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/Il - réduction des courbes elliptiques.
applications

1.  MAUVAISE REDUCTION D'UNE COURBE ELLIPTIQUE.

1.1. REDUCTION ADDITIVE QU MULTIPLICATIVE.

1.1.1., Soient K un corps quelconque, E une cubique plane définie

sur K , d'équation affine F(x,y) = 0 ou

2 3 2
= + + - - _ -
F(x,y) y a Xy +azy - x a,X a,x - ag (aiEK).

Le discriminant A de la cubique E a été défini en (I.1.1.2) ; il
appartient & Z[a1 LYREE ,a6]
Si A est non nul, la cubique est non singuliére, autrement dit

c'est une courbe elliptique. Dans le cas contraire, la cubique est dite

sinqguliére ou dégénérée.

PROPOSITION . Une cubigue singuliére a un seul point singulier. De

plus, si K est parfait, ou de caractéristique différente de 2 et 3 , ce

point singulier est rationnel sur K

m S'il y avait 2 points singuliers, l'intersection de la droite les
joignant et de la cubique serait d'ordre au moins égal & 4 : c'est impossi-
ble, donc il y a un seul point singulier ; & cause de son unicité, il est
invariant par tout K-automorphisme, donc purement inséparable sur K
Si K est parfait, cela prouve la proposition. Si la caractéristique de K
est différente de 2 ou 3 , on peut prendre 1'équation de E sous la forme

de Weierstrass y2 = 4x3 - 9,% - 9, (g2 et s € K) ; le point singulier
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vérifie de plus : y=0 , 12x2 ~9, = 0 , ce qui donne : x = —3g3/2g2 ,

y = 0 ; ce point est bien rationnel sur K . =

1.1.2. Supposons, pour simplifier les démonstrations, que la caractéris-
tique de K est impaire. Soit E une cubique dégénérée dont le point
singulier est rationnel sur K . Prenons ce point pour origine (dans le plan 1) ;
alors F(0,0) = F}'((0,0) = F;,(0,0) =0 , c'est-a-dire a_. = a, = ay = 0,

3 9 6 4
et l'équation de E devient : y2 +a1xy = x +a2x

Les tangentes & l'origine ont pour équation y =Ax , ol A est

racine du trindme X2 + a1X - a2 , dont le discriminant est b2 = ari’ +4a2

On sait que I' ensemble E(O)(K) des points non singuliers de E(K)
forme un groupe abélien dont la loi peut &tre définie géométriquement par :
P, +P, +P_ =0 si et seulement si P,,P_.,P (K)

1 2 3 1°2'°3
(cf.[11] ,5.6).

sont alignés sur E(O)

+
Nous allons voir que E(O)(K) est isomorphe au groupe additif K ,
ou au groupe multiplicatif K" , Ou encore au groupe multiplicatif des élé-

ments de norme 1 dans une extension quadratique de K

1.1.3. Réduction additive.

+
PROPOSITION . Si b2 = 0 , alors E(O)(K) =~ K
® Lorsque b2 = 0 , la cubigue a une tangente double & l'origine ;
on peut supposer que cette tangente est la droite y =0 , et que la courbe
a pour équation : yz =x3
v La projection centrale de centre (0,0)
A
) sur la droite x =1 permet de définir
une bijection entre E, (K) et K , par :
(0)
1,1/4) . <
P (x,y) »—>» t = x/y (cela revient & para-
X, . . -2 -
bl métrer la cubique par t : x =t , y=t 3).
> Un calcul facile montre qu'alors, si 3
(0.]o) (1.0 x

points Pi (i=1,2,3) non singuliers sont
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alignés sur la courbe, leurs paramétres ti vérifient : t1+t2 +t3 =0 .

La bijection définie ci-dessus est donc un isomorphisme de groupes. ®

1.1.4. Réduction multiplicative.

PROPOSITION . Si bz;é 0, et _si b2 € (K*)2 , alors E(o)(K) =~ K¥* ;

, 2 —
Si b2 #0 , et si b2 Z (K*)" , alors E(O)(K) = {tEK("/bZ)/NK(A/E;)/K(t) =1}

8 Lorsque b2 # 0 , la cubique a 2 tangentes distinctes & l'origine,

de pente )\1 et )\2 . Si b2 = (I(*)2 , elles sont rationnelles sur K , et
la projection de centre (0,0) sur la droite y = xzx - >\1 + >\2 permet de
définir une bijection entre E(O)(K) et l'ensemble K* =K - {0}, par :
y—klx
(le) —> y_)\ x . //\
2 Y

Le calcul montre que cette bijection est un isomorphisme de groupes.

Enfin, si b2 4 (K“’)2 , les deux tangentes & l'origine sont irrationnelles
y->\1X

y-A9X

sur K : elles sont conjuguées sur K , et l'application (x,y) r—¥
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définit un isomorphisme entre E(O)(K) et le groupe multiplicatif des élé-
ments de norme 1 dans K(\/B;)/K : montrons la surjectivité de cette appli-
cation : soient 6 un élément de K(,/bz) de norme 1 , et o le générateur

de Gal(K(\/k_);)/K) ; d'aprés le "théoréme 90" de Hilbert, il existe un élé-

ment o dans K(/b,) tel que 8 = ao/a ; comme K{/b,) =K(H,) , et
2 “h1X 2 2

XO = X on peut écrire o = y-A,x et 8 = A L avec X,y dans K

2 I 2 y-AoX !

1.1.5. Application : Soit K un corps local de caractéristique résiduelle
non nulle (éventuellement égale & 2), et d'idéal maximal # . Soit E une
courbe elliptique sur K , définie par une équation minimale, et ayant
mauvaise réduction modulo ¢ (i.e. A = 0 mod.f). Notons par un tilde

la réduction modulo P .

Rappelons que le symbole quadratique (%) , défini pour tout
élément entier d d'un corps local K de caractéristique résiduelle non
nulle et d'idéal maximal ¢ , vaut 0 (resp. +1,-1) si l'extension
K(/d)/K est totalement ramifiée (resp. est triviale, est non ramifiée).
De plus, si la caractéristique résiduelle de K est impaire, on montre
que (-Cl) vaut 0 (resp. +1,-1) si la réduction d de d est nulle

P
(resp. est un carré, n'est pas un carré) dans K

Remarquons que, si l'on change 1'équation de E , alors C6 est

. 6 N L1z o
remplacé par c'6 = ucg , 0l u est un élément algébrique sur K
Si ces deux é.quations sont minimales, alors u est une unité et
~Cg 6
(T) = (T) . Nous pouvons maintenant énoncer :

PROPOSITION . Soit K un corps local de caractéristique résiduelle

non nulle et d'idéal maximal ¢ . Soit E une courbe elliptique sur K ,

et soit ¢ 1'"invariant" de E défini ci-dessus. Supposons gue la réduc-

6
tion de E modulo # est mauvaise. Elle est alors de type :

(i) additif si (T) =0 ;
-c
(ii) multiplicatif & tangentes rationnelles si —?‘-59) = +1 :
. ~Cg

(iii) multiplicatif & tangentes irrationnelles si (_P—) = -1
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8 Lorsque la caractéristique résiduelle de K est impaire, on

utilise ce qui précéde : le changement de variable effectué en (1.1.2)

donne : a6 = ay = a4 =0 , et 06 = —b2 ; ensuite, les propositions

(1.1.3) et (1.1.4) donnent le type de la réduction de E en fonction
~ -C

de “Cp et en fait en fonction de (TDQ)

Lorsque la caractéristique résiduelle de K est égale & 2 , une

étude analogue démontre la proposition. ®

1.1.6. Définitions. Soit E une courbe elliptique sur @ . Son conduc-

f
teur (aigébrique) est défini par : N = ‘ | p p ., ou A est le discriminant
p|aA
d'une équation minimale pour E , ou fp =1 si la réduction en p est

multiplicative, fp = 2 (resp. fp 2 2) si la réduction en p est additive
et p=25 f(resp. p=2 ou 3) ; lorsque p=2 ou 3 , fp—Z mesure la
"ramification sauvage" (cf.[25]). On dit que E est semi-stable si N
n'a pas de facteur carré, c'est-a-dire si les mauvaises réductions de E

sont toutes de type multiplicatif.

1.2. COURBES DE TATE ET REDUCTION MULTIPLICATIVE.

Soient K un corps local, & , © comme précédemment ; soient U
le groupe des unités de ¢ , et v la valuation de K normalisée par
v(iK*) = Z

~

1.2.1. prorosITION . Toute couwrbe de Tate sur K est d réduction multi-

plicative & tangentes rationnelles.

@8 Nous avons wvu (I.3.3) que, pour tout g € f ,la courbe E(q)
d'équation YZ—XY = X3—h2X—h3 , ou h2 et h3 sont définis par des

séries entiéres en q & coefficients entiers rationnels sans termes cons-
tants, est une courbe elliptique sur K . Sa réduction modulo ¥ est la

3 , .o
courbe E(q) d'équation Y2 - XY = X~ : c'est une cubique dégénérée, dont

les tangentes au point double sont distinctes et rationnelles sur K (I.3.3.3). =
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1.2.2. PROPOSITION . Si E est une courbe elliptique sur K & réduction

multiplicative & tangentes irrationnelles, l'extension guadratique K(\/_b—é)/K

est non ramifiée.

~

8 Puisque b2 est le discriminant du trinéme dont les racines
sont les pentes des tangentes au point double de E (cf. 1.1.2), les tan-
T~
gentes sont rationnelles sur K(,,/bz) . Cela prouve, d'aprés la proposition

(1.1.5), que -c n'est pas un carré dans K mais en est un dans
~~——r

— 6 r— ~
Ksz) , autrement dit que [K(A/bz) :K] = 2 . D'autre part, K(,\/bz) est le
corps de décomposition (sur K) du trin6me X2 +a X -a, , dont les racines

1 2
sont distinctes. Ainsi, KQ/bz)/I( est séparable, et 1'extension est non

ramifiée, =

1.2.3. THEOREMFE . Soit E une courbe elliptique sur K & réduction multi-

plicative. Si la réduction de E est 3 tangentes rationnelles (sur K) , alors

E est une courbe de Tate sur K ; sinon, E est une courbe de Tate sur

une extension guadratique non ramifiée de K

@ L'invariant j de E est tel que v(j) <0 : en effet, wv(A)>0

car la réduction est mauvaise, v(c.) = 0 car elle est multiplicative

Atc 6
(proposition 1.1.5), et j = A Donc il existe un unique qge¢ ¢ tel
1
gue j=j(q)=a+ > c(n)qn (cf., 1.3.3.1) ; mais alors E et E(gq) sont
n=0

K-isomorphes.

~
~

Supposons d'abord que E est & tangentes rationnelles (sur K)

Notons ¢, et c. (resp. c' et c'6) les invariants de E (resp. de E(q))

4 6 4

définis en (I.1.1.2). Montrons que E et E(q) sont, en fait, isomorphes
sur KW—CG) : il existe un élément u de KXK' tel que c;l = u4c4 et

c. =uc,;or c et c. sont non nuls puisqgue la réduction est multi-
plicative ; donc u est une unité de K , et u = g,— X E; est dans K :

6
ainsi, K(u) = K(u3) = K( —?) .Or -c. =1-504 % n5 9% est un
Cg 6 n=1 1-q"

carré : c'est clair si la caractéristique résiduelle est impaire ; si elle
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2
(U( e)}z = U(3e) (ot e désigne

U (n)

est égale a 2 , on utilise la formule :

l'indice de ramification de K sur Q@ et ou = 1+ p" (cf.[17].2.3)),

2 I
et le fait que 8 divise 504. Donc K(u) = K(A/—CG) , et il existe un isomor-

phisme 6 de E sur E(g) défini sur KQ/—CG).

D'autre part, d'aprés (1.1.5), -8 est un carré dans K , donc
~— ~ 6
K(,/—c6) = K . Nous allons montrer , en suivant Ogg ([25] ,II}, que l'exten-
sion K(\/-CG)/K est non ramifiée ; cela prouvera que K(,\/—CG) =K , et

que E et E(q) sont K-isomorphes.

Soit ¢ un nombre premier impair différent de p ; notons L
I'extension K(E(a),) , et L' =1L(/-c.) . Nous savons que L = K(pz,ql/e) ;
'extension K(pe)/l( est non ramifiée, donc 1l'indice de ramification de

1
L/K  est celui de K(ue,q /e)/K(pe) : il est impair (il vaut 1 ou ¢)

Supposons L' différent de L , et notons ¢ 1'automorphisme non trivial
de L' sur L ; le composé e_loe" est un automorphisme non trivial de

E ; nous avons remarqué que j est non entier, en particulier j# 0 , 1728,
donc Aut(E) =11 et e_lo 89 = -1 . Soit P un point de E(q)(L') , et
8(P) son image dans E(L') ; alors 8(P) € E(L) si et seulement si

a(p)°
quons ceci & un point P d'ordre €& de E(qg): alors P ¢ E(q)L) , donc
PO = +P # -P , et 6(P) ¢ E(L) . Ainsi, le groupe E(L)e = 8(E(q)(L),)

= §(P) , c'est-a-dire 8°(P°) = 8(P) , ou encore : PO = -P . Appli-

~ ~
est réduit 8 0 . Or, E(L) est isomorphe & L¥ , qui contient M,
Ainsi, L' est égal @ L , donc KW—C6) est contenu dans L et l'exten-
sion K(/-cg)/K est non ramifiée. Ceci termine la démonstration de la

premiére assertion.

~

Pour la seconde assertion, lorsque E est & tangentes irrationnelles
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sur IZ , remplagons K par K(,/bz) dans ce qui précéde : cela prouve
que E et E(g) sont K(,\/E)-isomorphes ; et la proposition (1.2.3)

prouve que KQ/bz)/]( est non ramifiée. =

1.3. GROUPE FORMEL ASSOCIE A UNE_CUBIQUE PIANE.

On trouvera dans [10] tous les résultats utilisés ici sur les groupes

formels.

1.3.1. Soit E une cubique plane définie sur un corps quelconque K et

d'équation (1) : y2+a1xy+a3y = x3+a2x2+a4x+a6 ; et posons =z =—2;; .
w = —‘:j , C'est-3-dire x = %v , Y = —;l'v . Par ce changement de variables,
le point & l'infini est amené en (0,0) , et comme l'ordre de ‘;f a l'infini
est égal & (-2)-(-3) = 1 , la variable 2z est une uniformisante locale

pour la cubique au voisinage de l'origine (z,w) = (0,0)

L'équation devient (2) : w = z3+alzw+a222w + a3w2 + alew2 + a w

et permet de calculer le développement de w en série entiére de 2z au

voisinage de l'origine : w = 23 + alz4 + (a? + az)z5 + ... = Z Anzn ol
nz3
An € Z[ai] . An étant de "poids" n-3 (comme a, était de "poids" 1i).

-2 -
Donc w ¢ Zla]llz]] , x€z “@[a1([z]]) , yez>@a;][z]])
Nous venons ainsi de définir, pour toute extension L de K ,

une application : P w—» z(P) = ﬁg‘) de E{(L) dans L . Cette application

admet une application réciproque définie sur l'ensemble des éléments =z

~

de L tels que la série w(z) = 2 Anzn converge, a savoir :
n=3
z —» P(2z) = (x(z),y(z)) ou x(z) = z/w(z) , y(z) = -1/w(z) .

1.3.2. Addition sur E :

PROPOSITION . ]Il existe une série formelle F € Z[ai] [[ZI'ZZ]]

telle que z(Pl+P2) = F(z(P1)+z(P2)) pour tous points P1 et P2 de E
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® Soient 3 points P, ,P_,P. non singuliers alignés sur E , c'est-

177273
a-dire tels que P1 +P2+P3 = 0 . Notons (Zi'wi) les coordonnées de Pi
(i=1,2,3) , et calculons formellement z, en fonction de 2, et z,
Le point P3 est le 3e point d'intersection de la droite Ple et
de la cubique ; 1l'équation de la cubique est donnée par (2) , celle de
n n
wW,W, 2,72,
PIPZ est de la forme : w =) z+y , o )\ = S = > -
27%1 n=3 T %27%1
n n n-1 n-1
n Z27%1 2 %
et v =w, -z, = >, An(zl—zlz_z)= 2 Azlz2 — . En
n=3 271 n23 © 2" %1

remplagant w par \Az+y dans (2) , on obtient une équation du 3e
degré en =z , dont les racines sont les z, (i=1,2,3) , et la "trace"
donne

2 2
+ + + +
alx azv a3x 2a4kv 3a6x V)

1 2 73 2 3
1+a2>\+a4x +a6>\

ol ) et v sont dans Z[ai][[zl,zz]] , de degré total en z, et z,

deg A 2 2 , deg v =2 3 . Le dénominateur de cette fraction est congru

11,

34 1 modulo (zl,z2

d'ol la proposition. =

) , donc il est inversible dans Z[ai][[zl,z2

Remarque : Les propriétés de l'addition sur E font de F une

loi de groupe formel & un paramétre.

1.3.3. A la multiplication par n dans E (n entier 2 1) correspond
la série formelle wn(Z) € Z[ai][[Z]J , définie par récurrence : \111(2) =7 ,

qln_'_l(Z) = F(Z,\pn(Z)) . On a: q;n(z(P)) = z(nP)

Rappelons (cf.[10] ,I.3) que, si K est de cargctéristique p>0 ,
il existe un entier h =1 tel que q;p(Z) € ]F‘p[ai][[zp 11 . Le plus grand
entier h , s'il existe, pour lequel ceci est vérifié est appelé la hauteur
du groupe formel F . Si ¢p(Z) = 0 , on dit que la hauteur de F est

infinie. La valeur de h dépend du type de la courbe E
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PROPOSITION . Si E est une cubique plane définie sur un corps

K de caractéristique p>0 , et si h désigne la hauteur du groupe for-

mel F , on a le résultat suivant :

si E est une courbe elliptique non supersinguliére, h =1 ;
si E est une courbe elliptigue supersinguliére, h =2 ;

si E est une cubigue dégénérée de type multiplicatif, h =1 ;
si E est une cubique dégénérée de type additif, h=« .

m lorsque E est & mauvaise réduction de type additif, -
ﬁo(ﬁ) = §+ et la multiplication par p dans EO(IZ) correspond & la
multiplication par p dans K , c'est-a-dire & l'application nulle : h =«
Lorsque E est & mauvaise réduction de type multiplicatif, la multiplication
par p dans EO(IZ) correspond 3 X wp xP  dans le groupe multiplicatif
correspondant (K* ou un groupe de normes), et { (Z) = 7P est de

p
hauteur 1 . Lorsque E est & bonne réduction, pl'1 est 1'ordre

du noyau de la multiplication par p , considérée comme isogénie
de E , c'est-a-dire le degré d'ins.éparabilité de la multiplication par p

(cf. II,5.5). ®»

Exemple : On calcule facilement (z) = 2z - a z2 - 2a z3 + ...
V2 1 2

Ainsi, si p=2 et si E n'est pas dégénérée, on voit que E est

supersinguliére si et seulement si a1 est nul.

2. STRUCTURE DU GROUPE E(K) .

2.1. CAS COMPLEXE ET CAS REEL.

2.1.1. Nous avons vu (I.2.2.5) que E(€) est un tore complexe C/L ,
donc le groupe E(C) est isomorphe a (R/Z)z

2.1.,2., Soit E une courbe elliptique définie sur R par une équation
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, 2 3
de Weierstrass : y = f(x) = 4x" - gzx - g3 . Soit A le discriminant
de E , c'est-a-dire, & un coefficient prés, le discriminant du polynéme

cubique f (cf. I1.1.1.3).

Si A<0 , f a une racine réelle ; dans ce cas, E(R) est connexe

et isomorphe & R/Z .

Si A>0 , f a trois racines réelles, E(R) a deux composantes

connexes et est isomorphe & R/Z x Z/2Z%

91

v
i
o5

A<O A>0

2.2, CAS LOCAL ([47]1,6) .

Soient K un corps local de caractéristique résiduelle p ;
v,0o,r, U , comme ci-dessus ; E une courbe elliptique sur K ,
définie par une équation minimale de la forme F(x,y) = 0 , ou
2

xy+a3y—x3—ax -a,x -a

F(x,y) = yz +a 2 4 6

1
2.2.1. La réduction E(K) —» E(K) n'est pas surjective en général,

mais si on note Ens(IZ) le groupe des points non singuliers de EK) ,
et E(O)(K) son image réciproque par la réduction, on a le résultat sui-

vant :

~ ~

0)(K) —> EnS(K) est surjective.

PROPOSITION . La réduction E (

m Soit (r,t) € Ens(ﬁ) , c'est-a-dire : soient r,t des éléments
de K entiers sur ¢ tels que F(r,t) € ¢ , F;{(r,t) ou F;,(r,t) €U
(par exemple F'y(r,t) € U) . Il suffit de montrer qu'il existe t' €K tel

que t = t' et F(r,t') = 0 : c'est le lemme de Hensel (cf.[17],1I.2). =
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2.2.2. Notons E(l)(K) le noyau de cette réduction, c'est-a-dire

E(l)(K) = {(x,y) € EK)/v(x)s -1 et v(y) = -1} .
Remarquons que x et y sont liés par i'équation de E :
2 3 2
+ = + U .
y a xy + ay = X + a,x a,x + ag , ou les a, €@ ; donc vi(x) <0

équivaut & vl(y) <0 , et alors il existe un entier n=1 tel que
v(ix) = -2n , v(y) = -3n . Notons, pour tout entier n=z>=1 ,
E_K) = {(x,y) €e EK)/v(x) s -2n} = {(x,y) € EK)/v(y) < -3n} .
Remarque : Pour tout n=20 , on a E(n)(K) o E(n+l)(K) . Notons
z = -x/y et rappelons x et y sont définis par des séries entiéres en z ,

qui convergent si v(z) >0 (cf. 1.3.1) ; alors

E(n)(K) = {(x,y) € E(K) /v(z) 2n} , pour tout entier n=z1

2.2.3. La courbe elliptique E(K) est munie d'une structure de groupe.
D'autre part, le groupe formel F associé & E permet de définir une

structure de groupe sur ¢ : si z1 , z2 € £ , alors F(zl,zz) est une

série convergente dans § , et si l'on note zleaPz2 sa somme, la

loi GBF est une loi de groupe sur & .

PROPOSITION . Pour tout n=1 , E(n)(K) et Pn sont des sous-

groupes de E et § pour les lois définies ci-dessus, et 1'application :
(K)

(x,y) —» z = -x/y définit un isomorphisme de groupes de E

(n)

n ,
sur pour ces lois.

8 Cette proposition est une conséquence du (i) du lemme (2.2.4)

ci-dessous. =

COROLLAIRE . Les qgroupes E, ,(K) définissent une filtration de E(K)

(n)

. n _
2.2.4. LEMME . Soient 2112, € P et 23 € P tels que z) EBF 2, EBFZB =0

Alors :
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2n n
i + + .
1) =z, +z, 2, € P (donc 2, €F) ;
(ii) Si p# 2 , on peut se ramener & a; =a, = 0 , et alors
3
+ + :
z1 z2 23 S S
(iii) Si p# 2,3 , on peut se ramener a a; =a, =a, = 0 , et alors
5n
+ + > :
z1 z2 z3 € ¥ ;
(iv) Si p=2 et si E est supersinguliére, alors a, = 0 , on
peut se ramener & az =0 , et alors 2, + Z, + Za € P4n

s ]l suffit de regarder l'expression de F(ZI’ZZ) donnée en (1.3.2)

et, pour (iv) , de se souvenir que, en caractéristique 2, la courbe ellip-
tiqgue E est supersinguliére si et seulement si a, = 0 (cf. 1.4.3).

2.2.5. Etude de la filtration. La structure du groupe E(K) est donnée

par le résultat suivant :

THEOREME .

(i) E,,.(K) est un pro-p-groupe :;

(1)
(i) E(O)(K)/E(l)(K) est isomorphe & f.ns(ﬁ) :

(iii) Si E est & bonne réduction, E(K) =E

(0)(1() ; si la réduction

est de type multiplicatif & tangentes rationnelles, E(K)/E(O)(K)

est cyclique d'ordre v(A) ; sinon, E(K)/E(O)(K) est d'ordre < 4

# (i). D'aprés le lemme (3.2.4), il existe un entier a= 2 tel
que E;  (K)/E (K) = Pn/Pan pour tout n=1 , P étant muni de 1'addi-
(n) (an)

tion ordinaire. Donc E(l)(K) est un pro-p-groupe.
(1) provient des définitions.

(iii). La lére assertion est évidente. Démontrons la 2e : d'aprés
(1.2.3), toute courbe elliptique sur K & réduction multiplicative a tangen-
tes rationnelles est isomorphe & une courbe de Tate E(q) (g€ ) . Donc
il suffit de montrer que E(q)/E(O)(q) ~ Z/v(r(g))Z pour tout ge P .

Or E(q) a pour point singulier (0,0) (cf. 1.3.3) ; E(q) est paramétré
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Z
par K*/q grace aux formules X(u) , Y(u) données en (I.2.5.1) , qui
convergent lorsque |q| < |u] =1 , u#1; (cette "couronne" forme un
systéme de représentants de K*/qZ). Ces formules montrent que

u

et  Y(u)
(1-u) (1-u)

Ainsi, X,Y) € E(O)(q) si et seulement si (X,Y) # 0 , c'est-a-dire
lal < |u\ <1 . Dou E,.(q) = UqZ/qZ =~ U , et de méme

3 (mod. qo)

(0)

B = u™ =1 46" | Enfin, E(@)/E g (@) ~ K*/q"U ~ Z/v(a). 2
mais  al@ = q[ ] (1-aM?? | done  vi@) = v(ala)
: n=1

La derniére assertion (cas de la réduction additive, ou multiplica-

tive 3 tangentes irrationnelles) est démontrée dans ([47] ,6). =

2.3. APPLICATIONS. (K désigne encore un corps local de caractéristique

résiduelle p>0).

2.3.1. PROPOSITION . Si m est premier &8 p , la _réduction :

Em(K) s Em(K) est injective.

s Le groupe Em(K) est d'ordre divisant m2 (cf. 1.4.1.1) alors
que E(l)(K) est un pro-p-groupe ; donc le novau de la réduction :

Em(K) —_ Em(K) , qui est égal A& Em(K) N E(l)(K)’ est nul. =

Remarque : ce résultat a été démontré, par une autre méthode, en

(I1.6.2.2).

2.3.2. Notons e = v(p) l'indice de ramification absolu de K , et a

le plus grand entier tel que z,6 +z_ +2z_ € Pan dés que z & z, EBF 23 =

1 2 3
z, € " (cf. 2.2.4, on sait que a = 2).

1°F

PROPOSITION . S'il existe un point d'ordre p dans E, ,(K) (n=1)

(n)

alors : e 2 (a-1)n .

’
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@ Soient : Q un point d'ordre p de E
(i.e. Q¢ E( )(K) \E

(1)(K) ., et n = v(z(Q))

(+1) K)) . Comme pQ =0, on a

z(Q) & Z(Q) .8, zQ =0 ;
m
q fois

or les groupes " /P ,EBF et (P"/P30,4) sont isomorphes (cf. 2.2.4),

d'ot : p.z(Q) ¢ P2 | Ainsi, e+n = v(p.z(Q)) = an . =

2.3.3. COROLLAIRE 1. Supposons K absolument non ramifié. Si p es

impair, il n'y a pas de torsion dans K) . Si p=2, les points de

)

torsion éventuels de E(l)(K) sont d'ordre 2 , et ne sont pas dans E

@ Puisque E(l)(K) est un pro-p-groupe, tous les points de tor-

sion de E(l)(K) sont d'ordre une puissance de p . Soit Q un point
1

de torsion de E(l)(K) : comme e=1, nous avons : 1 < v(z(Q)) s P

1
Si p est impair, nous savons que a=3 (2.2.4) , donc =1 <1 , et
un tel point Q ne peut pas exister. Si p =2 , nous pouvons avoir

a=2 , et v(z(Q)) =1 , et c'est la seule possibilité. =

2.3.4. COROLLAIRE 2. Supposons que p=2 , e=1 , et que

E
a bonne réduction supersinguliére. Soit Q un point d'ordre 2 , de (K)

Alors l'extension K(Q)/K est totalement ramifiée de degré 3

@ Notons K' = K(Q) , et e' 1l'indice de ramification absolu de
K' , c'est-a-dire l'indice de ramification de K'/K . Le point (5 est

d'ordre 2 dans E(IZ) , qui est supersinguliére : donc Q = 0 , et
E
Q ¢ (1)

est au moins égal 4 4 (cf. 2.2.4), donc e

(K') . Ainsi, e' =2 a-1 (cf.2.3.2) ; or nous savons qu'ici a

est au moins égal a 3

D'autre part, le degré de K'/K est au plus égal &8 3 , car il y
a 3 points d'ordre 2 sur E(K) (d'aprés I1.4.1.1). &

2.3.5. En fait, le corollaire 2 n'est qu'un cas particulier du résultat

suivant :
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PROPOSITION . Soit K wun corps local de caractéristique rési-

duelle p>0 , d'indice de ramification absolu égal 8 1 ; soit E une

courbe elliptique sur X , & bonne réduction supersinguliére : soit Q

un point d'ordre p de E(K) . Alors 1l'extension K(Q)/K est totalement

ramifiée de degré p2—1

@ Nous verrons en (3.1.5) que, sous ces hypothéses, l'indice
de ramification de K(Q)/K est égal & pz-l . D'autre part, il y a (pz—l)
points d'ordre p sur E(K) (cf. I,4.1.1) , donc le degré de l'extension

K(Q)/K est au plus égal a pz-l . =

2.4. CAS RATIONNEL.

Soit E une courbe elliptique sur @ , de discriminant A .

2.4.1. THEOREME (Mordell-Weil) : Le groupe E(Q) est de type fini.

Ce théoréme a été prouvé par Mordell en 1922, puis généralisé

par Weil. On en trouve une démonstration dans [5] (théoréme 20.1).

2.4.2. L'étude du cas local (cf. 2.2 et 2.3) donne le résultat suivant

sur la torsion de E(Q)

PROPOSITION . Si P Byse B désignent les facteurs premiers de
A , tout point de torsion de E(Q) est 3 coordonnées dans
1 1 1 1
Z[Elp_l—l"‘l_]
1 B s

8 Soit Q wun point de torsion de E(Q) ; supposons que figure,
au dénominateur d'une des coordonnées de Q , un nombre premier p ne

divisant pas A

Alors le point Q , considéré comme point de E(CDp) = E(O)(Qp) ,
est dans le noyau E(l)(CDp) de la réduction modulo p . D'aprés (2.3.3),

ce n'est possible que si p=2 . =
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Rappelons un résultat démontré en (1.4.4.3)

PROPOSITION |. Le groupe de torsion de E(Q) est cyclique, ou

égal au produit de Z/2Z par un groupe cycligue.

2.4.3. La série 1L d'une courbe elliptique.

a

Nous avons associé a toute courbe projective X non singuliére

sur Fp une série L (cf. I11.7.3.2) , définie par :

2g _
L =TT (1-au "~ ;
i=1
dans cette formule, u est une variable complexe, g le genre de X ,

et o .,ng les valeurs propres de l'endomorphisme de Frobenius rrp

B
sur le module de Tate TZ(I(X)) (¢ premier différent de p) , numérotées de

f . =
agon que oy OLi+g p
En particulier, si X = E(p) est la réduction modulo p de E (ou p

ne divise pas &) ,

- 1
L ,(p"®) =
E(p) 1-a p_s+p1 2s
p
~ -_— + . = =
ou ap o ta, est la trace de T comme \a1| |az| Jp , on a
la_ | < 2/p .
p
-c
Lorsque p divise A , posons ap = (?6) ; autrement dit,
a =+1 , -1 ou 0 , selon que la cubique dégénérée ﬁ(p) est de type

P
multiplicatif & tangentes rationnelles, multiplicatif & tangentes irrationnelles,

ou additif (cf. 1.1.5).

Définissons maintenant la série L de E par le produit eulérien

suivant (qui converge pour Res > 3/2)

1 1

® % =T] —— e
g pla (l-app °)  pfa 1—app S+p1 2s

Définissons aussi la fonction A par :

E

h(s) = N2 @m ™ 1s) 10

ot N désigne le conducteur (algébrique) de E , défini en (1.1.6).

-s)
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2.4.4. Conjectures. Nous énongons ici quelques conjectures "classiques"
sur les courbes elliptiques semi-stables définies sur @® (cf.[47]). Nous
supposons donc N sans facteur carré, et utilisons les notations de
(2.4.3) . Définissons an pour tout entier n=1 , a partir des ap ,

. = ' = i ’ = ’ = +
par a, 1 a - anarn si (n,m) 1 et apaplr apr+1 papr_1

si r=1 . Rappelons que Difo(E) est de dimension 1 , et notons w

une forme différentielle holomorphe non nulle sur E

Conjecture 1 : La série L de E admet un prolongement analytigue

holomorphe dans € , et vérifie une équation fonctionnelle du type :

AE(Z-s) = WAE(S) , 00 w=zx1

Soit p l'ordre du zéro de L en s =1 ; cette conjecture a

pour conséquence : (-1)°P = w .

Conijecture 2 (Weil) : La fonction f , définie sur ¥ par

fr) = 3 a eZTrmT

n
n=1
I‘O(N) : c'est une fonction propre pour tous les opérateurs de Hecke, donc

, est une forme parabolique primitive de poids 2 pour

pour l'opérateur d'Atkin Lehner WN = T—T WIF:I , et la valeur propre de
|N

WN associée & f est égale & -w . Enfin, il existe une application

rationnelle o : XO(N) —» E , définie sur Q@ , telle que les formes diffé-

rentielles wo.o et f(r)ds (sur XO(N)) sont proportionnelles.

Rappelons que, d'aprés le théoréme (II,2.3.1), a_ est la valeur

propre de Tn associée a8 f . En particulier, lorsque p divise N ,

sur les formes nouvelles, T = —WI: est une involution, ayant pour
~-C
valeur propre ap = ('p—6 = +1 ., La conjecture de Weil affirme donc
que
w= 11 (a) =TT (-(52]
p|N p|N
-c
Notons t le nombre de facteurs premiers de N , et (—-I—\Iﬁ) le pro-
-C
duit (—p—ﬁ) ; alors
N t+1 —C
| wo= (1) (=2

N
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Conjecture 3 (Birch et Swinnerton-Dyer) (en admettant le prolonge-

ment analytique de L) : L'ordre du zéro de L(p™°) au point s =1 est

égal au rang r du groupe E(Q)

Ainsi, l'ensemble de ces trois conjectures implique :

Conjecture 4 : Le rang r du groupe E(Q) est lié au nombre t

+ -C
de facteurs premiers de N par -1)" = (-1)t 1(“"’N6)

2.4.5. Remarque : Lorsque E est une courbe elliptique & multiplication

~

complexe, la série L de E se prolonge analytiquement & tout le plan
complexe, comme 1'a montré Deuring [7a] . Dans ce cas, Coates et
Wiles [6¢c] viennent de démontrer une partie de la conjecture de Birch

et Swinnerton-Dyer, & savoir :

THEOREME. Si E est une courbe elliptigue a multiplication complexe

définie sur @ , et _si le rang du groupe E(®) est au moins égal & 1 ,

alors L(p~™S) s'annule au point s =1

3. I'ROPRIETES GALOISIENNES DES POINTS D'ORDRE FINI SUR UNE COURBE ELLIPTIQUE [39] .

3.1. ETUDE LOCALE.

3.1.1. Soient K une extension finie de CDp ; v, P,06,U comme pré-

cédemment (1.1.5) ;: E une courbe elliptique sur K ; ¢ un nombre pre-

L PL , OL ; UL . Le groupe EZ des points

d'ordre ¢ de E est isomorphe a (Z/&Z)z , puisque K est de carac-

mier : notons L = K(EZ) , v

téristique nulle (I.4.1.1) et la réduction modulo £ induit un homomorphisme

surjectif de E8 sur Ee (II.6.2.1) . Notons 9, le noyau. Il est conte-

2
nu dans E(l)(L) (défini en 2.2.2) , dont la loi de groupe est définie par

le groupe formel F associé &8 E (1.3. ) ; on a méme exactement :
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My = {zepL/we(z) =0} .

Lorsque la hauteur h de T est finie, l'ordre de E~p est égal

a pz—l'1 puisque c'est le degré de séparabilité de la multiplication par

p dans E ; donc l'ordre de ’np est ph .

Soit G l'image de Gal(K/K) dans Aut(Ee) , c'est-a-dire

G = Gal(K(Ee)/K) = Gal(L/K) . La suite exacte
0 —» n, —* ﬁe —> 0
est en fait une suite exacte de G-modules.

Suivant [39] , nous allons étudier 1'image I du groupe d'inertie
de K/K , dans Aut(Ee) , c'est-a-dire le groupe d'inertie de L/K . Son
action sur Ee est triviale, et il laisse 'rze stable.

Nous allons donc étudier la ramification de L/K selon le type

de réduction de E , & l'exception de la réduction additive.

Soit e = v(p) l'indice de ramification absolu de K . Nous sup-

poserons que e =1

3.1.2. proposITION . Si E a bonne réduction modulo © et si e#p ,
alors I = {1} .

w D'aprés (I1.6.2.2), la réduction modulo § induit un isomorphisme

de Ee sur Ee.l

3.1.3. PROPOSITION . Si E a _mauvaise réduction de type multiplicatif

modulo # , alors 2 cas sont possibles :

(i) Si A EK*E , I est trivial si ¢# p ; d'ordre (p-1) si e=p ,

* 0
représentable par (0 1)
(i) Si A{K*e , 1 est dordre & si ¢ #p , représentable par
* _—
(é 1) ; d'ordre p(p-1) si ¢ =p , représentable par (0 1)

~

. 5 # .
m Dans ce cas, EB est isomorphe & un sous-groupe de L , il

est donc cyclique d'ordre ¢ , donc ?28 aussi. Quitte a remplacer K
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par une extension non ramifiée, on peut supposer que E est une courbe
de Tate sur K (cf. 1.2.3) , c'est-a-dire E(K) = K*/qZ , 9 €8 . Alors

K(n) = K(pe) est une extension de K non ramifiée si ¢ # p , totale-

2
1/

ment ramifiée de degré p-1 si & =p . Donc {ge,q } forme une

base de E‘3 sur ]FB (si QB est une racine primitive ¢®M€ de 1'unité,

et ql/e une racine géme quelconque de q). Ainsi K(Ee) = K(ge,ql/e)

Nous venons de rappeler la ramification de K({,)/K ; d'autre part,

2
K(ge,ql/z)/l((ge) est de degré 1 si qe¢ K*2 , de degré 2 , totalement

ramifiée, sinon. Et comme A = g l_[ (l—qn)24 , ona:qc¢ K'K'e si et

nz1
seulement si A ¢ K*e . Enfin, les représentations matricielles sont données
1
par rapport & la base {ge,q /8} de E_ . =

2

3.1.4. PROPOSITION, Si E est a bonne réduction non supersinguliére

modulo # , et si 2=p , alors I est représentable par un sous-groupe
* 3
du_groupe (0 1)

s Puisque dim]F (ﬁp) = 2-h = 1 , dans une base de Ep associée
p

a la suite exacte 0 —» "np —> Ep —> Ep —» 0 , tout élément de I

¥#* 3
est représenté par une matrice de la forme (0 1) ...

3.1.5. PROPOSITION . Si E a _bonne réduction supersinguliére modulo ¢ ,

et si ¢2=p , alors I est cycligue d'ordre pz—l

m Ici h=2 d E ={0} e E =70 =~ {z z) =0} .
ci onc Ej {0} e b ’np {E{PL/wp() }
2 24 pz
Or ¢ (z) = p(z+a,z” +...+«q zP ") + o 27 +... ol a €0,
p 2 pz_l pz 1

a g Zp . D'aprés le théoréme de préparation de Weierstrass (cf. [10] ,I.1)
P
il existe une série formelle inversible u(Z) € ¢[[Z]] et un polynéme
2 p2-1 2

g(Z) = p(B.Z+B, 2" +...+B Z )+B 2" € ¢[Z] tels que B , &P

17 F2 2_4 2 2

p p p

et q;p(Z) = u(Z).g(Z) . Ainsi, wp(z) = 0 si et seulement si gl(z) =0 ;

, 2
or g(z) est le produit de =z par un polyn6éme d'Eisenstein de degré p -1
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Ainsi, pour tout élément P non nul de Ep , l'extension K(P)/K est

24

totalement ramifiée de degré p Cela prouve que l'ordre de 1 est

multiple de p2 -1

Mais d'autre part, I est un sous-groupe de Aut(Ep) == GLZ(Fp) ,

et ce dernier groupe est d'ordre p(p2~1)(p—1) . Soit 1 le p-sous-groupe

1
de I . On sait [36] que I1 est un sous-groupe distingué de I , et
que I/I1 est cyclique d'ordre premier & p . Si I1 était d'ordre p ,
c'est-a-dire représentable par ((1) 1) dans GLZ(]FB) , I devrait étre

* %

contenu dans le normalisateur (0 *) de I1 ; or, ce normalisateur est d'or-
dre p(p-l)z . Comme pz—l ne divise pas p(p—l)2 , c'est impossible,
et I1 = {1} . Mais tout sous-groupe cyclique de GLZ(]Fp) d'ordre pre-

mier & p est contenu dans un "sous-groupe de Cartan" de GLZ(]Fp)
(cf. [39].2.6) donc d'ordre (p-1)® ou (p2-1) (cf. [39],2.1) . Ainsi

I est cyclique d'ordre pz-—l .

3.2. COURBE ELLIPTIQUE SEMI-STABLE SUR Q .

Soit E une courbe définie sur @ , semi-stable, définie par une
équation minimale. Alors le conducteur N de E est égal a : N = | | P

(cf. 1.1.6). pla

Soient € un nombre premier, et G 1'image de Gal@/(D) dans

Aut(Ee) , Cc'est-a-dire G = Gal((D(Bz)/CD) . Notons Vo la valuation nor-

manisée de (Dp .

3.2.1, LEMME . 8S'il existe p divisant A tel que ¢ ne divise pas

vp(A) , alors : ou bien G = GLZ(Fe) , ou bien G est contenu dans

l'ensemble des matrices de la forme (., ,) et E contient un sous-groupe

0 *
cyclique d'ordre 2 rationnel sur Q@ .

a

@ Puisque p|A , E est & réduction multiplicative mod. p .
L'hypothése e,\/vp(A) équivaut & A (Q;z . La proposition (2.1.3) prou-
ve que le groupe d'inertie de Qp(Ee)/Qp est d'ordre 2(g-1) : il contient



- 136 -

donc un élément d'ordre 2 , et G aussi contient un élément ¢ d'or-

dre ¢ . Dans une base {el,ez} convenable de EB sur ]FE , o est

” P 1
représenté par ( ) . Deux cas sont alors possibles (et incompatibles 1) :

01

Ou bien G laisse fixe la droite ]Fee1 , et alors G est un

sous-groupe du groupe d'ordre e(.e—l)2 représenté dans la base {e],ez}
#* ¥
par (5 )

Ou bien G contient un élément g tel que ge, = e'2 {]Fee

Dans la base {el,e'z} de E, , la matrice de o est ((1) Eli)
a#z0 , et celle de 71 = gog'l est (11) ?) avec b # 0 , puisque

) 1o 10

= e! . Ainsi ] i
e, e insi G contient toutes les matrices (0 1) et (*1

1
avec

)

1-1,.,1 0,1 -1 ,
0 1)(1 1)(0 1) , donc G contient le sous-groupe de

GLZ(]FZ) engendré par ((1) i) et (? —(1)) . Ce sous-groupe est SLZ(]Fe) :
en effet, c'est l'image, par la projection canonique de GLZ(Z) sur
11 0-1
2 o1 e G ¢ -

(Z) . Or SLZ(I‘Q) est le noyau du déterminant, autre-

) = (

2
mais (0
1

-1
0

GLZ(]F?,) , du sous-groupe de GL,(Z) engendré par (

d savoir T = SL2
ment dit on a la suite exacte :
dét 3
1 —» SLZ(]FE) —_— GLZ(FQ) —_— IF‘2 — 1
Comme l'accouplement de Weil (I.4.4) nous a montré que dét(G) = ]F: ,

on a alors G = GLZ(]FQ) A

3.2.2. THEOrREME . Si ¢ ne divise pas vp(A) , pour un p divisant A ,

(i) ou bien G = GLZ(]FB) :

(ii) ou bien E a un point rationnel d'ordre ¢ ;

(iii) ou bien E est ¢-isogéne (sur @) & une courbe E' ayant

un point rationnel d'ordre ¢

(ici, "point rationnel" signifie "point rationnel sur Q").

3t 3

8 Vu le lemme (3.2.1), il suffit de montrer que, si G c {(0 *)} ,

on est dans le cas (ii) ou (iii) . Notons X4 (i =1,2) les 2 homomorphis-
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xgl@)  *

mes de G dans F* définis par : g = ( ) . Nous allons

e

montrer que l'un des X4 est égal 4 1 , et alors le second sera égal

0 % (9)

au déterminant, donc & la restriction du caractére X de Gal(Q/Q) défi-

ni par l'action sur My

Appelons Ki le sous-corps de (I)(Ee) fixe par le novau de Xi .
et étudions la ramification de Ki/(D en chaque place p . Remarquons

d'abord que le degré [Ki:CD] divise ¢-1

Si p ) en , d'aprés (2.1.2) l'extension Qp(Ez)/Qp est non rami-

fiée, donc a fortiori Ki/CD est non ramifiée en p

Si p \ A et p# ¢ , comme A¢ CD;:Z par hypothése, le groupe
d'inertie de CDp(Ee)/CDp est d'ordre @ d'aprés (3.1.3,(ii)) . Ainsi 1l'in-
dice de ramification de Ki/CD en p doit diviser 2 et ¢-1 (car

[Ki:(])] divise ¢-1) : l'extension Ki/(l? est non ramifiée en p

Si p = ¢ , la réduction n'est pas supersinguliére : en effet,
d'aprés (3.1.5), si c'était le cas, le groupe d'inertie de CD(EZ)/CD serait
d'ordre 22—1 . Mais cet ordre doit diviser l'ordre de G , qui lui-méme
divise 2(2—1)2 : c'est impossible. Ainsi la réduction est non supersingu-
lidre, ou de type multiplicatif, et d'aprés (3.1.3) et (3.1.4), le groupe
d'inertie de CDp(Ee)/CDp est d'ordre divisant 2(g-1) (car représentable

par un sous-groupe de ( )) : donc 1'un des caractéres Xj ~correspon-

01
dant & 1 - est non ramifié en ¢

En résumé, l'un des x; est non ramifié partout, 1'autre est non
ramifié en dehors de ¢ . Comme il n'existe pas d'extension non triviale
de Q@ partout non ramifiée, 1'un des X4 est le caractére unité, et

alors l'autre est le déterminant. Nous avons donc 2 cas & considérer :

W#*
Si Xy = 1, alors G c {(é 1 et le ler vecteur de la base

correspond & un point d'ordre ¢ défini sur Q@ .

* %
8i x, =1, alors G c {( et on a une suite exacte de G-

0o 1)}
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modules : 1 —» by —> E\g —>» Z/2Z —>» 1 , ou l'action de G sur
Z/tZ est triviale. D'aprés (1.4.3.3), la courbe elliptique B/pz est
¢-isogéne a E , définie sur @ , et le sous-groupe Ez/u2 de E/ue

est d'ordre ¢ et rationnel sur Q. =

3.2.3. COROLLAIRE. Si E est une courbe elliptigue semi-stable sur Q@

ayvant bonne réduction en 2 , si 2 >5 et s'il existe un facteur premier p

de A tel que ¢ ne divise pas vp(A) , alors Gal(CD(Ee)/CD) = Aut(Ee)

w Il suffit de vérifier que les cas (ii) et (iii) du théoréme

(3.2.2) ne peuvent pas se produire, donc que G = GLZ(]FZ) . Or si E

avait un point rationnel d'ordre 2 , la courbe réduite modulo 2 aurait un

sous-groupe de points rationnels sur ]l:‘2 d'ordre ¢ (cf. 3.3.1) (car ¢ # 2).

Comme ]Pz(]FZ) a 5 points, cela implique @2 <5 . Ainsi, (ii) est impos-
sible. Et le lemme ci-dessous (3.2.4) montre que toute courbe g-isogéne

4 E a bonne réduction en 2 : ainsi (iii) est impossible comme (ii) .®

3.2.4. LEMME. Deux courbes elliptiques définies sur un méme corps de

nombres K , et isogénes sur K , ont exactement les mémes places de

mauvaise réduction.

Ce résultat est démontré dans [41] pour des variétés abéliennes.

3.2.5. Remarque : Dans [39) , Serre obtient le résultat plus général

suivant :

THEOREME . Soient K un corps de nombres, et E une courbe ellip-

tigue sur K n'ayant pas de multiplication complexe sur K . Alors, pour

presque tout nombre premier ¢ (i.e. pour tout ¢ sauf un nombre fini),

on a : Gal(K(Ee)/K) = Aut(Ee)




