Exponentiations over the quantum algebra U q (sl 2 ())
Confluentes Mathematici, Volume 5 (2013) no. 2, p. 45-69

We define and compare, by model-theoretical methods, some exponentiations over the quantum algebra U q (sl 2 ()). We discuss two cases, according to whether the parameter q is a root of unity. We show that the universal enveloping algebra of sl 2 () embeds in a non-principal ultraproduct of U q (sl 2 ()), where q varies over the primitive roots of unity.

DOI : https://doi.org/10.5802/cml.8
Classification:  03C60,  16W35,  20G42,  81R50
Keywords: Quantum algebra, quantum plane, exponential map, ultraproduct
@article{CML_2013__5_2_45_0,
     author = {L'Innocente, Sonia and Point, Fran\c coise and Toffalori, Carlo},
     title = {Exponentiations over the quantum algebra $U\_{q}(sl\_2(\mathbb{C}))$},
     journal = {Confluentes Mathematici},
     publisher = {Institut Camille Jordan},
     volume = {5},
     number = {2},
     year = {2013},
     pages = {45-69},
     doi = {10.5802/cml.8},
     mrnumber = {3145033},
     language = {en},
     url = {http://www.numdam.org/item/CML_2013__5_2_45_0}
}
L’Innocente, Sonia; Point, Françoise; Toffalori, Carlo. Exponentiations over the quantum algebra $U_{q}(sl_2(\mathbb{C}))$. Confluentes Mathematici, Volume 5 (2013) no. 2, pp. 45-69. doi : 10.5802/cml.8. http://www.numdam.org/item/CML_2013__5_2_45_0/

[1] C.C. Chang and H.J. Keisler. Model theory. North-Holland, 1973. | Zbl 0697.03022

[2] K.R. Goodearl and R.B.Jr. Warfield. An Introduction to Noncommutative Rings. London Math. Soc. Student Texts 16, Cambridge University Press, 1989. | MR 1020298 | Zbl 0679.16001

[3] I. Herzog and S. L’Innocente. The nonstandard quantum plane. Ann. Pure Applied Logic 156:78–85, 2008. | MR 2474442 | Zbl 1158.03021

[4] E. Hrushovski and B. Zilber. Zariski geometries. J. Amer. Math. Soc. 9:1–56, 1996. | MR 1311822 | Zbl 0843.03020

[5] N. Jacobson. Structure of Rings. Colloquium Publications 37, Amer. Math. Soc., 1964. | MR 222106 | Zbl 0073.02002

[6] J. Jantzen. Lectures on Quantum groups. Graduate Studies in Mathematics 9, Amer. Math. Soc., 1996. | MR 1359532 | Zbl 0842.17012

[7] C. Kassel, Quantum groups. Graduate Texts in Mathematics 155, Springer, 1995. | MR 1321145 | Zbl 0808.17003

[8] A. Klimyk and K. Schmüdgen. Quantum groups and their representations. Texts and Monographs in Physics, Springer, 1997. | MR 1492989 | Zbl 0891.17010

[9] S. L’Innocente, A. Macintyre and F. Point. Exponentiations over the universal enveloping algebra of sl 2 (). Ann. Pure Applied Logic 161:1565–1580, 2010. | MR 2674051 | Zbl 1232.17023

[10] A. Macintyre. Model theory of exponentials on Lie algebras. Math. Structures Comput. Sci. 18:189–204, 2008. | MR 2459619 | Zbl 1138.03030

[11] M. Prest. Model theory and modules. London Math. Soc. Lecture Note Series 130, Cambridge University Press, 1987. | MR 933092 | Zbl 0634.03025

[12] W. Rossmann. Lie groups: An introduction through linear groups. Oxford University Press, 2002. | MR 1889121 | Zbl 1096.22002

[13] B. Zilber. A class of quantum Zariski geometries. In Model Theory with applications to algebra and analysis, I (Z. Chatzidakis, H.D. Macpherson, A. Pillay, A.J. Wilkie editors), pages 293–326. London Math. Soc. Lecture Note Series 349, Cambridge University Press, 2008. | MR 2441385 | Zbl 1153.03013