
Cahiers
enbergGUTGUTGUT

m XSL FOS AND TEX : SOME DATA
P Chris Rowley

Cahiers GUTenberg, n 39-40 (2001), p. 201-204.

<http://cahiers.gutenberg.eu.org/fitem?id=CG_2001___39-40_201_0>

© Association GUTenberg, 2001, tous droits réservés.

L’accès aux articles des Cahiers GUTenberg
(http://cahiers.gutenberg.eu.org/),
implique l’accord avec les conditions générales
d’utilisation (http://cahiers.gutenberg.eu.org/legal.html).
Toute utilisation commerciale ou impression systématique
est constitutive d’une infraction pénale. Toute copie ou impression
de ce fichier doit contenir la présente mention de copyright.

http://cahiers.gutenberg.eu.org/fitem?id=CG_2001___39-40_201_0
http://cahiers.gutenberg.eu.org/
http://cahiers.gutenberg.eu.org/legal.html




Cahiers GUTenberg no 39-40 — Mai 2001 201

XSL FOs and TEX: some data

Chris Rowley

Open University, UK & LATEX3 Project
C.A.Rowley@open.ac.uk

Résumé. La spécification XSL « FO » (Formatting Objects) est un projet ambitieux et
fécond dont le développement mêle harmonieusement idées profondes et concepts
élégants. Comment ne pas se réjouir de voir des propriétés aussi fondamentales que la
visibilité décrites comme étant de nature « magique » ?

Le moment est venu de nous livrer à l’analyse objective — et passionnante — des
hypothèses sur lesquelles repose le modèle XSL de formatage de document. Cet article
fournit quelques éléments utiles à cette analyse à partir de la comparaison de certains
aspects du modèle XSL et de leurs pendants en TEX/LATEX.

Abstract. The XSL FO (Formatting Objects) specification is a noble and inventive project
that is maturing into a cornucopia of useful insights and intellectual treats. How could it fail
to delight when it formally describes basic properties, such as visibility, as ‘magic’!

It is therefore a timely, fascinating and pragmatic exercise to analyse the assumptions made
by XSL about the process and results of document formatting. This article provides a small
amount of the data needed for this analysis by comparing some aspects of the XSL model with
that provided by TEX/LATEX.

1. Introduction

In XSL, the classes of ‘formatting objects’ and ‘formatting properties’ provide
the vocabulary for expressing presentation intent. They hence also define a
comprehensive model of the process of document formatting. Likewise, a doc-
ument formatting system such as LATEX, because it is based on interface and
scripting languages, defines such a model. Since both claim to support a wide
range of documents and to have commercial and scholarly importance, it will
be useful to compare them and to analyse the extent to which they coexist in
harmonious creativity.

Any attempt to analyse the use of a TEX-derivative as the basic engine embed-
ded within an XSL-conformant formatter must consider at least the following
three possibilities.



202 Chris Rowley

– The use of a general purpose LATEX-like macro package to implement parts
of the model using TEX’s ‘programming features’.

– The development from scratch of an implementation of the XSL model us-
ing TEX’s ‘programming features’.

– A non-TEX application that uses TEX but only to carry out some specific
formatting tasks such as line-breaking or mathematical composition.

All of these three can assume the use of as much as is required of TEX’s own
model and capabilities since they contain the whole TEX system. In all but the
last anything not available in basic TEX must be implemented within TEX’s
programming capability. More radical uses of TEX’s abilities are conceivable
and they may offer useful insights both into what is required of a TEX-quality
formatting engine for the XSL-world and into useful and exciting develop-
ments of TEX itself.

1.1. Background

The main section of this article contains some examples of the most obvious
differences between the XSL FO model of the formatting process and that of
TEX/LATEX (including the widely available extensions of them such as pdfTEX
and Ω). The information about XSL FO on which these examples are based is
from Version 1.0 [3].

Some of these differences are more fundamental than others whilst some
aspects of the XSL model can be partially emulated by using TEX in quite
straightforward ways. It is often claimed that TEX can be used to fully em-
ulate any formatting requirements; even if true this does not imply that there
is any sense in doing so. It is far better to learn from these examples how to
develop superior systems rather than use them as justification for indulgence
in the exquisite torture of pushing TEX/LATEX beyond sensible limits.

Looking on the brighter side, the TEX model supports many specifications that
are not covered by the current version of XSL FO; but the latter is eXtensible,
so there is, at least in the publicity hype, hope for convergent evolution of the
two, one day!

In most cases it is straightforward, but often tedious, to manufacture a fit to
the XSL model by either diminishing or slightly extending the models and
data-structures already used by TEX/LATEX. Such a process is, of course, al-
lowing the tail to wag the dog since XSL is intended only as a standard for a
specification language for existing and future formatter capabilities, it is not
intended to control the capabilities of those formatters.

The somewhat eclectic contents of the current XSL FO document are the result
of various attempts, more or less successful, that have been made to inject



XSL FOs and TEX: some data 203

aspects of the LATEX experience into the new standard. It was unfortunately not
politically feasible to by-pass this time-consuming process by simply using
the strategy available to the US HTML/CSS lobby: to demand that the XSL
FO model explicitly incorporate everything from CSS2 however irrelevant,
US-biased and confusing.

2. Examples

These examples cover only those areas of XSL that are relevant to the use
of TEX-based systems to produce a fully formatted document such as a PDF
file [1]. Thus it does not cover much of the material in the specification that is
derived from the CSS specification [2] and is thus too closely related to the spe-
cific capabilities of HTML and the severe limitations of current main-stream
browsers.

2.1. Font selection

This is not strictly part of the formatting model. The XSL (OpenType) model
for specifying a ‘nominal font’ is very similar to that in LATEX thus it is feasible
and probably wise for the latter to incorporate that of XSL simply because
such a generic standard is better than a specialised ad hoc one.

2.2. Minor differences

1. Hyphenation ladders longer than one line are not identifiable in the TEX
model.

2. Many specifications assume that pages have a unique and known
binding-side (often called the inside). Making this information available
is not directly supported by TEX’s galley–pagination model and its asyn-
chronous implementation.

2.3. Substantial differences

1. TEX itself does not support the general concept of ‘invisible’ graphical
content: this is completely formatted, so that its location and size are
determined, but it should not be rendered.

2. TEX’s paragraph-building and table-building models do not support the
strategy of stacking the lines, however high, with constant baseline sep-
aration; the line boxes TEX generates always have their natural height
and the baseline separation mechanism supports only the minimisation
of the leading between baselines.



204 Chris Rowley

3. In the XSL model: ‘A space-specifier is a compound datatype whose
components are minimum, optimum, maximum, conditionality and
precedence. Space-specifiers occurring in sequence may interact with
each other.’ TEX’s model of space, based on kerns and glue, does not
support those interactions that are based on precedence.

4. Another TEX mechanism that does not support the XSL precedence
model is breaking, of lines and pages; here the XSL model supports, in
addition, precedence relationships between keep and break conditions.
In addition, the XSL distinction between different types of column-break
may be difficult to emulate in TEX.

5. Some XSL table column specifications will be very difficult to implement
in TEX (and probably in any system) without serious loss of layout qual-
ity or processing efficiency.
TEX’s ‘halign’ mechanism has little to offer for most XSL table properties
since its core is a sophisticated glue-based algorithm for determining
column widths and cell layouts; but this algorithm does not interact with
the paragraph-builder acting on cell contents.

6. The last three points can be subsumed into the statement that TEX’s cen-
tral glue/penalty mechanism cannot directly be used to implement im-
portant XSL specifications.

2.4. The major difference

The XSL model assumes that a large variety of flowed material can be split
between pages: examples are paragraphs with a visible frame (border) and
paragraphs within table cells. This is very difficult to implement using any
current applications; it may prove to be, in some sense such as complexity,
absolutely difficult. Similar possibilities are allowed for line-breaking.

Bibliography

[1] Portable Document Format Reference Manual, Version 1.3,
Adobe Systems, 1999, http://www.pdfzone.com/resources/.

[2] Cascading Style Sheets, level 2 (CSS2), as amended by Errata
document 1999/11/04. W3C Recommendation, 1999,
http://www.w3.org/TR/1998/REC-CSS2-19980512 and
http://www.w3.org/Style/css2-updates/
REC-CSS2-19980512-errata.html.

[3] Extensible Stylesheet Language (XSL), Version 1.0, W3C Candidate
Recommendation, 21 November 2000,
http://www.w3.org/TR/2000/CR-xsl-20001121.


