
THÈSES D’ORSAY

DUC-MANH NGUYEN
Espaces de modules de surfaces plates et leur forme volume
Thèses d’Orsay, 2008
<http://www.numdam.org/item?id=BJHTUP11_2008__0764__A1_0>

L’accès aux archives de la série « Thèses d’Orsay » implique l’accord avec les conditions
générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou
impression systématique est constitutive d’une infraction pénale. Toute copie ou impression
de ce fichier doit contenir la présente mention de copyright.

Thèse numérisée par la bibliothèque mathématique Jacques Hadamard - 2016
et diffusée dans le cadre du programme

Numérisation de documents anciens mathématiques
http://www.numdam.org/

http://www.numdam.org/item?id=BJHTUP11_2008__0764__A1_0
http://www.numdam.org/conditions
http://www.numdam.org/
https://bibliotheque.imo.universite-paris-saclay.fr/
http://www.numdam.org/


^ 6-uy

(f^>

U N I V E R S I T E  
P A R IS -S U D  1 t

N° d’ordre: 9325

UNIVERSITE PARIS-SUD 
FACULTE DES SCIENCES D’ORSAY

THESE

Présentée pour obtenir

LE GRADE DE DOCTEUR EN SCIENCES 
DE L’UNIVERSITE PARIS XI

Spécialité : Mathématiques

par

Duc-Manh NGUYEN

ESPACES DE MODULES DE SURFACES PLATES 
ET LEUR FORME VOLUME

Soutenu le 18 décembre 2008 devant la commission d’examen :

Mme Ursula HAMENSTADT 
M. Pascal HUBERT 
M. François LABOURIE 
M. Pierre PANSU 
M. Jean-Christophe YOCCOZ

(Rapportrice) 
(Rapporteur) 
(Directeur de thèse) 
(Examinateur) 
(Président du jury)

SU
D





Remerciements

Je voudrais d’abord remercier les rapporteurs, Usurla Hamenstadt et Pascal Hubert, d’avoir consacré 
leur temps et énergie à examiner mon texte, leurs pertinents remarques et commentaires ont énormément 
amélioré sa présentation.

Je remercie Jean-Christophe Yoccoz pour l’intérêt qu’il porte à mon travail.

Pierre Pansu m’a appris de nombreux sujets adjacents à mes recherches, m’a donné des conseils im
portants, toujours avec beaucoup de gentillesse et prévenance. Il m’a aussi rendu bien de services en tant 
que directeur de l’école doctorale, je lui en suis très reconnaissant.

La rédaction de cette thèse a été rendue beaucoup moins douloureuse grâce aux conseils de Sa
muel Lelièvre, je tiens à le remercier. J’aimerais remercier également les amis et collègues du labo, 
Frédéric Le Roux, François Béguin, Olivier Guichard, Graham Smith, Antoine Goumay, avec qui j ’ai 
appris énormément de choses, pas uniquement en Mathématiques, à travers de nombreuses discussions 
intéressantes.

Pour leur gentillesse et leur compréhension, je voudrais remercier mesdames les secrétaires, en par
ticulier Valérie Lavigne et Martine Justin, qui m’ont beaucoup aidé dans les démarches administratives 
parfois plus compliquées que les Mathématiques.

Dans la vie en dehors des Mathématiques, je voudrais saluer les copains dans mon équipe de foot 
préférée, qui ont partagé avec moi des moments intenses.

Une petite pensée à ma famille, qui m’a toujours soutenu, malgré les distances.

Finalement, je remercie François Labourie, mon cher directeur de thèse, de m’avoir initié au monde 
des surfaces plates, qui n’a pas que des merveilles, mais où il reste bien de choses à explorer. Cette thèse 
ne verrait sans doute pas le jour sans ses conseils et suggestions, ses encouragements et mises en perspec
tives sont aussi d’une très grande importance pendant son accomplissement. J’espère que cette thèse est 
à la hauteur de son attente car elle est l’expression de ma reconnaisance pour tout ce qu’il a fait pour moi.





Résumé

Dans cette thèse, nous nous intéressons aux trois types de surfaces plates à singularités coniques sui
vants :

- surfaces de translation à bord géodésique,

- surfaces avec forêt effaçante, et

- surfaces plates homéomorphes à la sphère S2.

Nous étudions les espaces de modules de ces surfaces et relions leurs propriétés aux propriétés de l’es
pace de modules des surfaces de translation.

Les résultats principaux de cette thèse sont les suivants : nous montrons tout d’abord que les espaces 
de modules en question sont tous des orbifolds. Plus précisément, ces espaces sont des quotients des 
variétés plates affines complexes par des groupes agissant proprement discontinument. Dans un deuxième 
temps, nous construisons de manière uniforme une forme volume sur chacun de ces espaces. Notons que 
les surfaces de translation (fermées) sont un cas particulier des surfaces de translation à bord géodésiques. 
Dans ce cas, notre forme volume est égale, à une constante multiplicative près, à la forme volume habi
tuelle définie par l’application de périodes.

Dans [Th], Thurston étudie l’espace de modules des surfaces plates polyèdrales, il montre que cet espace 
est muni d’une structure métrique hyperbolique complexe. Nous montrerons que la forme volume induite 
par la métrique hyperbolique complexe coïncide, à une constante multiplicative près, avec notre forme 
volume.

Pour les surfaces de translation à bord géodésique dont le bord est non-vide, ainsi que les surfaces avec 
forêt effaçante, nous définissons des fonctions d’énergie sur leur espace de modules qui tiennent compte 
de l’aire de la surface, et de la longueur du bord, ou des arbres. Nous montrons que les volumes de ces 
espaces renormalisés par cette énergie sont finis. Nous retrouvons, comme cas particuliers, le fait que 
l’espace de modules des surfaces de translation, et l’espace de modules des structures métriques plates 

sur la sphère sont de volume fini.



Abstract

In this thesis, we are interested in three types of flat surfaces :

- translation surfaces with geodesic boundary,

- flat surfaces with erasing forest, and

- spherical flat surfaces.

We study the moduli spaces of those surfaces, and relate their properties to those of moduli spaces of 
(closed) translation surfaces.

The main results of this thesis are the followings : first, we prove that the moduli spaces under consi
deration are orbifolds. More precisely, they are quotients of flat complex affine manifolds by some groups 
acting properly discontinuously. Next, we define a volume form on each of those moduli spaces by si
milar method. Note that (closed) translation surfaces are a particular case of translation surfaces with 
geodesic boundary. In this case, up to a multiplication constant, our volume form equals the usual one, 
which is defined by the period mapping.

In [Th], Thurston studies the moduli space of flat surfaces isometric to polyhedra, he shows that this mo
duli space can be equipped with a complex hyperbolic metric structure. We prove that the volume form 
induced by the complex hyperbolic metric and our volume form coincide, up to a multiplication constant.

For translation surfaces with geodesic boundary, and flat surfaces with erasing forest, we define some 
energy functions, which involve the area of the surface, and the length of its boundary, or the total length 
of the trees in the forest, on their moduli spaces respectively. We prove that the volumes of our mo

duli spaces normalized by these energy functions are finite. We deduce from this result the fact that the 
volumes of the moduli space of translation surfaces, and the volume of the moduli space of flat metric 
structures on the sphere are finite.
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Chapitre 1

Introduction

1.1 Surface plate à singularités coniques

Soit E une surface compacte, fermée, orientée, c’est-à-dire une variété de dimension 2 , compacte, sans 
bord. On dit que E est une surface plate à singularités coniques lorsqu’elle est munie d’une structure 
métrique Euclidienne en dehors d’un sous-ensemble fini Sing telle que, pour tout x appartenant à Sing, 
un voisinage de x  est modelé sur un cône. Les premiers exemples de telles surfaces sont des polyèdres 
avec la métrique induite par la métrique Euclidienne de R3. Pour ces surfaces, les seuls points singuliers 
sont les sommets, les points à l’intérieur d’une face sont évidemment réguliers, ainsi que les points à 
l’intérieur d’une arête car ceux-ci ont un voisinage isométrique à l’union de deux demi-disques plongés 
dans R2. Dans le cas des polyèdres, tout sommet admet un voisinage isométrique à un cône dont l’angle 
au sommet est strictement plus petit que 2ir. Les surfaces plates en général ne vérifient pas cette propriété.

Les tores plats, i.e. quotients de R2 par des réseaux Zu © Zv, avec u, v e  R2 indépendants, sont d’autres 
exemples de surfaces plates. On construit également des surfaces plates dont le genre est plus grand que
1 (avec forcément des singularités), par exemple par revêtement ramifié des tores plats.

Pour les surfaces à bord, nous introduisons la notion de surface plate à singularités coniques et à bord 
géodésique, pour simplifier, que nous appelons surfaces plates à bord géodésique pour simplifier. Une 
surface plate à bord géodésique est une surface dont l’intérieur est munie d’une structure surface plate 
à singularités coniques (comme ci-dessus), et dont le bord est une union finie de segments géodésiques. 
Les exemples les plus simples de telles surfaces sont des polygones munis de la métrique induite par celle 
de R2. Comme dans le cas des surfaces fermées, on peut avoir des surfaces plates à bord géodésique de 

tout genre.

Il existe un lien important entre l’étude des surfaces plates et la théorie de surface de Riemann : si 
E est une surface plate, alors la structure surface plate induit une structure conforme sur E \  {Sing} 
qui s’étend uniquement en une structure conforme de E, et on a ainsi une surface de Riemann avec des
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1. INTRODUCTION

points marqués qui sont les points singuliers de S. Inversement, étant donnée une surface de Riemann £  
avec des points marqués, un théorème de Troyanov assure qu’il existe dans la classe conforme de S  une 
structure surface plate à singularités coniques dont les points singuliers sont les points marqués, avec les 
angles coniques fixés, de plus, une telle structure est unique à homothétie près (voir [Tri]).

Les espaces de modules des surfaces plates ayant des singularités coniques fixées sont l’objet de nom
breuses recherches, un bref aperçu des résultats concernant ce sujet est présenté dans les paragraphes qui 
suivent.

1.2 Métrique polyèdrale sur la sphère

Dans son article [Th], Thurston s’intéresse aux espaces de modules des surfaces plates isométriques 
aux polyèdres. Soit x un point singulier sur une surface plate, dont le voisinage est isométrique à un 
cône d’angle 9. On appelle le nombre 2ir — 9 la courbure en x. Pour toute surface plate isométrique à 
un polyèdre, tous les points singuliers sont de courbure positive. Par le théorème de Gauss-Bonnet, la 
somme de courbures de tous les points singuliers d’une surface plate polyèdre doit être égale à An.

On note C(k i , . . . ,  Kn) l’espace de modules des surfaces plates homéomorphes à S2, ayant n points 
singuliers de courbures (« i , . . . ,  Kn) à homothétie près. Cet espace n’est pas complet en général : si 
Kj +  Kj < 2n, alors la distance entre les points singuliers de courbures « j et Kj peut être réduite à zéro 
de façon que l’aire de la surface limite reste finie. On peut donc compléter C(ni, . . . ,  Kn) par les espaces 
C (k/j , . . . ,  kik), où (I i , . . . ,  Ifc) est une partition de l’ensemble n}, et

Soient « i , . . . ,  Kn, (n ^  3), n  nombres réels appartenant à l’intervalle (0, 2-7t), et vérifiant :

Kl H-------- f- Kn =  47T.

i£lj
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1. INTRODUCTION

Pour ces espaces de modules, Thurston obtient le résultat suivant :

Théorème (Thurston) Soient («i, . . . ,  nn), (n ^  3), n nombres réels dans l ’intervalle (0,27r) dont 
la somme est 4tt. Alors, l ’espace de modules C (k i, . . . ,  Kn) est une variété hyperbolique complexe de 
dimension n — 3, dont la complétion est une variété hyperbolique complexe à cônes de volume fini. La 
complétion de C (k\, . . . ,  Kn) est un orbifold si et seulement si pour tout couple (k1. Kj) tel que i ^  j  et 
s — Ki + Kj < 2iv, on a :

i) Soit (2tt — s) divise 27r,

ii) Soit = Kj et 7T — divise 2tt.

Pour construire les cartes locales, Thurston utilise des triangulations par segments géodésiques des 
surfaces dans C ( k \ ,  . . . ,  Kn), en associant aux n — 2 arêtes particulières n  — 2 nombres complexes obte
nus par une application développante. Par cette construction, le voisinage d’un point dans C ( k \  , . . . ,  Kn) 

est identifié au quotient d’un ouvert dans <Cn -2  par l’action de C*.

Dans ces coordonnées, l’aire d’une surface dans C(ki, . . . ,  Kn) est donnée par une forme Hermitienne 
H  de signature (1 , n — 3). Plus précisément, si S  est la surface dans C(k\, . . . ,  nn) représentée par un 
vecteur Z  G Cn-2, alors l’aire de S  est donnée par tZ  ■ H  • Z. La métrique hyperbolique complexe de 
C(« i , . . . ,  Kn) est la métrique qui est induite localement par la forme Hermitienne H  sur le quotient.

1.3 Surface de translation

Soient S une surface plate à singularités coniques, et 7  une courbe fermée contenue dans int(S) \  
{singularités}. Soit p un point de 7 , on note Holp(j)  l’holonomie de 7  considérée comme un lacet avec 
point de base p. En général, Holp(7 ) est un élément de 50(2) x R2, le groupe d’isométries de E2 (R2 

muni de la métrique Euclidienne) préservant l’orietation.

Si E est une surface telle que pour toute courbe fermée 7  dans int(E) \  {singularités}, l’holonomie de 
7  est une translation (dans ce cas le point de base n’a pas d’importance), alors on dit que E est une 
surface de translation. Une caractéristique des surfaces de translation est qu’un rayon géodésique ne 
s’intersecte jamais lui-même transversalement, autrement-dit, soit le rayon est une géodésique fermée, 
soit il rencontre un point singulier, soit il se prolonge infiniment. Par conséquent, étant donnée une direc

tion 0 E [0,27r), on peut définir un feuilletage sur une surface de translation en géodésiques dans cette 
direction.

Si x  est un point singulier d’une surface de translation E, l’angle du cône en x  doit être un multiple 
entier de 2ir. Notons que cette propriété est nécessaire mais pas suffisante pour caractériser les surfaces
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1. INTRODUCTION

de translation.

H est clair que les tores plats sont des surfaces de translations mais ils ne sont pas les seuls. Pour 
construire un exemple de surface de translation qui n’est pas un tore, considérons un octogone dont 
les côtés opposés sont parallèles et de même longueur. En recollant les côtes opposés de cet octagone, 
on obtient une surface compacte, sans bord, de genre 2. Comme les identifications sont des isométries 
de E2, cette nouvelle surface hérite de l’octagone au départ une structure métrique plate à singularités 
coniques. Remarquons que les huit sommets de l’octagone s’identifient en un seul point de la surface, 
qui est l’unique point singulier dont l’angle conique est 6ît. Puisque les côtés opposés de l’octagone 
sont parallèles, leur identification est réalisée par une translation de R2, par conséquent, l’holonomie de 
toute courbe fermée ne passant pas par le point singulier de la surface est une translation, on peut donc 
conclure que la surface obtenue est bien une surface de translation.

En parallèle avec des surfaces de translation, on a aussi la notion de surface de demi-translation. Une 
surface de demi-translation est une surface plate telle que Fholonomie de toute courbe fermée est un 
élément du group {±Id} x R2. Comme le cas des surfaces de translation, un segment géodésique sur une 
surface de demi-translation n s’intersecte jamais lui-même transversalement. Il s’ensuit qu’étant donnée 
une direction 9 € [0; 7r), on peut définir un feuilletage d’une telle surface en géodésiques parallèles à 
cette direction. Une condition nécessaire mais pas suffisante pour avoir une surface de demi-translation 
est que l’angle du cône en tout point singulier doit être un multiple entier de n. Un exemple de surface 
de demi-translation est la sphère § 2 munie d’une métrique plate avec 4 points singuliers dont les angles 
coniques sont tous égaux à 7r.

Dans la suite de ce paragraphe, nous allons rappeler quelques propriétés importantes de l’espace de 
modules des surfaces de translation.

1.3.1 Espace de m odules

Notons d’abord que l’on a l’identification suivante :

14



1. INTRODUCTION

{
Surface de translation d’aire finie avec 
un feuilletage en droites parallèles

1-forme holomorphe sur une 
surface de Riemann }

Fixons les entiers g > 2, et fci,. . . ,  kn, ki ^  1, i = 1 , . . . ,  n, tels que

k i  +  • • • +  k n  — 2 g  — 2 (1.1)

On note H (k i , . . . ,  kn) l’ensemble des couples (M , u j)  à isomorphisme près, où M  est une surface de 
Riemann compacte, sans bord de genre g, et uj  est une 1-forme holomorphe définie sur M  dont les zéros 
sont d’ordre k \ , . .. ,kn. Deux couples (M, a;) et (M ', a/) sont isomorphes s’il existe un isomorphisme 
de surfaces de Riemann h  : M  — ►  M 'te l que h * u '  — uj.

Par le théorème de Riemann-Roch, pour qu’une telle 1-forme existe, les entiers g ,k \ , . . .  ,kn doivent 
vérifier (1.1). On appelle H (k i , . . . ,  kn) une strate de l’espace de modules des 1-formes holomorphes. 
En utilisant l’identification ci-dessus, on peut considérer H (k i , . . . ,  kn) comme l’espace de modules des 
surfaces de translations ayant n  singularités d’angles (ki +  l)27r,. . . ,  (kn +  l)27r, avec un feuilletage en 
droites parallèles spécifié.

Il est bien connu que H (k i , . . . ,  kn) est un orbifold complexe algébrique, et que

1.3.2 Forme volume

Soit (M ,uj) un point dans H (k i , . . . ,  kn), on note p i , . . .  ,pn les n zéros de ui. Soient 71 , . . . ,  72g+n-i 
une famille de courbes sur M  qui représente une base dans H\ (M , {p\ , . . . ,  pn } ; Z) telle que {71 ,. - ■, 72g} 
forment une base symplectique standard de H\ (M, Z), et 72^+1 est un arc joignant p\ à Pi+i-

Considérons l’application suivante dite application de périodes :

où U est un voisinage de (M, u j)  dans H (ki, . . . ,  kn).

Cette application est une carte locale de H (k i , . . . ,  kn). Soit <f> € C2s+n_1 l’image de (M , u ) par $, 

alors l’aire de M  est donnée dans cette carte locale par la formule suivante :

Soit A2(2g-fn—1) la mesure de Lebesgue de C2g+n 1. Considérons la forme volume ¡jlq =  $*A2(23+n-i) 
définie au voisinage de (M,u>). Comme les bases de H\(M, {p i , . . .  ,pn};Z) ~  Z2s+ n-1  sont liées

dime W(&i,. . . ,  fcn) =  2g +  n — 1 .
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1. INTRODUCTION

par des matrices dans SL(2g +  n — 1, Z), la forme volume /j,q ne dépend pas du choix de la famille 

{ tiî • • • ) 72g+n-i}> et est donc bien définie sur H (k i, . . . ,  kn).

Considérons maitenant le sous-ensemble T ii(k i,. . . ,  kn) de H ( k i , k n )  qui contient tous les 
couples (M, ui) tels que

/ u  A u  = 1.
Jm

Dans une carte locale défine par l’application de périodes $ , l’ensemble T i\(k i, . . . ,  kn) fl U est envoyé 
sur un ouvert dans

Qi = {<» s C2»+"-‘ I \  ¿ ( *  V , -  M s+i) = !}•
1 = 1

La mesure de Lebesgue A2(2S+n-i)  induit naturellement une forme volume ^3(25+71- 1) sur Qi- Soit 
fj,Q = ^*^2(2p+n-i)’ on en déduit que /xj est une forme volume bien définie sur H \(k \ , . . . ,  kn).

Le théorème suivant a été démontré par H.Masur, et W.A.Veech

Théorème (H.Masur, W.A. Veech) Le volume de chaque strate kn) est fini :

V o l(H i(k i , . . . ,k n))=  [  d/j,Q<oo.
J H l ( k  l t . . . , k n )

Dans un article récent [EO], A. Eskin et A. Okounkov donnent une méthode pour calculer le volume 
des strates kn).

1.3.3 Action de S'L2(R)

Soient E une surface de translation. Etant donné un élément A  du groupe S L 2ÇM.), on peut construire 
une autre surface de translation, notée par A-Y,, de manière suivante : soit {<pi, i E l }  un atlas définissant 

la structure surface de translation de E, on note {(pi, i E 1}  un autre atlas dont les cartes (pi sont définies 
par :

(pi = A  o (p.

Comme les changements de cartes tpj o ipT1 sont des translations de R2 (si leur domaine de définition est 
non-vide), les changements de cartes (Pjoipi — A o  (ipj o o A~l sont aussi des translations de R2. 
Les cartes {</?*, i € 1}  définissent donc une structure surface de translation sur E, on note cette nouvelle 
surface A  • E. On peut vérifier sans difficulté que A • E a le même nombre de points singuliers avec les
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1. INTRODUCTION

mêmes angles que E.

On obtient ainsi une action de 6 X2 (R) sur l’espace de modules des surfaces de translation. Cette 
action de 57,2 (K) peut être réalisée plus concrètement : si E est une surface de translation obtenue par 
le recollement des polygones P \ , . . . ,P j  dans R2, alors A  • E est la surface obtenue par le même recol
lement appliqué aux polygones A(P\) , . . . ,  A(Pj).

Pour mieux comprendre cette action de SX2(R), soient (M, u>) un couple dans H(k \ , . . . ,  kn), et 
(7 i> • • • 172ÿ+n-i) une base de H\(M, {p i , . . .  ,pn}] Z), où {p i , . . .  ,pn} est l’ensemble des zéros de u. 
On note E la surface de translation définie par (M, u;), et suppose que 7 i =  1, . . . ,  2g +  n — 1, est une 
union des segments géodésiques à extrémités dans {p i , . . .  ,pn}, un tel segment géodésique est appelé 
un lien selle de E.

Par définition, on a un homéomorphisme <p de E dans A  • E qui envoie l’ensemble des points singuliers 
de E sur l’ensemble des points singuliers de A ■ E.

En identifiant C à R2, pour tout 2 G C, on note A(z) l’image du vecteur z € R2 par A. Soit s un lien 
selle de E, alors </?(s) est aussi un lien selle de A • E. Supposons que A  • E est définie par un couple 
(M ', ùj') dans H ( k \ , k n), on a alors :

Par conséquent, si <£>((M, u>)) =  ( f a , , fag+n_i) dans la carte locale associée à {71 , . . . ,  72S+„-i} 
(par l’application de périodes), alors u/) )  =  (A ( fa) , . . . ,  A(fag+n-x)) dans la carte locale as

sociée à {<£>(71) , . . . ,  (¿>(725+n—2)}- On en déduit que dans ces cartes locales, l’action de A est donnée 
par la matrice :

A 0 .. . 0 \

Â  =
0 A .. . 0

0 0 .. . A J
Comme det(Ji) =  1, Â  préserve donc la mesure de Lebesgue de C2ff+n 1 =  R 2 (2s + n  x) t ü s’ensuit que 

la forme volume ¿¿o est invariante par l’action de A.

On peut remarquer sans difficulté que, pour tout A  G SX2(R), on a A ire(E) =  Aire(A • E), ce qui 
signifie que A  préserve l’ensemble H \( k \ , . . . ,  kn). Comme A  préserve la forme volume ¡jlq, il en résulte 
que A  préserve aussi la forme volume /îq de 'H\(k\ , . . . ,  kn).

De la même façon que le groupe 5 L2(R), on peut également considérer l’action du sous-groupe à un
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1. INTRODUCTION

l é  0 \
paramètre { I _t I , i  € R} sur H{k\, . . . , k n). L’action de ce sous-groupe définit naturellement 

un flot sur l’espace de modules H (k i , . . . ,  kn), qui est appelé le flot géodésique de Teichmüller.

(  e* 0 \
Concernant les actions de 6 X2 (R) et de { I _t J , t  € R}, on a le théorème suivant :

Théorème (H.Masur, W.A.Veech) Les actions de 5L 2(R) et de {( n _t I , t  G R} sont ergo-
ê  0 

\  0  6
diques par rapport à la forme volume /!q sur chaque composante connexe de H \(k \ , . . . ,  kn).

Notons Tig l’union de toutes les strates H (k i,. . . ,  kn) telles que k\ -\------ \- kn = 2g — 2. On a une
projection naturelle de Hg sur M g l’espace de modules des surfaces de Riemann compactes, fermées, 
de genre g. L’orbite d’un couple (M, uj) 6  H{k\ , . . . ,  kn) C 7~Cg par S L 2(ÏÏ&) induit le diagramme 
commutative suivant

5L 2(K) — > H g 

i  4

M2 ~  S L 2{R)/SO (2 ) M  M g

où /  est un immersion isométrique pour la métrique de Teichmüller de M g. L’image de H2 par cette 
application est la projection d’un disque de Teichmüller dans l’espace de Teichmüller Tg.

1.4 Motivation

En géométrie symplectique, il est d’usage d’étudier les déformations d’une variété symplectique par 
une famille continue de paramètres, en particulier lorsqu’elle est obtenue par réduction symplectique. 
Ici, nous nous proposons d’étudier des déformations de l’espace de modules des surfaces de translation 
dans le cadre des surfaces plates. Nous allons considérer des surfaces plates dont les angles aux points 
singuliers sont fixés, sur lesquelles il existe une union disjointe d’arbres dont le complémentaire est une 
surface de translation. Lorsque ces arbres se rétrécissent en points isolés, on obtient une surface de trans
lation usuelle. Nous appelons des arbres ayant cette propriété les arbres effaçants, et leur union une forêt 
effaçante.

On peut remarquer aussitôt que les surfaces plates polyèdrales vérifient l’hypothèse précédente car le 
complémentaire de n’importe quel arbre sur la sphère est topologiquement un disque. Ceci nous permet
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de retrouver des résultats déjà connus, notamment par Thurston, pour les surfaces plates polyèrales.

La première question que nous allons étudier est la structure, et la dimension de ces espaces. Nous 
voudrons ensuite savoir s’il existe des formes volumes sur ces espaces, et établir le lien entre ces formes 
volumes et la forme volume de l’espace de modules des surfaces de translation. De plus, comme dans les 
cas des surfaces plates polyèdrales et surfaces de translation, nous souhaitons montrer que les espaces de 
modules en question sont de volume fini, et éventuellement, calculer leur volume.

Les résultats obtenus dans cette thèse nous donnent des réponses à ces questions. Plus précisément, 
nous construisons une structure plate affine complexe pour ces espaces de modules. Nous définissons 
en suite une forme de volume sur ces espaces qui, dans les cas de surfaces de translation, et de surfaces 
plates polyèdrales, est égale aux formes volumes habituelles à une constante multiplicative près. Nous 
montrons que l’intégrale des fonctions d’énergie, qui sont définies à partir de l’aire de la surface, et de la 
longueur des branches, par rapport à cette forme volume est finie. Notons que ce résultat nous permet de 
donner une nouvelle preuve du fait que le volume de chaque strate de l’espace de modules des surfaces 
de translation est fini.

Dernière remarque, la méthode que nous allons développer pour 
effaçants s’adapte naturellement dans le cas des surfaces de translation 
gones de R2, et sera le premier cadre naturel de nos travaux.

1.5 Présentation des résultats

1.5.1 Surface de translation à bord  géodésique

Les premiers résultats de cette thèse concernent l’espace de modules des surfaces de translation à 
bord géodésique. Plus précisément, on va s’intéresser aux surfaces plates à singularités coniques dont le 
bord est une union finie de segments géodésiques satisfaisant la condition suivante : l’holonomie de toute 
courbe fermée contenue dans l’intérieur de la surface, et ne passant pas par des points singuliers est une 
translation de R2.

Fixons les données suivantes :

• Les entiers g, n, m, et s i , . . . ,  sm, Sj ^  1 ;

• Les nombres réels a i , . . . ,  a n, avec a* € 27rN, et /?i,. . . ,  /3m, avec f3j € 27rZ, tels que :

étudier les surfaces avec arbres 
avec bord, lequel inclut les poly-
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(a i +  ■ • • +  a n) +  (fa +  • • • +  fini) — 27r(2 g +  m  +  n — 2) (1-2)

On note A4T(â; fi), où á = ( a i , . . . ,  a n), et fi = ((sx,f i i ) , . . . ,  (sm, fim)), l’ensemble des couples 
(E, £), où E est ime surface de translation à bord géodésique vérifiant les conditions suivantes :

- S a n  points singuliers à l’intérieur numérotés de 1 à n tels que l’angle du cône au ï-ème point est

- i9E a m  composantes connexes numérotées de 1 à m telles que la z-ème composante est l’union de 
Sj segments géodésiques, et la somme des angles aux extrémités de ces segments vaut fij +  Sjir,

et £ est un champ de vecteur parallèle normalisé (la longueur de tout vecteur de ce champ est 1) sur E.

Remarque : Parle théorème de Gauss-Bonnet, pour que M.r(â', fi) soit non-vides, les angles a i , . . . ,  a n, 
et f i i , , fim doivent vérifier (1.2 ).

Avec ces données, nous avons :

Théorème 1.5.1 jM x(â; fi) est le quotient d ’une variété plate affine complexe de dimension :

{
2g +  n  — 1 , s im  — 0 ;
y Sj +  2g +  77i +  n  — 2 , si m, > 0 .

par l ’action d ’un groupe agissant proprement discontinument.

Ce théorème résulte du Théorème 2.2.7 et de la Proposition 2.2.8. Les cartes locales de A4j(œ, fi) sont 
construites à partir des triangulations géodésiques des surfaces dans M.t(î*; fi).

Comme dans le cas des surfaces de translation sans bord, il existe une action du groupe 5L 2(R) sur 
_A/ix(â; fi), et nous avons (cf. Théorème 2.2.9 et Proposition 2.6.2) :

Théorème 1.5.2 II existe une forme volume /ixr sur j\4j(à] fi) invariante par l ’action du groupe

Au cas où m  =  0, A Ít(¿ ; fi) s’identifie à l’espace de module H (k i,. . . ,  kn), avec a¿ =  (fc¿ +  l)27r, 
rappelons que nous avons la forme volume /¿o sur H (k i,. . . ,  kn) qui est définie par l’application de 
périodes. Nous avons (cf. Proposition 2.2.10) :

Proposition 1.5.3 II existe sur chaque composante connexe de 7 i(k i, . . . ,  kn) une constante A telle que 

MTr =  A/io-
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1.5.2 Surface plate avec forêt effaçante

Soit E une surface plate compacte, sans bord, une forêt effaçante sur E est une union disjointe d’arbres 
Â = A i U • • • U Am telle que :

• Tout point singulier de E est un sommet d’un arbre dans A.

• Pour toute courbe fermée 7  sur E, si 7  n  A = 0 , alors l’holonomie de 7  est une translation.

Si toutes les arêtes d’un arbre sur E sont des segments géodésiques, alors on dit que cet arbre est 
géodésique. Une forêt est dite géodésique si tous ses arbres sont géodésiques.

Fixons m  arbres topologiques A i , . . . ,  A m. Nous autorisons le cas limite où certains arbres peuvent 
être des points isolés. Notons k j, j  =  1, . . .  ,m , le nombre de sommets de A j, et posons ko =  0. 
Choisissons une numérotation des sommets de A i , . . . ,  Am telle que les sommets de A j, j  =  1

sont numérotés par {ko + -----h kj- 1 +  1, . . . ,  ko + -----h kj}. Notons A  la famille . . . ,  A m}, et
posons

m

n = J 2 kr
j =1

Soient g un entier, et a i , . . . ,  a n, n  nombres réels positifs tels que

ai H------ \-an =  (2g + n — 2)2n, et

Qfeo+-+fci-i+i "•--------  ̂a ko+ -+kj €  27rN.

Notons A iet(A, â), où â  =  ( a i , . . . ,  a n), l’espace de modules des triplets (E, A, £), où

• E est une surface plate compacte, sans bord,

• A — A i U • • • L1 Am est une forêt effaçante géodésique sur E telle que Aj est isomorphe à A j (deux 
arbres sont isomorphes s’il existe une application de l’un à l’autre qui définit une bijetion entre 
deux ensembles de sommets, et une bijection entre deux ensembles d’arêtes), et

• £ est un champ de vecteur parallèle défini sur E \  A  dont tous les vecteurs sont de norme 1.

Nous supposons en plus que l’isomorphisme entre Aj et A j envoie le i-ème sommet de A j sur un point 

dont l’angle du cône associé est a

Remarque Par définition, tout point singulier de E est un sommet d’un arbre de la forêt A, mais on peut 
avoir des sommets qui ne sont pas des points singuliers de E (l’angle du cône en ces points est 2n).
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D s’avère que la méthode utilisée pour étudier l’espace de modules des surfaces de translation à bord 
géodésique peut s’appliquer dans cette situation, et nous obtenons (cf. Théorème 3.1.10, et Corollaire 

3.1.8):

Théorème 1.5.4 Ai et(Â,ôc) est le quotient d ’une sous variété plate affine complexe de l ’espace des 
surfaces de translations à bord géodésique (avec des données appropriées) de dimension

{
2g + n — 1, si ai E 27rN, Vi =  1 , . . . ,  n,
2g +  n — 2 , sinon.

par l ’action d ’un groupe agissant proprement discontinument, préservant une forme volume.

Notons que l’on n’a pas d’action de S L 2ÇSÎ) sur A4et(.4, â) dans le cas général.

1.5.3 Surface plate sphérique

Par surface plate sphérique, on entend une surface plate homéomorphe à la sphère S2. Soit E une 
surface plate sphérique, il n’est pas difficile de montrer qu’il existe un arbre géodésique sur E dont les 
sommets sont les points singuliers. Un tel arbre est automatiquement effaçant car son complémentaire 
dans E est un disque. Cette observation nous amène à considérer les surfaces plates sphériques comme 
un cas particulier des surfaces plates avec arbres effaçants.

Fixons n  réels positifs a i , . . . ,  a n, tels que

a i +  • • • +  a n =  27r(n — 2).

Notons Al (S2, â)*, où â  =  ( a i , . . . ,  a n), l’espace de modules des surfaces plates homéomorphes à la 
sphère ayant n  singularités d’angles a i , . . . ,  a n, et .M(§2, â) l’ensemble Ai (S2, â)* x S1. Nous avons 
(cf. Théorème 4.1.1) :

Théorème 1 .5 .5  A1(S2, â) est le quotient d ’une variété plate affine complexe de dimension n — 2 par 
l ’action d ’un groupe agissant properment discontinument, et préservant une forme volume ¡J-tt-

Comme dans les cas des surface de translation avec bord, ou celui des surfaces avec forêt effaçante, 

la forme volume /¿Tr dans 1.5.5 est définie à l’aide des triangulations géodésiques des surfaces dans 

A4 (S2, â). Notons que, à la différence des surfaces avec forêt effaçante en général, ici nous n’avons pas 
besoin de spécifier un arbre effaçant particulier sur la surface.

Notons A/li(S2, â)* l’ensemble des surfaces d’aire 1 dans A/i(S2, â)*. Dans le cas où tous les angles 
ai sont plus petits que 2 ir, le travail de Thurston donne une forme volume /¿Hyp sur A ii(S2, â)* qui
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provient de la métrique hyperbolique complexe. La forme volume ¿¿Tr de M (S 2, a) induit aussi une 
forme volume sur A^i(§2, â)*, notons celle-ci Nous allons montrer que p^. =  A/iHyp, où À est une 
constante dépendant de ( a i , . . . ,  a n) (cf. Proposition 4.4.1). Une conséquence directe de ce fait est

Proposition 1.5.6 Si ai <  2tt, pour tout i E { 1 ,..., n}, alors

/tXr(A1l(S2,â)*) < +00.

1.5.4 Intégration des fonctions d’énergie

Revenons au cas des surfaces de translation à bord géodésique. Rappelons que M t (â; ¡3) est l’espace 
de modules des couples (£,£)> où E est une surface de translation à bord géodésique, et £ est un champ 
de vecteur parallèle constant sur E. Nous définissons une fonction d’énergie T  sur M ri(â \ ¡3) par :

JF ((£ ,0 ) =  exp(—A ire(E) -  ¿2(dS)), 

où £(dTi) est la longueur du bord de E.

Pour les surfaces avec forêt effaçante, nous avons une fonction d’énergie similaire :

F *:  M et( i ,â )  — ► R
(£,Â ,£) i— ► exp(—A ire(S) — £2(Â))

où i(Â ) est la somme de longueur totale des arbres de la forêt A. Rappelons que nous avons défini une 
forme volume /xiy sur (3), ainsi que sur M et(Â ) â). Nous avons alors (cf. Théorème 5.1.1) :

Théorème 1.5.7 a) Si le bord des surfaces dans /?) est non-vide alors :

/ _ TdfJ.Tr < +00,

b) Si les arbres dans la famille A  ne sont pas tous des points isolés, alors

I  J^dnx r < +00.
J M et(Â,â)

En utilisant ce résultat, nous obtenons une nouvelle preuve du fait que le volume de toute strate 

, kn) par rapport à la forme volume ¿Xq est fini (cf- Proposition 5.5.1).

Pour les espaces de modules des surfaces plates sphériques, inspirés du résultat de Thurston, en utili
sant le Théorème 1.5.7, nous obtenons un résultat plus général (cf. Théorème 5.1.2)

Théorème 1.5.8 L'intégrale de la fonction (E, ete) \— > exp(—A ire(E)) par rapport à la forme volume 

fjixr sur A i (S2, â) est finie.
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L exp(—Aire)d/iTr < oo.
M(§2,â)

Par conséquent, le volume de A/ii(S2, a)* est fini.

Remark: Veech [V2] a trouvé ce résultat pour une forme volume qui est définie différemment.

1.6 Sommaire

La suite de cette thèse est organisée comme suit :

- Chapitre 2 : dans ce chapitre, nous traiterons le cas des surfaces de translation à bord géodésique. 
Nous montrerons d’abord que, pour toute surface de translation à bord géodésique, il existe tou
jours une triangulation par segments géodésiques dont l’ensemble des sommets contient l’ensemble 
des points singuliers. Nous montrons ensuite qu’une telle triangulation permet de définir des co
ordonnées locales d’une variété plate affine complexe 7t(ck; (3). Par définition, ¡3) est le 
quotient de Tr(œ, ¡3) par l’action d’un groupe r(S , V), nous montrerons que l’action de r(S , V) 
est proprement discontinue.

Sur les cartes locales de 7 r(â ; /3), qui sont définies par des triangulations géodésiques, une forme 
volume peut être définie de façon naturelle. Nous montrons que cette forme volume ne dépend pas 
du choix de la triangulation. Cela résulte du fait que, pour une surface de translation ou de demi- 
translation, avec ou sans bord, étant données deux triangulations géodésiques dont les ensembles 
de sommets coincident et contiennent l’ensemble des points singuliers, alors on peut transformer 
l’une à l’autre par une suite de changements élémentaires (cf. Théorème 2.6.2). Nous obtenons 
ainsi une forme volume ¿¿xr bien définie sur ^ ( â ;  /9). Comme l’action de T(5, V) préserve cette 
forme volume, celle-ci induit une forme volume sur Â Ît C«; /?)■

Comme les surfaces de translation fermées sont un cas particulier des surfaces de translation à bord 
géodésique, la forme volume fiTr est bien définie sur chacune des strate H (k i,. . . ,  kn). Nous mon

trerons, enfin, que sur chacune des composantes connexes de 7i(k i, . . . ,  kn), la forme volume /x r̂ 
est égale à A/xo, où A est une constante non-nulle, et ¡xq est la forme volume définie par l’application 
de périodes.

- Chapitre 3 : ce chapitre concerne les surfaces plates avec arbres effaçants. Avec le même schéma 
que Chapitre 2, nous montrons que a) est le quotient d’une variété plate affine complexe
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T et(*Â, â), qui est une sous variété de 7x(<5'; ¡3'), avec des donées â', fi' appropriées, par l’action 
d’un groupe T(Sg, A) agissant proprement discontinument. Ensuite, nous prouvons l’existence 
d’une forme volume ¿¿tr sur T et(Â, à) qui est invariante par l’action de T(Sg, Â), cette forme 
volume induit donc une forme volume sur A4et(Â, â).

- Chapitre 4 : dans ce chapitre nous nous concentrerons sur les surfaces plates sphériques. Remar
quons d’abord qu’il existe, sur toute surface plate sphérique, un arbre géodésique connectant tous 
les points singuliers, et un tel arbre est automatiquement effaçant car son complémentaire est un 
disque. Cette observation nous permet de considérer les surfaces plates sphériques comme un cas 
particulier des surfaces plates avec forêt effaçante. Ainsi, nous démontrons aisément que M  (S2, â) 
est un orbifold complexe de dimension n — 2 .

La preuve de l’existence d’une forme volume /¿Tr> analogue à celles définies dans les deux cha
pitres précédents, est un peu plus délicate, car nous ne choisissons pas auparavant un arbre effaçant. 
Néanmoins, nous pouvons prouver que deux triangulations géodésiques d’une surface plate sphérique 
dont l’ensemble des sommets coincide avec l’ensemble des points singuliers peuvent être trans
formées l’une à l’autre par des changements élémentaires (cf. Théorème 4.3.2). Cela nous permet 

de définir ¿¿Tr sur A4 (S2, â).

Nous terminerons ce chapitre par la comparaison entre la forme volume induite par /¿tt, et la 
forme volume fiHyp, qui provient de la métrique hyperbolique complexe définie par Thurston, sur 
.Mi (S2, â)*, dans le cas où tous les angles coniques sont inférieurs à 2tt.

- Chapitre 5 : dans ce chapitre, nous montrons que les intégrales des fonctions T  et J^et, définies 
sur A Ît(ô ; fi) et M et(Â, â) respectivement, par rapport à la forme volume ¿ítt sont finies. Nous 
prouvons ensuite le fait que le volume des strates . . . ,  kn) est fini comme une conséquence 
de ce résultat. Finalement, nous prouvons que le volume de A^i(S2, à)* par rapport à la forme 
volume /¿^r, qui est induite par pxr> est fini. Notons que pour le cas particulier où tous les angles 
coniques sont inférieurs à 2ir, ce résultat a été déjà connu par le travail de Thurston, et le même 
résultat a été trouvé par Veech dans [V2] pour une autre forme volume.

Pour des raisons pratiques, le reste de cette thèse sera rédigé en anglais. L’auteur s’en excuse pour des 
inconvénients éventuellement causés au lecteur par ce choix, et le remercie pour sa compréhension.
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Chapitre 2

Translation surfaces with boundary

2.1 Introduction

Translation surfaces are flat surfaces with conical singularities verifying the following condition : the 
holonomy of every closed curve, which does not contain any singularity, is an Euclidean translation. On 
a translation surface, one can define a parallel vector field on the complement of the singularities. There 
exists a system of local charts defining the flat metric structure such that, on each chart, this vector field 
is mapped to a vertical vector field on a domain of M2. Any pair (E, £), where E is a closed translation 
surface, and £ is a parallel vector field on E, can be identified to a pair (M, oj) ,  where M  is a closed Rie- 
mann surface, and a holomorphic 1-form on M . The zeros of ui are the singularities of metric structure 
on E, zeros of order k, k = 0 ,1 , 2 , . . . ,  correspond to singularities of angles 2 ir(k -f-1).

Let g be the genus of E, and k \ , . . . ,  kn be the orders of the zeros of o j . By the Riemann-Roch Theorem, 
one has

k\ +  • • • +  kn = 2g — 2 .

Fix k i , . . . ,  kn and let Ti(k\ , . . . ,  kn) denote the moduli space of pairs (M, oj ) ,  where M  is closed, 
and the holomorphic 1-form oj has exactly n zeros with orders k%,. . . ,  kn. The space H (k \,. . . ,  kn) is 
also called a stratum of the moduli space of translation surfaces of genus g, where g can be computed 
by the above equation. It is well known that H (k i, . . . ,  kn) is a complex orbifold of dimension 2g+n—1.

Let (M, oj) be a pair in H (k i,. . . ,  kn). The zeros of oj are denoted by x \ , . . . ,  xn, and their orders 

by is k{ respectively. Let {71 , . . . ,  ̂ g+ n-i}  be a set of curves on M  which is a generating family of the 
group H i(M , {xi , . . .  ,x n};Z). For any element (M',u>') close to (M,oj) in H (hi, . . . ,  kn), we denote 

{Tit • • • j l 2g+n-\} the corresponding curves on M'. We can then define a map $  from a neighborhood 
of (M, oj) into C25+n_1, which sends a pair (M ', oj') to the vector ( f , o j',..., f  , oj'). The map $

'1 i2g+n— 1
is called the period mapping.
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2. TRANSLATION SURFACES WITH BOUNDARY

Let A2(29+n—1) denote the Lebesgue measure of C2s+n_1 ~  R2(29+n_1). Since two generating fami
lies of H i(M , {x \ , . . . ,  xn}] Z) are related by an element of the group SL(2g +  n  — 1, Z), the volume 

form $*A2(25+n—l) is weH defined on H (k i,. . . ,  kn). We denote this volume form hq.

Let H  i (k i , . . . ,  kn) denote the subspace o fH (k i,. . . ,  kn) consisting of pairs (M, u) such that f M \ui\2 =
1. An element of T ii(k i, . . . ,  kn) corresponds to a translation surface of area 1. The volume form ¡j,q in
duces a volume form /xi on H \(k i,. . . ,  kn). It is proved by Masur [M] and Veech [VI] that the volume 
of H \(k i , . . . ,  kn) is finite. In [EO], Eskin and Okounkov compute the volume of several samples of 
H i(k i , . . . ,  kn). They actually give a method to compute the volume of every stratum T t\(k i,. . . ,  kn), 
and give numerical results for some of them.

In this chapter, we are interested in translation surfaces with boundary such that every boundary 
component is a finite union of geodesic segments. Let E be such a translation surface. A point x  in E is 
regular if either:

• x  is a point in the interior of E, and x  has a neighborhood isometric to a disk {z G C : \z\ < e} 
with e small, or

• x  is a point in the boundary of E, and x  has a neighborhood isometric to a half disk {z G C : \z\ < 
e, Imz ^  0 }.

Similarly to closed translation surfaces, on any translation surface with geodesic boundary, we can 
define parallel vector fields on the complement of the singularities and the boundary. Let C be a boun
dary component of E, and £ be a parallel vector field on E. Let c : S1 — ► E be a simple, closed C 1 

curve freely homotopic to C. Assume that for every t  in S1, the tangent vector v(t) =  c(i) ^  0. Let
0  : S1 — ► R denote the function which maps t to the angle between v(t) and the vertical vector £(c(i)). 
We define the cone angle of C to be the number / gl dO. Observe that the cone angle of a boundary 
component of any translation surface belongs to the set {2fcvr, k € Z}, and it does not depend on the 
choices of c and £.

Let g ,n ,m  be three positive integers. Fix n numbers c*i, . . . ,  an with a , € 27rN, and m pairs of num
bers (/3i, s i ) , . . . ,  (/3m, sm), with (3j in 27rZ, and Sj in N. We consider the moduli space of translation 
surfaces E of genus g having n singularities in the interior, and m  boundary components denoted by 
Cl , . . . ,  Cm such that:

• the n  singularities in the interior of E have cone angles a \ , . . . ,  an.

•  the cone angle associated to the component Cj is ¡3j, j  = 1, . . m.

• there exists a subset Qj of Cj containing exactly Sj points such that Cj \  Qj is a union of open 
geodesic segments.
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2. TRANSLATION SURFACES WITH BOUNDARY

Let a  denote the sequence { a i . . . ,  a n}, and ¡3 denote the sequence {(fii, s i) , . . . ,  (¡3m, sm)}. Let 
¡3) denote the moduli space of surfaces described above. The main results of this chapter is that 

j3) is a complex affine orbifold, and moreover, we can specify a volume form /xtt on M i( a \¡3). 

When m  =  0, ¡3) can be identified to the space H ( k i , k n ) ,  with a.i =  2n(ki +  1), i =
1 , . . . ,  n. In this case, for each connected component of Ti(ki, . . . ,  kn), there exists a constant A such 

that //Tr =  A/Xq-

2.2 Definitions and main results

We start with some basic definitions :

2.2.1 Flat surface and translation surface

Definition 2.2.1 (Flat Surface with Conical Singularities and Geodesic Boundary) Let E be a com

pact, connected surface, possibly with boundary. Let {pi,p2, • • • ? P m }  be a finite subset of the inter
ior of E, and {91, 92? • • • > Qn2} be a finite subset of the boundary of E. We say that E is a flat sur
face with geodesic boundary, having conical singularities at p i , . . .  ,pni, and comers at 91, . . . ,  qn2> if 
E \  {p i,...,Pm 5 Qi5 , qn2} equipped with an Euclidean metric structure verifying the following 
conditions:

(i) For each i G {1,. . . ,  ni}, there exists 0i>  0 such that pi has a neighborhood isometric to a small
disk around the origin in R2, which is equipped with the metric ggi (r, 0) =  dr2 +  )2r2d02 in 
the polar coordinates. The number 6i is called the cone angle at p .̂

(ii) For each j  £ {1,.. .  , 712}, there exists r)j > 0 such that qj has a neighborhood isometric to
small upper half disk around the origin in R2, which is equipped with the metric gr]j (r, 6) = 
dr2 +  )2r2d62 in the polar coordinates. The number rjj is called the comer angle at qj.

(in) c?E \  {q i. . . ,  qn2} is a finite set of open geodesic segments.

In the sequel, ‘a flat surface’ is a flat surface with conical singularities whose boundary, if not empty, 
is geodesic.

Let E; (pi , . . .  ,pni); (91, . . . ,  qU2) be as in Definition 2.2.1. Let 0i , . . . ,  6ni be the cone angles at 
p i , . . . ,  pni respectively, and 771, . . . ,  rjn2 be the comer angles at qi, . . . ,  qn2 respectively. Let x(E) denote 
the Euler characteristic of E. We have the following formula
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2. TRANSLATION SURFACES WITH BOUNDARY

ni ri2

Z > + E  ^  =  2?r(n i + t  - * ( s ) ) - (2-1}
1=1 J=1

This is a consequence of the Gauss-Bonnet Formula (see [Trl]).

Definition 2.2.2 (Translation Surface) A translation surface E is aflat surface verifying the following 
condition : if c is a closed curve in the interior of E which does not contain any singular point, then the 
holonomy o f c is a translation of the Euclidean plane R2.

Note that the cone angle at any singular point in the interior of a translation surface must be an inte
gral multiple of 27t. The comer angle at a singular point on the boundary of a translation surface may not 
belong to the set 7rZ, but the sum of all comer angles at the singular points on each boundary component 
must be an integral multiple of 7r.

We define as usual the length of a piece-wise C 1 curve, and denote d the induced distance on a flat 
surface. Note that for any pair of points (x , y) of a flat surface, there always exists a curve piece-wise 
geodesic joining x  and y whose length is d(x, y).

Definition 2.2.3 (Normalized Parallel Vector Field) Let E be a translation surface. A parallel vector 
field on E is a vector field defined in the interior ofT, except at singular points, which is nowhere zero, 
and in local charts of the Euclidean metric structure, all the lines determined by the vectors of this field 
are parallel. A parallel vector field is said to be normalized if the norm of all of its vectors is one.

R em ark:: A parallel vector field exists if and only if E is a translation surface.

From now on, by ‘translation surface’ (with or without boundary), we will mean a ‘translation surface 
with a distinguished parallel vector field on it’.

Let E be a translation surface, and £ be a parallel vector field on E. Assume that the boundary of E 
is not empty, and let C be a component of c?E. We assume in addition that C is oriented coherently with 
the orientation of E.

Definition 2.2.4 (Cone Angle associated to a Boundary Component) Let c : S1 — > E be a C1, simple, 
closed curve which is contained in the interior of E, and freely homotopic to C, where C is the curve C 
with opposite orientation. Assume that c does not contain any singular point o f E. For every t  E S1, let 

0 (i) denote the angle between the vector v(t) =  c!(t), and the vector £(c(t)). The cone angle associated 
to the component C is defined to be the number

f  d@(t).
Js1
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2. TRANSLATION SURFACES WITH BOUNDARY

Remark:
a. The cone angle associated to any component of belongs to the set 2ttZ.

b. This cone angle does not depend on the choices of the curve c and the field £.

c. If C contains s comers with comers angles 771, ,  r/s, then the cone angle associated to C  equals 

Z i= l Vj -  S7T.

Now, fix three non-negative integers g, n, m  such that 2g + n + m  — 2 > 0 . Let a \ , . . . ,  an be n real 
numbers in 27rN, and P i,. . . ,  ¡3m be m  numbers in 2nZ such that

Let s i , . . . ,  sm be m  positive integers. In this chapter, we will fix a compact connected translation 
surface S  of genus g, whose boundary has m  components denoted by C\ , . . . ,  Cm verifying the follo
wing hypothesis:

• There are n  points p \ , . . . ,  pn in the interior of S  such that the cone angle at pi is ai, i =  1, . . . ,  n.

• The cone angles associated to the Cj is (3j, j  =  1 , . . . ,  m.

• For j  =  1 there exists a subset Qj of Cj consisting of Sj points such that Cj \  Qj is a union 
of open geodesic segments.

Let V  denote the set {pi , . . .  ,pn}, and V denote V  U (Qi U • • • U Qm). Let S  denote the double of S, 
and let V  denote the finite subset of S  arising from V. The flat metric structure of S  induces a flat metric 
structures on S  whose all the singularities are contained in the set V. Note that we have Riemann surface 
structure on S' \  V which is induced by the metric structure.

Given a homeomorphism /  of S, we denote /  the homeomorphism of S  arising from / .  We call /  
the double of / .

First, we have:

Definition 2.2.5 (Mapping Class Group) We denote Homeo+ (S , V) the group of orientation preser

ving homeomorphisms of S  which fix every point in the set V. Let HomeoQ (S , V) denote the normal 
subgroup o/Homeo+ (Sr, V) consisting of all homeomorphisms f  such that double f  of f  is isotopic to 
Id^ by an isotopy fixing all the points in V. The mapping class group of S  preserving V is defined to be 
the quotient group Homeo+ (5, V)/HomeoQ (S , V), which will be denoted by T(5, V).

n 771

(2.2)
t=i j = 1
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2. TRANSLATION SURFACES WITH BOUNDARY

Remark:
a. Let /  be a homeomorphism of S  which fixes all the points in V. If /  can be connected to the iden

tity of S  by an isotopy fixing all the points in V, then clearly /  is an element in HomeoJ(5, V).

b. Consider S  as an embedded surface in S. The boundary of S  becomes then a union of simple 
curves c i , . . . ,  c* joining points in V. By Lemma A.0.1, given a homeomorphism /  of S, if /  is 
a homeomorphism isotopic to the identity of S  by an isotopy fixing all the points in V, then there 
exists an isotopy from /  to Idg which preserves every curve in the family {ci, . . . ,  c*;}. As a conse
quence, we see that Homeog (S, V) is the set of all homeomorphisms of S  which are isotopic to 

Ids by an isotopy fixing all the points in V.

Let a  and ¡3 denote the sets {cti,. . . ,  an} and {(/?i, s i ) , . . . ,  (f3m, sm)} respectively.

Now, if <f>: S  — ► £  is a homeomorphism of flat surfaces, we denote the induced homeomorphism 

from S  onto £ .

We denote I t  (a; ¡3)* the set of pairs (£, <fi), where E is a translation surface of genus g whose boundary 
has m  components, and <f>: S  — > E is a homeomorphism verifying the following conditions :

1. For % =  1 , . . . ,  n, 4>(pi) is a point in the interior of E with cone angle £*{.

2 . For j  = 1 , . . . ,  m, <j>(Cj) is a component of d£  with associated cone angle /3j.

3. For j  =  I , . . .  , m, <i>(Cj \  Q j) is a union of open geodesic segments in a component of c?£.

We define an equivalence relation on 7r(a;/3)* as follows : two pairs (Ei,<£i) and (£ 2, ^ 2) are 
equivalent if and only if there exists an isometry h : £ 1  — ► £ 2  such that the homeomorphism 
<f> J 1 o ho  (f>i : S  — ► S' is an element of Homeoo" (S , V). The equivalence class of a pair (£, cf>) will be 
denoted by [(£, <p)].

Let 7x(a; ¡3)* denote the space of equivalence classes of this relation. Obviously, the group T(5, V) acts 

on 7 r(a ; (3)*. The quotient space T r(a; ¡3)*/F(S, V) is denoted by ¡3)*.

Definition 2.2.6 (Teichmiiller space of translation surfaces) The Teichmiiller space of translation sur
faces with parallel vector field is the set of all pairs ([(£, <£)],£)> where [(£,<£)] is an element of (a: ¡3)*, 
and £ is a normalized parallel vector field on £. We denote this space Tr(a; ¡3).
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2. TRANSLATION SURFACES WITH BOUNDARY

The moduli space of translation surfaces with parallel vector field is the quotient space 7x (a; ¡3)/F  (5, V), 
it is denoted by 3 ).

Note that in the case g — n = 0, and m  = 1, the space (3) is just the moduli space of Eucli
dian metric structures with geodesic boundary on a closed disk.

Remark: The group S1, identified to the rotations of the Euclidean plane, acts naturally on the space 
Tx(a.',pi) : if Rq is the rotation of angle 0, and ([(£, <£)],£) is an element in Tr(a', ¡3), then R$ • 
([(£, 0)], £) = ([(E, (/>)], R q • £), where Rg ■ £ is the parallel vector field defined as follows : at every 
point where £ is defined, Rg • £ is the vector obtained by rotating £ an angle 6 . This action of S1 endows 
Tr(a\ ¡3) with a principal S1-bundle structure over 7x(a; ¡3)*.

2.2.2 M ain results

Recall that a flat complex affine manifold is a C°° manifold which admits an atlas whose transition 
maps are complex linear transformations. With g, a, and ¡3 as above, we can now state the main results 
of this chapter

Theorem 2.2.7 (7r(ct; ¡3) is a Flat Complex Affine Manifold) The space 7 r(a ; ¡3) is aflat complex af
fine manifold of dimension:

• 2g + n — l  ifm  =  0 .

• S j= i  sj + 2g + m + n — 2 i fm  > 0 .

Regarding the moduli space (3), we have

Proposition 2.2.8 The action of the mapping class group T(S, V) on 7 r(a ; ¡3) is properly discontinuous.

and

Theorem 2.2.9 (Existence of volume form on A 'ix(a; ¡3)) There exists on 7t(ck; (3) a volume form which 

is invariant by the action ofT(S, V).

By Theorem 2.2.8, and Theorem 2.2.9, we have a well defined volume form on Mx(ot\ ¡3). Let /¿Tr 

denote the volume form in Theorem 2.2.9. This volume form is defined by using the local charts of the
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2. TRANSLATION SURFACES WITH BOUNDARY

complex affine structure of 7 r(a ; (3).

When m  =  0, i.e. when the surfaces under consideration are closed, set

h  =  ^  -  1 , i =

We can then identify the moduli space M t(« ; /?) to H (k i,. . . ,  kn). Recall that H (k i,. . . ,  kn) is the 
moduli space of pairs (M, ui) where M  is a closed Riemann surface of genus g, and u  is a holomorphic 
1-form on M  which has n  zeros with orders k \ , . . . ,  kn. Let ¡iq denote the volume form on H (k i,. . . ,  kn) 
which is defined by using the period mapping. The following proposition gives the relation between ¡iq 
and /xxr-

Proposition 2.2.10 On each connected component ofTL(k\ , . . . ,  kn), there exists a constant A such that 
UTr = A/X0.

Remark that, similarly to the case of closed translation surfaces, we have an action of SL{2 , R) on 
7x(â; ¡3) which is defined in a natural way. This action commutes with the action of the group F(g, n ), 
and hence it descends onto an action of S L (2, R) on the moduli space ¡3). We have

Proposition 2.2.11 The volume form /j,tt is invariant by the action of the action ofSL(2, R) on 7x (â; ¡3), 
and hence on 0 ).

The chapter is organized as follows, in Section 2.3, and Section 2.4, we prove Theorem 2.2.7. Propo
sition 2.2.8 is proved in Section 2.5. Section 2.6 is devoted to the proof of the fact that any two admissible 
triangulations of a translation surface can be transformed one into the other by elementary moves. The 
construction of the volume form /Jxr is given in Section 2.7. The comparison Proposition 2.2.10 is proved 
in Section 2.8. Finally, in Section 2.9, we show that the volume form /ixr is invariant by the action of 
SL{ 2,R).

2.3 Admissible triangulation

2.3.1 In troduction

Let ([(£, <p)\, £) be an element in 7r(â; ¡3). Following the method of Thurston in [Th], we construct 
local charts of Tx (<*; (3) about ( [(£, </>)],£) by using geodesic triangulations of E. In view of this construc
tion, we first define :
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2. TRANSLATION SURFACES WITH BOUNDARY

Definition 2.3.1 (Admissible triangulation) An admissible triangulation of [(E, <f>)] is a triangulation 
T o / S  such that :

• The set of vertices of T is the set V  =  ¿>(V).

• Every edge of T is a geodesic segment.

By assumption, the surface E has n singular points x \ , . . . ,  xn in its interior with cone angles a \ , . . . , a n 
respectively. Let Y \ , . . . ,  Ym denote the components of the boundary of E so that the cone angle asso
ciated to Yj is fij. There exist Sj distinct points y i j , . . - , y Sjj  on Yj which divide Yj into Sj geodesic 
segments. We consider the set V  = {xi , . . . ,  x n; j / n , . . . ,  ySmm} as the set of singular points of E even 
though some of them may be regular.

The main results of this section are the following two propositions :

Proposition 2.3.2 (Existence of admissible triangulations) There exists a triangulation T of E with 
the following properties :

(i) The set o f vertices o f T is V.

(ii) Every edge of T is a geodesic segment.

Remark: Given an admissible triangulation T of E, one can find 2g +  m  + n — 1 edges of T such that 
the complement of the union these edges and the boundary <9E is a topological open disk. This set of 
edges will be called a family o f primitive edges of T.

By Proposition 2.3.2, we know that admissible triangulations exist on any translation surface in 
Tr(â] ¡3)*. For the proof of Theorem 2.2.7, we also need the following

Proposition 2.3.3 (Uniqueness of admissible triangulations up to isotopy) Let T i and T2 be two ad
missible triangulations of [(E, <j>)]. Let E be the double of E which is equipped with the induced flat 

metric. Let V  be the finite subset o fÊ  which is induced from V  =  0 (V).

As usual, for any homeomorphism (p o f E, let (p be the homeomorphism ofÈ  that lifts <p. Suppose that 

there exists an homeomorphism ip : E — ► E such that :

- ip is isotopic to the identity of E by an isotopy fixing the set V  ;
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2. TRANSLATION SURFACES WITH BOUNDARY

- <p(Tx) =  T2, 

then T i =  T2.

Remark: Geodesic triangulations of flat surfaces whose vertex set is the set of singularities have already 
appeared in [KMS]. The fact that (closed) translation surfaces always admit such triangulations (Propo
sition 2.3.2) is well known, since every translation surface can be constructed by gluing some rectangles 
(zippered rectangles). For flat surface in general, possibly with boundary, this fact is also already known 
(see [BS] for further information), we give a proof of this fact here below only for the sake of complete
ness.

2.3.2 P roof of Proposition 2.3.2

Proposition 2.3.2 is a consequence of the following lemmas :

Lemma 2.3.4 If  (m, n) 7  ̂ (0,1), then there exist m +  n — 1 geodesic segments with endpoints in V  
such that if we cut the surface £  along those segments, then we will obtain a translation surface whose 
boundary has only one component, and the new surface contains no singularities in the interior.

Proof: Consider the following algorithm :

• If m  =  0 and n > 1, then choose a path c of minimal length joining two distinct points in
V  =  {x \ , . . . ,  xn}. The path c contains an arc co which joins two distinct points of V, and contains 
no others points of V  in its interior. Cut open E along the arc c q ,  we obtain a new translation surface 
with boundary. Let £ ' denote the new surface, and V  denote the finite subset of E which arises 
from the set V. The boundary of the new surface has one component, and V  contains n — 2 points 
in the interior of £ '.

• If <9£ 7  ̂0  and n > 0, then choose a path c of minimal length from a point in V\ = {xi, . . . ,  xn} =

V  (~l int(E) to a point in V2 =  {yn , • • •, J/Sli ; • • •; Vim, ■ ■ ■ ,  ysmm} =  V  D 5E. The path c contains 
an arc co joining a point in Vi to a point in V2 which stays in the interior of E except the endpoint 
in V2. Since c is of minimal length, it does not have self-intersection, and the same is true for co- 
Cut open the surface E along co, we get a new translation surface with boundary. Let E7 denote 

the new surface, and let V' denote the finite subset of E ' which arises from the set V  of E. Note 
that the boundary of E ' has also m  components as E, but V ' contains at most n — 1 points in the 
interior of S '.
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• If <9E contains more than one component, and n — 0, then choose a path c of minimal length joi
ning two points of V  which are contained in two different components of <?£. Remark that c does 
not have self-intersection. The path c contains an arc co joining two points of V  which is contained 
in the interior of E, except the endpoints. Cut open the surface E along the arc co, we obtain a new 
translation surface with boundary. Let E ' denote the new surface, by construction, the boundary of 
S ' has m — 1 components. Let V' denote the finite subset of E which arises from the subset V  of E.

The algorithm above can be applied again to the pair (E ', V'), and we can continue until we get a 
translation surface whose boundary has only one component, with no singular points in the interior. This 
proves lemma. □

By Lemma 2.3.4, we can restrict the proof of the proposition to the cases : (m, n) =  (0,1) and 
(m, n) =  (1,0). Next, we show the following

Lemma 2.3.5 Assume that (m , n) = (0,1) or (m, n) =  (1,0), then there exist 2g geodesic segments on 
E with endpoints in V  such that if we cut E along those segments, then we obtain a disk.

Proof: We will only prove this lemma for the case (m, n) =  (1,0), the other case can be showed by 
similar arguments. We proceed by induction :

- If g — 0, then E is already a disk, we have nothing to prove.

• If 9  >  0 , take a point y in the set V, and consider a non-separating closed curve 7  whose base-point 
is y which is not homotopic to <9E. Let 70 be the closed curve with minimal length in the homotopy 
class (with fixed endpoints) of 7 . The curve 70 is a union of geodesic segments whose endpoints 
are contained in V. Since 70 is not homotopic to <9E, it follows that 70 contains an geodesic arc 
a joining two points in V  which is not contained in c?£. Note that the two endpoints of a may 
coincide. Since E is a translation surface, the arc a cannot have self-intersection. Hence, we can 
cut E along the arc a to obtain a surface of genus g — 1 whose boundary contains two components.

Let E7 denote the new surface. By construction, £ ' is also a translation surface with geodesic boun
dary. Let C[, C '2 denote the two components of <9E'. Let V' denote the finite subset of d £ ' which 
arises from the set V. Consider a path c of minimal length from a point in V' n  C[ to another point 
in V ' n  C'2. This path contains an arc co with one endpoint in V ' fl C[, and the other endpoint 

in V ' n  Ci,. The arc co has no self-intersections because c is of minimal length. Hence, we can 

cut £ ' along co to obtain a translation surface of genus g — 1 whose boundary contains only one 

component. Like E and E;, the new surface has no singular points in its interior. This allows us to 
conclude by induction. □

Lemma 2.3.4 and Lemma 2 .3.5 imply :
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Lemma 2.3.6 There exist 2g + m + n —l geodesic segments on £  with endpoints in V  such that if we cut 
open E along those segments, we will have aflat surface homeomorphic to a disk, which has no singular 
points in the interior.

To complete the proof of 2.3.2 we need the following :

Lemma 2.3.7 Let S  be a flat surface with geodesic boundary, homeomorphic to a closed disk. Suppose 
that S  has no singular points in the interior. Let V  be a finite subset of dS  such that dS  \ V  is a union 
of open geodesic segments. Then there exists a triangulation of S  by geodesic segments whose set of 
vertices is V.

Proof: Let a i , . . . , a r denote the points in V  following an orientation. Let oioi+T denote the geode
sic segment contained in dS  whose endpoints are ai and Oj+i, for i =  1 , . . . ,  r, with the convention 
ar-|-i =  a\. We know, by the Gauss-Bonnet Theorem, that the sum of all the angles at a i , . . .  ,ar is 
(r — 2 )7t. We prove the lemma by induction.

- For the case r = 3, we have a triangle, and there is nothing to prove.

- If r > 3, it suffices to prove that there exists a geodesic segment which is contained in the interior 
of S  joining two singular points in dS.

Suppose that all the angles at the comers . . .  ,ar are less than 7r. Consider the path s of minimal 
length joining ai and <13. Since r  ^  4 , 0,1 and 0.3 are not adjacent. Because the angle at every sin
gular point is less than 7r, s fl dS  =  {ai, <23}, which means that s is a geodesic segment contained 
inside S, and we are done.

Now, suppose that there exists a singular point whose angle is greater than or equal to 7r. Without 
loss of generality, we can assume that this point is ai. For every i =  2 , . . . ,  r, consider a path Si of 
minimal length from ai to a*. The path s* is a union of geodesic segments. If one of its segment is 
contained in the interior of S  then we are done. If not, Sj is either

¿-1

Cj = U  aj aj + 1)
3=1

or

r

Ci = aj aj+l• 
j=i
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Since we have r
leng(cj) +  leng(cf) =  leng(oja^l)

i=i

which is independent of i, there exists k G {2 , . . . ,  r} such that Si =  c}, for every i =  2 , . . . ,  k, 
and S{ = cf, for every i =  k + 1 , . . . ,  r. Now, if c£ is a path of minimal length from oi to a^, 

then all the angles at <22, ,  a^-i are greater than or equal to 7r. Similarly, if c| +1 is a path of 

minimal length from oi to ak+1, then the angles at 0 *;+2, . . . ,  ar are all greater than or equal to tt. 
As a consequence, among the angles at a i , . . . ,  ar, there are at least r — 2 angles greater than or 
equal to 7r, but this is impossible according to the Gauss-Bonnet Theorem. Therefore, there must 
be a geodesic segment which is contained inside S, and the lemma is then proved. □

Proposition 2.3.2 follows immediately from Lemma 2.3.7 and Lemma 2.3.6 above. □

2.3.3 Proof of Proposition 2.3.3

Proposition 2.3.3 follows from the following lemma:

Lemma 2.3.8 Let E be aflat surface without boundary. Let V  =  {xi , . . . ,  xn} be a finite subset of E 
such that E \  V  contains only regular points, and suppose that x(E \  V) <0.  Let 7  and 7 ' be two simple 
geodesic arcs ofY, having the same endpoints in V  (the two endpoints may coincide). Assume that 7  and
Y are homotopic with fixed endpoints relative to V, then we have 7  =  7 '.

Proof: We first observe that there exist no Euclidean structures on a closed disk such that its boundary is 
the union of two geodesic segments. This is just a consequence of the Gauss-Bonnet Theorem.

Since x(E \  V) < 0, the universal covering of E \  V  is the open disk A =  {z e  C : \z\ < 1}. The 
flat metric structure on E \  V  give rise to a flat metric structure on A (which is not complete). Now, let 7  

be a lift of 7  in A whose endpoints are contained in the boundary of A . By lifting the homotopy from 7  

to 7 ', we get a lift 7 ' of 7 ' which has the same endpoints as 7 . Note that by assumption, 7  and 7 ' are two 
geodesic in A.

The two curves 7  and 7 ' may have intersections, but in any case, we can find (at least) an open disk D 
which is bounded by two arcs, one is a subsegment of 7 , the other is a subsegment of 7 '. Consequently, 
the open disk D is isometric to the interior of an Euclidian disk which is bounded by two geodesic seg
ments. Since such a disk cannot exist, the lemma follows. □
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Back to the proof of 2.3.3. Let T i and T2 denote the triangulations of Ê which are induced by T i 
and T 2 respectively. By assumption, we have T 2 =  <^(Ti), where <p is a homeomorphism of £  which is 
isotopic to the identity by an isotopy fixing the common vertex set of T i and T 2 which is V.

Since every edge of T i and T 2 is a simple geodesic segment, Lemma 2.3.8 implies immediately that 
T i =  T 2- Therefore we have T i =  T 2, and Proposition 2.3.3 follows. □

2.4 Flat complex affine structure on 7r(a;/?)

In this section, we give the proof of Theorem 2.2.7. Recall that we have a fixed a translation surface 
S, whose set of singular points in the interior are denoted by p i , . . .  ,pn, and boundary components of
S  are denoted by C \,. . . ,  Cm. The cone angle at pi is cti, i =  1 , . . . ,  n, and the cone angle associated 
to Cj is f3j, j  = 1 , . . . ,  m. For each j  G {1, . . . ,  m}, Qj is a finite subset of Cj such that Cj \  Qj is a 
union of Sj open geodesic segments. The points in Qj are denoted by {qij, . . . ,  qSjj}- Let V denote the 
set {pi , . . .  ,pn} Uf=1 Qj.

Let TTZ(S) denote the set of all equivalence classes of triangulations (not necessarily geodesic) of S  
whose vertex set is V, where two triangulations are equivalent if they are isotopic relative to V. Let T  be 
an element of TTZ(S). We denote Ur the subset of 7 r ( a ;  ¡3) consisting of pairs ([(E, $)],£) such that 
there exists a homeomorphism <fr' in the same equivalence class as (f>, i.e. (f)~l o <j>' g  Homeog (S, V), 
which maps T  onto an admissible triangulation of E.

Proposition 2.3.2 implies that the family {Ur : T  G T ll(S )}  covers the space 7 r(a ; ¡3). We will 
define coordinate charts on Ur for each T  in T1Z(S).

2.4.1 Definition of the local charts 'I 'r

Given an equivalence class of triangulations T  in TTl(S), let ([(£, <£)],£) be a point in Ur. By defi
nition, we can assume that T =  <b(T) is an admissible triangulation of E. By Proposition 2.3.3, we know 
that T is unique.

Let N \ be the number of edges of T, and N 2 be the number of triangles of T. By computing the Euler 
characteristic of E, we see that :

m m

N \ = 3(2g + n + m  — 2)+  2 ^ 2 sj  anci^ 2  =  2 (2g + n  +  m -  2 ) +  ^ Sj.
j=i i = 1
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We construct a map from U r to C ^1 as follows :

Choose an orientation for every edge of T. For each triangle A in T, there exists an isometric em
bedding of this triangle into R2 such that the vector field £ is mapped to the constant vertical vector field 
(0,1), defined on the image of A. By this embedding, each oriented side of the triangle A is mapped 
into a vector in R2 ~  C. As a consequence, we can associate to every oriented edge e of T a complex 
number z(e) .  Note that, even though each edge e in the interior of E belongs to two distinct triangles, the 
complex number z (e)  is well defined because the vector field £ is parallel and normalized. The procedure 
above defines a map from U r into CNl. Let 'I 'r  denote this map.

We get immediately the following important observations :

Lemma 2.4.1 i) Let e*, e j , ek  be three edges o f T which bound a triangle. Then we have

±  z (e i)  ±  z ( e j ) ±  z ( e k) =  0, (2.3)

where the signs are determined by the orientation of&i, e3 and ek.

ii) I f e \ , . . . , e k  are the k edges o f T which bound an open disk in E, then we have

±  z ( e i )  ±  • • • ±  z(e*;) =  0, (2.4)

where, again, the signs are determined by the orientations o f the edges.

Proof: Assertion i) is straight forward. Assertion ii) follows from i). Namely, let D denote the disk 
bounded by ex, . . . ,  ek. The disk D is divided into triangles by the triangulation T. By i), three sides 
of a triangle verify (2.3). Note that every edge of T inside D belongs to two distinct triangles. If for 
each triangle, we choose the orientation of its boundary coherently with the orientation of the surface, 
and write the corresponding equation according to this orientation, then, by taking the sum over all the 
triangles inside D, we get (2.4). □

Let S r  denote the linear equation system consisting of N 2 equations of type 2.3 corresponding to the 

triangles of T . From what we have seen, the vector $ r([(S , </>)], £) is a solution of the system Sr-

Let V r denote the subspace of C ^1 consisting of solutions of the system Sr- We have

Lemma 2.4.2 is an open subset o fV r-

Proof: The fact that is contained in V r  is a direct consequence of Lemma 2.4.1.
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Now, let Z  be the image of ([(£, <j>)], £) by ^ r ,  and let Z ' ~  i.z \i ■ ■ • >zivi) be a vector in a neighborhood 
of Z  in V r- Using the triangulation T of £ , we construct a flat surface from Z ' as follows :

. Construct an Euclidean triangle from z[, z ', z'k if z', z'pz'k verify an equation of type (2.3).

. Identify two sides of two distinct triangles if they correspond to the same complex number z[.

Clearly by this construction we obtain a translation surface £ ' homeomorphic to £. The surface £ ' has 
n  singular points of cone angles ot\,. . . ,  an in the interior, and the boundary of £ ' has m  components 
with associated cone angles (3i,. . .  ,/3j.

Moreover, we also get a triangulation T ' of £ ' by geodesic segments. Each triangle in T ' corresponds 
to a triangle in R2 specified by three complex numbers which are coordinates of Z ', hence we get a 
normalized parallel vector field £' on £ ' which is defined by the constant vertical vector field (0 , 1) on 
the Euclidean plan R2.

Define an orientation preserving homeomorphism

/  : £  — ► £ '

as follows : /  maps each edge of T onto the corresponding edge of T ; (i.e. the edge of T that corresponds 
to the same coordinate), and the restriction /  on each triangle of T is a linear transformation of R2. Let 
4>' denote the map

4/ = f  o <f>: S  — ► £ '.

It follows that the pair ([(£', <£')]> £0 represents a point of Ur close to ([(£, <£)],£)• By construction, it is 
clear that Z ' = <£')]> £')• Hence, we deduce that i'r(W r) is an open set of V r- □

2.4.2 Injectivity of 'I 'r  

Lemma 2.4.3 The map is injective.

Proof: Let ([(Ei,0i)],£i.) and ([(S2, >̂2)],£2) be two points in Ur such that \I/7-([(£i,'/’l)] ,£1) =  
’i'r([(£ 2 ,0 2 )],6 )- By definition, we can assume that T i =  4>\{T) and T 2 =  ^ ( T )  are admissible 
triangulations of £ 1  and £ 2 respectively. By Proposition 2.3.3, we know that T i and T 2 are unique.

Now, the hypothesis ^ r ( [ (£ i , Cl) =  ^ r ( [ (£ 2j <̂2)], £2) implies that there exists an isometry
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h : S i — * £ 2 ,

which maps each triangle of T i onto a triangle of T 2, and also £1 onto £2- It follows that the homeomor- 
phism

<f)2 1 o h o fa  : S  — ► S

fixes all the points in V, and preserves each triangles of T. We deduce that the map o h o fa  is 
isotopie to the identity of 5  by an isotopy fixing all the points in V. Therefore, by definition, we have 

([(£ !,& )],& ) =  ([(£2, <h)], 6 ). D

2.4.3 C om putation of dim ension of VV

T >IAA \r f 2g + n - l ,  i f m -  0 ;Lemma 2.4.4 dime V r =  s n
1 2g + n + m  — 2 + Y2 j= isj, otherwise.

Proof: Recall that V7- is the subspace of CNl consisting of solutions of the system Sr- Since the system 

S r  contains N 2 equations, we have

771

dim W  ^  N i — N 2 = Sj + 2g +  m  + n — 2. (2.5)
j =1

Let ([(£, cf>)], Ç) be a point in Ur, and T be the admissible triangulation of £  which is the image of T  

by fa

Let a i, 02 , . .  •, aSl+...+Sm denote the edges of T  which are contained in the boundary of £ . Choose a 
family of primitive edges in T which will be denoted by 61, . . . ,  ¿>25+m+n-i- Recall that for any oriented 
edge e of T, z(e) is the complex number associated to e in the construction of i 'r -

By definition, we have int(E) \  is an open disk. Using Lemma 2.4.1 ii), we deduce that if e
is any edge of T  which does not belong to the set { a i , . . . ,  aSl+...+Sm, b \ , . . . ,  i>2S+m+n-i}> then z(e) 
can be written as a linear combination of z (a i) , . . . ,  z(aSlH— t-sm), z (b i) ,. . . ,  z(b2g+m+n-i), whose 
coefficients are determined by the triangulation T. Note that the coefficients of these linear functions 

belong the set {—1,0,1}. We deduce

771

dim V r ^  ^  S j  + 2g + m  + n — l. (2.6)
j =l

Suppose that the edges 0 1 , . . . ,  aSl+...+Sm are oriented coherently with the orientation of the surface £. 

Apply (2.4) to the disk D =  int(E) \  U^~^Tn+n~16j, we get
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z(a i)  +  --- +  z (a i l+ ...+Sm) =  0. (2.7)

The numbers z(b j) ,  j  =  1 , . . . ,  2g +  m  +  n  — 1, do not appear in the equation (2.7) because each of the 
edges bj belongs to two different triangles.

Here, we have two issues :

- Case 1 : m  =  0, that is the surface E is closed. In this case, the equation (2.7) is void. However, 
this also means that the sum of all equations in the system S r , with appropriate choices of signs, 
is the trivial equation 0 =  0. This implies rank(Sr) < iV2 — 1. Hence

dim VT ^  N i -  (JV2 -  1) =  2g + n  -  1 . (2 .8)

From (2 .6 ) and (2 .8), we conclude that dim V r =  2g + n — 1 .

- Case 2 : m  > 0, that is the boundary of E is not empty. The equation (2.7) implies that the vector
(z(oi) , . . . ,  z(aSl+ -+Sm), z ( b i ) , z ( b 2g+ m+ n - 1)) belongs to ahyperplane of c (si+"+s"')+2s+m+n- 1. 
Therefore we have

771

dim V r < ^  Sj +  2g +  m  +  n — 2. (2.9)
3=1

From (2.5) and (2.9), we conclude that dim V r =  Y^JLi S j  +  2g + m + n — 2.

□

2.4.4 Coordinate change

Let Tl,T2 be two equivalence classes of triangulations in TTZ(S). Suppose that Urx n  Ut2 ± 0 , 
and let ([(£, <£)], £) be a point in Utx fl Wr2 7̂  0- Let T i, T2 be the admissible triangulations of E 

corresponding to T\ and Tjj respectively. As usual, we denote > '&r2 the local charts on Urx and Ut2 
respectively. We have :

Lemma 2.4.5 There exists an invertible complex linear map

L : C^ 1 — ► CNl

such that ([(E7, $')], £') =  L o  'Jr̂ ([(E,) <£')], £'), for every ([(E', 0')], £') in a neighborhood of

([(E,*)U).
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Proof: Let e be an edge of T 2. Let A*, i € I, denote the triangles in T i such that A* fiint(e) ^  0 , Vi 6

I.

Using the developing map, we can construct a polygon P  in R2 by gluing isometric copies of A j’s 
(i € I), such that e corresponds to a diagonal e inside P . The polygon P  may contain several copies of 
a single Aj. By this construction, we get a map :

<p: P  — ► E, 

which is locally isometric, such that <p(e) =  e.

Since the map <p sends geodesic segments in the boundary of P  onto edges of T i, it follows that 
the complex numbers associated to the edge e can be written as linear function of the complex numbers 
associated to the edges corresponding to geodesic segments in the boundary of P . Note that the coeffi
cients of these linear functions are unchanged if we replace ([(E, <£)],£) by another pair ([(S', <£')], £') 
nearby in Urx D Ur2, and this argument is reciprocal between T i and T 2. We deduce that the coordinate 
change between '¡ 'r i and ^>r2, in a neighborhood of ([(£, </>)], £), is a complex linear transformation of 
C^ 1 which sends onto Vr2. The lemma is then proved. □

The proof of Theorem 2.2.7 is now complete. □

2.4.5 Remark

Let T  be an equivalence class in T1Z(S). Let Ur, ^ r ,  V7- be as in the proof of 2.2.7. We already 
know that '¡'r(W r) is an open set in V r, but more can be said about

Consider T  as a particular triangulations of S. Choose a numbering for the set of edges of T, and an 

orientation for each edge.

To each triangle Aa in T , a  =  1 , . . . ,  iV2, we can associate a Hermitian form H a of CNl as follows : if 
the sides of AQ are denoted by e*, ej, e^, then H a (Z, W)  =  \(ziWj — ZjWi), where Z  = ( z i , , z/vj, 

and W  = (w i , . . . ,  wjvx) are vectors in C ^1.

The Hermitian form H a verifies the following property : if Z  = ^ r([(E , then |H a(Z, Z)\ is
equal to the area of the triangle <£(Aa ) in E. By interchanging Zj and Zj if necessary, we can assume that 

H a(Z, Z) > 0 for every a  =  1 , . . . ,  iV2.

Now, let Z  be a vector in V r, let E (Z) denote the surface obtained by the method described in the 
inverse construction of ^ 7-. The necessary and sufficient condition for E (Z) to be a translation surface
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homeomorphic to S  is that

H a(Z, Z ) > 0, for every a  =  1 , . . . ,  N 2.

Therefore, 'i'r(W r) is the set {Z  e  V r | H a (Z, Z) > 0, Va =  1 , . . . ,  iV2}.

2.5 Properness of the action of Mapping Class Group

In this paragraph, we prove Proposition 2.2.8. First, we recall some basic dfinitions of the Teichmiiller 
Theory.

2.5.1 Elements of Teichmiiller Theory

We refer to [Ga] for a more detailed presentation of this important theory.

Quasiconformal mappings

Let D  be a domain of the complex plane C, and /  : D  — ► C a function defined on D. Assume that 
the function /  is written as / ( x, y) = u(x, y) + iv(x, y). We say that /  is absolutely continuous on lines, 
and abbreviate by ACL, if for every rectangle R  in D  with sides parallel to the x-axis and ¿/-axis, both 
u(x, y) and v(x, y) are absolutely continuous on almost every horizontal line and almost every vertical 
line in R. The functions u and v will then have partial derivatives ux, uXJ, vx, vy almost everywhere in D. 
In general, the partial derivatives ux,u y,vx , vy are only distributions since they are not defined everyw
here.

The complex derivatives of /  are defined by

f z  =  ^ ( f x -  t/tf) and /*  =  i ( / x +  i f y ) .

Definition 2.5.1 (Analytic definition of Quasiconformal Mapping) Let f  be a homeomorphism from 
a domain D C C to another domain D' C C. The map f  is K -quasiconformal (K  > 1) if

(i) f  is ACL in D, and

(H) I/21 ^  k\ f z \ almost everywhere, where k = <  1.

The minimal possible value of K  for which (ii) holds is called the dilatation of f .
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The quasiconformal mappings verify the following property, if / i  is .Ki-quasiconformal and f 2 is 
i^2-quasiconformal, then f 2 ° f i  is Kx^-quasiconformal.

The Teichmiiller space T(g,n)

Let S  be a Riemann surface of genus g without boundary, and {pi , . . .  ,pn} be n points of S. Let 
T(g ,n) denote the set of all pairs (X , / ) , where X  is a Riemann surface, and /  : S  — > X  is a quasi
conformal homeomoiphism. We can define an equivalence relation on T(g, h) as follows : (X, f ) and 
(X ', / ')  are equivalent if and only if there exists a conformal homeomorphism h : X  — ► X ', such that 
the quasi-conformal map f '~ l o h o  f  : S  — ► S  is isotopic to the identity by an isotopy fixing the 
points p \ , . . . ,  pn. By definition, the Teichmiiller space T(g, n) is the space of equivalence classes of this 
equivalence relation. The equivalence class of a pair (X, f ) is denoted by [(X, /)].

Teichmiiller metric

Let (X l, f i )  and (X 2, f 2) be two pairs in T(g, n). The Teichmiiller distance between [(Xi, /i)] and 
\{X2, f 2)] is defined by

d Teich([(Xi, h)}, [(X2, / 2)]) =  i  inf {log K  ( f2 o /  o / - 1)},

where the infimum is taken over all quasi-conformal homeomorphisms f  of S  which can be deformed 
into Idcj by an isotopy fixing every point in the set { p i, . . .  ,Pn}, and K ( f2 o f  o f ^ 1) is the dilation of 
f 2 o f  o f - 1 : X \  — > X 2. The Teichmiiller distance between two equivalence classes in T (g ,n ) does 

not depend on the representatives to be used in this definition.

Action of Modular Group T(g, n) on T  (g, n)

The mapping class group r(g, n) the group of all quasi-conformal homeomorphisms of S  which is 

identity on the set {p i,...p fi} , modulo the connected component of identity (of S).

The mapping class group r(g , n) acts on T(g, n) as follows. Let [/i] be an element of r(g , n) which 
is represented by a quasiconformal map h : S  — > S. Let [(X, /)] be an equivalence class in T(g, n). 

We have:

[h]-[(XJ)} = [ ( XJ oh) } .

It is well known that the action of T(g, h) on T (g, h) is properly discontinuous with respect to the 

topology induced by the Teichmiiller metric.
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2.5.2 Embedding of the group T(S, V)

Let g = g+ m — 1, n = 2n+£^Li sj- definition, the double S  of S  is a closed surface of genus g, 
and the subset V of E contains n points. If y? is a homeomorphism of S, we denote <p the homeomorphism 
of S  that lifts <p. We have

Lemma 2.5.2 The homomorphism <p i— ► (p induces an embedding of the group T(S, V) into the group

r  (g,n).

Proof: Since any homeomorphism is isotopic to a diffeomorphism, and a diffeomorphism is quasi- 
conformal, given an homeomorphism <p of S, there always exists a quasi-conformal homeomorphism 
ip' which is isotopic to <p. As a consequence, we can define map from T(S, V) into T(g, n) by associating 
to the equivalence class of <p in r(5, V) the equivalence class of the quasi-conformal <p' in T(p, n). This 
map is clearly a homomorphism.

If <p' is isotopic to Id^, then so is (p. By definition of T(S, V), this implies that <p is in the equivalence 
class of Idg. We deduce that the homomorphism defined above is injective, and the lemma follows. □

2.5.3 A Mapping from Tt (a; /?) to T(g, h)

There is a natural map F from 7 r(a ; ¡3) into T  (g, h ), which we will call the forgetting map.

Given a point ([(£, <j>)], £) in 7r(a; ¡3), let E be the double of E which is equipped with the induced 
flat metric, and <t> be the homeomorphism from S  onto E that lifts <f>. Note the flat metric structure on E 
induces a conformal structure on the open dense set E \  ¿(V) of E, and since ¿(V) is finite, this confor- 
mal structure can be extended uniquely into a conformal structure on E. Let <fi' be any quasi-conformal 
map from S  onto E which is isotopic to $ by an isotopy which is constant on the set V of S.

The map F is defined as follows : the image by F of the pair ([(£, <̂>)], £) in Tjia] ¡3) is the equivalence 
class of the pair (E, 4>r) in T(g, h), where E is now considered as a Riemann surface.

Proposition 2 .5.3  The map F is continuous.

Proof: Let ([(E, <£)],£) be apointin7x(<5;/?)> and {([(Efc, (f>k)],^k), k e  N} be a sequence in Tp (a; ¡3) 
converging to ([(E, <f>)], £). We can suppose that the map <j>: S  — > E that lifts <fi is quasi-conformal so
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that we can write F([(E, <£)], £) =  [(£, <£)].

Let T be an admissible triangulation of E, and T  be the equivalence class of </>- 1(T) in T1Z(S). By 
definition, ([(E, <j>)], £) is a point in Ur- Without loss of generality, we can assume that the sequence 
{([(£*:, <£*;)], £*;), k G N} is also contained in Ur-

As we have seen in the proof of Theorem 2.2.7, there exists a local chart ^ r  of Tr(a; /9) which is defined 

on Ur- Put Z  =  \I>r([(£, <f>)], £)> and = ^r([(Efc, (/>k)], €k)- By assumption we have Zk z  in
Cn K

Recall that, by the definition of ^ r ,  for every point ([(S', <f/)], £') in Ur, we can write <f>' = f  o <f>, 
where /  : E — ► S ' is a homeomorphism such that

• / ( T) is an admissible triangulation of E ' denoted by T'.

• /  sends an edge of T onto an edge of T ', and the restriction of f  into the a triangle of T is a linear 
transformation of R2.

Therefore, for every fc € N, we can assume that (j>k = f k °  <t>, where fk  : S — ► Sfc is a homeomor
phism with the same properties as /  above.

Let T be the geodesic triangulation of E which is induced by T, and let fk  be the homeomorphism 
from E onto £& that lifts fk- It follows immediately that fk  maps T onto a geodesic triangulation of Efc, 

and we can assume that 4>k = fk ° 4>-

Since fk  is clearly quasi-conformal, and by assumption, (¡> is also quasi-conformal, it follows that 4>k is 
also quasi-conformal. Therefore, we can write

F([(Efc><£)fc],£fc) =  [(Efe,^)], Vfc.

All we need to prove is that

d T eich ([(E , $)], [(Efc, 4>k)]) 0 .

It is clear that, as Zk tends to Z, the restriction of fk  on each triangle of T tends to identity, which 

implies that

lim K(fk)  = 1,
k—>oo

where K ( f k ) is the dilatation of fk- By the definition of dxeich> it follows that
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Jim  dneich([(S,0)], [(Êfc,4 )]) = 0, 
ft—>00

and the proposition follows. □

2.5.4 Proof of Proposition 2.2.8

By definition, the map F is obviously T(5, V)-equivariant. By Lemma 2.5.2, we know that T(5, V) is 
a subgroup of T(g, n ). It is well known that the action of r(<7, n) is properly discontinuous on T (g, n ). 
Since F is continuous, and 7x(â; ¡3) and T (g, n ) are clearly locally compact, we deduce that the action 
of T(S, V) on 7 t (<*; /?) is properly discontinuous. □

2.6 Changes of triangulations

Let [(E, 4>)\ be an element of the space 7x(â; 0)*, we have seen that an admissible geodesic trian
gulation of E (cf. Definition 2.3.1) allows us to construct a local chart for /7r(â; P)- In this section, we 
are interested in relations between geodesic triangulations of E. More precisely, we want to answer the 
question : How to go from an admissible triangulation to another one. This will play a crucial role in our 
construction of the volume form on 7r(ci; ¡3).

Let us start with the simplest example : let A B C D  be a convex quadrilateral in R2. There are only 
two ways to triangulate A B C D  : one by adding the diagonal AC, and the other by adding the diagonal 
BD.

B

A

D

This example suggests
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Definition 2.6.1 (Elementary Move and Connected Triangulations) Let E be aflat surface with geo
desic boundary. Let T be a triangulation of £  by geodesic segments whose set o f vertices contains the 
set of singularities of E. An elementary move of T is a transformation as follows : take two adjacent 
triangles of T which form a convex quadrilateral, replace the common side of the two triangles by the 
other diagonal of the quadrilateral (if these two triangles have more than one common sides, just take 
one of them). After such a move, we obtain evidently a another geodesic triangulation of Y. with the same 
set of vertices as T.

Let T i, T2 be two geodesic triangulations o /E  whose sets of vertices coincide. We say that T i and T 2 

are connected if there exists a sequence of elementary moves which transform T i into T2.

In this section, we prove the following theorem

Theorem 2.6.2 Let E be aflat surface with geodesic boundary. Let p i , . . .  ,pn denote the singularities 
o/E . Suppose that E satisfies the following condition

(Q') for every closed curve c C int(E \  {pi , . . .  ,pn}), we have orth(c) G {±Id},

where o rth (c) is the orthogonal part of the holonomy ofc. Let T i, T 2 be two geodesic triangulations of 
E such that the set o f vertices o fT i is {pi, . . .  ,pn}, i =  1,2, then T i and T 2 are connected.

Remark: The changes of triangulations by elementary moves, which are also called flips, are already 
studied in the context of flat surfaces (not necessarily translation surfaces). In this general situation, 
Theorem 2.6.2 is already known, it results from the fact that any geodesic triangulation whose vertex set 
contains all the singularities can be transformed by flips into a special one, called Delaunay triangula
tion, which is unique up to some flips (see [BS] for further detail). However, we would like to introduce 
another proof of this fact in the case of translation surfaces. The proof we present here is based on an 
observation on polygons, and uses some basic properties of translation, and semi-translation surfaces.

We start by proving the following fact about Euclidean polygons :

Lemma 2.6.3 Let P be a polygon in R2 ~  E2. Let T be a triangulations o fP  whose edges are diagonals. 
Let d be a diagonal o /P  which is contained inside P, but not an edge of T. Then there exists a sequence 

of elementary moves which transform T into a triangulation containing d.

Remark: In this situation, we only consider triangulations whose edges are diagonals of P, by ‘diagonal 

of P ’ we mean a geodesic segment contained inside P whose endpoints are vertices of P.
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2. TRANSLATION SURFACES WITH BOUNDARY

Proof: Since the diagonal d is not contained in T, it intersects some edges of T. Let m  be the number 
of intersection points of d and the diagonals in T. Note that we only count intersection points which 
are not vertices of the polygon P. These m  intersection points divide d into m  +  1 sub-segments, each 
sub-segment is contained in a triangle of T. The union of these m  +  1 triangles is a polygon P i which 
contains d as a diagonal. The number of sides of P i is m  +  3. Obviously, we get a triangulation T i of P i 
which is induced by T. Note that d intersects all the diagonals in T i. It suffices to show that there exists 
a sequence of elementary moves in P i that transform T i into a triangulation containing d. We prove this 
by induction.

. If m  =  1, then P i is a quadrilateral, and an elementary move suffices to transform Ti into a trian
gulation containing d.

. For m > 1, let a i , . . . ,  am denote the set of edges of T i. By construction we have dO a i  ^  0  
for every i = 1 ,m. We will show that there exist elementary moves which transform T i into 
another triangulation T2 of P i such that d intersects at most m  — 1 diagonals in T 2.

Equip the plane R2 with the Cartesian coordinates such that d is a horizontal segment contained 
in the Ox axis. Let x  : R2 — > R, and y : R2 — ► R denote the two coordinate functions. Let 
A i , . . . ,  A r, and denote the vertices of P i such that y{A\) =  y(Ar) = 0, x{A{) <
x(Ar), y(Ai) > 0, for i =  2 , . . . ,  r — 1, and y(B j) < 0, for j  = 1 , . . . ,  s. The points Ai, . . . , A r 
are ordered in the clockwise sense, and the points B \ , . . .  , B S are ordered in the counter-clockwise 
sense. Note that, since m  > 1, we can always assume that r  ^  4.

A*

There exists i0, 2 ^  i0 < r, such that y(Aio) ^  y{Ai),\/i G {1,...  ,r}, and y(Aio) > y(Ai) if
i < i0. By assumption, we see that the segment Aio_ iA io+i is a diagonal of P i. Since r  ^  4, we 

have Ai0- iA i0+i ^  A \A r. Clearly, the segment A ^ - iA ^ + i  does not intersect d = A \A r since 
both y(Aio- i )  and y(Ai0+i) must be positive or zero, and at least one of them is strictly positive. 
Moreover, the number of intersection points of A iQ- i A io+i with the diagonals in T i is strictly less 
than m. By induction assumption, there exists a sequence of elementary moves which transform 
T i into a new triangulation T 2 of P i which contains A ^ - iA ^+ i .
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2. TRANSLATION SURFACES WITH BOUNDARY

Now, the triangulation T 2 contains m  diagonals, one of them is AiQ- \A i0+i. We have seen that 
Ai0- iA i0+i does not intersect d. It follows that d intersects at most m  — 1 diagonals in T2, and 
hence we are done.

□

Corollary 2.6.4 Let P be a polygon in the Euclidean plane E2. Let T i and T 2 be two triangulations of 
P by diagonals. Then there exists a sequence o f elementary moves which transform T i into T2.

Proof: Let n be the number of sides of P. We show this corollary by induction.

- If n  =  4 there are two possibilities :

. P is not convex. In this case, P has only one triangulation, hence T i =  T2.

. P is convex. In this case, if T i ^  T 2, then T 2 is obtained from T i by an elementary move.

- For n  > 4, if the triangulations T i and T 2 have a common edge, then we are done since this com
mon edge divides P  into two polygons whose numbers of sides are strictly less than n. We are left 
with the case where T i and T 2 have no common edges. In this case, choose an arbitrary edge d of 
T 2, by Lemma 2.6.3, there exists a sequence of elementary moves which transform T i into a new 
triangulation which contains d. The corollary is then proved. □

2.6.1 Proof of Theorem 2.6.2

Let g be the genus of E, and p be the number of components of its boundary. Observe that every 
geodesic triangulation of E whose set of vertices is {p\,.. .,pn} must contain all the geodesic segments 
on the boundary of E.

Let n i be the number of singular points on the boundary of E, and n2 be the number of singular points 

in the interior of E. By the computation of Euler characteristic of E, we see that the triangulations T i 

and T 2 have the same number Ne of edges. We have

N e = 3 ( |n i  +  n 2 +  2g +  p -  2).

Let fc, 0 ^  k ^  N e, be the number of common edges of T i and T 2. Since the boundary of E contains 
n\ edges, we have k ^  n\. If k =  N e, then T i =  T 2. Assume that n\ ^  k < Ne, we will proceed by
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induction.

Given a geodesic triangulation T on £ , let e be a geodesic segment joining two vertices of T. If e 
is not contained in T, then, using a developing map, one can construct an Euclidian polygon Pe in R2 

which is composed by isometric copies of the triangles in T which are crossed by e. Note that a triangle 
A in T may have several copies inside P, the number of those copies is equal to the number of connected 
components of the set int(e) fl int(A). By construction, there exists a map

tpe : P e ► E,

which is locally isometric, and there exits a diagonal e of P such that <pe(e) =  e. Remark that ip~l {T) is 
a triangulation of P by diagonals. We will call Pe the developing polygon of e with respect to T.

First, let us prove the following technical lemma

Lemma 2.6.5 Let P be a polygon in R2 whose vertices are denoted by A \, A 2, A 3, B \ , . . . ,  jBj. Let 
x  : R2 — > R, and y : R2 — ► R denote the two coordinate functions of R2. Assume that the vertices of 
P verify the following conditions :

+ (.Ai,A 2,A$) are ordered in the clock-wise sense;

+ y(Ai) 0, i = 1,2,3, y(Ai) < y(A2), andy(A2) ^  y(A 3).

+ y{Bj) < 0 , j  =  l , . . . , l ;

+ B \ , . . .  ,B i are ordered in the counter-clockwise sense.

+ For all j  € {1, the segment A 2Bj is a diagonal of P.

Let T denote the triangulation of P by the diagonals A 2B \ , . . . ,  A 2Bi. Let {so, • • •, Sfc} be a family 
of disjoint horizontal segments in P whose endpoints are contained the boundary of P, where so is a 
segment lying on the horizontal axis y =  0. Let r be the number of intersection points of the edges of 
T with the set U^LqSj. Then there exists a sequence of elementary moves which transform T into a new 
triangulation T 1 whose edges intersect the set ujL0Sj at at most r — 1 points.

Proof: Consider the following algorithm :

Let jo be the smallest index such that y(Bj0) =  m m {y(Bj) : j  = 1 , . . . ,  I}, that is y(Bj) > y(Bj0) 
for all j  < j 0, and y (B j) ^  y(Bjo), Vj =  1 , . . . ,  I.
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1. If P is a quadrilateral, that is I =  1, then P must be convex. Apply an elementary move inside P 
and stop the algorithm.

2. If 1 <  j 0 < I, then consider the quadrilateral A 2Bj0- \B j 0Bj0+\. By the choice of jo, this quadri
lateral is convex. Hence, we can apply an elementary move inside it, and the algorithm stops.

3. If jo =  1 and I ^  2 , then consider the quadrilateral A 2A 1B 1B 2. Observe that this quadrilateral 
is convex. Apply an elementary move inside it. By this move, we get a new triangulation of P 
which contains the triangle /S.A1B 1B 2. Cut off this triangle from P. Replace P by the remaining 
sub-polygon and restart the algorithm.

4. If jo = I > 1, then consider the quadrilateral A 2A 3B 1B 1- 1. Since this quadrilateral is convex, we 
can apply an elementary move inside it, then cut off the triangle AA ^BiB i-i. Replace P by the 
remaining sub-polygon and restart the algorithm.

Observe that, at each step of the algorithm above, the number of intersection points of the set u£_0Sj 
with the edges of the new triangulation cannot exceed the number of intersection points with those of 
the ancien one. Indeed, suppose that we are in the case 1 < jo < h by the choice of jo, we have 

y(Bjo) <  min{y(-0jo- i) ,  2/(-Bjo+i)}, and y(A2) > max{y(J3J0_i), y(Bjo+1)}, consequently, if a hori
zontal segment s* intersects Bjo - iB j0+\, then it must intersect A 2BjQ. Therefore, the number of inter
section points does not increase. The same argument works for the other cases.

Moreover, at the final step of the algorithm, i.e. case 1. or 2., we replace a diagonal intersecting the 
segment s0 by another one which does not intersect so- Hence, by this algorithm, we get a new triangu
lation T ' of P whose edges have strictly less intersection points with the set u£_0Sj than those of T4. □

A
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B i
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Let a i , . . . ,  a ^e, and b\ , . . . ,  b^e denote the edges of T i andT2 respectively. We can assume that a* =  fy, 
for i = 1 ,. . .  ,k . All we need to prove is the following

Proposition 2.6.6 There exists a sequence o f elementary moves which transform Ti into a new triangu

lation containing b \ , . . . ,b k, and bk+\.

Proof: Since bk+1 is not an edge of T i, it must intersect some edges of T i. Let P be the developing 
polygon of £>fc+i with respect to T i. Let <p : P — ► £  be the associated immersion. Let T3 be the trian
gulation of P by diagonals which is induced by T i, (i.e. T 3 =  <p_1(Ti)). By definition, each diagonal 
in T 3 is mapped by tp onto an edge of T i which intersects bk+i. Finally, let d be the diagonal of P such 
that ip(d) = bk+1- Observe that d intersects all the diagonals which are edges of T 3.

Let m  be the number of intersection points of bk+1 with the edges of T i excluding the two endpoints 
of bk+1. Note that bk+\ may intersect an edge of T i more than once. By construction, the polygon P is 
triangulated by m  diagonals, hence it has m  +  3 sides.

We prove the proposition by induction.

- If m =  1, then P is a quadrilateral. The quadrilateral P must be convex because its two diago
nals intersect. If P is mapped by to a single triangle of T i, then there is a singular point of 
E with cone angle strictly less than ir. But this is impossible since, for every closed curve c in 
int(E \  {pi , . . .  ,pn}), we have orth(c) e  {±Id}. Thus, we conclude that (p maps int(P) isome- 
trically onto a quadrilateral consisting of two triangles in Ti. Clearly, by applying the elementary 
move inside <p(P), we obtains a new triangulation which contains bk+\.

- If m  >  1, it is enough to show that there exists a sequence of elementary moves which transform 
T i into a new triangulation T'x containing 61 =  (ai), . . . , b k — (ak), such that bk+x intersects the 
edges of T'x at most m  — 1 times.

Equip the plane R2 with a system of Cartesian coordinates such that d is a horizontal segment lying 
in the axis Ox. Let x : R2 — ► R, and y : R2 — > R denote the two coordinate functions. Let 

A i , . . . ,  A r denote the vertices of P such that y(Ai) > 0, and B i , . . .  ,B S denote the vertices of 
P such that y(Bj) < 0. Let Aq and A r+1 denote the left and the right endpoints of d respecti
vely. We set, by convention, B q = A q, and B s+1 =  A r+i. Since P has m + 3 vertices, we have 

r  +  s +  2 =  m +  3. We can assume that r ^  s (if it is not the case, reverse the orientation of 

Oy). We name the vertices of P such that A q, . . . ,  A r+1 are ordered in the clockwise sense, and 
B o,. . . ,  Bs+i are ordered in the counter-clockwise sense.

Without loss of generality, we can assume that r  ^  2 because m  > 1. Let io be the smallest in
dex such that y(Aio) = max{y(^i) : i =  1 , . . . ,  r}, that is y(Aio) ^  y(Ai) Vi =  1 , . . . ,  r, and
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y(Ai0) > y(Ai) if i < %q. Consider the sub-polygon P i of P, which consists of all triangles in T 3 

having Ai0 as a vertex. The vertices of P i are Ai0- \ ,  Ai0 ,A i0+i and B jQ, . . . ,  B j0+i. The polygon 
P i is triangulated by the diagonals Ai0B j0, . . . ,  Ai0B j0+i. Let T4 denote this triangulation of P i.

By Lemma 2.6.7 below, we know that <p maps in t(P i) bijectively onto an open domain Qi in £ . 
Therefore, any elementary move inside P i induces an elementary move inside Qi.

Since b\ , . . . ,  bk, bk+i are edges of the triangulation T 2, we have in t(6j) fl in t(6fc+ i) =  0 , Vi =
1 , . . . ,  k. Recall that b i , . . .  ,bk are also edges of the triangulation T i, from this we deduce that 

in t(6j) fl Qi =  0 , since if e is an edge of T i and int(e) fl Qi ^  0 , then int(e) D int(bfc+i) 7  ̂ 0 - 
This implies that an elementary move inside Qi does not affect the edges 61, . . . ,  i>fc.

Consider the intersection of P i and the inverse image of bk+1 by <p. A  priori, this set is a family of 
geodesic segments with endpoints in the boundary of P i. Clearly, the segment so =  AoAr+i H P i 
is contained in the set P i Pi <̂_ 1 (6jt+i). Since E satisfies (O '), all the segments in this family are 
parallel, therefore, all of them are parallel to the horizontal axis. Let r  be the number of intersection 
points of the set P i fl ip~1(bk+1) and the edges of T 4 .

Now, Lemma 2.6.5 shows that there exists a sequence of elementary moves which transform T 4 

into a new triangulation whose edges intersect the set P i PI (p—l(bk+i) at at most r — 1 points. It 
follows that there exists a sequence of elementary moves inside the domain Qi which transform T i 
into a new triangulation of E whose edges have at most m  — 1 intersection points with bk+i- As we 
have seen, those elementary moves do not affect the edges 61, . . . ,  bk- By induction, the proposition 
is then proved. □

We need the following lemma to complete the proof of 2.6.6

Lemma 2.6.7 With the same notations as in the proof o f 2.6.6, the restriction o f cp onto in t(P i) is an 

isometric embedding.

Proof: Since ip maps each triangle of T 3 onto a triangle of T i, it is enough to show that the images by <p 
of the triangles of T 3 which are contained in P i are all distinct.

Suppose that there exist two triangles A i and A 2 such that </?(Ai) =  (p(A2). Since <p is locally isome

tric, and by assumption, the orthogonal part of the holonomy of any closed curve in in t(£  \  { p i, . . .  ,p n}) 

is either Id or —Id, it follows that either A 2 =  A i +  v, or A2 =  — A i +  v, where — A i is the image of 

A i by —Id, and v 6  R2. Note that, by definition, the triangles A i and A 2 have a common vertex, which 

is A io.
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• If A2 =  Ax +  v, exclude the case Ai =  A2, we have two possible configurations. In these both 
cases, we see that the angle of P i at the point A .¡0 is at least 7r. But, by assumption, this is impos

sible since we have y(A io) > y(Aio- i )  and y(Aio) >  y(Aio+i).

• If A 2 =  — Ai +  v, we have three possible configurations. In the case where Ai and A2 have only 
one common vertex, we see that the angle of P i at Ai0 must be greater than 7r, which is, as we 
have seen above, impossible. In the other two cases, Ai and A2 are adjacent. As we have seen, 
this implies the existence of a singular point of E with cone angle strictly less than 7r. This is again 
impossible.

The lemma is then proved. □

2.7 Volume form on T^{a\ (3)

Our aim in this section is to define the volume form ¡jltt on the space 7t(<5; /?) which is invariant by 
the action of the group r(<?, n). The construction of this volume form relies on the local charts defined 
in the proof of Theorem 2.2.7.
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Recall that, if L : E — ► F is a linear map between (real) vector spaces which is surjective, then 
given a volume form /xe on E, and a volume form ¿ip on F, one can define a volume form ¡j, on ker(L) 
as follows : let E i be a subspace of E so that E =  Ex © ker(L), the restriction Li of L on Ei is then a 
linear isomorphism, the volume form /x on ker(L) is defined to be the one such that :

/¿E =  M A L^Mf- 

Remark that ¡jl does not depend on the choice of E i.

2.7.1 Definition of the volume form ¿¿Tr

Let us start by recalling some basic properties of the local charts ^ r  which are defined in Section
2.4. Let T  be a triangulation of S  representing an equivalence class in T 1Z(S). Let Ur be the subset of 
7x(«; /?) consisting of all pairs ([(£, <f>)], £) such that the homeomorphism (f> maps T  onto an admissible 
triangulation of £ . The local chart ^ r  is defined on U r  with image in V r ,  which is a subspace of CNl, 
where N i is the number of edges of T. The image of U r is an open set of V r  •

Let a\ , . . . ,  a^ 2 denote the vectors of (C^ 1 ) * which correspond to the equations of the system Sj-- A vec
tor ai is said to be normalized if each of its coordinates belongs to the set {—1,0,1}. We have two cases :

• Case 1 : m  > 0. In this case, we have shown that rank(S r) =  N 2 (see Lemma 2.4.4). Consider 
the complex linear map A r  ’ CNl — ► CiV2, which is defined in the canonical basis of C"Vl and 
CN2 by the matrix

A T =

a 1 \

V aN2 /
The map A 7- is then surjective, and V r  — ker A r- The map A r  is said to be normalized if each 
row of its matrix in the canonical basis is normalized.

Let X2N1 et ^2n 2 denote the Lebesgue measures on C ^ 1 ~  R2^ 1 and CN2 ^  R2iV2 respectively. 
Since A 7- is suijective, A2K1 and A2n 2 induce a volume form v r  on V r  via the following exact 

sequence:

0 — >VT ^> CNl ^  CN2 — ► 0.

- Case 2  ; m  = 0 . In this case, we have rank(S r) =  ^ 2  — 1 (see Lemma 2.4.4), hence rank(A r) =  
N 2 — 1. If the vectors a \ , . . ., a^ 2 are normalized, and the their signs are chosen suitably, we have 
ax +  • • • -I- aj\r2 =  0. Thus, without loss of generality, we can assume that Im A r =  W , where
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W  is the com plex hyperplane o f CNi defined by W  =  { (z\ , . . . ,  z/v2 ) €  C ^ 2 : z\ H-------\-z^2 =  0}.

Le t denote the volume form  o f W  w hich is induced by the Lebesgue measure o f CN2.
The volum e form s À2jv i and induce a volum e form  v r  on V r  via  the fo llow ing  exact

sequence :

0 — ► V r  CNl ^  W  — ► 0.

In  both cases, le t p,T denote the volum e form  ’i '^ i ' r  w hich is defined on Ur-

2.7.2 Invariance by coordinate changes

To show that the volum e form s ¡j-r, T  e  TTl(S), give a w ell-defined volum e form  on Tr(â; ¡3), we 

need to prove that whenever Urx r\Ur2 ^  0 , where T\ and represent tw o d ifferent equivalence classes 

in  T 1Z(S), then we have

MTi =  nr2 on Urx n  Ur2 ■

Le t us begin w ith

P roposition  2.7.1 Let ( [(£ , <£)],£) be a point in U r C\Ur2- Let T i and T2 be two admissible triangula
tions of E  corresponding to T\ and T2 respectively. Assume that T2 is obtained by T i by an elementary 

move, then n r  =  MT2 on Uri D Ur2-

P ro o f: Suppose that the elementary move occurs in  a quadrilateral Q w hich is form ed by tw o triangles 

A i and A2 o f T j.  Note that the edge o f T i which is removed by th is elementary move is contained in  

the in te rio r o f E .

Let Z =  ( z \ , , z jv j) denote the image o f ( [(£ , <f>)], £) by ^>r- We can assume that 

. zi is associated to the common side o f A i and A2.

. Z2, 23 are associated to the other sides o f A i such that { —21,22,23} is the oriented boundary o f A i.  

. 24,25 are associated to the other sides o f A2 such that {21 ,24 ,25 } is the oriented boundary o f A2. 

We have

— 21 +  22 +  23 =  0, (2.10)
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2. TRANSLATION SURFACES WITH BOUNDARY

Z i +  Z4 +  Zs =  0 .  (2.11)

After the move, the quadrilateral Q is divided into two triangles A'x and A'2. Let W  = (wi, . . . , wnx) 
denote the image of ([E, <f>)], £) by ^ t2- We can assume that

. is associated to the common edge of A'x and A'2.

. Wi is associated to the oriented edge corresponding to Z{, for every i =  2 , . . . ,  N%.

We have then

—  tui + 1 0 3  +  W 4  =  0, (2.12)

w i+ w 2  + ws = 0. (2.13)

We see that the equations (2.10) and (2.11) are contained in the system S ^ , and the equations (2.12) and 
(2.13) are contained in the system Sr2- The other equations of S r2 are the same as those of with Zi 
replaced by for i =  2 , . . . ,  iVj. Note that z\  does not appear in any equation of other than (2.10) 
and (2.11). Similarly, w\ does not appear in any equation of S r2 other than (2 .12) and (2.13).

Let A ri denote the normalized linear map associated to Sri ■ The matrix of A 7-1 in the canonical basis 
of C^ 1 and CN2 is of the form

( -1 1 1 0 0 •• • 0

1 0 0 1 1 •• • 0

A Ti = 0 * * * * *

0 * * * * *
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2. TRANSLATION SURFACES WITH BOUNDARY

Similarly, let Aq-2 denote the normalized linear map associated to S-r2 whose matrix in the canonical 

basis of C^ 1 and C^ 2 is of the form

/ - 1 0 1 1 0 • • 0

1 1 0 0 1 • • 0

At2 = 0 * * * * *

0 * * * * *

From what has been said, the i-th row of the matrix A r2 is the same as the i-th row of the matrix A ^ , 

for every i =  3 , . . . ,  N 2.

Let F  : C^ 1 — ► C^ 1 be the linear map which is defined in the canonical basis of CNl by the matrix

1 -1 0 1 0 • • 0 \

0 1 0 0 0 • • 0

0 0 1 0 0 • • 0

0 0 0 0 0 • • 1 /

Now, observe that Ar2 0 F  =  A ^- As a consequence, the following diagram is commutative

ker A-j~i —-  CN1 c n 2

i H | F
a t2

||Id

ker A t2 — > CNx CN2

The isomorphism H  : ker A ^  — ► ker A ?2, which is induced by F, is the coordinate change ^ r 2 0 ̂ 7 j1 •

Here, we have two cases :

• Case 1 : m  > 0. We have dime ker A ^  =  dime ker A r2 — YTjl i  Sj + 2g + n — 2. In this case, 
by definition, the volume forms uri and vr2 are induced by the Lebesgue measures X2N1 and A2n 2 
on ker A ^  and ker A ^  respectively. Since | det F | =  1, we deduce that H *vr2 = VTi- Therefore, 

the forms nrx and ^r2 coincide in a neighborhood of ([(S, <p)\, £).

• Case 2 : m =  0. We have dime ker A rx =  dime ker A r2 =  2g +  n — 1, we can assume that 
Im A ^ =  ImA'j-2 =  W , where W  is the complex hyperplane of CN2 defined above. In this case, 
the volume forms vrx and vr2 are induced by X2Ni and A/2(Ar2_1), where X'2̂ N2_ ^  is the volume 
form on W . Since we also have the following commutative diagram
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0 — ► kerA Tl — ► C^ 1 ^  W  — ► 0

i  H  |  F  ||Id

0 — ► kerA T2 — »■ C^ 1 —% W  — ► 0

it follows that H* i/7"2 =  v-ji. Hence we get the same conclusion. □

Corollary 2.7.2 Let T\ and T2 be two triangulations of S  which represent two different equivalence 

classes in TTZ(S). Assume thatliq\ fl Ut2 7  ̂ 0 , then fi7-1 =  on Utx H Ut2-

Proof: Let ([(£, <£)],£) be a point in Urx H Ur2 - Let Tx,T2 be the two admissible triangulations of E 
which correspond to T\ and T2 respectively. By Theorem 2.6.2, we know that T 2 can be obtained from 
T i by a sequence of elementary moves. Proposition 2.7.1 tells us that the volume forms corresponding 
to two admissible triangulations which differ from each other by an elementary move are equal. The 
corollary is then proved. □

By Corollary 2.7.2, we see that the volume forms n r  > T  £ T1Z(S) give rise to a well defined volume 
form on 7 r(â ; y5). From now on, we denote this volume form /xxr-

2.7.3 Invariance by the action of Mapping Class Group

To complete the proof of Theorem 2.2.9, we need the following :

Proposition 2.7.3 The volume form /¿ir is invariant by the action ofTfJj, n).

Proof: The fact that /¿Tr is invariant by the action of the group T(g, n) is quite clear from the definition. 
Let 7  be an element of r(g , n), and suppose that 7 ([(£ i, 0i)], £1) =  ([(E2, 02)]> 0 - By definition there 
exits then an isometry

h : E i — ► £ 2,

such that 0 2 1 ° h o  4>\ 6  Homeo+ (S, V). The isometry h sends an admissible triangulation of E i onto 
an admissible triangulation of £ 2, from which we deduce that 7  preserves the volume form fxTr- D
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The proof of Theorem 2.2.9 is now complete.

2.8 Proof of Proposition 2.2.10

In this paragraph, we will always assume that m  — 0, because of this additional hypothesis, we re
place 7t(q:; ¡3) by 7 r(a ), and 0) by M rr{a) to simplify the notations.

2.8.1 Flat surface defined by holomorphic 1-form

In this paragraph we suppose that g ^  2. Let M  be a compact Riemann surface of genus g, without 
boundary, and u> be a holomorphic 1-form on M. Let x \ , . . . , x n denote the zeros of ui, and k \ , . . .  ,kn 
denote their orders respectively. It is well known that u> defines a flat metric on M  such that the cone 
angle at Xi is 2tx(ki + 1 ), i =  1 , . . . ,  n. In this situation, we consider {xi, . . . ,  xn} as the set of singulari
ties of the flat surface, even though some of these points are actually regular (ki may be zero). Note that 
the 1-form u; also determines a singular foliation of M  by ‘vertical’ geodesics. A flat surface defined by 
a holomorphic 1-form is a translation surface.

Fix a sequence k \ , . . . , k n of non-negative integers such that k\ -\------ 1- kn = 2g — 2. Let 7 i(k i,. . . ,  kn)
denote the moduli space of holomorphic 1-form having n  zeros of orders k \ , . . .  ,kn. By definition, 
H (k i , . . . ,  kn) is the quotient space of the set of all pairs (M, u>) as above by the following equivalence 
relation : (M i, wi) and (M 2, u>2) are equivalent if and only if there exists a conformal homeomorphism 
/  : Mi — ► M2 such that f*u>2 =  u\.

It is well known that H (k i, . . . ,  kn) is a complex algebraic orbifold of dimension 2g +  n — 1. Let 
(Mo, wo) be a pair in H ( k \ , k n ) .  Let {7 ° , . . . ,  72P+n-i}  denote a basis of the homology group 
Hi(Mo, {x°, . . . ,  x^}, Z) ~  l? 9+n~l , where X®,. . . ,  denote the zeros of wo- We can consider every 
pair (M, lo) in a neighborhood of (Mo, cuo) as a deformation of (So, wo) so that we can specify a basis 
of H \(M , {x \ , . . . ,  xn}, Z), where x \ , . . . , x n denote the zeros of u>, corresponding to 7 ° , . . . ,  725+n-i- 
The curves in this basis will be denoted by 71 , . . . ,  ̂ g+n-i- It follows that the map

$  : (M ,u>) 1— ► ( /  to ,... ,  f  w )€  C25+71-1 “  R2(29+n" 1),
Jll Jl2g+n-l

defines a local coordinate chart of H (k i , . . . ,  kn) in a neighborhood of (So, wo). This is the period map
ping. The pull-back by $  of the Lebesgue measure on C2s+n_1 ~  R2(2s+n_1) is a well defined volume 
form on H (k \ , . . . ,  kn). We denote this volume form /¿o-
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Assume in addition that the integers k i , . . .  , k n are pairwise distinct. In this case, we can identify 
H (k i , . . . ,  kn) to the space M t (o),  with a* =  2n{ki +  1), i =  1,. .  -, n. Remark that if k i , . . . ,  kn 
are not pairwise distinct, then the space is a finite covering of H (k i , . . . ,  kn).

2.8.2 Proof of Proposition 2.2.10

Let (M, u>) be a pair in H ( k i , . . . ,  kn). Let E denote the induced translation surface. Let x i , . . . , x n 
denote its singularities so that the cone angle at Xi is 2ir(ki +  1). The vertical geodesic flow determined 
by u> induces a normalized parallel vector field on E \  { x i , . . . ,  x n}. Let £ denote this vector field. The 
pair (M, u) in H ( k i , . . . ,  kn) is then identified to the element (E, {x i , . . . ,  xn}, £) in .Mt(<5).

Let T be a geodesic triangulation of E whose set of vertices coincides with the set of singularities of E, 
we know such triangulations exist by Proposition 2.3.2. Note that, in this case, any geodesic triangulation 
whose set of vertices coincides with the set of singularities is admissible.

Recall that a family o f primitive edges of T is a set of 2g +  n  — 1 edges of T such that the complement 
of the union of those edges is a topological open disk. Remark that such a family always exists because 
it corresponds to a maximal tree in the dual graph of T. Let {&i,. . . ,  &2s+n-i}  be a family of primitive 
edges of T. Observe that {i»i,. . . ,  625+n-i}  is a basis of the group -ffi(£, {x i , . . . ,  xn}, Z).

Let (¡> : S  — > E be a quasi-conformal homeomorphism which maps pi to Xj, i =  1 , . . . ,  n. Let T  
denote the equivalence class of the triangulation </>- 1(T) in T1Z(S). Let be the local chart associated 
to T . As usual, let S7- denote the system of linear equations associated to T.  Let V r be the space of 
solutions of St , and A x be the normalized linear map associated to Sj-. We can assume that

Im Ar =  W  =  {(2 1 , . . . ,  zN2) G C^21 z i  H-------1- z N2 =  0}.

Note that here N\ = 4(2g +  n  — 1) — 3, N 2 =  3(2g +  n  — 1) — 2, and dime V r =  2g + n  — 1. By \I>r, 
a neighborhood of (E, {x i , . . . ,  xn}, £) in M.T(a)  is identified to an open set of V r-

There exists a neighborhood U of (E, {x i , . . . ,  xn}, £) such that, for any point (E ', {x;1;. . . ,  x'n}, £') in 
U, there exists a quasi-conformal homeomorphism f a  : E — ► E ' which maps T onto an admissible 
triangulation T ' of E'. Let 6', i = I , . . .  ,2g + n — 1, denote the image of 6* by /sy. The segments 

{&i,. . . ,  &2p+n-i} form a basis of the group if i(E ', {x \ , . . . ,  x'n}, Z). Hence, we can define a local 
chart of H (k i , . . . ,  kn) by the following period mapping

$  : U  ----- ► £ 2 g + n - l

( S ( A T , u 0  —

By the construction of ̂ r ,  we can assume that if ̂ r ( S ',  {x^, . . . ,  x'n}, £') = (z i , . . . ,  zjvJ, then the 
complex numbers z \ , . . . ,  Z2g+n- i  are associated to the edges b[,. . . ,  b'2g+n_v  It follows that the map
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V T  o $ _1 : 9(U) C C29+n_1 — ► C^ 1

maps (z i, . . . ,  z2g+n-i) to (zi , . . . ,  z2g+n- 1, 22S+n, • • •, zNl). We deduce that 'I 'r  0 $ _1 is an injective 
linear map. Hence, \&t 0 $ -1  is a restriction into §(U) of an isomorphism from C2fl+n-1 onto V r-

Let A2(29+n-i) denote the Lebesgue measure of C2ff+n_1 ~  R2(29+n~1). By definition, ¡iq =

^*^2(2p+n-l)-

Let ^ 2(jV2_l.) t îe volume form of W  which is induced by the Lebesgue measure of CN2, and v? be
the volume form on V r which is induced by \ 2Ni and A'2(-iV2_1-) via the following exact sequence

0 — ► Vr  — ► C^ 1 ^  W  — ► 0 .

By definition, the volume form ¿¿Tr on a neighborhood of (E, {a?i,. . . ,  xn}, £) is Clearly, on

C2s+n_i we have

(\I>r °  $ _ 1 )*^ r  =  AA2ff+ n- i )

where A is a non-zero constant. This implies fixr =  A/io on a neighborhood of (E, {x i , . . . ,  xn}, £). We 
deduce that /¿tt/mo is locally constant. Consequently, ¿¿Tr/Vo is constant on every connected component 
of . . . ,  kn). □

2.9 Action of SL2(R.) on 7t(q;; /?)

There is an action of the group SL 2(R) on Tx(a; ¡3) which is defined as follows : let ([(£, </>)],£) 

be an element of 7 r(a ; /?), and A. =  ( °  j  ] 6  SZ^R)- Let { fa : Ua — > R2} be an atlas defi-
\ c d J

ning the flat metric structure on E, then {A  o f a} is an atlas of another flat metric structure on E. Since 
all the transition functions are translations of R2, it follows that {A o f a} defines a translation surface 

structure on E. Let A  • E denote the new translation surface. We define the image of [(£, </>)] by A  to be 
the equivalence class of the pair (A • E, 0 ), that is, while the flat metric structure on E is modified by 

A, the marking map (f> stays the unchanged. To define the image of the parallel vector field £ on A  • E, 
we choose an atlas { /a : Ua — ► R2} of E such that, for every a, /<**£ is the constant vertical vector 

filed (0 ,1) on f a{Ua ). The image of £ on A ■ E is defined to be the pull-back of the vertical vector field 

(0 , 1) on A o f a(Ua)-Let A  • ([(£, </>)],£) denote the image of ([(£, </>)],£) by A. It is easy to verify that 
A  • ([(E, 0)], £) is also an element of 7 r(a ; ¡3). We have then defined an action of every A e S L 2(R) on 
lx(a;(3).
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Remark: One can check out easily that the action of 50 (2 ) c  S L 2CR) by this definition is equivalent 
to the rotations of the normalized parallel vector field on each translation surface.

From the definitions, it follows immediately that the action of S L 2 (R) commutes with the action of 
the mapping class group r(g , n) on Tr(a-, ¡3). Hence, we also get an action of 57,2(80 on the moduli 
space M t(o ; (3). Furthermore, we have

Proposition 2.9.1 The volume form ¡jlxr is invariant by the action o fS L 2(M.).

Proof: Let ([(£, 4>)\, £) be a point in 7t(<5; (3), and T be an admissible triangulation of E. Let T  be the 
equivalence class of ^ - 1(T) in T K (S ). Let U r  be the associated domain of 7x(a; ¡3), and '¡'7- be the 
associated local chart.

Let A = \ a j  1 be an element of the group S L 2 (R). By definition, it is clear that the action of A
v c d )

preserve the domain Ur-

By the local chart i$>r, we identify Ur to an open set in a subspace V r of CNl. By definition, the 
induced action of A  on ^ r (U r )  verifies

A ■ ( z i , z j f j )  =  ( A ( z i ) , A ( zn i)), V(zi, . . . ,  zjvi) G ^ r (U r ),

where the complex numbers A(zi) is defined as follows : if =  X{ +  iy%, with x t , yt G R, then 
A(zi) = Ui + ivi, with

Ui a b Xi

Vi c d
. Vi _

If we identify CjVl to R2jVl, the action of A  on ^ r (U r )  is the restriction of the action of the following 
matrix :

(  A  0 . . .  0 \
0 A  . . .  0

0 0 . . .  A J

Now, recall that the volume form fixr is induced by the Lebesgue measures of CNl and X, where X  
is either C^ 2 or W , via the complex linear map A r- We have the following commutative diagram :

0

0

V r - -+ C^ 1
A t X

I A I A 1 A

V r - CN' A t X

0

0
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where we have used the same notation A  to denote the action of [ , I on Vy, C ^1, and X by
V e d I

applying this matrix to each complex coordinate. Clearly, this action of A  preserves the Lebesgue mea
sures on and X. Therefore, A  preserves the induced volume form on Vy. The proposition is then 
proved. □

Remark: Proposition 2.2.10 can be deduced from Proposition 2.9.1 as follows : define a function /  on 
H (k i , . . . ,  kn) by

_  dfJ.Tr

dfj,o

The function /  is then continuous. Since both ^Tr and ¡jlq are 51/(2, R)-invariant, so is / .  But we know 
that the action of S L (2,R) is ergodic on each connected component of H (k i , . . . ,  kn). Hence, /  is 
constant on each connected component of Ti(k\ , . . . ,  kn).
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Chapitre 3

Flat surface with erasing trees

3.1 Definitions and main results

3.1.1 Flat surface with conical singularities and erasing trees

Let E be a flat surface. A tree in E is the image of an embedding from a topological tree into E. We 

consider an isolate point as a special tree, which has only one vertex and no edges. A forest in E is a 

finite disjoint union of trees in E. A tree in E is said to be geodesic if each of its edges is a geodesic 

segment in E. A forest is said to be geodesic if it is a union of geodesic trees.

Definition 3.1.1 (Erasing tree and erasing forest) Let E be a compact connected flat surface without 
boundary. Let p i , . . . , p n denote the singular points of E. An erasing tree (resp. erasing fores tj in E is a 
tree (resp. forest) whose vertex set contains all the singular points o /E  such that, if c is a closed curve 
in E which does not intersect this tree (resp. forest), then the holonomy of c is a translation of R2 (the 
orthogonal part of the holonomy is trivial).

Given a flat surface with an erasing forest, one can define

Definition 3.1.2 (Normalized Parallel Vector Field) Let £  be a compact, connected flat surface wi
thout boundary. Assume that there exists on E an erasing forest A. A parallel vector field on the com
plement of A is a vector field which is nowhere zero such that, in local charts of the Euclidean metric 
structure, all the lines determined by the vectors of this field are parallel. A parallel vector field is said 
to be normalized if all of its vectors are of norm one.

The next proposition shows that geodesic trees always exist on flat surfaces.

Proposition 3.1.3 (Existence of geodesic trees) Let E be flat surface without boundary. Let {pi. . . . ,pn} 
denote the singularities of E. Then there exists a geodesic tree whose vertices are {p i-. . .  ,pn}.
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Proof: Let C\ be a path from pi to p2 whose length is minimal. The path C\ is a finite union of geodesic 
segments whose endpoints are singular points of S. Apart from p\ and p2, C\ can contain other points in 
{pi, . . . , p n}. Since Ci is a path of minimal length, it has no self intersections. By renumbering the set of 
singular points if necessary, we can assume that C\ is a path joining pi and pr via the points p2, . . .  ,pr- 1- 
Note that for every point p 6 Ci, the length of the path from pi to p along C\ is the distance d(pi,p) 
between them.

If r =  n, then we have obtained a geodesic tree whose vertices are {p i,. . .  ,pn}. If r < n, let C2 be a 
path from p\ to pr+i whose length is minimal. If C\ fl C2 =  {pi}, then we get a geodesic tree which 
contains at least r + 1  singular points as vertices. If this is not the case, we prove that C2 can not intersect 
Ci transversely at a regular point.

<3

Suppose that p is a regular point where C2 intersects C\ transversely. Let V  be a neighborhood of p such 
that Si = V  fl Ci and 52 =  V  (~l C2 are two geodesic segments, and p is the unique common point of Si 
and 52. Let C[ be the paths from p\ to p along C\ and C2 be the path from pi to p along C2, we have

leng(Ci) =  l e n g ^ )  =  d(pi,p).

Let q be a point in S 2 \  C2, and r be a point in S i  fl CJ. Let pq denote the sub-segment of S 2 whose 
endpoints are p and q, and pr denote the sub-segments of Si whose endpoints are p and r. We have

d(pi,g) =  d(pi,p) +  leng(pg),

and

d(Pi)P) =  d (p i,r) +  leng(pf).

Since p is a regular point of S, if we choose the points q and r  close enough to p, the geodesic segment 

q f  joining q and r  will be contained in the neighborhood V, and we have

leng(gr) < leng(pf) +  leng(pg).

It follows that

d(pi, q) = d(pi, r) +  leng (pf) +  leng(pg) >  d(pi, r) +  leng(qf).

70

r

q
p -

c i



3. FLAT SURFACE WITH ERASING TREES

The above inequality is in contradiction with the definition of the distance d. Thus, we conclude that 
C2 cannot intersect C\ transversely at a regular point. This implies that the last intersection point of 
Ci and C2, that is the intersection point of furthest distance from pi, must be a singular point pk of S. 
Omit the part of C2 from pi to pk , we obtain a geodesic tree connecting at least r-1-1 singular points of £.

Let Cs denote the new tree. For any point p of C3 , the length of the unique path from pi to p along C3  is 
the distance d(pi,p). This property allows us to conclude by an induction argument. □

Recall that a closed translation surface is a flat surface such that, for any closed curve 7  which 
does not contain any singularity of the metric structure, we have o rth (7 ) =  Id, where o rth (7 ) is the 
orthogonal part of the holonomy of 7 . A spherical flat surface is a flat surface homeomorphic to the 
sphere §2. Proposition 3.1.3 implies

Corollary 3.1.4 i) There exists on any closed translation surface a geodesic erasing tree, 

ii) There exists on any spherical flat surface a geodesic erasing tree.

Proof: The existence of a geodesic tree whose set of vertices is precisely the set of singular points of 
the flat surface is guaranteed by Proposition 3.1.3. By definition of translation surface, such a tree is 
obviously erasing, and i) follows. Note that on a (closed) translation surface we have already an erasing 
forest which is the union of all singular points.

For spherical flat surfaces, by Proposition 3.1.3, there exists on any spherical flat surface a geodesic 
tree whose set of vertices is precisely the set of singular points. Since the complement of a tree in a 
sphere is an topological open disk, the holonomy of any closed curve in this complement must be Id. 
Therefore, we get an erasing tree, and ii) follows. □

3.1.2 Main results

We fix two integers g ^  0, n > 0, such that 2g +  n — 2 > 0, and positive real numbers a.\, . . .  ,a n 

verifying a i H-------b a n — 2n(2g + n — 2).

In the sequel of this chapter, Sg will be fixed a compact connected flat surface of genus g, without 

boundary. Assume that there exists a geodesic erasing forest A  = U^L^Ai on Sg, where each A  is a 

geodesic tree. Letpi, . . . , p n denote the vertices of the trees in A, and assume that the cone angle at pi is 
ccj. Recall that, by definition, all the singular points of Sg are contained in the set { p i , . . .  ,pn}, but some 
of the points pi may be regular. We also assume that at least one of the trees in A  is not a point.
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Definition 3.1.5 (Mapping class group preserving a forest) Let Homeo+(59, *4.) denote the group o f 

orientation preserving homeomorphisms o f S9 which fix the points {pi, . . .  ,p n}> and preserve the set A  

Let HomeoQ (Sg, A ) be the normal subgroup ofK om eo+(Sg, A ) consisting o f all elements which can 

be connected to Idsg by an isotopy fixing the points p i , . . . ,  pn.

The mapping class group o f Sg preserving the trees in A  is the quotient group

T (Sg,A )  =  Homeo+ (S's ,^4)/Homeo0 (Sg,A ).

Remark: It follows from Lemma A.0.1 that, if /  is a homeomorphism of Sg which is isotopic to identity 
by an isotopy fixing every point the set { p i , . . .  ,pn}, then there exists an isotopy Ht : Sg x  [0; 1] — ► Sg 
from /  to Ids9 such that Ht (A) = A, Vi G [0; 1].

Without loss of generality, we can assume that there exist the integers k o ,k i , . . .  ,k m such that ko = 0, 

E j l i  ki = and the set of vertices of A j  is {pko+...+kj_1+u . . . ,  pko+...+kj} for every j  G { l , . . . , m } .  
The angles a \ , . . . ,  a n must satisfy the following condition :

«**,+•••+*¿-1+1 H-------  ̂a ko+-+kj e  2ttN, Vj G {1,. . .  ,m }.

Let a denote the set { o i , . . . ,  a n}. Let T et(A, a)* denote the set of pairs (£ , <j>), where E is a flat 
surface of genus g, and (j> : Sg — > E is an orientation preserving homeomorphism which maps A  onto 
a geodesic erasing forest of E.

We define an equivalence relation on 'TGt(A. a)* as follows : two pairs (Ex, 4>i) and (E2 , 0 2 ) are 
equivalent if there exists an isometry h : Ex — > E 2 such that the homeomorphism (p̂ 1 0 h o <px is 
an element of HomeoQ {Sg, *4). The equivalence class of a pair (E, <f>) will be denoted by [(£, Let 
T et(A, a)* denote the space of equivalence classes of this relation.

Obviously, the group T (Sg, A )  acts on T et(A , a)*. The quotient space T et{A, a )* /T (S g, A ) is the mo

duli space o f flat surfaces with marked erasing trees and denoted by M .&t{A, a)*.

We denote T ^ iA ,  a)* the set of equivalence classes [(£, <f>)] where E is a flat surface of area one, 
and M f { A , a)* the quotient space I^et(-4, a)*/T(Sg, A).

Definition 3.1.6 (Teichmiiller space of flat surfaces with erasing forest) The Teichmuller space of flat 
surfaces with marked erasing forest and parallel vector field is the set o f all pairs ([(£,<£)],£), where 

[(£, 4>)] is an element o fT et(A , a)*, and £ is a normalized parallel vector field on E \  4>{A). We denote
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this space T et (.A, a).

The moduli space of flat surfaces with marked erasing forest and normalized parallel vector field is 
the quotient space T et(A, a )/T (S g, A) and denoted by M.et(A, a).

Remark:
• The group S1, identified to the rotations of the Euclidean plane, acts naturally on the space T et (A, a): 

if Rg is the rotation of angle# and ([(£ ,0 )],£) € T et (.A, a), then jR# •([(£> <£)]>£) =  ([(£ ,0 )],i?0- 
£), where Rg ■ £ is the parallel vector field defined as follows : at every point where £ is defined, 
Rg • £ is the vector obtained by rotating £ an angle 6 . This action of S1 endows T et (A, a) with a 
principal S1-bundle structure over T et(A, a)*.

• The space T et (A, a ) has also a C*-bundle structure over T^t (A, a)* : for each element [(£, <f>)] G 

T ft (A, a)*, let £ be a normalized parallel vector field on £  \  <fi(A), the fiber over [(£, <ft)] is the 
set of pairs (r • [(£, <j>)\, Rg • £), with r € R+, 9 € S1, where r ■ [(£, <f>)\ is the multiplication of the 
metric on £  by r while <f> stays unchanged.

We can now state the main results of this chapter.

Proposition 3.1.7 (T^t (A, a)* is embedded into T  (g, n)) Let T  (g, n ) denote the Teichmiiller space of 
conformal structures, andT(g,ri) denote the usual modular group of the punctured surface Sg\{p \ , . . .  ,pn}-

a) There exists an injective map 0  : Tjet („4, a)* — ► T(g, n).

b) There exists also a monomorphism a  : F(Sg, A) — ► T(g, n ) with respect to which 0  is equivariant.

The definitions of 0  and a  are quite natural. Namely, since a flat metric structure implies a conformal 
structure, an equivalence class of 7̂ et (A, a)* is contained in an equivalence class of T (g, n ), this defines 

0 . By definition, a homeomorphism in Homeo+ (5fl, A) fixes the set {pi, . . .  ,pn}, hence it represents 
an element in the modular group T(g, n), this defines a.

Endow the space T f" (*4, a)* with the topology inherited from T(g, n), we get then a topology on 

T et(A, a) which is induced by the C*-bundle structure over T^t (A, a)*. We have :

Corollary 3.1.8 The action of the group T(Sg, A) on T et(^4, a) is properly discontinuous.
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Proof: Since T et(A, a) is a <C*-bundle over 7 êt(A, a)*, and the action of T(Sg, .4) preserves this bundle 
structure, it is enough to show that the action of T(Sg, A) on 7 êt(.4, a)* is properly discontinuous. But 
this is a direct consequence of Proposition 3.1.7, since we know that the action of r(g , n) on T (g, n) is 
properly discontinuous. □

Now, let us slit open the surface Sg along every tree A j in the forest A, if A j is not a point. The 
surface obtained, which will be denoted by Sg, is then a translation surface with geodesic boundary. If 
the tree A j  has kj > 1 vertices (hence, kj — 1 edges), then the vertices of A j  give rise to 2 (kj — 1) points 
in the boundary component of sj) corresponding to A j whose complement are 2 (kj — 1) open geodesic 
segments. Let V  ̂denote the finite subset of Sg which arises from the set { p i,. . .  ,pn}-

Let ([(£, £) be a point in T et(A, a), by definition, 4>(Aj) is a geodesic tree of E. Slit open the sur
face E along every tree <p(Aj) if A j is not a point, and let E  ̂ denote the new surface. Observe that 
is also a translation surface with geodesic boundary homeomorphic to Sg. The homeomorphism <j> from 
Sg onto E induces a homeomorphism from S\ onto E*1 which maps each geodesic segment on the 
boundary of Sg onto a geodesic segment on the boundary of E*1. The normalized parallel vector field £ 
on E induces also a normalized parallel vector field on E*1 which will be denoted again by £. It follows 
that we get a point in the Teichmuller space Tt(ol'-, /?'), which is represented by the pair ([(E*1, $ ) \ ,  £), 
where the data a', and 3 ' are determined by the angles a and the forest A.

Let S denote the map from T &t(A ,a)  into Ti(a!] ft)  which associates to a pair ([(E, 0)], in 
7x(a; ¡3) the pair ([(E1*, $)}>£) constructed as above. First, we have

Proposition 3.1.9 The map S is well defined.

Proof: We need to show that if (Ei, <f)\) and (£ 2, <$2) represent the same point in T et(A,a)* then 
(Ej, 4>\) and (Ej, <fl) represent the same point in ft)*.

By definition, there exists an isometry

h : E i — ► E2,

such that <j>2 1 o h ° <f>i is isotopic to Idss by an isotopy fixing the points {pi, . . . , p n}. Let be the 
isometry from E^ onto E2 which is induced by h.

By Lemma A.0.1, we can assume that the isotopy H* from (p̂ 1 o h o ^ t o  Id5s preserves the forest A, 

therefore H* induces an isotopy from (f>\ oh^o cf>\ to Id^n, which is identity on the set )A  By definition,
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it follows that the pairs (£|[, <p\) and (Ej, <t>\) represent the same point in 7 t  

We have the following

Theorem 3.1.10 i) The map 2  is injective, continuous, and the set 2 (T et (A, a)) is a special complex 
affine sub-manifold ofT^(a'] /?') (meaning that the coordinate changes o fE (Tet(A, a)), which are 
induced by those ofT^{cJ\ ¡3'), preserve a volume form) of dimension

•  2g +  n  — 1  ifoii 6  2 7 r N  for every i  G  { 1 , . . . ,  n } .

• 2g +  n — 2 otherwise.

ii) There exists a volume form on E (Tet(A , a)) whose pull-back by 2  gives a volume on T et(A, a) 
which is invariant by the action of the group T(Sg, A).

A direct consequence of Theorem 3.1.10 is the following 

Corollary 3.1.11 The space T et(A , a) is a flat complex affine manifold of dimension

• 2g +  n  — 1 ifa i E 27rN/or eve?}7 i E {1 , . . . ,  n}.

• 2y +  n — 2 otherwise.

There exists on T et(A , a) a volume form invariant by the action of the group A), which will be 
denoted by /x^.

3.2 The embedding of 7[et(̂ 4, a)* into T(p, n)

3.2.1 Conformal metrics with conical singularities on a Riemann surface

In this subsection, we follow loosely the definitions in [Trl]. Let S  be a compact Riemann surface, 

possibly with boundary. A conformal (singular) metric g on S  is defined by a local expression

h — p(z)\dz\2,

where z is a local coordinate on S , and p is a positive measurable function.

A (real) divisor on S  is simply a formal sum :
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n i n 2

div = SiPi + 2  
1=1 j= l

where pi € int(S') (i =  1 , . . .  ,ni), qj e  dS  (j = 1 , . . .  , 712), and s \ , . . .  ,sn i, t i , . . .  , tn2 are real num
bers.

We will always suppose that the real numbers s i , . . . ,  sni and t i , . . . , t n2 satisfy the following condi
tion :

Si > -1 ; i =  1 , . . .  ,711 andtj >  j  =  1 , . . .  , n 2.

The set {pi , . . .  ,pni,qi, • • •, <?n2} is called the support of d iv  and denoted by supp(div). The real 
number

n 1 ri2

ld i v l =  s si +  £ i J ’ 
i=1 j =1

is called the degree of the divisor div.

A conformal metric h on S  is said to represent the divisor d iv  if h is a smooth Riemannian metric on 
S  \  supp(div) such that:

, x i Vi € {1, . . . ,  ni}, h =  e2u\zi\2si\dzi\2 on a neighborhood U{ of pi,
1 Vj 6 {1 , . . . ,  «2}, h = e2v\vjj\4tJ \dwj\2 on a neighborhood Vj of qj,

where Zi (resp. Wj) is aholomorphic coordinate on Ui (resp. Vj) such that Zi(pi) = 0 (resp. Wj(qj) = 0), 
and u : Ui — > R (resp. v : Vj — > R) is a continuous function of class C2 on Ui — {p*} (resp. on

V j - { qj}).

The point pi is then said to be a conical singularity of angle $i =  +  1). The point qj is said to be 
a comer of angle r]j = 2tv(tj + | ) .  Observe that C, equipped with the metric |z |2s|dz|2, is isometric to 
an Euclidean cone of angle 9 =  2tt(s + 1). Similarly, the upper half plane U =  {z € C : Imz ^  0}, 
equipped with the metric |z |4i|dz|2, is isometric to an Euclidean comer of angle 77 =  ir(2t +  1).

If h is a conformal metric with conical singularities on S, let denote the curvature of h, this is real 

function which is defined on S  \  { singularities of h}. An Euclidean conformal metric, with conical sin

gularities, representing d iv  is then a conformal metric h satisfying the following conditions :

- For each p*, i = 1 , . . .  ,n i,  there exists a conformal coordinate 2: defined in a neighborhood of pi 
such that h =  |z |2si|dz|2.
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- For each qj, j  =  1 , . . . ,  712, there exists a conformal coordinate w defined in a neighborhood of qj 
such that h = \w\u i \dw\2.

- Kh = 0 on S  \  supp(div).

Let S' be a compact Riemannian surface, possibly with boundary, and d iv  be a real divisor of S  
satisfying the condition (*). The Euler characteristic of the pair (S, div) is defined to be

x(S, d iv) =  x{S) + | d iv  J.

We have (see [Trl])

Theorem 3.2.1 (Gauss-Bonnet formula) Let hbe a conformal metric representing div, then

±  J J K hdAh + ±  J khdh = X(S ,div),

where Kh is the curvature, dA^ is the area element and kh is the geodesic curvature of h.

Corollary 3.2.2 I f  h is  a conformal flat metric with conical singularities and geodesic boundary, repre
senting div, then we have

Til 712

£  6i +  E  Vi = 27r(n i +  TT ~
¿=1 j =l

where 9{ is the cone angle at pi (i = 1 , . . . ,  n\) and rjj is the comer angle at qj (j =  1 , . . . ,  «2).

We quote here an important result which is proved in [Trl]:

Proposition 3.2.3 ([Trl], Proposition 2) Let S  be a compact Riemannian surface, possibly with boun
dary, and d iv  a real divisor on S  such that x(S, div) =  0. Then there exists on S  a conformal metric 
representing d iv  such that d S  \  supp(div) is geodesic. This metric is unique up to homothety.

3.2.2 Proof of Proposition 3.1.7

a) Let E be a flat surface having n  conical singularities homeomorphic to S9. The flat metric structure on 
S  induces a conformal structure on £  \  { singularities }. The map 0  is defined as follows : for every pair 

(£,</>) which is a representative of an equivalence class in T it (A, a)*, let ^  be a quasi-conformal ho- 
meomorphism from S3 onto £  in the same isotopy class relative to { p i,. . .  ,pn} of (f>. Since the isotopy 
class relative to { p i , . . .  ,pn} of 4> contains diffeomorphisms, such a homeomorphism exists. We define 
©([(£, </>)]) to be the equivalence class in T (g , n) which is represented by the pair (£  \  {xx,. . . ,  xn}, 4>), 
where Xi = <f>(pi) i =  1 , . . . ,  n and £  \  {xi , . . . ,  x n} is now considered as a Riemann surface. We need
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to prove:

Lemma 3.2.4 The map 0  is well defined.

Proof: We have to prove that two different representatives (Ex, 4>i) and (E2, fa) of an equivalence class 
in 7̂ et (X, a) * give the same equivalence class in T(g,n). Let 4>\, fa  be the quasi-conformal homeomor- 
phisms in the same isotopy class relative to {p i,. . .  ,pn} of 4>\ and respectively.

By the definition of T et(A,a)*, there exists an isometry /  : £ 1  — ► £ 2 such that <f>2 l 0 f  0 fa 
is an element of HomeoQ (Sg, A). Since an isometry between two flat surfaces is a conformal homeo- 
morphism between the two Riemann surfaces underlying, and fa, fa  are homotopic to <p\, (¡>2 relative 
to { p i , . . .  ,pn} respectively, it follows that 4>2 1 0 /  0 <£1 is an element of QCq (g , n). Hence, the pairs 

(Ei \  ( f a ( p i ) , fa(pn)}, fa) and (E2 \  {fa(px), • • •, h  (p«)}, fa) belong to the same equivalence 
class in T(g, n). □

Next, we have:

Lemma 3.2.5 The map © is injective.

Proof: Let (Ex, <f>\) and (E2, </>2) be two pairs in T et(A, a)* such that Area(Ex) =  Area(E2) =  1. Let 
4>i, 4>2 be two quasi-conformal homeomorphisms isotopic to <p 1, 4>2 relative to {p i,. . .  ,pn} respectively.

Suppose that (Ex \  {4>i(pi), ■ ■ ■ ,  4>i{pn)}, 4> 1) and (E2 \  { f a ( p i ) , f a { p n)}, fa) belong to the 
same equivalence class in T (g, n), we have to prove that (Ex, fa) and (£2, fa) also belong to the same 
equivalence class in T f1 (A, a)*.

By the definition of T(g ,n), there exists a conformal homeomorphism h : Ex — > E2 such that 

4>2 l o h o  <̂x is isotopic to Ids9 by an isotopy fixing every point in the set {px, • • • ,Pn}- Now, since 
4>i is isotopic to <fi relative to {p i,. . .  ,pn}, for ¿ =  1 , 2 , it follows that 4>2 l o h o  fa is  also isotopic to 

Idsg by an isotopy fixing every point in the set {px, ■■ ■ ,pn}-

First, we prove that h is also an isometry between the two flat surfaces Ex and £ 2.

Let (xx,. . . , xn), and (yx, ■ ■ ■ ,y n )  denote the singularities of Ex and E2 respectively, where Xj =  
fa(pi),yi = faipi), i =  1 , . . . ,  n. Let /x and / 2 denote the two flat metrics on Ex and £ 2 respecti

vely. Let divx denote the divisor X ĵ=x sj xj> and d iv 2 denote the divisor Y^j=\ sjVj» where Sj satisfies 
ctj = 27r(sj + 1). By definition, /* is a conformal flat metric which represents the divisor divj on
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Si, t =  1 , 2 .

Since h is a conformal homeomorphism, it follows that h* f 2 is also a conformal flat metric on £ 1. Since 
/i(divi) =  d iv 2, we deduce that h* f 2 represents d iv i too. Now, from Proposition 3.2.3, there exists 

A > 0 such that /1  =  A h* f 2. Since we have assumed that A rea/^E i) =  Area/2(S2) =  1» it follows 
that A =  1. Therefore we have /1  =  h*¡2, in other words, h is an isometry from the flat surface S i onto 

the flat surface S 2.

All we need to prove now is that fâ 1 o h o  fa  preserves the forest A. By definition, fa(A) is a union 
of geodesic trees on S i whose vertices are xi, . . . , x n. Since h is an isometry of flat surfaces, h(fa(A)) 
is a union of geodesic trees whose vertices are y i , . . . ,  yn. Let a be an edge of a tree in A. The set fa(a) 
is a geodesic segment on S i, hence h(fa(a)) is a geodesic segment of S 2. By definition, fa (a) is also a 

geodesic segment of S 2.

By assumption, there exists an isotopy relative to {p \, . . . ,  pn} from ho fa  to fa. Now, from Lemma 2.3.8, 
we have h(fa(a)) = fa(a). Since this is true for every edges in A, we conclude that hofa(A ) = fa(A), 
or equivalently, fa^1 o ho fa (.4 ) =  A. It follows immediately that <j>21 o h o  fa e  Homeop (Sg, .4), in 

other words, (S i, fa) and (S2, <h) 316 equivalent in Tf-(A , a)*. □

Part a) of Proposition 3.1.7 is now proved.

b) It is well known that T(p, n) can be identified to the quotient group Homeo+(<7, n) /Homeof (g , n), 
where Homeo+ (g, n) is the group of all preserving orientation homeomorphism of Sg which fix every 
point in the set {pi, ■ ■ ■ ,pn}, and Homeo^"(g, n) is the normal subset of Homeo+ (g , n) consisting of all 

elements which are isotopic to Ids3 relative to {pi , . . .  ,pn}-

By definition, it is clear that Homeo+(55, A) is a subgroup of Homeo+((?, n), and

Homeo+ (Sg, A) =  Homeo+ (5 s , A) f l  Homeog"(g, n ).

It follows that T(Sg, A) is a subgroup of r(^ , n). Let a : T(Sg, A) — > T(g, n) denote the natural im
bedding. The morphism a  is obviously injective. Since the actions of T(Sg, A) and r(^ , n) are defined 

in the same way, the map 0  is equivariant with respect to a. □

From now on, we can consider 7̂ et (.4, a)* as a subset of the Teichmiiller space T(g,n), and T(53, A) 

as a subgroup of T(^, n), which preserves T ^ (A , a)*.

79



3. FLAT SURFACE WITH ERASING TREES

3.3 Injectivity of the map £

Let X \ = ([(Si, <f>i)], £1) and X 2 =  ([(S2, <fo)], £2) be two points in T et(A, a) such that S(-Xi) =  
E (X 2). By definition, S(Xj), i =  1,2, is represented by the pair ([(Sjj, 4>\)],£i)- The assumption 

S(-Xi) =  2 ( ^ 2) implies that there exists an isometry from onto S 2 such that <f>\ o o <fr\ 
is an element in HomeoJ (Sg, V )̂.

Clearly, the isometry induces an isometry h from S i to S 2, which maps the forest <j>% (X) to the fo
rest 0 2 (-^2)- Set ip = 0 2 1 oho(f>i : Sg — > Sg. Remark that ^(.A) =  A, therefore ip € Homeo + (Sg,A). 
All we need to prove is the following

Lemma 3.3.1 <p is isotopic to Ids9 by an isotopy fixing all the points in {p\ . . . .  ,pn}.

Proof: Since = <j>\ o hfr o belongs to Homeog"(Sg, V^), there exists an isotopy

H * : S j x [ 0 ; l ]  — > Sj}, 

such that, Hj =  h J =  Id ^ , and Ht(V*) =  V*, where Hj =  H ^., t), Vi e  [0; 1].

Let (a, a) be a pair of geodesic segments in the boundary of Sg which correspond to the same edge 
a in the forest A. The identifications with a induce a homeomorphism Pa from a onto a. Let /  be a 
homeomorphism of Sg which is identity on the set lA  The necessary and sufficient condition for /  to 
define a homeomorphism on Sg is that,

for every edge a in the forest A, we have p^ 1 o / |S ops =  / |a (*)

Lemma 3.3.1 will follow from the following lemma

Lemma 3.3.2 Given any homeomorphism f  of Sg which is identity on the set lA  there exists a homeo
morphism f  of Sg such that the homeomorphism f  = f '  o f  verifies the condition (*).

Proof: We only prove this lemma in the case A  contains only one edge a. The general case can be shown 
by similar argument.

We identify a thin neighborhood Na of a in Sg to a rectangle R e = [0; 1] x [0; e] in M2, with e 
positive, such that a is identified to the segment [0; 1] x {0}. The map (p^ 1 o / |S o p&) o Z“ 1 induces a 

homeomorphism q of the segment [0; 1]. We define a homeomorphism Q of i?e as follows

Q(s, t )  =  (s + —^ —(q(s) -  s), t ) ,  V(s, t )  € [0; 1] x [0 ; e].
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Note that g(0) =  0, and q(l) = 1, therefore Q is identity on the two vertical sides of R e. By definition, 
Q is identity on the upper side of R e, and Q = q on the lower side of R e.

The homeomorphism Q induces a homeomorphism Q' of Na. We can extend Q' by identity outside 
Na to obtain a homeomorphism f  of Sg. By construction, we have

f \a =  (Pa 1 0 f \a  0 Pa) °  f ^ 1,

and

f[a = Wa

lt follows immediately that f  — f  o f  verifies the condition (*) on a. The lemma is then proved. □

Back to the proof of 3.3.1. By Lemma 3.3.2, for each t € [0; 1], we can find a homeomorphism H£ of 
Sg such that Ht =  Hj o H* verifies the conditions (*). Clearly, the homeomorphisms HJ can be chosen 
continuously as a function of t, therefore, H* induces an isotopy from <p to Idss which is identity on the 
set { p i ,pn}, and the lemma follows. □

Lemma 3.3.1 allows us to conclude that the map S is injective.

3.4 Image of T et(A , a) by S

Let V*1 denote the finite subset of Sg arising from the set {p i,. . .  ,pn} of Sg. Let TlZ(Sg) be the set 
of all triangulations of Sg whose vertex set is V11 modulo homotopy relative to lA

Let T  be a triangulation in TlZ(Sg), in Section 2.4, we have already defined a subset Ur of 7x(a'; /?') 
corresponding to T, and a local chart i ' r  defined on Ur- Let N \,N 2 be respectively the number of 
edges, and the number of triangles of T. Recall that we also have a system of linear equations associated 
to T, which is denoted by S7-, consisting of N 2 equations. Let VY be the subspace of CNl consisting 
of solutions of the system Sr- The image of Uj- by is then an open subset of VV- Since we have 
assumed that there exists at least a tree in A  which is not a point, the boundary of Sg is not empty, and 
hence,

m
dime V r =  2 <? +  2 — 1) — 2 =  2 g + 2 (n — m) — 2 .

i= i

Note that the family {Ur, T  € TTZ(Sg)} is an open cover of the space Tx(a'] /?')• First, we have
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Proposition 3.4.1 For every triangulation T  in TTZ(Sg), the intersection S (T et(.4., cc)) DUr is mapped 
by 'I 't  onto an open subset of a subspace o /V r of dimension

• 2g +  n — 1 if on € 27tN, V* =  1 , . . . ,  n.

• 2g + n — 2 otherwise.

For each T  in TlZ(Sg), let Vj- denote the subspace of V r that contains the image of £ (T et (A, a}) fl 
Ur as an open subset. We have then

Proposition 3.4.2 I f  T\ and represent two different equivalence classes in TlZ(Sg) such that Uji fl 

Ur2 7  ̂0 , then ^ r 2 ° maps onto V ^.

From Proposition 3.4.1, and Proposition 3.4.2, we get immediately 

Corollary 3 .4.3  H(Tet(̂ 4, a)) is a special flat complex affine subspace o fT j(a ': Q').

3.4.1 Proof of Proposition 3.4.1

Let ([(E, <p)],Q be a point T et(A, a) whose image by 5  is a point ([(£ \ <^)], £) in Ur C 3x(a'; ¡31). 
By definition, the homeomorphism sends the triangulation T  of onto an admissible triangulation T 
of S*1. The triangulation T of induces a triangulation of E by geodesic segments containing the forest 
A  = 4>(A), whose vertex set is {pi , . . .  ,pn}. This triangulation of E will be denoted by T*.

Recall that the map ^ r  associates to each edge of T a complex numbers, the complex number asso
ciated to an edge e of T will be denoted by z(e). We start with

Lemma 3.4.4 If  (e, e) is a pair of edges in the boundary of E*1 which corresponds to an edge of a tree 
Aj = <f>(Aj) in 4>(A), then we have

2 (e) =  -  A ( e )  (3.1)

where the number 6 is determined by the angles a, and the tree Aj.

Proof: Let e denote the edge of Aj which corresponds to the pair (e, e). Assume that the edges e and 
e are oriented coherently with the orientation of E^. It follows that the orientations of e and e induces 
inverse orientations of e, this justifies the minus sign in (3 .1).
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Let p  be the mid-point of e, and let 7  be a closed curve on the surface E such that 7  fl A  =  {p}, where 
A  = <f>(A).

Observe that 9 is the rotation angle of the holonomy of the curve 7 . The angle 9 is determined from 
the tree Aj and the angles a \ , . . . ,  a n as follows : since Aj is a tree, Aj \  e has two connected compo
nents. Take one of these components and add to it the segment e, we get then a sub-tree A'- of Aj.

Suppose that {xiQ, , . . . ,  X{k } are the vertices of the tree A'-, where Xi0 and are the endpoints of 
e. Up to a permutation of indices, the curve 7  is homotopic to the curve o li2 o • • • o lik o 7 ', where 
lis, s = 1, . . . ,  k, is a closed curve homologous to a small loop about Xis, and 7 ' is a closed curve in 
E \  A. Since the rotation o rth (^ 3) is of angle ans, and the rotation o rth (7 /) is trivial by definition of 
erasing forest, it follows that o r th (7 ) is the rotation of angle + -----1- a.ik. Hence

9 =  Qjj H-------H a-ik mod 2tt.

□

Since the trees in the forest A  have totally (n — m) edges, Lemma 3.4.4 implies that coordinates of 

the vector ® t([(S I|, ^ i,) ] , 0  e  <CNl is must verify (n — m) additional equations of type (3.1). Adding 
those equations to the system S r , we get a system S^- which contains JV2 -b (n — m) linear equations. 
Let V^- denote the subspace of CNl consisting of solutions of S^-. We have then

Lemma 3.4.5 The image o fB (T et(A , a)) fl Uj- by 'I'7- is an open subset o fV ^.

Proof: Let Z  =  ( z i , . . . ,  z ^ )  denote the image of ([(£t|,0 t,)],£) by 'J>r- It suffices to show that 
\I>r(S(Tet(.A, a)) fl Ur) contains neighborhood of Z  in Vj-.

Let Z' = ( z [ , , z'Ni) e  C^ 1 be a vector in a neighborhood of Z  which is also a solution of the system 
S^-. Using the triangulation T, we construct a flat surface from Z' as follows :

. Construct an Euclidean triangle from z\, z'j, z'k if z[, z ', z'k verify an equation of type (2.3).

. Identify two sides of two distinct triangles if they correspond to the same complex number z[.

. Identify the edges corresponding to z\ and z' if z[ and z' satisfy an equation of type (3.1).

Clearly by this construction we obtain a flat surface E ' homeomorphic to E. The surface E ' also has n 
conical singularities, and there is a distinguished geodesic erasing forest A' on £ '. Moreover, we also 
get a triangulation T*' of £ ' by geodesic segments. Each triangle in T*; corresponds to a triangle in E2
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specified by three complex numbers, hence we get a normalized parallel vector field £' on S ' \  A! which 
is defined by the constant vertical vector field (0,1) on the Euclidean plan E2.

Define an orientation preserving homeomorphism

/  : S. —  S ',

as follows : /  maps each edge of T* onto the corresponding edge of T*', and the restriction /  on each 
triangle is a linear transformation of R2. Note that the homeomorphism /  is then quasi-conformal with 
respect to the conformal structures on S, and S '. Let 4>' denote the map

4> = f  o (j) : Sg — ► S '.

It follows that the pair ([(S', <£')], £') represents a point of T et(A, a)* close to ([(S, £). Clearly, by 
construction, we have \&r(£([(S', </>')], £')) =  Z', and the lemma follows. □

Now, we need to compute the dimension of V^-.

Lemma 3.4.6 We have

dimc v* /  2y +  n - l ,  ifa i € 27rN, Vi =  1 , . . . ,  n;
1 2g +  n — 2 , otherwise.

Proof: Since the system S r  contains already N 2 equations, the system S^- contains N 2 + (n — m ) equa
tions, therefore

dim V -̂ ^  N i -  (N 2 + (n -  m)) = 2g +  n -  2 . (3 .2)

Consider the surface S *1 with the admissible triangulation T. Let 01 , a i , . . . ,  a„_m, an_m denote the 
edges of T which are contained in the boundary of so that each pair (a^, at) corresponds to an edge 
of a tree in the forest A of S.

Choose a family of primitive edges in T, note that such a family must contains 2g + m -  1 edges, let
61, . . . ,  &2g+m-i denote the edges in this family. As usual, for any edge e of T, let z(e) be the complex 
number associated to e by \I>r-

By definition, we have in t(S tl) \  u |£^m lbj is an open disk. Using Lemma 2.4.1, ii), we deduce that 
if e is any edge of T, then z(e) can be written as a linear combination of

(2 (01), z(a 1) , . . . ,  z(an_m), z(an_m); z(b i) ,. . . ,  z(b2a+m- 1)),
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with the coefficients in {±1,0}. From Lemma 3.4.4, we know that z(ai) = —et0iz(ai), where 9i is 
determined by a  and A. The complex number z(e) is a linear function of

( z ( a i ) , z ( a n- m), z (b i) , . . . ,  z(&2S+m-i))-

We deduce that

dim V3- ^  2g + n  — 1. (3.3)

Apply Lemma 2.4.1, ii) to the disk D =  i n t ^ )  \  we get

n—m

(* ( “ * ) + * ( “ *)) =  0
¿=1

By Lemma 3.4.4, it follows

n —m

J 2 ( l - e ' ei)z(ai) = 0. (3.4)
1=1

Note that the numbers z(bj), j  =  1 , . . . ,  2g +  m  — 1, do not appear in the equation (3.4) because each 
of the edges bj belongs to two distinct triangles. Here, we have two issues :

- Case 1 : there exists i G {1 , . . . ,  n} such that a* ^ 27rN. The equation (3.4) is then non-trivial, 
which means that the vector (z(a i) , . . . ,  z(an_m), z ( b i ) , z ( b 2g+m-i) )  belongs to ahyperplane 
of C25+n_1. Therefore we have

d imV5-<2p +  n - 2 .  (3.5)

From (3.2) and (3.5), we conclude that dime V^- =  2g +  n — 2.

- Case 2: ai £ 27rN for every i in {1, . . . ,  n}. In this case, the equation (3.4) is trivial. However, this 
also means that the sum of all equations in the system S^-, with appropriate choices of signs, is the 
trivial equation 0 =  0. This implies rank(S^-) ^  N 2 +  (n — m) — 1. Hence

dimVj- ^  N\ — (AT2 + n — m  — l) = 2g + n — I. (3.6) 

From (3.3) and (3.6), we conclude that dim V^- =  2g +  n — 1.

The lemma is then proved. □

The proof of Proposition 3.4.1 is now complete. □
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3. FLAT SURFACE WITH ERASING TREES

3.4.2 Proof of Proposition 3.4.2

Let ([(£, <f>)], £) be a point in T et(.Â, o.) such that ([(E1*, be a point in fl Ur2- Let T i, T 2

be the admissible triangulations of E*1 corresponding to T\ and respectively. By Theorem 2.6.2, we 
know that one can transform T i into T2 by a sequence of elementary moves.

Recall that, by definition, V7- is the solution space of , ¿ =  1,2, and is the solution space of 
S^-, i = 1,2, where is obtained from SrÉ by adding (n — m) equations of type (3.1). Hence we can 
consider V^- as the intersection of V7- and the solution space V of those additional equations.

Now, the map ^fr2 0 can be seen as a restriction of a linear isomorphism L of C^ 1 onto V rx. Since 
elementary moves do not affect the edges on the boundary of E^, the linear isomorphism L preserves the 
space V, and the proposition follows. □

3.5 Continuity of S

Let ([(E, (f>)\, £) be a point T et(A, a), and assume that ([(E^, £) is contained in Ur, where T  
is a representative of an equivalence class in TlZ(Sg). Let Z  = (z\ , . . . ,  z ^ )  6  C^ 1 be the image of 
([E11, <^)], £) in C^ 1 by We have proved that Z  is contained in the subspace V -̂ of O^1. To show 
the continuity of 2 , we prove the following proposition

Proposition 3.5.1 There exists a neighborhood U of Z  in Vi- such that (U)) is a neighborhood
o/([(E, </»)], e )m T et(A a).

3.5.1 Preliminaries

Let U be a neighborhood of Z  in Vj- such that for any W  in U, the construction given in the proof of 

Lemma 3.4.5 gives a point ([(Ew, 4>w)\,^w) in T et(A, a).

Observe that there exists a Hermitian form H of C ^1, such that, for any W  in U, the area of the 
surface E ^  is given by W^HW. We define

Ui =  {W  =  («7i,.. . ,w Nl) € U : W*H W  = l , w 1 e  R}.

We can assume that A rea(E) =  1, and apply a rotation to the field £ so that Z  is a vector in Ui. We 
can also assume that Ui is a ball.
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Let $ 7- be the map which associates to any vector W  in Ui the point ([(Eiy, <f>w)\ in T et(A, a)* (we 
forget the field £w). Observe that the image of Ui by $ 7- is contained in (Â, â)*.

To prove Proposition 3.5.1, we will prove the following proposition 

Proposition 3.5.2 $ r(U i) is a neighborhood of [(E, </>)] in T it (Â, â)*.

3.5.2 Proof of 3.5.2 in the case a* 6 27rN, Vi = 1 ,n

In this case, we have seen that dime V^- =  2g +  n — 1, hence Ui is a ball of real dimension 
2(2g + n — 2). We remark that, in this case, T et (Â, â ) is locally homeomorphic to the moduli space of 
closed translation surfaces having n singularities. It is well known that the later is of complex dimension 
2g +  n — 1, hence so is T et(«4, â). It follows that 7̂ et (Â, â)* is of real dimension 2(2g +  n — 2). Since 
dimR Ui =  dim® T ^ (Â , â)*, to prove that $ r ( U i )  is a neighborhood of [(£, <fi)] in T ^ (Â , â)*, we 
only need to verify that $ 7- is continuous, and injective.

The injectivity of $ 7- follows from the fact that, for if [(IV , 4>w)\ =  $ t (W), then there exists a 
unique normalized parallel vector field Çw on E w  such that ,ï ,r([(£vF) <fiw)],Çw) =  W.

For the continuity of $ 7-, recall that we have an embedding from T it (A, â)* into T(g, n ), and the 
topology on (A, â)* is induced from the topology of T(g, n) with Teichmüller metric by this em
bedding. Therefore, it is enough to show that $ 7- is a continuous map from Ui into T (g, n ).

Let {Wfc} be a sequence of vectors converging to a vector Woo in Ui. Let [(£&, 4>k)], k =  1 ,2 , . . . ,  
denote the image of Wk, and [(£oo5 <Aoo)] be the image of Woo by By construction, we can assume 
that

=  fk  0 000 >

where fk  is a homeomorphism from E l30 onto Efc, which maps the admissible triangulation Too =  
4>oo(T) of Eoo onto an admissible triangulation of £&.

Recall that the restriction of fk  into each triangle of Too is a linear map of R2, therefore fk  is quasi- 
conformal. As k tends to 00 , the restriction of fk  on each triangle of Too tends to identity, hence the 

dilatation K (fk)  tends to 1, it implies immediately that the Teichmüller distance between [(E^, <pk)\ and 
[(Eoo, <f>oo)] tends to zero. We deduce that $ 7- is continuous, and the proposition follows. □
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3.5.3 Proof of 3.5.2 in the case there exist i such that ar 0  27rN

In this case, by Proposition B.0.1, we know that there exist a subset Ui of CNl, and a continuous map 
from U\ into T (g, n) verifying the following conditions :

- Ui is homeomorphic to a ball of real dimension (6g + 2n — 6).

- Ui = Ui n vf.

- is the restriction of <3>r into Ui.

- $ r(U i) is a neighborhood of [(£, (j>)] in T (g , n).

- For every W  £ Ui, <&r(W) is represented by a pair (T,w, f w  0 <t>)i where Ew  is a flat surface 
having n singularities with cone angles a i , . . . ,  a n, and fw  is a homeomorphism from E onto E ^  
mapping the triangulation T onto a triangulation by geodesic segments of Ew, whose vertex set is 
the set of singular points.

Note that the surface $ t (W) is defined by constructing triangles from the coordinates of W, and gluing 
them together using T  as pattern.

It follows that, every point X  in a)* close enough to [(E, 4>)\ can be written as &r(W), with
W  € Ui. In particular, X  can be represented as a pair (Sty, with the properties described above.
By definition, X  is represented by a pair (£ ', <j>'), where E ' is also a flat surface having n singularities 
with cone angles a x, . . . ,  an, and <fi' is a homeomorphism mapping the erasing forest A  onto an erasing 
forest of E'.

We can then identity £ ' to E ^ , and it follows that f w  o 0 is isotopic to <fi' relative to { p i , p n}. Since 
both fw  ° <j> and fa map A  onto a geodesic forest, using Lemma 2.3.8, we conclude that fw  0 4>{A) =  
fa (A). Now, by the definition of it implies that the vector W  belongs to the space V^-. Therefore,

W e V 3 - n U i  =  Ui.

The proposition is then proved. □

3.5.4 Proof of Proposition 3.5.1

Proposition 3.5.1 is a direct consequence of Proposition 3.5.2. Set U =  Ui x €*, with Ui as in Pro
position 3.5.2. The set U can be identified to an open subset of V^-.
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For each W  € Ui, let [(Evp, 4>w )} € 'T \‘(-4, a)* be the image of W  by There exists a unique 
normalized parallel vector field fw  onEw such that 'I'r°S([(Ey^, <t>w)],€w) =  W . We can then extend 
the map into a map which is defined on U such that

$ r ° H o  $ r (W) =  W, VW e  U.

It follows that $ r(U ) is contained in S - 1(,I,y 1(U)). From 3.5.2, we know that <3>r(Ui) is a neigh
borhood of [(£, 0)] in T ^ (A ,a )* ,  therefore $ r(U ) is a neighborhood of ([(E, <£)],£) in T et(A ,a). 
Proposition 3.5.1 is then proved. □

3.6 Volume form on H(Tet (*4, a))

In this section, we define a volume form on the sub-manifold S (T et(^4, a)) of Tr(a'-, ft) , and prove 
that the pull-back of this this volume form onto T et(.4 , a ) is invariant by the action of the group 
T{Sg, A). The construction of this volume form is similar to the construction of the volume form /¿Tr of 

Tt (o,;j9').

3.6.1 Definitions

Let T  be a triangulation of Sg, which represents an equivalence class in TTZ(Sg). As usual, let N \, N 2 

denote the number of edges, and the number of triangles in T  respectively. Let \I>r ’■ U t  — ► C^ 1 be the 
local chart associated to T. Recall that 'I't(W t) is an open subset of the solution space Vj- of a system 
S t ,  which consists of N 2 equations of type (2.3). We have shown that 'I’r ( 2 (T et(̂ 4 , a)) n  Ur) is an 
open subset of the solution space V^- of a system S^-, which consists of N 2 +  (n — m) equations. The 
system S^- is obtained from S r  by adding (n — m) equations of type (3.1).

Let a i , . . . ,  ajv2+(n_m) denote the vectors of (CjVl)* which correspond to the equations of the system 
S^-. A vector a* is said to be normalized if each of its coordinates is either 0, or a complex number of 
module 1. We have two cases :

Case 1 : there exist i € {1, . . . ,  n} such that a* 27rN. In this case, we have seen that dim V -̂ 
2(7 +  n — 2, hence rank(S^) =  N 2 +  (n — m ). Consider the complex linear map A^- : C^ 1 — 
C■iV2+(n-m), which is defined in the canonical basis of C^ 1 and CiV2+(n_m) by the matrix

A r  =

a  1 \

V aN2+(n—m) J
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The map A 7- is then surjective, and Vj- =  ker A^-. The map A r  is said to be normalized if each 
row of its matrix in the canonical basis is normalized.

Let A2JV1 et A2(iv2+(n_m)) denote the Lebesgue measures on C^ 1 — R2JVl and QN2+(n~m) ~  
^ 2(N2+(n-m)) respectively. Since A 7- is surjective, X2N1 and A2n2 induce a volume form v r  on 

V7- via the following exact sequence :

0 — CNl CiV2+(n_m) — >■ 0 .

- Case 2 : for every ¿ 6 ( 1 , . . . ,  n}, cti E 27rN. In this case, rank(S^) =  N 2 + (n — m) — 1, hence 
rank(Aj-) =  iV2 — 1.

If the vectors a \ , . . . ,  a?v2+(n-m) 316 normalized, and if their signs are chosen suitably, we have
a\ H------ h cln2 = 0 . Thus, without loss of generality, we can assume that ImA^- =  W , where W
is the complex hyperplane of c JV2+(n~m) defined by

W  =  { ( * ! , . . . ,  zN2+{n _ m)) €  C iV2+(n - m ) : 2 !  +  • • • +  z N2+{n_ m) =  0 } .

Let ^2(jv2+(n-m)-i) denote the volume form of W  which is induced by the Lebesgue measure of 

Civ2+(n—m)_ -pjjg voiume fonns A2JV1 and ^(A^+Cn-m)-].) induce a volume form v r  on V^- via the 
following exact sequence:

0 — — ► 0 .

In both cases, let ¡¿T denote the volume form 'S>rvT which is defined on E (Tet(A, a)) D Ur-

3.6.2 Invariance by coordinate changes

Let 71, and T2 be two triangulations of Sg which represent two different equivalence classes in 
TTZ(Sg). Assume that E (Tet(A, a)) D (Urx C\Ur2) 7̂  0 . Then we have

Lemma 3.6.1 h tx = HT2 on E (Tet(A, a)) D (Ur D Ur2)•

Proof: Let ([(E13, $)], £) be a point in E (T et(A, a)) fl (Urx D Ur2), and let T i, T 2 be the admissible 
triangulations of £& corresponding to 71 and I 2 respectively.

By Theorem 2.6.2, we can assume that T 2 is obtained from T i by only one elementary move. Since an 
elementary move does not affect the edges of T i which are contained in the boundary of E**, the equa
tions of type (3.1) in and in are the same. Therefore, we can using the same arguments as in the
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proof of Proposition 2.7.1, to show that there exists an isomorphism of F  of C^ 1 such that | det F | =  1, 
and the following diagram commutes

o —► V5j —► c^1 ^  x  —► o
I H  i  F  ||Id.

0 —> V$-2 —► Ĉ 1 -5 . x —► 0

where X  is either c N2+ n̂~m\  or W , and the isomorphism H  : — ► V ^ , which is induced by F , is 
the coordinate change between ^ r 2 and • It follows immediately that

and the lemma follows. □

3.6.3 Invariance by action of T (Sg, A )

Lemma 3.6.1 implies that the volume forms {/xr : ^  € TlZ(Sg)} give a well defined volume form 
on S (T et(y4, a)). Let ¿¿Tr denote the pull-back of this volume form onto T et(A, a). To complete the 
proof of Theorem 3.1.10, we need to show

Lemma 3.6.2 The volume form, fijr is in variant by the action o fF (Sg, .A).

Proof: The fact that fj,?r is invariant by the action of the group T(Sg, A) is quite clear from the definition 
of r ( £ 5 ,.4.). Let 7  be an element of T(5S,^4), and suppose that 7([(£i,0i)]> £i) =  ([(£¡2, <£2)], £2)- By 
definition there exist an isometry h from £ 1  onto £ 2. Note that, by definition, (fa1 o ho fa  preserves the 
forest A.

As usual, let ([(E*, </>*)], &) be the image of ([(£i, <&)], £*) by S, i = 1,2. The isometry h induces 
then an isometry from ([(Ej, 0i)], £1) onto ([(£2, ^4)]> £2)- Consequently, an admissible triangulation of 
E 1} is mapped by h onto an admissible triangulation of E |. Since any two admissible triangulations of 

E 11 are connected by elementary moves, Lemma 3.6.1 allows us to conclude. □

The proof of Theorem 3.1.10 is now complete. □
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3.7 A necessary condition for a tree to be erasing

Assume that the forest A  contains only one non-trivial tree A, i.e. all other trees in A  are points, then 
from the proof of 3.1.10, we get the following

Corollary 3.7.1 I f there exists i € {1 ,. . . ,  n} such that on  ̂ 27rN, then the tree A  contains at least 

three vertices.

Proof: By assumption, A  contains at least two vertices. Assume that A  has exactly two vertices whose 
cone angles are a-i, « 2- By assumption, both angles « i, cx̂  do not belong to the set 27rN since the cone 
angle at any isolate point in A  must be an integral multiple of 2tt.

We know that the tree A  has only one edge, this edge corresponds to a pair of geodesic segments (a, a) 
on the boundary of Sg. Let £ be a normalized parallel vector field on S^, and T  be an admissible trian
gulation of Sg. Let 'I 'r  be the local chart of Tx(af; /?') associated to T. Note that Ur contains the point

(l(S}.H )U )-

Let z(a) and z(a) be the complex numbers associated to a, and a respectively by '¡'7-. From Lemma
3.4.4, and (3.4), we have

(1 -  el6)z(a) = 0 .

where 0 = a  1 mod 2tv. Since a i 0  27rN, we have elS ^  1. Hence the equation above implies that 
z(a) =  0, which means that the two vertices of A  coincide, and we get a contradiction. □
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Chapitre 4

Spherical flat surface

4.1 Introduction

Spherical flat surfaces are flat surfaces which are homeomorphic to the sphere §2. By Proposition 
3 .2 .3 , we know that each homothety class of spherical flat surface with prescribed cone angles at the 
singularities corresponds to a unique conformal structure on the sphere S2 with marked points and vice 

versa.

Let p i , . . .  ,pn be n ^  3 points on the standard sphere §2. Fix a set of n positive real numbers a  =  
( a i , . . . ,  an) such that a\ +  • • • +  an = 2tt(n — 2). The Teichmuller space of spherical flat surfaces 
having n  singularities with cone angles a \ , . . . ,  an is the set of equivalence classes of pairs (E, (f>), where

. E is a spherical flat surface having n singularities with cone angles a \ , . . . ,  an.

. <f> is a homeomoiphism from § 2 to E, which sends {pi , . . .  ,pn} onto the set of singularities of £  
such that the cone angle at d>(pi) is a*.

. The equivalence class of (E, <f>) is the set of all pairs (E, $>'), where <fr' is a homeomorphism isotopic 
to 4> by an isotopy which is constant on the set {pi , . . .  ,pn}.

We denote this Teichmuller space T (§2, a)*. The equivalence class of a pair (E, <f>) in T (S2, a)* will be 
denoted by [(E, <j>)}. Let T (S2, a) denote the product T(S2, a)* x S1.

LetT(0;n) denote the modular group of homeomoiphisms of S2 which is identity on the set {pi , . . .  ,pn}. 
Clearly, P(0; n) acts on T (  S2, a)*, the quotient space ^ ( S 2, a)* is the moduli space of spherical flat 

surfaces having cone angles { a i , . . . ,  a n}. Note that in this definition, we do not allow exchanges of sin

gularities having with the same cone angle. We denote M i (§2, a ) :* the subspace of M  (§2, a )* consisting 
of all surface of area 1. By Proposition 3.2.3, the space M .i (S2, a)* can be identified to the moduli space
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M (0; n) of configurations of n points on the sphere § 2 up to Mobius transformations.

Extend the action of T(0;n) onto T(S2,a )  such that T(0;n) acts trivially on the S1 part and let 
jM(S2, a) denote the quotient T(S2, a )/r(0 ; n). The main result of this chapter is the following

Theorem 4.1.1 a) T  (§2, a) is aflat complex affine manifold of dimension n — 2, on which T(0; n) 
acts properly discontinuously.

b) There exists a volume form on T  (§2, a) which is invariant by the action of the group F(0; n).

The volume forms mentioned in Theorem 4.1.1, and Theorem 2.2.9 are defined by the same method.

4.2 Flat complex affine structure on T (§2, a)

As a direct consequence of Proposition 3.2.3, we can identify 71 (§2,a)* to T (0;n), and hence, 
T (§2, a ) to T (0; n) x C*, we endow T(S2, a) with the topology induced by this identification. It is well 

known that dime T (0 ; n) =  n — 3, it follows that dime T(S2, a) =  n — 2 .

4.2.1 Definition of local charts

Let T7£(S2, {pi , . . .  ,Pn}) denote the set of triangulations of S2 whose vertex set is {p\ , . . .  ,pn} 
modulo isotopy relative to {pi, . . .  ,pn}. Given a triangulation T  of S2 which represents an equivalence 
class in T 1Z(S2, {pi , . . .  ,pn}), let Ur denote the subset of T(S2, a) consisting of pairs ([(E, (/>)], eld), 
such that (¡>(T) is a geodesic triangulation of S. By Proposition B.0.1, we know that U t  is an open set in 
T(S2,a).

Choose a tree A  in T  whose vertex set is {pi , . . .  ,pn}, for any ([(E, <p)],eld) in Ur, <j>(A) is a 
geodesic erasing tree of E . Therefore, we can identify Ur to an open subset in T et (§2, A ). From Theorem 
3.1.10, we get a map

*T,A  : Ur —+ C4n- 7,

which is injective, and continuous, such that is an open subset of the solution space V^- A of
a system of linear equations S^- Note that, in this case, the system S^- ̂  has 3n — 5 equations, and 

rankS^-^ =  3n — 5, hence dime VJj- ̂  = (4n — 7) — (3n — 5) =  n — 2 . It follows that ^ r ,A  can 
be considered as a local chart of T (§2, a) on Ur- It is worth noticing that is °nty defined up to a
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rotation.

4.2.2 Coordinate changes

Let 71,7 2  be two triangulations of S2 which represent two different equivalence classes in T 1Z(S2, {pi, . . .  ,pn}, 
Let ([(£, 4>)}, £) be a point in U?̂  f)Ur2, and let T i, T 2 be the geodesic triangulations of E corresponding 
to T\, and T2 respectively. Choose a tree A \  (resp. A 2) in 7i (resp. 72) which connects all the points in 

{ p i ,pn}, and let ^Ti,Ai and ^ t 2,a2 be the two local charts of T (§2, a) corresponding.

Given an edge e of T 2 which is not contained in T i, let P e be the developing polygon of e with res
pect to T i (see 2.6.1). By construction, there exists a map ipe from P e into E which is locally isometric 
mapping a diagonal of P e onto e.

The map <pe sends geodesic segments in the boundary of P e onto edges of T i. It follows that the complex 
number associated to the edge e by the local chart ^ t 2,a2 can be written as a linear function of complex 
numbers associated to edges of T i, which correspond the segments in the boundary of P e, by the local 
chart i 'Ti,Ax- Since the roles of T i and T 2 in this reasoning can be interchanged, we deduce that the 

coordinate change between ^Ti,Ai anc* ^ t 2,A2 can be written as a linear isomorphism of C4n~ 7 which 
sends onto Therefore we can conclude that T (S2, a) is a flat complex affine manifold of
dimension n — 2 .

4.2.3 Action of T(0; n)

We know that T(0; n) acts properly discontinuously on T (0; n). We have seen that T (§2, oi) can be 
identified to T (0; n) x C*. Clearly, the action of T(0; n) on the C* factor of the product T (0 ; n) x C* is 
trivial, therefore the action of T(0; n) on T (S2, a) is properly discontinuous. Part a) of Theorem 4.1.1 is 
now proved.

4.3 Volume form on T(§2, a)

4.3.1 Definition

Set N i = An — 7, 7V2 =  3n — 5. Let T  be a triangulation of § 2 which represents an equivalence class 
in T1Z(§2, {pi , . . .  ,pn})- Let A  be a tree contained in T , which connects all the points in {pi , . . . ,  pn}. 

Let ^>r,A be the local chart associated to (T, A), which is defined on the set Ur-
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Let S5- be the system of linear equations associated to ^r ,A , and let &-t ,a  ^ e  normalized linear 
map associated to S I n  this case, A^- ̂  is a linear map from CNl onto CN2, which is given, in the 
canonical basis of C ^1 and CN2, by a matrix whose rows correspond to the equations in Recall 
that every entry of the matrix of A^- A (in the canonical basis of CNl and CNi) is either zero, or a com

plex number of module one.

We define vt ,a  to be the volume form on V -̂ A which is induced by the Lebesgue measures of C ^1 

and CN2 via the following exact sequence

o —► v*TA —► c4n~7 <C3n~5 —► 0.

Let h t ,a  denote the pull-back of v t ,a  on The following proposition shows that the volume form 

HT, A does not depend on the choice of A

Proposition 4.3.1 Let T  be a triangulation representing an equivalence class in T7£(§2, {p i,. . .  ,pn})- 
Let A \, A 2 be two trees contained in T, each of which connects all the points in { p i,. . .  ,pn}.

Let A.j-Ai and denote the linear maps from CNl onto CN2 corresponding to A \, and A 2 res
pectively. Let VT,Aii  ̂ =  I? 2 denote the volume form on which is induced from the Lebesgue

measures o fC Nl and CN2. Let H  =  *T,A2 o be the coordinate change between and

^T,A2> t îen we have

H*VTrA a = V T rAi-

To show that the volume form pr,A  actually does not depend on the choice of T , we prove the 
following theorem

Theorem 4.3.2 Let E be a spherical flat surface, I f and T 2 are two geodesic triangulations of Y, 
whose sets of vertices coincide, and contain the set of singularities ofT,, then T i and T 2 are connected 
(i.e. one can be transformed into the other by elementary moves).

Corollary 4.3.3 The volume forms pr,A agree on overlap domains of local charts, and give a well defi
ned volume form on T  (§2, a) which is invariant by T(0; n).

Proof: From Proposition 4.3.1, we know that the volume form fix ,a  does not depend on the choice of 
the tree A, therefore, we can write ¡i? instead of nr, A-

Let 7ï, 72 be two triangulations of S2 which represent two different equivalence classes in T1Z(§2, {p i,. . .  ,pn}) 

such that Urx n  Ur2 i 1 0 . Let ([(E, 4>)],eld) be a point in U?j fl Ur2, and let T i, T2 be two geodesic
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triangulations of £  corresponding to T\, respectively. We have to show that /jl?̂  =  h t2 on Urx H Ur2-

By Theorem 4.3.2, we only have to consider the case where T2 is obtained from T i by an elementary 
move. Remark that, in this case, there exists a tree A  connecting all the singular points of E which is 
contained in both T i and T 2. Therefore, we can consider a neighborhood of ([(E, <f>)}, el&) as an open 
subset in T et(A, a), where A  =  A  and a = (o-i,. . . ,  a n). It has been shown in Lemma 3.6.1, that in 
this situation, we have ¡1%. = fJ-T2• It follows that the volume forms {/jlt : T  G TH(S>2, {p i, . . .  ,pn})} 
give a well defined volume form on T (S2, a) which will be denoted by n-Tr-

Let 7  be an element of T(0; n), and suppose that 7 ([(Ei, eldl) =  ([(E2 ,72)], e*02). We can write 
([(£*, el0i) =  ([(£*, ¿ =  1,2, with A rea(E i) =  1, and z» G C*.

By definition, we have z\ = z2, and there exists a conformal homeomorphism h from Ei onto E2 which 
sends the of singular points of £ 1  onto the set singular points of £ 2  respecting the cone angles. From 
Proposition 3.2.3, we deduce that h is an isometry between E i and £ 2.

Since an isometry between two spherical flat surfaces sends geodesic triangulations onto triangulations, 
the same argument as above shows that fiTt is invariant by the action of T(0 ; n). □

The remainder of this section is devoted to the proofs of Proposition 4.3.1, and Theorem 4.3.2.

4.3.2 Cutting and gluing

Let T , A \ ,A 2 be as in Proposition 4.3.1. Let ([(£, <j>)\, e%s) be a po in ter- Let T denote the geodesic 
triangulation of £  corresponding to T, and let A i, A 2 be the geodesic trees corresponding to A i, A 2 

respectively.

Let £q and £q denote the flat surface with geodesic boundary obtained by slitting open the surface 
E along the trees A i and A 2 respectively. Observe that £°, i =  1,2, is homeomorphic to a closed disk. 
Let Tq (resp. Tq) denote the geodesic triangulation of Eq (resp. Eq) which is induced by T.

Consider a pair (So, To) where

- £ 0  is a flat surface homeomorphic to a closed disk, with geodesic boundary, and having no singu

larities in the interior.

- To is a triangulation of £ 0  by geodesic segments whose vertex set is contained in the boundary of 

£°.
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- The edges of To on the boundary of Eo are paired up. Two edges in a pair have the same length. 

We will call such a pair a well triangulated fiat disk. Consider the following the following operation :

• Choose a pair of edges (a, a) of To in the boundary of Eo, and an edge b in the interior of Eo s° 
that a and a do not belong to the same connected component of Eo \  b.

• Cut Eo along b, then glue two the sub-disks by identifying a to a.

Clearly, by this operation, we get another pair (Eg, Tq) with is also a well triangulated flat disk. We 
will call this operation the cutting-gluing operation.

Observe that, by construction, the pairs (£q, Tq), and (£q, Tq) verify the conditions above. We have

Lemma 4.3.4 The pair (E g ,  T§) can be obtained from ( E q, Tq) by a sequence of cutting-gluing opera

tions.

Proof: We remark that the trees A\ and A i correspond respectively to two maximal trees A\, A \ in the 
dual graph T* of the triangulation T. By maximal tree we mean a tree whose vertex set contains all the 
vertices of the dual graph. Any edge of T* which is not contained in A * is dual to an edge of Ai, i = 1,2.

Let e* be an edge of T* which is contained in A\, but not in A\. Let u* and denote the endpoints of 
the edge e*. Since A \ is a maximal tree, there exists a path c* in A \ which joins v\ to v\. The union of c* 
and e* is then a cycle in the dual graph T*, it follows that there exists an edge e* in c*, different from e*, 
which is not contained in A*2. Replacing e* by e*, we get a new maximal tree which contains one more 
common edge with A \  than A\.

Thus we can transform 4̂* into A \ by a finite sequence of such replacements. Now, we just need to ob
serve that the operation of replacing by e* corresponds to a cutting-gluing operation described above, 
and the lemma follows. □

4.3.3 Increased exact sequence

Given a well triangulated flat disk (Eo, To), using a developing map, we can associate to each edge e 
of To a complex number z(e). The complex numbers associated to the edges of To verify two types of 
equation
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- If ei, ej, efc bound a triangle of To, then ±z(e{) ±  z(ej) ±  z(e/c) =  0,

- If (e, e) is a pair of boundary edges of To of the same length, then z(e) = el6z(e).

Assume that To contains N \ edges, and choose a numbering of the edges of To, we get a linear sys
tem So of JVi variables. Let N 2 be the number of equations of So, let Ao be the matrix associated to 
So, we say that Ao is normalized if every entry of Ao is zero, or a complex number of module one. Let 
a i , . . . ,  ojv2 denote the row vectors of Ao- We also assume that rankAo =  N%.

By definition, Ao is an element of M c (# 2, N{). Let Z  =  ( z i , z ^ )  be the vector of CNl whose 
coordinates are complex numbers associated to the edges of To- Choose an edge eo of To which is 
contained inside So, and assume that the complex number associated to this edge is z\. Without loss of 
generality, we can assume that the first two arrows a i, a-i of Ao verifies

ai • Z l =  z\ +  Zix +  Zjx (4.1)

and

02 • Z^ — —z\ +  Zi2 +  Zj2 (4.2)

We construct a matrix Ao in M c(A 2̂ + l ,N i  + 1) from Ao and eo as follows : let a i , . . . ,  djv2+i 
denote the row vectors of Ao, then we have

. a i is obtained by from a\ by adding a zero into the last column.

. a2 is obtained from a? by replacing —1 by 0 in the first column, and adding a zero into the last 
column.

. For j  = 3 , . . . ,  N 2, aj is obtained from a,j by adding a zero into the last column.

. The last row ajv2+ 1 is the row vector whose entries in the first, and the last columns are 1, and all 
other entries are 0 .

We will call Ao the increased normalized matrix of Ao associated to the splitting along eo- 

Consider the map

I ; CNl --- ► (Ĉ 1

( z i , . . . , z Nl) I— ► ( z i , . . . , z Nl, - z i )

Observe that, we have
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v i - ( t )
It follows that I  is a bijection from ker Ao onto ker Ao- We will call I  the embedding associated to Ao-

Let i>r0 be the volume form on ker Ao which is induced from the Lebesgue measures of CNl+1 and 

C^ 2+1 by the exact sequence

0 — > ker A 0 C^ 1* 1 CNi+1 — ► 0 .

Let be the volume form on ker Ao which is induced from the Lebesgue measures of C^ 1 and 
CN* by the exact sequence

0 — ► ker A 0 *-*■ C^ 1 ^  CN2 — ► 0.

We have the following lemma :

Lemma 4.3.5 ;Ap0 =  co£*r0, where Co is a constant which does not depend on the choice of the edge eo.

Proof: Let A2Ni be the Lebesgue measure of CNl, and A27V1 be the volume form on CNl which is induced 
from the Lebesgue measures of C^ 1+1 and C by the exact sequence

0 — ► C^1 CWl+1 c — ► 0,

where h  : [z\ , . . . ,  zjvj+i) '— >• z\ +  zNl+x. Set

M ni
co

A2JV1

By definition, the volume form v^ 0 is induced from A2jvi and the Lebesgue measure of CN2 by the 
following exact sequence

0 — * ker A 0 — ► C^ 1 c ^ 2 — ► 0 ,

Observe that the volume form z>r0 is defined in the same way with Mni replaced by X2N1 ■ Hence the 
lemma follows. □
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4.3.4 Proof of Proposition 4.3.1

By Lemma 4.3.4, it suffices to consider the case where (Eg, Tq) is obtained from (Eg, Tq) by only 
one cutting-gluing operation. Let eo denote the edge along which we cut Eg, and let (ei, e2) denote the 
pair of edges in the boundary of Eg which are identified in this operation. Note that eo divides Eg into 
two sub-disks D i and D 2, such that e* is contained in the boundary of D*, for ¿ = 1,2.

To simplify notations, we identify an oriented edge of To to the complex number which is associated to 
it. Assume that the edges on the boundary of Eg are oriented coherently with the orientation of Eg.

Let Z  =  (z\, . . . ,  znx ) be the vector in C ^1 whose coordinates are the complex numbers associated to 
the edges of Tg. Let k the be number of edges of Tq which are contained in the closure of D i. Without 
loss of generality, we can assume that z \ , . . . ,  Zf. are the complex numbers associated to these k edges, 
with z\ associated to eo, and Zk associated to e\. We also assume that Zk+ 1 is the complex number 
associated to e2. Since e\ is identified to e2, the complex numbers z\~ and Zk+i must verify the following 
equation

e*̂ Zfc +  Zk+i = 0

Let , be the increased normalized matrix of A ^  ̂  associated to the splitting along the edge 
eo- By definition, we can write

1 * * 0 \
0 * * 1

0 * * 0
1 * * 1 /

Let d i , . . . ,  djv2+i denote the row vectors of the matrix A^- Ai. Note that the vector Z  =  ( z i , . . . ,  z ^ , —z\) 

belongs to the space ker A^- Ai.

Let Tj and T2 denote respectively the triangulations of D i and D 2 which are induced by Tq. We 
consider, by convention, that the edge eo is split into two edges : ej, which belongs to T}, is oriented in 
the same orientation as eo, and eg, which belongs to T 2, is oriented in the inverse orientation. By this 
convention, we can consider the coordinates of Z  as the complex numbers associated to the edges of Tj 

and T2, where zjvi+i is associated to eg.

Remark that the cutting-gluing operation consists of rotating the disk D i by an angle 0, and gluing 
R q(D i) to D 2 by identifying R$(ei) to e2, where Rq is the rotation of angle 6 in R2.
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Let (w\ , . . . ,  wni,wn1+i) be the complex numbers associated to the edges of i?e(Tj) and T2 as 
follows

. For i =  1, . . . ,  k, Wi is associated to Rg(zi).

. For i =  k +  1, . . . ,  Ni +  1, u>k is associated to Z{.

In other words

. Wi =  e%eZi, for i =  1, . . . ,  k.

. Wi =  Zi, for i = k + 1, . . . ,  Ni +  1.

Let Aj- be the increased normalized matrix of AJj-^2 associated to the splitting along e'0, where 

e'Q is the edge corresponding to the pair (ei, ea). Observe that the vector W  =  , w^+i)  belongs
to ker A^- ̂ 2. Let 61, ,  t>N2+1 denote the row vectors of the matrix of A ^ave

• If bi correspond to a triangle, then Si =

• If hi correspond to a pair of of boundary edges (e. e'), we have two cases :

- If e and e' are both contained in the boundary of i?#(Di), or D2, then S* = a*.

- If e is contained in and e! is contained &D2, suppose that

di ■ Z f = e16'Zi +  Zj, with i < k < j

then

bi -W t = e ^ ’-^Wi +  wj.
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Now, let F  € M jvi+i (C) be the following matrix

el9 . . 0 0 . . 0

0 . . e%e 0 . . 0
0 . . 0 1 . . 0

0 . . 0 0 .
• 1 /

We see that W f = F  • Z l, and clearly, | det F | =  1. From the relations between 5* and cn, it follows that

A ^ - F ^ G - A ^ ,

where G € Mjv2+i(C) is a diagonal matrix whose diagonal entries are either 1, or eld. Clearly, we have 
| det G | =  1.

Let I i, I2 be the linear embeddings of C ^1 into CNl+1 associated to A^- A , and Aj- A2 respectively. 
Note, that in this case, we have

l i ( z u . . . ,  zNl) =

and

I2(w i , . . . ,WNl) =  (wi, . . . ,Wk-i ,W k, - W k,Wk+l, . . .  ,wNl).

Now, from the following commutative diagram

0 — ► ker A^-_Ai C ^1+1 A^ 4 1 CN*+1 — ► 0

|  H  I F  |  G

0 — ► ker A ^  C^1+1 A-^42 C^2+1 — ► 0

where H  is the isomorphism which is induced from F and G, we deduce that

=  v t ,A i  (4-3)

where vr,Ai > * =  1,2, is the volume form on ker A j- A . which is induced from the Lebesgue measures 
of C ^ +1 and CN2+1 via the exact sequence

0 — ► ker A ^ .  CNl+1 ^ 3 *  CN*+l — ► 0.

Remark that the map H  is the coordinate changes between ^r ,A i  and From Lemma 4.3.5 we
know that
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£t,Ai _  vr,A2 

I'T,Ai uT,A2

Hence the proposition follows from (4.3). □

4.3.5 Proof of Theorem 4.3.2

Theorem 4.3.2 is of course a consequence of the fact that any geodesic triangulation whose vertex set 
is the set of singularities can be transformed into a Delaunay triangulation. Here, we give another proof 
of this fact by using similar ideas to the proof of Theorem 2.6.2.

Let x \ , . . .  ,x n denote the vertices of T i and T 2. By convention, we consider {xj , . . . ,  xn} as the set 
of singular points of E even though some of them may be regular. In what follows, if T is a triangulation 
of E whose vertex set is {xi , . . . ,  xn}, we will call a tree contained in T which connects all the vertices 
of T a maximal tree.

Let Ai, i =  1,2 be a maximal tree of Ti. If Ai = A 2, then the theorem follows from Theorem 2.6.2. 
Thus, it is enough to prove the following

Proposition 4.3.6 There exists a sequence of elementary moves which transforms T i into a triangula
tion containing A^.

We start by the following lemma

Lemma 4.3.7 If c\ , . . . ,  are geodesic segments with endpoints in {xi , . . . ,  xn} such that int(cj) fl 
int(cj) =  0  if i 7  ̂ j, and int(cj) Pi A\ =  0 , i =  1, . . .  .k, then there exists a sequence of elementary 
moves which transforms T i into a new triangulation containing A\, and all the segments c \ , . . . ,  Cfc.

Proof: This lemma is just a direct consequence of Lemma 2.6.3. Namely, let E ' denote the flat surface 
obtained by slitting open the surface E along the tree A\. The surface E ' is homeomorphic to a closed 
disk. Let T ^  denote the triangulation of E ' which is induced by T i.

Let P i be the developing polygon of ci with respect to T^°\ By definition, the segment ci is a diagonal 
of P i. By Lemma 2.6.3, there exists a sequence of elementary moves inside P i which transforms the 
triangulation induced by T ^  into a triangulation containing c\. We get then a new triangulation T ^  of
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£ ' which contains c\.

Let P 2 denote the developing polygon of C2 with respect to T ^ .  Since cx is an edge of T ^ ,  and, by 
assumption, int(ci) fl int(c2) =  0 , we have int(ci) fl int(P2) =  0 . Apply Lemma 2.6.3 to the polygon 
P 2, we get a new triangulation of E', which contains c\ and C2.

Clearly, this procedure can be continued until we get a triangulation of E' which contains all the 
segments c \ , . . .  ,ck, and the lemma follows. □

Now, let a i , . . . ,  an_i denote the edges of the tree A\, and ¿>1, . . . ,  £>n_i denote the edges of the tree 
A 2. We will proceed by induction. Suppose that T i contains already the k edges b x ,...,b k of A^. We 
will show that T i can be transformed by a sequence of elementary moves into a new triangulation contai
ning b \,.. . ,b k  andbk+i.

Let m be the number of intersection points of bk+i with the tree A \ excluding the endpoints of bk+1. If 
m  =  0, then Lemma 4.3.7 allows us to get the conclusion. Therefore, if m  ^  1, all we need to show is 
the following

Lemma 4.3.8 The triangulation T i can be transformed by elementary moves into a new triangulation 
Tx which contains a tnaximal tree A'v  and the edges b i , . . . ,b k, such that the number of intersecting 
points ofbk+i with A\, excluding the endpoints ofbk~\, is at most m  — 1.

Proof: We can assume that the endpoints of bk+\ are x \ and x%. We consider bk+i as a geodesic ray 
exiting from x\. Let y\ denote the first intersection point of bk+ 1 with the tree Ai, which is contained in 
the interior of an edge x ^ x ^ + i  of A\.

Let x\y \  denote the subsegment of bk+\ whose endpoints are x\ and y\. Without loss of generality, we 
can assume that Xjx is contained in the unique path along A\ from x i  to Xj1+i.

Cutting open the surface E along the tree A \, we get a flat surface E' with geodesic boundary homeo- 
morphic to a close disk. By construction, we have a suijective map :

TXAi : S ' — »■ E,

verifying the following properties

• lint(E') is an isometry,
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. KAl(dV ) = Ai.

. There are 2 (n — 1) geodesic segments in the boundary of £ ' such that the restriction of 7r^ 1 into 
each segment is an isometry.

. For every edge e in A \, 7r^ (in t(e )) is the union of two open segments in the boundary of S '.

Let si denote the inverse image of x \y i  by ir ^ ,  then s\ is a geodesic segment with endpoints in the 

boundary of S '. Let x \ and y[ denote the endpoints of si with kai (%i ) =  x\, and ~kai (y[) — yi-

Let x'1;. . .  >x 2(n—i) denote the points in 7r ^ ( { x i , . . .  ,x n}) following an orientation of 5S '. By 
choosing the suitable orientation, we can assume that the point y[ is between x ', and x'.,+1, where 

^ A i ) =  xjii and 7T A j +i) =  xji+i-

For every j  in {1, . . . ,  2 (n — 1)}, we denote x'-x'-+l the segment in the boundary of S ' between x'j and 

x'j+1, with the convention X2n_i =  x'x. Note that 7tj41(x' x '+1) is an edge of A\.

Let co be a path in S ' joining x[ and x '. ,+1 with minimal length. First, we prove 

Lemma 4.3.9 We have cq fl si = {x^}.

Proof: Suppose that c q  fl int(si) ^  0 , then let y'2 denote the first intersection point of co with int(si). 
Let ci denote the path from x[ to y'2 along c q , and let x^y^ denote the subsegment of si with endpoints 
x'x and y'2.

The path ci is a (finite) union of geodesic segments whose endpoints are in the set {x^,. . . ,  ^ (n - i)} ’ 

follows that ci and x'xy'2 bound a disk D, which is equipped with a flat metric with geodesic boundary. 
Since the path co is of minimal length, so is the path ci. It follows that the interior angle between two 
consecutive segments of ci is at least 7r. Therefore, if the number of segments in ci is I, the boundary of 
D contains then I + 1 geodesic segments, and the sum of all the interior angles is at least (I — 1)7r. But 
this is impossible by the Gauss-Bonnet Theorem, hence we conclude that co H int(si) =  0 .

The same argument as above shows that y[ is not contained in c q , and the lemma follows. □

Let yix ' , +1 denote the subsegment of x'.,x ' , +1 between x './+1 and y[. From Lemma 4.3.9, we see 

that si U yix '. ,+1 U co is the boundary of a disk Do contained in S '. We have immediately the following

Lemma 4.3.10 Let s be a geodesic ray that intersects the interior of Do- If s inters Do by a point in the 
path cq, then s must exit Do by a point in (si U y^x'.,+1) \  {x^, x'.,+1}.
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Proof: If s exits Do by another point in cq, then we have a flat disk with geodesic boundary which vio
lates the Gauss-Bonnet Theorem. □

Let co denote the image of co by tcax . The path co is then a finite union of geodesic segments on £  
with endpoints in the set { x i , xn}. It is clear that co contains a path c\ joining x \  and Let us 
prove the following

Lemma 4.3.11 The path c\ does not contain the segment x]1x j1jri.

Proof: Suppose, on the contrary, that c\ contains XjxXj1+1. This implies that co contains a segment 

x k'x 'k'+v k' ~f~ d'■> such that

irAi(4 ' a4 '+ 1) =  7rA1(x 'i x 'i+1) =  xh xjl+1.

Let y2 denote the unique point in x k,xkl+1 such that 7 (i/2) =  (y[) = yi- The inverse image of 
bk+i by 71-Ax is a sequence of (m  + 1) geodesic segments of S ' with endpoints in the boundary of E', 
whose si is the first one.

Let S2 be the next segment in the sequence. The point y2 is one endpoint of S2, by assumption, y'2 is an 
intersection point of the segment s2 and the disk Do .Consider the segment S2 as a geodesic ray exiting 
from y'2.

By Lemma 4.3.10, the ray exits Do by a point z'2 in (si U y^x'.,+1) \  {x i,x '^+1}. Since the geodesic 

6fe+ 1 is a simple, the point z'2 can not be contained in si. Hence z'2 must be a point in int(y^x'., +1).

Now, since the segments and x'k,x,k,+1 are identified by 7r ^ ,  the point z!2 is identified to

a point 3/3 in x'fc/x'fc,+1. Consequently, the argument above can be applied infinitely many times, which 
implies that the inverse image of b^+i by -kai contains infinitely many segments, and we have a contra
diction to the fact that 7r ^ ( 6fc+i) contains only m  + 1 segments. □

Since A i  is a tree, the set A i \  in t ( x ^ x ^ i)  has two connected components, the one containing xi 

will be denoted by C\, the other one containing xjl+ i will be denoted by C2. From Lemma 4.3.11, we 
know that the path c\, which joins x i to x^+ i does not contain x^x^+T- Therefore the path ci must 
contain a segment s, with endpoints in {xi , . . . ,  xn}, such that one of the two endpoints is in C\, and the 

other is in C^-
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4. SPHERICAL FLAT SURFACE

Let s be the inverse image of s by tta1 ■ Evidently, s is not an edge of A%, hence s is a segment contained 

inside S ', it follows that int(s) ( lA i = 0 .

Let us prove

Lemma 4.3.12 int(s) fl int(6i) =  0 , for every i =  1 , . . . ,  k.

Proof: Let i = 1 ,. . .  ,k , denote the inverse image of bi by 7r ^ .  Since int(i»j) fl A \ = 0 , b[ is a 
geodesic segment contained inside S'.

Suppose that int(s) fl int(6j) ^  0 , it follows that int(6')  fl int(s) ^  0 . Let y" be the intersection point 
of int(6') and int(s). Recall that s is included in the path co. We can then consider the segment 6' as 
a ray which inters Do by y". By Lemma 4.3.9, we know that b[ must exit Do by a point z" which is 
contained in si U y^x'., +1, but it would imply that either int(&i) Pi bk+i ^  0 , or int(6j) ClAi ^  0 , which 
is impossible by assumption. The lemma is then proved. □

We can now finish the proof of Lemma 4.3.8. Using Lemma 4.3.7, we deduce that there exists a 
sequence of elementary moves which transforms T i into a new triangulation T'x containing A \, the 
edges b i,. . .  ,bk, and the segment s. By replacing Xj1Xj1+1 by s, we get a new maximal tree A'v  Let us 
show that the number of intersection points of bk+i with A'x, excluding the endpoints of b^+i, is at most 
m — 1. We have

Caxd{int(6jt+i) fl j4'x} =  Card{int(6fc+i) fl A \}  — Card{int(6fc+i) fl int(xj1xj1+i)}+
+Caxd{int(6fc+i) fl int(s)}

Let y be a point in int(6fc+i) fl int(s), and let y' =  Tr^(y). Let b' be the segment in 7r^(&fc+i) which 
contains y'. Note that y' =  b' fl s.

By Lemma 4.3.10, and since int(6') fl int(si) =  0 , it follows that b' contains a point z' in x'., x'.,+ r  
We deduce that there is a one-to-one mapping from {int(6fe+x)flint(s)} into {int(6fc+i)Hint(xj1 Xj1+i)}. 
Clearly, the point y\ does not belong to the image of this map, therefore we have

Card{int(6fc+i) fl in t(x^x^+ i)}  ^  Card{int(6fc+i) fl int(s)} +  1.

It follows immediately that

Card{int(6fc+i) fl A'x} ^  Card{int(6fc+i) fl ^4i} — 1 =  m  — 1 .

The proof of Lemma 4.3.8 is now complete. □
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4. SPHERICAL FLAT SURFACE

From what we have seen, Proposition 4.3.6, and hence Theorem 4.3.2, follow directly from Lemma 
4.3.8. □

4.4 Comparison with complex hyperbolic volume form

In this section, we assume that all the angles a i , . . . ,  a n are less than 27r. Put Ki =  2ir — at, i =
1 , . . . ,  n, we have

K\  H-------- 1- Kn =  47T.

Following Thurston [Th], we denote C (« i , . . . ,  /cn) the moduli space of spherical flat surface having n 
singularities with cone angles a \ . . . . ,  a n, or equivalently, with curvatures k i , . . . ,  ku, up to homothety. 
In [Th], Thurston proves that C(ki, . . . ,  Kn) admits a complex hyperbolic metric structure with finite 
volume, and the metric closure of C(k\, . . . ,  Kn) has cone manifold structure.

The complex hyperbolic metric provides a volume form ^Hyp on C(ki, . . . ,  Kn). On the other hand, 
the volume form p,Tr gives another volume form on C(k i , . . . ,  Kn) denoted by p ^ .  The volume form 

is defined as follows :

- First, we identify C(k\, . . . ,  /cn) to the subset .M i(§2, a)* of all surfaces of area 1 in a)*. 
Let /  : jVi(S2,a )  — > R be the function which associates to a pair (E, 9) in ,M(§2, a) =  
A4(§2, a)* x S1 the area of E. The space A/ii(S2, a)* can be considered as the quotient of the 
locus / -1 (1) by the action of S1.

- By Theorem 4.1.1, we know that A^(§2, a) is a complex orbifold, let J  denote the complex struc
ture of A ^S 2, a). Let p : / _1( 1) — ► / _1(1)/S1 =  A4i(§2, a)* denote the natural projection. 
We define the volume form on A/ii(S 2, a)* to be the one such that:

p*p\ r Ad/A (df oJ) =  /in

Our goal in this section is to prove 

Proposition 4.4.1 There exists a constant A depending on ( a i , . . . ,  a n) such that = A^Hyp-

This proposition together with Thurston’s result implies 

Corollary 4.4.2 The volume of a)* with respect to is finite.
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4.4.1 Local form ulae fo r and  //Hyp

First, we recall the construction of local charts for C(k i , . . . ,  Kn) as presented in [Th], and conse
quently the definition of ¿¿Hyp.

Given a surface E in A^i(S2, a)*, we consider E as a point in C(ki, . . . ,  Kn). Let T be a triangulation 
of E by geodesic segments whose set of vertices is the set of singular points. Choose a singular point of 
E and denote this point xiast. We will call all the edges of T which contain xiast as an endpoint followers 
. Pick a tree A  in T which connects all other singular points of E, and call the edges of this tree leaders. 
The remaining edges of T are also called followers.

Using a developing map, one can associate to each of the leaders a complex number, there are n — 2 
of them. Let ( z i , . . . ,  zn- 2) denote those complex numbers. The same developing map also defines an 
associated complex number for each of the followers, but these numbers can be calculated from those 
associated to leaders by complex linear functions. Thus, the complex numbers associated to leaders de
termine a local coordinate system ip : U — > M. (§2, a) for M. (§2, a) in a neighborhood of (E, 1), where 
U is a neighborhood of (z\ , . . . ,  zn_ 2) in <Cn-2. Consequently, a neighborhood of E in C(k\, . . . ,  Kn) is 
then identified to an open set of PCn_3  which contains [z\ : . . .  : zn- 2].

If we add to A  a follower which contains xiast as an endpoint, then we have an erasing tree A  on 
E. We can then construct a local chart ^ r ,A  for yVi(S2, a) from T and A. Recall that ^ t ,a  is defined 
on an open subset Uq- of jM(§2, a), with image in ker A 7-, where linear map A 7- : C^ 1 — > C^ 2 is 
determined by the tree A, and the angles oti, . . . ,  a n. By definition, the volume form ¿xxr on M.(S2, a) is 
identified in this local chart to the volume form on ker A 7- which is induced by the Lebesgue measures 
o fC ^i and CN*.

Now, observe that the following sequence is exact

0  ). Cn~2 £Nl 2 --- > Q_

Thus, the map ^ t ,a 0(P is the restriction of an isomorphism between Cn -2  and ker A r  onto an open sub

set of Cn-2. Hence, in the local chart ip, the volume form /¿it is identified to the volume form cA2(ra- 2)> 
where A2(n_2) is the Lebesgue measure of <Cn-2, and c is a constant.

In the local chart <p, the area function /  on jM(§2, ck) is expressed as a Hermitian form H. More 

precisely, if v 6  Cn~2 is a vector such that tp{v) =  (E, 6) € M (S 2, â) then / ( ( E, 9)) =  A rea(E) =  
%Hu. It is proven in [Th] that H  is of signature (1, n — 3). Changing the basis and the sign of H , we 
can assume that
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4. SPHERICAL FLAT SURFACE

1 . . .  0 0 \

H  =
0 . . .  1 0
0 . . .  0 - 1

Thus we can write

f ( z i ,  . . . , Zn- 2) — M 2 +  • ■ • +  |^n—3p — ¡Zn-2\2■

Note that by these changes, the vectors of Cn-2 representing surfaces in .M i(§2, â)* are contained in 

the set Q i =  / _1(—1), and we still have /ixr — co^2(n-2) with co a constant.

We use the symbol (, ) to denote the scalar product defined by Hermitian form H. By definition 

f ( Z )  =  (Z, Z ) , VZ e  Cn~2. Let J denote the natural complex structure of Cn-2, that is J(z i , . . . ,  zn- 2) =  

(iz\ , . . . ,  izn- 2). Let 77 denote the real symmetric form induced by (, ), that is

V( X ,Y )  = R e (X ,Y ) .

Let Z  be a vector in Q i which represents a surface in .M i(§2, a)*. The tangent space of Q 1/S1 at 
the orbit S1 • Z  is naturally identified to the orthogonal complement of Z  with respect to (,). Denote 

this space Z^~. The restriction of (, ) on Z 1- is a definite positive Hermitian form, which determines the 

complex hyperbolic metric on 7Wx(S2, â)* =  C (k 1 , . . . ,  nn).

We have

df = (zidzi H-------h zn_3dzn_3 — zn-2dzn-2) + (z\dzi -\-------1- zn-zdzn-z  — zn-2dzn-2),

and

df  o 1 =  i(z \d z \  H------- H zn-zd zn- z  — zn- 2dzn-2) — i{z\dz\ + -----1- zn_3<izn_3 — zn-2dzn-2)-

Note that both df and d f o J are invariant by the action of S1. Put

_(fc)
Ufa — (0) . . . , O5 Zfi—2) 0? • • • ) f̂c)t ^ 1, . . . , ÎT. 3.

and Vk = S -U k = %Uk- One can verify easily that {Ui, V i,. . . ,  Un~ 3, V^_3} span Z 1- as a real vector 

space. We consider {U\, V i,. . . ,  Un- 3, Vn_3} as a basis of the tangent space of .M i(S2, â)* at <p{Z).

We know that the restriction of the symmetric form 77 on Z 1- defines a Riemannian metric. Let , Vfe* 

denote the R-linear 1-forms dual to Uk and Vfc respectively with respect to 77. We have :

U"k 7 ^ [C'2™—'¿dzk Zkdzji—2) (-2*71—2dzn—2 Zfcdzyi—2)]5
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4. SPHERICAL FLAT SURFACE

and

_^
v k =  ~2 [(zn-2<izk -  zkdzn-2 ) -  (zn-2dzn-2 ~ zkdzn- 2)].

We can consider {U{, V { , U * _ 3, V _̂3} as abasis of the cotangent space of A^i(S2, a)* at <p(Z). 
Let p be the projection from Qi to Q1/S1. We define a volume form jj,^ on Q1/S 1 by the following 
condition:

P*Axr A df A (df O J) = (^)n~2dzidzi. . .  dzn_2cZzn- 2 = d \2(n- 2) (4.4)

Since df and df o J are invariant by the action of S1, the volume form is well defined by this condition.

We wish to express • Z) in terms of U£, V£, k = 1, . . . ,  n — 3.

Claim 1 : We have

• Z) =  2p„_a)(yi* A V?) A • • ■ A {U'_3 A V„U),

where Co =  /¿TrA2(n-2) •

Proof: Consider U£ A we have

uk A K  = ^ ( X fc + X fc) A(Xfc- X fc)

where Xfc = zn- 2dzk — zkdzn- 2, and X k = zn- 2dzk — zkdzn- 2.

We can also write

df = X + X, and d/ o 1 =  i(X -  X) 

with X  = zidz\ H------ h zn-sdzn- 3 -  zn- 2dzn- 2, and X = zidzi H------ 1- zn- 3dzn- 3 -  zn- 2dzn- 2.

Hence

d/A(d/o l )  =  A !

Now
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4. SPHERICAL FLAT SURFACE

(U*x A V{ A • • -_A U*_z A T/*_3) A df A (df o J) _

=  - ( f ) n~4X i  a x x A - - - A X n_ 3 A X n_ 3 A X A X
. (n—2)(n—3) __  __  __

=  - ( 2 )n_4( - l ) ----- 5----- (*1  A • • • A X n_3 A X )  A (X x A • • • A X n_3 A X )

Simple computations give

X i A • • • A X n - 3  A X  =  2" _ |( |z i |2 H-------\zn_3\2 -  \zn- 2\2)d z i . . .  dzn -2

= - z ^ Z id z i . . .  dzn- 2

and similarly

X i  A • • • A X n—z A X  =  —z ^ z i d z i . . . din-2-

Therefore,

(X i A • • • A X n_3 A X ) A (X i  A • • • A X n_3 A X )  =  |.zn_ 2|2(n ^ d z \  . . .  dzn_ 2dzi . . .  dzn- 2
=  2" -V " ~2)("-4) |zn_2|2(”- 4)dA2(n_2)

and we get

i/j1 A 7* A • • • A 3 A K_3 A d / a  (df o J) =  4|zn_2|2("-4>dA2(n_2).

By the definition of /4y> we obtain

A ( S '  • 2 ) =  4|Zn_^ 2(„_4)yi* A 17 A • • ■ A cr*_3 A v :_ 3.

□

Remark:
- Even though the 1-forms Uk and V£ are not invariant by the S1 action, the 2-form Uk A Vk is. 

Hence, the 2 (n — 3)-form U* A A • • • A U *_3 A V *_3 is invariant by the S1 action.

- Let fj,\r be the volume form on Q i verifying the following condition

A df = (J,Tr.

The tangent vector to the S1 orbit at a point Z  E C2 is given by iZ , and we have

df o 1 (»Z) =  -d f (Z )  = - ( Z ,  Z) =  1.

Therefore, the volume form can be considered as the push-forward of Htt onto Q i/S 1-

113



4. SPHERICAL FLAT SURFACE

Now, we will proceed to compute the volume form defined by 77 on Z 1- in terms of £/£, V£. Let (77̂ ) 

with i , j  = 1, . . . ,  2(n — 3) be the (real) matrix of 77 in the basis {U\, V i , , Un- 3, V^_3}. Since the 

volume form nnyp is defined by the metric 77, we have

m ypfS1 ■ Z) = 1 u ;  A V,* A • • • A U U  A v :_ 3.
v det(?7ij)

Claim 2 : det(r?ii) =  |zn_2|4(n- 4).

Proof: Since 77 is the real part of H, the matrix (77̂ ) is the real interpretation of the matrix (H y) , i , j  =
1, . . . ,  n — 3, of H  in the complex basis {U\ , . . . ,  Un-$}  of Z L . This implies

det(?7y) =  |d et(H y)|2.

We have

Hence

\ Z n -  \ Z \ \ 2 ~ Z \ Z 2 -ZiZn-3

—Z2Zn - 3

Z n - 2|2(n- 3)det 1-162,2 ••• " 62£l1- 3

- Z n - 3 Z 1 - Z n - 3 Z 2 . . .  \zn-2\ - \ Z n - :

(  l - | £ l | 2 - £ i £ 2  • • •  - £ l £ n - 3  \

\zn- 2 12 -  \zn- 312 /

— £ i £ n - 3  ^

—£2£n -3

\ — £n-3£l — £n-3£2 1 —  |̂ n—3|2 /

Since
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i - k i l 2 - 6162 S iS n -3 1 S i £2 —£\£n-Z
- £ 2£l i  -  M 2 •• —£2£n-3 = 0 i  -  M 2 .. —£2£n-Z

—i n- 3̂ 1 —èn-3£2 • •• l - k n - 3 |2 0 —£n-Z£2 • ■ 1 — |en_3|2

-£ i

-£ i

we deduce

£ l - e i £ 2 —£ l £ n - 3 1  -  |S 2 |2 - ^ 2 ^ 3 —£ 2 £ n -3

£2 1  -  h i 2 —£ 2 £ n -3 = - £ 3 £ 2 i - N I 2  . . . i s ^ n —s

CO1

■ 
Ilo —£n - z £2 1 - k n - 3 | 2 “ ^ n - 3 ^ 2 —i n - 3 6 3  . . • 1  -  k n - 3 | 2

s i 0  ... 0 1  -  \£2
2

- £ 2 ^ 3 —Ì 2 £ n - 3

£2 1  ... 0

=
- £ 3£2: 1 - N 2  •• —i s ^ n - s

-  k i i 2 ,

i n - 3 0  ... l —£n - 3 ^ 2  ”- i n - 3 ^ 3  • • • l - k n - 3 | 2

det

It follows that

(  1 — |ei|2 -£ i£2 . . .  -£i£n-3  ̂
- e 2ei l - N I 2 ••• -£2£n-3

\  —£n-3^1 —£n-3£2 • • • 1 — |£n-3|2 /

— 1 — (|£ i|2 H------ h |en-3p)-

d e t ( H j j )  =  |zn_ 2 |2 (n -3 ) ( 1 _ ( |£ l |2 +  . . . +  |e n _ 3 |2))

=  l ^ - a l ^ H l ^ l 2 -  ( N 2 +  •■• +  k n -3|2)) 

=  |zn - 2|2(n- 4)

Consequently, we have d e t^ j )  =  | det(H y ) |2 =  |zn- 2 |4 n̂ 4̂ - The claim is then proved.

From Claim 1, and Claim 2, we obtain 

Lemma 4.4.3 The quotient /¿tr/̂ Hyp is a locally constant function on A/ii(S2, a)*.

4.4.2 Connectedness of C ( / i i , / c n)

To complete the proof of 4.4.1, we will prove

Lemma 4.4.4 For any ( a i , . . . ,  an), the space C(ki, . . . ,  Kn) is connected.

□
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Proof: To prove this lemma, first, we recall the construction of a surface with n — 1 singular points from 
an arbitrary surface E in C(k i, . . . ,  Kn). Let x i , . . . , x n denote the singular points of E such that the 
curvature at x\ is K{. Suppose that we have «n_i +  Kn < 2ir. Choose a geodesic segment s joining xn- i  
to xn which does not pass through any other singular point of E (the geodesic segment of minimal length 
verifies this condition). Slit open E along s, and glue to boundary of the surface obtained by this opera
tion a cone so that the points xn- i  and xn become regular. The apex angle of the added cone must be 
2tt—(Kn-x+Kn). Therefore, after a rescaling, we obtain a flat surface E ' in C(/ci,. . . ,  /cn- 2, /in_i+K n).

The space C(k i , . . . ,  «n_i +  Kn) is contained in the metric closure C (ki, . . . ,  Kn) of C(k i , . . . ,  Kn). 
A neighborhood of C(k i , . . . ,  Kn- i  +  Kn) in C(ki, . . . ,  Kn) looks like C(ki, . . . ,  Kn-i + Kn) x D 2. By 
this construction, we see that any surface in C(ki , . . . ,  Kn) can be deformed inside C(k\ Kn) into a 
surface close to the stratum C(k\, . . . ,  Kn- 1 +  Kn)- Hence, if C(k i , . . . ,  Kn - 1 +  Kn) is connected, so is
C (K\, . . . , Kn).

If n  ^  5, then there exist i ^  j  G {1, . . . ,  n} such that Ki+Kj < 2ii. Thus, by induction, we only need to 
prove the lemma for the case n = 4. Without loss of generality, we can assume that k\ ^  «2 ^  «3 ^  «4- 
We only have two possibilities :

• Case 1 : «3 +  «4 <  2ir. Since C(k\, k2, «3 +  «4) is only a point, the argument above shows that 
C (« i , . . . ,  «4) is connected.

• Case 2 : k\ — k2 =  «3 =  «4 =  tt. Every surface in C(w, tt, n, tt) is the quotient of a flat torus 
by a holomorphic involution which fixes exactly 4 points. This correspondence gives a bijection 
between C(tt, 7t, 7r, 7r) and the moduli space of flat tori up to homothety. Since the latter is the mo

dular surface H2/ SL(2 , Z), which is connected, we deduce that C(7r, 7r, it, tv) is also connected. 
The lemma is then proved. □

Proposition 4.4.1 follows immediately from Lemma 4.4.3, and Lemma 4.4.4.
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Chapitre 5

Finiteness of integrals

5.1 Definitions and main results

Let a , j3 be as in Chapter 2. Consider the Teichmiiller space 7x(a; ¡3). Let us define

T \  r T (a-J) — ► R+

([(s > <£)]> 0  1— ► exp(—A rea(S) — ¿2(dY,))

where £(dE) is the total length of the boundary of E.

For surfaces with erasing trees, fix a family of topological trees A  =  { A \ A m }  and the numbers 
a = (c*i,. . . ,  an) as in Chapter 3, one can also define a similar function on T et(A, a) as follows :

T et(A ,a) — ► R+

([(s > <£)]> 0  1— ► exp(—A rea(S) — £2(4>(A)))

where £(<f>(A)) is the total length of the trees in <j>(A).

Clearly, the function T  (resp. !Fet) induces a function on the moduli space (resp. M et (.4., a)),
in the sequel of this chapter we will call J~ and J~et energy functions on ¡3), and M et(A, a) res
pectively. The main result of this chapter is the following

Theorem 5.1.1 a) I f the space (3) consists of surfaces with non-empty boundary, then the

integral of the energy function T  with respect to the volume form is finite
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5. FINITENESS OF INTEGRALS

b) I f the forest A  contains trees which are not isolated points, then the integral of the energy function 
J-eX with respect to the affine volume form /¿Tr on M et(A, a) is finite

I J ^ d / l T r  <  O O .

Met{A,a)
(5.2)

Recall that . . . ,  kn) is the moduli space of closed translation surfaces of area one, or equiva
lently, the subspace of H (k i,. . . ,  kn) consisting of pairs (M, u>) such that f M \ui\2 — 1. Even though 
Theorem 5.1.1 concerns only translation surfaces with boundary, it turns out that one can use this result 
to prove the classical fact VolM0(7Yi(fci,. . . ,  kn)) < oo.

For spherical flat surfaces, using Theorem 5.1.1, we will prove the following

Theorem 5.1.2 Let j-ijt denote the volume form on A4(§2, a) defined in Chapter 4, then we have

Consequently, the volume of the set jM i(§2, a) is finite.

This result is a generalization of the result of Thurston in [Th], and analogue to a result in [V2] which 
is proven by a different method.

This chapter is organized as follows : we start by the demonstration of Theorem 5.1.1 for a particular 
case, where the base surface is a torus, by this example, we introduce the main ideas of the proof for the 
general case. The proof of Theorem 5.1.1 itself is given in the next two Sections 5.3 and 5.4. In Section 
5.5, we show how to obtain the fact that the volume of . . . ,  kn) is finite by using 5.1.1. Finally,
in Section 5.6, we prove Theorem 5.1.2.

5.2 First example

In this section, we prove Theorem 5.1.1 for the case g =  1, m  =  1, {3\ = 2w, si =  2, and n =  0. In 

this case, S  is homeomorphic to a torus with an open disk removed. Via this simple case, we would like 
to introduce the main ideas of the proof for the general case.

Let E be a translation surface with boundary homeomorphic to S  such that

exp(—Area)d/iTr < oo (5.3)
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• int(E) contains no singular points,

• the cone angle associated to the unique boundary component of E is 2n, and

• there are two points p, q in dT, such that dH \  {p, q} is the union of two geodesic segments.

Let £ be a normalized parallel vector field on E. By definition, the pair (E, £) represents a point in 
M t ( 0 ; {27t, 2}). First, we prove

Lemma 5.2.1 The open surface int(E) is isometric to aflat torus with a geodesic segment removed.

Proof: Let ai, and a2 denote the two geodesic segments with endpoints p, q which are contained in 9£.
Let 7)i, 772 denote the comer angles at p, and q respectively. We have to show that 771,772 are 2ir, and the 
segments a i and a2 have the same length.

Since the cone angle associated to is 2n we have :

7?1 +  7?2 =  47T. (5.4)

Let z \ , Z2 denote the complex numbers associated ai and a2 respectively in a local chart of M . t  (0 ; {2n, 2}) 
constructed as in the proof of Theorem 2.2.7 for a neighborhood of (E, £). Assume that a\ and 02 are 
both oriented from p to q, we then have

z\ — z2 =  0. (5.5)

Remark that the numbers z\ and z2 are obtained by a developing map, therefore, the angle between z\ 
and z2 is equal to the angle 771 modulo 2tx. Since both 771,772 must be positive, it follows from (5.4) that 
771 =  772 =  27r. Moreover, (5.5) also implies that |o i| =  |a.2 |, therefore, we can glue the segments ax, and 
a2 together. We then get a flat torus with a marked geodesic segment, and the lemma follows. □

By Lemma 5.2.1, we can identify .M t(0 ; {27t, 2}) to the moduli space of triples (E, I , £) where E 
is a flat torus, I  is a geodesic segment on E, and £ is a normalized parallel vector field on E.

Now, let (E, I, £) be a triple in M t (0] {2ir, 2}). L e t ^ i  G R+ , denote the flow generated by £. Let 

p, q denote the endpoints of I. Let us prove the following lemma

Lemma 5.2.2 There always exists a pair of parallel simple closed geodesic 7P, 7 q ofH such that 7Pfl I  =

{p}, and jg  n  I  = {q}.
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5. FINTTENESS OF INTEGRALS

Proof: Assume that I  is not parallel to £, and let to be the infimum of the set

{t > 0 : V’tCO n 1^0}.
The value to exists because the stripe which is swept out by {ips(I) '■ 0 ^  s ^  t} has area At  if 
■0S(I) n 7 =  0 , Vs e [0, t], where A > 0 is the transversal measure of I  with respect to £.

By the definition of to, there exists an isometric immersion

<p: P — ► £ ,

which is defined on a closed parallelogram P in R2 with two vertical sides of length to, such that the 
restriction of <p onto int(P) is an embedding, and </? maps the lower side of P onto I, and the upper side 

of P onto ipt0(I)-

Since the segments I  and i p to  (-0 are parallel and have the same length, the intersection set I  fl i p t o  (-0 
contains at least one endpoint of I. Without loss of generality, we can assume that p € I  fl tpt0(I)- 
Consequently, <p~l (p) contains exactly two points, one in lower side, and the other in the upper side of 
P.

Let s be the geodesic segment in P joining two points in ip~1(p), then <p(s) is a closed geodesic in E 
which intersects I  at p. We choose 7P to be <p(s), and -yq the closed geodesic parallel to 7P which passes 
through q. By construction, j p, and ”fq verify the condition in the statement of the lemma.

In the case where I  is parallel to £, it suffices to replace £ by the normalized parallel vector field 
perpendicular to it, and use the same arguments. The lemma is then proved. □

The closed geodesic 7P and j q cut E into two cylinders, the one which contains I  will be denoted by 
Ci, the other one by C2- Let 5 be a geodesic segment joining p and q which is contained in C2.
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5. FINITENESS OF INTEGRALS

The complement in E of the set I U 7P U 7 g U <5 is the disjoined union of two open parallelograms. By an 
embedding of E \  { / U 7P U 7 g U ¿} into R2 which sends £ onto the constant vertical vector field (0,1), 
we can associate the complex numbers Z, z, w to I , j p, and <5 respectively. We can choose the orientation 
of I ,  tp , and 5 so th a t:

0i (Z, z, w) = Im (Zz) >  0 and 92(Z, z , w ) =  Im(zttJ) > 0.

Note that the area of the cylinder C\ equals 9\, and the area of the cylinder C2 equals 02. Remark that, 
given (Z, z, w) in C3 verifying 9\(Z, z, w) > 0 and 92(Z, z, w) >  0, one can construct a flat torus with 
a marked segment. Set

T> =  {(Z, z, w) € C3 : 0i(Z, z, w ) >  0 ,92(Z, z, w ) >  0}.

We then get a map :

p: V  — ► M t (0 ; {2tt, 2}),

which is onto and locally homeomorphic. The pull-back of the volume form on T> is equal to k\ q, 
where A6 is the Lebesgue measure of C3, and k is a constant. Clearly, the pull-back of the energy function 
J- on A4t (0; {27t, 2}) is the following function

JF(Z, z, w) = exp(—2 |Z |2 -  (9i(Z, z,w ) + 92(Z, z ,w ))).

We say that a triple (E, I , £) is in special position if either I  is parallel to £, or the trajectory 
{4>t(p) ■ t  e  R+ } returns to p without meeting any other point of I. Let M t ( 0 ; {27r, 2})sp denote 
the set of triples in special position in M t ( 0 ;  {27t, 2}).

Observe that the set M ^ ( 0 ] {27t, 2})sp is of measure 0 with respect to n n  as it is the image by p of the 
set

{(Z, z ,w ) ET>: Re(Z) =  0 or Re(z) =  0}, 

which is obviously of measure zero with respect to the Lebesgue measure \ q.

Now, let ( £ , / , £ )  be a triple in M T(0 ; {2tt,2}) \  M T (0 ; {2tt,2})sp. Let (Z ,x ,w ) be the com
plex numbers associated to I , j p, and 5 as above. Set A  =  R e(Z ),a  =  Re(z),b = Re(w) and 
B --- lm (Z ) ,x  =  Im (z),y =  Im(u>).

If the closed geodesic 7P is chosen as in Lemma 5.2.2, then we have |a| ^  \A\. Remark that, since 

(S> 0  is not in special position, we have |a| >  0. Because C2 is a cylinder, we can choose the segment
5 such that |6| ^  |a|. We deduce that the image by p of the set

V 0 = { (Z ,z ,w ) e V : \ A \ ^ \ a \ ^ \ b \ }
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5. FINITENESS OF INTEGRALS

contains the set .M t(0 ; {2tt, 2}) \  M t (0; {27r, 2})sp, and hence, the result of Theorem 5.1.1 for this 
case will follow from the following proposition :

Proposition 5.2.3 We have

T  = I T (Z , z, w)d\e = f  exp(—2(A2 +  B 2) — (#i +  02))dAdBdadbdxdy < oo.
J  D 0 J  V  o

Proof: By definition of the domain V q, we have

I  =  f  f  exp(—2(A2 +  B 2)) x [ f  [ [  [ f f  exp(—0\ — 62)dxdy\db]da]dAdB.
J  J  J-\A\ J - \a \  J  J

Consider f  f  exp(—0\ — d2)dxdy for fixed A, B, a, b. By definition we have :

= Ba — Ax  and 02 =  xb — ay.

Using the change of variables (x, y) \— > (0\, 02), we have d0\d02 =  \Aa\dxdy. Since 0\(Z, z, w) > 0, 
and 02 (Z, z, w) > 0 for every (Z, z, w) 6  Vq, it follows

+ o o  r+oo e - 6 i e - 6 2 ^r r r+oo r+oo e - v i e - v 2
/  /  exp(—0i — 02)dxdy — /  —¡-̂ —:— d0\d02 =

J J(z,z,iv)evo Jo Jo \Aa\l(z,z,w)ev o Jo Jo \Aa\ \Aa\

Consequently

r  C f\A\ r\o\ i  roo roo
1 =  e x p (-2 ^ 2 -  2B 2)[ /  [ /  ——db]da]dAdB =  4 /  /  e“ 2A e~2B dAdB = 2tt. 

J  J  J —\A\ J —\a\ IAa,\ J _ OQ J _ QO

r-)A| f\a\ 1 
[

~ \ A \

This proves the proposition, and hence, Theorem 5.1.1 is proved for the case of {27r, 2}). □

5.3 Proof of Theorem 5.1.1, Part a)

Let S  be the base surface, and V be the finite subset of 5  as in Section 2.2. Let a = ( a i , . . . ,  a n), 

and ¡3 = {(/?i, si), • . . ,  (Pm, sm)} be the data corresponding to S  and V. In this section, we will always 
assume that m  > 0, which means that the boundary of S  is not empty.

Let T  be a triangulation of S  whose set of vertices is V. Assume in addition that every edge of T which 
is contained in the interior of S  belongs to the closures of two different triangles (i.e. no edges in the 
interior of S  bound the same triangle on both sides). As usual let N\, and iV2 denote the number of 
edges, and the number of triangles of T. Set
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5. FINITENESS OF INTEGRALS

m

K  = J 2 s™-
3=1

Recall that we have

dime ¡3) = 2g + n + m  — 2 + K  = N \ — N 2.

Note that a point in M .x(a \¡3) is represented by a pair (E, £), where E is a translation surface with 
geodesic boundary homeomorphic to S, and £ is a normalized parallel vector field on E.

5.3.1 Admissible matrix

Definition 5.3.1 A matrix A  in Mc(iV2, N \) is said to be admissible, if it has the following properties :

• Any entry of A  belongs to the set {—1,0,1}.

•  On any row of A, there are exactly three non-zero entries.

• On any column of A, there are either one or two non-zero entries. I f  a column has two non-zero 
entries, then one entry equals 1, the other equals —1.

Note that if E is a translation surface in ¡3)*, and T is an admissible triangulation of E, then
the normalized matrix associated to T is admissible.

Given an admissible matrix A, we will call elementary moves the following transformations of A  :

a) interchanging two columns,

b) interchanging two rows,

c) changing the sign of a column.

Two matrices ares said to be equivalent if one of them can be obtained from the other by elementary 

moves.

Remark: If A  is the normalized matrix associated to a triangulation T of a translation surface in 
¡3)*, then the elementary moves a), 6), c) of A  correspond respectively to a renumbering of 

the edges of T, a renumbering of triangles of T, and a change of orientation of an edge in T.
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5. FINITENESS OF INTEGRALS

Let AD  denote the set of equivalence classes of admissible matrices in M e(^ 2 , N \), for each s in 
AD, choose a representative A s of s, we then get a finite family {As, s E AD}.

Let Vs denote the kernel of the linear map from C ^1 onto C ^2 which is defined by the matrix A s in the 

canonical basis of C ^1 and CN2.

For any Z  E  Vs, let E^ denote the ‘surface’ which is obtained by the construction described in the proof 
of Lemma 2.4.2. Let Us denote the open subset of Vs, such that Ez is a translation surface homeomorphic 
to S  for any Z  in Us. We define a map from Us into -Mx(a; 0) as follows :

: Us — ►
Z  —  (EZ>0

where £ is the parallel vector field on Ez  which is induced by the vertical constant vector field (0,1) of 
R2. From the proof of Theorem 2.2.7, we have

Proposition 5.3.2 For every s € AD, QS(US) is an open in /3), and {$s(i/s),s  G AD } is a

finite open cover o/J \4 t (o:; ¡3).

In the remaining of this section, for any s E AD, we will assume that, if Z  E CNl is a vector in Us, 

then the K  = sj first coordinates of Z  correspond to the geodesic segments on the boundary of

*a(Z).

5.3.2 Primary and Auxiliary system of indices

Set

N  =  dim Vs =  2g + m  + n — 2 +  K.

Given an equivalence class s in AD, let ( i \ , . . . ,  i n ) be an ordered subset of {1, . . . ,  N i}.

Definition 5.3.3 We say that (¿1, . . . ,  ijv) is a primary system of indices associated to A s, if there exist 
N\ complex linear functions

fi : CNl — ► C, i =  1 , . . . ,  N i, 

such that, i fZ  = ( z i , z Nl ) E V s, then Zi = fi(zix, . . . ,  ziN).

Given a primary system of indices (¿1, . . .  , i^ )  associated to A s, let (Jk , ■ ■ ■ ,Jn ) be an ordered sub
set of { ! , . . .  ,N i} .
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5. FINITENESS OF INTEGRALS

Definition 5.3.4 We say that (jx:, • • •, Jjv) is an auxiliary system/or (¿1, . . . ,  i^ )  if, for any k in { K , . . .  ,N }, 
we have

i) The function f j k depends only on z ^ , . . . ,

ii) There is a row in A s whose jk-th and ik-th entries are non-zero.

Remark: If ( jx , •. ■ , jN ) is an auxiliary system for (¿1, . . . ,  ¿jv)> then for any Z  = ( z i , . . . ,  z ^ )  in Us, 
we have

• Zjk can be written as a linear function of (z^, . . . ,  Zjfc_1), Vfc =  K , . . .  ,N .

• Let (E, £) =  $ S(Z), and let T be the geodesic triangulation of E which is obtained from the 
construction of $ s. Recall that each coordinate of Z  is the complex number associated to an edge 
of T. The condition ii) of 5.3.4 implies that Zfk and zJk correspond to two sides of a triangle in T.

Clearly, the set of triples (A s, (¿1, . . . ,  in ), ( jx , ■ ■ ■ ,3n )), with s G AD, (¿1, . . . ,  in )  a primary system 
for A s, and ( jx , ■ ■ - ,jN )  an auxiliary system for (¿1, . . . ,  zjv) is finite.

5.3.3 Proof of (5.1)

Let (£ , £) be a point in ¡3), we denote ipt, i G R, the flow generated by £ on E. Recall that on
E, we have a specified finite subset V  corresponding to the subset V of S, the complement of V  contains 
only regular points of E. With a slight abuse of notation, we will call any point in V  a singular point of E.

Let p be a point in int(E) \  V, if there exists to > 0 (resp. io <  0) such that ipt0 ip) G V  U <9E, then, for 
every t  > to (resp. t < to), we consider, by convention, that tptip) =  V’to (p)- In other words, we consider 
that the flow ipt is stationary in the set V  U <9£. By this convention, ipt(p) can be defined for every t  G R 
,andp G int(E) \  V.

Let a be a geodesic segment contained in the boundary of E with endpoints in V. We can extend the 
field £ by continuity onto int(a). Assume that a is not parallel to the field £, then we say that a is an 
upper (resp. lower) boundary segment, if the field £ on int(a) points outward (resp. inward). Observe 

that in this case, the image of int(o) by tpt is well defined for all t G R.

We say that the pair (E, £) is in special position if there exists a geodesic segment on E with end

points in V, and parallel to the field £. Let ¡3)sp denote the subset of M x {ol\ ¡3) consisting of
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5. FINITENESS OF INTEGRALS

pairs (E, £) which are in special position.

The formula (5.1) is the consequence of the following propositions.

Proposition 5.3.5 The set P)sp is a null set in ft) with respect to p,Tr-

Proof: For every s in AT), let p,s denote the volume form on Us which is induced by the Lebesgue mea
sures of C ^1 and CN2 via the linear map A s. By definition, we have p,s =  $sMTr-

Let (E, £) be a pair in P)sp, let e be a geodesic segment of E with endpoint in V  which is parallel
to the field £. There exists an admissible triangulation T of E which contains the edge e.

Since e is parallel to £, the complex number associated to e in the local chart arising from T is purely 
real. As a consequence, there exist s € AD, and io e  { 1 ,... ,  N i}  such that (£,£) =  $ S(Z), with 
Z  6 {(zi, •. •, znx) € Us Im(zi0) =  0}. Remark that the converse assertion is also true.

For every s € AT), and every i e  { 1 ,..., N \}, set

U\ = US n  { (z i,. . . ,  zNl) e  CNl I Im(zj) =  0}).

It follows that

Nx
M T(a;P)sp= U  ( J  $ s(Ui).

seA D  1=1

Clearly, ns(Uls) =  0, Vs € AD, i e  { 1 ,..., N\}, therefore, P)sp) =  0. □

Let (E, £) be a point in ft), and T an admissible triangulation of E. Let e be an edge of T,
we denote h(e) the transversal measure of e with respect to £. If we choose an isometric embedding of 
a neighborhood of e into R2 such that the vector field £ is mapped to the constant vertical vector field 
(0,1) of R2, then h(e) is nothing other than the length of the projection into the horizontal axis of the 
image of e. We call h(e) the horizontal length of e.

A triangle in T whose sides are denoted by ei, e2, e% is said to be good if h(ei) > 0, Vi =  1,2,3. Given 
a good triangle A in R2, we call the unique side of A of maximal horizontal length the base of A. If all 
of triangles of T are good, T is called a good triangulation.

Proposition 5.3.6 Let (E, £) be a point in P) \  A'ix(<5; /3)sp, then there exists a good triangula
tion T o /E  whose edges are denoted by {e\ , . . . ,  ejvj} so that,
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5. FINITENESS OF INTEGRALS

• The boundary edges o fT  are denoted by {ei , . . . ,  ex}-

• For every i E {K  +  1 , . . . ,  Ni}, there exists j  < i, and a triangle A of T which contains both 
ei, ej such that ej is the base of A.

Proof: As usual, let V  denote the set of distinguished singularities of S. We define an admissible trian
gulation of E as follows :

Let e i , . . . ,  e x  denote the (closed) geodesic segments with endpoints in V, which are contained in the 
boundary of E. Assume that the segment e x  is of maximal horizontal length among the set {ei , . . . ,  ex}- 
Since (E, £) is not in jM t(5 ; /3)sp, we have h(ex) >  0. Let p, q denote the two endpoints of ex- Consi
der the following procedure :

Assume that e x  is a lower boundary segment. Consider the stripe swept by t > 0}. Since
h(ex) > 0, this stripe must meet a singular point in the interior of E, or the boundary of E, other
wise its area would tend to infinity as t tens to +oo. Remark that, since the horizontal length of e x  is 
maximal among the set {h(ei ) , . . . ,  h(ex)}, for every t G K+, ^t(in t(e^)) cannot be contained in a 
geodesic segment (with endpoints in V) in the boundary of E. Therefore, there exists t >  0 such that 

Tpt (mt(eK)) n y ^ 0 .

Let to be the smallest value of t  such that to > 0, and ^ t0(int(eif)) 0 7 /  0 . Let r denote a point in 
ipt0{eK) H V. Let e' and e" denote the two geodesic segments contained in the stripe Uo 
which join r to p, and to q. It can happen that one of the edge e', e" is already contained in the boundary 
of E but not both of them, unless E is a triangle. We will call e x  the supporter of e' and e".

By construction, we have h{ex) ^  max{/i(e'), h(e,r)}. Clearly, the triangle bounded by ex ,e ', e" is 
embedded in E and e x  is the base of this triangle. Since (E, £) is not in A^x(5; /3)sp, neither e' nor e" 
is parallel to £.

In the case where e x  is an upper boundary segment, by considering (int (ejc)), t  < 0} instead of 
{V>t(int(eif)), t > 0}, we get a similar result.

Cut off the triangle bounded by ex , e', e" from the surface E along the segments e' and e". The re
maining surface is a translation surface with geodesic boundary, which is not necessarily connected.

We can now reapply the same action to the new surface. The assumption that (E,£) is not in special 
position allows us to continue until we get a triangulation T of E, which is clearly a good triangulation.

We number the edges of T which are contained in the interior of E according to their appearing order
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5. FINITENESS OF INTEGRALS

in the procedure above, the ordering of two edges which appear in the same step is not important. Since 
every edge of T in the interior of S admits a supporter which appears in the procedure before itself, the 
proposition is then proved. □

Corollary 5.3.7 If(T,, £) is a point in ¡3) \  M x(a ; ¡3)sp, then there exists ans  € AD, a primary
system of indices Pr =  (¿i, . . . ,  i.y) for A s, an auxiliary system of indices Au =  (jx , • ■ • ■ J jv ) for Pr, 
and a vector Z  G Us such that

• |Re(zjfc)| >  \Re(zik)\for any k =  K , . . . ,N .

• ( E , 0  =  S 8(Z).

Proof: Let T be the good triangulation of S which is obtained from Proposition 5.3.6. Let Ax be the 
matrix in M z{N2, N \ ) associated to T, let Z  = , . . . ,  znx ) be the vector in ker Ax whose coordinates 
are complex numbers associated to edges of T. We can assume that Z{ is the complex number associated 
to e*.

We choose a primary system of indices Pr and an auxiliary system of indices Au for Ax as follows :

• The first K  — 1 elements of Pr are {1, . . . ,  K  — 1}.

• Assume that we have chosen k indices (¿1, . . . ,  ik) for Pr, and k + l  — K  indices ( jx , ■ ■ ■ ,  jk) for 
Au. The index ik+i of Pr is the smallest index i such that Zj can not be written as a linear function 
of Zix, . . . ,  Zik, and the index jk+i of Au is the index such that e jk+1 is a supporter of e ik+1, and 
jfc+i < ik+i - From Proposition 5.3.6, jk+i exists, and by assumption, Zjk+1 is a linear function of 
(.zh , . . . , z ik).

By this procedure, we obtain a primary system of indices (¿1, . . . ,  tjv), and an auxiliary system of indices 
{jKi • ■ • i3n ) associated to Ax- Since for any k =  K , . . . ,N ,  eJfc is the supporter of &ik, it follows that

|R e(zjJ| =  h(ejk) > h{eik) =  |Re(zifc)|.

We know that Ax is equivalent to a matrix A s with s in AT>. The transformation of Ax into A s 
consists of renumbering the coordinates in C ^1, changing their sign. By this transformation, (¿i, . . . ,  ijv) 

and {jKi ■ ■ • j j/v)> become a primary system and an auxiliary system of indices for A s, and the vector Z  
becomes a vector in Us which verifies the condition in the statement of the corollary. □

From now on, we call a triple (As; /;  J ), with s € AD, I  = (¿1, . . . ,  i^ )  a primary system of indices 

of A s, and J  =  ( jx , ■ ■ ■, Jn ) an auxiliary system for I, an admissible triple. Given such a triple, set
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5. FINITENESS OF INTEGRALS

US(I ; J )  =  {(*!, - - -, W i) I |R e(ziJ| <  |Re(zifc)|, Vk = K , . .. ,N }.

From Corollary 5.3.7, we deduce that the family

{ $ S(US(I; J )) | (As; / ;  J ) is admissible }

covers the s e t ¡3) \  P)sp- Since /iTr(A/i'r(a ; ¡3)sp) = 0, to prove (5.1), all we need is the
following:

Proposition 5.3.8 Let (As; / ;  J), where I  =  (zi, . . . ,  i ^ ) , J  =  ( j K , . . . ,  Jat), be an admissible triple. 

Let J-s denote the pull back of the energy function T  onto Us by $ s. Then we have :

/ J-Sdp,$ < oo,

where ¡jls is the volume form on Us which is induced by the Lebesgue measures of CNl and CN2 via the 
linear map A s.

Proof: By definition, there are N i complex linear functions with real coefficients / i , . . . ,  /jvi such that, 
if ( z i , . . . ,  zyvi) € Us, then Zi =  /¿(z^ , . . . , Z iN). Note that /¿fc =  Zik, therefore, we can define acomplex 
linear map

B s : — ► ker A s

(z i , . . . , Z n ) I--- ► ( f l ( z i , . . . , Z N ) , . . . , f N 1(zi , . . . ,ZN))

Observe that B s is an isomorphism. By definition, we have

B J \U S(I-, J)) =  {(zu . . . ,  ZN ) e  CN I |Re(zfc)| <  |Re(/jfc(zx, . . . ,  z* ))l, Vk = K , . . . , N } .

Consider a vector Z  =  (z i , . . . ,  z ^ )  in Us, let (£, £) denote the image of Z  by $ s. Recall that the 
map specifies an admissible triangulation T of E such that each edge of T corresponds to a coordinate 
oiZ .

By the definition, for any k =  K , . . . ,  N,  the complex numbers Zjfc and Zjk correspond to two edges eik, 

and e jk which bound a triangle A*, of T. With appropriate choices of orientation of eik, and eJfc, the area 

§k of Afc is given by the function

4  =  ^(Re(zifc)Im(zifc) - Im (z ifc)Re(zJfc)).

Clearly, the triangles Afc, k = K , . . . ,  N,  are all distinct. Hence, we have
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N

Let 9k, k = K , . . .  ,N,  denote the pull back of the function 9k by B s. It follows that B s ((US(I; J )) is 
a subset of a set W s where

Let Gs denote the pull back of by B s. Since the volume form B e q u a l s  to k\ 2n , where A2n  is the 
Lebesgue measure of CN, and k is a constant, all we need to show is the following

Lemma 5.3.9 We have

Proof: Let (z i , . . . ,  z^ )  be a vector in Ws, and (E, £) be the image of (z i , . . . ,  z^)  by $ s o B s. We can 
assume that (z \ , . . . ,  z k - i) are complex numbers associated to geodesic segments in the boundary of E.

To simplify the notations, for & =  1 , . . . , N ,  set x k =  Re(z*;), yk = Im(zfc). For k = K , . . . , N , v / e  
write fk in the place of fjk* and set ak = Re(fk), bk = lm(fk).  Recall that, by definition, fk depends 
only on (zi , . . . ,  zk-i),  and since fk is a linear function with real coefficients, it follows that ak depends 
only on (x i , . . . ,  x^-i), and bk depends only on (y%,. . . ,  yk-i),  for any k =  K , . . . ,  Ni.  With these 
notations, we have

Ws = {(zx, . . . , z N) e C N I |Re(zfc)| ^  |Re(/Jfc)|, 9k > 0, Vk = K , . . . ,  N}.

K - 1

(5.6)
f c = l

(5.7)

|ofc| ^  \xk\, Vk = K , . . . , N . (5.8)

N

(5.9)
k = K

Consequently, we have

K - 1 N

Therefore, to prove the proposition, it suffices to show that
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. K - l  N
1  = / exp(— ^ 2  \zk \2 -  ^ 2  0k)d\2N < oo. (5.10)

"'Wa fc=l k=K

Fix ( z i , . . . ,  z k - i) €  C * 1 and (x k , • • •, x n ) G Rn ^ +1, and let

W a( ( z i , z K- x); (x*r,. . . ,  xN))

denote the set

{{yjK, • • • , JMr) € R ^ 'R:+1| (zi, Z K -1 , (x k  + Wk ) , (x n  + Wn )) e Ws}. 

Consider the following integral

f N 
l ( ( z i , Z K- 1); (xk ,  • • •, XN)) =  / exp(- ^  0k)dyK ■ • • dyw-

JWs((zi,...,Zi<-i);(xK,-.a:iv)) k—K

Consider the variable change (yK, • • •, Vn ) 1— ► (0fi, • • •, #jv)- Using (5.7), and the fact that bk depends 
only on (j/i,. . . ,  yk-i) ,  for any k =  K , . . . ,  N, we have :

d0K ■ ■ • ddjsr =   ̂2N -K + l^ dyic ■ ■ ■ dyN- 

Since the functions 6k, k =  K , . . . ,  N, are positive on Ws, it follows

o J V - J i + l  r + o o  r+oo
1((z1,...,z k - i)-,(x k ,..-,x n )) ^  --- —  J  e-e«d9K ...JQ e-e«de.

2N-K+1

" "  | a F i  • • - O j v l

Now, set

We have

131

w s z1 zK ■1 X K X N G c K 1 R N K 1 ak X k Vk K N



5. FINITENESS OF INTEGRALS

T  = /  ex p (- V ' |zfe|2)X ((zi,. . . ,  z^r-i); (xat, • • •, . . .  dxK- id yK- id x K ■ ■ ■ dxN,
fc=i

r ^  2n ~k+1
< /  exp(— Y , N 2)i------------ rdxidyi. . .  dxK-id yK- id x K ■ ■ ■ dxN ,Jwt \aK---aN\

r r\aK\ r\aN\ 2N~K+i
< /  exp (- Y , \zk\ )[ /  [•••[/  1------------ ;dxN].. .]dxK]dxidyi.. .  dxK- id yK- i ,JCK-i J-\aK\ J-\aN\\aK--.aN\

Using the fact that does not depend on Xj if k < j,  Vfc =  K , . ..  ,N ,  we deduce that

T  ^  4n ~k +1 f  e-(|zi l2+-”+kjf-i l2)dx idy i .. .dxK-\dyK-i  < oo-
J C K - l/ cK

The lenrnia is then proved.

The proof of Proposition 5.3.8 is now complete, and (5.1) follows. □

5.4 Proof of Theorem 5.1.1, Part b)

The proof of (5.2) is essentially the same as the proof of (5.1) with some minor modifications.

Assume that the forest A  contains m  trees denoted by A \ , . . . ,  A rn, and the vertices of those trees are 
{pi, .. , ,pn}. Through out this section, we assume that m  < n, which means that there is at least a tree 
in A  which is not a point, in the sequel, such a tree is called non-trivial. Note that the total number of 
edges of the tree in A  is n — m. Recall that we have

dimc A^et( i , a )  = N =  f  2S +  n - 1 ’ i f a i^ T rN , Vt =  1
2g +  n — 2, otherwise.

A point in M et(A, a) is a triple (E, A, £), where E is a flat surface homeomorphic to Sg, A is an erasing 
forest isomorphic to A,  and £ is a normalized parallel vector field on E.

Choose a triple (E, A, £) in M et(A, a), let E1* be the translation surface with boundary obtained by 
slitting open E along the trees in the forest A. Let T be an admissible triangulation of E*1, and let N\, 
denote the number of edges, and the number of triangles in T respectively.
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In Section 3.4, we have seen that one can associate to T a system of N i unknowns which contains :

• N 2 equations of type (2.3), which will be called triangle equations;

• (n — m) equations of type (3.1), which will be called boundary equations.

Note that the boundary equations of are determined by the forest A, and the angles in a.

Set N% — N 2 + (n — m). Recall that a matrix is called normalized if each of its entries is either 0, or 
a complex number of module 1. We can now define

Definition 5.4.1 Let A b e  a matrix in Mc(iV2 , Ni). We say that A  is ^-admissible if

i) A  is normalized.

ii) Every column of A  contains exactly two non-zero entries.

iii) There are N 2 rows of A  which form an admissible matrix defined in Definition 5.3.1. These rows 
will be called ordinary.

iv) There exists a bijection from a set o f (n  — m ) rows of A  onto the set of boundary equations of
such that, each of these rows is the vector of coefficients o f the corresponding equation in S^. 

These rows of A  will be called exceptional.

By definition, if Aip is the matrix in Mc(/V2*, N \)  associated to the system S^, then is ^-admissible. 

Given a ^-admissible matrix A, the following transformations of A  will be called elementary moves

• interchanging two columns,

• interchanging two rows,

• changing sign of a columns,

Two ^-admissible matrices are said to be equivalent, if one can be obtained from the other by a sequence 

of elementary moves. Let AV*  denote the set of equivalence classes of matrices in Mc(iV2 , N\).

For each s in AT>*, choose a matrix A* in the equivalence class s, we then get a finite family 

{A*, s 6 AV*}  of ^-admissible matrices in Mci iVj , N\).
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Given s in AT)*, for any Z  £ ker A*, let S z  be the ‘surface’ obtained from Z  by the construction 
described in Lemma 3.4.5. Let U* be the open subset of ker A* which is defined by the condition :

U* = {Z  £ ker A* : Y<z is a flat surface homeomorphic to Sg}.

We can then define a map from U* into M et(A, a) by associating to a vector Z  in U* the triple 
(Tiz, A, £), where A  is the forest obtained from the exceptional rows in A*, and £ is the vector field 
induced from the vertical constant vector field (0,1) of R2.

From Lemma 3.4.5, the following proposition is clear,

Proposition 5.4.2 The family s £ AV*} is an open cover of the space M.et(A, a).

Let us now define the notions of primary and auxiliary system of indices for a matrix A*, s £ AV*.
Set

_  ( n — m  + 1, i f N  = 2g + n — 1;
1 n — m, if N  =  2g +  n — 2.

Definition 5.4.3 Given a matrix A*, a primary system of indices/or A* is an ordered subset (¿i, . . . ,  ijv) 
of (1 , . . . ,  N \) such that there exist N i complex linear functions

fi : CN — ► C, z =  1 , . . . ,  Ni, 

such that if Z  =  (zi , . . . ,  zjvx) is a vector in ker A* then

•  Zi =  f i { z h , . . . ,  ZiN), Vi =  1 , . . . ,  N i.

• Vi =  1 , . . . ,  N \ , Vfc =  K , . . . ,  N, the coefficient of Zik in fi (zn , . . . ,  zjv) is real.

Definition 5.4.4 Given a primary system of indices I  =  (¿1, . . . ,  for A*, an auxiliary system of 

indices for I  is an ordered subset (Jk , ■ • ■, jjv) of {1, . . . ,  N{) such that

• f j k depends only on (zt l , . . . ,  zifc_1) ;
• There exists an ordinary row in A* whose ik-th and jk-th entries are both non-zero.

Remark: There is a natural way to specify a primary system of indices of A* as follows : let A s be the 
admissible matrix consisting of the ordinary rows of A*, and let /  =  (¿i, . . . ,  i^ )  be a primary system 
of indices for A s.
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If the i-th column of A s has only one non-zero entry, we say that i is a boundary index. Two boundary 
indices i\ and ¿2 are said to be paired up, if there exists an exceptional row in A* whose ¿i-th and ¿2- 
th entries are non-zero whereas all other entries are zero. By construction, there are (n — m) pairs of 
boundary indices, they correspond to the edges of the trees in the forest A, therefore there are exactly 
2(n — m) — 1 boundary indices in the family I.

Assume that (¿1, . . . ,  i2(n-m)-1) is the set of boundary indices in I, we have two issues :

- J f N  = 2g + n — 1, that is a* € 27rN, Vi = 1 , . . . ,  n, we have N  =  N  +  (n — m) — 1. In 
this case, by eliminating one boundary index in each pair if both indices of this pair appear in 
{¿1, . . . ,  %2{n-m)-1}> we obtain a primary system of indices for A*.

- I f  N  = 2g+n—2, that is there exists i E {1, . . . ,  n} such that a* ^  27rN, we have N  = N + (n—m ). 
In this case, to obtain a primary system for A*, we have to eliminate (n — m) indices from 
(¿1, . . . ,  ¿2(n—m)—1) so that any two indices in the remaining family are not paired up.

Let I  denote the primary system for A* which is obtained from I  by this method without changing 
the ordering, observe that an auxiliary system for I  is also an auxiliary system for I.

Finally, we say that a triple (E; A; £) e  M et(A ,a)  is in special position, if the pair (E11, £) is in 
special position as defined in Section 5.3, where E11 is the translation surface with boundary obtained 
by slitting open E along the trees in A. Let M et(A, a )sp denote the set of triples in special position in 
M et(A, a). With these settings, we have

Proposition 5.4.5 The set yVlet (.4. a )sP is of measure zero with respect to /iTr-

Proposition 5.4.6 For any triple (E. A. in M ct(A, a) which is not in special position, there exist 
an s E AV*, a primary system of indices I  = (¿1, . . .  ,ijv) for A*, an auxiliary system of indices 
J  =  {]k  . . . , jN )  f or I> and ci vector Z  E U* such that

• fo rk  =  K , . . . ,N ,  |Re(z»fc)| < |Re(zifc)|.

.  $;(Z) = (E , i ,0 -

We call a triple (A*; /; J ), with s in AD*, I  a primary system of indices for A*, and J  an auxiliary 

system of indices for I, an *-admissible triple.

Given an ^-admissible triple (A*; I; J), with I  = (¿1, . . . ,  i^ ) , J  = (jx , ■ ■ ■ , j/v), set
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U*s(I; J) =  { ( * ! , . . . ,  zjvO €  w ;| |R e (z iJ | ^  |Re(% )|, Vk =  K , . . . , N } .

Let F f  denote the pull back of the energy function F *  by $* onto U*.

Proposition 5.4.7 We have

/  ^ d f i s  < oo,

where /xs is the volume form on U* which is induced by the Lebesgue measure ofCNl, and the Lebesgue 
measure o f either CNZ, or W  =  {(zi , . . . ,  zn») 6 CNÎ \ zi H------ 1- zpj* = 0} via A*.

The proofs of Propositions 5.4.5, 5.4.6, and 5.4.7 will be omitted since they are completely analogue 
to the proofs of Proposition 5.3.5, Corollary 5.3.7, and Proposition 5.3.8.

Part b) of Theorem 5.1.1 follows directly from these propositions. □

5.5 Volume of moduli spaces of closed translation surfaces of constant 
area is finite

In this section, we use Theorem 5.1.1 to prove the well-known fact that the volume of H \ (k\ , . . . ,  kn) 
is finite. Recall that H (k i , . . . ,  kn) can be considered as the moduli space of translation surfaces (with 
parallel vector field) having cone angles 2(k\ 4- l)7r,. . . ,  2(fcn +  l)7r at singularities, and H\  (fci, . . . ,  kn) 
is the subspace of "H(k\ , . . . ,  kn) which contains all surfaces of area one.

On T~i(ki,. kn), we have a volume form fio which is defined by the period mapping. Let denote 
the volume form on (fci, . . . ,  kn) which is induced by ¡jlq- Our goal in this section is to prove that

A*o(Wi(fci,...,fcn)) < oo- (5-11)

First, we remark that (5.11) is equivalent to

L exp(—Area)(fyio < oo.

This is because we can identify H(k i , . . . ,  kn) to H i(k i , . . . ,  kn) x R+, and by this identification, we 
can write

d/j,Q = tsdfiodt, where s = dim® H \(k i , . . . ,  kn).

136

us I J



5. FINITENESS OF INTEGRALS

Therefore, we have

Consequently, all we need to prove is the following 

Proposition 5.5.1 We have

I exp(—Area)d^o < oo (5.12)
JH(klr..,kn)

Proof: At first glance, it seems that this proposition is a direct consequence of Theorem 5.1.1, Part a), 
but, unfortunately, the arguments used in the proof of 5.1.1 cannot work without the assumption that the 
boundary of the surfaces considered is not empty. To overcome this misfortune we will make use of (5.2) 
in a particular case.

Set ai =  2(ki +  1), i = 1, . . .  ,n. Let A \  be a topological tree isomorphic to a segment, and 
for i = 2 , . . . ,  n, let Ai  be just a point. Let a  denote (2n, a \ , . . . ,  an), and A  denote the family 

> • • • > AnJ.

Consider the space M.et(A, a) with the previous data. In this case, M.et(A, a) is the moduli space of 
triples (E; (I(x i, x ) , x 2, . . . ,  xn; £), where E is a closed translation surface, {x i , . . . ,  xn} is the set of 
singularities of E with cone angles { a i , . . . ,  a n} respectively, and I(x i ,  x) is a geodesic segment joining 
the singular point x \  to a regular point x.

Let a  denote the sequence { a i , . . . ,  a n}, and let A ix(a) denote the moduli space of triples 
(E; x \ , . . . ,  xn; £), where E is a closed translation surface, {x i , . . . ,  xn} is the ordered set of singula
rities of E with cone angles { « i , . . . ,  an} respectively, and £ is as usual a parallel vector field on E. 
If the angles { a i , . . . ,  a n} are pairwise distinct, then M r ( a )  is identified to H ( k i , . . . ,  kn), otherwise 

) is a finite covering of H ( k \ , . . . ,  kn).

Let q denote the map from jMet(̂ 4, a )  onto M x ( a )  which is defined by

q : (E; (J(xi, x), x2, . . . ,  xn); £) i— »• (E; (x i , . . . ,  x„); £)•

Let /i-rr denote the volume form which is defined by using admissible triangulations on M et{A, a). 
Let /¿o, and ¡jlq denote the volume forms defined by the period mappings on M et{A, a), and 
respectively. To prove the proposition, it suffices to show
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L exp(—Area(S))d/xo < °o (5.13)

By Theorem 5.1.1, Part b), we know that

exp(—A rea(E) — £2(I))dp,Ti < oo (5.14)/
JAM *{A ,a )

Recall that on each connected component of M et(A, a) there exists a constant A such that /¿Tr =  
A/to- By a result of Konsevitch-Zorich [KZ], we know that H (k \ , . . . ,  kn) has finitely many connected 
components. It follows that M et(A, a) also so has finitely many connected components. Therefore, 
(5.14) implies

L exp(—A rea(E) — £2{I))d(iQ < oo (5.15)
M st(A,a)

Consider a point (E; (x i , . . . ,  xn); £) in A^t(o:)- Fix a tangent vector v\ € TXl E, we can then iden
tify the set of tangent vector of norm one in TXlT, to the set R /a iZ . Any geodesic segment in E which 
contains x \  as an endpoint is uniquely determined by its tangent vector at xi, and its length. Conse
quently, we have an injective map :

ip : 0- 1{ (E ; ( x i , . . . , x n);£)} — ► (R /aiZ ) x R+,

Let U is a neighborhood of (E; (x i , . . . ,  xn); £) in M t (&) such that the period mapping $  defines a 
local chart on U. For each point (E'; (x'x, . . . ,  x 'n); £') in U, we choose a tangent vector v[ in E ' to be 
the reference vector, we can assume that v'x varies continuously as (E'; (x': , . . . ,  xJJ; £') varies in U so 
that the map ip extended into a map :

(p : Q~X(U )  — »Wx (R /aiZ ) x R+, 

which is continuous and injective.

Let (E; (J(xi, x), x2, . . . ,  xn); £) be a point in M et{A, a) such that

e((E; (I(x i, x), x2, . . . ,  x„); 0 )  =  (£, (*i, • • • > *n). £)•

Let $  denote the period mapping defining a local chart of M et (.4, a) in a neighborhood of (E; (I(x \ , x ), x2, . . . ,  xn); 

Suppose that if $ (£ ; (J(xi ,x) ,x2, . . . ,  xn); £) =  (z i , . . .  , 2jv+i), then zjf+ 1 is the complex number cor
responding to the segment I(x \, x). It follows that in the local charts <1, and $  the map g can be written 
as

g (z i,. . . ,  zN+i) =  ( z i , . . . , z N)

and the map <p verifies
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i p ( z i , z N+1) =  ( ( z i , z N); axg(zjy+i) +  c; |z/v+i|), with c constant, 

where N  — dime -Mx(a). Consequently, we can write

ip*dfio = rdpodddr.

It follows that

[  e—Area(E)— =  f  e~Area^ - T\d ^ d 9 d r .  (5.16)
Jq-'M Uie-'m

By a well known result (for example, see [MT], Theorem 1.8), we know that on a translation surface, 
there are no geodesic segments with endpoints in the set of singularities in all directions except a coun
table set. This implies that there exists a countable subset 0  of R/c*iZ such that if 9 is not in 0 , then the 
geodesic ray starting from x \  in the direction 9 can be extended infinitely. It follows immediately that 
ip(Q~l (U)) is an open dense set of U x (R /aiZ ) x R+ . Therefore, we have

[  e-Area(£) - r 2 rdnod9dr = f  e~Area^ - r2rdfio d9dr,
J(p{Q~1{U)) JUx  (R /a iZ) xK+

r+oor~r°° 0 poi 1 / *

/ e~r rdr /  d9 e~Area^  dfio,
Jo Jo Ju

£ *  f  e - A r e a ( E ) ^ o

*  Ju

From (5.16), we deduce that

[  e-Area(EM2(/)d/io =  ^  f  e~Area^ d ^ o  (5.17)
Jg-'iU) 2 Ju

Since (5.17) is true for any small neighborhood in we can conclude that

f  =  -  i  (5.18)
Jm t (&) “ 1 J M et(Â,&)

From (5.15), we know that the right hand side of this equality is finite, hence, so is the left hand side, and 
(5.13) follows. The proposition is then proved. □
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5.6 Volume of M \(§2, a) is finite

In this section, we are interested in the moduli space of spherical flat surfaces. We have defined the 
volume form /jtt on the space ,A/i(§2, a) =  M.(S2,a)* x S1, where M (S 2,a)* is the moduli space 
of spherical flat surfaces whose singularities have cone angles given by a  =  (cci,. . . ,  an). Recall that 

A/ii(S2, a)* is the set of flat surfaces having area 1 in .M(§2, a)*, and .M i(S2, a) is the product space 
A ii(S2, a)* x  S1. By Proposition 3.2.3, the space A ii(S2, a)* can be considered as the moduli space of 
the configurations of n points on the sphere §2 up to Mobius transformations.

The volume form induces a volume form on .M i(§2, a). Pushing forward by imposing 
the condition that the volume of each S1 fiber is 27r, we get a volume form on .M i(S2, a)*. The 
goal in this section is to prove Theorem 5.1.2. Note that a direct consequence of Theorem 5.1.2, is the 
following

Corollary 5.6.1 /t^r(A 'ii(§2, a)*) is finite.

Remark: A similar result was proved in [V2], Section 18,19.

Proof: Since we have

where C  is a constant depending only on the dimension of .M(S2, a), Theorem 5.1.2 implies that

5.6.1 The function 5

Let E be a flat surface in a)*. Let x i , . . . ,  xn denote the singular points of E so that the cone
angle at Xj is a*. Let d  denote the distance defined by the metric on E.

For any subset /  of {1 ,. . . ,  n}, let diam j(E ) denote the diameter of the set {x*, i G I}. We define

A i T r ( ^ l ( § 2 ,<*)) <  ° ° '

It follows immediately that

/4 (A ii(S 2)C* r) < oo.

□
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¿/(S) = min{d(æi,xJ) : i G I, j  g  1}

and

5+(E) =
ME) if <S,(£) > 3diam/(E) :
0 otherwise.

A subset I  of { 1 ,..., n} is called essential if we have

We define a function 6 on the space ^ ( S 2, a)* as follows

VS G .M(§2, a)*, <5(S) =  max{5j"(S) : I  c  { 1 ,..., n}, I  is essential }.

The function 5 is always positive since when I  = {i}, ô f  (S) =  min{d(xj, X j ) ,  j  ^  i} > 0, and there 
always exists i e  { 1 ,..., n} such that a* £ 27rZ.

To simplify the notations, we also denote ô the composition of Ô and the natural projection prx from 
,M(§2, â) onto ^ ( S 2, â)*.

The proof of Theorem 5.6.1 splits naturally into two propositions :

Proposition 5.6.2 We have

and

Proposition 5.6.3 There exists a constant C (a ) depending on a such that for any surface S in M. (§2, a)* 
we have

S2(S) < C (a)A rea(S).

5.6.2 Good tree and good forest

Let S be a surface in M  (§2, a) *. Let x i , . . .  , x n denote the singular points of S so that the cone angle 
at Xi is ai. Let V denote the set {xi, . . . ,  xn}, and as usual let d  be the distance defined by the metric on

exp(—Area — <52)d/ixr < oo,

S. Set

Ô = ¿(S).
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For any geodesic tree A  on E, we denote Ver(A) the vertex set of A, m ax(4) the length of the longest 
edge of A, and R(A) the distance from Ver(4) to the set V \  Ver(4).

Definition 5.6.4 Let A be a geodesic tree in E whose set of vertices is a subset o/V. Let k be the number 
of edges of A. The tree A  is said to be good, if either A is a singular point with cone angle in 27rN, or 
k ^  1 and we have

•  max(A) ^  4k~18,

• diam (Ver(J4)) ^  Ak~15,

• The index set corresponding to the vertex set of A  is non essential, that is the sum of all cone angles 
at the vertices of A belongs to the set 27rN.

• Either Ver(A) = V, orR(A) ^  ZAk- x5.

Let us start by 

Lemma 5.6.5 There always exists a good tree on E.

Proof: First, let e be a geodesic segment which realizes the distance

min{d(xi, Xj),  a* 0  27rN and i ^  j } .

By definition, we have

leng(e) ^  5.

Let A 1 denote the tree which contains only the segment e. By assumption, we have

m a x ^ 1) =  diam(Ver(i41)) =  leng(ei) ^  S.

Consider the following procedure, which will be called the points adding procedure :

Suppose that we already have a geodesic tree A k connecting k + 1 points in {cci,. . . ,  xn} verifying the 
following condition:

, . i  max(4 fc) ^  Ak~15,

|  diam (V er(4fc)) < 4fc_1<5.

Let I  be the subset of {1, . . . ,  n} corresponding to the vertex set of A k. We have two cases :
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- Case 1 : 1 is essential. In this case, let ek+i be a segment realizing the distance ¿/(E), and let Xj 
be the endpoint of ek+\ which does not belong to Vev(Ak).

By definition, we have either leng(e*;+i) ^  3diam(Ver(Afc)), or leng(efc+1) ^  <5. Since we have 
diam(Ver(Afc)) ^  4fc-15, we deduce that, in both cases

leng(efc+1) ^ 3.4fc_15.

SUt open the surface E along the tree A k, and denote the new surface S'. The vertex set Ver(Ak) 
gives rise to a finite subset V k of the boundary of E'. Let us prove that the distance from V k to the 
point Xj, with respect to the distance in S ', is at most Ak5.

Consider ek+1 as a ray exiting from Xj, and let y be the first intersection point between ek+i and the 
tree A k. Since we have max(^4fc) ^  4fc_1<5, there exists a path on E joining Xj to an endpoint of the 
edge containing y without crossing the tree A k, whose length is at most 3.4fc-1<5 +  Ak~15 = 4kS. 
Because this path does not cross the tree A k, it represents a path on E' joining Xj to a point in V k. 
Thus, we deduce that the distance between Xj and V k in E' is at most 4fc<5.

Let a' be the path realizing the distance from Xj to V k in E'. The path a' corresponds to a 
path a in E which is piecewise geodesic, and meets the tree A k at one of its vertices. Note that 
leng(a) =  leng(a') <  4k5.

Adding a to A k, we obtain a new tree which will be denoted by A k+r, where r is the number of 
geodesic segments contained in a. Let us prove that this new tree also verifies the condition (*).

• If r =  1 then Ver(^4fc+1) =  Ver(Ak) U {xj}. Since diam (A fc) ^  4k~15, and the distance from 
Xj to Ver(^4fc) is at most 3.4fc-1<5, we deduce that

diam (V er(^fc+1)) < 4fe_1<5 +  3.4fe_15 =  4kS.

By assumption we know that max(.Afc) ^  4fc_1<5, and we have proved that the length of the 
added edge is at most 4k5, hence we have max(Afc+1) < 4k6.

• If r > 1, it means that the path a contains some singular points in its interior. The distance from 
those points to the set Vei(Ak) is bounded by the length of a which is at most 4k5. Hence, the 
diameter of the set Ver(JAfc+r) is at most

4fc-1<5 +  4fe<5 ^  4fc+r- 1&

As for max(J4fc+r), we have

m ax(A fe+r) = m ax{m ax(j4 fc), leng(a)} < 4k6.
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We can now restart the procedure with A h+r in the place of A k.

- Case 2 : I  is non-essential. In this case, if Ver(Ak) = V, or R(Ver(Afc)) ^  3.4fc-1<5, then the 
procedure stops. Otherwise, by the same arguments as in Case 1, we can add to A k some edges so 
that the new tree also verifies the condition (*), and we restart the procedure.

Since we only have finitely many singular points in £ , the points adding procedure must stop, and we 
obtain a good tree. □

Definition 5.6.6 A union of disjoint geodesic trees with vertices in V is called a good forest if every tree 
in this union is good.

Lemma 5.6.7 There exists a good forest in E whose set of vertices is V.

Proof: By Lemma 5.6.5, we know that there exists a good tree A \  in £ . Clearly, A \ itself is a good 
forest. If Ver(Ai) =  V, or every point in the set V \  Ver(4.i) has cone angle in 27rN, then we are done. 
Otherwise, there exists a point a* in V \  Ver(Ai), with cone angle not in the set 27rN.

In this case, we would like to construct a good tree A 2 containing Xj by the points adding procedure. 
However, this procedure can not be carried out straightly because of the presence of the tree A\. Namely, 
it may happen that we have R(Ver(4 2 )) ^  3.4fc2-1£, where k2 is the number of edges of A 2, but the 
segment realizing this distance intersects the tree A\. We will call this the blocking situation.

Let us consider the following procedure, which will be called the trees joining procedure :

Assume that we already have I disjoint geodesic trees A \ , . . . ,  Ai with the following properties :

a) Aj is a good tree Vj =  1 , . . . ,  I — 1.

b) Ai satisfies the condition (*).

c) d(A h U ^ A j )  < 4k‘5.

Let k\ , . . . ,  ki be the numbers of edges of A \ , . . . ,  Ai respectively. Let c be a path of length less than 
4kl8 joining a point in Ai to a point in A,-.
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Without loss of generality, we can assume that c joins a point in Ai to a point in A i-\. Since both Ai- x 
and Ai verify the condition (*), we deduce that there exists a path ¿joining a vertex of A i-i  to a vertex 
of Ai without intersecting the set Ul~}xAj (except at the endpoints) whose length is at most

4h ~x5 +  Aklö + 4fci-1-15 < 4fc,+fc|-1i.

Consider the surface with boundary obtained by slitting open E along the trees The path c
represents a path in this new surface, joining a point in the boundary component corresponding to j4/_i 
to a point in the component corresponding to Ai.

Consider a path of minimal length joining these two points in the new surface. This path contains a pie
cewise geodesic path cq in E joining a vertex of to a vertex of Ai without crossing the edges of 
A \ , . . . ,  A(. Note that the endpoints of the geodesic segments in c q  are singular points of E. The union of 
co and all the trees in {yli, . . . ,  Ai} which have at least a common point with co is a geodesic tree. This 
new tree contains obviously A i-i  and A\ as subtrees.

Denote the remaining trees, ones that have no common points with co, A 'x, . . . ,  and the new tree 
A!v . Note that I' < I and the tree A'v contains at least +  ki + 1 edges.

It is a routine to verify that the family {A!x, . . . ,  A'v } also satisfies the conditions a), and b). If the 
condition c) still holds, then we can restart the procedure. Therefore the procedure can be repeated until 
we get a family A i , . . . ,  Ä j of disjoint geodesic trees, verifying a), and b), and in addition we have :

d(Äl,(Ä1 U---UÄl_1) ) ^ 4krS,
where kj is the number of edges of Aj.

It is clear that, if we have a blocking situation, then the hypothesis of the trees joining procedure are 
satisfied, we can then use the trees joining procedure to get out of the blocking situation, and reapply the 
points adding procedure until we get to a blocking situation again. Since the number of singular points 
in E is finite, this algorithm must stop, and we obtain a good forest. □

Corollary 5.6.8 There exists a constant k, such that for any E in M iß 2, ä)*, there exists an erasing 
forest A  in E which verifies

£(Ä) ^  KÖ.

Proof: By Lemma 5.6.7, we know that there exists a good forest Ä  — U jL ^ j  in E. By definition, A  is 

an erasing forest. Since every tree in A  verifies the condition (*), we have £{Aj) < kj4k̂ S, where kj is 
the number of edges of A j , Vj =  1 , . . . ,  m.
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Observe that ki H---- + km = n — m  ^  n — 1, therefore we have

m

£ (i)  =  £ £ ( A , ) « ( n -  1J4”- 1«,
j = 1

and the corollary follows. □

5.6.3 P roof of Proposition 5.6.2

Let «4ad(a) denote the set of all families A  =  { A i , . . . ,  A m} of m  (0 < m < n) topological trees, 
whose vertices are labelled by {1, . . . ,  n}, verifying the following condition : if Ij, j  = 1 , . . . ,  m, is the 
subset of {1, . . . ,  n} corresponding to the vertices of the tree Aj, then

y ]  ai € 27rZ. 
ie ij

For each A  = { A i , . . . ,  An} € A ^ a ) ,  let be the subset of M et{A, a) consisting of all triples 
(E, A, £) satisfying the following condition :

£(A) ^  k5(E),

where A = WJL1Aj is a geodesic erasing forest of E, with Aj isomorphic to Aj,  and k is the constant in 
Corollary 5.6.8.

Let p^  denote the projection from M et(A, a) onto M .(§2, a)*, which associates to every triple (E, A, £) 
the surface E. From Corollary 5.6.8, we know that the family

{VA = pA(UA):  i€ .4 a d (a )}

covers the space .M(§2, a)*. Let pi be the natural projection from .A/i (S2, a).onto AI (S2, a)*, it follows 
that the family

K 'O 'a) : ^eXad(a)}

covers the space ,M(§2, a).

Since the set -4.ad(a0 is finite, it is enough to show that, for every A  in Aad(a), we have

/  exp(—A rea  — 62)d/j,xr < oo. (5.19)

Since the space jM(§2, a) can be locally identified to M et{A, a), we have
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/ exp(—A rea  — <52)cfyxTr =  /  exp(—A rea  — 82)dfiTr
JpîHvÂ) JuA

By definition, for every (E, Â, £) in U^, we have £(Â) ^  «¿(E). It follows

f  exp(—A rea  — (52)dyUTr ^  f  exp(—A re a — ^ £ 2 (-4.))cfyiTr (5.20)
^  JuÂ K 

By Theorem 5.1.1, Part b), we know that the right hand side of (5.20) is finite. Consequently, (5.19) is 
true, and the proposition follows. □

5.6.4 Proof of Proposition 5.6.3

Let Jo be a subset of {1 , . . . ,  n} such that S^Q (E) =  ¿(E) =  8. Let s be a geodesic segment joining a 
point Xi0 with io € I0 and a point Xix with i\ Iq such that leng(s) =  <5. Let p denote the midpoint of 
s. As usual we denote d  the distance induced by the flat metric of E.

First, we have

Lemma 5.6.9 B (p , <5/2) =  {x  6  E : d(p, x) < 8/2} does not contain any singular point o /E .

Proof: Suppose on the contrary that a singular point £/-, with k #  {¿o> ¿i}> is contained in B(p, 8/2), 
then we have d (xi0,xk) < 8, and , Xk) < 8, but this would imply that 8i0 (E) < 8, and we have a 
contradiction. Q

Let D(8/2) denote the open disk with center (0,0) and radius 8/2 in the Euclidean plane E2 =  R2. 
Let /  be the isometric immersion from D(8/2) to E, which maps the horizontal diameter of D(8/2) to 
the segment s, and the origin (0,0) to the point p. The immersion /  can be defined because the smallest 

distance from p  to a singular point of E is 8/2.

Let e be the maximal value such that the restriction of /  on the disk D(e8) with center (0,0) and radius 
e8 is an embedding. If e ^  1/4 then there is an embedded Euclidean disk of radius 5/4 in E, which 
means that A rea(E ) ^  (it52)/16. In the sequel, we will suppose that e <  1/4, consequently, the set 

/ _ 1(p) contains points other than (0,0). L etpi be the point in f ~ 1{p) \  {(0,0)} closest to (0,0), and c\ 

be the segment joining (0,0) to p\ in D(8/2).

For any subset I  of { 1 , ,  n}, we denote a /  the sum

a i  = ^ 2
i e i
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and 11 a/11 the distance from a j  to the set 7rZ in R. Set

ao =  m in{||aj|| : I  C {1,. . .  ,n}, ||a /|| # 0} .

Choose a number eo such that eo < m in{l/6 , sin(ao)/4}. We will prove that there exists an embed
ded disk of radius eo8 in E, which is enough to prove the proposition.

Let do denote the horizontal diameter of D(S/2), and d\ denote the lift of s passing through p\. Let c 
denote the image of ci by / ,  then c is a geodesic loop in E with base point p. Let 9 be angle between do 
and di, by this we mean the angle in [0; 7r /2] between the two lines supporting do and d\. Let us prove

Lemma 5.6.10 We have, either 9 =  0, or e > eo-

Proof: Remark that 0 equals the rotation angle of the holonomy of c modulo 7r. Suppose that 9 ^  0, then, 
by the definition of ao, we have 9 ^  ao.

If e < eo, then the distance from (0,0) to d\ is less than 2eoS < sin(ao)S/2. Together with the fact that
6 > ao, this implies that d\ intersects do, in other words, the segment s has self-intersection, which is 
impossible. Therefore, we can conclude that either 9 =  0, or e > eo. □

If e >  eo, then we are done. Therefore, we only have to consider the case 9 = 0, and we have

Lemma 5.6.11 I f  9 = 0, then the rotation angle of the holonomy of c is 0 modulo 2ir.

Proof: If it is not the case, then this angle equals 7r modulo 2ir, and hence, the holonomy of c is the 
composition of a rotation of angle 7r and a translation which maps (0 , 0) to p\.

Such a transformation must fix the midpoint q\ of the segment joining (0,0) to p\. It follows that qi is 
mapped by f  into a singular point of E, which is impossible because 91 is contained in the disk D (5/2) . □

From Lemma 5.6.11, we deduce that the set f(D (6 /2 )) contains a cylinder C  with length (1 — 2e)<5 
and width bounded by 2e5.

Remark that c is then a closed geodesic in C which cuts E into two flat surfaces with geodesic boundary, 
each of which is homeomorphic to a topological closed disk. We denote Eq the flat disk that contains Xi0.
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Lemma 5.6.12 For any i in Iq, X{ is contained in E:o-

Proof: Recall that by the definition of 5, we have

diam {xt, i € Jo} < S/3, 

which implies that d(xi0, x») < <5/3, Vi G Jo-

If there exists i G Iq such that x* 0 E i, then the path realizing the distance d(xj0, x*) must intersect the 
closed geodesic c, therefore it crosses C. Consequently,

d(xi0,xj) ^  (1 — 2e)S > 2/3<5, 

which is impossible. □

The rotation angle of the holonomy of c equals the sum of all cone angles at singular points in Eo 
modulo 27t. By assumption, we know that a j0 £  27rZ, it means that Eo contains singular points which 

do not belong to {xj, i G Io}. Note that we have

m in ld ^ X j} , i G Iq, j  & Io, Xj € 2 0} ^  ^b (s ) =  <*•

Since Eo is a flat surface with geodesic boundary which contains no singularities on the boundary, we 
can restrict ourselves into Eo and restart the whole procedure. This procedure can be continued as long 
as the rotation angle of the loop c is zero.

Since we only have finitely many singular points in E, the procedure must stop, and we get a point in E 
whose injectivity radius is at least eo S. Proposition 5.6.3 is then proved. □
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Annexe A

Curves and Isotopies

Throughout this chapter, S  will be a fixed compact surface whose Euler characteristic is negative. Our 
goal in this section, is to prove the following lemma

Lemma A.0.1 Let c i , . . .  ,Ckbe a family of curves in S  verifying the following conditions :

i) For every i =  1 , . . . ,  k, the curve Ci is either a simple arcf or a simple loop if its two endpoints 
coincide lying in the interior o fS  except its endpoints when the later are contained in the boundary.

ii) I f i  7̂  j  then q  and Cj are not in the same homotopy class with fixed endpoints. Ifci is a loop then 
Ci is not homotopic to the constant loop, and if the endpoints of Ci are contained in the boundary, 
Ci is not homotopic with fixed endpoints to a subsegment of a boundary component.

iii) I f i  ^  j, then Ci and Cj intersect at most at their common endpoints.

The union of c\ , . . . ,  Ck will be denoted by C.

Let ip be a homeomorphism of S  which is isotopic to the identity by an isotopy which is identity on the 
boundary of S, and fixes every endpoint of the arcs c i , . . . ,  Cfc. Suppose that (p(ci) = Ci, Vi =  1 , . . . ,  k, 
then there exists an isotopy from <p to Ids which is identity on the boundary; and leaves the set C inva
riant.

It seems to the author that this lemma is classical, but he could not find a good reference for it. For
tunately, it turns out that one can prove this lemma by a combination of classical theorems, and Epstein- 
Zieschang, and eventually the theorem of Alexander on homeomorphisms of the closed disk which is 
identity on the boundary.

In the sequel, we call a homeomorphism <p of S  a 1-homeomorphism if it is isotopic to the identity by 
an isotopy which is identity on the boundary of S. If A  is a subset of S, then a A — 1-homeomorphism
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is a homeomorphism which is isotopic to the identity by an isotopy fixing every point in the set dS  U A.

A.l Basic Theorems

We recall here some important theorems which are useful for the proof of Lemma A.0.1.
The following theorem follows from results of Epstein-Zieschang (see [B], Theorem A.4, Theorem 

A.5 page 411).

Theorem A.1.1 (Epstein-Zieschang) Let {ci , . . . ,  Ck} be a family of curves with the properties descri
bed in Lemma A.0.1. Assume in addition that all the endpoints o fc \ , . . . ,  Ck lie on the boundary of S.

Let {7 1 , . . . ,  7 k} be another family of curves verifying the same properties such that 7 i and Ci are homo- 
topic with fixed endpoints, then there exists a homeomorphism (f> of S  such that

• (p is isotopic to the identity by an isotopy which is identity on the boundary of S, and fixes all the 
endpoints of c\ , . . . ,  c .̂

• 4>(<h) =  7t, Vi =  1 , . . . ,  k.

Next, we also need the following theorem of Alexander 

Theorem A.1.2 (Alexander) Any homeomorphism of the unity disk U> of R2 is isotopic to Idp.

A direct consequence of A. 1.2 is the following

Corollary A. 1.3 Let {a i , . . . ,  an} be a family of curves in S  verifying the properties in Lemma A.0.1 
such that int(S') \  (U ^ a i)  is a disjoint union of topological open disks. Let <j>be a homeomorphism of
S  which is identity on dS, fixes all the endpoints of the curves a\ , . . . ,  an, and preserves the set U”=1ai. 
Then <j> is a 1-homeomorphism of S.

Proof: By assumption, we have 4>{ai) = <H, Vi =  1 , . . . ,  n. For each i =  1 , . . . ,  n, let hi : a* x [0,1] — > 
ai be an isotopy from 4>\a. to Idai. Since the curves a \ , . . . ,  an cut int(S) into open disk, we can extend 
the isotopies hi, i =  1, . . . ,  n  to an isotopy from 0  to a homeomorphism <fi' which is identity on the set 
dS  U (U”=1aj). Note that this isotopy is identity on the boundary of S.

Now, applying Theorem A.1.2 to the closure of each of the disks in the set int(S') \  (Uf=1aj), we 
deduce that the homeomorphism <j/ is isotopic to the identity of S  by an isotopy which is identity on the 

set d S  U (Û =1a{), and the corollary follows. □
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A.2 Proof of Lemma A.0.1

First, we add to the family {ci, . . . ,  ck } the simple curves ck+1, . . .  ,Cn such that the family {ci, . . . ,  Cn} 
verify the same conditions as {ci , . . . ,  ck}, and c i , . . . ,  Cn cut int(S') into a union of open disks.

By cutting off a small disk around each endpoint of the curves c i , . . . ,  Cn in the interior of S, we can 
assume that all the endpoints of c\ , . . . ,  Cn are contained in the boundary of S. Equip S  with a hyperbolic 
metric such that dS  become a union of closed geodesics. The universal cover S  of 5  is then a domain of 
H2 bounded by geodesic lines and a subset of <9H2 =  S1.

For i = k + 1 , . . . ,  n, let 7* denote the image of q  by <p. Recall that by assumption <p(ci) =  q , Vi =
1 , . . .  ,k. Let S' denote the surface we obtain by cutting S  along c i , . . . ,  c*. We will show that, for all
i =  k + 1 , . . . ,  n, Ci is homotopic to 7 i in S'.

Fix an i in {k + 1 , . . . ,  n}, consider a lift Cj of c*, and a lift 7 j of 7 » such that Cj and j i  have the 
same endpoints in S. Note that, by assumption, for every j  =  1 , . . . , k ,  int(c)j fl int(cj) =  0 , and 
int(cj) fl int(7 i) =  0 , consequently Ci and 7 j do not intersect any lift of Cj.

Now, let r be the number of intersection points between c* and 7 * except their common endpoints. 
It follows that there exists r +1 disks in S  each of which is bounded by a sub-arc of c* and a sub-arc of 7 j.

Let D be one of those disks. For any j  e  {1, . . . ,  k}, let Cj be a lift of Cj, observe that D fl q  =  0 . 
Suppose on the contrary that D D dj /  0 , then, since c* and 7 * cannot intersect int(cj), the disk D  must 
contain both endpoints of dj. By assumption, the endpoints of Cj are contained in a geodesic line of the 
boundary of S, it follows that there is a geodesic line in dS  that intersects the disk D, but this would 
imply that either di or 7 * is not contained inside S, which is impossible.

Now, the observation above implies that Cj is homotopic to 7 i by an isotopy which does not meet any 
lift of Cj, Vj =  1, . . . ,  k. We deduce that q  is homotopic to 7 i in S'.

Theorem A.1.1 shows that there exist a 1-homeomorphism ip' of S' such that (p'(ci) =  ji, Vi = 
k +  1 , . . . ,  n. The homeomorphism ip' can be interpreted as a homeomorphism of S  which is identity in 
the set dS  U C. Hence, we deduce that ip is isotopic to a homeomorphism (p of S  by an isotopy fixing 

every point in the set dS  U C, such that (p(ci) =  7 i, Vi =  k +  1 , . . . ,  n. Since the curves c i , . . . ,  Cn cut 
int(S’) into a disjoint union of open disks, Corollary A. 1.3 allows us to conclude. □
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Fiat surfaces and Teichmüller space

Throughout this chapter, Sg will be a fixed flat surface, without boundary, having n  singularities, de
noted by p i , . . . ,  pn, with cone angles cci, . . . ,  an respectively. Recall that the Teichmiiller space T(g, n) 
can be interpreted as the space of all pairs (E, <fr), where E is a Riemann surface, and <j> is a homeomor- 
phism from Sg on to E, modulo isotopy relative to {p\, . . . , p n}.

Our goal in this chapter is to prove the following

Proposition B.0.1 Let Eo be aflat surface of genus g, without boundary, having n singularities, denoted 
by x i , . . . ,  xn, with cone angles c t\,. . .  ,a n respectively. Let (f>o : Sg — ► Eo be a homeomorphism which 
sends the set of singularities o fS 9 onto the set of singularities of Eo respecting cone angles. Let To be a 
geodesic triangulation of Eo such that the set of vertices of To coincides with the set of singularities of 
So- The pair (Eo, 4>o) represents an element of the Teichmiiller space T  ((/, n) which is denoted as usual 

by [(E0, *o)].

Suppose that there exists a closed curve 7  in So \  {xi , . . . ,  xn} such that o rth (7 ) 7  ̂ Id. Then, every 
element o fT (g, n) close enough to [(So, (j>o)] is represented by a pair (E, /e  o >̂q), where

• £  is a flat surface with cone singularities of angles ol\ , . . . ,  an ; -

• The map / s  : Eo — ► E is a homeomorphism sending To onto a geodesic triangulation of E, 
whose vertex set coincides with the set of singularities of E.

B.l Preliminaries

Set n i =  4(2g +  n — 1) — 3 and =  3(2<? +  n — 1) — 2. First, we show that the surface Eo can be 
associated to a vector in Cni satisfying a system of n2 linear equations.
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We begin by choosing 2g +  n — 1 edges {61, . . . ,  b^g+n-i} of To such that Eo \  (u |£^n -16j) is an 
open disk, we call such a set of edges a. family of primitive edges. Remark that such families always exist. 
To see this, consider the dual graph of To on So- Since this graph is connected, we can find a maximal 
tree contained inside it, by maximal tree we mean a tree which contains all the vertices of the graph. 
The complement of a maximal tree is a set of 2g +  n — 1 (open) edges of the dual graph. These edges 
correspond to a family of primitive edges in To.

Cut open the surface Eo along the edges b\ , . . . ,  fog+n-i, we obtain a flat surface Do with geodesic 
boundary, homeomorphic to a closed disk. Note that the boundary of Do contains 2(2g +  n — 1) geodesic 
segments.

Let bj and b'j, j  =  1 , . . . ,  2g+ n—1, denote the two geodesic segments on the boundary of Do which are 
identified to the edge bj of To- The triangulation To of Eo induces a geodesic triangulation of Do which 
contains n\ edges. To simplify notations, this triangulation of Do is also denoted by To- We choose an 
orientation for each edge of To- Assume that the edges on the boundary of Do are oriented coherently 
with the orientation of Do-

Using a developing map of Do, we can associate to each oriented edge e of To a complex number z(e). 
Let Zq denote the vector in Cni whose coordinates are the complex numbers associated to the edges of 
To- We assume that the first coordinate z® of Zq corresponds to the edge b[.

Since the developing map is defined up to a rotation, the vector Z q is defined up to a multiplication by 
el° with 0 in [0; 2ir\. Hence, we can assume that Imz° =  0.

As we have seen previously in the proof of 3.1.10, the coordinates of Z q must verify a system of 
linear equations Sx0 which contains 2(2g +  n — 1) — 2 equations of type (2.3), and 2g + n — l  equations 
of type (3.1). Observe that (2(2# +  n -  1) -  2) +  (2g +  n -  1) =  3(2g + n — 1) -  2 =  n2.

Let Vx0 denote the subspace of Cni consisting of solutions of the system Sx0- Clearly, we have Z q e

VTo-

For the dimension of Vx0 we have 

Lemma B.1.1

dime V t0 = n\ — n 2 = 2g + n — 2.

Proof: Let us consider in more detail the equations of type (3.1) of Sx0- The equations of type (3 .1) in 
Sx0 are of the form :

*(!>”) =  -e*>z(i£),
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with j  = 1 , . . . ,  2g +  n -  1.

For each j  in { 1 , ,  2g+n—1}, let Cj be apath in Do joining the midpoint of 6' to the midpoint of b". By 
construction, there exists a map ho : Do — ► So which is isometric in the interior of Do, and maps <9Do 
on to the set The image of Cj by ho, denoted by Cj, is a closed curve in £o which intersects

the set (U2̂ n~1bj) at only one point. Observe that 6j  is the angle of the rotation o rth(cj). It is worth 
noticing that the closed curves {ci , . . . ,  C2g+n- i }  form a basis of the group iii(£ o  \  {a î, • • •, xn}, Z).

By assumption, there exists a closed curve 7  on So \  {xii • • •, xn} such that o rth (7 ) /  Id, it follows 
that there exists j  € {1, . . . ,  2g +  n — 1} such that dj £ 27tZ. N ow , using the arguments in the proof of 
Lemma 3.4.6, we conclude that dime Vx0 = n \ — n i = 2g + n — 2. □

Let H t 0 denote the Hermitian form determined by the area of £ 0. Let Wx0 denote the set {Z  = 
( z i , . . . ,  zni) € V t 0 I Z tH x0Z  = 1 , Imzi =  0 }. Observe that W t 0 is a real sub-manifold of Cni of 
real dimension 2 (2g +  n — 2 ) — 2 .

By assumption Zo is contained in Wx0- Let Uq denote an open subset of Wx0 containing Zq and ho- 
meomorphic to a ball in ]^2(23+n-2) -2_ can define a map

$T0 : U j — > T(g,n),

such that for every Z  G  Uq, $ t 0 {Z) is represented by a pair ( E J j o  </>0), where E is a flat surface, and 
/ s  is a homeomorphism, which sends To onto a geodesic triangulation of E whose vertices are the singu
larities. This map is constructed in the same way as the one defined in the proof of Lemma 3.4.5. We have

Lemma B.1.2 The map $ t 0 continuous and injective.

Proof: For injectivity, suppose that <2>t0(-Zi) =  $ t 0(-^2)- Let ( E i =  1,2 be the pair representing 
<&r0(Zi), which is obtained by the construction of $ t 0- By definition, we can write 4>i = fi  0 <£o> where 
fi  is a homeomorphism mapping To onto a geodesic triangulation of E

By definition, there exists a conformal homeomorphism h from Ei to £ 2  such that f a 1 o h o fa is an 
element of Homeog-(Sg, { p i , . . .  ,pn})- Using Proposition 3.2.3, we deduce that h is an isometry from 

Ei onto E2. Lemma 2.3.8 then implies that h maps the triangulation /i(To) of £ 1  onto the triangulation 

/ 2(To) of E2. As a consequence, we see that Z\ = Z<i-

For the continuity, we use the same arguments as in the proof of Proposition 2.5.3. □
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Since the Teichmiiller space T(g,ri) is of real dimension Qg +  2n — 6 , to prove B.0.1, we have 
to extend the map <3>t0 to a continuous and injective map from a ball in R6s+ 2n_6 into T(g,n). To 

get such a map, we introduce small perturbations of the system S t 0. First, we observe that the angles 
9j, j  =  1 , . . . ,  2g+n—l, are not independent. Choose n  edges among bi, . . . ,  i>2s+n-i which form atree 
Ao connecting the singular points x \ , . . . ,  xn. Such edges exist because any two points in {x i , . . . ,  xn} 
are joined by a path in Without loss of generality we can assume that Ao contains the edges

^2(7+1 j • • • > ^2(j+n— 1-

Lemma B.1.3 For every j  G  {2g +  1 , . . . ,  2g +  n  — 1}, we have

Qj Tjj{oi\ , • • • , Q!n> ^1) • • • > ^2g)j 

where rjj is a linear function with integer coefficients.

Proof: The curves {ci, . . . ,  C2S} form a basis of the group i?i(So \  A q, Z). Note that since the group 
50(2) is Abelian, if the closed curves 71 and 72 are homologous in So \  {xi, . . .  , x n}, then o rth (7 i) =  
o rth (72).

For each j  in {2g + 1 , . . . ,  2g +  n — 1}, the curve Cj is homologous to the curve hi 0 • • ■ 0 k k 0 Cj, 
where is € {1, . . . ,  n}, ks is a curve homologous to a small loop about Xis, and c'- is a closed curve in 

So \ Ao.

The curve £'• represents an element of the group Hi (So \  Ao, Z), hence the rotation orth(c^) is determi
ned by the rotations o r th (c i ) , . . . ,  o rth (c2ff). We deduce that, for every j  in {2g +  1 , . . . ,  2g + n — 1}, 
the rotation o rth (d ,) is determined by the angles a i , . . . ,  an and the rotations o r th (ci ) , . . .  ,or th(c2S). 
The lemma is then proved. □

B.2 Proof of Proposition B.0.1

Let e be a small positive real number. Set

A =  {Â =  (Ai,. . . ,  A2g) G M25 : |AjI < e, Vj =  1 , . . . ,  2g).

For each À =  (Ai,. . . ,  A2ff) in A, set 6j(X) = Oj+Xj, for j  = 1 , . . . ,  2 g, and 9j(X) = r)j(a 1, . . . ,  an, 9i+ 
Ai, . . . ,  92g +  A2ff), for j  =  2g + 1 , . . . ,  2g -t- n — 1 . Let S t0 (Â) denote the system obtained by replacing 
9j by 9j(X) into S t0. Let V r0(A) denote the sub-space of Cni consisting of solutions of Sx0(A).
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Since there exists j  G { 1 ,...,  2g + n  — 1} such that 6j £ {2kir : k G Z}, if e is small enough, then 
Oj(X) £ {2kir : k G Z}, for all A € A. It follows that dime Vt0(A) =  2g +  n  — 2, for all A in A.

Let Wx0(A) denote the set {Z  =  (zi , . . . ,  zn i) G Vx0(A)| Z tHT0Z  =  1, lmz\ = 0}. Obviously, 

we have Vxo(0) =  V t0 and Wxo(0) =  W t0. Therefore, we can find, for each A in A, an open subset 
U1(A) of Wtq(A) homeomorphic to a ball in R2(29+n-2) -2 such that Ux(0) =  Uj, and the set U1(A) 
varies continuously as A varies in A.

Let Q denote the set {(Z, A) G Cni x A \Z G U1(A)}. It is now clear that Q, is homeomorphic to an 
open ball in M2(29+n-2)-2 x M?9 ~  R69+2n_6. Note that Q. can be realized as a subset of Cni such that 
U1 (A) =  V t0 (A) fl ii. We define a map

$T0 : ̂  — >■ T(g,n),
in the same way as the map $ t 0, that is, for each (Z, A) in fi, we construct a flat surface E by forming 
triangles and gluing them together using To as pattern. Recall that, by this construction, we obtain a pair 
(E, /e  o where / s  : Eo — ► E is a homeomorphism which sends To onto a geodesic triangulation 
of E.

Using the same arguments as in Lemma B.1.2, we can show that $ x 0 is continuous and injective. Since 
0, is homeomorphic to a ball in R69+2n~6, and the Teichmiiller space T(g ,n)  is of the same real dimen
sion, the map $ t 0 is a homeomorphism. This implies that is a neighborhood of [(Eo, cj>o)], and 
the proposition is then proved. □
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