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I — INTRODUCTION *

La question du choix d’une mesure de proximité entre structures
algébriques de méme type s’est posée a nous, de fagon cruciale, dans le
cadre du probléme de la synthése automatique de I'information contenue
dans un tableau de données, & partir d’une hiérarchie de classifications
des variables mises en jeu ; classification basée sur les ressemblances entre
les comportements de la population étudiée vis & vis de chaque couple

de variables. Cette population définit un ensemble E d’objets ou de sujets.

Nous distinguons principalement cinq types de variables dans les Sciences
Humaines ; ces types se différencient par la structure algébrique qu’ils
déterminent sur P'ensemble E

a) La variable ‘“‘attribut de description”, indicatrice d’'une partie de E ;
celle formée de tous les éléments de E qui possédent Pattribut.

b) La variable “‘caractére descriptif”’ indicatrice d’une partition sur E ;
le caractére présente un ensemble fini de modalités sur lequel n’existe aucune
structure, une méme classe de la partition est formée du sous ensemble des
objets de E possédant une certaine modalité du caractére.

Certes un attribut de description a définit bien une partition de E
en deux classes{ E,, ES} oh E, (resp. ES) est 'ensemble des éléments de E
ol a est présent (resp. absent) ; mais ce n’est pas pour autant que I’““attribut
de description” pourra étre considéré comme un ‘“caractére a deux modalités™ :
en effet, les deux classes £, et ES sont a priori inégalement considérées
par le spécialiste car c’est la présence de l'attribut qui est jugée significative
et non son absence.

c) La variable “‘caractére aux modalités totalement ordonnées” indicatrice
d’un préordre total sur E ; le caractére présente ici un ensemble fini de
modalités sur lequel est donnée une structure d’ordre total. Une méme
classe du préordre est formée de l'ensemble des objets de E possédant

* Ce travail a fait I'objet d’un rapport du Centre de Mathématiques Appliquées et de Calcul
(Maison des Sciences de I'Homme), Avril 1972



une certaine modalité du caractere. Rappelons que la donnée d’un préordre
total est équivalente a la donnée d’une partition et d’un ordre total sur
I'ensemble des classes de cette derniére.

d) La variable *“‘rang” indicatrice d’'un ordre total sur E. Cette variable
est algébriquement un cas particulier de la précédente ; celui ol chaque
classe du préordre contient exactement un élément.

e) La variable ‘“mesure” indicatrice d’une mesure positive sur E. Cette
variable affecte & chaque élément de £ un nombre réel positif.

Soit un tableau de données qui croise £ avec unensemble.4 d’éléments
descriptifs ; nous supposons que A est formé de variables d’'un méme type
algébrique. Rappelons que notre probléme se situe dans le cadre de la recherche
d’une chaine de partitions permettant par ’étude des ressemblances entre
variables d’organiser A4 en classes et sous-classes et de dégager ainsi les “di-
mensions” sous-jacentes au comportement de la population étudiée qui
constitue £. Le point de départ de cette recherche est la définition d’un
indice de proximité sur A attachant a chaque couple de variables un nombre
sensé mesurer leur ressemblance. Relativement a un couple de variables
définissant un couple de partitions sur £ (type c)), la statistique du X3,
attachée au tableau de contingence de croisement des deux partitions, sert
en général A éprouver '’hypotheése H, d’indépendance entre les deux variables
ol la distribution du x?> a une tendance asymptotique connue. Notre optique
sera différente de celle adoptée dans la théorie des tests ; si xg est la valeur
du x? associée au couple de partitions, x3 ou mieux “probabilité calculée
dans I’hypothése H, d’avoir x> < x3’" sera considérée comme une mesure
du degré de dépendance entre les deux variables. H, a ainsi joué le role
d’'une hypothése de référence pour I’établissement de la statistique de
dépendance. On peut remarquer que cette derniére est aussi une statistique
de proximité entre les deux partitions, parce que les diverses classes d’une
méme partition jouent un rdle symétrique les unes par rapport aux autres.
Cependant Papproximation de la distribution de cetie statistique dans
I'hypothése H, est sensible aux cases faiblement chargées du tableau de
contingence de croisement des deux partitions ; d’autre part, la forme
asymptotique de la distribution dépend de (k — 1) (h — 1) degrés de liberté
ol k est le nombre de classes de I'une des deux partitions et h de lautre,
de sorte que dans la comparaison de toutes les paires de variables de A on
aura 4 se référer 4 un grand nombre de distributions du x*> (dans les ex-
périences courantes le cardinal de I'ensemble des paires de A est de Pordre
de 10%) ; enfin, on ne voit pas clairement comment 'hypothése H, tient
compte de ce que les objets quelle manipule sont des partitions. Dans la com-
paraison d’'un couple de variables de type d) définissant un couple (o, o")



d’ordres totaux sur E, M.G. Kendall considére une hypothése N d’absence
de liaison entre les deux variables qui tient précisément compte du type
de structure qu’induisent les variables sur £ ; en effet il se place dans E x E
et étudie la distribution de la statistique

Y alx,y) bx, )
(x,yYEEXE

. 1 six < our o (resp. o'
ou a(x, y) (resp. bix, )) = -1 six>;: F o((resg o’))

L3

lorsque o' parcourt Pensemble, muni d’une mesure de probabilité uniforme,
de tous les ordres totaux qu’on peut définir sur E, (cf. [3]). C’est cette forme
que nous donnerons & ’hypothése N d’absence de lizison pour définir de
fagon ‘‘statistiquement pertinente” la proximité entre deux variables établis-
sant le méme type de structure sur E. Nous retrouvons de la sorte des statis-
tiques connues dans les cas a), d) et e) ; il s’agit du coefficient d’association
de K. Pearson pour a), du 7 de M.G. Kendall dans le cas d) et d’une statis-
tique dont la distribution, dans 'hypothése N, est I'objet d’'un théoréme
important d0 4 A. Wald et J. Wolfowitz (1944) (cf. [10]). Mais, nous trouvons
des statistiques nouvelles dans les cas b) et ¢) ou le tableau de contingence
est le support de I'information ; pour b) une marge du tableau indique une
partition aux classes étiquetées et pour c¢), un préordre total. Dans le cas b)
nous nous plagons dans 'ensemble F des paires d’objets distincts de E (i.e. des
parties 4 deux éléments de E) et dans le cas ¢) dans ’ensemble E x E, pour
établir la statistique de proximité. L’hypothése N, que nous exprimerons
plus tard de fagon plus précise, fixe dans le cas b) 'une des deux partitions
et fait varier 'autre dans I’ensemble de toutes les partitions pour lesquelles
la suite des cardinaux de la marge associée du tableau de contingence reste la
méme ; un théoréme de dualité (cf. § 2.0) permet d’établir que cette dis-
tribution ne dépend pas de celle de deux partitions fixée. Le méme théoréme
de dualité permet d’établir un résultat analogue pour la comparaison de deux
préordres totaux oll nous montrerons notamment que la statistique que propose
M.G. Kendall pour étendre son 7 est biaisée.

Quel que soit le type algébrique du couple de variables envisagé nous
serons amenés & nous référer 4 la loi normale centrée et réduite pour la dis-
tribution dans ’hypothése N de la statistique de proximité entre les deux
variables.

Iy

La notion de proximité entre deux variables sera étendue a celle entre
deux classes de variables de méme type ; cette extension se fera par deux
voies, les deux sont basées sur la distribution dans I’hypothése N d’une



statistique de proximité entre les deux classes qui tient compte de leurs
cardinaux ; la premiére statistique est la plus grande proximité entre deux
éléments appartenant respectivement aux deux classes ; et la seconde, la
somme des proximités attachées a l’ensemble des couples dont les deux
composantes appartiennent respectivement aux deux classes.

L’algorithme classique qui a chaque pas réunit les deux classes les
plus voisines produit un arbre détaillé de classifications de moins en moins
fines “‘respectant” les ressemblances de l'ensemble D & classifier qui peut
aussi bien étre lensemble A4 des variables descriptives que l'ensemble E
des objets. Pour étudier la cohérence des classes de la partition formée
a un niveau donné, on introduit aprés R.N. Shepard (1962) et J.P. Benzecri
(1964-65) (cf. [8] et [1]) I'“ordonnance” w sur D qui est lordre total
sur I'ensemble F des paires de D pour lequel, une paire p précéde une paire
p' si les deux composantes de p sont moins proches que ceux de p’ au sens
de la similarité établie sur D. La donnée d’une partition 7 sur D étant équiva-
lente a celle d’un préordre total sur F en deux classes R(m) (resp. S(m)) ou
R(m)) (resp. S(m)) est I'ensemble des paires réunies (resp. séparées) parla
partition ; on se trouve ramenés & la comparaison de deux structures de méme
type sur D : préordres totaux sur l’ensemble F des parties a deux éléments
de D. La base de la mesure de proximité sera card (gr(w) N S(7) x R(m))
ou gr(w) est le graphe de l'ordre total dans F x F. L’hypoth¢se N peut,
soit faire varier 'ordre w dans I’ensemble de tous les ordres totaux sur F
en laissant fixée la partition 7 ; soit faire varier la partition 7 dans ’ensemble
de toutes les partitions de méme type sur D (i.e. dont la suite des cardinaux
des classes est fixée), en laissant I’ordre w sur F fixé. Nous obtenons asympto-
tiquement, dans des conditions assez générales, la méme distribution qui est
normale de moyenne r.s/2 et de variance r.s(f + 1)/12 ou r = card (R(7)),
s = card (S(m)) etr + s =1, ouf= card (F).

La condensation de Parbre des classifications & ses niveaux ou nceuds
les plus significatifs est encore basée sur la distribution dans ’hypothése N
d’une statistique de méme forme que card (gr{w) N S x R) mais congue
a partir de Pensemble des paires laissées séparées 4 un niveau donné de I'arbre
par rapport a celles qu’on vient de réunir a ce niveau.



II — INDICE DE PROXIMITE
ENTRE VARIABLES DE MEME TYPE

La partie la plus importante traitée ici concerne la comparaison d’un
couple de partitions ou de préordres totaux "définis respectivement par un
couple de variables de type b) ou c), (cf. § I). L’étude comparative d’un
couple de préordres totaux étant tout a fait paralléle a celle d’un couple de par-
titions ; nous grouperons ces deux études au paragraphe 2. Le paragraphe sui-
vant, ol on étudie la proximité entre deux attributs descriptifs définissant un
couple de parties de E, peut étre considéré comme d’introduction.

1. COUPLE DE VARIABLES INDICATEUR D’UN COUPLE DE PARTIES
DE E.

Soit (E, , E,) le couple de parties indiqué par le couple (a, b) d’at-
tributs descriptifs. Pour étudier la position relative de P'une des parties par
rapport & l'autre, on introduit les cardinaux suivants : s = card (£, NE, ),
u = card(E,NE}) ou E = (£ — E,), v =card(ESNE,) et t = card (E;NEY).

Les deux attributs de description étant supposés tels que leur présence si-
multanée chez un méme objet de E peut étre significative de leur ressemblance
alors que leur absence commune ‘“n’indique rien” ; la base de lindice de
proximité qui s’impose est s. Mais une telle statistique est manifestement
biaisée ; en effet deux attributs fréquents (resp. rares) entrainent une valeur
grande (resp. petite) de s, indépendamment de la position relative de E, et
de E,. Pour ne retenir dans la statistique s que ce qui “peut étre significatif”,
introduisons 'hypothése N d’absence de liaison ol a s = card (E, N E,),
on associe chacune des deux variables aléatoires

S, =card(E,NY) et S, =card XN E,)

a

oll X (resp. Y) varie dans Pensemble des parties de £ & a, (resp. n,) éléments,
muni d’une mesure de probabilité uniformément répartie.



Proposition

Les distributions de S, et de 5, sont identiques
GIC GG
(s) ()

a
m
ot PN désigne la probabilité dans I’hypothése N et ol (l )indique un

Eneffet ; PMS, =k} = = PMS, =k}

coefficient binomial.

La loi de probabilit¢ commune est de type hypergéométrique de
moyenne u = n,n,/n et de variance 0? = n,(n — n)n,(n — n,)/n*. La
“bonne”” mesure de proximité entre a et b, qui neutralise les effets statistiques
dis a la grandeur relative de n, et de n,, est obtenue en centrant et en rédui-
sant s par référence a la loi commune de S, et de §, ; soit

s —u

Qa, b) = M

cette expression peut se mettre sous la forme

Q@,b)=+/n (st —u)\/(s +u) (s +v) (¢t +u) (t + )
qui n’est autre que le coefficient de K. Pearson dont le carré est le x?

s|v
attaché au tableau de contingence —’T
u

Les rapport n,/n et n, [n étant fixés, la distribution commune de S, et de
S, tend vers celle de la loi normale, pour n . Pour n fixé, I'approximation
normale est d’autant meilleure que min (n,/n, n,/n, 1 — (n,/n), 1 — (n,/n)
est grand. De sorte que si g est la valeur observée de (1), on peut se référer
a I’échelle de mesure définie par la loi normale et adopter comme valeur de
la proximité entre a et b.

= ! 1 -np
P(a,b) \/2_1rf~°°e dr )

Nous allons 4 présent chercher a retrouver ces résultats connus d’ailleurs
a propos d’autres types de variables.
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2. COMPARAISON D’UN COUPLE DE PARTITIONS OU DE PREORDRES
TOTAUX

2.0. Théoréme de dualité

Nous désignons par € (m, m,,... s my) Pensemble des partitions que
Pon peut obtenir en associant & chaque partie e de E de cardinal m, ’ensemble
de ses partitions (e, e,,. .., eg) en classes étiquetées ; la i-éme e; ayant pour
cardinal m, ;m=m, +... + my. Ladonnée d’un élémentde %(m ;m,, ..., mg)
correspond & celle d’une partie e de E de cardinal m et d’une application sur-
jective ¢ de e dans {1,2,...,g} pour laquelle ¢~ ' (i) = ¢; est de cardinal
m,i=1,2,...,8.

Le cardinal de & (m ,'ml,...,mg)est
n m! nn—-1D...n—m+1)

X =
(m) mtm!.. . m! mtmy!.. . .m!

n
En effet( )est le nombre de partiesde £ am élémentsetm! /m, ' m,! . .. my !
m

est le nombre de partitions d’un ensemble fixé & m éléments, en classes éti-
quetées de cardinaux respectifs m,, m,, ..., m,.

g
®(n ;n,,n,,...,n,) indiquera I'ensemble des partitions (E, E,,..., E,)
de E en classes étiquetées de cardinaux respectifs n,, n,, ..., n;. Le cardinal
de R(n;n,,....m)estnl/ntn! ... 0t
Posons J={1,2,...,8} et I={1,2,...,k} ol on suppose g < k ;

7 définira une application injective de J dans I pour laquelle m; < n,; pour
tout j de J.

Posons encore u = (m;,m,,..., mg) et t=(n,,n,,...,n) ; et soient
mo(u) et my(¢) deux partitions fixées appartenant respectivement a € (m ; u)
et €(n ; 1), on notera my(u) = (e3, €3,..., e;’) et my(t) = (E9,ES, ..., EY)

Théoréme

La proportion de partitions w(u) = (e,, e,, ..., eg) de R (m ;u) pour
lesquelles ¢; C E‘;U) pour tout j, est égale 4 la proportion de partitions
()= (E,,E,,...,E;) de @ (n;1) pour lesquelles e}’C E.-

La premiére des deux proportions vaut

ﬂ; (r:;(j)) rlnf(,-) (n,_w — 1)"“(an) —mi+ 1)
nn—-1...n—m+1) nn-1...n—m+1)

! ! !
m;.m,: ...mg.
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n_ . n_..

En effet( T(»)est le nombre de parties de EJ ; & m; éléments. Donc E( T(’)>
EIN m,
m. ;

7

est le nombre de g-uples de parties (e, ..., eg) tels que card(ej) =m; et
¢;CE}, pour tout j de J.

D’autre part le nombre de partitions de % (#n ; t) pour les quelles e}’c E,; pour
T
toutj de J est égal a

(n — m)!

ﬂ(n.—m.)! T nt
jer TP T e aoye

olt (r(J))° est le complémentaire dans / de I'image de J par 7. La proportion
désignée dans le second membre du théoréme est donc égal a

(n —m)! n!
I (n_—m,! I
et 7() i e 7()

laquelle est égale a la proportion (1) ci-dessous calculée.

2.1. Distributions duales attachées a couple de partitions
Soit F I’ensemble des paires d’éléments distints de E :

F={{x,y}/x€E,y€E, x# y}.

La donnée d’une partition w sur E est équivalente 4 la donnée d’une partie
R(m) de F telle que

{x, yYER@®@ et {y,2ERMm = {x,z}ER(),

pour tout x, y et zdeE.

R (m) est ’ensemble des paires dont les deux composantes sont dans une méme
classe de 7 ; la partie complémentaire S(mw) de R (m) est formée des paires
dont les deux composantes sont dans deux classes distinctes.

card (R(m)) + card(S(m)) = card(F) = n(n — 1)/2
Sit=(n, ny,...,ny) estle type de la partition, les cardinaux de R (m) et

de S(w) sont donnés par

cardR(m) = X n(m; ~ 1)2, card(S(m)) = Y, n

1<k i<j
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Si R(my,) (resp. R (716 )) est 'ensemble des paires réunies par la partition
To(2) de @ (n, t) (resp. my(t') de R(n; t")), cardR(my) N R (my)) constituera
la base de I'indice de proximité a établir entre les deux partitions ; il s’agit en
effet du nombre de paires d’objets de E qui sont réunies par chacune des deux
partitions 7, et m,. On a

card (R(m,) NR (1)) = ¥ ny(n; — 1)/2

—]

@)
ou n; est le cardinal de la classe (i, j) de la partition, croisement des deux
partltlons Ty et my .

A card(R(m,) N R (7r(’,) associons deux variables aléatoires duales ;
card(R(m) NR(my)) et card(R (my) N R(x")) ou m (resp. «') est un élément
aléatoire de % (n ;f) (vesp. ®(n;t')), muni d’une mesure de probabilité
uniforme. On peut préciser la forme de ¢t et de ¢ ; ¢t = (n;,n,,...,n,)
et t' = (ny, ny,...,np).

Le but principal de ce paragraphe est d’établir a I'aide du théoreme
précédent que la distribution de card(R(mw) N R(n;) )) est la méme que celle
de card R(my )N R (7)) ; on précisera d’autre part la moyenne et la variance
de cette distribution commune. La statistique card (R (m,) ﬁR(w'0 )) centrée
réduite, définira une “bonne” mesure de proximité entre les deux partitions.

Nous allons a présent travailler dans F? ou g est un exposant entier fixé.
Si(p,,py,s--- »p,) est un g-uple de paires et a une auto-bijection de E,
en posant a({x,y}) ={alx),a()} et ap,,...,p,)=(@p,),...,a@,)),
a transforme (p,, p,, ... ,pq) en un €élément de F9 de méme configuration
cque Py, py,--.,0q) 5 ¢ ‘est-a-dire, tel que 'objet a(x) remplace x dans les
paires (composantes du q-uple) ol était présent ce dernier. L’ensemble G(c)
de tous les g-uples ayant la méme configuration ¢, est ’ensemble des valeurs
{(alp,;),a@,), ..., a(p, )} ou a décrit les n ! auto-bijections de E. On peut
noter G° I’ensemble desq uples de paires dont deux quelconques sont sans
composante commune. Nous n’aurons pas besoin dans la suite de préciser,
sauf pour g < 2, les différentes configurations ¢ et les cardinaux des en-
sembles G{* .

Soient , une partition fixée dans ®(n ;) et (%, p3, ..., py) ung-uple
fixé dans Gé‘) désignons par g, (resp. y) la fonction indicatrice de la partie
R(my) (resp. R(w)) de F que définit la relation d’équivalence associée a la
partition m, (resp. associée a une partition 7, élément courant de R, t))

2.1.1. Théoreme

La proportion de q-uples (»,,p,,...,p,) dans G pour lesquels
Po@i W Dy) - - pg(y) =1, est égale a la proportion de partitions de
RAn ;) pour Iesquelles ap(po)ap(pz . o]
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Remplacons le langage des proportions par celui, équivalent mais plus
souple des probabilités ou Gé”) et %(n, t) sont respectivement munis d’une
mesure de probabilité uniformément répartie, noté u sur Gy etvsur Rn,t) .
Dans ces conditions nous avons a établir que

Moo @)oo (P2) . 0o (py) = 1} = {e@e@]) .. ~‘P(P2) = 1}

Pour cela nous décomposerons chacun des événements Q et Q* respectivement
sous les signes de u et de v en sous événements disjoints qui se correspondent
mutuellement

0= 2 Q,, 0*= X QO

aEA aCA

ou A est fini et nous montrerons que u(Q,) = v(Q%).

Soit{p,,py, ..., pg ensemble des paires associé a un élément (p,, p,, .. . p)
donné de G©. La saturatlon de cet ensemble de paires (i.e. l’adjonctxon a cet
ensemble de toute paire {x , ¥} dont chacune des deux composante est présente

dans au moins une paire p,, | <i < q) définit une partition (e,, e,,..., € )
sur un sous-ensemble e de E de cardinal m. Le typeu = (m,my,..., m, )
est indépendant de I'élément (p,, p,, ..., p,) choisi dans G ; d’autre part

I'événement Q, dont la probabilité u ne dépend que de u, peut étre decompose
en un sous éveénements Qa dont chacun est de la forme suivante ; e C E,o)

pour tout j de {1,2, ,hY, (1) ;00 (e}, €,,...,e,) est une partltlon de e
moins fine que (e;, €5, ..., ey ) (i.e. toute classe e, est une reumon de-r, classes
e.n = = 1) T etant une 1nject10n de {1, , h} dans {1, ,k}. On
notera u' (ml, mz, ...,my) le type de (el, e2, ey eh).

A Iévénement Q, précedent associons I'événement QX :

el'.OCET(” pour toutjde {1,2,...,h}, )
o (e, e, ...,e0) se déduit de (€9, ¢?,...,€)) de la méme fagon que
(e}, €y, - .., e,) se déduisait de (e, e,,.. ., e,) ; T étant la méme injection

que ci-dessus.

La décomposition de Q* en {Q¥/a €A} est duale de la décomposition deQ
en {Q,/a€A}. 1l nous reste & montrer que

(@) =v@p

u(Q,) est la proportion de g-uples de G(‘) dont la partition (e}, e},,. .., e,)
associée rempht la condition (1) :e; CET(I), pour tout j. Cette proportion
est égale 4 la proportion de partltlons de @(m ;u') pour lesquelles on a la
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condition (1) ; en effet, le nombre de q-uples de Gg”) qui déterminent une
meme partition (e}, e, ..., e,) est indépendant de la partition choisie dans
L(m;u').

Parallélement »(QX) est la proportion de partitions de € (n ; t) pour lesquelles
on a la condition (1%*), e;" CE, ) pour tout j. Le théoréme précédent ( §
2.0) établit 1’égalité des deux proportions.

2.1.2. Expression du moment d'ordre r de ladistribution de card(R(w) N R(m )
ou de celle de card(R(m,) N R(7'))

Rappelons que ¢ désigne la fonction indicatrice de la partie R(w) de F
associée a une partition variable 7 dans % (n , t) et soit ¥, la fonction indi-
catrice de la partie R(ﬂ{,) de F associée a une partition fixée de R (n .

card R(M) NR(m)) = Y * 0@, () M
PEF

R(n,t) étant muni d’'une mesure uniforme de probabilité, le moment
d’ordre r de la statistique (1) ci-dessus se met sous la forme

BZcriry,rys- 1) (0D, ... ¢(piq)’q Wol; )" - wo(p,.q)'q »
)
ol le signe & désigne l'espérance mathématique ; la sommation pour
(ry,rys .., 1) fixé, est étendue A toutes les permutations @, . ;5 - - -5 Py )
pouvant étre obtenues & partir de chacune des parties 2 g éléments de F.
r!

101 1rlr! !
L'LY. . Ltrtrnt.. .rt

c(r;rl,rz,...,rq)=

ol A est le nombre d’entiers r, distincts ; chacun d’entre eux se répétant
i

respectivement /,,,, ..., [, fois.
On a évidemment
2@;)) 0@, 0@, ) = 0@, )e@,) -0y
Vo®:,) Yo®,) - Yo @;)) T =Vo@i o @) - Yo(D;)
Dans ces conditions ’expression (2) se met sous la forme

Telrir,rys - 1) &0W@; )o@ ) We@;) - - Vo)) 3)
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De fagon analogue, le moment d’ordre r de la statistique card (R(my) N R
se met sous la forme

Zelrirg, ) o) 0 ;) 8WWD,) - V() 3H

ol y, (resp. ¥) est la fonction indicatrice de la partie R (m, ) (resp. R (r')) de F,
associée a une partition fixée de R(n ;¢) (resp. 4 une partition variable de
EAURES)

Pour une décomposition (r,,r,,... ,rq) fixée de r, considérons les parties
correspondantes des sommes (3) et (3') ; soit
Z 8pp,,) -9, Yoi,) - Vo) @)
z(‘ﬁo(l?il)--'%(l?,-q)) (llf(P,l)tl/(p,q) (4’)

Décomposons simultanément les sommes (4) et (4') selon les différents en-
sembles Gq(") considérés ci-dessus. En vertu du théoréeme précédent (§ 2.1.1.),
on a

L) =

q

2 ’5(‘0(Pi1)~ .- ‘P(piq)) %(Pil) Y@

(
Gqc)

—)

¢
q

Y wwy) - Yo ;) 8Ww;,) .. ¥ )

Par cohséquent, le moment d’ordre r de la distribution de card (R () N R (7w, ))
est le méme que celui de la distribution de card(R (ﬂo)ﬂR(n') ; d'olt le
théoréme

Théoréme.

P(n:t) et R (n;t") étant munis d’une mesure de probabilité uniforme,
la distribution de card (R (m) " R (1r(') )) est la méme que celle de
card (R (m,) N R(7")).

2.1.3. Tendance centrale
et Dispersion de la distribution de card (R(n) NR (1r(', ).

Nous commencerons par établir deux lemmes (1 et 2) qui précisent le
théoréme 2.1.1. pour ¢ = 1 et g = 2 ol nous expliciterons les différentes
formes de Géc) et ol nous déterminerons la valeur commune de la proportion
que suppose I'énoncé du théoréme. Nous pourrons alors calculer la moyenne
et la variance de la distribution de card(R(m) N R(n;)).



2.1.3.1. Lemme 1

Soient p, = {x,, y,} une paire fixée dans F et m, une partition fixée
dans 9 (n,t). La proportion de paires de F dont les deux composantes
sont réunies par la partition m,, est égale a la proportion de partitions de
% (n,;t) qui réunissent les deux composantes de p, ;la valeur commune

de cette proportion est Z ni(n, — 1)/n(n — 1) ; (on rappelle que
t= (nl,nz,...,n,.,...,nk))'.

La valeur de la premiére des deux proportions indiquées apparait
clairement ; en effet, le nombre de paires réunies par m, est Zn,.(n,.— 1)/2

i
et le cardinal de F est n(n — 1)/2. La deuxiéme proportion peut se mettre

sous la forme

2 (n—-2)! / n!
; ”1!---”(:'—1)!("i“z)!”(iﬂ)!---”k! ntntooon ! =

Y nn; — Dnn - 1

i

ou un terme de la somme représente la proportion de partitions dans %(n ; t)
pour lesquelles x, et y, sont réunis dans la i-éme classe.

2.1.3.2. Lemme 2
Désignons ici par G (resp. H) ’ensemble des couples de paires (p, p")
de la forme
({x, »}, {x, z}) (resp. {x, y},{z,1}));
C’est-a-dire, avec (resp. sans) composante commune ; on a
card(G) =nn — Y (n—2) et cardH) =nn — 1) (n ~ 2) (n - 3)/4.

Soit 7, une partition fixée dans %(n ; 7).

@@ Si (po,p:)) est un couple de paires fixé dans G ; la proportion
d’éléments (p,p') de G tels que p et p' soient formées de composantes
réunies par m,, est égale 4 la proportion de partitions de % (n;¢) pour
lesquelles les deux composantes de p, et de pgy sont réunies. La valeur
commune de cette proportion est

> = 1) (n, = /n(n — 1) (n = 2) (1)

1<i<k
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(h) Si (p,,Ppy) est un couple de paires fixé dans H ; la proportion
d’éléments (p, p") de H tels que p et p' soient formées de composantes
réunies par m,, est égale 4 la proportion de partitions de % (n, ) pour les-
quelles les deux composantes de p, et de p, sont réunies. La valeur commune
de cette proportion est

%Z nn; — 1) (n; — 2) (n; — 3)

+ 3 o - DY non - 1);/n(n— D (n—2)(n—3)
i i @)

Démonstration de la partie (g)

Déterminons le nombre de couples de paires de la forme ({x, y},{x, z})
pour lesquels x, y et z sont dans la i-éme classe de cardinal n, de la partition
my- A chaque partie {4, b, ¢} & trois éléments de E correspond 6 couples
différents de paires de G ; soit {a, b},{a,c}),{a, b ,{b,c);{b,c},
{a,b),(qdb,c},{a,c}) ; {a,ct,{a,b)., {a,c},{b,chH. Le nombre

n:
de parties a 3 éléments de la i-éme classe étant (3’) =nyn; — 1) (n, — 2)/ 6,
n;(n; — 1) (n; — 2) est le nombre cherché. Il en résulte la valeur annoncée de
la proportion définie dans la premiére partie de I’énoncée (g).
Posons (py, D) = (xg, ¥} »{X,, 24}). La proportion de partitions de R (n ; 1),
pour lesquelles x,, ¥, et z, se trouvent réunis dans la i-éme classe de cardinal

n =3, est nn; — 1) (n; — 2)[n(n — 1) (n — 2)

qui s’obtient de facon énumérative. D’ou la valeur (1) ci-dessus de la pro-
portion exprimée dans la seconde partie de I'’énoncé (g) ol on suppose
n; = 3 pour tout i,

Démonstration de la partie (h)

Le nombre de couples de paires de la forme {x, ¥} ,{z, v}), pour lesquels
{x, y} est incluse dans la i-éme classe de cardinal n; et{z, v}, dans la j-éme
classe de cardinal n; de la partition m,, est égal 2

( ;') X (’21’) pour [¥Fjf

et 5
CYx('37) e =
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ol on supposera n; = 4 pour tout i,

I1 en résulte la formule (2) ci-dessus, concernant la premiére partie de I’énoncé
(h), par la considération notamment du croisement de chaque paire {x, y}
d’une méme classe avec I'ensemble des parties{z , v} a deux éléments,disjointes
de{x, y} et pour lesquelles z et v sont dans une méme classe.

Posons (py, pg) = ({xy, ¥o} {24, 0,}). La proportion de partitions dans
@(n;t) pour lesquelles la paire {x;, y,} est contenue dans la +éme classe de
cardinal »; et la paire {z,, vy} dans la j-éme classe de cardinal n;, est égaled
nin; — 1)y nin; — Djn(n — 1) (n — 2) (n — 3) si jFEi
et
n;(n;, — 1) (n; — 2) (n,.—3)/n(n— Dn-2)n-3) si j=i
D’ou la valeur (2) ci-dessus de la proportion définie dans la seconde partie
de I’énoncé (h) ol on suppose n; = 4 pour tout i

Les deux distributions duales dont il est question dans 1’énoncé suivant
sont celles de card(R('/r)ﬂR('rré,)) et de card(R(ﬂo)ﬂR(n')) envisagées au
paragraphe 2.2. précédent.

Théoréme

La moyenne commune et la variance commune, des deux identiques
distributions duales, sont respectivement

A et Ap+po+ (0t - NpP)y=Autpo

A= Z nn; — DA/ 2n(n — 1),

W
-

p =2 mn,— 1) (n;— DA nn — 1) (n =2)

0=§ Y i, — 1?2 -4 Y nn, — D —-2)-2% nn; - 1)

i

2/ nn—1)(n-2)n-3)

Les expressions de p, 0 et { ont respectivement la méme forme A.,pet6 :
les n, de t = (n,, n,, ..., n,) étant remplacés par les n;de t' = (n, ny,...,n,)
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En reprenant 'expression (1) du paragraphe 2.2, on a
8(cardRMNRm) = Y Yo (@& @)= 8E®®) Y, ¥ok) (1)
PEF PEF

le Lemme 1 permet d’établir le premier résultat annoncé concernant la
valeur de la moyenne.

Considérons pour l'expression suivante de la variance

&

(L owwo@)?| —nu, @

pEF

le développement ( > ap(p)t[/o(p))2 : s0it

pPEF

Y e, @+ Y e@VG)e@ )"

PEF p.phed
ol J={p,p)p*p'} et

ol on a tenu compte de la relation (p(P)Y,@))* = ¢(P)¥, (p). L'expression
(2) devient

A — N + Y Y0¥, @) 8 (0@ 3)
J

En partitionnant J en les deux classes G et H définies ci-dessus, (J/ = G UH) ;
et en partageant la somme en deux parties : la premiére sur G et la seconde
sur H ; on obtient le résultat annoncé a partir du Lemme 2.

Dans ces conditions I'indice de proximité que nous adoptons entre m, et T est
card (R (my) N R(mg)) — Au
Nayear

Posons r = card (R(m,)) et ¥ = card (R(my)) Soit T (resp. T') un élément
variable de I’ensemble des parties de F a r(resp. ') éléments, muni d’une
mesure de probabilité uniformément répartie. La distribution de card (' N R(n;,))
est la méme que celle de card(R (m,) N T ; elle est hypergéométrique de
moyenne Au et de variance Au(l — r/f) (1 —r'/f) ol f= card(F) ;cette
distribution est donc de méme moyenne que celle envisagée ci-dessus mais
de variance nettement plus petite ; son approximation par la loi normale est
en général excellente.

(9

Sy, my) =
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L’étude comparative d’un couple de préordres totaux sera tout & fait
paralléle a celle concernant un couple de partitions.

2.2. Distributions duales attachées 4 un couple de préordres totaux.

Soit £, I'ensemble des couples d’é1éments distincts de £, soit (E x E — )
ol § est la diagonale {(x, x)/x€E}. La donnée d’un préordre total est équi-
valente a celle d’une partition et d’un ordre total sur ’ensemble des classes ;
la composition d’un préordre total w sur E est la suite v = (1, n,, ..., 1)
des cardinaux de ses différentes classes rangées selon 'ordre quotient.w sera
représenté par lapartieR , de E, ; R, ={(x, y)/x <yetnony <x pour w }.
On a

k
card(R ) = 2 nn; = n(n — 1)/2 — Z nn; — DJ2.
i<j i=1

Désignons par §2(n, v) (resp. §2(n; w)) l'ensemble des préordres totaux sur
E de composition v = (n,,...,n,) (resp. w = (”’1’ e, n;,)). Soit (wy, &, )
un couple de préordres totaux de §2(n,v) x (n ; w) et soit R(w, ) (resp. R(&5,) )
I'ensemble de £, qui représente w, (resp. @, ) ;

card (R(wy) NR(&,)) = card{(x , y)/x <y etnon y <x pour w, et c_oo}

constituera la base de la mesure de proximité entre les deux préordres totaux ;
ona

cardR(wo) NR@) = Y, my Xy,
1<iS(k—1) p>i
1<<(h-1) p>i

ou n;; est le cardinal de I'intersection de la i-¢me classe de w, de la j-¢me de
W, -

Comme pour le cas des partitions ; 4 card (R(wy) N R(&,)) associons deux
variables aléatoires duales ; card(R(w) N R(@,)) et card (R (w,) N R(W)) ol
R(w) (resp. R(&3)) est la partie de E, associée 4 un élément courant de
Q@ ;v) (resp. (n;w)) muni d’une mesure de probabilité uniforme. Posons
pour abréger Ry, = R(w,) et RE) = R(&y). Nous nous proposons d’établir
ici, 4 laide du théoréme qui constitue le second paragraphe que la distri-
bution de card (R (w)ﬂR:)) est la méme que celle de card(R;, NR(w)) ;
on précisera d’autre part, la moyenne et la variance de cette distribution
commune. La statistique card(R, N R,) centrée et réduite définira une
“ponne” mesure de proximité entre les deux préordres totaux.
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Nous allons a présent travailler dans E ol g est un exposant entier fixé.
Si d,,dy,... ,dq) est un g-uple de couples et a une auto-bijection de F ;
prolongeons a a EY en posant a(d,, ... ,dq) =(ad,),...,a(d,)) ou on
pose a(x, ¥) = (a(x) , a(¥)).(ald,) , ad, ), . .. ,a(dq )) a méme configuration
¢ que (d,,4d,,... ,dq) ; C’est-a-dire, est tel que 'objet a(x) remplace x
dans les couples (composantes du g-uples) ou était présent ce dernier. L'en-
semble G((f) de tous les q-uples ayant la méme configuration ¢, est ensemble
des valeurs {(a(d,), ... ,a(dq )} ol g décrit les n ! auto-bijections de E. On
peut noter Gg Pensemble des q-uples de couples dont deux quelconques
sont sans composante commune. Nous n’aurons pas besoin dans la suite
de préciser, sauf pour g < 2, les différentes configurations ¢ et les cardinaux
associés des ensembles G{*).

Soient w, un préordre total fixé dans Q(n,;v) et d9,... ,dg) un
g-uple fixé dans Géc). Désignons par ¢, (resp. ) la fonction indicatrice de
la partie R (w,) (resp. R(w)) de E, définie ci-dessus.

2.2.1. Théoréeme

La proportion de q-uples (d,,d,,...,d, dans G‘;C) pour lesquels
Pod oo (dy) - . . vy (dq) = 1, est égale a4 la proportion dans (n;v) de
préordres totaux pour lesquels cp(d‘l’ )&p(dg) .. -¢(d3) =1.

Il y a lieu d’établir que
Mg d ey dy) .. . ppldy) = I =vlp@)e@)...o@y) =1 (1)

ol le premier membre est la probabilité pour un q-uple (d,,d,, ..., d,) pris
au hasard dans G{) muni d’une mesure de probabilité uniforme, d’étre tel
quey(d, Jpo(d,) . . . v, (dq) = 1 ;le second membre est la probabilité pourun
préordre total w pris au hasard dans §2(# ; v) muni d’une probabilité uniforme,
d’étre tel que p(d} }p(d3) .. . 0(dg) = 1.

On commencera par remarquer l'isomorphisme entre £ (n,v) et ensemble
des partitions en classes étiquetées %(n, v) mais ou l'étiquette de la classe
est son rang pour 'ordre quotient.

Comme dans le cas de la comparaison de deux partitions, nous allons décom-
poser chacun des événements Q et Q¥*, respectivement sous les signes u et »
de la relation (1) 4 démontrer, en sous événements disjoints qui se corres-
pondent mutuellement

0=3% 0,.0*=% o

BEB BEB

et nous établirons que u(Q,) =v(Qp)
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Soit (d,,d,,...,d,) un q-uple quelconque de Gé") et soit {x,,x,,...,x;}
le sous-ensemble des éléments de E dont chacun intervient au moins une fois
comme composante de ['un des couples d/" I <j<g. Rappelons que si
{x1,x5,...,%) et {x|,x;,..., %} sont respectivement associés a deux
g-uples distincts de G‘(f) ; il existe un bijection ¢ du premier ensemble
dans lautre telle que si x, occupe la i-éme composante (i = 1 ou 2) de
d;, a(x,) occupe la méme composante de d; ou d/'- est la j-éme composante
du second g-uple ; pour toutj, 1 <j<gq.

Considérons I'affectation des divers élémentsde e = {xl, ... X}, associé 4 un
q-uple aléatoire de G{*, dans les diverses classes de la partition (£}, E;, . . . , E})
en classes étiquetées que définit le préordre total w,. Cette affectation définit
une partition (e, e,, ..., e,) pour laquelle on a

e CE}; pourtout j,1<j<h )
ou 7 est une injection de{1,2,...,k}dans{l,2,...k}.
L’affectation se décompose en la constitution y de la partition (e, e;, ..., €,)
de type u = (I, 1,,...,1,), suivie de l'injection (2). Un événement Q, cor-

respond a une affectation pour laquelle

od)ooldy) ... 0o (dy) =1

Dualement, constituons a partir de (d},d3, ... ,d; ). la partition
(e5,€5,...,¢€,) de la méme fagon y que l'a été (e,,e,,...,e,) & partir
de d,,d,,... ,dq) : “y affecte la i-éme composante (i = 1 ou 2) du j-éme

couple d]. dans la classe e, . Un événement Qf dual de @, s’exprime par
e;.’ CE,, pourtout [, 1<j<h; (2%

ohona o(d})edy). .. gp(ds) = 1, lapplication 7 étant la méme que
ci-dessus.

y(Qﬂ) est la proportion de g-uples de G‘;C) dont la partition (e,, e,, ..., ¢,)
vy-associée remplit la condition (2). Cette proportion est égale 4 celle de
partitions dans € (I ; u) (cf. § 2.0) pour lesquelles on a (2) ; en effet le nombre
de g-uples de G qui déterminent par I'association y une méme partition
(e;,€,,...,e,) est indépendant de la partition choisie dans L (I ; u). Paral-
Iélement V(Q‘;*‘) est, en raison. de I'isomorphisme entre (n;v) et R(n;v),
la proportion de partitions de % (n ; v) pour lesquelles on a (1*). Le théoréme
de dualité du paragraphe 2.0. établit précisément 1’égalité de ces deux propor-
tions.

En méme temps que ¢, et p, on introduit ¢, (resp. ¥), fonction indi-
catrice de la partie R(w,) (resp. R(w)) de E, représentant un préordre total
fixé (resp. courant) dans (n ; w) (cf. début du paragraphe).
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Par un argument analoque & celui du paragraphe 2.1.2, on établit le théoréme
suivant.

2.2.2 Théoréeme

(n;v) et Q(n;w) étant munis d’une mesure de probabilité unifor-
mément répartie, la distribution de card(R(w) N R(&,)) est la méme que
celle de card(R(w,) N R(®)) ; w et & parcourant respectivement (n ; v)
et Q(n,;w).

2.2.3. Tendance centrale
et Dispersion de la distribution de card (R(w) N R(&,))

Nous commencerons par établir deux lemmes (1 et 2) qui précisent le
théoréme 2.2.1 pour g = 1 et ¢ = 2 ol nous expliciterons les différentes
formes de Gq(c) et ol sera calculée la valeur commune de la proportion que
suppose I'énoncé du théoréme. La détermination de la moyenne et de la
variance de la distribution de card(R(w) N R(®,)) s'en déduira.

2.2.3.1 Lemme 1

Soient d, = (x4,¥,) un couple fixé dans E, et w, un préordre total
fixé dans 2(n ;v). La proportion de couples (x, y) de E, pour lesquels on
a strictement x <y pour w,, est égale a la proportion de préordres totaux
de 2 (n,v) pour lesquels on a strictement x, < y, ; la valeur commune de

cette proportion est Z n,.n]./n(n — 1) ou on rappelle que (n,,n,, ..., %)
i<j
définit la composition v.

La valeur de la premiere des deux proportions indiquées apparait clai-
rement ; en effet, on a

card (R(wy)) = Y nn; et card(E,) = n(n — 1).
i<j

La deuxiéme proportion se met sous la forme

X o

S n—2)! n! _f:;
,.‘Zi)zlln2!.“(ni—1)!...(ni—1)!...nk! mlnt.on! gt ! (-1
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ou un terme de la somme du premier membre représente le nombre de
préordres totaux de composition v pour lesquels x, appartient a la i-¢me
classe et y, & la j-¢me classe avec i < j.

L’introduction du Lemme 2 nécessite quelques définitions. Posons
E, =(E, xE, — 4)
ou A est la diagonale de E, xE,. On a
card (E,) = n(n — D{nkn — 1) ~ 1}.

E, est un ensemble de couples dont chaque composante est un couple
d’éléments de E ; un objet de £, se met sous la forme ((x, y), o', v"))
ol x#y,x #y et (x,y)# (x',y). Un élément (c,d) de E, peut
prendre 6 formes distinctes, les deux extrémes sont obtenues selon qu’aucune
des deux composantes de ¢ ne se répéte dans d, ou que les deux se répétent.
Les quatre autres formes sont obtenues lorsque l'une seulement des deux
composantes de ¢ se répéte dans d, dans sa position ou non. Les six formes
différentes sont

0y (&, yD,z,
(1) ((x,y),x,0);0) (x,»),(z,x)
2) (x.,»),CE.y;QY (x,y),6, )
3) (x,y»,0,.x)

ol des lettres différentes représentent des objets différents.

Soit {H, G,,G',G,, G,, I} la partition de E4 ou H est formé d’éléments de
la forme (1) ; G}, de la forme (1') ; G,, de la forme (2) ; G,, de la forme (2')
et I, d’éléments de la forme (3).

On a
card(H) =nn— 1 n—-2)(n—-3)
card (G,) = card (G'l) = card (G,) = card (G;) =nn—-—Dn-12)
card (/) nn-—1)

2.2.3.2. Lemme 2

Soit w, un préordre total fixé dans £ (n ; v) et soit (¢, , dy) = ((xg; ¥o)s
(xg, yé,)) un élément fixé de E,. Quelle que soit la forme de (c,, d,), la pro-
portion de couples ((x, y), (x',»")) dans I'ensemble des couples de méme
forme que (cy,d,) pour lesquels on a x <y et x' <y’ pour w,, est égale
d la proportion de préordres totaux dans Q(n,v) pour lesquels x, <y, et
xy < yg. La valeur commune de cette proportion est



24

ou

AP

i

Y m,.,m;'/ nn—D@m~2)(n—-3) si (dy)eH
II

ng (resp. (n, — 1)) si i’ #i et i #j(resp. i’ =i ou i =j)

n (resp. (n, — 1)) si j'#*i et j#j(resp.j' =i ou j =j)

>

m,,/n(n—l)(n—2)=2 n,.n,.n{/n(n—l)(n—z)

i<j

si (cy,dy) €6,

ou m, = n,(resp. (n, — 1)) si h#+j(esp. h=j))

2
<j

i

ou

=1

dnd

nng mh/ nn—-—Hn-2)=Y% n,.njnl?/n(n~ 1) (n - 2)

h<j

i<j

si (c,dy) € G}

m, = n, (resp. (n, — 1)) si h#i(resp. h = i)
h h h

et ol n,c=2 n, — L.
h<j

e [ 240 e |
i<

D n.n-n?/n(n— Dmn-2) si (cy,dy) € G,

g
i<j

0 i (cg,dg) € 1

D n,;njn{/n(n—— Dnr—-2) si (¢, dy) EG,

Le nombre de couples de couples d’éléments de E de la forme (0), pour
lesquels x, y, z et t appartiennent respectivement a la +éme, j-éme, i-éme et

j-éme classes de cardinaux respectifs 7;, n;, vy et g, est égal a nmg ou

my = ng (resp. (ny — 1)) sii' #ieti #j(resp.sii =iousii =j)ouon
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suppose i # j et i’ # j'. En tenant compte de card (H), on obtient la premiére
proportion annoncée de I’ensemble des couples ((x , ¥), €', y")) dans H pour
lesquels on ax < y et x’ <y’ pour w,.

Dualement, le nombre de préordres totaux de £ (n,; v) pour lesquels x , y,, z,
et t, occupent respectivement la i-éme j-éme, i'-eme et j' classe, oll i #j et

i' #j', est égala (n — 4) ! T 4!
i<h<k
ou
Iy =n, si k est différent de chacun des indices

o of

i,7,1i et ]
L=@m,— 1D (esp. (n; —2) si i'#i et j#+i(esp.i =i ouj=1i
L = (n; — 1) (resp. (n; —2)) i i"#j et j'#j(esp.i =i ou j=j)
de méme
Io=(np — 1) (resp. (ny —2) si i #iet j#i (resp.i=1i ouj=i)
L= (np — 1) (tesp. (npp —2) si i#j et j#] (resp.i=j ouj=j")

Le cardinal de Q(n;v) étant

n! T n, !,

1<h<k

on obtient la méme proportion que ci-dessus pour 'ensemble des préordres
totaux dans Q(n ;v) pour lesquels x, <y, et z, <, Le calcul des autres
proportions signalées dans I'énoncé du lemme est analogue i ce dernier ;
nous allons cependant I’établir encore une fois dans le cas ou (¢4, d,) est
de la forme (Geg,¥4) » (xq, o)) -

Le nombre de couples de couples d’éléments de E de la forme (1) (ie.
(x, ), ((x, 1)), pour lesquels x, y et ¢ appartiennent respectivement ala
i-¢me, j-éme et h-¢me classes du préordre w,, est égal a nnymy, oW i #j, i+ h
et o m, = n, (resp. (n, — 1)) si h ¥ j (resp. si b = j). Onen déduit, en tenant
compte de card(G,), la proportion annoncée de I'ensemble des éléments
(x,y),(',y")) dans G, pour lesquels on a x <y et x' <y’ pour w,.
Dualement, le nombre de préordres totaux de £ (n,v) pour lesquels x,, y,
et t, occupent respectivement la i-¢me, j-¢me et h-¢me classe, ou i # j et ol
h >, est égal &
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(n-3)! T !
1<p<k
oul
I, =n, si p est différent de chacun des indices i, j et &
L =m -1

L, = (m; — 1) (resp. (n; —2) si  h#j(tesp. si h=])
L, =@, — 1) (@esp. (n, —2)) si j#Fh(resp. si j =h).
En tenant compte de card (£2(n,v)), on obtient la méme proportion que la

derniére pour l’ensemble des préordres totaux dans §2(n,;v) pour lesquels
Xo <yo et x4 <t .

Théoréme

La moyenne commune et la variance commune des deux identiques
distributions duales (celles de card (R (w) N R(&,)) et de card (R(wy) N R(®))),
sont respectivement

Ae et Nutpg05+ p 0+ 20,0, + (AM — X )

ou

K:Znini/\/n(n—l) , pffzzn‘_(nif)2 \/7l(n—1)(n—2)

i<j i

Poc = Z n,.(ng)z/ V- 1) (n - 2),

Per = Z nm{nf/ﬁ(n— D=2

1

.

i<j i'<j’

A=Ynn (3 ni,nj,+ni+n,-—2n+1)/\/ﬁ(n——1)(n—2)(n—3)

Les expressions de u, Opps Oper Ocp et M ont respectivement la méme forme
que celles de p ,_pf,f, Peocr Pey €U A 5 les ny étant remplacés par les n, 1 <i<h,
ou(ny,ny,...,n)=w

Remarquons que la variance est trés sensiblement égale a

A+ ppp0pr + p, 0, F 2 PefOcr-
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En introduisant la fonction indicatrice ¢(resp. Vo) de la partie R (w)
(resp. R(w,)) de E,, on a

B(cad R NR(B,)N = X ¥,(d) 8w@) = 8@ T ¥o(d)

dared dad

dEE, dEE,

Lemme 1 ci-dessus permet d’établir le résultat concernant la valeur de la
moyenne.

En adoptant, pour le calcul de la variance, le méme shéma que celui
considéré lors de la comparaison d’un couple de partitions ; on aura 4 dé-
terminer

2 Y@V, d) 8l de@d));

(d,d")EE,
En partitionnant E, selon les classes H, G,, G}, G, G, et ]
(E,=HUG, UG, UG,UG,UD;

et en décomposant la somme en six parties, respectivement sur#, G,, G}, G,,
G, et I on obtient le résultat annoncé a partir du Lemme 2.

Dans ces conditions I'indice de proximité que nous adoptons entre w, et &, est

card (R (wy) NR(G,)) — Ap
\/7\# + pffaff + Pee Gcc +2 pcfocf (H)

S(wg, @y) =

Posons r = card (R(w,)) et r' = card (R (634)). Soit T (resp. T') un élément
variable de I'ensemble des parties de £,  r (resp. r') éléments, muni d’une
mesure de probabilité uniformément répartie. La distribution de card(T N R(&,))
est la méme que celle de card(R(w,) N T') ; elle est hypergéométrique de
moyenne Au et de variance Au(l — r/g) (1 — r'/g) ou g = card (E,) ; cette
distribution est donc de méme moyenne que celle envisagée ci-dessus mais
de variance notablement plus petite. L’approximation par la loi normale
de cette distribution est en général excellente.

2.2.4. Comparaison de la statistique S( w , @) avec celle de M.G. Kendall,

Dans son ouvrage “‘Rank Corrélation Methods” (Chapitre 3), M.G. Kendall
propose d’étendre sa statistique 7, établie pour la comparaison de deux ordres
totaux et dont nous reparlerons, au cas de deux préordres totaux et ce, en
retenant l'algorithme de calcul lui ayant servi & déterminer 7. Par rapport a
nos notations, la statistique se met sous la forme
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1
card(RwﬁR-J)—— 2 n
(t]) P> qFj

T .=
(@) nn -1
— M

Nous allons montrer, en nous appuyant sur un exemple, que cette statistique est
biaisée. Posons

1
——? Rij 2 Moq _?2 if Z (n, —n,)
(11) p>i i,J) p>i
q*]J

=7 X omn, = X ny X My
p>i

i<p (9
La moyenne de card (R, N Rg), par rapport & 'hypothése N, étant
Aw = X onm X nng
1) i<j p<q

La différence

T (X )(%—n(nl—l)z ";’";)_% 2 i % Mo

i<j r<q

Compte tenu des relations de la forme

> nn;=nn — D2 =% n;(n; - /2,
i<j i

Ona

4r—ww=nm—- A -3 nmn - nn-1)

d
i

(Z npln, = Dinn - 1))— 2% ny ¥ ny,
= —~ ,
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Considérons I'exemple ou le préordre w comprend deux classes C, et C,
telles que card(C;) = 4n/5 et card(C,) = n/5, le préordre & quatre classes
sur lesquelles les éléments de C, (resp. C,) se trouvent également répartis ;

alors le tableau de contingence a la forme suivante ou i est I'indice de ligne et j
de colonne.

n/5 n/5 n/5 n/5 n/5 4n/5
n/20| n/20 | n/20 | n/20 | n/20| n/s
n/4 n/4 n/4 n/4 n/4 n

%4.%(;" 1)/n(n— 1)§_%~<4x%._2%)

n
—% . m ; soit en valeur absolue, un biais de 6n/100.

On peut remarquer aussi que le dénominateur de la statistique T ne tient

pas compte de la variance dans ’hypothése N de la distribution de

card (R, NRg) .

3. COMPARAISON D’UN COUPLE D’ORDRES TOTAUX SUR E

Il s’agit d’un cas particulier de 1'étude précédente ; comme ci-dessus
on se place dans E, pour représenter un ordre total o par son graphe

R©) ={(x,»)|x,y)€EE,,x<y pour o}
ol card (R(0)) = n(n — 1)/2.

Relativement a deux ordres totaux o, et o, sur E, la base de la mesure
de leur proximité sera naturellement card (R(o,) ﬂR(o:) )) qui se met sous
la forme

(n—1)
PIU)
i=1
ot i désigne I’élément de rang i pour o, et g(i) le nombre d’objets de E
d’indice plus grand que i et situés 4 droite de i pour o'.
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Soit O Pensemble des ordres totaux sur £ ; card(Q) = n! . Par 1a méme
technique que ci-dessus on détermine simplement la moyenne et la variance
de la distribution de card(R(o,) N R (0"), lorsque o' parcourt O muni d’une
mesure uniforme ; ce sont respectivement

nn— 14 et nn-1yQ2n+ 572
La statistique

card (R (0,) N R(0g) — n(n — /4
V= 1) 2n + 5)[72

T(04,04) =

n’est autre que celle 7 proposée par M.G. Kendall qui établit que la distribution
commune de card (R (0,) N R (0")) et de card (R (04) N R (0")) lorsque o (resp. o)
décrit O muni d’une mesure de probabilité uniforme, est asymptotiquement,
pour n = =, normal

4. COUPLE DE VARIABLES INDICATEUR D’UN COUPLE DE MESURES
SUR E

Les deux variables définissent respectivement les distributions suivantes
E=(x, Xy, Xy X)) et =, Yy, 0, Y- 0, Y,) OUX, (TESP. V)
est la charge affectée au i-éme objet de E par la premiére (resp. la seconde)
variable. La base de I’établissement du coefficient de proximité est naturelle-
ment

Y Xy, )
i<i<n
dont il v a lieu d’examiner la distribution dans hypothése N que nous
allons préciser. Pour cette hypothése les distributions de chacune des deux
variables sont fixées ; mais la position relative de 'une des distributions
(x;/1 <i<n) par rapport & lautre (y;/1 <i< n) est inconnue 2 priori.
Il y a donc lieu d’étudier la loi de la statistique

Y XewVi (",

ek
1<i<n

la moyenne commune et la variance commune étant respectivement

1

Yoo - Y-
igisn  1<i<n =15 ' oo d
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ol i, (resp. K,) est la moyenne des x; (resp. des yi)s

1 1
. =7 Xis My =—n— > y;;en désignant par
1<i<n 1<i<n
L by —u )2 2 -1 ) 2
i =— 1% G — ) etpar oy =— ¥ (y,—w)?,
1<i<n <

Iindice de proximité adopté entre les deux distributions ¢ et n prend la forme

suivante
. nt
Mg, n) =( 2 XY Mk, )/ n=-D 9305 2)

1<i<n

L’étude du caractére asymptotique de la distribution de la statistique
(2) dans 'hypothése N fait I'objet du théoréme de A. Wald et J. Wolfowitz
(cf. [10]) dont nous allons rappeler la forme précisée par Noether.

Théoréme
Soit (£,,) (resp. (n,,)) une suite de suites de nombres réels ot

§, = (x1,x53,...,x%) (resp. n, = 01, ¥5,...,¥%))
est une suite de longueur n. Au couple (§,,, n,,) associons la variable aléatoire
X =Y Xg@ Vi s

n e
i

Si (%,) (resp. (7n,)) remplit la condition (V) (resp. (W)) ci-dessous
précisée ; alors

X, —&WX, NeX,),
ou &(X,) et o? (X,) sont la moyenne et la variance de la variable aléatoire

X,, suit asymptotiquement une loi normale centrée réduite.

Conditions (V) et (W).
Relativement 3 une suite de suites de nombres réels
(o) ou a, = (@}, a;,...,a})

est une suite de longueur n ; la condition (V) exprime que pour tout entier r
fixé, r =23,
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) (a;'—in'/( S @) = o)
1<i<n 1<i<n

et la condition (W)

— 3 @-ay /(=

1<i<n n<i<n

@ - E,,)z)'/z = 0(1)

_ 1
oua, =— 3 aj, o et O correspondent aux notations de Landau.
n
1<isn

La condition (W) a été introduite par Wald et Wolfowitz et celle, moins res-
trictive, (V') par Noether.

4.1. — Dans le cas d’'un couple de variables de méme type algébrique a), d)
ou e) (cf. § I), des résultats théoriques montrent qu’on peut se référer a
Iéchelle définie par la loi normale centrée réduite pour juger de la valeur
de l'indice de proximité entre les deux variables. Nous allons nous permettre,
pour deux raisons, de faire également référence a la loi normale pour juger
de la grandeur de chacun des deux coefficients de proximité S(m, n') et
S(w, w) etablis respectivement pour un couple de variables de type b) ou
¢) (cf. formule (1) (resp. (II)) § 2.1.3 (resp. § 2.2.3)) ; la premicre raison
est que le principe de I’établissement de la statistique de proximité est le méme
dans ces cas que dans ceux d) ou e) ; et la seconde est fournie par le com-
mentaire ayant suivi chacune des deux formule (I) et (II) donnant ’expression
de S(m, ") et de S(w, &). Finalement quel que soit le type algébrique du
couple (¢ ,0) de variables ; si u, = U(g,, 0,) est la valeur de la statistique
de proximité établie sur (¢, 6y)

—x*p

1 %
P(po,eo)zﬁf € dx 1)

définit une mesure de la “‘ressemblance” entre les deux variables ol la notion
de ressemblance est clairement remplacée par la notion de vraisemblance
par rapport a I'hypothése N. Nous ferons ci-dessous référence a ces deux
échelles de mesure de la proximité entre deux variables de méme type al-
gébrique ; la premiére sera notée U et la seconde P.



III — PROXIMITE ENTRE CLASSES
DE VARIABLES DE MEME TYPE

Relativement a un tableau de données qui croise un ensemble 4 de
variables descriptives et un ensemble E d’objets ou de sujets, il y a lieu
d’étendre la notion de proximité entre deux variables & celle entre deux
classes de variables car de la sorte on établira une hiérarchie ascendante
de classifications out a chaque pas on réunit les deux classes les plus voisines.

Soient B et C deux parties disjointes de A définissant deux classes
de variables de cardinaux respectifs [ et m. Considérons I'ensemble des
valeurs de la mesure de proximité sur 'ensemble des couples (8,7) ou 8
décrit B et v, C Soit

{U@B,7IB,y) € B x C} ()

ou bien

{PB,7)B,7v) € B x C} (2)

avec des notations que nous venons, ci-dessus, de préciser. Deux notions
de proximité entre classes se présentent de fagon, naturelie ; la premiére
est basée sur la somme des proximités U(B,y) et la seconde sur la plus
grande proximité observée entre un élément de B et un élément de C. Nous
allons comme précédemment faire référence a I'’hypothése N d’absence de
liaison pour établir chacune des deux statistiques de proximité.

Dans I'hypothése N, I’ensemble suivant des valeurs de U (¢, 6) ;
{VEB, et

est un échantillon de m points indépendants d’une variable aléatoire normale
entrée réduite (0, 1) ; en notant

ug,.o= 3% Y@,

YEC
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1
—— U(B, C) est la réalisation d’une v.a. Y0, 1).

i

Dans ces conditions 'ensemble des valeurs

1
\/—__njl—U(ﬁ,C)/ﬁeB

est, dans I’hypothése N, un échantillon de ! points indépendants d’une v.a.
O, 1) ; dou

_12 _l_u(ﬁ )
VI gy vm

est, dans ’hypothése N, une réalisation d’une va. I3U(0,1). Il en résulte que
la premiére statistique de proximité a adopter entre les deux classes B et C, est

ueB, 0 = U@, (1"

L 5
Vim g Eexe

Compte tenu de I’échelle de référence définie dans I’hypothése d’absence
de liaison parlaloi JC(0,1), cette statistique permet de comparer sans biais
les proximités UB , C) et U(B', C") attachées i deux couples de classes.

La seconde mesure de proximité entre classes se congoit & partir de

P'(B,C)= max P@B,y).
(B,v)EBXC

qu’on peut écrire, P'(B, C) = max P'@,C) ou P'(B,C)=max P, 7);
BEB yedl

Or I’ensemble des valeurs {P(8, 7)/v € C} constitue dans I’hypothése N, un
échantillon de m points indépendants d’une variable aléatoire uniformé-
ment répartie entre 0 et 1 ; d’on

PP, C)<ty=r" avec 0<t<1.

D’autre part, I’ensemble des valeurs {P'(8, C)/8 € B} constitue dans 'hypothése
N, un échantillon de ! points indépendants d’une variable aléatoire dont la
fonction de répartition vient d’étre établie ; par conséquent

PYP'(B,C) <1} = (") = ¢m |
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et si ¢, est la valeur observée de P'(B, C), on retiendra comme mesure de
la proximité entre les deux classes

PB,C)=1tr 2h

Selon le type de données dont on dispose il peut étre préférable d’utiliser
soit (1"), soit (2') comme coefficient de proximité entre classes de variables
d’un méme type. Les premiéres expériences montrent que (2') produit des
résultats trés fins lorsque A est formé de variables de type a) ouc) (cf. § D) ;

une méme réalité sous-jacente a un tableau de données peut différemment
se manifester selon qu’on utilise (1) ou (2').






IV — DISTRIBUTION

D’UN CRITERE DE CLASSIFICATION

SUR L’ENSEMBLE DES PARTITIONS
DE TYPE FIXE

Un critére de classification est un indice de proximité entre une partition
et une information relative 4 la ressemblance entre éléments de I'ensemble D a
classifier, qui peut étre I’ensemble A des variables descriptives ou celui E des
objets décrits. Cette information se présente en général comme un indice de
proximité sur D affectant & chaque paire p = {x, y} d’éléments de D un
nombre réel $(p) sensé refléter la ressemblance entre x et y. Nous n’avons
pas discuté ci-dessus de I’établissement d’une mesure de similarité lorsque
D =FE ; cependant la situation est tout a fait symétrique lorsque A est
formé d’attributs descriptifs (variables de type a), cf. § I) ; d’autre part,
des considérations géométriques et métriques permettent de concevoir 'indice
de proximité dans le cas ou 4 est formé de variables numériques ; enfin,
si A est formé de variables ordinales (type ¢) ou d), § I), on se reférera a
la fonction de répartition observée de ces variables pour établir I'indice de
similarité 8(p). Posons

, n(n — 1)
F={{x,y}YxE€D,yED,x #y} ou f=card(F)=2—

avec n = card(D) .

Si on suppose, ce qui est assez général, que I'application qui & chaque p ={x, y}
de F associe sa mesure $ (p), est injective ; I'ordre w sur F défini par

p<q <— S@p)<38()

est total. I1 s’agit de I"‘ordonnance” sur D. Une telle information, relative &
la ressemblance entre éléments de D, a des propriétés intéressantes de stabilité
par rapport au choix de la mesure de similarité 8. (cf. [4], Chap. 1) ; d’autre
part, sa donnée raméne le probléme de la définition d’un critére de classifi-
cation a la comparaison de deux structure de méme type : préordres totaux
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sur 'ensemble F ; en effet, la donnée d’une partition 7 sur D est équivalente
a celle d’'un préordre total 4 deux classes (S, R) sur F ol S(resp. R) est 'en-
semble des paires séparées (resp. réunies) par 7 ; pour faire image, S(resp. R)
est 'ensemble des paires dont les deux composantes sont considérées éloignées
(resp. proches) du point de vue de la partition. Le critére de classification
qui sert a juger de l'adéquation d’une partition aux données permettra de
mesurer la cohésion des classes formées & un niveau donné d’un arbre de
classifications.

% (n; t) désignera ici ’ensemble des partitions sur D de type
t=(n,n,,...,n.).

Posons ®(r) I'ensemble des relations binaires symétriques b sur D pour les-
quelles la parties R(b) de F, formée des paires {x, y} pour lesquelles on a
b(x, y), est de cardinal r ; il y a une correspondance bijective entre G3(r) et
Iensemble des parties de F a r éléments. En fixant r = Z n(n; — 1)/2 et
en notant R(n, t) 'ensemble des relations d’équivalence associé a % (n ; t),
on aR(n;t)C@B(r). 2 indiquera 'ensemble des ordres totaux pouvant étre
définis sur F, lequel est de cardinal f/ .

La base de la construction de I'indice de proximité entre la partition 7 et
lordre w sera

card (gr(w) N S(m) x R(m)) 1)
ou gr(w) désigne le graphe dans F x F de w, soit

{p./p,.gYEFxF e p<g pour w}.

Nous commencerons par préciser la forme limite des deux identiques
distributions duales que sont celles de card(gr(w) N S(b,) x R(by)) et
de card (gr(w,) N S(D) x R(d)) on b, (resp. w,) est un élément fixé de
@B(r) (resp. Q) et ol w (resp. b) est un élément aléatoire de £ (resp. B(r))
muni d’une probabilité uniforme ; cette forme limite de la distribution
commune est donnée par la loi normale. Nous comparerons ensuite la dis-
tribution de card(gr(wy) N S(m) x R(m)), ou m décrit %(n, ) muni d’une
probabilité uniforme, & celle de card(gr(w,) N S(b) x R(b)) ou onsuppose
R(n ; t) CR(r) ; les deux distributions ont la méme moyenne et la forme
asymptotique de la premiére distributions est, sous des conditions assez géné-
rales, la méme que la seconde, qui est par conséquent normale.
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1. DISTRIBUTIONS DUALES
ATTACHEES AU COUPLE (w,, , b,) de £ x @(r).

1.1. Expression de card(gr(w) N S x R)

R et S étant deux parties complémentaires de F ,
card(@r(w)N S x R)= Y card(gr(w)N S x{p} ) ;
PER
en associant a chaque p de F son rang pour w :
k(p) =card{p’/[p'€EF et p'<p pour (w};

et en désignant par k(p;) le rang de la i-¢éme paire de R rencontrée en par-
courant F de gauche a droite selon w, on a

card@r(w)NSx{pH=Up) - ->G- D =k(p) i,
ainsi le second membre de (1) se met sous la forme
¥ k) —rr+ 12 oi r=card(R)
1<i<r

et en introduisant la fonction indicatrice ((e(p)),p€F) de R, la dernicre
expression devient

card(@r(w) NS x R) = 2. e()k(p) — rir + 1)/2 ).

DEF

1.2 Etude des deux distributions duales

La formule (2) montre qu’on peut ramener 1’étude de chacune des deux
distributions ; celle de

card (gr (w) N S(by) x R(by)) et celle de card (gr(wy) N S(b) x R(b)),
4 Pexamen de la distribution de

Y @ k@)

PEF

qui apparait dans chacun des deux cas comme étant celle de la somme de r
entiers parmi 1,2,...,f.
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A la suite des entiers (1,2,..., ), attachons les caractéristiques suivantes

LA+ ) _(F+ 1D

a) La moyenne uk) =

f 2 2
1 + 1
b) La variance pk)y=— Y #— (f )2 = - DU+ 12
i< i<f N2
¢) Le coefficient de Wald et Wolfowitz W, = w, (k) (uy (k)Y

1w oy fH1 1 S N
W, _f_l<i<f(l— 5 )'/;}71<$T;f(,___2__z;h,2,

un calcul simple montre que
W, | < 3k

ce qui assure la condition (W) du théoréme (§ IL.4). D’autre part, considérons
la condition (v) de Noether du méme théoréme relativement a la suite
(e(p)/p EF) ; elle se met sous la forme

2 (@7 A0

ol r = card(R), cette expression se met sous la forme

hi2 ot h=3 et

— l)h(_;)hﬂ §—(h-2)2 +<_;_)‘h/2 - (h=2)p2

o s =card(S).

Cette derniére quantité tend vers zéro pour n = card (D) tendant vers U'infini
pourvu que le rapport r/f ne tende ni vers zéro, ni vers un. Dans ces conditions,
I’application du théoréme de Wald et Wolfowitz donne

Théoréme
La distribution de Y e(p)k(p) qui est de moyenne r(f + 1)/2 et de

pEF
variance rs(f + 1)/12 est asymptotiquement normale.
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Il en résulte que la distribution de
card (gr(wy) N SB) x R(B) — r. 5/2
Vros(f+ D12

ou b est un élément aléatoire de 63(r) muni d’une probabilité uniforme,
est asymptotiquement normale centrée et réduite.

(1),

En remplacant k(p) par

k() — ft1
k(p) — uk) _ 2

K'(p) = = ,
A RN Vi

(1) se met sous la forme

1
_— kl
D 2, COr®)

1.3. Comparaison de la distribution de card(gr(w,) N S(7) x R(7)) 4 celle de
card (gr(w, ) N S(b) x R (b))

Compte tenu de la relation (2) du paragraphe (1.1) ci-dessus, il y a lieu
de comparer la distribution de

(1"

Cm = e@ k@), acellede CB)= Y BEK@); (1)

pEF pPEF

ou w(resp. b) est un élément aléatoire de R(n ;¢t) (resp. 3(r)) muni d’une
mesure de probabilité uniforme et ou (e(p)/pEF)) (resp. B(p)/pEF)) est
la fonction indicatrice de la partie de F que définit la relation d’équivalence
(resp. binaire) associée A w (resp. b)

Théoréeme 1.

Si I’ensemble R(n ; ) des relations d’équivalence associé a4 %(n,t) est
inclus dans G3(r) ; la moyenne de C(m) est égale a celle de C(b) ;la valeur com-
mune de la moyenne étant r(f + 1)/2.

La moyenne de C(b) a déja été calculée ci-dessus ; celle de C(m) se met
sous la forme

1
¥y
card(@(n; ) 7 o P k)
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oll la premiére somme est étendue a F et la seconde 4 € (n; t). En inversant
les deux signes sommes on obtient

1
PR — Y P ()
p

card(R(n ;1)) &

La quantité entre accolades est la proportion de partitions dans %(»n ; t) pour
lesquelles les deux composantes de p sont réunies ; cette proportion est égale a

Y. mn; — Dian — 1) =r/f  (cf. Lemme 1. §.IL 2.1.3)
1<€i<k
d’ou le résultat.

Nous allons a présent comparer les moments d’ordre ! de chacune des
deux statistiques C(w) et C(b) ol nous supposerons vérifiée la condition énon-
cée par le théoréme ci-dessus.

1.3.1 Expression du moment d’ordre [ de C(b) et de C(7)

—— Y (X80 ko) )

card (B(r)) 5 \ 3

8 ( 3. ) kp)) =

En développant, on obtient aprés inversion des deux signes sommes et en
tenant compte de la relation () = 0 ou 1.

BCB) = 2 4y spys -0, ) sy, ) Koy 1. kG, Y™
2)

ou on a

I=1 +1,+...4+1, ;la sommation est étendue a toutes les permutations
B> Piy> - - 'pim) pouvant étre obtenues a partir de chacune des parties 3
m éléments de F ={p,,p,,...,pp} ;s #@; ..., P;, ) est la proportion
dans @(r) de relations binaires symétriques pour lesquelles on a

8@, )@, - Bp, )= 1;

T
cUilisly ool = T T L )

ol h estle nombre de /; distincts, chacun d’entre eux se répétante,, e,,..., e,
fois.



43

L’expression de & (C(m)) est obtenue a partir de celle (2) de & (C(d)) en

remplagant y(pil,piz, .. .p,-m) par V(p‘.l,piz, ... ,pim) qui est la proportion
de partitions dans % (n, t) pour lesquelies les paires Di>Piys -+ Dy, sont

formées de composantes réunies, soit e(pil) ..€(p )= 1.
m

En constatant que la proportion dans (3(r) de relations binaires symétriques
pour lesquelles on a b(x, y), ol p = {x, y} est une paire donnée, est égale i

- D/C)=nr:

on se rend compte que u(pil,piz, ... ,pim) est, pour n grand, trés sensi-
blement égal a

™ ~ ( » ﬂ?)"’ ol m=mln avec 1= (n;,Hy,...,0)
1<i<k
4)
Si(uy,uy,... ,ug) est le type de la partition y définie par la saturation de
Iensemble des paires {pi»0iys -5} 0N
V(pil, Diys+ - ,p,.m) >~
#1 + uy uy u u ug g kﬁ uj
(m) T Aot mt) . @E A TE+ L A TE)=T] m/
=1 i=1
(5).
En effet, chaque produit, terme du développement de (5), est associé¢ a une
application ¢ de {1,2,...,g}dans {1,2,...,k}; celui qui est associé a
I’application ¢ pour laquelle 'image de j est i, définit la proportion de parti-
tions de type ¢ = (n,, ..., n;) pour lesquelles les u; objets de la j-éme classe

de v se trouvent réunis dans la classe i de cardinal #n,.
Le cardinal de l'ensemble des vecteurs (p,,p,,...,D,) de F™ tels que

p; F p; pour iFj, est fF-D...(f—-m+1) (6);

en considérant la partition de cet ensemble en les différents sous-ensembles

G (cf. § 1L 2.1), on a linvariance de »(p;,,p;,, - -,Pp;, ) (cf. formule
(5) ci-dessus) pour (p,.l,p,.z, A ,p,.m) parcourant un méme ensemble Gfﬁ).

Désignons par H,, I'ensemble des m-uples de paires dont deux quelconques
sont sans composante commune, le cardinal de H,, est

2

G5
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Le rapport de ce cardinal sur le précédent ((7)/(6)) tend rapidement vers 1
pour n tendant vers U'infini. On a de plus asymptotiquement

card (G)/card (H,,,) = O (o/n")

oll r est un entier supérieur a 1 ; r dépend de la configuration ¢ et est direc-
tement i€ au type (u,, u,, .. » u,) de la partition définie par la saturation
de I’ensemble des paires d’'un m- uples de G9.

Décomposons chacune des deux sommes telles que (2) définissant respecti-
vement & (C(b)) et &(C(m))* en deux parties T et T@) ot TM) est étendue
aH, etou Z@) est étendue a Pensemble des vecteurs @ P25+ Dy) POUT
lesquels il existe au moins deux paires distinctss p, et p; ayant une composante
commune ; c’est a dire, étendue a la réunion des dlfferents ensembles G(C)
qui sont disjoints deux a deux. Le nombre de configurations (¢) distinctes ne
dépend que de m .

Les formules (4) et (5) nous montrent que les parts 1) des expressions
respectives de &(C(b))" et de & (C(w)) sont sensiblement égales (i.e. convergent
rapidement vers la méme forme limite). Nous venons de voir par ailleurs que la
mesure du support de Z(2) tend & étre négligeable par rapport a celle de
=), Pour que dans chacune des expression telles que (2) définissant res-
pectivement & (C(b)Y et &(C(m)Y, la valeur de la part de Z¢?) tende a étre
négligeable par rapport a celle de (), il suffit que la charge positive de la
forme (k(p; )'.. (p Y™ ) ne soit pas particuliérement forte sur les divers
ensembles G("’) jusqu’a compenser la faiblesse de leur cardinal. De fagon plus
précise, soit sur F™ la mesure o puissance m-éme de la mesure positive

{k(p)/p € F};
G2 Das s D) = k@) k@) .. k(D)

Considérons la partie de la somme (2) obtenue pour (/,,...[,) fixé ;
si pour les différentes configurations (c), o(Gﬁ,ﬁ))/o(Hm) tend vers zéro pour
n tendant vers I'infini ; la partie de la somme étendue aux divers ensembles
G tend 2 étre négligeable par rapport & celle étendue 4 H,,,. D’oli le théoréme
suivant

Théoréme
Si pour tout m fixé, m = 2 et pour toute configuration (¢), 6(G9)/o(H,, )
tend vers zéro pour nr tendant vers U'infini ; alors les moments de la distribu-

tion de c(w) = 2 e(p) k(p) dans & (n ; t) tendent vers eux de la distribution
p

de C(b) = Z B(p) k(p) dans & (r), pour n tendant vers I'infini.
P
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+ 1 s(f+ 1
Dans ces conditions, la distribution de (Ee(p) k(p) — Y 3 ))/ / s(fl 3 ) dans

R((n;t) muni d’une probabilité uniforme est asymptotiquement normale
centrée réduite.

1.3.2 Extension des résultats précédents

Nous avons vu que dans I’ensemble < (n ; t) des partitions de type fixé,
le critere C(m) s’exprime, A la constante — r(r + 1)/2 additive prés comme
la somme des rangs des paires réunies par la partition 7 ; soit

Y k(p) ot  R(m (1)

est 'ensemble des paires réunies par 7.

Dans ces conditions, il semble naturel de considérer directement le critére

S 8@ @

PER (m)

ot {&(p)/p € F} est la mesure sur F définie par la similarité sur D.

Les résultats concernant la distribution dans € ;¢) de Y e(p) k(p) se

d
pEF

transposent 4 celle de Y e(p) 8(p) ; tout se passe comme si ; dans le passage

e
peF

de (2) a (1), la mesure attachée a F et reflétant les ressemblances entre
éléments de D, était définie par la fonction de répartition de la distribution
de 8(p) sur F. Soient o et X la moyenne et I’écart type de cette distribution
c’est-a-dire ,

1 1
a=—V8@ e N=—Y @) —-a)P.

7 72
En posant c(p) = (S(p) — a)/\, la statistigue de proximité mesurant 'adé-
quation d’une partition m, correspondante a la formule (1) qui termine le
paragraphe 1.2 ci-dessus, est la suivante

i S '
vV - l pEF
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Dans le cas ol la mesure de similarité sur D définissant {$(p)/pEF} est
statistiquement pertinente, le critére (2') tient plus étroitement compte
de I'information initiale que ne lefait (1') et peut par conséquent étre avan-
tageusement utilisé. Cependant des raisons importantes justifient I'utilisation
de (1) ;la premiére est fournie par les résultats des travaux de R.N. Shepard
et de J.P. Benzecri (cf. [8] et [1]) ol on établit le résultat suivant ; Soient
C={i,iy,..., 0,y etC" ={i},i,,..., i} deux configurations géométriques
dans un méme espace R? et soient w et w’ les ordonnances associées & Cet a C'
par la distance euclidienne. Si w' se déduit de w en remplagant i; par 7(i;)
pour une bijection 7 de C sur C' ; alors on peut admettre que C' se déduit
de C par un déplacement, une homothétie et une petite déformation. Si =
et 7' sont des partitions de C et de C’ respectivement, telles que les classes
de 7' se déduisent des classes de 7 par la bijection 7 ; on peut souhaiter d’un
critére de classification qu’il juge également 7w et ', C’est ce que fait claire-
ment le premier critére par la comparaison de deux structures de méme type :
préordres totaux sur F. D’autre part ce critére tient compte des propriétés
intéressantes de stabilité de w auquelles nous avons déja fait allusion, (cf. [4]
Chap. 1). Mais, il reste certainement & comparer plus profondément d’un point
de vue expérimental et théorique les deux critére.

Nous allons terminer le paragraphe 1.3 par une comparaison plus précise

dad

de la variance dans R(n ; t) de Y e(p)c(p) et de celle dans @B(r) de 2 Bp)c(p).
P p

1.3.3. Examen de la variance

Un couple de paire (p, p') peut prendre I'une des trois formes suivantes :
U, y3. {x.¥D, dx, »}, {x, z}) est {x, y},{z, t}) ol des lettres différentes
désignent des objets différents. L’ensemble des couples de la premiére forme
est la diagonale de F2. Désignons par G ’ensemble des couples de la deuxiéme
forme ol les deux paires ont une composante commune,

card(G) = n(n — 1) (n — 2).

Soit enfin H I’ensemble des couples de la troisiéme forme ou les deux paires
p et p' n’ont pas de composante commune,

card(H) vaut nan— 1) (n—2)Hn - 3)/4.

L’expression pour [ = 2 du moment d’ordre / (cf. § 1.3.1) permet d’écrire
les relations :
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Ve=( X m)(X c(”)z)+(1<,<k )(vc@)c@))

1€i< k pEF

+\1<t<k )(;dp)dp'))

V= (X ) (L or) + Y (3w ew)

1<i<k PEF 1(1<k

(5 G )

ol % (resp. ‘vﬁ) est la variance dans R(n,t) (resp. G3(r)) de 2 ) c(p)

P
(resp. de ¥ B) c(p)).
P
La différence entre ¥, et U, est
= (2w (T[S @ ) ()

Propriété 1.
Les deux variances %% et %, sont égales si les différentes composantes
n; du type t = (n,, n,, ..., n,) sont égales

En effet dans ce cas on am, = 1/k pour tout i=1,...,k; et
N 1 s .
> 7ri3=( > 71%)2 =22 dout YV, -, =0
1<i<k 1<i<k
Comme dans [6], considérons la formule d’analyse de la variance des

proximités c(x , y) ;

1 ]
— ¥ x,yP ==Y T {cle, y) — E)?
nn = 1) )} no(n=1) 30

T 5 )
n X
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ou c, =

1 T
" Y oelx, y) : moyenne des proximités a x

B = 1) {52}

Le premier membre de (2) est égal 4 1.

Si Y, @ est distinct de (z w2 )2, la différence (¥, — %) est fonction de
i i

Y c(p) c(p') ; notons alors la formule
¢

Propriété 2.

1 1 1
1+ Y e N=—Y & 3)
o — 5 ( nin — 1) < ®) @) = -
En effet, on se rend compte que dans le développement de I'expression
> > c(x,y)§2 ; pour tout p, (c(p))* apparait exactement deux
{riv+x}

fois et pour tout couple de paires (p, p') & composante commune, c(p) c(p")
apparait exactement une fois ; par conséquent cette expression se met sous la
forme

nn~ D+ 2 cp)el@ car Y (@) =nm - )2
G P
d’oti la formule de I’énoncé.

Notons encore Pidentité
Y@ o)+ T c@e@)= X @) c@)=—n(n— 12
G H (Fi-a)
ol A est la diagonale de F x F ; en effet
L @)= X @) X @) - @)=~ X (@
(Fr-a) pEF p'eF pEF
Il en résulte la relation

] 1 ,
T ATEET R

1 o« 1
=;~‘ {c(x,y) — ¢} 4)

< (- 1){y/y:x}
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Il est intéressant de remarquer que nous mesurions le caractére neutre d’un
élément x, par rapport a une visée classificatoire, par la petitesse de la quantité

1 —_
{8(x,y) - 8,}? (35)
(-1 {y/yz*x}

ou
8 (x, y)estla mesure de similarité définie sur D ; cette quantité est précisément

2
Z {$ x,y) — §X}2 ou A? est la variance de la distribu-
(n—-1) {ypy#+=}

tion {S(p)/p € F}.
La formule (4) montre que la somme des dispersions (5) dépend uniquement

égale a

de 2 c(p) c(p"). La formule (3) peut étre écrite sous la forme
H
1 « 1 -
Y @) e’y =—3 2 et -1,

nin—-1) G n = Wn=10,5%50

En désignant par Z,, c(p) une somme portée sur h valeurs de {c(p)/pEF},
la distribution de
1 O

vi—1 (n‘_‘l)
sur ’ensemble de toutes les parties a (n — 1) éléments de F, est de moyenne

nulle et de variance 1 puisque la distribution {c(p)/p € F} est de moyenne nulle
et de variance 1. L’échantillon suivant des valeurs de la statistique (6)

c(p) (6)

———n:i_— Y oelx, »)/x €D,

V- 105

peut étre considéré, dans ’hypothése N d’absence de structure comme un
échantillon de n valeurs indépendantes de la statistique (6). Par conséquent,
dans ’hypothése N, la variance empirique de cet échantillon converge presque
sirement vers 1, pour n tendant vers l'infini ; soit

1
N .
R FsapY
x

1L _ ¥ 2= 1=
V=T c(x,y)% 1§ b
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d’ol

Propriété 3.

La variance ¥, est, dans I’hypothése N, asymptotiquement presque sire-
ment égale a la variance 7%

Ce qui caractérise les cas réels c’est que la structure de la représentation des
données s’écarte sensiblement de ce que peut étre une réalisation de I’hypo-
thése N et la condition de I’énoncé ci-dessus est trop restrictive ; en effet,
elle suppose qu’asymptotiquement, presque sirement

0(G)/o(H) = card (G)/card (H) = 4/(n — 3)

0(G)= L8@ESE) et oEH) =Y (@) SE)
G H

en supposant positive la mesure sur F,{S(p)/p € F}. Or nous avons vu précédem-
ment qu’il suffit seulement que o(G)/o(H) tende vers zéro pour n tendant
vers Uinfini (i.e. 0(G)/o(H) = a(n)) pour que ¥, et ¥, admettent la méme
forme limite. Une telle condition admet la convergence de la représentation
des données vers la *“classificabilité”” (cf. [4] Chap. 4) pourvu que la tendance
ne soit pas trés forte ; il s’agit donc d’une hypothése compatible avec la nature
des données qui se présentent dans les Sciences Humaines.

2. NCEUDS SIGNIFICATIFS D'UN ARBRE DE CLASSIFICATIONS

Soit K I'ensemble des paires restant séparées 4 un niveau k de I’arbre des
classifications et / ’ensemble des paires de K qu’on s’appréte i réunir en agrégant
deux classes. Pour juger de la signification d’une telle agrégation commencgons
par considérer card {gr(wg ) N1 x J} ot wy est la restriction de w 4 K et
ou J est la partie complémentaire dans K de I, soit I’ensemble des paires
laissées séparées au niveau (k + 1).

X

Des considérations analogues a celles du paragraphe 1.2 montrent que la
distribution -de la statistique ci-dessus envisagée, lorsque w, décrit unifor-
mément I'ensemble de tous les ordres totaux sur K ; respectivement, lorsque
I décrit de fagon uniforme I'ensemble de toutes les parties de K de cardinal
i = card (), est approximativement normale de moyenne i x j/2 et de variance
ixji+j+ 112, ol j = card (J). Par conséquent, la détection des nceuds les
plus pertinents de I’arbre résulte de I'examen de la suite des valeurs de
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card {gr(wg) NI x J}— i x j/2}/\/i xjG +j+ D12
sur la suite des niveaux de l'arbre.

Il s’est avéré expérimentalement que la valeur de cette derniére statistique
croit lorsqu’une classe en cours de formation se confirme et décroit devant
l'arrét de constitution d’une classe ayant quelque consistance au profit de
celle de I'embryon d’une autre classe.
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