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Algebre et géométrie

M. Jean-Pierre SERRE, membre de I'Institut
(Académie des Sciences), professeur

Le cours a été consacré au méme sujet que celui de 1962-1963 : la
cohomologie galoisienne. 1l a surtout insisté sur les nombreux problemes que
posent les groupes semi-simples lorsque 1'on ne fait pas d’hypothese restrictive
sur le corps de base.

§1. Notations

— k est un corps commutatif, supposé de caractéristique # 2, pour simpli-
fier ;

— k, est une cloture séparable de & ;

— Gal(kJ/k) est le groupe de Galois de k/k ; c’est un groupe profini.

Si G est un groupe algébrique sur k, on note H'(k, G) le premier ensemble

de cohomologie de Gal(k/k) a valeurs dans G(k,), cf. Cohomologie Galoi-
sienne, LN 5, p. [-56. C'est un ensemble pointé.

Si A est un Gal(k/k)-module. on définit pour tout n = 0 des groupes de
cohomologie H"(k. A) = H"(Gal(k/k), A), cf. LN 5, p. [-9.

Par exemple, si A = Z/2Z. on a

H'(k, Z2Z) = k*/k**
et

H*(k, Z/2Z) = Bry(k) (noyau de la multiplication par 2 dans le groupe de
Brauer de k).

L'un des themes du cours a été d’expliciter les relations qui existent (ou qui
pourraient exister) entre l'ensemble H'(k, G), pour G semi-simple, et les
groupes H"(k, A) pour A = Z/2Z (ou Z/3Z, ou tout autre « petit » module sur
Gal(k/k)).
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§2. Le cas orthogonal

C’est celui qui est le mieux compris. grace a son interprétation en termes de
classes de formes quadratiques :

Soit g une forme quadratique non dégénérée de rang n = 1 sur k, et soit
O(q) le groupe orthogonal de g, vu comme groupe algébrique sur k. Si x est
un élément de H'(k, O(q)), on peut tordre g par x et I'on obtient une autre
forme quadratique g, de méme rang n que g. L’application x — (g,) définit
une bijection de H'(k, O(q)) sur I'ensemble des classes de formes quadratiques
non dégénérées de rang n sur k.

On a un résultat analogue pour la composante neutre SO(q) de O(g), a
condition de se borner aux formes quadratiques ayant méme discriminant que gq.

Ainsi, tout invariant des classes de formes quadratiques peut étre interprété

comme une fonction sur I'ensemble de cohomologie H'(k, O(q)), ou sur
I'ensemble H'(k, SO(q)).

2.1. Exemples d'invariants : les classes de Stiefel-Whitney

Ecrivons g comme somme directe orthogonale de formes de rang 1 :
q=(a) ®@)® ... D (a,) ={ay, as, ..., a,), avec a; € k*.

Si m est un entier = 0, on définit un élément w,,(q) de H™(k, Z/2Z) par la
formule

(2.1.1) wp(q) = . % (@) soo (@)
O < oo T U

(On a noté (a) I'élément de H'(k, Z/2Z) défini par a € k* ; le produit
(a;) ... (a;,) est un cup-produit dans l'algeébre de cohomologie H*(k, Z/2Z).)

On montre (A. Delzant, C.R. Acad. Sci. Paris, 255, 1962) que w,(q) ne
dépend de la classe d'isomorphisme de g (et pas de la décomposition choi-
sie) ; cela provient du fait bien connu que les relations entre formes quadrati-
ques « résultent des relations en rang < 2 ».

On dit que w,(q) est la m-ieme classe de Stiefel-Whitney de q.

Remarques. 1) Les classes w (q) et w»(q) ont des interprétations standard :
discriminant, invariant de Hasse-Witt. Les w,(q), m = 3. sont moins intéres-
santes ; il y a avantage a les remplacer (dans la mesure du possible) par les
invariants de la théorie de Milnor, cf. n” 2.3 ci-apres.

2) La méme méthode conduit a d’autres invariants. Ainsi, si n est pair = 4
et si g = (a,, ....a,) est tel que w,(q) = 0 (autrement dit, a, ... a, est un
carré), on peut montrer que I'élément (a,) ... (a,-,) de H""'(k, Z/2Z) est un
invariant de la classe de g. Le cas n = 4 est particulierement intéressant.
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2.2. Comportement de w\(q) et w-(q) par torsion

Soit x € H'(k, O(g)). On associe a x des €léments
8'(x) € H'(k, Z2Z) et  ¥(x) € H(k, 22Z)

de la fagon suivante :

3'(x) est I'image de x dans H'(k, Z/2Z) par I'application déduite de I'homo-
morphisme det : O(q) — {* 1} = Z/2Z ;

3(x) est le cobord de x (LN 5, p. I-71) relatif a la suite exacte de groupes
algébriques :

VenZ2Z 25, O(g)e=>w0(g): = il

(Le groupe 6(q) est un certain revétement quadratique de O(g) qui pro-
longe le revétement spinoriel Spin(q) — SO(g). On peut le caractériser par la

propriété suivante : une symétrie par rapport a un vecteur de carré a se releve
en un élément d’ordre 2 de O(q) rationnel sur le corps k(Va).)

Les invariants 8'(x) et 8°(x) permettent de calculer les classes w, et w, de
la forme g, déduite de g par torsion au moyen de x. On a en effet :

(2.2.1) wi(g:) = wi(q) + 8'(x) dans H'(k, Z/22),
(2.2.2) wi(qe) = wa(q) + d'(x)-wi(q) + 8%(x) dans H*(k, Z/12Z).

2.3. Les conjectures de Milnor

Soit kM(k) = @ k)(k) I'anneau de Milnor (mod 2) de k, défini au moyen de
symboles muitilinéaires (ay, .... a,) = (a)) ... (a,), a; € k*. avec les relations
2(@) =0 et (a,b) =0sia+b=1

Soient W, I'anneau de Witt de k, et [, son idéal d’augmentation, noyau de
I'homomorphisme canonique W, — Z/2Z.

On définit de fagon naturelle des homomorphismes
(2.3.1) kM(k) = L/

et
(2.3.2) kM(k) — H"(k. Z/22).

Les conjectures de Milnor (/nvent. Math. 9, 1970) disent que ces homomor-
phismes sont des isomorphismes. Cela a été démontré pour n < 4 (Merkurjev-
Suslin, Arason, Rost) et il y a des résultats partiels pour n = 4.

Le cours s’est borné a citer ces énoncés sans en donner de démonstrations.
Il a été complété par deux exposés de B. Kahn sur les formes de Pfister et
leurs invariants cohomologiques.
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§3. Applications et exemples

3.1. Invariants a valeurs dans H(k, Z/2Z) : le cas du groupe spinoriel

Soit ¢ une forme quadratique non dégénérée sur k, et soit x un élément de
H'(k, Spin(q)). Si I'on tord g par x, on obtient une forme quadratique g, de
méme rang que q. D’apres (2.2.1) et (2.2.2), les invariants w, et w, de g, sont
les mémes que ceux de g. Il en résulte que I'élément g, — g de I’anneau de
Witt W, appartient au cube I} de I'idéal d’augmentation I,. En utilisant
I’homomorphisme

¢ — H(k, 22Z)
construit par Arason (qui est en fait un isomorphisme, cf. n°2.3), on obtient
un élément de H’(k, Z/2Z) que nous noterons i(x). On a :

(3.1.1) i(x) =0 & gq,=gq (mod]I}).

On a ainsi défini une application canonique
(3.1.2) i: H'(k, Spin(q)) — H3(k, Z/2Z).

3.2. Invariants a valeurs dans H’(k, Z/2Z) : cas général

Prenons pour G un groupe semi-simple simplement connexe déployé, et
choisissons une représentation irréductible p de G dans un espace vectoriel V
de dimension finie. Supposons p orthogonale, ce qui est par exemple le cas si
G est de I'un des types G,, F, ou Eg. Il existe alors une forme quadratique
non dégénérée q sur V qui est invariante par p(G). On obtient ainsi un
homomorphisme G — O(g). Vu les hypothéses faites sur G, cet homomor-
phisme se releve en un homomorphisme p : G — Spin(q).

En utilisant (3.1.2) on déduit de la une application
(3.2.1) i,: H'(k, G) - H’(k, 22Z),

dont on montre facilement qu'elle ne dépend pas du choix de q.

3.3. Le groupe G,

Supposons que G soit de type exceptionnel G,, et soit déployé. On sait
qu'il y a alors des bijections naturelles entre les trois ensembles suivants :

H'(k, Gy) ;
classes d’algebres d'octonions sur & ;
classes de 3-formes de Pfister sur k.

Il résulte de la, et des théoremes cités ci-dessus, que, si I'on prend pour p
la représentation fondamentale de degré 7 de G,, I'application i, correspon-
dante est une bijection de H'(k, G,) sur le sous-ensemble de H*(k, Z)2Z) formé
des éléments décomposables (cup-produits de trois éléments de H'(k, Z/2Z)).
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Cela donne une description cohomologique tout a fait satisfaisante de I'ensem-
ble H!(k, G»).

On peut aller un peu plus loin. Notons i l'injection de H'(k, G,) dans
H’(k, Z/2Z) que nous venons de définir. Soit p une représentation irréducti-
ble quelconque de G, ; il lui correspond d’apres (3.2.1) une application

i, : H'(k, G;) » H(k, 2/2Z).

On désire comparer i, a i. Le résultat est le suivant (je me borne ici au cas
ou le corps de base est de caractéristique 0) :

(3.3.1) On a, soit i, =i, soit i, = 0.

De fagon plus précise, soit mw; + myw, le poids dominant de p, écrit
comme combinaison linéaire des poids fondamentaux w, et w, (w; correspondant
a la représentation de degré 7, et w, a la représentation adjointe). On peut
déterminer (grice a des formules qui m’ont été communiquées par J. Tits)
dans quel cas on a i, = i ; on trouve que cela se produit si et seulement si le
couple (m,, m,) est congru (mod 8) a I'un des douze couples suivants) :

(0,2), (0,3), (1,0), (1,4), (2,0), (2,3), (4,3), (4,6), (5,2), (5,6), (6,3), (6,4).

Ainsi, pour la représentation adjointe, qui correspond a (0,1), on a i, = 0.
On peut préciser ceci en déterminant explicitement la forme de Killing Kill,
de la k-forme de G, associée a un élément donné x € H!(k, G;). Si
g. = (1) @ ¢ est la 3-forme de Pfister associée a x (i.e. la forme norme de
I'algebre d’octonions correspondante), on trouve que Kill, est isomorphe a

(-1,-3) ® q5.

3.4 Le groupe F,

Ici encore, on dispose d'une interprétation concrete de la cohomologie : les
éléments de H'(k, F;) correspondent aux classes d'algébres de Jordan simples
exceptionnelles de dimension 27 sur k. Malheureusement, on est loin de savoir
classer de telles algeébres., malgré les nombreux résultats déja obtenus par
Albert, Jacobson, Tits, Springer, McCrimmon, Racine, Petersson... Ces résul-
tats suggerent que les éléments de H'(k, F,) pourraient étre caractérisés par
deux types d’invariants :

(3.4.1 - «invariant mod 2 ») La classe de la forme bilinéaire « trace »
associée a l'algebre de Jordan. cette classe étant elle-méme déterminée par le
couple d'une 3-forme de Pfister et d’une 5-forme de Pfister divisible par la
premiéere. Du point de vue cohomologique, cela signifierait un élément
décomposable x; € H*(k, Z/2Z) (obtenu par (3.2.1) grace a la représentation
irréeductible p de dimension 26 de F;), et un élément xs de H(k, Z/2Z) de la
forme x5 = x;yz avec y,z € H'(k, Z/2Z).
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(3.4.2 - «invariant mod 3») Un élément de H’(k, Z/3Z). dont je n'ai
qu'une définition conjecturale, basée sur la « premiére construction de Tits »
(on suppose ici que la caractéristique de k est # 3).

Pour le moment, le seul cas qui puisse étre traité completement est celui
des algebres de Jordan dites « réduites » (celles ou I'invariant mod 3 est 0) :
on sait, d'aprés un théoréme de Springer, que I'invariant mod 2 (i.e. la forme
trace) détermine alors I'algebre de Jordan a isomorphisme pres.

3.5. Le groupe Eg

Lorsque k est un corps de nombres, la structure de H'(k, Eg) vient d’étre
déterminée par Chernousov et Premet : le principe de Hasse est valable, ce
qui entraine par exemple que le nombre d’éléments de H'(k, Eg) est 37, ou r
est le nombre de places réelles de k. La démonstration de ce résultat a fait
I'objet d'une série d'exposés dans le séminaire commun avec la chaire de
Théorie des Groupes.

Lorsque k est un corps quelconque (ou méme, par exemple, le corps Q(T)),
on sait fort peu de choses sur H'(k, Eg). Les résultats généraux de Grothen-
dieck (sém. Chevalley, 1958) et de Bruhat-Tits (J. Fac. Sci. Tokyo 34, 1987)
suggerent qu'un élément de cet ensemble pourrait avoir comme invariants des
classes de cohomologie (de dimension = 3) mod 2, mod 3 et mod 5 (car 2,3,5
sont les nombres premiers de torsion de Eg, cf. A. Borel, Oe. II, p. 776).
Jignore comment ces invariants pourraient étre définis ; je ne sais méme pas
si les applications i, : H'(k, Ey) — H(k, Z/2Z) du n° 3.2 peuvent étre non
triviales.

§4. Problemes d’injectivité

L'ensemble H'(k, G) est fonctoriel en k et G :
a) Si k' est une extension de k, on a une application naturelle
H'(k, G) - H'(k', G).
b) Si G — G’ est un morphisme de groupes algébriques. on a une applica-
tion naturelle H'(k, G) — H'(k, G").

On dispose d'une série de cas ou ces applications sont injectives :
(4.1) - (théoreme de simplification de Win) - Si q = q, ® q,, ou les g, sont

des formes quadratiques, l'application H'(k, O(q,)) — H'(k, O(q)) est injec-
tive.

(4.2) - Méme énoncé, pour les groupes unitaires associés aux algébres a
involution sur k.
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Ce résultat, nettement plus délicat que le précédent, a fait I'objet d’un
exposé par E. Bayer.

(4.3) (Springer) - Injectivité de H'(k, O(q)) — H'(k’, O(q)) lorsque k' est
une extension finie de k de degré impair.

(4.4) (Bayer-Lenstra) - Méme énoncé que (4.3), pour les groupes unitaires
au lieu des groupes orthogonaux.

(4.5) (Pfister) - Injectivité de H'(k, O(q)) — H'(k, O(g ® q')) lorsque le
rang de q' est impair (le morphisme O(q) — O(q ® q') étant défini par le
produit tensoriel).

On aimerait avoir d’autres énoncés du méme type, par exemple les suivants
(qui sont peut-étre trop optimistes) :

(4.6 7) - Si k' est une extension finie de k de degré premier a 2 et 3,
I'application H'(k, Fs) - H'(k', F,) est injective.

(4.7 ?) - Méme énoncé pour Eg, avec {2,3} remplacé par {2,3,5}.

Remarque - Soit G un groupe algébrique sur k, et soient x,y deux éléments
de H!(k, G). Supposons que x et y aient méme image$ dans H'(k’, G) et dans
H'(K", G) ou k' et k" sont deux extensions finies de k de degrés premiers
entre eux (par exemple [k’ : k] = 2 et [K" : k] = 3). Ceci n'entraine pas x =y
contrairement 2 ce qui se passe dans le cas abélien ; on peut en construire des
exemples, en prenant G non connexe ; j'ignore ce qu'il en est lorsque G est
connexe.

§5. Les formes traces

Il s’agit de la structure de la forme quadratique Tr(x?) associée a une
k-algebre de dimension finie. Deux cas particuliers ont €té considérés :

5.1. Algeébres centrales simples

Soit A une telle algébre. supposée de degré fini n® sur k. On lui associe la
forme quadratique g, définie par

galx) = deA/k(X:)-

Notons g% la forme trace associée a l'algebre de matrices M,(k) de méme
rang que A ; c’est la somme directe d’une forme hyperbolique de rang n(n—1)
et d'une forme unité (1, 1, ..., 1) de rang n.

On désire comparer g, et g%. Il y a deux cas a distinguer :
(5.1.1) n est impair.

Les formes ga et g% sont alors isomorphes ; cela résulte du théoreme de
Springer cité en (4.3).
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(5.1.2) n est pair.

Soit (A) la classe de A dans le groupe de Brauer de k. Le produit de (A)
par l'entier n/2 est un élément a de Bry(k) = H(k, Z/2Z). On a :

wi(ga) = wi(q3) et wi(qa) = wa(ql) + a.

(La formule relative a w, est facile. Celle relative a w> s’obtient en
considérant I'’homomorphisme PGL, — SO,. donné par la représentation
adjointe et en montrant, par un calcul de poids et racines, que cet homomor-
phisme ne se releve pas au groupe Spin,: si n est pair).

5.2. Algebres commutatives étales

Soit E une telle algébre, soit n son rang et soit ge la forme trace
correspondante. Les invariants w, et w, de g¢ sont donnés par une formule
connue (Comm. Math. Helv. 59, 1984). Le cours a donné une démonstration
de cette formule quelque peu différente de la démonstration originale, et a
appliqué le résultat obtenu aux équations quintiques a la Kronecker-Hermite-
Klein.

Le cas ou le rang n de E est égal a 6 pose également des problémes
intéressants. Notons e : Gal(k/k) — S ’homomorphisme qui correspond a E
par la théorie de Galois. En composant e avec un automorphisme extérieur de
Se on obtient un homomorphisme e’ : Gal(k/k) — S¢ qui correspond a une
autre algebre étale E’ de rang 6 (« résolvante sextique »). Peut-on déterminer
g, @ partir de qg ? C'est vrai lorsque w(qg) = 0, autrement dit lorsque les
images de e et e’ sont contenues dans le groupe alterné A ; on peut en effet
prouver que I'on a dans ce cas gg' = 2gg (mais pas gg = ge en général, bien
que gg et gg- aient les mémes invariants w, et w,). Lorsque I'on a a la fois
wi(ge) = 0 et ws(gg) = 0. on peut se demander si gg est isomorphe a la
forme unité (1, 1, ..., 1). C'est vrai si k est un corps de nombres (ou un corps
de fonctions rationnelles sur un corps de nombres) ; cest faux en général : on
peut construire un contre-exemple.

§6. La théorie de Bayer-Lenstra : les bases normales autoduales

Soit G un groupe fini. On s'intéresse aux G-algébres galoisiennes sur k, ou,
ce qui revient au méme, aux G-torseurs sur k. G étant considéré comme un
groupe algébrique de dimension 0 sur k. Une telle algebre L est déterminée,
4 isomorphisme (non unique) pres, par la donnée d'un homomorphisme
continu ¢ : Gal(k/k) — G. défini a conjugaison pres.

Lorsque ¢ est surjectif. L est un corps. et c’est une extension galoisienne
de k de groupe de Galois isomorphe a G.
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Dans un travail récent (Amer. J. Math. 112, 1990), E. Bayer et H. Lenstra
s'intéressent au cas ou L possede une base normale autoduale (« BNA ») ;
cela signifie qu’il existe un élément x de L tel que g (x) = 1 et que x soit
orthogonal (relativement a gq;) a tous les gx, g € G, g # 1. (Ainsi, les gx
forment une « base normale » de L, et cette base est sa propre duale
relativement a q.)

On peut donner un critére cohomologique pour I'existence d’'une BNA : si
Ug désigne le groupe unitaire de I'algébre a involution k[G], on a un
plongement canonique de G dans Ug(k) ; en composant ¢ avec ce plonge-
ment on obtient un homomorphisme Gal(k/k) — Ug(k), homomorphisme que
I'on peut regarder comme un 1l-cocycle de Gal(k/k) a valeurs dans Ug(k,). La
classe €. de ce cocycle est un élément de H'(k, Ug). On a e =0 si et
seulement si L a une BNA.

De ce critéere, combiné avec (4.4), Bayer-Lenstra déduisent le théoréme
suivant :

(6.1) - S’il existe une extension de degré impair de k sur laquelle L acquiert
une BNA, alors L a une BNA sur k.

En particulier :

(6.2) - Si G est d’ordre impair, toute G-algébre galoisienne a une BNA.

Voici quelques autres résultats relatifs aux BNA ; les démonstrations seront
publiées en collaboration avec E. Bayer.

Soit L une G-algebre galoisienne, et soit ¢ : Gal(k/k) - G I'homomor-
phisme correspondant. Si x est un élément de H"(G, Z/2Z), son image par
¢t : HY(G, Z/2Z) — H"(Gal(k/k), Z/2Z) = H"(k, Z/2Z) sera notée x.

(6.3) - Pour que L ait une BNA, il faut que x; = 0 pour tout élément x de
HY(G, Z/2Z) (autrement dit. I'image de Gal(k/k) dans G doit étre contenue
dans tous les sous-groupes d'indice 2 de G). Cette condition est suffisante si la
2-dimension cohomologique de Gal(kJ/k) est < 1 (autrement dit si les 2-sous-
groupes de Sylow de Gal(k/k) sont des pro-2-groupes libres).

(6.4) - Supposons que k soit un corps de nombres. Pour que L ait une
BNA. il faut que ¢ (c,) = | pour toute place réelle v de k (c, désignant la
conjugaison complexe relative a une extension de v a k). Cette condition est
suffisante si H(G, Z/2Z) = HYG, Z/2Z) = 0.

(6.5) - Le cas ot un 2-groupe de Sylow de G est abélien élémentaire.

Soit S un 2-sous-groupe de Sylow de G. Supposons que S soit un groupe
abélien élémentaire d'ordre 2. r = 1 ; l'ordre de G est 2’m, avec m impair.
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(6.5.1) - Il existe une r-forme de Pfister qi, et une seule a isomorphisme
pres, telle que 2'qp = m ® q} (somme directe de m copies de g} ).

Cette forme constitue un invariant de I'algebre galoisienne L considérée.
C'est la forme unité si L a une BNA. Réciproquement :

(6.5.2) - Supposons que le normalisateur N de S opere transitivement sur
S —A{1}. Il y a alors équivalence entre :

(i) L a une BNA.
(ii) La forme q est isomorphe a la forme unité de rang 2'm.

(iii) La forme q{ est isomorphe a la forme unité de rang 2'.

Lorsque r est assez petit, ce résultat peut se traduire en termes cohomologi-
ques. En effet, on peut montrer qu'il existe un élément x de H'(G, 2/2Z)
dont la restriction a tout sous-groupe d’ordre 2 de G est # 0, et qu’un tel
€lément est unique, a I'addition prés d’une classe de cohomologie « négligea-
ble » (cf. §7 ci-apres). L’élément correspondant x; de H'(k, Z/2Z) est un
invariant de I’algeébre galoisienne L.

(6.5.3) - Supposons r < 4. Les conditions (i), (ii), (iii) de (6.5.2) sont alors
équivalentes a :

(iv) On a x, = 0 dans H'(k, Z/2Z).

L’hypothése r <4 pourrait étre supprimée si les conjectures du n° 2.3
étaient démontrées.

Exemples. 1) Supposons que r =2 et que N opére transitivement sur
Si=H{l} i clestileicas) sTiGI=FAYS Aclioun PSL,(F,) avec g =3 (mod 8). Le
groupe H*(G, Z/2Z) contient un seul élément x # 0 ; soit G I'extension corres-
pondante de G par Z/2Z. Il résulte de (6.5.3) que L a une BNA si et
seulement si I'homomorphisme ¢ : Gal(k/k) — G se reléve en un homomor-
phisme dans G. Un tel relévement correspond a une G-algébre galoisienne L;
on peut montrer qu'il est possible de s’arranger pour que -Lpossede elle aussi
une BNA.

2) Prenons pour G le groupe SL.(F3) ou le groupe de Janko J,. Les
hypotheses de (6.5.2) et (6.5.3) sont alors satisfaites avec r = 3. Le groupe
H*(G, Z/2Z) contient un seul élément x # 0, et I'on voit que L a une BNA si
et seulement si x, = 0 dans H'(k. Z/2Z).

Remarque - La propriété pour une G-algebre galoisienne L d’avoir une
BNA peut se traduire en terme de « torsion galoisienne » de la maniére
suivante :
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Soit V un espace vectoriel de dimension finie sur k, muni d’une famille
q = (q;) de tenseurs quadratiques (de type (2,0), (1,1), ou (0,2), peu importe).
Supposons que G opére sur V en fixant chacun des g, On peut alors tordre
(V,q) par le G-torseur correspondant a L. On obtient ainsi une k-forme
(V,q)L de (V,q). On peut démontrer :

(6.6) - Si L a une BNA, (V,q)_ est isomorphe a (V,q).
De plus, cette propriété caractérise les algebres galoisiennes ayant une

BNA.
(Noter que ce résultat serait faux pour les tenseurs cubiques.)

§7. Classes de cohomologie négligeables

Soient G un groupe fini et A un G-module. Un élément x de H"(G, A) est
dit négligeable (du point de vue galoisien) si, pour tout corps k, et tout
homomorphisme continu ¢ : Gal(k/k) — G, on a

¢*(x) = 0 dans H"(k, A).
Il revient au méme de dire que x; = O pour toute G-algebre galoisienne L.

Exemple - Si a,b sont deux éléments quelconques de H'(G, Z/2Z), le cup-
produit ab(a+b) est un élément négligeable de H (G, Z/2Z).

Voici quelques résultats sur ces classes :

(7.1) - Pour tout groupe fini G, il existe un entier N(G) tel que toute classe
de cohomologie d’ordre impair et de dimension n > N(G) soit négligeable.

Ce résultat ne subsiste pas pour les classes d’ordre pair. D’ailleurs aucune
classe de cohomologie (a part 0) d’un groupe cyclique d’ordre 2 n’est négli-
geable, comme on le voit en prenant k = R.

(7.2) - Supposons G abélien élémentaire d'ordre 2". Si x € H'(G, Z/2Z), les
propriétés suivantes sont équivalentes :

(a) x est négligeable.

(b) La restriction de x a tout sous-groupe d'ordre 2 de G est 0.

(c) x appartient a l'idéal de l'algebre H*(G. Z/2Z) engendré par les ab(a+b),
ot a et b parcourent H\(G. Z2Z).

Il y a des résultats analogues pour A = Z/pZ, avec p premier # 2.
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. KAHN, Formes de Pfister et invariants cohomologiques (2 exposés).

m

. BAYER-FLUCKIGER, Le théoréme de simplification dans le cas hermitien.

SEMINAIRE COMMUN AVEC LA CHAIRE DE THEORIE DES GROUPES

J.-P. SERRE, Travaux de Chernousov sur les groupes de type Ej.
J. Tits, Travaux de Chernousov sur les groupes de type Eg (2 exposés).

J.-P. SERRE, Remarques sur la cohomologie galoisienne des groupes semi-
simples.
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J.-P. SERRE, Construction de revétements étales de la droite affine en
caractéristique p (C.R. Acad. Sci. Paris, 311, 1990, série I, 341-346).

— Spécialisation des éléments de Bry(Q(Ty, ..., T,)) (C.R. Acad. Sci. Paris,
311, 1990, série I, 397-402).

— Relévements dans A, (C.R. Acad. Sci. Paris, 311, 1990, série I, 477-482).

— Revétements a ramification impaire et théta-caractéristiques (C.R. Acad.
Sci. Paris, 311, 1990, série I, 547-552).

— Les petits cousins (Miscellanea Mathematica, Springer-Verlag, 1991, 277-
291).
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— Topics in Galois cohomology, Harvard, septembre-décembre 1990.

— Sieves, Singapour. mai 1991.
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— How often does a conic have a rational point ?, State College, septembre
1990 ; Yale, novembre 1990.

— Coverings of algebraic curves, Harvard, octobre 1990.

— Motives, Harvard, octobre 1990.

— Riemann Hypothesis : Why ?, Chicago, octobre 1990.

— Galois groups of division points of abelian varieties, Chicago, octobre
1990.

— Bounds for number of points of hypersurfaces over finite fields, Chicago,
octobre 1990.

— Coverings with odd ramification and theta-characteristics, Harvard,
novembre 1990.

— A chapter in group theory, Yale, novembre 1990.

— Asymptotic properties of the eigenvalues of some regular graphs, Harvard,
décembre 1990.

— Prime numbers, Galois groups and L-functions (3 exposés), Brown,
décembre 1990.

— Répartitions asymptotiques de valeurs propres de graphes et d’opérateurs
de Hecke, Bordeaux, février 1991 ; Univ. Paris VII, février 1991.

— Nombres premiers, groupes de Galois, etc. (2 exposés), E.N.S. Paris, mai
1991.

— Motifs : une introduction, E.N.S. Paris, mai 1991,
— Galois cohomology : recent results and open questions, Bonn, juin 1991.

— Nombre de points de certaines surfaces K3, d'aprés Peters, Top et van der
Viugt, Marseille-Luminy, juin 1991.
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