Some non-linear evolution equations
Bulletin de la Société Mathématique de France, Volume 93 (1965), pp. 43-96.
@article{BSMF_1965__93__43_0,
     author = {Lions, Jacques-Louis and Strauss, W.A.},
     title = {Some non-linear evolution equations},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {43--96},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {93},
     year = {1965},
     doi = {10.24033/bsmf.1616},
     zbl = {0132.10501},
     mrnumber = {33 #7663},
     language = {en},
     url = {http://www.numdam.org/articles/10.24033/bsmf.1616/}
}
TY  - JOUR
AU  - Lions, Jacques-Louis
AU  - Strauss, W.A.
TI  - Some non-linear evolution equations
JO  - Bulletin de la Société Mathématique de France
PY  - 1965
DA  - 1965///
SP  - 43
EP  - 96
VL  - 93
PB  - Société mathématique de France
UR  - http://www.numdam.org/articles/10.24033/bsmf.1616/
UR  - https://zbmath.org/?q=an%3A0132.10501
UR  - https://www.ams.org/mathscinet-getitem?mr=33 #7663
UR  - https://doi.org/10.24033/bsmf.1616
DO  - 10.24033/bsmf.1616
LA  - en
ID  - BSMF_1965__93__43_0
ER  - 
%0 Journal Article
%A Lions, Jacques-Louis
%A Strauss, W.A.
%T Some non-linear evolution equations
%J Bulletin de la Société Mathématique de France
%D 1965
%P 43-96
%V 93
%I Société mathématique de France
%U https://doi.org/10.24033/bsmf.1616
%R 10.24033/bsmf.1616
%G en
%F BSMF_1965__93__43_0
Lions, Jacques-Louis; Strauss, W.A. Some non-linear evolution equations. Bulletin de la Société Mathématique de France, Volume 93 (1965), pp. 43-96. doi : 10.24033/bsmf.1616. http://www.numdam.org/articles/10.24033/bsmf.1616/

[1]Aubin (J.-P.). - Un théorème de compacité, C. R. Acad. Sc. Paris, t. 256, 1963, p. 5042-5044. | MR | Zbl

[2]Browder (F. E.). - Nonlinear elliptic boundary value problems, Bull. Amer, math. Soc., t. 69, 1963, p. 862-874. | MR | Zbl

[3]Browder (F. E.). - Strongly nonlinear parabolic boundary value problems (to appear). | Zbl

[4]Browder (F. E.). - Non-linear equations of evolution, Annals of Math (to appear). | MR | Zbl

[5]Dionne (P. A.). - Sur les problèmes de Cauchy hyperboliques bien posés, J. Anal. math., Jérusalem, t. 10, 1962-1963, p. 1-90. | MR | Zbl

[6]Hopf (E.). - Ueber die Anfangswertaufgabe für die hydrodynamischen Grund-gleichungen, Math. Nachr., t. 4, 1951, p. 213-231. | MR | Zbl

[7]Jörgens (K.). - Das Anfangswertproblem im Grossen für eine Klasse nicht-linearer Wellengleichungen, Math. Z., t. 77, 1961, p. 295-308. | EuDML | MR | Zbl

[8]Leray (J.). - Hyperbolic differential equations. - Princeton, 1952 (multigraphié). | MR

[9]Lions (J. L.). - Équations différentielles opérationnelles. - Berlin, Springer, 1961. (Grundlehren der mathematischen Wissenschaften, 111). | MR | Zbl

[10]Lions (J. L.). - Quelques remarques sur les équations différentielles opérationnelles du 1er ordre, Rend. Semin. mat. Padova, t. 33, 1963, p. 213-225. | Numdam | Zbl

[11]Lions (J. L.) et Magenes (E.). - Problèmes aux limites non homogènes, III, Ann. Scuola Norm. Sup. Pisa, t. 15, 1961, p. 311-326. | Numdam | MR | Zbl

[12]Lions (J. L.) et Prodi (G.). - Un théorème d'existence et unicité dans les équations de Navier-Stokes en dimension 2, C. R. Acad. Sc. Paris, t. 248, 1959, p. 3519-3521. | MR | Zbl

[13]Lions (J. L.) et Strauss (W. A.). - Sur certains problèmes hyperboliques non linéaires, C. R. Acad. Sc. Paris, t. 257, 1963, p. 3267-3270. | MR | Zbl

[14]Minty (G. J.). - Monotone (non-linear) operators in Hilbert space, Duke Math. J., t. 29, 1962, p. 341-346. | MR | Zbl

[15]Minty (G. J.). - On a “monotonicity” method for the solution of non-linear equations in Banach spaces, Proc. Nat. Acad. Sc. U. S. A., t. 50, 1963, p. 1038-1041. | MR | Zbl

[16]Nikolskii (S. M.). - On embedding, extension and approximation of differentiable functions, Uspekhi Mat. Nauk., t. 16, 1961, p. 63-114. | MR | Zbl

[17]Prodi (G.). - Soluzioni periodiche di equazioni a derivati parziali di tipo iperbolico non lineari, Annali di Mat. pura ed appl., t. 42, 1956, p. 25-49. | MR | Zbl

[18]Segal (I. E.). - Non-linear semigroups, Annals of Math., t. 78, 1963, p. 339-364. | MR | Zbl

[19]Segal (I. E.). - The global Cauchy problem for a relativistic scalar field with power interaction, Bull. Soc. math. France, t. 91, 1963, p. 129-135. | Numdam | MR | Zbl

[20]Sobolevskij (P. E.). - Second-order differential equations in Banach space, Soviet Math. (Doklady), t. 151, 1963, p. 1394-1398. | Zbl

[21]Torelli (G.). - Un complemento ad un teorema di J.-L. Lions sulle equazioni differenziali astratte del secondo ordine (to appear). | Numdam | Zbl

[22]Višik (M. I.). - Strongly elliptic quasi-linear systems of differential equations in divergence form, Trudy Mosk. Mat. Obšč., t. 12, 1963, p. 125-184. | Zbl

[23]Višik (M. I.). - On the solution of boundary-value problems for quasi-linear parabolic equations of arbitrary order, Mat. Sbornik, t. 59, (101), 1962, p. 289-325.

[24]Yamaguti (M.). - On the global solution of the Cauchy problem for some non-linear hyperbolic equations, Mem. Fac. Eng., Kyoto Univ., t. 24, 1962, p. 482-487.

[25]Yamaguti (M.). - On the a priori estimate for solutions of the Cauchy problem for some non-linear wave equations, Kyoto math. J., t. 2, 1962, p. 55-60. | MR | Zbl

[26]Mizohata (S.) and Yamaguti (M.). - Mixed problem for some semi-linear wave equation, Kyoto math. J., t. 2, 1962, p. 61-78. | MR | Zbl

[27]Kato (T.), (to appear).

Cited by Sources: