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///- réduction des courbes elliptiques. 
applications 

1 . MAUVAISE REDUCTION D'UNE COURBE ELLIPTIQUE. 

1.1. REDUCTION ADDITIVE OU MULTIPLICATIVE. 

1.1.1. Soient K un corps quelconque, E une cubique plane définie 

sur K , d1 équation affine F(x,y) = 0 où 
2 3 2 

F(x,y) = y + a ^ y + a g y - x - a 2 x - a 4 x - a g (a.€K). 

Le discriminant A de la cubique E a été défini en (1.1.1.2) ; il 

appartient à Z[a , , a 0 , . . . , a^] . 
\ L b 

Si A est non nul, la cubique est non singulière, autrement dit 

c'est une courbe elliptique. Dans le cas contraire, la cubique est dite 

singulière ou dégénérée. 

PROPOSITION. Une cubique singulière a un seul point singulier. De  

plus, si K est parfait, ou de caractéristigue différente de 2 et 3 , ce  

point singulier est rationnel sur K . 

• S'il y avait 2 points singuliers, l'intersection de la droite les 

joignant et de la cubique serait d'ordre au moins égal à 4 : c'est impossi­

ble, donc il y a un seul point singulier ; à cause de son unicité, il est 

invariant par tout K-automorphisme, donc purement inséparable sur K . 

Si K est parfait, cela prouve la proposition. Si la caractéristique de K 

est différente de 2 ou 3 , on peut prendre l'équation de E sous la forme 
2 3 

de Weierstrass y = 4x - g 2 x - g g (g^ et g 3 6 K) ; le point singulier 
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2 
vérifie de plus : y = 0 , 12x - = 0 , ce qui donne : x = -3g^/2g^ , 

y = 0 ; ce point est bien rationnel sur K . • 

1.1.2. Supposons, pour simplifier les démonstrations, que la caractéris­

tique de K est impaire. Soit E une cubique dégénérée dont le point 

singulier est rationnel sur K . Prenons ce point pour origine (dans le plan ! ) ; 

alors F(0,0) = F' (0,0) = F' (0,0) = 0 , c'est-à-dire a_ = a = a„ = 0 , 
X Y 2 3 2 6 4 3 

et l'équation de E devient : y + a^xy = x + a^x 

Les tangentes à l'origine ont pour équation y = Xx , où X est 
2 2 

racine du trinôme X + a^X - â  , dont le discriminant est b^ = â  + 4a^ . 

On sait que l'ensemble E ^ ( K ) des points non singuliers de E(K) 

forme un groupe abélien dont la loi peut être définie géométriquement par : 

Pj + p£ + Pg = 0 si et seulement si P ^ P ^ P ^ sont alignés sur E ( Q ) ( K ) • 

(cf.[11J , 5 . 6 ) . 

Nous allons voir que E^*(K) est isomorphe au groupe additif K + , 

ou au groupe multiplicatif K , ou encore au groupe multiplicatif des é lé­

ments de norme 1 dans une extension quadratique de K . 

1.1.3. Réduction additive. 

PROPOSITION . Si b 2 = 0 , alors E ( Q ) ( K ) - K + . 

• Lorsque b^ = 0 , la cubique a une tangente double à l'origine ; 

on peut supposer que cette tangente est la droite y = 0 , et que la courbe 
2 3 

a pour équation : y = x 

v La projection centrale de centre (0,0) 

. s sur la droite x = 1 permet de définir 

/ une bijection entre E, .(K) et K , par : 
/ , < ( l , l / t ) 

' (x ,y ) i — • t = x /y (cela revient à para-

metrer la cubique par t : x = t , y = t ) . 

-"7-:—prt > Un calcul facile montre qu'alors, si 3 

(o,orV U ' U ' X 

points P̂  (1 = 1,2,3) non singuliers sont 
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alignés sur la courbe, leurs paramètres vérifient : * i + t 2 + t 3 = ^ ' 

La bijection définie ci-dessus est donc un isomorphisme de groupes. • 

1.1.4. Réduction multiplicative. 

PROPOSITION . S i b 2 ? 0 , et si b 2 ç ( K * ) 2 , alors E^j(K) - K* ; 

Si b 2 ^ 0 , et si b 2 ^ ( K * ) 2 , alors E ( Q ) ( K ) - {t Ç K ^ ) / N K ^ ) / K ( t ) = 1} 

• Lorsque b ^ 0 , la cubique a 2 tangentes distinctes à l'origine, 
z 2 

de pente \ et \ . Si b

2 ^ # e l l e s s o n t rationnelles sur K , et 

la projection de centre (0,0) sur la droite y = À^x - A.̂  + \^ permet de 

définir une bijection entre E ^ ( K ) et l'ensemble K* = K - {0} , par : 

(x ,y) i > — . A 

y " 2 X Y / 

y 4 i x * \ y-\ i x \ / 
X + — — ; Y + ^ \ . \ / / 
o y - X 2

x ° 2y\X2 x \ / / 

! V ^ / 0 , 0 1 ^ 

Le calcul montre que cette bijection est un isomorphisme de groupes. 
2 

Enfin, si b £ (K*) , les deux tangentes à l'origine sont irrationnelles 
2 y-X^x 

sur K ; elles sont conjuguées sur K , et l'application (x ,y) 1 — • 
y A. 2 X 
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définit un isomorphisme entre E ^ ( K ) et le groupe multiplicatif des é lé ­

ments de norme 1 dans KCA^/fc : montrons la surjectivité de cette appli­

cation : soient 0 un élément de K{Jb^) de norme 1 , et a le générateur 

de Gal(KC/b 2)/k) ; d'après le "théorème 90" de Hilbert, il existe un é lé ­

ment a dans KCv/b7) tel que 0 = a° /a ; comme K(Jb ) = K{\ ) , et 
a y - M x 

X 0 = \ . , on peut écrire a = y - ^ n x et 0 = —r*— avec x , y dans K . • 
2 1 2 y - \ 2 x 

1.1.5. Application : Soit K un corps local de caractéristique résiduelle 

non nulle (éventuellement égale à 2 ) , et d'idéal maximal P . Soit E une 

courbe elliptique sur K , définie par une équation minimale, et ayant 

mauvaise réduction modulo P ( i . e . A = 0 mod.P). Notons par un tilde 

la réduction modulo P . 

Rappelons que le symbole quadratique (p) , défini pour tout 

élément entier d d'un corps local K de caractéristique résiduelle non 

nulle et d'idéal maximal P , vaut 0 (resp. +1,-1) si l'extension 

K{Jd)/K est totalement ramifiée (resp. est triviale, est non ramifiée). 

De plus, si la caractéristique résiduelle de K est impaire, on montre 
d ~ 

que ( — ) vaut 0 (resp. +1,-1) si la réduction d de d est nulle 
P ^ 

(resp. est un carré, n'est pas un carré) dans K . 

Remarquons que, si l'on change l'équation de E , alors c0 est 
6

 6 

remplacé par c' = u c~ , où u est un élément algébrique sur K . 
D D 

Si ces deux équations sont minimales, alors u est une unité et 
" c 6 ~ c6 

( ~ ~ ) = ("TT" ) . Nous pouvons maintenant énoncer : 
P P 

PROPOSITION Soit K un corps local de caractéristique résiduelle  

non nulle et d'idéal maximal P . Soit E une courbe elliptique sur K , 

et soit cc 1'"invariant" de E défini ci-dessus. Supposons que la réduc-
b 

tion de E modulo P est mauvaise. Elle est alors de type : 

(i) additif si ( - ^ ) = 0 ; 
- C g 

(ii) multiplicatif à tangentes rationnelles si (--r-) = +1 ; 
P 

(iii) multiplicatif à tangentes irrationnelles si ( — a ) = -1 . 
P 
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a Lorsque la caractéristique résiduelle de K est impaire, on 

utilise ce qui précède : le changement de variable effectué en (1.1.2) 

donne : â  = â  = â  = 0 , et c^ = -b^ ; ensuite, les propositions 

(1.1.3) et (1.1.4) donnent le type de la réduction de E en fonction 

de - c r , et en fait en fonction de ( — - ) . 
b p 

Lorsque la caractéristique résiduelle de K est égale à 2 , une 

étude analogue démontre la proposition. • 

1.1.6. Définitions. Soit E une courbe elliptique sur Q . Son conduc­

teur (algébrique) est défini par : N = | | p p , où A est le discriminant 
p|A 

d'une équation minimale pour E , où f = 1 si la réduction en p est 
P 

multiplicative, f -2 (resp. f ^ 2) si la réduction en p est additive 
P P 

et p £ 5 (resp. p = 2 ou 3) ; lorsque p = 2 ou 3 , f - 2 mesure la 
P 

"ramification sauvage" ( c f . [ 2 5 ] ) . On dit que E est semi-stable si N 

n'a pas de facteur carré, c'est-à-dire si les mauvaises réductions de E 

sont toutes de type multiplicatif. 

1.2. COURBES DE TATE ET REDUCTION MULTIPLICATIVE. 

Soient K un corps local, O , p comme précédemment ; soient U 

le groupe des unités de o , et v la valuation de K normalisée par 

v(K*) = *%> . 

1.2.1. PROPOSITION . Toute courbe de Tate sur K est à réduction multi­

plicative à tangentes rationnelles. 

m Nous avons vu (1.3.3) que, pour tout q Ç P , la courbe E(q) 
2 3 

d'équation Y -XY = X - h 2

X ~ h 3 , où h 2 et h 3 sont définis par des 

séries entières en q à coefficients entiers rationnels sans termes cons­

tants, est une courbe elliptique sur K . Sa réduction modulo P est la 
2 3 

courbe E(q) d'équation Y - XY = X : c'est une cubique dégénérée, dont 

les tangentes au point double sont distinctes et rationnelles sur K (1.3.3.3) . • 
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1.2.2. PROPOSITION . Si E est une courbe elliptique sur K à réduction  

multiplicative à tangentes irrationnelles, l'extension quadratigue Kijb^)/K 

est non ramifiée. 

• Puisque b^ est le discriminant du trinôme dont les racines 

sont les pentes des tangentes au point double de E (cf. 1.1.2), les tan­

gentes sont rationnelles sur K(Jb^) . Cela prouve, d'après la proposition 

(JML^5), que - C g n'est pas un carré dans K mais en est un dans 

KCv/b )̂ , autrement dit que [K(Jb^) : K] = 2 . D'autre part, KÇjb^) est le 

corps de décomposition (sur K) du trinôme X + a^X - â  , dont,les racines 

sont distinctes. Ainsi, KÇjb^)/K est séparable, et l'extension est non 

ramifiée. • 

1.2.3. THEOREME. Soit E une courbe elliptique sur K à réduction multi­

plicative . Si la réduction de E est à tangentes rationnelles (sur K) , alors 

E est une courbe de Tate sur K ; sinon, E est une courbe de Tate sur  

une extension guadratigue non ramifiée de K . 

• L'invariant j de E est tel que v(j) < 0 : en effet, v(A) > 0 

car la réduction est mauvaise, v ( c J = 0 car elle est multiplicative 
9 6 

A + c 6 

(proposition 1.1.5), et j = —-— . Donc il existe un unique q Ç P tel 

1 n 
que j = j(q) = q + S c(n)q (cf. 1.3.3.1) ; mais alors E et E(q) sont 
_ n;>0 
K-isomorphes. 

Supposons d'abord que E est à tangentes rationnelles (sur K) . 

Notons cA et c~ (resp. c' et c ' ) les invariants de E (resp. de E(q)) 

définis en (1 .1 .1 .2) . Montrons que E et E(q) sont, en fait, isomorphes 

sur KCy-Cg) : il existe un élément u de K tel que c^ = u c^ et 

c' = u^c c ; or c et c' sont non nuls puisque la réduction est multi-
b b b b 2 c 6 c 4 

plicative ; donc u est une unité de K , et u = ~ x — est dans K 
c 6 4 

ainsi, K(u) = K(u 3 ) = K( / - f ) . Or -c ' = 1 - 5 04 2 n 5 - 3 ^ - est un 
J cU 6 1 1 n y o n=l 1-q 

carré : c'est clair si la caractéristique résiduelle est impaire ; si elle 
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est égale à 2 , on utilise la formule : ( U ^ 2 e ^ j 2 = t / 3 e ^ (où e désigne 

l'indice de ramification de K sur Q , et où = 1 + p n (cf.[17j . 2 . 3 ) ) , 
Là 

et le fait que 8 divise 504. Donc K(u) = KC/-C J , et il existe un isomor-
b 

phisme 9 de E sur E(q) défini sur K(\/-c J . 
D 

D'autre part, d'après (1 .1 .5 ) , -'cl est un carré dans K , donc 
s—\ y _ b 
KC/-C J = K . Nous allons montrer , en suivant Ogg ([25 J ,11), que l'exten-

b 

sion KC^-c )/K est non ramifiée ; cela prouvera que Kl^-c,.) = K , et 
b b 

que E et E(q) sont K-isomorphes. 

Soit l un nombre premier impair différent de p ; notons L 

l'extension K(E(q) ) , et L' = L iy -cJ . Nous savons que L = K(|a ,q ) ; 
£ b z 

l'extension K(|a )/K est non ramifiée, donc l'indice de ramification de 
i / e 

L/lK est celui de K(u ,q ) / K ( \ i ) : il est impair (il vaut 1 ou 8 ) 

K(M?) I 
Supposons L' différent de L , et notons a l'automorphisme non trivial 

de L' sur L ; le composé 0 ^ 9 ° est un automorphisme non trivial de 

E ; nous avons remarqué que j est non entier, en particulier j / 0 , 1728, 

donc A ut (E) = ± 1 et e " ^ 0G = -1 . Soit P un point de E(q)(L') , et 

0(P) son image dans E(L') ; alors 0(P) € E(L) si et seulement si 

0(P) Q = e ( p ) f c'est-à-dire 0 a ( P Q ) = 0(P) , ou encore : P Q = -P . Appli­

quons ceci à un point P d'ordre l de E(q) : alors P Ç E (q)(L) , donc 

P a = +p -P , et 9(P) té E(L) . Ainsi, le groupe E(L) = 0(E(q)(L) £) 

est réduit à 0 . Or, E(L) est isomorphe à L* , qui contient yx^ . 

Ainsi, L' est égal à L , donc KC^-Cg) est contenu dans L et l'exten­

sion K(J-c§)/K est non ramifiée. Ceci termine la démonstration de la 

première assertion. 

Pour la seconde assertion, lorsque E est à tangentes irrationnelles 
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sur K , remplaçons K par KC/b^) dans ce qui précède : cela prouve 

que E et E(q) sont K(Jb^)-isomorphes ; et la proposition (1.2.3) 

prouve que KC/b^J/K est non ramifiée. • 

1.3. GROUPE FORMEL ASSOCIE A UNE CUBIQUE PLANE. 

On trouvera dans [10] tous les résultats utilisés ici sur les groupes 

formels. 

1.3.1. Soit E une cubique plane définie sur un corps quelconque K et 
2 3 2 x 

d'équation (1) : y + a i xy + a 0 y = x + a 0 x +a .x + a c ; et posons z = , 
1 o Z 4 b y 

1 Z 1 
w = - T ; , c'est-à-dire x = , y = - 7 - . Par ce changement de variables, y w w 

X 

le point à l'infini est amené en (0,0) , et comme l'ordre de ~ à l'infini 

est égal à ( - 2 ) - ( - 3 ) = 1 , la variable z est une uniformisante locale 

pour la cubique au voisinage de l'origine (z ,w) = (0,0) . 
3 2 2 2 3 

L'équation devient (2) : w = z + a 1 zw + a 0 z w + a^w + a„zw + a.w 
1 L O 4 D 

et permet de calculer le développement de w en série entière de z au 
3 4 2 5 n 

voisinage de l'origine : w = z + a^z + {a^ + a^)z + . . . = S A^z où 
m>3 

A ç Z [ a t ] , A étant de "poids" n-3 (comme a, était de "poids" i ) . 
n 1 n -2 ^ 

Donc w € Zta^ [ [ z j ] , x e z (Zta^ [ [ z ] ] ) , y e z 6{I[al\ [ [ z ] ] ) . 

Nous venons ainsi de définir, pour toute extension L de K , 

-x(P) 

une application : P « — • z(P) = (p) de E(L) dans L . Cette application 

admet une application réciproque définie sur l'ensemble des éléments z 

de L tels que la série w(z) = Z> A z 1 1 converge, à savoir : 
n*3 n 

z 1 — > P(z) = (x (z ) ,y (z ) ) où x(z) = z /w(z ) , y(z) = - l / w ( z ) . 

1.3.2. Addition sur E : 

PROPOSITION . Il existe une série formelle F 6 2 [ a . l [ [Z^ ] 

telle que ztPj+P ) = F(z(P 1 )+z(P 2 )) pour tous points ? 1 et ? 2 de E . 
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• Soient 3 points ^i'^2'^s n o n s i n 9 u ^ e r s alignés sur E , c'est-

à-dire tels que P +P 0+P_ = 0 . Notons ( z , , w . ) les coordonnées de P 
1 2 3 i l i 

(i = 1,2,3) , et calculons formellement z en fonction de z et z 9 . 

Le point P est le 3e point d'intersection de la droite P P et 
* 12 

de la cubique ; l'équation de la cubique est donnée par (2) , celle de 
n n 

w

2 " w i z 2 ~ z l 
P,P_ est de la forme : w = Xz+v , où \ - = £ A 

1 2 z o ~ z i o n Z Q ~ Z 1 

2 1 n^3 2 1 
n n n-1 n-1 

n Z 2~ Z 1 Z 2 ~ Z 1 
et v = w 1 - Xz 1 = L A (z . - z 1 ) = E A z. z n . En 

1 1 0 n 1 1 z Q - z 1 n 1 2 z 0 - z 1 n^3 2 1 n^3 2 1 

remplaçant w par \ z + v dans (2) , on obtient une équation du 3e 

degré en z , dont les racines sont les z^ (i = 1,2,3) , et la "trace" 

donne : 
2 2 

a A + a 0 v + a_\ + 2aAv + 3a_X v 
1 2 3 4 6 

1 + a0X + a A + a A 
2 4 6 

où X et v sont dans Zta^ [ [z^ , z 2 ] ] , de degré total en z } et : 

deg X ^ 2 , deg v ^ 3 . Le dénominateur de cette fraction est congru 

à 1 modulo (z ,z ) , donc il est inversible dans Z [ a . ] [ [ z ,z ] ] , 
x ù 1 1 Là 

d'où la proposition. • 

Remarque : Les propriétés de l'addition sur E font de F une 

loi de groupe formel à un paramètre. 

1.3.3. A la multiplication par n dans E (n entier ^ 1) correspond 

la série formelle t R ( z ) € ^ [ a . ] [ [ Z ] ] , définie par récurrence : ^ ( Z ) = Z , 

• + 1 ( Z ) = F(Z,i |/ n(Z)) . On a : <i n(z(P)) = z(nP) . 

Rappelons (cf .[10] ,1.3) que, si K est de caractéristique p > 0 , 
P h 

il existe un entier h £ 1 tel que \ji (Z) Ç F [ a . ] [ [ Z ^ Jl . Le plus grand 
p p i 

entier h , s'il existe, pour lequel ceci est vérifié est appelé la hauteur 

du groupe formel F . Si ^ p ( z ) = 0 , on dit que la hauteur de F est 

infinie. La valeur de h dépend du type de la courbe E . 
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PROPOSITION . Si E est une cubique plane définie sur un corps 

K de caractéristique p > 0 , et si h désigne la hauteur du groupe for­

mel F , on a le résultat suivant : 

si E est une courbe elliptigue non supersingulière, h = 1 ; 

si E est une courbe elliptigue supersingulière, h = 2 ; 

si E est une cubigue dégénérée de type multiplicatif, h = 1 ; 

si E est une cubigue dégénérée de type additif, h = » . 

• Lorsque E est à mauvaise réduction de type additif, 

Ê (K) K + et la multiplication par p dans E (K) correspond à la 
o o 

multiplication par p dans K , c'est-à-dire à l'application nulle : h = <*> . 

Lorsque E est à mauvaise réduction de type multiplicatif, la multiplication 

par p dans Ê Q ( K ) correspond à x i — • x p dans le groupe multiplicatif 

correspondant (K* ou un groupe de normes), et tyD(Z) = Z p est de 

hauteur 1 . Lorsque E est à bonne réduction, p est l'ordre 

du noyau de la multiplication par p , considérée comme isogénie 

de E , c'est-à-dire le degré d'inséparabilité de la multiplication par p 

(cf. 11,5 . 5 ) . • 

2 3 
Exemple : On calcule facilement i|f9(z) = 2z - a z - 2a ? z + . . . . 

— — ù JL Cà 

Ainsi, si p = 2 et si E n'est pas dégénérée, on voit que E est 

supersingulière si et seulement si â  est nul. 

2 . STRUCTURE DU GROUPE E(K) . 

2 .1 . CAS COMPLEXE ET CAS REEL. 

2 .1 .1 . Nous avons vu (1.2.2.5) que E((D) est un tore complexe (D/L , 
2 

donc le groupe E((C) est isomorphe à ( R / Z ) 

2 .1 .2 . Soit E une courbe elliptique définie sur R par une équation 
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2 3 
de Weierstrass : y = f(x) = 4x - - g g . Soit Д le discriminant 

de E , c'est-à-dire, à un coefficient près, le discriminant du polynôme 

cubique f (cf. 1.1.1.3). 

Si Л < 0 , f a une racine réelle ; dans ce cas, E (R) est connexe 

et isomorphe à R / Z . 

Si Д > 0 , f a trois racines réelles, E (R) a deux composantes 

connexes et est isomorphe à R / Z x Z /2Z . 

_ — > — ^çy^—^—> 
Д < 0 1 д > 0 

2.2. CAS LOCAL ([47] ,6) . 

Soient К un corps local de caractéristique résiduelle p ; 

v , О , P , U , comme ci-dessus ; E une courbe elliptique sur К , 

définie par une équation minimale de la forme F(x,y) = 0 , où 
2 3 ? F(x,y) = y + a ^ y + a 3 y - x - a ^ - a 4 x - a g . 

2 .2 .1 . La réduction E ( K ) — • E ( K ) n'est pas surjective en général, 

mais si on note E (K) le groupe des points non singuliers de E(K) , 

et E ^ Q J ( K ) son image réciproque par la réduction, on a le résultat sui­

vant : 

PROPOSITION . La réduction E / n 4 ( K ) > E (K) est surjective. 
^U; ns 

• Soit ( f , f ) € Ê (K) , c'est-à-dire : soient r,t des éléments 

de К entiers sur О tels que F(r,t) € p , F ' ( r , t ) ou F ' ( r , t ) € U 
x y 

(par exemple F^(r,t) Ç U) . Il suffit de montrer qu'il existe f Ç К tel 

que t = t* et F ( r , f ) = 0 : c'est le lemme de Hensel (cf .[17] ,11.2). • 
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2 .2 .2 . Notons E^j(K) le noyau de cette réduction, c'est-à-dire 

E ( 1 ) ( K ) = { ( x , y ) 6 E(K)/v(x)s -1 et v(y) s - 1 } . 

Remarquons que x et y sont liés par l'équation de E : 
2 3 2 

y + a.xy + a 0 y = x + a 0 x + a.x + ac , où les a, 6 O ; donc v(x) < 0 
1 6 L 4 b 1 

équivaut à v(y) < 0 , et alors il existe un entier n s> 1 tel que 

v(x) = -2n , v(y) = -3n . Notons, pour tout entier n ^ 1 , 

E, .(K) = { ( x , y ) € E(K)/v(x) * -2n} = { ( x , y ) € E(K)/v(y) <; -3n} . 
(n) 

Remarque : Pour tout n £ 0 , on a E ( n ) ^ K ^ 3 E ( n + 1 ) ^ * Notons 

z = - x / y et rappelons x et y sont définis par des séries entières en z , 

qui convergent si v(z) > 0 (cf. 1.3.1) ; alors 

E, N(K) = { ( x , y ) Ç E ( K ) / v ( z ) 2> n} , pour tout entier n ^ l . 
(n) 

2 .2 .3 . La courbe elliptique E(K) est munie d'une structure de groupe. 

D'autre part, le groupe formel F associé à E permet de définir une 

structure de groupe sur p : si z^ , z^ € P , alors F ( z 1 , Z 2 ) est une 

série convergente dans P , et si l'on note z i ® p z 2 s a s o m m e ' ^ a 

loi ©p est une loi de groupe sur P . 

PROPOSITION ' . Pour tout n ;> 1 , E, ,(K) et pn sont des sous-(n) — 

groupes de E et P pour les lois définies ci-dessus, et l'application : 

(x ,y) • • z = - x / y définit un isomorphisme de groupes de E ^ ( K ) 

sur Pn pour ces lois . 

• Cette proposition est une conséquence du (i) du lemme (2.2.4) 

ci-dessous. • 

COROLLAIRE . Les groupes E ( n ) ( K ) définissent une filtration de E(K) 

2.2.4. LEMME . Soient ^ l f ^ 2

 € ^ — Z3 6 P tels que Zj ® p z 2 © p = 0 . 

Alors : 
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2 n n 
(i) z 1 + z 2 + z 3 e p (donc z 3 ç p ) ; 

( i i ) ±LL P 7̂  2 , on peut se ramener à â  = a^ = 0 , et alors 

Z l + Z 2 + Z 3 € p 3 '' 

(iii) Si. p ^ 2,3 , on peut se ramener à a = a = a = 0 , et alors 
5 JL ù o 

n 
Z l + Z 2 + Z 3 6 5 

(iv) Si p = 2 et si E est supersingulière, alors a = 0 , on 

peut se ramener à a 2 = 0 , et alors z i + z 2 + z 3 ^ ' 

• Il suffit de regarder l'expression de F(z ,z ) donnée en (1.3.2) 

et, pour (iv) , de se souvenir que, en caractéristique 2, la courbe el l ip­

tique E est supersingulière si et seulement si â  = 0 (cf. 1.4.3). B 

2.2.5. Etude de la filtration. La structure du groupe E(K) est donnée 

par le résultat suivant : 

THEOREME. 

(i) E^jj(K) est un pro-p-qroupe ; 

(ii) E ( 0 ) ( K ) / E ( 1 ) ( K ) est isomorphe à Ê n g ( K ) ; 

(iii) Si E est à bonne réduction, E(K) = E ^ ( K ) ; si la réduction  

est de type multiplicatif à tangentes rationnelles, E(K)/E^j(K) 

est cyclique d'ordre v(A) ; sinon, E ( K ) / E ^ ( K ) est d'ordre ^ 4 . 

m ( i ) . D'après le lemme (3 .2 .4 ) , il existe un entier a 2> 2 tel 

que E ( n ) ( K ) / £ ( a n j ( K ) ^ p n / P a n pour tout n 2> 1 , P étant muni de l'addi­

tion ordinaire. Donc E ^ ( K ) est un pro-p-groupe. 

(ii) provient des définitions. 

( i i i ) . La 1ère assertion est évidente. Démontrons la 2e : d'après 

(1 .2 .3 ) , toute courbe elliptique sur K à réduction multiplicative à tangen­

tes rationnelles est isomorphe à une courbe de Tate E(q) (q G p) . Donc 

il suffit de montrer que E(q)/E^Qj(q) =~ Z/v(A(q))2E pour tout q Ç P . 

Or Ê(q) a pour point singulier (0,0) (cf. 1.3.3) ; E(q) est paramétré 
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22 
par K*/q grâce aux formules X(u) , Y(u) données en ( 1 . 2 . 5 . 1 ) , qui 

convergent lorsque | q | < |u| <; 1 , u ^ 1 ; (cette "couronne" forme un 

système de représentants de K * / q * ) . Ces formules montrent que 

X(u) s et Y(u) = —^—z (mod.qO) . 
( l - u ) Z (1-ur 

Ainsi, (X,Y) ç E, v(q) si et seulement si (X,Y) j£ 0 , c'est-à-dire 

|q | < |u| < 1 . D'où E^j(q) ^ Uq /q ^ U , et de même 

E, ,(q) - U ( n ) = 1 + p n - . Enfin, E ( q ) / £ , m ( q ) - K*/q*U - 2 E / v ( q ) . Z ' 
(n) vu; 

24 
mais A(q) = q | f (1-q ) / donc v(q) = v(A(q)) . 

n*l 

La dernière assertion (cas de la réduction additive, ou multiplica­

tive à tangentes irrationnelles) est démontrée dans ( [ 4 7 ] , 6 ) . • 

2 . 3 . APPLICATIONS. (K désigne encore un corps local de caractéristique 

résiduelle p > 0 ) . 

2 . 3 . 1 . PROPOSITION . Si m est premier à p , la réduction : 

E (K) • Ë m (K) est injective. 

2 
• Le groupe E (K) est d'ordre divisant m (cf. 1 . 4 . 1 . 1 ) alors 

m 

que E ^ ( K ) est un pro-p-groupe ; donc le noyau de la réduction : 

E m (K) • Ê m (K) , qui est égal à E m (K) O E ( 1 ) ( K ) , est nul. • 

Remarque : ce résultat a été démontré, par une autre méthode, en 

( I I . 6 . 2 . 2 ) . 

2 . 3 . 2 . Notons e = v(p) l'indice de ramification absolu de K , et a 

le plus grand entier tel que z^ + Zg + z 6 p a n dès que z^ ®p z^ = 0 , 

Z j € PU (cf. 2 . 2 . 4 , on sait que a 2> 2 ) . 

PROPOSITION i . S'il existe un point d'ordre p dans E^OC) (m>l) , 

alors : e ^ (a-l)n . 
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• Soient : Q un point d'ordre p de E ^ f c ) # e t n = v(z(Q)) 

( i . e . Q ç E ^ ( K ) \ E | n + 1 j ( K ) ) . Comme pQ = 0 , on a : 

z(Q) © p z(Q) © p . . . © p z(Q) = 0 ; 

q fois 

or les groupes ( p n / p a n , © p ) et ( p n / P a n , + ) sont isomorphes (cf. 2 .2 .4) , 

d'où : p .z(Q) ç P a n . Ainsi, e+n = v(p .z(Q)) ;> an . o 

2 .3 .3 . COROLLAIRE 1. Supposons K absolument non ramifié. Si p est  

impair, il n'y a pas de torsion dans E^^(K) . Si p = 2 , les points de  

torsion éventuels de E^^(K) sont d'ordre 2 , et ne sont pas dans E^OO . 

1 Puisque E^j(K) est un pro-p-groupe, tous les points de tor­

sion de E^j(K) sont d'ordre une puissance de p . Soit Q un point 

de torsion de E m ( K ) ; comme e = 1 , nous avons : 1 £ v(z(Q)) £ -̂ -r- . 
\l) j a-1 

Si p est impair, nous savons que a 2> 3 (2.2.4) , donc — - < 1 , et 
a— 1 

un tel point Q ne peut pas exister. Si p = 2 , nous pouvons avoir 

a = 2 , et v(z(Q)) = 1 , et c'est la seule possibilité. • 

2.3.4. COROLLAIRE 2. Supposons que p = 2 , e = 1 , et que E est 

à bonne réduction supersingulière. Soit Q un point d'ordre 2 , de E(K) . 

Alors l'extension K(Q)/K est totalement ramifiée de degré 3 . 

• Notons K1 = K(Q) , et e' l'indice de ramification absolu de 

K' , c'est-à-dire l'indice de ramification de K'/k . Le point Q est 

d'ordre 2 dans Ê(K) , qui est supersingulière : donc Q = 0 , et 

Q e E ^ ( K ' ) . Ainsi, e' ^ a-1 (cf .2 .3 .2) ; or nous savons qu'ici a 

est au moins égal à 4 (cf. 2 .2 .4 ) , donc e' est au moins égal à 3 . 

D'autre part, le degré de K'/K est au plus égal à 3 , car il y 

a 3 points d'ordre 2 sur E(K) (d'après 1.4.1.1). B 

2.3.5. En fait, le corollaire 2 n'est qu'un cas particulier du résultat 

suivant : 
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PROPOSITION . Soit К un corps local de caractéristique rési­

duelle p > 0 , d'indice de ramification absolu égal à 1 ; soit E une  

courbe elliptique sur К , à bonne réduction supersingulière ; soit Q 

un point d'ordre p de. E(K) . Alors l'extension К(ф)Д est totalement 
2 

ramifiée de degré p -1 . 

• Nous verrons en (3.1.5) que, sous ces hypothèses, l'indice 
2 2 

de ramification de K(Q)/K est égal à p -1 . D'autre part, il y a (p -1) 

points d'ordre p sur E(K) (cf. 1,4.1.1) , donc le degré de l'extension 
2 

K(Q)/K est au plus égal à p -1 . • 

2.4. CAS RATIONNEL. 

Soit E une courbe elliptique sur Q , de discriminant Д . 

2 .4 .1 . THEOREME (Morde 11-Weil) : Le groupe Е(ф) est de type fini. 

Ce théorème a été prouvé par Mordell en 1922, puis généralisé 

par Wei l . On en trouve une démonstration dans [ 5 ] (théorème 20.1) . 

2 .4 .2 . L'étude du cas local (cf. 2.2 et 2.3) donne le résultat suivant 

sur la torsion de Е(ф) : 

PROPOSITION . Si_ p1 ,p 9 , . . . ,p désignent les facteurs premiers de 
X Là Г 

Д , tout point de torsion de Е(ф) est à coordonnées dans 

Z&ri 1 ± ±1 
* L 2 ' p[ ' p f c Ц ; J ' 

• Soit Q un point de torsion de Е(ф) ; supposons que figure, 

au dénominateur d'une des coordonnées de Q , un nombre premier p ne 

divisant pas Д . 

Alors le point Q , considéré comme point de E(Q^) = E ^ ^ Q ^ ) , 

est dans le noyau Ец^(ф ) de la réduction modulo p . D'après (2 .3 .3 ) , 

ce n'est possible que si p == 2 . • 
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Rappelons un résultat démontré en (1.4.4.3) : 

PROPOSITION I. Le groupe de torsion de E(Q) est cycligue, ou  

égal au produit de H/27L par un groupe cycligue. 

2 .4.3. La série L d'une courbe elliptique. 

Nous avons associé à toute courbe projective X non singulière 

sur F une série L (cf. I I . 7.3.2) , définie par : 
P 

2g -
L_(u) = JJ ( l - a . u ) ~ A ; 
^ i=l 1 

dans cette formule, u est une variable complexe, g le genre de X , 

et a . , / . . . / ( x « les valeurs propres de l'endomorphisme de Frobenius n 
1 2g p 

sur le module de Tate T (J(X)) (C premier différent de p ) , numérotées de 

façon que a, -a. . = P • * i î+g 

En particulier, si X = E est la réduction modulo p de E (où p 

ne divise pas A ) , 

L

P ( P ) ( P " S ) = " V . l -2s 
E 1 - a p + p 

P 

où a p = a 1 +a 2

 e s t 1 Q trace de TT^ ; comme | a 1 1 = | a 2 1
 = *JÏ> > o n a 

| a p | * • 
Lorsque p divise A / posons a = ( — ) ; autrement dit, 

P P ~(n) 
a = +1 , -1 ou 0 , selon que la cubique dégénérée E v p ; est de type 

P 

multiplicatif à tangentes rationnelles, multiplicatif à tangentes irrationnelles, 

ou additif (cf. 1.1.5). 

Définissons maintenant la série L de E par le produit eulérien 

suivant (qui converge pour Res > 3/2) : 

y p " s ) = n — x — TT X i - 2 s • 

E P|A ( 1 - a p S ) pjfà 1 - a p ^ p 1 

Définissons aussi la fonction A £ par : 

A £ ( s ) = N s / 2 ( 2 n ) - s T(s) L^p"" 8 ) 

où N désigne le conducteur (algébrique) de E , défini en (1 .1 .6 ) . 
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2.4.4. Conjectures. Nous énonçons ici quelques conjectures "classiques" 

sur les courbes elliptiques semi-stables définies sur Q ( c f . [ 4 7 ] ) . Nous 

supposons donc N sans facteur carré, et utilisons les notations de 

(2.4.3) . Définissons a pour tout entier n ^ 1 , à partir des a , 
n p 

par : a. = 1 , a = a a si (n,m) = 1 , et a a = a , 1 + pa r i 
1 nm n m p p r p r+ l ^ p r - l 

si r ^ 1 . Rappelons que Dif (E) est de dimension 1 , et notons uu 
o 

une forme différentielle holomorphe non nulle sur E . 

Conjecture 1 : La série L de E admet un prolongement analytique  

holomorphe dans (D , et vérifie une équation fonctionnelle du type : 

A £ (2-s ) = wA £ ( s ) , où w = ±1 . 

Soit p l'ordre du zéro de L en s = 1 ; cette conjecture a 

pour conséquence : ( - l ) p = w . 

Conjecture 2 (Weil) : La fonction f , définie sur U par 

co 2rrinT 
f ( î ) = L a e , est une forme parabolique primitive de poids 2 pour 

n=l n 

R (N) ; c'est une fonction propre pour tous les opérateurs de Hecke, donc 
o — 

pour l'opérateur d'Atkin Lehner W N = | | W , et la valeur propre de 
p |N P 

associée à f est égale à -w . Enfin, il existe une application  

rationnelle cp : X (N) — > E , définie sur $ , telle que les formes diffé-

rentielles uu O cp et f ( î )dT (sur X Q ( N ) ) sont proportionnelles. 

Rappelons que, d'après le théorème (11,2.3.1), a est la valeur 
n 

propre de T n associée à f . En particulier, lorsque p divise N , 
N 

sur les formes nouvelles, T = - W est une involution, ayant pour 
- c 6

 p P 

valeur propre a p = := ± 1 . La conjecture de Weil affirme donc 

que 
-w = f T <-a ) = H M 1 ^ ) ] • 

p |N F p |N p 

Notons t le nombre de facteurs premiers de N , et ( — ^ ) le pro-
- c r N 

duit J~[ (—2-) ; a i o r s 

p l N P „ . < _ „ ' « , 2 a , . 

N 
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Conjecture 3 (Birch et Swinnerton-Dyer) (en admettant le prolonge­

ment analytique de L) : L'ordre du zéro de L(p~ s ) au point s = 1 est  

égal au rang r du groupe E(Q) . 

Ainsi, l'ensemble de ces trois conjectures implique : 

Conjecture 4 : Le rang r du groupe E(Q) est lié au nombre t 
r t+1 ~ c6 

de facteurs premiers de N par (-1) = (-1) • 

2 .4 .5 . Çe™srque : Lorsque E est une courbe elliptique à multiplication 

complexe, la série L de E se prolonge analytiquement à tout le plan 

complexe, comme l'a montré Deuring [7aJ . Dans ce cas, Coates et 

Wiles [6c] viennent de démontrer une partie de la conjecture de Birch 

et Swinnerton-Dyer, à savoir : 

THEOREME.. Si E est une courbe elliptigue à multiplication complexe  

définie sur Q , et si le rang du groupe E(Q) est au moins égal à 1 , 

alors L ( p " s ) s'annule au point s = 1 . 

3. PROPRIETES GALOISIENNES DES POINTS D'ORDRE FINI SUR UNE COURBE ELLIPTIQUE [39] . 

3.1 . ETUDE LOCALE. 

3 .1 .1 . Soient K une extension finie de Q ; v , P , 0 , U comme pré-

cédemment (1.1.5) ; E une courbe elliptique sur K ; Ç un nombre pre­

mier ; notons L = K(E^) , v L , P^ , ; U L . Le groupe E^ des points 

d'ordre € de E est isomorphe à (Z /€Z)^ , puisque K est de carac­

téristique nulle (1.4.1.1) et la réduction modulo iP induit un homomorphisme 

surjectif de E sur E (II . 6.2.1) . Notons 7L le noyau. Il est conte-

nu dans E ^ ^ ) (défini en 2.2.2) , dont la loi de groupe est définie par 

le groupe formel F associé à E (1 .3 . ) ; on a même exactement : 
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S ~ { z € P L / * e ( z ) = 0} . 

Lorsque la hauteur h de F est finie, l'ordre de Ê est égal 
2-h ^ à p puisque c'est le degré de séparabilité de la multiplication par 

~ h p dans E ; donc l'ordre de ^ est p 

Soit G l'image de Gal(K/lK) dans Aut(E^) , c'est-à-dire 

G = Gal(K(E c )/k) = Gal(L/K) . La suite exacte 

est en fait une suite exacte de G-modules. 

Suivant [391 , nous allons étudier l'image I du groupe d'inertie 

de K/K , dans Aut(E^) , c'est-à-dire le groupe d'inertie de L/K . Son 

action sur Eg est triviale, et il laisse 7j stable. 

Nous allons donc étudier la ramification de L/K selon le type 

de réduction de E , à l'exception de la réduction additive. 

Soit e = v(p) l'indice de ramification absolu de K . Nous sup­

poserons que e = 1 . 

3 .1 .2 . PROPOSITION . Si E a bonne réduction modulo P et si e jt p , 

alors I = { 1 } . 

• D'après ( I I . 6 . 2 . 2 ) , la réduction modulo P induit un isomorphisme 

de E„ sur E„ . • 

3 .1 .3 . PROPOSITION . Si E a mauvaise réduction de type multiplicatif  

modulo P , alors 2 cas sont possibles : 

(i) Si, A € K , 1 est trivial si l jt p ; d'ordre (p-1) sj. £=p , 

0 

représentable par ^ ) . 

(ii) Si A té K , 1 est d'ordre e si £ ^ p , représentable par 
1 *M* # # 

(Q ^ ; d'ordre p(p- l ) si £ = p , représentable par j ) . 
~ & 

• Dans ce cas, E est isomorphe à un sous-groupe de L , il 
est donc cyclique d'ordre Z , donc 77 aussi. Quitte à remplacer K 
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par une extension non ramifiée, on peut supposer que E est une courbe 

de Tate sur K (cf. 1.2.3) , c'est-à-dire E(K) - K * / q Z , q € P • Alors 

K(7L) = K(n ) est une extension de K non ramifiée si g jt p , totale-

ment ramifiée de degré p-1 si C = p . Donc [Ç ,q } forme une 

base de E sur F (si Q est une racine primitive ç^me ^ e i ' u n i t é , 

et q 1 / ^ une racine £ è m e quelconque de q ) . Ainsi K(E g) = K C ç ^ q 1 ' 8 ) . 

Nous venons de rappeler la ramification de K{Ç^)/K ; d'autre part, 

K ( C p , q 1 / / ? ) A ( C p ) est de degré 1 si q e K* 2 , de degré C , totalement 

ramifiée, sinon. Et comme A = q | | (1-q ) , on a : q ç K si et 

•H- £ 

seulement si A 6 K . Enfin, les représentations matricielles sont données 
\/l 

par rapport à la base t C D / q } de E . • 

3.1.4. PROPOSITION. Si E est à bonne réduction non supersingulière  

modulo P , et si £ = p , alors I est représentable par un sous-groupe  

du groupe ( Q ^ . 

• Puisque ^im^ (Ê ) = 2-h = 1 , dans une base de Ep associée 
P P 

à la suite exacte 0 — • 7^ — • E^ — • Ep —> 0 , tout élément de I 

est représenté par une matrice de la forme (^ ^ ) . • 

3.1.5. PROPOSITION . Si E a bonne réduction supersingulière modulo P , 
2 

et si £ = p , alors I est cyclique d'ordre p - 1 . 

• Ici h = 2 donc Ê = { 0 } et E - 7? - ( z ç p (z) = 0} . 
P P P -L» P 

2 2 -1 p 2 

Or ik (z) = p(z + a 0 z +. . . + a o
 z P ) + a 0 z p + . . . où a. € O / 

P 2 p 2 - l p 2 1 

a ^ P . D'après le théorème de préparation de Weierstrass (cf. [10] ,1.1) 
P 

il existe une série formelle inversible u(Z) ç 0[[Z]J et un polynôme 
2 

g(Z) = p(R Z + p 0 Z 2 + . . . + R Z P " ) + p 9 Z 2 € 0 [ Z ] tels que 3 9 ^ P 
1 Z p*-l p Z P Z 

et \|f (Z) = u(Z).g(Z) . Ainsi, 4 (z) = 0 si et seulement si g(z) = 0 ; 
Yp P 

2 
or g(z) est le produit de z par un polynôme d'Eisenstein de degré p -1 . 
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Ainsi, pour tout élément P non nul de E , l'extension K(P)/1C est 
o p 

totalement ramifiée de degré p -1 . Cela prouve que l'ordre de I est 
9 

multiple de p -1 . 

Mais d'autre part, I est un sous-groupe de Aut(E^) GL^(T^) , 

et ce dernier groupe est d'ordre p (p^ - l ) (p - l ) . Soit 1̂  le p-sous-groupe 

de I . On sait [3 6] que 1̂  est un sous-groupe distingué de I , et 

que I / L est cyclique d'ordre premier à p . Si L était d'ordre p , 
1 1 

c'est-à-dire représentable par ^ ) dans G I ^ F ^ ) , I devrait être 

contenu dans le normalisateur L de L ; or, ce normalisateur est d'or-
0 1 2 ? 2 dre p(p- l ) . Comme p^-1 ne divise pas p(p- l ) , c'est impossible, 

et I j = { 1 } . Mais tout sous-groupe cyclique de G I ^ F ^ ) d'ordre pre­

mier à p est contenu dans un "sous-groupe de Cartan" de GL 9 (F ) 

(cf. [39] , 2 . 6 ) donc d'ordre (p-1) ou ( p 2 - l ) (cf. [391 ,2.1) . Ainsi 
2 

I est cyclique d'ordre p -1 . • 

3.2. COURBE ELLIPTIQUE SEMI-STABLE SUR q? . 

Soit E une courbe définie sur Q , semi-stable, définie par une 

équation minimale. Alors le conducteur N de E est égal à : N = | | p 

(cf. 1.1.6). P I A 

Soient € un nombre premier, et G l'image de Gal(Q/Q) dans 

Aut(E ?) , c'est-à-dire G = Gal(Q(E^)/(P) . Notons v p la valuation nor-

manisée de Q p . 

3 .2 .1 . LEMME. S'il existe p divisant A tel que £ ne divise pas 

v (A) / alors : ou bien G = G L 2 ( F J , ou bien G est contenu dans 

l'ensemble des matrices de la forme (g # ) et E contient un sous-groupe  

cyclique d'ordre Z rationnel sur Q . 

t Puisque p|A / E est à réduction multiplicative mod. p . 

L'hypothèse CĴ v (a) équivaut à A ^ Q . L a proposition (2.1.3) prou-
P p 

ve que le groupe d'inertie de ^p^g^/^p e s t d'ordre £(£-1) : il contient 
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donc un élément d'ordre Z , et G aussi contient un élément q d'or­

dre Z . Dans une base { e - ^ e , - } convenable de E. sur F , a est 

1 1 
représenté par ^ ) . Deux cas sont alors possibles (et incompatibles ! ) : 

Ou bien G laisse fixe la droite F„e. , et alors G est un 
Z 1 

O 

sous-groupe du groupe d'ordre £(£-1) représenté dans la base { e ,e } 

par ( Q # ) . 
Ou bien G contient un élément g tel que ge„ = e' j^F e, . 

* 1 2 £ 1 
Dans la base { e , e ' } de E. / la matrice de a est ( n ?) avec 

1 0 
a ^ 0 , et celle de t = gag"""'' est (, ) avec b ^ 0 , puisque 

1 * 1 0 
Te' = e' . Ainsi G contient toutes les matrices ( ) et ( J ; 

L L U 1 * 1 
mais ( j = (p j ) ( j ^ ) ( Q * ) , donc G contient le sous-groupe de 

GL^Fç) engendré par et (^ . Ce sous-groupe est S I ^ F ^ ) : 

en effet, c'est l'image, par la projection canonique de GLgtZ) sur 

GL 2 (Fg) , du sous-groupe de GL^{Z) engendré par (* J) et * ) , 

à savoir r = S I ^ Z ) . Or S I ^ F g ) est le noyau du déterminant, autre­

ment dit on a la suite exacte : 

1 — > S L 2 ( F € ) — • G L 2 ( F ? ) F^ • 1 . 

Comme l'accouplement de Weil (1.4.4) nous a montré que dét(G) = F* , 

on a alors G = G L 2 ( F ? ) . • 

3 .2 .2 . THEOREME. Si Z ne divise pas v (a) / pour un p divisant A , — — p 
alors : 

(i) ou bien G = G L 2 ( F ? ) ; 

(ii) ou bien E a un point rationnel d'ordre Z ; 

(iii) ou bien E est g-isogène (sur Q) à une courbe E' ayant  

un point rationnel d'ordre Z . 

( ici , "point rationnel" signifie "point rationnel sur Q " ) . 

m Vu le lemme (3 .2 .1 ) , il suffit de montrer que, si G c ( ( # ) } , 

on est dans le cas (ii) ou (iii) . Notons ^{1=1,2) les 2 homomorphis-
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* l ( g ) * 
mes de G dans F . définis par : g = ( _ , x ) . Nous allons 

« 0 X2(G) 

montrer que l'un des ^ est égal à 1 , et alors le second sera égal 

au déterminant, donc à la restriction du caractère x de Gal(^/Q) défi­

ni par l'action sur jjl . 
Appelons K. le sous-corps de Q(E ) fixe par le noyau de x. # 

i Z i 

et étudions la ramification de K / Q en chaque place p . Remarquons 

d'abord que le degré [Kj.Q] divise £-1 . 

Si p )( Zà , d'après (2.1.2) l'extension Q (E ) /Q est non rami-
p z p 

f iée, donc a fortiori K^/Q est non ramifiée en p . 

Si p I A et p é Z » comme A té Q*^ par hypothèse, le groupe 
1 P 

d'inertie de Q (E J /Q est d'ordre Z d'après (3 .1 .3 , (ii)) . Ainsi l 'in-
P Z P 

dice de ramification de K^/Q en p doit diviser Z et C-l (car 

[K...Q] divise £-1 ) : l'extension K^/Q est non ramifiée en p . 

Si p = Z , la réduction n'est pas supersingulière : en effet, 

d'après (3 .1 .5 ) , si c'était le cas, le groupe d'inertie de Q(E ) /Q serait 
V 

d'ordre Z^-l . Mais cet ordre doit diviser l'ordre de G , qui lui-même 
2 

divise e U - l ) : c'est impossible. Ainsi la réduction est non supersingu­

lière, ou de type multiplicatif, et d'après (3.1.3) et (3 .1 .4 ) , le groupe 

d'inertie de Q (E J /Q est d'ordre divisant Z{Z~l) (car représentable 
P ? P ,* 

par un sous-groupe de (^ ^) ) : donc l'un des caractères x^ -correspon­

dant à 1 - est non ramifié en Z . 

En résumé, l'un des x^ e s t n o n ramifié partout, l'autre est non 

ramifié en dehors de Z . Comme il n'existe pas d'extension non triviale 

de Q partout non ramifiée, l'un des \ est le caractère unité, et 

alors l'autre est le déterminant. Nous avons donc 2 cas à considérer : 

1 * 
Si Xi = 1 / alors G c { L ) } et le 1er vecteur de la base 

1 u * 
correspond à un point d'ordre Z défini sur Q . 

Si X2 = * ' a l ° r s G CZ {(q j ) } et on a une suite exacte de G-
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modules : 1 —>• u — > E — > "Z/Œ — • 1 , où l'action de G sur 

est triviale. D'après (1.4 .3 .3) , la courbe elliptique E/|i est 

E-isogène à E , définie sur Q , et le sous-groupe E Ai de E/|j 

est d'ordre Z et rationnel sur Q . m 

3.2.3. COROLLAIRE. Si E est une courbe elliptique semi-stable sur Q 

avant bonne réduction en 2 , si Z > 5 et s'il existe un facteur premier p 

de A tel que Z ne divise pas v ( A ) , alors Gal(Q(E )/<P) = Aut(E ) . 
p \> % 

m II suffit de vérifier que les cas (ii) et (iii) du théorème 

(3.2.2) ne peuvent pas se produire, donc que G = GL^(F^) . Or si E 

avait un point rationnel d'ordre Z , la courbe réduite modulo 2 aurait un 

sous-groupe de points rationnels sur d'ordre Z (cf. 3.3.1) (car Z ̂  2 ) . 

Comme P (F ) a 5 points, cela implique Z £5 . Ainsi, (ii) est impos-

sible. Et le lemme ci-dessous (3.2.4) montre que toute courbe e-isogène 

à E a bonne réduction en 2 : ainsi (iii) est impossible comme (ii) . i 

3 .2.4. LEMME. Deux courbes elliptiques définies sur un même corps de  

nombres K , et isogènes sur K , ont exactement les mêmes places de  

mauvaise réduction. 

Ce résultat est démontré dans [41] pour des variétés abéliennes. 

3.2.5. Remarque : Dans [39 J , Serre obtient le résultat plus général 

suivant : 

THEOREME. Soient K un corps de nombres, et E une courbe ell ip­

tique sur K n'ayant pas de multiplication complexe sur K . Alors, pour  

presque tout nombre premier Z ( i . e . pour tout Z sauf un nombre fini), 

on a : Gal(K(E = Aut(Eg) . 


