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CONTRIBUTIONS TO THE THEORY OF TOURNAMENTS 
PART IVC) 

A Comparison of Tournaments Through Probabilistic Completions 

T. V. NARAYANA and F. AGYEPONG 

1 - INTRODUCTION 

Hartigan [3] has introduced the concept of probabilistic completion of 
a knock-out tournament (simply tournament hereafter) and studied in detail 
the classical case of a tournament with n — 2x players. He has indicated how these 
ideas could be extended to more general tournaments : given the result of a tour
nament as a rooted tree, he states a recursive formula for calculating the proba
bilistic completion of the tournament. Narayana and Zidek [5] have studied a class 
of random tournaments with a single outlier from a different point of view, namely, 
the probability distribution of the number of rounds played by each player in a 
tournament. We study Hartigan's "deterministic" model from a similar point of 
view in this paper and obtain the probability distribution of the number of rounds 
played by each player. In the classical case at least, Hartigan's results on estimating 
the expected strengths of players (and their variances) can be derived very simply 
by this alternative approach. 

A novel interpretation yielded by this approach, together with a very simple 
result of Hartigan, permits us to obtain estimated strengths explicity for the "king 
of the mountain" tournament or introduced by Narayana and Zidek. This 
tournament is valid for an arbitrary number n of players ; also, since all rooted 
trees can be expressed in terms of T4, we are able to compare various tournaments 
or more generally "tournament patterns". Numerical comparisons can be made, 
at least for small values of n, between r 4 and the classical case or its immediate 
generalizations which are valid for all n. The conclusions we reach in the deter
ministic case are generally similar to the comparisons of tournaments made in 
the random model - making due allowances for the plethora of criteria available 
in the deterministic case. 

(1) Les parties I et II font l'objet des references [5] et [6]. La partie III est parue dans 
Proceedings VIranian Math. Conf. (Chiraz 1974). 
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2. TERMINOLOGY AND PRELIMINARY RESULTS 

Let us consider a tournament with n players, no two of whom have the 
same strength. The stronger player always wins in any encounter, so that the 
only element of randomness arises in the manner in which the players are matched. 
We rank the n players in decreasing order of strength ; player n is the strongest, 
player (n - 1) loses to n but beats the remaining players and so on. When there is 
no possible confusion, we shall use the integer / (/ = 1, . . . , n) to denote both 
the player and his strength. It is convenient to refer to a general knock-out tour
nament ([3], p. 503) with n such players as a "deterministic" model tournament 
to distinguish it from the "random" model tournament introduced in [5]. The 
random model consists of (n — 1) players between whom encounters are decided 
at random, while there is a single (outlier) player who beats all others with pro
bability p. Indeed a more general model which includes both the above cases 
is being studied by Narayana. 

A few important tournaments or tournament patterns defined in [5] are 
studied in the deterministic model, namely, Tx , T2 , T4 and the classical case 
with n = 2t players. We denote for brevity the classical case by C. We first consider 
C and state two preliminary remarks. 

2f ! 

Remark 1. The number of possible ways of matching 2 players in Cis 2/ _ j . 

Remark 2. If s (/, k) = probability that player / survives round k , 
«he„ •o.»-(yj)/(?Z\)-C/*)/(*Z1

l). m 
The last equality in (1) follows trivially ; the remaining proofs are omitted as more 
general results can be established cf. Capell and Narayana [1]. Indeed Narayana 
obtained the above equation as a very special case of the general model mentioned 
above. 

3. ESTIMATED STRENGTH OF THE PLAYERS IN C AND T4 

Before obtaining the estimated strengths of the players in C, we obtain the 
mean and variance of the round in which player / < 2t is defeated. Clearly from 
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(1),r(i,k) = s (i, k) - s (i, k + 1) is the probability that player i < 2t plays 
exactly k + 1 rounds, fc = 0 , l , . . . , f — 1 . Thus : 

t-i t-i 
E(X)= £ (fc+ l)r(i,fc)= V (fc + .*+!)] = 

k^O k=0 t-l 
2 s(/,fc), (2) 

and similarly, / f = 0 

E((X + 1)X) = Z (fc + I) k (s (i, k) — s (i, k + 1)) = 2 . Z k s (i, k) . (3) 
/c=0 /c=l 

From (2) and (3), the expected value Mt and variance Vt of the number of rounds 
played by player i can be easily obtained. Closed formulae for (2), (3) are available 
at least when / = (2f — 1) and (2t — 2), and a table of M- , Vi is given when 
t = 2,3,4. 

Tables of M., V. for t = 2,3,4 i i 
t=2 t=4 

/ M. V. i M. V. 
i i i i 

4 2 0 16 4 0 
3 1.666 0.222 15 3.267 0.862 
2 1.333 0.222 14 2.762 0.981 
I 1 0 13 2.407 0.887 

12 2.147 0.761 
I 11 1.950 0.65 

I 1 10 1.790 0.557 
1 M. v 

; 1 9 1.658 0.476 
8 3 0 8 1.544 0.403 
7 2.428 0.431 7 1.444 0.335 
6 2 0.471 6 1.355 0.273 
5 1.686 0.444 5 1.275 0.217 
4 1.457 0.305 4 1.202 0.166 
3 1.286 0.204 3 1.133 0.116 
2 1.143 0.122 2 1.067 0.062 
I I 0 1 1 0 
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It appears very easy to prove that : 

Ml<M2 < ... <Mn_x <Mn, (4) 

where n = 2t ; on the other hand,letting / stand for the smallest integer such that 
(n~\) 

M. > 2, the tables seem to indicate for all n, n - i 4- 1 = j —-— j . We recognise 
a conjecture very similar to the one outlier case [5, equation (35)]. 

We now show how to obtain simple explicit expressions for the estimated 
strengths (and their variances) in C. Although the results were stated to us first 
by Moon [4], we have obtained them independently by a completely different 
argument. Let us consider a fixed integer k, 1 < k < r, and let us suppose that 
we are given that player i survives round k. From (1), this implies that / > 2k, 
since s (/, k) > 0 ; we now want to estimate the strength of the player X beaten 
by / in round k. Surely, the strength of X, which is a random variable, is an integer v 
satisfying 2k~1 < v < i ; and using (1) again, 

s(v,k- 1) 
p*(v,k)=—77 1 (5) 

I s(v,k-\) 

denotes the (conditional) probability that / beat v in round k. For k = 1, s(v, 0) 
is undefined, but from our definition of s (i, k), s(v,Q)= 1. Thus 

E(X)= 2 "P* 

so that when k = 1 , 

E{X) = //2. (6) 

Further, for k > 1, using (1) and (5), 

V J V~X ) 2*-i( 1 \ 
E(X) ='^-1 = = i 

The last two equations express the important fact that for all k, 1 < k < t, 
E(X)li= 2 f c-1/(2 f c~1 + 1). (8) 
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In other words, the ratio of the expected strength of the player beaten by any / 
in any round to the strength of / himself is independent of i and depends only 
on the round where / beats X. As the strongest player 2* survives all rounds, the 
expected strength of the player AQ beaten by him in round £ (£ = 1, . . . , t) is 

2 ' - ' , 
F r n *• (?) 

Following Hartigan [3] and Moon [4] we may call these players A% of type {£}; 
players of type {k, £} (1 < k < C) are the players beaten by AQ in round k, 
t < / :<£. Using (8), once again, the estimated strength of a player of type {k, £} 
is : 

2/c-i 2 e _ 1 

2* x — x -» for 1< k < 9. < t. 
2k-l + i 29'~l + 1 

Generally, a player of type {a, b,. . . , £} (1 < a < b < . . . < £ < t) has expected 
strength : 

2^-1 2^"^ 2 C _ 1 

x x . . . x— 2*, (10) 
2a-\ + ! 2*-i + 1 2 f i~1 + 1 

a result first announced by Moon [4]. 
One advantage of the simpler derivation we present here is that the same 

method is applicable, with very little change, for higher moments. Indeed, let 
XW = X(X + 1) . . . (X + / - 1). Then E(XM) can be obtained by a repetition 
of the argument given in (8), and we can easily obtain variances and higher mo
ments of the strengths of players of type {a, b, . . . , 9. \ Given that / beats X in 
round k, we have 

^ 1 / , ^ ^ = ^ 7 T 7 / l / , ; 

so that for a player of type {a, b,.. . , £}, we have, 
2a_l 2 6-l 2B-l 

E{XU]) = .. . -— 2t(2f + 1) .. . (2f +/ - I). 
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4 - ESTIMATED STRENGTHS OF THE PLAYERS 
IN T4 AND THE MAIN THEOREM 

Let us consider a deterministic tournament with n players, whose strengths 
— as well as whose names — are n, n — 1,. . . , 1. If we play a knock-out tourna
ment using the pattern T4, it is easily seen that the result of such a tournament 
can be represented by a special kind of rooted tree. These trees consist of a "main" 
chain" or "trunk" and all "branches" from the trunk are chains of length 1. Using 
the case n = 4 for an illustration, we have the four trees of Fig. I, Section 5 as 
possible outcomes of T4. Clearly, given any tree with (n — I) players, we can 
associate with it two trees playing T4 with n players — namely, the two trees 
obtained by assuming that the last player beats or is beaten by the winner of the 
tournament with (n - 1) players. It is easy to establish a one-one correspondence 
between the 2n~2 compositions of (n - I) and the rooted trees which represent 
the possible outcomes of tournament T4 with n players. Letting (av . .. , ak) 
where ax + . .. + ak = n — \ represent such a tree, the probability with which 
such a tree arises, is shown by induction to be : 

2 
p(a , .. . ,a ) = — - (11) n(n-al)(n-a1 - a2) .. .(n - al - . . . - ak) 

We assume, as usual, that all permutations of the players are equally likely in 
deriving (11). We summarise these results formally in the following lemma. 

Lemma 1. The possible outcomes of T4 with n > 2 players may be represented 
by rooted trees which correspond to the compositions ( # , . . . , ak) of the inte
ger (n - 1). Further, using T4 as our playing pattern, the probability of the tree 
(av . . ., flfc)is given by (11). 

We next note that players in T4, given any rooted tree {ax, . . . , ak), can be 
divided into two categories : the (k + 1) players on the main trunk, and the remain
ing players on the side branches. We shall refer to them, with the exception of the 
winner, in what follows as players of type {a, b, .. ., £}and players who lose imme
diately respectively. As it is easily seen from our main theorem, this notation does 
not lead to any confusion, except for some (unimportant) arbitrariness in designat
ing the lowest player on the trunk. We now state the 

Main Theorem. In !T4, the estimated strength for a player / of type {#,£,..., £}is 
given by 

a b £ 
E{X) = n. . . (12) 

v ' a+ 1 b + 1 £ + 1 
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If a player i loses immediately to a player of type {a, b, . . . , £}his estimated 
strength is 

n a b i 
E(X) = . (13) 

Proof. As the proof of this theorem is only a slight generalisation of the proof in 
the classical case, we indicate it very briefly. Clearly, the estimated strength of 
the winner is n, and a moment's reflexion enables us to see that the estimated 
strengths of the (a x - 1) players losing immediately to the winner are n/2 respec
tively. (Note also that the player on the main trunk beaten by the winner is of 
type {n - flj}, consistent with the definition of T4). 

Let us suppose we are given that player / entered the tournament before 
or on round k. Then denoting by t(i, k) the probability that / survives round k, 
we have 

since we essentially have to choose k players other than / and weaker than him in 
order for / to survive round k. If X denotes the player beaten by / in round k, X 
is a random variable with possible values 1 ,2 , . . . , / - 1. Consider the two mu
tually exclusive cases listed below for calculating i^pf). 

Case 1. X enters round k and not before i.e. X immediately loses to /. Then, 
clearly, 

£•(^0=7^— {1 + . . .+ (i - l)}=//2. (15) i - 1 

Case 2. X survives round (k - 1) so that it is / who received byes before round k. 
In this case 

E(X)= ^ vt*(v,k- 1), (16) 

where, as in the classical case, 

t*(p,k- \) = t(v9k- 1)/V t(y,k- 1). 
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Noting, 

"<-•*- » - ( ; : : ) / ( ' ; ' > <>7> 

we have, from (16) and (17), 
E(X)/i = k/(k + 1). (18) 

As before, (15), (18) express the important fact that E(X)/i is independent of i 
in Case 1 and also in Case 2, depending in the latter case only on k, the round 
in which / beats X. Equations (12), (13) now follow in exactly the same way as 
in C and the theorem is proved. 

Our discussion of the main theorem is contained in the following comments. 

a) We could have obtained C as a special case of the main theorem. As Case 1 
does not arise in C, C is conceptually simpler than T4 - in fact, s(i, k) as defined 
by (1) is of the same form as t(i, k) and the main theorem, suitably simplified, 
applies verbatim to C as well. Indeed, using the same arguments as in T4, recursion 
formulae for estimated strengths can be easily calculated for any rooted tree — a 
result first stated by Hartigan. 

b) Our method of proof makes it evident that if the original strengths of the 
players were A + B, 2 A + B,. . . , nA withal ^ 0, the estimated strengths of 
the players undergo the same linear transformation. In particular, it is valid to 
define any such linear transformation of (12), (13) with A 0, as the estimated 
"generalized strengths" of the players. In many problems it is natural to require 
that the sum of these generalized strengths add up to n (n + l)/2 with A, B integers. 
Clearly, the choice B = 0, A = 1 gives the strengths of the players as defined by 
Moon [4] and in this paper ; the only other choice £ = H + 1,J4 = — I leads to 
estimating final ranks of the players as in Hartigan [3]. Hence our approach not 
only simplifies the original proofs of both Moon and Hartigan, but actually shows 
their essential equivalence : the sum of the estimated strength and the estimated 
rank of any player is constant. Finally, the use of generalized strengths simplifies 
the calculation of expected strengths of the players in two independent knock
out tournaments of m and n players — i.e. where there are no comparisons between 
the two sets : this is indeed the essence of Hartigan's method [3, Section 5]. 

c) Finally, we state explicit formulae for calculating higher moments for 
players in T4, as the proofs are analogous to C. 
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If / loses immediately to n, then 

£(/[/]) = „M/(/+ t ) . ( 1 9 ) 

If /' is of type {a, b,. . . , £}, then 

£•(/1/1) = «1/1 . . (20) 
a + j b +j t+ / 

If / loses immediately to somebody of type b,. . . , £}, then 

E(i[j])= ( 2 l ) 

/ + 1 a + / C +/ 
It is easy to verify for T4 the following formula, which is valid for any rooted 
tree and any random knock-out tournament with n players : 

2 £•(/[/])= = / ! ( M. (22) 
(/ + 1) Vy+i/ 

The 2 in equation (22) is over all n players in the tournament and the proof of 
(22) is similar to that of the comments in Section 5. 

5 - A COMPARISON OF TOURNAMENTS 

We will consider in this section a comparison of tournaments for small values 
of n, using for illustrative purposes T4 with 4 players (Fig. 1) and some tourna
ments with 6 players (Fig. 2). The four rooted trees which are the outcomes of T4 

in this case, their compositions and their probabilities as well as the estimated 
strengths of the players and their variances are given below. We note that the total 
variance for each tree (e.g. for [2, 1] we obtain 10/9 = 0 + 2/9 + 2/3 + 2/9) is 
indicated in the last row and we remark that the tree [2,1] also represents C with 
4 players. 

To illustrate one criterion on which comparisons of tournaments may be 
based, suppose we are given a deterministic model with n players, but we do not 
know which player has strength /(/= 1 , . . . , « ) . We label the players randomly 
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FIGURE 1 
Rooted trees for T4 with 4 players. 

Composition 11,1,1] [2,1] [1,2] [3] 

Probability l/12 l/4 l/6 l/2 

• 4(0) N 4 ^ T 4 ( 0 ) 4 ( 0 ) 

Tree -3(0) 8/3 Q » >. 2 (2/3) [3(0) 1 V 2 ( I ) 

" 2 < 0 ) A X l \ 

• 1 (0) A 4/3 (2/9) 3/2 ( j j 3/2 (1/4) 2 (2/3) 2 (2/3) 

Total Variance 0 10/9 1/2 2 
with the numbers / , . . . , « and assume as usual that the true strengths of the 
players are equally likely to be any one of the n ! permutations of (1, 2, . . ., ri). 
The statistician is faced with estimating the true strengths after making a certain 
number k > Oof comparisons between them i.e. he chooses a vector M = (Mx,.. . ,Mn) 
and asserts Mt is the estimated strength of player labelled i. The loss to the satis-

n 
tician with such a choice M is L (M, T) = 2 (Tt -Mt)2 where T = (Tx , . . ., Tn) 

i= 1 
is the vector of true strengths. After k > 0 comparisons have been made, we define 

1 2 
Rk (M), the risk of the statistician as Rk (M) = L (M,T) where the sum 

- n(P) P ~ ~ 
— is taken over the set P of permutations consistent with the k comparisons made, 
and n (P) is the number of elements in P. Clearly if k = 0, i.e. no comparisons 
have been made, n (P) = n ! and the best choice for M is 

In + 1 n +l\ , n(n2 - 1) 
M = V > • • • » 7- F° r this M, the minimum risktfn (M) = 
is attained as it is easy to prove that this choice minimizes the statistician's risk. 
In a knock-out tournament, k — n — \ and we place the further restriction that 
once a player loses, he plays no more. We shall make this assumption throughout 
this section, although such a restriction is not essential for most of our comments. 
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Further, if n = 2*, and the playing pattern is C, only one tree can be the outcome 
of the tournament. Clearly, the minimum risk to the statistician is attained if we 
choose the vectorM in accordance with the estimated strengths in C. Indeed, from 

n 
the fact (x. — K)2 is minimised for fixed xl ,. . . , xn when K = x, we notice 

1=1 
that for each player the "individual variance" is minimised by choosing the corres
ponding estimated strength in C a fortiori the total variance is minimised by 
this choice. On the other hand, if n i=- 2T or some other tournament, (r 4, say), is 
played, the outcome of the tournament can be any one of a set of rooted trees. 
Of course, given the rooted tree which is the outcome of a tournament, the main 
theorem enables the statistician to choose M so as to minimise his risk. However, 
a moment's reflection convinces us that even before the tournament is played 
(i.e. even if the rooted tree which is the particular outcome of the tournament is 
unknown) a strategy for minimising the risk exists. Formal proofs of the comments 
and elementary results which follow would be tedious ; we shall state them without 
proof. 
I. Every random knock-out tournament with n players [5] is equivalent to a proba
bility distribution on the rooted trees with n nodes. As illustrations, see figures 1 
and 2. Of course, given an arbitrary probability distribution on the trees, there may 
be no corresponding tournament. The characterization of these tournament dis
tributions is not attempted here. 

II. Leti^ = (pj ,, . . . , pe) be a tournament distribution on the trees T2 , . . . , 
rc Let Mt = (Aft . . . . , Ml

n) be the ordered estimated strengths of the players 
in tree Tj (i = 1 , . . .', £). Then the minimum risk for this tournament is achieved 
by choosing the vector M = {M1 ,. . . , Mn) where 

£ 
Mt= I PtMt (r =1 «). (23) 

/= l 
Furthermore, the total variance or minimum risk is given for this choice ofM by 

" 2 2 n(n + I) (2« + 1) V 2 X (r2 ~M2

t)=^ 'f L Mt\ (24) 
t= l 6 t=i 

Illustrations. In C with 4 players, £ = 1. We have already calculated the total 
variance in Figure 1, by taking into account the individual variances. As a check 
of (24), 
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4 5 9 
— ~ [42 + (8/3)2 + 2 2 + (4/3)2 ] = 10/9 . 

6 

In T4 with 4 players, Si = 4. The M"s and P are given in Figure I, eg. 
M3= (4,3,3/2,3/2),p3 = 1/6. Thus M= (4, 29/12, 23/12, 20/12) and the total 
variance, using (24), is given by 246/144. The variances of the individual positions 
are (0, 83/144, 83/144, 80/144), checking out once again the total variance. 

III. If we base our definition of efficiency of a tournament on the total variance, 
a natural definition to use is 

n(n + I) (In + 1) 0 — — • - 2M2 

& (D = 1 6——2 (25) 
n (n2 — 1) 

12 
A table of efficiences of some tournaments with 4 < n < 8 is given after Figure 2 . 
Other criteria for comparing tournaments might be based on the maximum variance 
of the individual position (8>2 say) or on the variance of the winner or second best 
player. Since in all knock-out tournaments the winner is determined with no error, 

might be based on the "precision" with which the second best man is estimated. 
Illustration. According toS 2 , T4 with 4 players is better than C with 4 players, 
the maximum variances being 83/144 and 2/3. We note also that variances in T4, 
apart from the winner, are nearly equal as compared with C. Further examples 
can be found in Figure 2. 

IV. When the number of comparisons which can be made between n players is not 
limited to (n — 1), and we remove the restriction that a player who loses once plays 
no more, it is natural to try to determine that playing pattern or patterns which 
assure §>(T) = 1 with the minimum k. This problem has been considered by Stein-
haus [7] and Ford and Johnson [2]. In principle, our method of computing effi
ciencies would settle the minimum k for n = 12, provided an efficient way of 
deleting "inadmissible strategies" can be formulated. We are investigating this 
problem. 

We conclude this section with Figure 2 and Table 2. 

The reader interested in numerical details of the calculations of M vectors 
in Figure 2 and efficiencies in Table 2 is referred to TOURPACK, and APL package 
on tournaments available at the University of Alberta. We content ourselves with 
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stating here that variances of individual positions are given alongside each Mt 

in the M vectors in Figure 2 and that T 2 Taboo' denotes T2 with the restriction 
that winners in round 1 should (as far as possible) not be oposed in round 2, i.e. 
they play the byes of round 1 in round 2. 

FIGURE 2 
Some tournament distributions for 6 players. 

Pattern and trees with corresponding P and M vectors 

T, [2,2,1], ; P=(l/3,2/3) 

, / 194N /224\ /246 \ / 196\ M = [6, 64/15( ) , 56/15 ( 2 2 s ) , 3 (2) , 32/15 ) , 28/15 ) . 

T2 Taboo [3 ,2] ,[3 ,1 ,1], \ ^ \ ^ ' ! i \ •' -P = (4/9, 2/9, 2/9,1/9). 

M =[6,9/2 ( 9 ) ,10/3 ( 7 1 ) ,16/6 ( f c

3 J , 43/18 ( 2 2 5 ? ) ,35/18 f 1 5 6 1 ) ] 
V20/ V45/ V180/ V1620/ V1620/ 

T2 To find P, M note r2 = 1/3 (7\) +2/3(T2 Taboo). 

TABLE 2 
Efficiencies & of Some Tournaments 

\ . n 
o . / ^ ^ 4 5 6 7 8 Pattern 

Tx .778* .671 .667 .648* .679* 
T2 .778* .683 .652 .648* .679* 
T4 .658 .580 .520 .481 .494 

T2 Taboo - - . 650 — -

* Tv T2 are identical as tournaments in these cases, and for « = 4,8 both patterns 
represent C. 
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