for if there is a $y \in \{y_i\}$ with infinite orbit, let $x_i = \varphi^{2i}y$; if each y_i has finite orbit, form $\{x_i\}$ by choosing one point from each of the orbits determined by y_i.

It follows that $A(T)$ contains a group isomorphic to ΣC_2; from the construction, it is easily seen that by dividing the isolated points into two disjoint infinite sets if necessary, one can find a subgroup isomorphic to $S_\omega + \Sigma C_2$.

It should be pointed out that in only one case in the proof of 1.3 do we fail to find continuously many distinct autohomeomorphisms of order two. We could replace ΣC_2 in the statement of the theorem by the direct sum of continuously many groups of order two if we could prove the following: if U and V are 0-dimensional, disjoint homeomorphic spaces having no countable base, and $X = U \cup V$, then $A(X)$ contains c elements of order two.

II. Rigid Spaces

In this section, we extend the methods of [2] to produce rigid 0-dimensional spaces of arbitrary (infinite) weight. We shall require some ideas in the theory of uniform spaces; the reader is referred to [1] and [4] for a development of these ideas.

First, we extend a metric space theorem to uniform spaces in a routine manner.

2.1. DEFINITION. An intersection of m open sets will be called a G_{m^*}-set; a G_{m^*}-set will be called, as usual, a G_δ-set.

2.2. THEOREM. Let X be a completely regular Hausdorff space
of weight m, complete in a uniformity \mathcal{D} generated by a set D of m pseudometrics. Then every continuous map f from a subset H of X into X can be extended continuously to a map \bar{f} from a G_{m^δ}-set $G \supset H$ into X.

Proof. For each $d \in \mathcal{D}$, and each $x \in \bar{H}$, let $\omega_d(x)$ be the oscillation of f at x with respect to d. Let

$$G_d = \{x \in \bar{H} : \omega_d(x) = 0\}.$$

G_d is evidently a G_δ-set. Let

$$G = \bigcap_{d \in \mathcal{D}} G_d;$$

then $G \supset H$ is a G_{m^δ}-set.

Now f can be extended continuously over G. For let $\{h_\alpha\}$ be any net in H converging to a point $x \in G$. Then, in the uniformity generated by \mathcal{D}, $\{f(h_\alpha)\}$ is a Cauchy net, by the definition of G. Hence $\{f(x_\alpha)\}$ converges to some point $p \in X$; set $f(x) = p$. f is evidently continuous at x.

Now, using 2.2, we extend some of the results in [2].

2.3. **Definition.** If X is a topological space, and f a map from a subset of X into X, then f is called a continuous displacement of order M if f is continuous, and is a displacement of order M. A continuous displacement of order c will be called, as usual, a continuous displacement [2; § 2].

2.4. **Theorem.** Let X be a completely regular Hausdorff space of weight m, complete in a uniformity \mathcal{D} generated by m pseudometrics, and let $|X| = 2^m = M$. Further, let $\{K_\beta\}$ be any family of M subsets of X, each of cardinal M. Then there is a family $\{F_\gamma\}$ of 2^M subsets of X such that

1. For $\gamma \neq \gamma'$, $|F_\gamma \setminus F_{\gamma'}| = M$.
2. No F_γ admits of any continuous displacement of order M onto itself or any other $F_{\gamma'}$.
3. For every β, γ, $|F_\gamma \cap K_\beta| = M$, and $|(X \setminus F_\gamma) \cap K_\beta| = M$.

Proof. There exist only M G_{m^δ}-sets in X, and a fixed subset of X admits at most M continuous maps into X, and therefore at most M continuous displacements of order M. Let f_β be a continuous displacement of order M whose domain is a G_{m^δ}-set. The family $\{f_\beta\}$ of all such mappings has cardinal at most M. This family is non-empty (otherwise the theorem is trivial), so by counting a given displacement M times if necessary, we may assume that $|\{f_\beta\}| = M$.

Now we apply \([2; \text{Lemma 1}]\), with \(X = N, M = m\), and \(\{f_\beta\}\). We obtain a family \(\{F_\gamma\}\) of \(2^M\) subsets of \(X\) satisfying (1) and (3). Suppose (2) is false, and there is a continuous displacement of order \(M\), \(\varphi\), from \(F_\gamma\) onto \(F_\gamma\). This \(\varphi\) can be extended (Theorem 2.4) to a continuous map \(\hat{\varphi}\) of a \(G_m\)-set \(G_\gamma \supset F\) into \(X\), so \(\hat{\varphi} = f_\beta\) for some \(\beta\). Hence, by \([2; \text{Lemma 1}, (2.3)]\), for every pair \(\gamma, \gamma\)', \(f_\beta F_\gamma \backslash F_\gamma' \neq \phi\), and so, since \(\varphi = f_\beta\) on \(F_\gamma\), \(\varphi F_\gamma \backslash F_\gamma' \neq \phi\), i.e., \(\varphi\) maps \(F_\gamma\) onto no member of \(\{F_\gamma\}\).

2.5. \textbf{Lemma.} Let \(P\) be a space in which every open set has cardinal at least \(M\). If \(\varphi : P \to P\) is non-trivial, and is either locally topologically into \(P\) or continuous onto \(P\), then \(\varphi\) is a displacement of order \(M\).

\textbf{Proof.} The proof is word for word the proof of \([2; \text{Lemma 2}]\), with "\(\aleph\)" replaced by "\(M\)”, and “continuous displacement” replaced by “continuous displacement of order \(M\)”.

2.6. \textbf{Theorem.} Let \(X\) be a locally compact Hausdorff space of weight \(m\), complete in a uniformity generated by \(m\) pseudometrics, such that every open set in \(X\) has \(2^m\) points. Let \(K\) be the set of all compact subsets of \(X\) whose cardinal is \(2^m\). Then the sets \(\{F_\gamma\}\) constructed in \text{Theorem 2.4} are such that no \(\{F_\gamma\}\) can be mapped topologically into or continuously onto itself or any other \(F_\gamma\).

\textbf{Proof.} Each open set in each \(F_\gamma\) will have \(2^m\) points. By \text{Lemma 2.5} and (1), \text{Theorem 2.4}, any non-trivial \(\varphi\) satisfying either condition of the theorem is a continuous displacement of order \(M\). But this contradicts (2), \text{Theorem 2.4}.

2.7. \textbf{Example.} \text{Theorem 2.6} enables us to construct many examples of rigid 0-dimensional spaces of arbitrary weight. For instance, let

\[X = \Pi_{a \in A} X_a, \]

where \(|A| = m\), and, for each \(a\), \(X_a\) is a discrete space of cardinal two. Then \(X\) has weight \(m\), \(X\) is compact, and hence complete in any uniformity, so \(X\) is complete in a uniformity generated by \(m\) pseudometrics. Further, every open set in \(X\) contains \(2^m\) points. Now, applying \text{Theorem 2.6}, we get a collection of \(2^{2m}\) sets \(\{F_a\}\), each of weight \(m\) and dimension 0, such that \(F_\gamma\) is rigid for each \(\gamma\), and the \(F_\gamma\) are topologically distinct.

2.8. \textbf{Problem.} The rigid spaces constructed in the preceding example are proper dense subsets of a compact space, hence they
are not themselves compact. We have not been able to construct examples of compact, rigid 0-dimensional spaces of arbitrarily high weight; such spaces would be of interest in the study of Boolean rings (see, for example, [2; § 8.1]).

III. Spaces whose Autohomeomorphism Groups are \(S_\alpha \) or \(S_\alpha + \sum C_2 \).

If \(\alpha \) is finite, the discrete space of cardinal \(\alpha \) has \(S_\alpha \) as its autohomeomorphism group. This is not the case for \(\alpha \) infinite, of course. In Example 3.1, however, we produce for each infinite \(\alpha \) a space having \(\alpha \) isolated points whose autohomeomorphism group is precisely \(S_\alpha \). In Example 3.2, we find spaces whose autohomeomorphism group is the direct sum of \(S_\alpha \) and the sum of continuously many groups of order two; this group is then isomorphic to \(S + \sum C_2 \) if we assume the continuum hypothesis.

In this connection one should recall the remark following the proof of Theorem 1.3; it is conceivable that \(\aleph_1 \) can be replaced by \(\aleph \) throughout this paper.

In both 3.1 and 3.2, the spaces \(S_\alpha \) which play a part in the construction can evidently be chosen to have arbitrarily high weight, hence the same is true for our examples.

3.1. Example. Let \(P \) be a discrete space of cardinal \(\alpha \), and let \(\beta P \) be its (0-dimensional) Čech-Stone compactification. With each \(p \in P \), we associate a 0-dimensional space \(S_p \) such that

1. for each \(p \in P \), \(S_p \) is rigid and dense-in-itself,
2. if \(p \) and \(q \) are distinct elements of \(P \), then no non-empty open subset of \(S_p \) is homeomorphic to an open subset of \(S_q \).

Such a collection \(\{S_p\} \) can be constructed by using Example 2.7, as follows: with each \(p \in P \), we associate a cardinal \(\alpha_p \) such that if \(p \neq q \), \(2^{\alpha_p} \neq 2^{\alpha_q} \). Taking \(\alpha_p = \aleph \) in 2.1, we obtain a rigid space which we can denote by \(S_p \) such that each open subset of \(S_p \) contains \(2^{\alpha_p} \) points. The collection \(\{S_p\}, p \in P \) evidently satisfies (1) and (2).

Now let

\[X = \bigcup_{p \in P} S_p \cup \beta P. \]

We topologize \(X \) by prescribing a base for the open sets, consisting of

1. the sets \(\{p\}, p \in P \),
2. the open-and-closed sets in \(S_p \) for each \(p \in P \),
3. the sets
where U is open-and-closed in P.

The space X so defined is evidently a 0-dimensional completely regular Hausdorff space. The topology on each S_p as a subspace of X is the same as its original topology.

Every mapping of X onto X which permutes a finite number of the (isolated) points of P and leaves all other points of X fixed, is clearly a homeomorphism. These are the only autohomeomorphisms of X. For if an autohomeomorphism φ leaves each $p \in P$ pointwise fixed, then the points of βP are fixed, so

$$\bigcup_{p \in P} S_p$$

must be mapped topologically on itself. But from (1) and (2), this space is rigid, so φ is the identity map. On the other hand, if φ displaces an infinite subset D of P, then φ must move some point of $\beta P \setminus P$ (since the closures of D and $\varphi(D)$ in βP are non-empty and disjoint), hence there is a $p \in P$ such that $S_p \cap \varphi S_p = \emptyset$. But $\varphi S_p \cap \beta P = \emptyset$, since no open set in S_p contains an isolated point. It follows that $\varphi S_p \cap S_{p'} \neq \emptyset$ for some $p \neq p'$, contradicting (2).

3.2. Example. For each α, we construct a space T_α such that $A(T_\alpha)$ is precisely $S_\alpha + \sum C_2$ (assuming the continuum hypothesis). Let M be a 0-dimensional subset of the real numbers such that $A(M)$ is the direct sum of continuously many groups of order two [2; § 5, Example 1], and let X be the space constructed in Example 3.1, so that $A(X) = S_\alpha$. Let $T_\alpha = X \cup M$. If φ is any autohomeomorphism of T, then $x \in M$ if and only if $\varphi(x) \in M$, since $x \in M$ if and only if the least cardinal of a base at x is \aleph_0. It follows that $A(T_\alpha) = A(X) + A(M) = S_\alpha + \sum C_2$.

REFERENCES

L. Gillman and M. Jerison
J. de Groot
J. de Groot
J. L. Kelley
(Oblatum 10-9-62).