
Cahiers

O

m LUATEX 0.60
P Taco Hoekwater, Hartmut Henkel

Cahiers GUTenberg, n 56 (2011), p. 127-133.

<http://cahiers.gutenberg.eu.org/fitem?id=CG_2011___56_127_0>

© Association GUTenberg, 2011, tous droits réservés.

L’accès aux articles des Cahiers GUTenberg
(http://cahiers.gutenberg.eu.org/),
implique l’accord avec les conditions générales
d’utilisation (http://cahiers.gutenberg.eu.org/legal.html).
Toute utilisation commerciale ou impression systématique
est constitutive d’une infraction pénale. Toute copie ou impression
de ce fichier doit contenir la présente mention de copyright.

http://cahiers.gutenberg.eu.org/fitem?id=CG_2011___56_127_0
http://cahiers.gutenberg.eu.org/
http://cahiers.gutenberg.eu.org/legal.html

LuaTEX 0.60
Taco Hoekwater, Hartmut Henkel

Abstract: TEXLive 2010 will contain LuaTEX 0.60. This article gives an
overview of the changes between this version and the version on last year’s
TEXLive. Highlights of this release: cweb code base, dynamic loading of
lua modules, various font subsystem improvements including support for
Apple .dfont, font collection files, braced input file names, extended pdf
Lua table, and access to the line breaking algorithm from Lua code.

Key words: Lua, LuaTEX, verze 0.60

Abstrakt: Článek představuje změny a novinky ve verzi LuaTEXu 0.60.

Klíčová slova: programovací jazyk Lua, LuaTEX, verze 0.60

References
[1] LuaTEX Available at URL: http://www.luatex.org/
[2] The Programming Language Lua. Home page. Available at URL:

http://www.lua.org/

taco (at) elvenkind (dot) com
Elvenkind BV, Spuiboulevard 269, 3311 GP Dordrecht, The Netherlands

127doi: 10.5300/2011-2-4/127

72 72

72 72

General changes
Some of the changes can be organised into sections, but not all. So first, here are the
changes that are more or less standalone.

Many of the source files have been converted to cweb. Early versions of LuaTEX
were based on Pascal web, but by 0.40 all code has been hand-converted to C. The
literate programming comments were kept, and the relevant sources have now
been converted back to cweb, reinstating the literate documentation.

This change does not make LuaTEX a literate program in the traditional sense
because the typical C source code layout with pairs of header & implementation
files has been kept and no code reshuffling takes place. But it does mean that it is
now much easier to keep the source documentation up to date, and it is possible
to create nicely typeset program listings with indices.
There are now source repository revision numbers in the banner again, which is
a useful thing to have while tracking down bugs. For example, the LuaTEX binary
being used to write this article starts up with:

This is LuaTeX, Version beta-0.60.1-2010042817 (rev 3659)

The horizontal nodes that are added during line breaking now inherit the attrib-
utes from the nodes inside the created line.

Previously, these nodes (\leftskip and \rightskip in particular) inherited the
attributes in effect at the end of the (partial) paragraph because that is where line
breaking takes place.
All Lua errors now report file and line numbers to aid in debugging, even if the
error happens inside a callback.
LuaTEX can now use the embedded kpathsea library to find Lua require() files,
and will do so by default if the kpathsea library is enabled by the format (as is the
case in plain LuaTEX and the various LuaLATEX formats).
The print precision for small numbers in Lua code (the return value of tostring())
has been improved.
Of course there were lots of code cleanups and improvements to the reference
manual.

Embedded libraries and other third-party inclusions
The following are changes to third-party code that for the most part should not need
much explanation.

MetaPost is now at version 1.211.
Libpng is now at version 1.2.40.
New SyncTEX code is imported from TEX Live.
The Lua source file from the luamd5 library (which provides the md5.hexsuma func-
tion) is now embedded in the executable. In older versions of LuaTEX, this file was
missing completely.
The Lua co-routine patch (coco) is now disabled on powerpc-linux because it
caused crashes on that platform due to a bad upstream implementation.

Dynamic loading of lua modules
LuaTEX now has support for dynamic loading of external compiled Lua libraries.

As with other require() files, LuaTEX can and will use kpathsea if the format
allows it to do so. For this purpose, kpathsea has been extended with a new file type:
clua. The associated texmf.cnf variable is by default defined like this:

72

128

73 73

73 73

CLUAINPUTS=.:$SELFAUTOLOC/lib/{$progname,$engine,}/lua//

which means that if your LuaTEX binary lives in

/opt/tex/texmf-linux-64/bin/

then your compiled Luamodules should go into the local directory, or in a tree below

/opt/tex/texmf-linux-64/bin/lib/lua

Be warned that not all available Lua modules will work. LuaTEX is a command line
program, and on some platforms that makes it nearly impossible to use GUI-based
extensions.

Font related
Lots of small changes have taken place in the font processing.

The backend message

cannot open Type 1 font file for reading

now reports the name of the Type1 font file it was looking for.
It is no longer possible for fonts from included pdf files to be replaced by / merged
with the document fonts of the enveloping pdf.
Support for Type3 .pgc files has been removed. This is just for the .pgc format
invented by Hàn Thế Thành, bitmapped pk files still work.
For TrueType font collections (.ttc files), the used subfont name and its index id
are printed to the terminal, and if the backend cannot find the font in the collec-
tion, the run is aborted.
It is now possible to use Apple .dfont font collection files.

Unfortunately,in Snow Leopard (a.k.a. MacOSX 10.6) Apple switched to a .ttc
format that is not quite compatible with the Microsoft version of .ttc. As a result,
the system fonts from Snow Leopard cannot be used in LuaTEX 0.60.
The loading speed of large fonts via the fontloader library, and the inclusion speed
for sub-setting in the backend have both been improved.
There are two newMathConstants entries added. Suppose the Luamath font load-
ing code produces a Lua table named f. In that table, you can set

f.MathConstants.FractionDelimiterSize
f.Mathconstants.FractionDelimiterDisplayStyleSize

These new fields allows proper setting of the size parameters for LuaTEX's
...withdelims math primitives, for which there is no ready replacement in the
OpenType MATH table.
Artificially slanted or extended fonts now work via the pdf text matrix so that
this now also works for non-Type1 fonts. In other words: the Lua f.slant and
f.extend font keys are now obeyed in all cases.
There is another new allowed key: f.psname. When set, this value should be the
original PostScript font name of the font. In the pdf generation backend, fonts
inside .dfont and .ttc collections are fetched from the archive using this field, so
in those cases the key is required.

73

129

74 74

74 74

A related change is made to the font name discovery used by the backend for
storage into the pdf file structure: now it tries f.psname first, as that is much less
likely to contain spaces than f.fontname (which is the field that 0.40 used). If there
is no f.psname, it falls back to the old behaviour.
Finally, Lua-loaded fonts now support a f.nomath key to speed up loading the Lua
table in the normal case of fonts that do not provide OpenType MATH data.

‘TEX’-side extensions and changes
LuaTEX is not actually TEX even though it uses an input language that is very similar,
hence the quotes in this section's title. Some of the following items are new LuaTEX
extensions, others are adjustments to pre-existing pdfTEX or Aleph functionality.

The primitives \input and \openin now accept braced file names, removing the
need for double quote escapes in case of files with spaces in their name.
The \endlinechar can now be set to any value between 0 and 127.
The new primitives \aligntab and \alignmark are aliases for the use single char-
acters with the category codes of & and # in alignments.
\latelua is now allowed inside leaders. To be used with care, because the Lua
code will be executed once for each generated leader item.
The new primitive \gleaders provides ‘globally aligned’ leaders. These leaders are
aligned on one side of themain output box instead of to the side of the immediately
enclosing box.
From now on LuaTEX handles only 4 direction specifiers:

TLT (latin),
TRT (arabic),
RTT (cjk), and
LTL (mongolian).

Other direction specifiers generate an error.
The \pdfcompresslevel is now effectively fixed as soon as any output to the pdf
file has occurred.
\pdfobj has gained an extra optional keyword: uncompressed. This forces the ob-
ject to be written to the pdf in plain text, which is needed for certain objects con-
taining metadata.
Two new token lists are provided: \pdfxformresources and \pdfxformattr, as an
alternative to \pdfxform keywords.
The new syntax

\pdfrefxform [width <dimen>] [height <dimen>] [depth <dimen>] <formref>

scales a single form object; using similar principle as with \pdfximage: depth alone
doesn't scale, it shifts vertically.
Similarly,

\pdfrefximage [width <dimen>] [height <dimen>] [depth <dimen>] <imageref>

overrules settings from \pdfximage for this image only.
The following obsolete pdfTEX primitives have been removed:

\pdfoptionalwaysusepdfpagebox
\pdfoptionpdfinclusionerrorlevel
\pdfforcepagebox
\pdfmovechars

74

130

75 75

75 75

These were already deprecated in pdfTEX itself.

Lua table extensions
In most of the Lua tables that LuaTEX provides, only small changes have taken place,
so they do not deserve their own subsections.

There is a new callback: process_output_buffer, for post-processing of \write
text to a file.
The callbacks hpack_filter, vpack_filter and pre_output_filter pass on an ex-
tra string argument for the current direction.
fontloader.open() previously cleared some of the font name strings during load
that it should not do.
The new function font.id("tenrm") returns the internal id number for that font.
It takes a bare control sequence name as argument.
The os.name variable now knows about cygwin and kfreebsd.
lfs.readlink("file") returns the content of a symbolic link (Unix only). This
extension is meant for use in texlua scripts.
lfs.shortname("file") returns the short (FAT) name of a file (Windows only).
This extension is meant for use in texlua scripts.
kpse.version() returns the kpathsea version string.
kpse.lookup({...}) offers a search interface similar to the kpsewhich program,
an example call looks like this:

kpse.set_program_name('luatex')
print(kpse.lookup ('plain.tex',

{ ["format"] = "tex",
["all"] = true,
["must-exist"] = true }))

The ‘node’ table
In the verbatim code below, n stands for a userdata node object.

node.vpack(n) packs a list into a vlist node, like \vbox.
node.protrusion_skippable(n) returns true if this node can be skipped for the
purpose of protrusion discovery.

This is useful if you want to (re)calculate protrusion in pure Lua.
node.dimensions(n) returns the natural width, height and depth of a (horizontal)
node list.
node.tail(n) returns the tail node of a node list.
Each glyph node now has three new virtual read-only fields: width, height, and
depth. The values are the number of scaled points.
glue_spec nodes now have an extra boolean read-only field: writable.

Some glue specifications can be altered directly, but certain key glue specifi-
cations are shared among many nodes. Altering the values of those is prohibited
because it would have unpredictable side-effects. For those cases, a copy must be
made and assigned to the parent node.
hlist nodes now have a subtype to distinguish between hlists generated by the
paragraph breaking, explicit \hbox commands, and other sources.
node.copy_list(n) now allows a second argument. This argument can be used to
copy only part of a node list.
node.hpack(n) now accepts cal_expand_ratio and subst_ex_font modifiers.

75

131

76 76

76 76

This feature helps the implementation of font expansion in a pure Lua para-
graph breaking code.
node.hpack(n) and node.vpack(n) now also return the ‘badness’ of the created
box, and accept an optional direction argument.

The ‘pdf’ table

The new functions pdf.mapfile("...") and pdf.mapline("...") are aliases for
the corresponding pdfTEX primitives.
pdf.registerannot() reserves a pdf object number and returns it.
The functions pdf.obj(...), pdf.immediateobj(...), and pdf.reserveobj(...)
are similar to the corresponding pdfTEX primitives. Full syntax details can be read
in the LuaTEX reference manual.
New read-write string keys:

pdf.catalog string goes into the Catalog dictionary.
pdf.info string goes into the Info dictionary.
pdf.names string goes into the Names dictionary. referenced by the Catalog
object.
pdf.trailer string goes into the Trailer dictionary.
pdf.pageattributes string goes into the Page dictionary.
pdf.pageresources string goes into the Resources dictionary referenced by
the Page object.
pdf.pagesattributes string goes into the Pages dictionary.

The ‘tex’ table
Finally, there are some extensions to the tex table that are worth mentioning.

tex.badness(f,s) interfaces to the ‘badness’ internal function.
Accidentally, this disables access to the \badness internal parameter, this will

be corrected in a future LuaTEX version.
tex.sp("1in") converts Lua-style string units to scaled points.
tex.tprint({...},{...}) is like a sequence of tex.sprint(...) calls.
tex.shipout(n) ships out a constructed box.
tex.nest[] and tex.nest.ptr together allow read-write access to the semantic
nest (mode nesting).

For example, this prints the equivalent of \prevdepth at the current mode nest-
ing level.

print (tex.nest[tex.nest.ptr].prevdepth)

tex.nest.ptr is the current level, and lower numbers are enclosing modes.
Each of the items in the tex.nest array represents a mode nesting level and has

a set of virtual keys that be accessed both for reading and writing, but you cannot
change the actual tex.nest array itself. The possible keys are listed in the LuaTEX
reference manual.
tex.linebreak(n, {...}) supports running the paragraph breaker from pure Lua.
The second argument specifies a (potentially large) table of line breaking para-
meters: the parameters that are not passed explicitly are taken from the current
typesetter state.

The exact keys in the table are documented in the reference manual, but here
is a simple yet complete example of how to run line breaking on the content of
\box0:

76

132

77 77

77 77

\setbox0=\hbox to \hsize{\input knuth }
\startluacode
local n = node.copy_list(tex.box[0].list)
local t = node.tail(n)
local final = node.new(node.id('glue'))
final.spec = node.new(node.id('glue_spec'))
final.spec.stretch_order = 2
final.spec.stretch = 1
node.insert_after(n,t, final)
local m = tex.linebreak(n,

{ hangafter = 2, hangindent = tex.sp("2em")})
local q = node.vpack(m)
node.write(q)
\stopluacode

The result is this:

Thus, I came to the conclusion that the designer of a new system must not only
be the implementer and first large--scale user; the designer should also write the

first user manual. The separation of any of these four components would
have hurt TEX significantly. If I had not participated fully in all these ac-
tivities, literally hundreds of improvements would never have been made,
because I would never have thought of them or perceived why they were im-
portant. But a system cannot be successful if it is too strongly influenced by
a single person. Once the initial design is complete and fairly robust, the real
test begins as people with many different viewpoints undertake their own
experiments.

Summary
All in all, there are not too many incompatible changes compared to LuaTEX 0.40,
and the LuaTEX project is progressing nicely.

LuaTEX beta 0.70 will be released in the autumn of 2010. Our current plans for
that release are: access to the actual pdf structures of included pdf images; a partial
redesign of the mixed direction model; even more access to the LuaTEX internals
from Lua; and probably some more …

Taco Hoekwater & Hartmut Henkel

77

133

