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Fields of Parallel Vectors in the Large
by

T. Y. Thomas

Princeton, N.J .

1. Let S be a topological manifold homeomorphic to the real
n-dimensional number space. By this homeomorphism there is

defined a system of coordinates x1, ..., xn in S. The manifold
S becomes an affinely connected space by the introduction of a

general affine connection L whose components Lpy are functions
of the coordinates of S. We shall assume in the following that the

La (x) are analytic functions of the coordinates.
A field of contravariant vectors e defined over S is said to be

parallel if the components e (x) of the vectors are continuous and
constitute a non-trivial solution of the system 

over S. In this paper we seek the algebraic characterization of
affinely connected spaces S and their generalization (§10) which 
admit one or more fields of parallel contravariant vectors 1).
Analogous considerations will of course apply in the case of fields
of parallel covariant vectors.

2. From (1) we deduce the infinite sequence of necessary
conditions

1 ) Concerning the algebraic characterization of spaces admitting other pro-
perties, see T. Y. THOMAS, Algebraie characterizations in complex differential
geometry [Trans. Am. Math. Soc. 38 (1935), 501-514]; On the metric represen-
tations of affinely connected spaces [Bull. Am. Math. Soc. (1936), 77]. AlsoRiemann
spaces of class one and their characterization [to appear in the Acta Mathematica].
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where the B a are the components of the curvature tensor and
the quantities B§#y, à, B§#y, à, e, ... are the components of the suc-
cessive covariant derivatives of the curvature tensor 2). In fact
the first set of equations (2) follows directly as the conditions
of integrability of (1) and any set after the first results by cova-
riant differentiation of the set immediately preceding it in the
sequence, account being taken of the equations (1) which express
the vanishing of the covariant derivative of the vector e.

Consider in particular the first n + 1 sets of equations of the
sequence (2), namely the equations

We assume the existence of a non-trivial solution of the above

equations at any point of S, this being expressible by the vanishing
of the resultant system R of the equations over S. Let P be any
point of S and N(P) any neighborhood of P. Suppose that the
matrix of the equations ( Eo ) has its maximum rank ro in N(P)
at a point Po; similarly that the matrix of the system ( Eo ) and
( E1 ) has its maximum rank rl in N(P) at Pl; ... and finally
that the entire system composed of ( Eo ), ... , (En) has its

maximum rank rn in N ( P ) at Pn. Then in passing from

PO ---&#x3E; Pl --&#x3E; ... --&#x3E; Pn the above ranks Ti can not always increase,
i.e. we can not have ro  rl  ...  rn ; in fact it would follow
from these inequalities that r. = a for oc = 0, 1, ..., n and the

condition rn = n is in contradiction with the above hypothesis
concerning the existence of a non-trivial solution of the system
(Eo),..., (En) at the point Pn . Hence ro  r1  ...  ri = ri+ 1
for some value of the integer i  n - l. Let LI be a determinant
of order ri formed from the matrix of the system (Eo ), ..., ( Ei )
which does not vanish at Pi. Then d will not vanish in a neigh-
borhood N(Pi) C N(P) in which the ranks of the matrices of

2) See T. Y. THOMAS, Differential Invariants of Generalized Spaces [Cambridge
University Press, 1934], § 13. This book may be consuited on questions of tensor
analysis which may arise in the present paper.
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the systems (Eo),... (Ei) and (Eo ), ... , (Ei+l) will be the
same. Hence the equations (Ei+l) will be linearly dependent on
the equations (Eo),..., (Ei ) in the neighborhood N ( Pi), i.e.
we have 

in N ( Pi ) where the O’s are either zero or rational functions of
the B§#y , ..., a for each of which the denominator
is the above determinant LI. On account of the above hypothesis
of analyticity the f/J’s are therefore analytic functions of the
coordinates in the neighborhood N(Pi). 
Now take any point Q of S distinct from Pz and join the

points Pi and Q by an analytic curve C. Let C be defined by
equations of the form 0153(X = f °‘ (t ), the f’ being analytic functions
of the variable t in the closed interval 0 t 1 such that fll (0) =- x ô
and frJ.{l) == x’ where x"l and x’ are the coordinates of the points
Pi and Q respectively. Thus as t varies from t = 0 to t = 1 the

point whose coordinates are f’(t) moves along C from the point
Pz to the point Q. Such a curve C is given for example by the
,,straight line" joining Pi to Q defined by the equations

Now consider the equations

which define the parallel displacement along the curve C of the
vector e. with components EOE at the point Pi. We choose the
values $§ so that at the point Pi the system (EO), ..., (En) is satisfied.
By the well known existence theorem the equations (4) will have
a unique solution e’(t) such that e’(0) = $g where the functions
e’(t) are analytic in the above interval 0 t ç 1. If the equations
(1 ) admit a continuous solution e’(x) in the space S which assumes
at the point Pi the above values eô then at the point Q the func-
tions e’(x) must have the values at t = 1 of the above solution
e’(t) of the equations (4). Hence the equations (1) can admit
at most, one such solution e"(x) having the values eô at the
point Pz.
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3. In conformity with the above considerations let us seek
to define continuous functions e’(x) satisfying (1 ) by the procedure
of parallel displacement of the vector e, at Pi along analytic
curves C to the various points of S. This procedure will define
a set of functions e’(x) over S if, and only if, the values of the
solutions e’(t) of the equations (4) at the arbitrary point Q are
independent of the analytic curve over which these equations are
integrated. Let us therefore join the points Pi and Q by an analytic
curve C. analogous to the curve C above considered, i.e. we assume
that C, is defined by equations of the form ae(7. == fî (t) where the
ff(t) are analytic functions of t in the interval 0 t  1 such that
fî (0) = xô and f î (1) = xî. Now consider an analytic surface il
defined by equations of the form x’ - G" (t, p ) where the functions
Ga. are analytic in the closed intervals 0  t  1 and 0  p  1
such that G"(t, 0) = f’(t) and GCX(t, 1) f 11(t). Also G«(0, p) =XOC
and G’(1, p) = xi for all values of the variable p. Thus the

surface il is generated by a family F of analytic curves joining
the points Pi and Q analogous to the curves C and Ci and in fact
containing these latter two curves. That such surfaces il exist
is seen from the fact that we may take

Consider the system 

along any curve p = const. on the surface Q. Taking e«- == eô
for t = 0, independently of the parameter p, the equations (5)
have a unique solution e(t, p) analytic in the above intervals
of the variables t and p. Now form the equations

the functions (1a. being defined over D by these latter equations.
By differentiation of (6a) and (6b) with respect to p and t res-
pectively and elimination of the left members of the resulting
equations we have

n
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over the surface Q. Now the last set of terms in these equations
involves the left members of the equations (EO) which were taken
to be satisfied initially, i.e. at the point p2. We shall show that
the equations (Eo) are in fact satisfied over Q by the above func-
tions e(t, p ) obtained as solutions of the system (5). For this
purpose we differentiate the left members of (EO) with respect
to the variable t so as to obtain

We observe that the right members of these equations consist
of expressions linear and homogeneous in the quantities appearing
in the left members of equations (Eo ) and (E1) with coefficients
analytic over the surface Q. Differentiating the left members of
equations (E1) with respect to the variable t we find in a similar
manner that these derivatives are equal to the quantities in the

bG
left members of (E2) multiplied by -àt plus 

linear homogeneous
Zt

expressions in the left members of (E1) with coefficients analytic
over Q. Analogous remarks apply to the derivatives of the left
members of the remaining equations (Eg),..., (En). Borrowing
a convenient notation from algebra we may express the set of
equations at which we thus arrive in the following form
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In consequence of the relations (3) the equations (E.), ..., (Ei)
now become

over the portion of Q contained in the above neighborhood
N(Pi). It follows from the existence theorem for equations of the
type (EQ’ ) ,... , (Ei") and the fact that the equations (Eo), ..., , (Ei)
are satisfied at the point Pi that the equations (E0),..., (Ei)
are satisfied over the portion of Q contained in N(Pi). But since
the left members of (E0), ..., (Ei) are analytic functions over
Q the equations (E0), ..., (Ei) must likewise be satisfied over the
entire surface Q. In particular the last set of terms in (7) must
vanish identically over Q so that these equations become

Since $"(o, p ) = eô and G’(0, p) = xô independently of p it

follows from (6b) that crl = 0 for t = 0. Hence it follows from

(8) that er’ = 0 along any curve p = const. on il, i.e. a°‘ = 0

over the surface D so that in particular aC( = 0 at the point Q.
Then from (6b) and the fact that G’(1, p) = xa1 independently
of p we have that the derivatives vanish at the point Q.

Hence the values of the quantities $"(t) at Q are independent of
the ,analytic curve of integration by which the point Pi is joined
to the point Q. In other words there exists a set of functions e’(x)
defined throughout the space S, these functions being uniquely deter-
mined by the assignment of their values $) chosen so as to satisfy
the equations (E0),..., (En) at the point Pi and the process of
,integration of the system (4) along analytic curve C issuing from Pi.

4. In the above considerations the values of the functions

e’(x) at the arbitrary point Q of the space S were thought of as
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being deterniined by integration of the equations (4) along
analytic curves C issuing from Pi when the parameter t of the
curve was chosen so as to have the value zero at Pi and the value
one at the point Q. We see immediately however that the values
of the quantities e’ at Q are independent of the parameterization
of the curve C; it follows therefore that the functions e«(t) ob-
tained by integration of (4) along any analytic curve C issuing
from Pi and for any parameterization of this curve have the same
values as the above functions e’(x) at corresponding points of
the space S.

Now consider the values e’(q) of the above functions e’(x)
at any point Q of S. Starting with the point Q and the values e’(q)
the integration of the equations (4) along analytic curves C issuing
from the point Q will determine the same functions e’(x) over the
space S. This follows from the analysis of the preceding section.
Join the point Q to an arbitrary point Q’ of S by any analytic
curve C’ defined by XOE = F°‘ ( p ), 0  p  1, such that F’(0) = xî
and PrY.(l) = x2 where xm and x2 are the coordinates of the points
Q and Q’ respectively. Let Q* be the analytic surface generated
by the straight lines joining P2 to the points of the curve C’;
such a surface Q* 1’Vill be given by equations of the form x°‘ = Ga ( t, p )
where

the coordinates of the point Pi being sg. By integration of the
equations (5) along curves p == const. on D* we then define

analytic functions e’(t, p ) over Q* such that e’(0, p) = eô in-

dependently of the parameter p. Forming the equations (6a)
and (6b) we proceed as before to the derivation of equations
(8) from which it follows that ax = 0 over Q*. Hence (6b)
reduces to

But these latter equations for t = 1 define the parallel displace-
ment of the vector e(q) at the point Q to the point Q’ along the
curve C’; from this fact follows the validity of the above italicized
statement.

5. We shall show that the above functions e’(x) are analytic
functions of the coordinates ae(% in the space S. Taking Q to be
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any point of S we consider the totality of straight lines 1 issuing
from Q, these lines being referred to a parameter t so chosen as
to have the value zero at the point Q. The straight lines 1 are
thus given by equations of the form r" - xl’ + arLt where the x"
are the coordinates of the point Q and the a’ are constants for
a particular line l. Now along a line 1 the functions e’(x) satisfy
thé differential equations

in which the Lot are analytic functions of the al, ... , an and t
for all values of these variables. It follows from the general
existence theorem for systems of ordinary differential equations
in n parameters arx. that the above equations have a solution

e’(t, z) given by convergent power series in an open region
It-t11A and 1 a’ - aOl 1  B where the t1 and af may have ar-
bitrary values, this solution being uniquely determined by the
initial conditions e(0, a ) - = e’ independently of the values of

the parameter arx.. Selecting t1 = aî = 0 and taking $ ? to be the
values of the functions eo’(x) at the point Q the above solutions
e’(t, a ) will therefore give the values of the functions e«(x) along
the lines 1 issuing from Q; by successive differentiation of (9)
with respect to t and evaluation of the derivatives of eo’ at t1 = 0
we may calculate the successive coefficients of these power series
so as to obtain

and these series will be convergent in a region [ t] 1 A and
1 afXl 1  B. We observe however that the variables t and arx in
the above series occur only in the combination (a0152t) and that
1 acet 1  A B in consequence of the above inequalities. Conver-

sely it is easily seen that if 1 aCXt  A B values of a’ and t may
be selected without changing the values of the combinations
(ar1t) so that the inequalities Itl  A and lafXl  B are satis-
fied ; hence the above series are convergent whenever 1 aCXt  A B

and by eliminating the quantities (aat) by the substitution

aex - x = allt by which the lines 1 issuing from Q are defined
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we see that the functions e(x) are given by the series

in the neighborhood 1 0153(t. - 0153i 1  A B of the point Q. Since Q
is an arbitrary point ouf 5 we have thus established the analyticity
of the functions e(x) in the space S.

6. It remains finally to observe that the functions e(x)
satisfy the equations (1) in S. In fact let Q be any point of S
and as the analytic curve C issuing from Q let us take the curve
of parameter xfl passing through this point. Then, in view of the
italicized result in § 4 the equations (4) are satisfied along this
curve C by the functions e’(x); this gives 

at the point Q and hence at all points of the space S.

7. We have now proved the existence of a field of parallel
vectors e with analytic components e’(x) in S under the condition
that the resultant system R of the equations (EO), ..., (En )
vanishes over S. That this condition is necessary for the existence
of a field of parallel vectors in S is easily seen. In fact suppose
there is a point P of S at which the equations (Eo),..., (En)
admit only the trivial solution e- = 0 and that e’(x) are the com-
ponents of a field of parallel vectors in S ; then necessarily e"(xo) == 0
where xô are the coordinates of P. Since the values of the compo-
nents e"(x) at the various points of S can be obtained by inte-
grating the equations (4) along analytic curves issuing from P
and since the initial values e’(xo) equal zero for this integration
it follows that the components eo’(x) must vanish throughout the
space S. This contradicts the hypothesis that we have a field
of parallel vectors in S.

Instead of the resultant system R we may, if we wish, consider
the polynomial R1 ( B ) in the quantities B appearing in the

equations (E.), ... , (En ) which is constructed by taking the sum
of the squares of all determinants of the nth order that can be

formed from the matrix of these equations. Our result can now
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be stated as follows : The affinely connected space S will admit a

field of parallel contravariant vectors with compoments ç0152(0153) which
are analytic functions of the coordinates of S if, and only if, the

polynomial R1 ( B) vanishes over S.

8. If the space S admits K fields of parallel vectors e(l), - - - 1 e(K)
where 1 K  n, we shall say that these fields are independent
provided that the matrix of their components EOE (1) ... , 9 e (K a )’ namely

has rank K at any point P of S. A necessary condition for the
existence of K independent fields of parallel vectors is therefore
that at any point of S the system (Eo), ..., (En ) admit K in-
dependent solutions; if we denote by RK(B) the polynomial
defined as the sum of the squares of all determinants of order
n + 1 K which can be formed from the matrix of the system
(Eo ), ..., (En) this necessary condition can be expressed by the
vanishing of RK(B) over S. It follows readily that this condition
is likewise sufficient. Let the quantities e’ for v = l, ..., K be
solutions of the system (Eo), ..., (En ) at the point P2 established
in § 2. By parallel displacement of the vectors e(v)o at the point
Pi along analytic eurves issuing from Pi to the various points
of S we can then define, as has been shown, K fields of parallel
vectors e(v)(x) whose components e’)(x) are analytic functions
of the coordinates of S. Suppose that at a point Q of S the com-

ponents eo’)(x) are such that the above matrix has rank less

than K. Denoting the values of these components at Q by %)1
there will then exist a linear relation

in which the A ’s are constants not all of which are zero. Since the
vector fields e(,) (x) can also be generated by parallel displacement
of the vectors e(,) (x) at Q along analytic curves C issuing from this
point, it follows that we must have

along such curves C. But since the right members of these
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equations vanish at Q in consequence of (10), the relations

must be satisfied throughout S which contradicts the fact that
the above matrix has rank K at the point Pi. We can thus state
the following general result. The affinely connected space S will
admit K (or more) independent fields of parallel contravariant

vectors with components e’)(x), e’)(x) which are analytic
functions of the coordinates of S if, and only if, the polynomial
RK(B) vanishes over S.

9. It is evident that the above considerations will apply in
every detail if, instead of the n-dimensional number space, we
limit ourselves to the spherical domain

where the a°‘ are arbitrary constants and r is any positive number
(interior of an n-dimensional Euclidean sphere). We observe in
particular that any two points P and Q of this domain can be
joined by an analytic curve lying entirely in the domain; for
example the straight line joining P and Q will be such a curve.
Also the analytic surfaces and D* used in the demonstrations
in § 3 and § 4 will be entirely in such a spherical domain provided
that the analytic curves C which enter into the construction of
these surfaces possess this property. It follows that the italicized
result stated at the end of the preceding section will likewise

apply if the space S is identified with the above spherical domain.

10. We shall now extend our theory to more general topolo-
gical spaces 3). Let 9N be a connected topological space with

neighborhoods N homeomorphic to the interior of an n-dimensional
Euclidean sphere. By this homeomorphism coordinates aerJw can

be introduced in any neighborhood of 9R. We assume that the
selection of coordinates can be made for the totality of neigh-
borhoods N of the space 3R in such a way that the coordinate
relationships between any two intersecting neighborhoods are
analytic. When such a selection of coordinates is made the space

3) The treatment in this section is due in part to Professor W. MAYER of the
Institute for Advanced Study with whom 1 have had the pleasure of discussing this
theory.
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9K will be called a topological manifold of class A 4). Two such
topological manifolds IDè1 and WC2 derived from the same topolo-
gical space 3R will be said to be equivalent if it is possible to pass
from the coordinate neighborhoods of Ml to the coordinate

neighborhoods of M2, by analytic transformations.
A topological manifold 9R of class A will be said to be an

affinely connected topological space M of class A if there exists an
affine connection L with components L,,P(x) which are analytic
functions of the coordinates of the neighborhoods of the manifold
3JÏ; such an affinely connected space will usually be referred to
in the following simply as the space 3R.
A necessary condition for the existence of a field of parallel

contravariant vectors in the space 8Jl, i.e. for the equations (1)
to admit a continuous non-trivial solution e’(x) over 9.R, is that
the polynomial R1(B) vanish through 9)(. We assume this con-
dition to be satisfied. Let us then take a neighborhood N( P ) of
any point P of 3K and in this neighborhood select a point Pi
determined as in § 2. Let $g be a non-trivial solution of the system.
(Eo), (E.) at Pi. We now seek to define a field of parallel
vectors $(x) over % by the parallel displacement of the vector

eo with components eo’ at Pi to the various points of 3R along
broken analytic curves OE. Since 9 is connected it is possible to
join Pi to any point Q of 9N by a continuous curve T in 8Jl, in
fact by a curve T homeomorphic to the unit interval Otl. It
is possible to cover T by a finite number of neighborhoods N1,
N 2’ ..., N m such that in the transition from Pi to Q along the
curve T these neighborhoods are entered in the order indicated -5)
and where N1 and N m are the neighborhoods of the points P2
and Q respectively (Heine-Borel theorem). Then it is possible
to choose points Vl, ..., V m-1 of T where Vi C Ni nNi+l for

i === l, ..., m - 1, i.e. Vi lies in the intersection of the neigh-
borhoods Ni and Ni+l’ such that the portion of the curve T
between the points Pi and VI will lie in the neighborhood Nl;
similarly the portion of T between VI and V2 will lie in N2; ...

4) The designation class A has reference to the analyticity of the coordinate
relationships. If these relationships are continuous and have continuous derivatives
to the order p ( s 0) inclusive we may speak of a topological manifold of class p.
Cp. 0. VEBLEN and J. H. C. WHITEHEAD, A set of axioms for differential geometry
[Proc. Nat. Acad. 17 (1931), 551-561 ].

1) No assumption is here made that these neighborhoods NI,..., N mare
distinct.
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and finally the portion of T between V m-l and Q will lie in Nm.
Now let Cl be an analytic curve in the neighborhood N, joining
Pi to VI; let C2 be an analytic curve in the neighborhood N2
joining Tjl to V 2; ... and finally let C,,, be an analytic curve in
the neighborhood N m joining the point V m-l to the point Q.
Denote by OE the broken analytic curve composed of the analytic
curves Cl, ..., C m by which we can pass from the point Pi to
the point Q. Thus the curves of the type OE form a class of curves
by which we can join the point Pi to any other point Q of 9K
and if we can show that the parallel displacement of the vector
eo at Pi to the point Q along any two curves of this class will
result in the same vector $i at Q we shall be able to define by
this process of parallel displacement of the vector 80 at Pi a
vector field $(r ) over 3R. It will then follow from the considerations
of the proceding sections that the components ;CX(0153) of this field
are analytic functions of the coordinates of the neighborhoods
N satisfying the equations (1) over 9N, i.e. ;(0153) will be a field

of parallel contravariant vectors in 3R.
If we replace the neighborhoods Nl, ..., N m by an analogous

set of neighborhoods Ni, ... , N’m covering T and then select

points v v M-1 i analogous to the above points V1’ V, -1
the parallel displacement of the vector eo at Pi along a broken
analytic curve OE’ determined on the basis of these neighborhoods
N’ and points TT’ will likewise lead to the same vector el at Q 6).
Denote by 1 the intersection

It is evident that we can then construct an analytic curve OE*
in I, joining Pi and Q, broken at the points Vl, ..., V m-1 and
V’e ..., 1 v i -1 (and possibly other points) such that OE* will pass
through these points V and V’ in the order in w hich they occur
on the curve T and possessing the following property: the portion
of 6* between Pi and V, will lie in the neighborhood Nl, the
portion of OE* between V, and V2 will lie in the neighborhood
N,; ... and the portion of Ë* between V.-j and Q will lie in the
neighborhood N m,; similarly the portion of @* between Pi and
V will lie in the neighborhood Ni, the portion of E* between
Vi and V2 will lie in the neighborhood N2; ... and the portion
of (£* between V" M-1 and Q will lie in the neighborhood Ni.

’ ) In particular the neighborhoods N,, N;,f may be identical with the neigh-
borhoods Ni, ..., N m in which case the points i.’i , ...., VM-I may be taken to be
another sélection of the points VI,.... V",,rl.
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It then follows from the results of the preceding sections that the
parallel displacement of the vector eo at Pi along the curves E
and 6* considered as curves in the neighborhoods Nl, ..., Nm
will result in the same vector at the point Q ; similarly the parallel
displacement of the vector eo at Pi along the curves 6’ and 0152*
considered as curves in the neighborhoods N’, N’ will give
the same vector at Q. Hence the vector el at Q resulting from
the parallel displacement of the vector eo at Pi along the broken
analytic curve OE is independent of the selection of neighborhoods
Ni covering the continuous curve T and the subsequent selection
of points V, and so depends essentially on the curve T itself;
it is therefore convenient to speak of the parallel displacement of
the vector eo at Pi along the continuous curve T and to say that the
vector el at Q results from this displacement.
Now consider the broken analytic curves OE and OE’ to be any

two such curves joining the points Pi and Q. Assume that the
space 9K is simply connected. It is then possible to pass from the
curve 6 by a continuous deformation of this curve into the curve
OE’; more precisely this means that the two curves 0152 and OE’ can
be embedded in a continuous one parameter family of curves
given by equations of the form xe = cpfX(t, p) where the (p’s are
continuous functions of the variables t and p defining for any
fixed value of the parameter p, where 0  p  1, a curve T (p),
joining Pi and Q, which is a continuous map of the unit interval
o t 1. We take T(O) to be the curve OE and T(l) to be the
curve OE,. Parallel displacement of the vector eo at P2 along the
curve T ( p ) will result in a vector e(p) at the point Q. We shall
show that e (p) = e (0) for all values 0  p  1 of the parameter p.

Consider any curve 7"(po) such that 0 Po 1. Let W l, ..., Ws
be a set of neighborhoods covering T(po) and let Yi, ..., Yg-i
be points of T(po) such that Y; C Wj n Wj+1, these neighborhoods
W j and points Yj being completely analogous to the neighborhoods
N, and points Vj considered with reference to the above curve T.
Also let M (Yj) be a neigborhood of the point Yj such that

m (Yj) C W, n W,,,. It is then evident that for a sufficiently
small positive number b any curve T(po+s) such that 1 El [  à
will be covered by the neighborhoods Wj which it will enter in
the natural order and will furthermore have points in each of
the neighborhoods M{Yi). Hence take Zj C M{Yj) to be a point
on T(po+e). Join Yi to Zi by the analytic curve Cj contained
in M(Yj). Denote by Ei the broken analytic curve composed of
the analytic curves Cl, ..., C 8 lying respectively in the neigh-
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borhoods W,, ..., Ws and joining the points Pi, YI, ... , Y,-Je
Q in this order; similarly denote by OE, the broken analytic curve
composed of the analytic curves C’, C’ joining the points
Pi, Zl, - - . , Zs-l’ Q and lying respectively in the neighborhoods
Wl, ..., W S. Then the configuration consisting of the points
pi5 Y15 Zi and the curves CI, Ci, C1 joining them lies in the

neighborhood W1; similarly the configuration consisting of the
points Yi, Y2, Z2, Z, and the curves C,, C2* , C2, Ci joining them
lies in the neighborhood W2; ... and finally the configurating
consisting of the points Y,,-,, Q, ZS-l and the curves C S5 C’ S9 Ci-1
joining them lies in the neighborhood Ws. It follows from these
facts and the results established in the preceding sections that
the same vector will be obtained at the point Q by the parallel
displacement of the vector eo at Pi along the broken curve 61
as will be obtained by parallel displacement of this vector along
the broken curve 01522. In other words, parallel displacement of the
vector eo at Pi along any curve T ( po -E- c ) for 1 si [  à will result
in the same vector e (po) at the point Q.
We now define a class division of the values of the parameter

p for the interval 0 p  1. Let p belong to the class A if

e(po) = e(O) for po: p; otherwise p will belong to the class B.

The class A must have a last value or the class B must have a
first value of p. But P  1 can not be a first value of class B
as follows from the above italicized statement and the fact that

p = 0 belongs to the class A. Similarly p  1 can not be a last

value of the class A. Hence p = 1 is the last value of the class A,
i.e. $(p ) = $(o ) for all values of p in the interval o  p  1.

One result is therefore established.

We have now proved that the vanishing of the polynomial
R1(B) over the space 3R is a necessary and sufficient condition
for the existence of the field of parallel vectors $(r) in this space.
Since the extension of this result to the case of K fields of in-

dependent vectors can be made by a consideration similar to
that in § 8 the following general theorem is established.
THEOREM. An affinely connected topological space M of class A

will admit K (or more) independent fields of parallel contravariant
vectors with components (x), .. ea )(x) which are analytic
functions of the coordinates of the neighborhoods of 9R if, and only
if, the polynomial RK ( B ) vanishes over M.

1 l. In particular if K = n all the components B in the equa-
tions (Eo ), ..., (En ) must vanish in the space 9R as a consequence
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of the above theorem. But since the vanishing of the curvature
tensor suffices for the vanishing of the remaining coefficients in
these equations we have as a corollary to the above theorem
that the space 9R will admit n independent fields of parallel
contravariant vectors if, and only if, the curvature tensor vanishes
over 9R.

If there are n independent fields of parallal contravariant
vectors in 3R the equations

which are satisfied by the components of these vectors can be
solved at any point of M for the components of the affine connec-
tion L. This gives

where the quantities 8§/ are the normalized cofactors of the

elements of the déterminant lel’)I. Hence the space 9N becomes
an affine space of distance parallelism 7).

12. It is known that over certain types of (simply connected)
topological manifolds it is not possible to have a continuous
vector field without singular points. For example, Brouwer 8 )
has shown that such a field can not be defined over an n-dimen-

sional spherical surface, if n is an even integer. It follows from
this fact and the above theorem that it is not possible to define
an affine connection L with analytic components over a spherical
surface of even dimensionality such that the polynomial R1(B)
will vanish over the surface; and in particular the affine connection
can not be such that the curvature tensor will vanish at all points
of this surface. Speaking generally the question of the topological
character of an affinely connected space over which a specified
system of differential equations (such as the equations which
express the vanishing of the contracted curvature tensor) is

satisfied, furnishes an interesting and important class of problems
in the combined field of differential geometry and topology.
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