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M I C R O L O C A L P R O P E R T I E S OF SHEAVES 
A N D C O M P L E X W K B 

Alexander GETMANENKO k Dmitry TAMARKIN 

Abstract, — Kashiwara-Schapira style sheaf theory is used to justify analytic con-
tinuability of solutions of the Laplace transformed Schrôdinger equation with a small 
parameter. This partially proves the description of the Stokes phenomenon for WKB 
asymptotics predicted by Voros in 1983. 

Résumé (Propriétés microlocales des faisceaux et méthode BKW complexe). — La théorie 
microlocale des faisceaux de Kashiwara-Schapira est utilisée pour obtenir le prolon­
gement analytique des solutions de la transformée de Laplace de l'équation de Schrô­
dinger dépendant d'un petit paramètre. Ceci démontre partiellement le phénomène 
de Stokes pour les développements asymptotiques BKW, prédit par Voros en 1983. 
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C H A P T E R 1 

I N T R O D U C T I O N 

In this document we are going to study the following PDE on one unknown function 
Φ in two complex variables x, s: 

(1) - Φxx + V(x)Vea = 0, 

where V(x) is a given polynomial; the weakest possible assumptions on V(x) will be 
formulated in Section 2.7.1. 

This equation is related to the Schrôdinger equation 

(2) - h2d^(x, h) + V(x)i/>(x, h) = 0 

by means of the Laplace transform 1/h h-> ds. According to resurgent analysis, the 
analytic behavior of s) determines quasi-classical asymptotics of solutions of (2). 

A multivalued solution Φ of (1) can be specified by means of prescribing its initial 
values. Our problem is now as follows. Consider a class of initial value problems for 
(1) with a fixed type of the analytic behavior of the initial data; we are to find a 
manifold where solutions of these problems are defined. 

1.1. Cauchy problem 
We study the Cauchy problem for (1) of the following type. We fix a point XQ € C 

and prescribe ^(xo,s) = φο(β) and 9^^^ \x=x0 = 855 multivalued analytic 
functions of s. Let us now give a more precise account. 

1.1.1. Initial data. — Fix an acute angle a € (0, π/2). Let Sa := (0, oo) χ (—a, OJ + 
2π) be an open sector of aperture 2π + 2a. Let nsa : Sa —> C be the covering map 
7rs,a(r5(/)) := re^- The map nsQ induces a complex structure on Sa so that nsa is a 
local biholomorphism. The initial conditions are given by two holomorphic functions 

(3) ψο and φι on Sa. 
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2 CHAPTER 1. INTRODUCTION 

1.2. Multi-valued solution to a multi-valued Cauchy problem 

We first fix a complex surface φ along with a local biholomorphism ρ φ : φ —• C x C. 
Let us also fix a map 

(4) h : Sa —> 
fitting into the following commutative diagram 

C- *x0 C χ C 

π5α D+R 
Λ. 

Sa 4 
where iXo : C —• C χ C is given by the formula iXo(s) = (xo,s). 

The equation (1) gets transferred onto φ by means of a local biholomorphism p^. 
Call this equation "the transferred equation". 

The coordinates (x, s) on C x C give rise to local coordinates on φ. Given a function 
Φ on φ, we then have a well defined derivative <9Φ 

ox 
as a holomorphic function on . 

We say that a solution Φ of the transferred equation is a solution of the Cauchy 
problem with initial data (3) on φ, if Φ ο h = '3Φ 

d+rd ο h = φι. 

1.3. Formulation of the result 

Our main result is a construction of a complex surface φ and a map h as in (4), 
such that for every choice of the initial data, there exists a unique solution Φ of the 
Cauchy problem on φ. 

We prove (Section 3.16) that the surface φ "extends infinitely in the direction of if", 
where Κ C C is the following cone: 

(5) Κ := {rei4>; r >ty-a < φ < a}. 
Let us give a more precise formulation. Fix a point χ € C such that V(x) Φ 0. Consider 
a one-dimensional complex manifold φχ := p^1 (xxC), where the projection onto χ x C 
gives a local biholomorphism Px : φχ —• C. Let U C C be an open parallelogram 
whose sides are parallel to vectors eia and e~ia. Let σ : U —• φχ be a section of Px. 
Let also r_a C Κ be the ray [0, oo).e~ia. 

We prove that 

Theorem 1.3.1. — There exists a set Γ C C satisfying: 
(1) /or ewen/ pom£ s G C, £/ie intersection (s — Κ) Π Γ is at most finite, 
(2) U C (υ + Κ)\(Γ + Τ-α); 
(3) σ extends uniquely onto (U + ΛΓ)\(Γ + r_a). 

This theorem is proved in Section 3.16: it easily follows from Theorem 3.16.1, as 
explained after its formulation. 
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1.4. INTRODUCING SHEAVES 3 

Theorem 1.3.1 assumes existence of a nonempty set U and a section σ; this fact is 
the content of Theorem 3.16.1. 

Our construction of φ, as well as the proof of the above Theorem 1.3.1, are based 
on sheaf-theoretical methods [5]. The relation between linear PDEs and sheaves is 
well known and constitutes the subject of Algebraic Analysis. Our document is also 
motivated by the classical work of Voros [10, Section 6] where an explicit description 
of the singularities of solutions of (1) was derived heuristically, see [10], p.213, line 
15 from the bottom; additional insights came from [8] and [3]. Important works on 
this problem using methods of hard analysis include [1] and [4]; the history of this 
subject with several different approaches is reviewed in the introduction to [3]. 

In the next subsection, we will briefly describe the idea of our sheaf-theoretic ap­
proach. 

1.4. Introducing sheaves 

We start with introducing a covering space X of C, and defining the so-called action 
function on X. 

1.4.1. A covering space X. — Let TP be the set of zeros of V(x) - "turning 
points" of V(x). 

We assume XQ £ TP. Let X be the universal covering of C\TP. We can choose a 
determination of y/V{x) and its primitive S(x) = Jx \/ν(ξ)άξ on X. It will be more 
convenient for us to use the notation ζ := S (χ). Since dS(x) is nowhere vanishing 
on X, we can use ζ as a local coordinate on X. As above, we denote by s the coordinate 
on C, so that (z, s) are local coordinates on Χ χ C. 

Equation (1) gets transferred onto Χ χ C and in the coordinates (z,s) it looks as 
follows: 

(6) - Φζζ + Vss + l.o.t. = 0 

where l.o.t. stands for a differential operator of order < 1 applied to Φ. We now pass 
to a sheaf-theoretical consideration. 

1.4.2. Solution sheaf and its singular support. — Let Sol be the solution sheaf 
of (6). According to [5, Th.11.3.3], the singular support of Sol is of a very special 
form which is determined by the highest order term of (6) (see Section 3.2 for more 
details). More specifically, let (ζ,δ,ζάζ + ads) be local coordinates on T*(X χ C). 
Then 

(7) 5.5. Sol C Ωχ :={(z,s,(dz + ads) : ζ = σ or ζ =-σ}. 

It turns out that this condition contains enough information on Sol in order to deal 
with solving the Cauchy problem. In fact, at this stage, we abstract from our PDE, 
and only remember that its solution sheaf has its singular support as specified. 
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4 CHAPTER 1. INTRODUCTION 

1.4.3. Initial value problem in sheaf-theoretical terms. — Choose and fix a 
preimage x0 G X of x0. Define a map g : Sa —> Χ χ C by setting g(s) := (x0,7Tsa (s)). 
Cauchy-Kowalewski theorem implies that the initial conditions (3) are in 1-to-l cor­
respondence with elements of r(SO,, <7-1Sol), see Section 3.3 for more detail. 

As explained in the same Section, the latter group can be identified with 

R° Komxxc(Rg\Zsa [-2], Sol). 

Therefore, the initial data (3) can be interpreted as a map 

(8) πΐφ :RgiZSa[-2] ^ Sol, 

see (22). 

1.4.4. Semi-orthogonal decomposition of Rg\Zsa [—2]. — Let Ό(Χ χ C) be the 
bounded derived category of sheaves of abelian groups on Χ χ C. Let 5? C Ό(Χ x C) 
be the full triangulated subcategory consisting of all objects whose singular sup­
port is contained in Ωχ as in (7). Let ±(& C Ό(Χ χ C) be the so-called left semi-
orthogonal complement to i.e., a full subcategory consisting of all objects Y such 
that KRom(Y, X) = 0 for all X G g\ We prove 

Theorem 1.4.1. — (1) There exists the following distinguished triangle in Ό(Χ x C): 

^ % Ζ 5 α [ - 2 ] ή φ ^ ί ± ί 

where Φ G *β, δ G ± Έ (usemi-orthogonal decomposition"); 
(2) The complex of sheaves Φ has no negative cohomology. 

This theorem coincides (up-to slight reformulations) with Theorem 3.4.1. The ob­
ject Φ and the map ΐφ : Rg\Lsa [—2] —> Φ are constructed in Sec 3.6-3.13. The bulk of 
the document (Section 4-Section 6) is devoted to showing that the constructed object 
Φ and a map i<$> satisfy the above theorem. 

It is well known that the distinguished triangle in part 1 of Th. 1.4.1 , if exists, 
is unique up to a unique isomorphism, meaning that Φ is defined uniquely. It also 
follows that the precomposition with i<$>: 

ίφο- : jR°HomXxc^,Sol) -> R°UomXxc(Rg\Zsa[—2], Sol) 

is an isomorphism of groups. This implies that the map m ,̂, cf. (8), uniquely factors 
as follows: 

RgiZSoi[-2} -+Φ ^ Sol. 

Let Φο := τ<0Φ. Condition 2) of Theorem 1.4.1 implies that Φ0 is a sheaf of abelian 
groups. We have a composition 

(πΐφ)ο : Φ0 -> Φ -» Sol. 
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1.4. INTRODUCING SHEAVES 5 

1.4.5. Étalé space of Φο and solving the initial data problem. — Let Σ be the 
étalé space of Φο· We have a local homeomorphism p ;̂ : Σ —• Χ χ C so that we have a 
unique complex structure on Σ making into a local biholomorphism. It turns out, 
that the map (πΐψ)ο gives rise to a solution of the transferred equation on Σ. Indeed, 
every such a solution can be equivalently described as an element Φ G Γ(Σ;ρ^18ο1). 
We also have a canonical section ρ € Γ(Σ;ρ^1Φ0) (by the construction of the étalé 
space); the map (m^)0 induces a map ν : ρ^Φο —> p^Sol, and we set Φ := ι/(ρ). 

It is now straightforward (Section 3.5.2) to prove that thus constructed solution Φ 
is a solution on Σ of the Cauchy problem with the initial data (3). 

By choosing an appropriate connected component φ of Σ we finish the construc­
tion. We prove several nice properties of φ. In Section 3.14 we show φ is Hausdorff. 
In Section 3.15 we show that the projection ρ φ : φ —> X is surjective. Finally, in Sec­
tion 3.16 we prove that φ extends infinitely in the direction of Κ (see the beginning 
of Section 3.16 for the exact definition). 
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C H A P T E R 2 

C O N V E N T I O N S A N D N O T A T I O N S 

Throughout the document, we fix an acute angle a G (0,π/2). 

2.1. Various subsets of C 

We introduce the following subsets of C: 
— Κ is the closed cone consisting of all complex numbers whose argument belongs 

to [—α, a], including 0; 
— re:=eie.[0,oo);r_a:=e-<e.[0,oo); 

2.2. Sector Sa 

We set Sa := {r G C : —a < Imr < 2π + a}. Let nsa : Sa —> C be the map given 
by π5α(τ) := eT. Some complex analysts call Sa an étalé open sector with aperture 
2π + 2GJ. 

2.3. Potential V(x). Stokes curves. Assumptions 

Throughout the document, we fix an entire function V(x) on C. We assume that 
V(x) has only finitely many zeros which are traditionally called 'turning points'. 

The conditions in Sec 2.3.2 below will be also assumed throughout the document. 

2.3.1. Stokes curves and further assumptions. — Let w G C, V(w) = 0 be a 
fc-fold zero of V(x). We define an a-Stokes curve z(t), 0 < t < C, emanating from w 
as follows: 

—z(t) is a smooth curve with z(0) = w and -V(z)(dz/dt)2 G e2iaR>0. 
The following facts are well known, [2]. 
(1) There are exactly k + 2 o>Stokes curves emanating from w. 
(2) One can choose C (to be a positive real number or +oo) in such a way that 

either z(C) := lim coincides with another turning point of V(x), or z(C) = oo. In 
the latter case we say that the Stokes curve terminates at infinity. 
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8 CHAPTER 2. CONVENTIONS AND NOTATIONS 

2.3.2. Further assumptions. — We will assume the following properties of V(z). 
a) All α-and (—a)-Stokes curves terminate at infinity. 
b) Every α-Stokes curve intersects only finitely many —α-Stokes curves, and every 

(—a)-Stokes curve intersects only finitely many α-Stokes curves. 
It is well known in the complex WKB theory that for every polynomial V(x) one 

can find an α satisfying these assumptions. 

2.4. Universal cover X 

Let îl be the complement in C to the (finite) set of turning points of the potential 
V(x). α-Stokes curves split îl into regions called α-Stokes regions', similarly, one can 
define —α-regions. Throughout the document, we denote by X the universal cover 
of and by ρ χ : Χ —• îl —> C the covering map. 

2.5. Initial point xo 

We fix a point χ ο G X. We assume that ρχ(χο) does not belong to any of a-or 
—a-Stokes lines. 

2.6. Action function on X 

Fix a choice of yJV{x) on X and a function 

(9) ζ : X C : dz(x) = ^/V(x)dx. 

It follows that dz is nowhere vanishing, i.e., ζ is a local coordinate near every point 
of X. The function ζ has the meaning of the action function. We use the notation ζ 
because ζ will play the role of a local coordinate on X. The function ζ should not be 
confused with the map ρ χ : Χ —> C. 

2.7. Subdivision of X into α-strips 

Let Ρ C îl be a closed α-Stokes region on îl, that is, Ρ is one of the regions into 
which the complex plane C is subdivided by α-Stokes curves. 

Let us now switch to the universal cover ρ : X —* îl. It follows that ρ~λΡ splits into 
a disjoint union of its connected components p~xP = U7€rp Ρ~ι·> where ρ : ΡΊ P. 
Call each such P7 (for every α-Stokes region P) an α-strip. By [2, §2.2], the function 
ζ maps each α-strip homeomorphically into a generalized strip on C, i.e., a subset 
of C of one of the following types, fig. 1. Here the removed points £t> 0> correspond to 
the turning points of V(x). 

Throughout the document α-strips will be denoted by means of the letter Ρ with 
different subscripts. We will often identify α strips with their images in C under z. 
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2.8. (-a)-STRIPS 9 

C1 

Cb 

Im(Çle-,m)*Im(ze-")ZIm(Ç,e-1") 

z # C1, Cb 

ç4 

Im(Çbe-'")<Im(ze-") 

z # Cb 

C1 

Imize '")<]m(X,.e '") 

z # C1 

FIGURE 1. Three types of a-strips 

2.7.1. Weakest Possible Assumptions on V{x). — The results and proofs of 
our document also hold true for any entire function V(x) with finitely many zeros, 
satisfying the following condition that corresponds to Condition A of [2, §2.2]: 

lim 
x—>xEC 

S(x)\ = oo 

for any curve C in C satisfying arg S(x) = ±a. 

2.7.2. Boundary rays. — Let PUP2 be a-strips and Pif\P2 / 0 . Then I = P1nP2 
is a ray on X which is identified by means of z with either c(£) + e"*.(0, oo) C C or 
c(£) - eia.(0,oo) C C, where c(£) is a complex number. We denote by the set 
of all such rays, to be called boundary a-rays. Every boundary a-ray belongs to the 
boundaries of exactly two a-strips; the boundary of every a-strip is a disjoint union of 
boundary a-rays. Boundary a-rays will be often denoted by the letter I with different 
subscripts. 

We say that a boundary a-ray t goes to the left if its image under z is c{t) — 
eia.(0, oo). Otherwise we say that a boundary a-ray i goes to the right. Accordingly, 
we get a splitting ta = £?eit U £"Rhv 

2.7.3. Strips form a tree. — Consider a graph whose vertices are a-strips and 
we join two distinct vertices with an edge if the corresponding strips intersect (along 
some boundary a-ray). Since X is simply connected, it follows that this graph is a 
tree. 

2.8. (-a)-Strips 

One has a similar decomposition of X into (—a)-strips which are denned based 
on —a-Stokes regions of X. Throughout the document, —a-strips will be denoted 
by means of the letter II with different subscripts. Similar to above, every —a-strip 
is homeomorphically mapped under z into a generalized strip whose each boundary 
ray is parallel to the line e~ja.R. We define boundary —a rays in a similar way (as 
intersection rays of two —a-strips). The function z identifies each boundary ray £ with 
either c(t) +e~ia.(0, oo) (we then say I goes to the right), or c{€) — e~za.(0, oo) (£ goes 
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10 CHAPTER 2. CONVENTIONS AND NOTATIONS 

FIGURE 2. Intersection of an α-strip with several (—a)-strips. Thick gray 
lines indicate branch cuts arising from the many sheets of the projection 
X ->CX. 

to the left). We denote the set of all boundary —α-rays by £~a. We have a splitting 
-bright· Boundary —α-rays will be denoted by the letter t with various 

subscripts. 

2.9. Interaction of α and —α-strips 

Choose a (red) α-strip and look at all (—a)-strips (blue) that intersect it. These 
(—a)-strips cut the α-strips into parallelograms and two semi-infinite parallelograms, 
e.g., fig. 2. 

2.10. Categories 

For a topological space M, we denote by D(M) the bounded derived category of 
sheaves of abelian groups on M. 

2.10.1. Sub-categories Έ ; ±(ë . — Let Y be a one dimensional complex man­
ifold equipped with a local biholomorphism ζ : Y —» C. For example, Y = Χ. 

We then refer to points of T*(Y χ C) as follows (y,sXdz,ads), where y G Y, 
s G C and ζ,σ G C, so that (y, s) G Y x C and (£, σ) define the following real 1-form 
on Y χ C: 

(ζάζ + ζάζ + ads + ads)/2. 
Let us fix a closed subset Ωγ c T * ( 7 x C) to consist of all points (y, s, ζ, σ), where 

C = ±σ. 
We denote by C D (7 χ C) the full triangulated subcategory consisting of all 

objects F with S.S.(F) c Ωγ. We denote by ±(&Y C Ό(Υ χ C) the full subcategory 
consisting of all objects G such that KRom(G,F) = 0 for all F G ΈΥ. 

•£ sed — "Meft u right 
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2.11. SHEAVES 11 

2.11. Sheaves 
Let y be a topological space endowed with a continuous map ζ : Y —• C. If 

Y C X, then we always assume that ζ : Y —• C is the restriction of the action 
function ζ : X —* C. We define the following sheaves on Y χ C: 

Ay+ := Z{(y,s)\s+z(y)eK}', Ay~ := Z{(2/?s)|s_2(?/)Gi<:}. 
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C H A P T E R 3 

S T A T E M E N T OF T H E P R O B L E M A N D M A I N RESULTS 

We start this section with giving a precise formulation for the problem of analytic 
continuation of solutions to (1). It turns out to be more convenient to transfer this 
PDE to Χ χ C by means of the covering map ρ χ : Χ —» C. 

Next, we give a sheaf-theoretical reformulation of the problem, and explain how the 
solution (i.e., a complex surface φ along with a local biholomorphism ρ φ : φ —• Χ χ C) 
can be deduced from of a certain semi-orthogonal decomposition Theorem 3.4.1. The 
rest of this section is devoted to proving basic properties of φ modulo Theorem 3.4.1, 
namely Hausdorffness and infinite continuabilty in the direction of K, which are the 
main results of this document. To this end we need an explicit construction of the 
distinguished triangle of the semi-orthogonal decomposition in Theorem 3.4.1. This 
triangle is obtained via combining four other distinguished triangles. 

It now remains to prove Theorem 3.4.1, which is now reduced to showing that 
each of the above mentioned four triangles (and hence the combined triangle) gives a 
semi-orthogonal decomposition. This is done in the rest of the document. 

3.1. Transfer of the equation -Φχχ + V(x)^ss = 0 to Χ χ C 

Our main equation (1) can be transferred to Χ χ C via the covering map ρ χ Idc : 
Χ χ C —• ÎI χ C. We will use the action function z on X as in (9). Recall that ζ is a 
local coordinate near every point of X. Our notation is summarized in fig.l. 

It is easy to see that the transferred equation has the following form 
(10) - 9XX + Vss + l.o.t = 0, 
where l.o.t stands for the differential operator of order < 1 applied to Φ. 

Let Sol be the sheaf of solutions of our transferred equation: Sol is a sheaf of abelian 
groups on Χ χ C. 

3.2. Singular support of the solution sheaf Sol 

It is well known that to every linear PDE on a manifold M one can put into 
correspondence a 0M-module, where ®M is the sheaf of differential operators on M; 
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14 CHAPTER 3. STATEMENT OF THE PROBLEM AND MAIN RESULTS 

-x0 

Px 

X 
- xo 

Z C 

multivalued 
3 

m 
'*0 

FIGURE 1 

the solution sheaf of the PDE will then match with the solution sheaf of the ®M 
module. 

In our situation, let us rewrite the equation (10) in the form = 0 for an 
appropriate linear differential operator L on X x C. Define a 5)xxC-module M as 
follows 

M = DXXC/DXXCL. 

We then have an obvious isomorphism 

(11) Sol Hom DXXC [M; Oxxc)-

Indeed, every solution >̂ of (10) on an open subset U C X x C gives rise to a 
®XxC-module map 

lw: $Xxc\u Oxxciu 
where l*(T) := TV. Then, for any T G 2>xxc(#"), h{T'L) = T'M = 0. Hence, ly 
descends to a map 

h '• M\v -* &xxc\u, 
which determines the map (11). It is straightforward to see that thus constructed map 
(11) is in fact an isomorphism of sheaves. 

The usefulness of this fact comes from a Kashiwara-Schapira's theorem on singular 
support of the object 

(12) Rhom DXXC [M; Oxxc) e D(X x C) 

(derived solution sheaf of M). Let us now prove that this object is quasi-isomorphic 
to Sol. 

The object (12) can be conveniently computed by means of the following free 
resolution ffi of M: 

{ £ ) : 0 2 W A DXXC — 0, 

where the map A is as follows: A(T) = TL. We obtain that the object Mmq)XxC(M; &xxc) 
is represented in L>b(X x C) by the two term complex 

Mmq)xxC № Qxxc) 
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3.3. INITIAL CONDITIONS 15 

which is the same as 
(13) 0 - > f e x c ^ f e x c - ^ 0 . 

It is classically known, e.g., [7, Th.3.1.1], that the action of the operator L is locally 
surjective, meaning that we have a short exact sequence of sheaves 

O^Sol -* θ χ χ € ^ 0xxC-*O. 

This means that the complex of sheaves (13) is quasi-isomorphic to Sol so that finally 

Sol ΙΙΜΜΦχχ£(Μ; 0XxC). 

Kashiwara-Schapira's theorem [5, Th. 11.3.3] says that the singular support of the 
object (12) equals the characteristic variety of the 2)xxc-module M. In our situation, 
this characteristic variety is well-known to be equal to the zero set of the principal 
symbol of the operator L. This set is 

(14) {(z,sXdz + ads) : ζ = ±σ} C f ( I x C ) , 

which is the same as Ωχ from Section 2.10.1. Thus, by Kashiwara-Schapira's theorem, 
[5, Th 11.3.3], we conclude that 

S.S.Sol = Ωχ, Sol G 

where ΈΧ is defined in Section 2.10.1. 

3.3. Initial conditions 

Let xo Ε X be an initial point satisfying the assumptions from Sec 2.5. Let us pose 
a Cauchy problem for the equation (10) similar to Section 1.2. 

Let Sa and nsa : Sa —• C be the same as in Sec 2.2. Set q := Idx XKsa · X x Sa —• 
Χ χ C. The equation (10) gets transfered to Χ χ Sa by means of the map q. The 
transfered equation is of the form 

(15) Ζ/Φ = 0, 

where Φ is an unknown function on Χ χ Sa and V is a linear differential operator 

L' = -Vzz + e"2r#rr + l.o.t, 

and all coefficients of V are holomorphic on Χ χ Sa because ds = e~TdT. The solution 
sheaf of this equation is canonically isomorphic to g_1Sol. 

Let us fix two holomorphic functions ψο, φι on Sa and pose the initial conditions 
by requiring 

Φ(χο,β) = ^°00 and 9ζΦ(χ0,«) = φ1{δ), s G Sa. 
Cauchy-Kowalewski theorem implies that there exists a neighborhood of xo x Sa, 

(16) U cXxSa 
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16 CHAPTER 3. STATEMENT OF THE PROBLEM AND MAIN RESULTS 

on which there exists a unique solution Φ € Γ(?7, q 1Sol) of our Cauchy problem. We 
have a natural map 

r(f/,g-iSol) - Γ(χ0 x S a ^ S o l U x s J = r(Sa; ^ S o l ) , 
where 
(17) g:Sa^XxC : g(s) = (χθ5π5α(5)). 

Thus, our initial data give rise to an element 
(1.8) ^eros^^Soi) . 

3.3.1. Definition of a solution. — Let us formulate the definition of a multivalued 
solution of the initial value problem in the sheaf-theoretical language. 

Suppose we are given a complex surface Σ endowed with a local biholomorphism 
Ρς > Σ —» Χ χ C. We can now transfer our differential equation from Χ χ C to Σ. The 
solution sheaf of the transferred equation is then Sols := p^Sol. 

In order to transfer the initial condition (18), let us fix a factorization h of the map 
9> 
(19) S Q i E p 4 l x C , 
where h is a complex-analytic map. We then have 

Γ(5α; g^Sol) = Γ(5α; / T ^ S o l ) = Γ(5α; ft-^ofe). 
The initial condition φ now gives rise to an element φχ € Γ(5α; /ι-1 Sols). 

Let us now formulate the notion of a solution to this problem. 
We have a restriction map res : Γ(Σ; Sols) —• Γ(5α; /&-1Sols), which is defined as 

follows: 
res : Γ(Σ; SolE) = Hom(ZE; SolE) -+ ΗΟΠΙ^^Ζς; ft^Sols) 

= HomiZs^/i-^ols) - Γ ^ Ϊ Λ - ^ Ο Ι ς ) . 
We call an element Φ G Γ(Σ; Sols) a solution of the initial value problem with the 

initial data φ, if Γββ(Φ) = φχ. Since Sols is a sub-sheaf of ©s ( the sheaf of analytic 
functions), the unicity of analytic continuation implies: 

Claim 1. — Suppose Σ is connected. For every initial condition φ, the initial value 
problem has at most a unique solution. 

3.3.2. Equivalent formulation. — One can define a notion of a solution to the 
initial value problem directly in terms of the initial data ψ°,ψ1:νιβ can require that a 

9Φ solution Φ should satisfy: Φ ο h = φ°', -^-°h = φ . It is clear that this new notion of dz 
a solution coincides with the one from the previous subsection. Indeed, the restriction 
of Φ onto the neighborhood U as in (16) must coincide with the solution provided by 
the Cauchy-Kowalewski theorem. 

The notion of solution from this (or previous) subsection is related to the no­
tion of solution from Sec 1.1 as follows. First of all we have dz = ^V{x)dx, where 
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3.4. SEMI-ORTHOGONAL DECOMPOSITION OF Rg\ZSa[-2] 17 

y/V(x) is a nowhere vanishing holomorphic function on X. Set φο = φ° and ^ι(5) = 
\/ν~(χο)φ1(s). We then see that the notion of solution of the Cauchy problem with 
the initial data ψο,Ψι, as in Sec 1.1, coincides with the current notion of solution of 
the initial value problem given by the initial data φ0^1. 

3.3.3. Formulation of the analytic continuation problem. — Our analytic 
continuation problem is now as follows. Find a connected complex surface φ along 
with a complex analytic local diffeomorphism ρψ : φ —» Χ χ C and a factorization 
g = hp ψ, where h : Sa —• φ is as in the previous subsection, satisfying: given any 
initial condition φ as in (18), there should exist a global solution to the initial value 
problem with the initial data φ. By Claim 1, this solution is then unique. 

3.4. Semi-orthogonal decomposition of Rg\Zsa[—2] 

Our main tool in solving the analytic continuation problem is a certain semi-
orthogonal decomposition theorem, to be now stated. 

Let ΈΧ\±(&X be the same as in Section 2.10.1. 

Theorem 3.4.1. — (1) There exists a distinguished triangle 

(20) - > ^ , Ζ 5 α [ - 2 ] ή φ ^ δ -±1> 

where Φ G ΈΧ and δ G ±(βΧ. 
(2) The object Φ belongs to Ό>ο(Χ χ C) (that is, the complex of sheaves Φ has no 

negative cohomology). 
Remark. The distinguished rectangle (20) is called "left semi-orthogonal decom­

position of Rg\Lsa [—2]". It is well known that such a triangle, if exists, is unique up-to 
a unique isomorphism. 

We will devote the rest of this section to deducing a solution to the analytic con­
tinuation problem from this theorem. 

3.4.1. Factorization of the initial condition. — Since g : Sa —• Χ χ C is 
locally a closed embedding of real codimension 2, whose normal bundle is canonically 
trivialized, we have a natural transformation of functors 

(21) κ : ff-1 — p'[2]. 
Since Sol is microsupported on Ωχ, one can easily check that Sol is non-characteristic 
with respect to g. According to [5, Prop.5.4.13], κ induces an isomorphism <7-1Sol —• 
<r'Sol[2]. We now have an isomorphism 

(22) r(Se; ff^Sol) = #°Ηοηι(Ζ5α; ^ S o l ) 
= i2°Hom(Z5a;^!Sol[2]) = i2°Hom(iî^Z5e[-2];Sol). 

Let us denote the images of φ under these identifications as follows: 
v$ : ZSa £-1Sol; 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2013 



18 CHAPTER 3. STATEMENT OF THE PROBLEM AND MAIN RESULTS 

m'^ :ZSa -0!Sol[2]; 

: g\Zsa[—2] —• Sol. 
Since Sol G ë\ the semi-orthogonal decomposition (20) implies that uniquely 

factors as 

(23) mv, : Rg\ZSa [-2] ^ $ ^ Sol. 

The map i$ defines, by the conjugacy, a map I' : Zsa —• <7!$[2]. Let also ipi : 
gl&[2] —> #!Sol[2] be the map induced by ip'. The equation (23) now implies the 
following factorization (by the conjugacy between Rg\ and g): 

(24) m;:ZSai;5!$[2]^5!Sol[2]. 

Since $[2] is microsupported within Qx> the transformation ft, cf. (21), induces an 
isomorphism K$ : g~x$ —• gl$[2) so that we have a unique map I : Zsa —> g~l$ such 
that F = Let ^ : #_1<I> —• #-1Sol be the map induced by ^'. We can now rewrite 
(24) as follows: 

(25) i/w, : ZSa i (T1* ^ «T'SoL 

3.4.2. Truncation. — The second statement of the theorem implies that $o := 
r<o^ is a sheaf of abelian groups. The canonical map c : T<O$ —• $ induces a map 
c' : £_1$o -> 

Let us show that 

Proposition 3.4.2. — The map I factorizes uniquely through c'. 

Proof. — We have a distinguished triangle 
-+g 1®o^g ^ - • t f 1T>0$-+, 

which induces a long exact sequence 

...^-1Hom(Z5a;^-1r>0$) -* i?0Hom(Z5a;^1^o) 

A i?°Hom(Z5Q;^-1^) - i*°Hom(Z5a; tf"1^ 

where the arrow * is given by the composition with cf. Since the functor g~l is exact, 
g~1r>o$ E D>0(5a) so that i?-°Hom(Zsa; <7_1T>O3>) = 0, meaning that the map * 
is an isomorphism. This implies the statement. • 

Denote by 

(26) I0 : ZSa g 1Q0 

the factorization map (unique by the above Proposition): 

sq+s+-+g 1®o^g ^-d+r+dtf 1T>0$-+, 

We can also factorize: 
-+g 1®o^g ^r+d+tf d+r+d1T>0$-+,+ZS+ 
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3.5. Étalé space of Φ0 

3.5.1. Choice of a covering space Σ. — Set ps · Σ —> Χ χ C to be the étalé 
space of Φο· Observe that the étalé space of g~lΦQ is Sa x jxc Σ. The étalé space 
of Zsa is Sa χ Z, so that we have a map 

Sa x Ζ —> Sa Χχχ£ Σ 

over Sai induced by the map Io- Let us restrict this map to Sa = Sa χ 1 and denote 
by h the through map 

(27) h : Sa = Sa x 1 Sa χ Ζ Sa xXxC Σ -» Σ. 

By the definition of fibered product, we have p^h = 
Thus, · Σ —• X x C and h : Sa —> Σ yield a factorization of the map (17), as 

required by (19). 

3.5.2. Solving the initial value problem. — Let us show that the initial value 
problem φ G Γ(5α;g-1Sol) has a solution on Σ, in the sense of Section 3.3.1, where 
Σ is as in Section 3.5.1. 

We have a canonical map λ : Ζ ς —» Ρ^Φο which comes from the canonical section 
of ρ^}Φο: over a point of Σ corresponding to ((#, s), ψ(χι3) G ($o)(x,s))> the stalk of 
this canonical section equals <P(Xj3). Let us apply the functor hT1 and obtain a map 

I7 : ZSa = /ΤΧΖΣ - / Γ ^ Φ ο = 9-χΦ0. 

Lemma 3.5.1. — We have V — I. 

Proof. — It is easy to see that for each s Ε Sa, the map V induces the same map on 
stalks as I. • 

We have a composition : Ζ ς ργ^λΦο p^Sol. Let us prove that F^ is 
a solution to the initial value problem. Indeed, applying h~l induces a map Zsa —> 
^-1Sol which, by virtue of Lemma, coincides with ι/ψ, which means that is a 
solution. 

3.5.3. Solving the analytic continuation problem. — We replace Σ with its 
connected component φ containing the image of h. It is clear that φ is a solution to 
the analytic continuation problem as in Section 3.3.3. 

3.6. Structure of the object Φ. 

We construct the semi-orthogonal decomposition of g\Zsa[~2] yia representing 
g\Zsa [—2] as a cone of some arrow A —> B, and then constructing the semi-orthogonal 
decompositions for A and B; these decompositions are then glued into the desired de­
composition of g\Zsa[—2]. 
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3.6.1, Decomposition of nsa\Zsa £ D(C). — Let nsa : Sa —• C be the projec­
tion. We are going to represent nsa\ZsQ as a cone of a certain map. To this end let 
us introduce the following subsets of C (same as in Sec 2.1) 

Κ = {rei(p : r > 0; -a < φ < ah 
ra = {rel(p : r > 0; φ = α}; 

r_a = {rel(p : r > 0; φ = —α}. 

We have natural restriction maps 

Zc PC κ Ζκ PKr±a 1 ±a 

in D(C). 
The identification Zsa = ttsJLc induces, by conjugacy, a map 

PC - Ksa\&Sa -> 

We are now up to defining a map ρ κ - nsa\Zsa —> %κ· We have 

π^Κ = (0, oo) χ (-a; a] U (0, oo) χ [2π - α; 2π + α) =: Κχ U 

Denote by i\ : Κι —> 5α, %2 ' —» $α the closed embeddings. We have natural 
surjections of sheaves on Sa: 
ii : ZSa -» «ϋ^Χι and 62 : ZSa —• ΐ2\ΖΚί1. 

The map 7Tsa induces open embeddings π£ΛΖι \ K\ -* Κ and : -* 
If. We have 7Γ5α(.ίΓι) = K\ra; nsaK2 = ^\r_û;. These open embeddings induce 
the following embeddings of sheaves on C: nsa\i\\^Kx —* ^sa\i2\ZK2 ~* 
Combining these maps with n, t2, we get the following through map 

Pk : Ksa\ZSa 7rsa\iv.ZKl —• ZK. 

One checks that ρκταΡκ = PCraPc- Let us now construct the following sequence 
of maps 

(28) 

0 - nsa\Zsa 

PC/ 

PK 

Zc-

ZK 

VE 

~PKra 

PKr_a 

DR 

0D 

1 —a 

It is clear that the composition of every two consecutive maps is zero. In fact, this 
sequence is exact, which can be shown by proving exactness of the induced sequences 
on stalks for every point ζ £ C. 
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3.6. STRUCTURE OF THE OBJECT Φ. 21 

Let g' : C —• Χ χ C be given by g'(s) = (xo, s) so that g = g'^sa' Applying g\ to 
the exact sequence above yields the following exact sequence of sheaves: 

(29) 

0 • 9\%sQ 

9\(Pc)y 
ZXoxC — Χ̂θΧΓα 

9\(Ρκ 

-g[{pKra) 

ZXQXK 
9\(pKr_a) 

" Χ̂0ΧΓ_α 

- 0 

3.6.2. Semi-orthogonal decomposition for ZXoXc,ΖΧοΧχ,ZXoXr±a 
Theorem 3.6.1. — Tftere are objects Φ€, Φκ, ΦΓα, ΦΓ-α m category of sheaves of 
abelian groups and maps in Ob(X χ C): 

ΐφ* :ZXoxC[-2] -*Φ£ ίφκ :ZXoXX[-2] ^Φκ 
«Φ'α :ΖΧοΧΓα[-2] ^ΦΓ« *Φ'-α :ΖΧοΧΓ_α[-2] ^ Φ Γ -

whose cones are in ±(& and Φ€, Φκ, ΦΤα, ΦΓ-α G Έ. 

Based on this theorem, let us construct a semi-orthogonal decomposition of g\Zsa-
Let us rewrite the sequence (29) as 

0 -> oiZc A % A 9j 0, 

where % = ZXoxC Θ ΖΧοΧχ and 2/ = ΖΧοΧΓα Θ ΖΧοΧΓ_α. By virtue of Theorem 3.6.1 
we have semi-orthogonal decompositions of % and 2/ 

D+R+%' = Φ€φΦκ € J?; & = ΦΓ° ©ΦΓ-« S ί?; ξ, r? € x î 

where %' = Φ€φΦκ € J?; & = ΦΓ° ©ΦΓ-« S ί?; ξ, r? € x îf. The map Pyq : ÎV[—2] 
2/', by the universality of %', uniquely factors as 

(30) D+R+DR+D 

for some Q : % —> y so that we have a commutative diagram 

fff-21 D M-2] 

p% Z 

<X'- Q vr 

We have g\ZSa[-2] ^ Cone<?[-l]. Set Φ := Coneg[-l]. It is well known that the 
commutative diagram above implies existence of a map 

(31) ίΦ : g,Zs Γ-21 - Φ 
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fitting into the following commutative diagram whose rows are distinguished triangles: 

%' = Φ€φΦκ € %\-2] Q d+r d+r 

ίφ 

φ -

P-x Py 

9C- Q vr + 1 

Furthermore, we have a distinguished triangle 

—• Οοηβ(ζφ) —> Cone Pcx —» ConeP^ —», 
which implies that δ := Οοηβ(ζφ) e ±(& satisfies all the conditions of Theorem 3.4.1. 

We will now give an explicit description of the sheaves Φϋ, Φκ, Φτ±α, as well as the 
maps 2Φ€,2φκ,i<$>r±ct from Theorem 3.6.1. This theorem will be proven in Section 6. 

3.6.3. Φ€. — We set Φ€ = ΖχΧ£· We have a codimension 2 embedding 
se ©ΦΓ-« S ί?; ξ, r? € x î 

so that we have a natural map 
ZXoxc[-2] —> Zxxc, 

and we assign i<f>c to be this map. 

3.7. Notation: convolution functor Ό(Χ x C) x D(C) -> Ό(Χ x C) 

Define a convolution functor 
(32) * : Ό(Χ x C) x D(C) -+ Ό(Χ χ C) 
as follows. Let & e Ό(Χ χ C), Σ G D(C). Let 

a : I x C x C - ^ I x C : α(χ, si, s2) = (x, si + s2) 
Set 

£7" * Σ = Ra\((7 IE1 Σ). 

3.8. Construction of Φκ 

3.8.1. Subdivision into α-strips. — Let us split X into α-strips as in Section 2.7. 
We will freely use the notation from this section below. 

We will define a sheaf Φκ on Χ χ C via prescribing the following data. 
(1) For each α-strip Ρ we will define a sheaf Φ ρ on Ρ χ C. Recall that by α-strip 

we always mean a closed α-strip. 
(2) Let Pi, P2 be intersecting closed α-strips so that Pi Π P2 = £ £ We will 

construct an isomorphism 
%' = Φ€φΦκ € J?; & = ΦΓ° © 

where we assume ΓΙ2/1 = (ΓΙ1/2)"1. 
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Since every triple of distinct closed α-strips has an empty intersection, the data 
1),2) define a sheaf Φκ unambiguously. More precisely, there exists a sheaf Φκ en­
dowed with the following structure: 

— isomorphisms jp : Φκ\ρΧ£ ^ Φ ρ for every α-strip Ρ satisfying: for every pair 
of intersecting strips Pi and P2, Pi Π P2 = £, the following maps must coincide: 

d+r+d+r 3ΡΛ \ι <f>K I 1 φΚ ^P2\ixC 

and d+r+d jp2 Uxc d+r+dr 

The sheaf Φκ is unique up-to a unique isomorphism compatible with all the structure 
maps jp. 

3.8.2. Words. — We will use the notation from Section 2.7.2. Let Wa be the set 
of words from the alphabet £a U {L, R} such that: 

(1) each word is non-empty and its rightmost letter is L or R 
(2) every word is either of the form 

(33) ( < n ' " W l £ ) 
where 

h,£3,h, * * * £ bright » ^2j^4j^6j · ' ' G £\eît 
or 

(34) Un'-hR) 

where 

^1>^3?·" £ £\eftl ^2J^4Î^6Î" £ bright 
(alternating pattern). 

Let Wa = W£ft U Wraight, where 

W£a = {(*» · · · ) : ' » € *£ft} U {L}; W?ight = {(£n · · · ) : £n G ^ight} U {P}. 

Let us stress that Wgft contains words both ending with L and words ending with 
P, and the same is true for WJ*ight. 

3.8.3. Sheaves S£ , Sw on C — Given a ray £ G -Î\eft5 let is define the following 
sheaf on C: 

(35) Si :— Ζ{5(Ε+2£(̂ )+κ}, 

Given a ray £ G ^Sght? we set 

ft -= %{se-2c(£)+K}, 
where c(£) is as in Section 2.7.2. 

Set 
(36) SL := {̂sĝ (x0)+k}; := Z{sG_z(xo)+x}. 
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Let 
Sw := S£l * Si2 * · · · * Sln * 5L, if u; := i i . inL G Wa, 

Sw := * S*a * · · · * ftn * 5Λ, if Wa, 
where * denotes the convolution functor D(C) χ D(C) —• D(C) in the sense of (32). 
It is clear that Sw = Zc(w)+Ki where we set: 
(37) c(w) = Z(XQ) - 2c(£n) + 2c(£n_i) + (-l)n2c(^) if w := tx..lnL\ 

(38) c(w) = -z(xo) + 2c(£n) - 2c(4-i) + (-l)n2c(4) if w := ^i-Α>#· 
Let us further set 

(39) S- := e ^ e w ^ S ^ ; S+ := Ç&we\v*{tSw. 

3.8.4. Definition of Φρ. — For any subset U C X, we define the following sheaf 
on U x C: 
(40) Φ# := Af~*S_ Θ Af+*S+, 

where Af ± := %{(Xi3)\a±z(x)eK} are the same as in Sec 2.11. 
Set $ f ± = Af ± *S±. In particular, we have defined sheaves Φρ± for every α-strip 

P. 

3.8.5. Construction of the identification Τζ1^2. — We have identifications: 

\txc = ®P2UxC = Af+ * 5+ Θ Af " * 5_. 
Let us now construct the gluing maps 

Γφ1/2 : Af+ * ̂ + Φ Af " * 5_ ^ Af+ * 5+ θ Af " * 5_. 
There are two cases. 

CASE A). Let £ G £?eîb. 
Assume that the z-image of P2 is above the z-image of Pi in the complex plane, 

fig. 2, a). 
Let us define the following morphism of sheaves on £ x C 

(41) vf :Af" - 5 , . A f + , 

or, more explicitly, 

(42) vf : Z{z€aW-e*«.[0,oo), s - ^ K } ^{SE2C(^)+K} * ^{zGc(i)-eIA.[0)Oo),s+2eX}' 

We have Z{sG2c(̂ )+K} * ̂ {zGc(i)-eIA.[0,oo),s+2Gii} = ^ { ^ ( ^ - ^ . [ Ο , ο ο ^ Ε - ^ θ ^ + Κ } · 
The map z/f is thus determined by the closed embedding 

{z G c(£) - eia.[0, oo); s£-z + 2c(£) + K} C {z e c(£) - eia.[0, oo), s - z G if}. 
Let us now define a map 

iVf : A f - * S _ ^ A f + * S + . 

as follows. We have Af " * 5_ = 0^eW« Af " * 

ASTÉRISQUE 356 



3.8. CONSTRUCTION OF Φκ 25 

a) 

dr 
Hi) 

p2 cut 

P1 

b) 

DUt 

P1 
d+r 

c(l) 
p2 

FIGURE 2. Notations in the construction of the sheaf Φκ: a) £ G £\eît, h) 
^ -bright 

We denote 

(43) N™ : Af - * Sw % Af + * 5/ * 5W = Af+ * Siw. 

Observe that tw € W£ft, so that Af+ * κ, is a direct summand of Af+ * S+. We 
therefore can define ΝIe as the direct sum of all NT, w e WS^.. 

Let 
Nf : Af " * 5_ Θ Af+ * 5+ Af " * S_ θ Af + * 5+ 

be the extension of Nf whose all components are zero, except for Af ~ * 5_ —> 
Af+ * 5+ which equals Njf. 

We set 

(44) r£/2 :=Id+Nf. 

Finally, we set 
%' = Φ€φΦκ € J?; & = ΦΓ° ©ΦΓ-

Let us now rewrite the definition for the gluing maps in a more uniform way. Let Ρ 
and P' be two neighboring strips such that Ρ Π Ρ' goes to the left. Let us define the 
sign 

(45) <&(P, Ρ') = 1 if Ρ' is above P, and MP, Ρ') = - 1 if Ρ ' is below P. 

We now have 

(46) Γζζ' :=Id+tf(P,P')Nf. 

Case B). Let I € bright, fig- 2,b). Assume first that Pi is below Pi. 
The formulas are similar to the case A but + and — get exchanged. We have a map 

(47) i/f : A f + - A f - . S , 
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which edves rise to a map 

(48) N? : Af+*S+ VX Af"*S£*5+ -+ Af~*S_ . 

Similar to above, we define a map 

N f : Af + * S+ Θ Af " * 5_ ^ Af+ * 5+ Θ Af " * 5_ 

as the extension of Nf whose all components are zero except for Af +*5+ —• Af *S_ 
which is Np . 

We set 

(49) r£f>:=Id+Nf; 

Γ 5 Λ : = ( r ^ r ^ I d - N f . 

Similarly to above, let us rewrite the definition as follows. Let Ρ and P' be two 
neighboring strips such that Ρ Γ) P ' goes to the right. Let us define the sign 

(50) ϋ(Ρ, Ρ') = 1 if P' is below Ρ; ϋ(Ρ, P') = - 1 if Ρ is below P'. 

We now have 

(51) I t f := Id+i?(P,P')Nf. 

3.8.6. Description of the map ίφκ : ZXqxK[-2] -» Φκ. — Let P0 be the strip 
such that xo G Int PQ. 

By construction. 

**|intp0xc = Λ*+Ρο * S+ Θ Λ -̂Ρο * S-. 

The direct summand inclusions 

Sx -> £+ ; 5^ —• 5_ 

induce maps Λ£+Ρο * SL -+ Aft+Po * 5+> A*tPo * 5Λ A£tPo * 5_. 
We have the following closed embedding of codimension 2: 

x = xo 
s e κ 

χ G Int P0 
s±z(x) G ±z(x0) + X 
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We have the following maps in D(IntPo x C): 
(52) 

Ζ xeint P0 
s+2(x)Gz(x0)+^J 

ed+e+r+d+d 

Ζ r x=Xn ί ί—21 
ι seK . 

- $K|lntP0xC 

Ζ α; G Int P0 
s-z{x)e-z{x0)+K J 

AïntP0 *5β 

We thus have constructed a map 

(53) Ζ;χ=χ0ί[-2] = ΖΧοχχ[-2] —• Φ llntPnXC 
. seK j 

As ΖΧοΧχ[—2] is supported on IntPo, our maP extends canonically to a map ίφκ : 
ZXoXif [-2] - in D(X χ C). 

3.9. Alternative construction of Φκ via —α-strips 

It is clear that one can repeat all the steps of the previous section using —α-strips 
instead of α strips. We denote the resulting sheaf we also get an analogue of the 
map ίφκ, to be denoted by 

(54) %' = Φ€φΦκ € J?; & = ΦΓ° ©ΦΓ-

By means of Ψκ, we also get a semiorthogonal decomposition of [—2]. This 
implies the existence of a unique isomorphism 

(55) ΙΦΦ : Φκ Φκ 

satisfying ιφκ = Ι^φί^κ (because of the unicity of semiorthogonal decomposition). 
We will now briefly go over the construction of . 

3.9.1. Notation for -α-strips. — Let £~a = £^t U £~£ht be the set of all 
intersection rays of —α-strips. £^ t consists of the rays going to the left, ^giit consists 
of the rays going to the right. Every ray £ G £^t (resp. £ G -Î^ght) *s °f the f°rm 
pz(i) = c{£) - (0, oo)e~ia; (resp. pz(i) = c{£) + (0, oo)e"*a) for some c{£) G C. 

Let W-,W-f;W:gaht be defined in the same way as W ^ . W ^ W ^ . (W^g 
consists of words of the form w = £n£n-i · · · £^£\L or w = £n · · · £\R where £n G £\& 
and we have an alternating pattern £n_i G ̂ ïght> ^n-i £ ί ^ , . · · ; if 1̂ £ bright? 
then the right-most letter of w is L\ if G £\eft then the right-most letter of w is Λ; 
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we also add a one letter word L to Wle^.) Similarly to the previous section, we set 

Si := Z{s.se2c{i)+K} £ D(C), £ G £le& 
Si := Z{s:s(E-2c(£)+K} € D(C), £ G -£right; 

SL := {̂S:s<ez(x0)+*:} £ D(C); 
5Λ := Z{S:SE-Z(XQ)+K} € D(C). 

For iy G W~a, w = 4 · · · h{L or R) set 

#™ = ftn * Sin_1 * · · · * Six * (5L or 5β). 
Set 

5 - := ®«;ew-gaht^! ^+ := ®ti;GW-g^-

3.9.2. Sheaves . — Let Af± mean the same thing as in Section 2.11. On every 
(—a)-strip Π consider the sheaf on Π 

φ£ := λ £ + * 5 + θ Λ £ - * 5 _ . 

3.9.3. Gluing maps. — Let Πι, Π2 be neighboring strips, Πι Π Π2 = £. 
CASE A. If £ goes to the left, we denote by Πι the bottom strip, fig. 3, a). 
We then define a map 

i f : A f - - A f + . & 
similar to vf from the previous subsection. The maps vf induce maps 

Nf : Af " * 5+ Af+ * S-
and 

N f : Af+ * 5+ Θ Af " * 5_ -> Af+ * 5+ -+ Af " * £L, 
in the same way as in Sec 3.8.5. 

We now set 

(56) :=Id+Nf . 

We set ΓξΐΏι := ( Γ ^ 2 ) - 1 = I d - N f . 
Similarly to the previous subsection, we can combine the definitions as follows. 

Let Π and Π' be intersecting — α-strips whose intersection ray I := ΠίΊΠ' goes to the 
left. Define a number #(Π,Π;) = 1 if Π is below Π' and #(Π,Π') = - 1 otherwise. We 
then have Γ™' = Id+ι>(Π, n;)Nf. 

CASE B. Analogously, assume that £ = Πχ Π Π2 goes to the right and that Π2 is 
below Π2, fig. 3, b). Similar to above, we have a map 
(57) vf : Af+ -> Af " * ft, 
which enables us to define maps 

iVf : A f + * 5 + ^ A f - * 5 _ ; 
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a) 

/ 
*(/) 

n2 

Π1 cut 

cut 

b) 

Π1 

Hi) 

Π2 

1 

FIGURE 3. Notations in the construction of the sheaf Φκ: a) £ G -£ieft> b) 
£ G bright-

Nf : Af+ * 5+ Θ Af - * S_ -• Af + * 5+ Θ Af " * 5_ 
in the same way as above. We set 
(58) Γ§?* := Id+Nf; 

(59) Γ ™ := ( r S ^ r ^ I d - N f . 
Finally, given two intersecting — α-strips Π and IT whose intersection ray £ goes to 
the right, we set ^(Π,Π') = 1 if TV is below Π and ^(Π,ΙΓ) = —1 otherwise so that 
Γ™' =Id+tf(n,n,)Nf. 

The sheaf Φκ is obtained by gluing of the sheaves Ψ π along the boundary rays by 
means of the maps Γ™ , similarly to Φκ. 

The map 
(60) %' = Φ€φΦκ € J?; & = ΦΓ° © 
same as in (54), is constructed similarly to ίφκ. 

3.10. The map 7ΦΦ 

We now pass to discussing the identification Ζψφ : Φκ —> Φκ as in (55). Explicit 
formulas for the map Ιψφ are complicated, see Section 7. Let us, however, formulate 
a result on this map, to be proven in Section 7. 

Let Ρ be an α-strip and Π be a —α-strip. Suppose Ρ η Π / 0 . We have identifica­
tions 

ΦΚ\ρηη = Φρ\ρηη = Λ£+π * 5+ Θ Λ*ΓΠ * 5_; 
*Κ\ρηπ = φ£\ΡΠΠ = Λ£+ * 5+ Θ Λ*" * 5_. 

Set ίγιρ := ^ΦΦΙΡΠΠ- In view of the above identifications, we can rewrite: 
*ΠΡ : Λ£+π * S+ Θ Λ£~π * S- -+ Λ£+π * 5+ Θ Λ£"π * 5_. 
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We are now going to take advantage of direct sum decompositions of both parts of 
this map. 

3.10.1. Decomposing iup into components. — Let us now rewrite both sides 
of this map as follows. 

For a w G W£ft or w G W~£, we define U(K, w) C (Ρ Π Π) x C: 

&(K, w) := {(x, s)\s + z(x) G c(w) + K}, 

where c(w) is as in (37), (38). 
We then have 

Hom(Z^(x5tD);Zg(x5^))es+ze+ 
©6Wa 

d+r+d+r 

A * + n . S + e A £ - n . S _ = 
d+r+d+rd 

d+r+der 

Next, 

Hom( 
d+r+d 

d+r+d+r 
d+re+d 

5tD);Zg(x5^)) 
d+r+d 

x5tD);Zg(x5^)) 
d+r+d 

d+r+e+r+d 

(61) 
ii€W-a;«;6Wa 

Hom(Z^(x5tD);Zg(x5^))+ze+ 

In Sec 7.1 we prove that Hom(Z%(Kju)] ΖÏÏ(K,W)) = 0 unless ÏÏ(K,w) C H(K,w), 
in which case Hom(Z^^^; Z^K^) — Z.e ĵW, where e ,̂̂  is the homomorphism 
induced by the embedding £2(1 ,̂ tu) C H(K, w). Elements of 

wew-a:we\va 
Hom(Z^(x5tD);Zg(x5^)) 

are thus identified with infinite sums of the form 

(62) 

W,W 

d+r+d+r+d 

where n^w G Ζ, and β(Κ, w) C ÏÏ(K, w). By Prop.7.1.1, under the inclusion (61) the 
set Hom( φ %η(κ w)! 0 %ïï(K w)) *s identified with the set of all sums as in 

d+r+d+ d+r 
(62), satisfying 

for every point y G (Ρ Π Π) χ C and every w G W α, ttere are only finitely many 
w G Wa such that n^w φ 0 and y G ÏÏ(K,w). 

3.10.2. Identification W~a —> Wa.— Let us first define an identification A : 
£~a —» £a. Let £ G Suppose € goes to the right. Let Ρ be the leftmost strip 
among all ά-strips that intersect £. There are exactly two boundary rays of P, £\ and 
£r such that c(£i) = c(£r) = c(£), £\ goes to the left, and £T goes to the right. Let us 
assign A(£) = £r. 
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Similarly, if £ e £~a, £ goes to the left, we consider the leftmost strip Ρ among all 
α-strips that intersect £. There are exactly two boundary rays of P, £\ and £r such 
that 

(63) C(it) = C(tr) = C(i) 

£\ goes to the left, and £r goes to the right. Let us assign A(£) = £\. The map A 
extends in the obvious way to a map A : W_Q! —> Wa: a word £n- — £\L G W~a 
(resp. fn-'hRe W~a) is mapped into A(£n) · · · A{£X)L (resp. A(£n) · · · A(^i)P). 
Because of (63), we have U{K,w) = ÏÏ(K,A(w)) for all w G W"a. 

3.10.3. Formulation of the result. — Let us write iup in the form (62): 

(64) d+r+d+ 
s+r+"e+DS+E 

d+r+d+ 

In order to formulate the result, let us introduce some notation. For w G W a, 
w — £n - - · £\L G W~a (resp. w = £n- · £XR e W"a), set \w\ := n, to be the length 
of w ( in particular \L\ = \R\ = 0). 

Proposition 3.10.1. — (1) We have η̂ Α(-ώ) = (—1)'™'; 
(2) If riùw φ 0 and w φ Îl(w), then ¥l{K,w) φ &(K,w) (we have a strict embed­

ding H(K,w) c ÏÏ(K,w)). 

This proposition is proven in Sec 7.5.4. 

3.11. Description of ΦΓα 

We construct the sheaf ΦΓα and a map i<&ra in a way very similar to the construction 
Φκ, using the decomposition of X into α-strips and replacing Κ with ra everywhere. 
We then get sheaves 

A'u :— %{(x,s)\xeu,seC;s±xera} 
φ*ρ« := Λ£*+ * 5+ θ Αρα~ * 5_. 

If £ goes to the left (resp. to the right) we still have a map 

v\a : Ar£a" Λ'α+ * 5^ resp. h>r£a : Λ£α+ -» Ar£a~ * S£, 

so that we can define the gluing maps Γφ^2 similarly to ΓΛ:2. 

3.12. Description of ΦΓ~α 

In order to construct ΦΓ-α and ίφ*-α we switch to —α-strips ( sticking to α-strips 
leads to a failure to define the maps ^_0!). The construction is then similar to the 
construction of Φκ (just replace Κ with r_a everywhere). 
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3.13. Constructing the map (30) 

Let us construct a map 2, satisfying (30). It will be convenient for us to replace 
$K with the isomorphic sheaf ^K. 

First, we will construct maps qcTa • $C -» $r<*; QKr±a ' ^K —> ^r±a satisfying 

(65) 

d+r+d 

Q e 

qcra d+r+d 
qKra 

e 
d+r+d fd+rt+d d+r+d 

The categorical definition of the maps in this diagram was discussed in Section 3.6. 
Let us now pass to constructing the above mentioned maps qcra and qKr±a • 

3.13.1. The map qCra. — We have $c = ZXxC so that 

Hom($c;$r«) = T(X x C;$r") 

so that a map qcTa can be defined by means of specifying a section q G T(X x C; 3>FC*). 
This can be done strip-wise: we can instead specify, for every closed strip P, sections 
qp G T(P x C; $rp) which agree on intersections as follows. Let Pi fl P2 = £. We then 
have restriction maps 

\exC : T(Pi x C; - r(* x C;+d+r+d+ei = 1,2. 

We then should have 

(66) qpikxc = qp2kxc-
It is clear that any collection of data qp, satisfying (66) for all pairs of neighboring 
strips, determines a section q G T(X x C; $ra) in a unique way. 

We have Z = T(P x C; AJ?* * Sw) for all w G Wa. 
Let us take the direct sum of these identifications over all w G Wa so as to get a 

map 
5 p : Z [ W a ] - ^ r ( P x C ; $ ^ ) , 

where Z[Wa] is the Z-span of the set Wa. Similarly, we define 

^ : Z [ W V W x C ; $ ; û ) , 

where £ is the intersection ray of a pair of neighboring a-strips . The maps sp, se are 
inclusions; denote by T'(P x C;^Tp),Tf(£ x C;$Ja) the images of these inclusions. 
As easily follows from the definition of the gluing maps T^if2, the restriction maps 
induce isomorphisms 

l/xc : r'(P x C;$rP«) - T'(£ x C; #;«"), 

where £ is a boundary ray of P. 
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Since the graph formed by α-strips and their intersection rays is a tree, it follows 
that given an element qp0 G Γ'(Ρο x C; Φ^), we have unique elements 

q p G r ' ( P x C ^ ) 

satisfying (66). We set qp0 := sp0(L + P), where L, R are words of of length 1 in Wa 
viewed as elements in Z[Wa]. This way we get a section q and a map qcra- It is clear 
that Condition i$ra = qcrai<$>^ is satisfied. 

Denote by ep G Z[Wa] a unique element such that sp(ep) = qp. Denote by Wp C 
Wa a finite subset such that 

ep = 
wewp 

epww, 

where epw G Z\0. 

3.13.2. Map <?κΓ_α · ^K —• ΦΓ_α. — Let us define this map stripwise. For every 
—α-strip Π we have a map —> A^[a± induced by the embedding of the corre­
sponding closed subsets of Π χ C. Whence induced maps A^ * Sw —> A^[a± * Sw. 
Taking a direct sum over all w G Wa yields a map 

Λ£+ * 5+ Θ A£" * S- -> Λπ"α+ * 5+ Θ Α^' * 5_, 

and we assign <7κτΓ_α,π · ~* α to ^e ^his map. It is clear that thus defined maps 
agree on all intersection rays, thereby defining the desired map <?κ>_α· The condition 
ίφΓ_α = qKr-^i^K is clearly satisfied. 

3.13.3. Map qKra : Ψκ —» ΦΓα. — We first construct a map qfKra : Φκ —> ΦΓα 
using α strip in the same way as we constructed qxv-a · 

We set 

Hom(Z^(x5tD);Zg(x5^)) 

The condition i<$ra = <?κΓα%κ is clearly satisfied. 

3.13.4. Restriction of β to a parallelogram. — Let Ρ and Π be a pair of 
intersecting α-and (—a)-strips. 

First, in view of identification A, let us write w instead ofA-1it;GW_Q!. Next, for 
a w G Wa and a subset Δ C C, let us define a subset ί3(Δ, w) c (ΡΠΠ) x C as follows. 
If w G W£ft (resp., w G Wgght), we set $(Δ ,μ) = {(x, e)|s + z(ar) G θ(™) + Δ} (resp., 
ί3(Δ, w) = {(x, s)\s — ζ (x) G c(w) + Δ}; these notations are compatible with those of 
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Section 3.10.1. Set A0 := (Tin Ρ) χ C. We then have identifications 
ww<<ww+ds 

ΨΠΠΡ — 
wew~a 

z+ert+r+ 

ψπηΡ 
wewa 

++<<<+<q 

ΦΠΠΡ = 
«;GW-a 

d+r+d+r 

Let us now rewrite the maps from diagrams (65) in terms of these identifications. 

3.13.5. The map qcra revisited.— Let E^a : ZA0 —> %ïï(ra,w) be the map 
induced by the closed embedding of the corresponding sets. According to Sec 3.13.1, 

(67) <++q+q+ 
weWp 

d+r+d+r 

3.13.6. The map #χΓ_α· — It follows that the map 

d+'r+dd 
wewa 

^(x5tD);Zg(x5^)) 
d+r'+d 

d+r+d 

is a direct sum, over all w G Wa, of the maps 
Hom(Z^(x5tD);Zg(x5^)) 

over all w G Wa. 

3.13.7. The map qKra. — Let w,w' G Wa be such that U(K,w) D S(ra;w'). 
Let e!£*? : Z<a{K,w) ~^ ^η{να^') be the map induced by this embedding. 

We then have 
QKra = 

ww' 
Kr EKr 
WW WW 

Proposition3.13.1. — (1) n*** = ( -1)H; 
(2) for every compact subset L C (Ρ Π Π) χ C and every w G Wa; there are only 
finitely many w' G Wa such that nww> φ 0 and L Π S(r_a; it/) φ 0; 
(3) ifn^J φ 0, iften we have a strict embedding ÏÏ(w',K) C U(w,K). 

Proof. — Parts 1) and 3) follow from Section 3.13.3 and Prop. 3.10.1, part 2) follows 
from Prop.7.1.1. • 

3.14. Σ and φ are Hausdorff 

Recall that Σ was defined in Section 3.5.1 and φ in the Section 3.5.3. 
Let us start with some general observations. 
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3.14.1. Generalities on étalé spaces. — Let F be a sheaf of abelian groups on 
a Hausdorff topological space X. Call F rigid if its étalé space is Hausdorff. The 
following facts are easy to check. 

(1) Let U C X be a Hausdorff open subset. Then Zjy is rigid. Indeed, the corre­
sponding étalé space is (Z\{0}) xU U {0} χ X. 

(2) Every sub-sheaf JF\ of a rigid sheaf F is rigid. Indeed, the étal'e space of Fi is 
identified with a closed subspace of a Hausdorff étalé space of F. 

(3) Let 0 —> A —> Ρ —> C —^ 0 be an exact sequence of sheaves, where A, C are 
rigid. Then so is B. Indeed, let A! —> B' C be the étalé spaces of A, B, and 
C. Let 61,62 € B1. Suppose π(&ι) φ π(62); we then have separating neighborhoods 
7r(6i) G U\\ 7r(b2) G U2 so that 7r-1£/i, 7r-1î72 separate b\ and b2. Let now π(6ι) = 
ΤΓ(62) = c but bi φ b2. Since π is a local homeomorphism, there are neighborhoods Wi 
of bi in B' such that are projected homeomorhically into C. By possible shrinking 
we may achieve that Wi project to the same open subset U G C"; c G £/, so that we 
have homeomorphisms π"1 : U —• Wî. We then have a continuous map 5 : £7 —* A', 
where = π2~1η — n^xu G Au C A'. Since 61 7̂  &2,£(c) ^ 0, so that we have 
a neighborhood U' C U of c on which 5 does not vanish. It now follows that the 
neighborhoods π^.ΙΙ' do separate b\ and b2. 

(4) Let in : jPn —» Ρη+ι, η > 0 be a directed sequence of embeddings, where F0 and 
all Fn+i/inFn are rigid. Then F := limFn is also rigid. Indeed, 3) implies that all Fn 

η 
are rigid. Let F^F' be the étalé spaces of Fn,F. We have induced maps F^ —• F'\ 
F'n —> which induce a map limF^ —• F' which can be easily proven to be a 
homeomorphism. Since all the maps F^ —> are closed embeddings, it follows 
that F' is Hausdorff. 

(5) Let ρ : Y —> X be a local homeomorphism, where Y is Hausdorff. Let 0 7̂  
i/ C F C I be open sets, where V is connected. Suppose we are given a section 
s : U —• Y. There exist at most one way to extend s to V. Indeed, let si, s2 : V —> Y 
be extensions of s. Let us prove that the set W := {v G V : s\(v) φ s2(v)} is 
open. Indeed, let ν G W. The points si(v), s2(v) can be separated by neighborhoods 
Ui,U2 C Y. Let ÎI := si~1Ui ns2_1£72; îl is a neighborhood of v. It now follows that 
Si(îl) C therefore Si(îl) do not intersect; we have thus found an open neighborhood 
%ί C W of v, hence VF is open. 

Let us now prove that W := {v G V : Si(i>) = 52(v)} is open. It is clear that Si(U) 
are open subsets of Y, so that W = si(U) Π s2(U) is open. 

Finally, V = W UWf and W7 Φ 0. This implies W = 0. 

3.14.2. Reduction to rigidity on Π Π P . — Since φ C Σ is a connected com­
ponent, it suffices to prove that Σ is Hausdorff. The latter reduces to showing that 
p^dP Π Π) χ C) is Hausdorff for every pair of intersecting α-strip Ρ and —α-strip 
Π, which is equivalent to the rigidity of the sheaf $o|(nnP)xC> which is isomorphic 
to Ker Q. 
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3.14.3. Filtration on ΦοΙπηΡχΟ — Let us choose an arbitrary identification 
Z>0 ^ Wa; η h-» wn. Define a filtration on ^ := #c Θ Φκ|πηΡχ€ by setting 

ïï ~ ΦΊπηΡχε θ Z8(JCit0l) θ · · · θ %H(K,wn)-
It is clear that 

ïï ~ ΦΊπηΡχε θ Z8(JCit0l) θ · · · θ %H(K,wn)-+xs+de+s 
is an exhaustive filtration. It is also clear that pn C $ is a direct summand. Denote 
by Pn : $ —> $n the projection. 

Set 
Fn$0 := Ker Q\g*. 

It follows that F is an exhaustive filtration of ΦοΙπηΡχΟ By Section 3.14.1 2), it 
suffices to show that each sheaf Fn is rigid. 

3.14.4. Sheaf D Fn. — We have the following projection onto a direct summand 

Pn : $nnp ® ̂ πηρ 
η 

d+r+d 
ïï ~ ΦΊπηΡχε θ Z8(JCit0l) θ · · · θ %H(K,wn)-+ 

Let F'n := Ker PnQ\^n- We have: Fn is a sub-sheaf of F^, so that it suffices to show 
that each F^ is rigid. 

3.14.5. Further nitrations on ψ,£n,F'n. — Fix η G Z>0. Let us re-label the 
words lui,U)2, · · ·, wn to, say wi, w2,. . . , wn, so that the following holds true: 

if i > j> then it is impossible that ^(Κ,νίι) is a proper subset of &(K,Wj). 
Since we are dealing with only finitely many words, this is always possible. Let j < 

n. Set F^n := Ζ8(Λ>Γι) θ · · · θ ^(x,w.} C Τ- Set F*£η := ZS(r±eiWl) Θ · · · θ 
Zs(r±e,w,) C £n. We also set F"+1^n = F"+1£n = £n. Let Gr^n; Gr>"£n be 
the associated graded quotients. 

Proposition 3.13.1 and Section 3.13.6 imply that the map PnQ preserves the filtra­
tion F: PnQ : Fi@n -> F* £n. Set F'i^ := KeiPnQ\FJyn. It is clear that this way we 
get a filtration on F^. Let Gr^F^ be the associated graded quotients. Our problem 
now reduces to proving rigidity of GrjF'n by Section 3.14.1, 3). Since PnQ preserves 
F, we have 

Gr*X C Ker(Gr*"Pne : Grj$n -> Grj£n). 
By Sec 3.14.1 2), the problem reduces to showing rigidity of Ker(GrJPnQ : GrJffn —> 
G r W . 

3.14.6. Finishing the proof. — Let j < n. We then have GrJ^n = Ζ^κ^.γ, 
Grj £n = Z (̂ra;w.) 0Zg(r_a;w)' Βν Section 3.13.6 and Proposition 3.13.1, we have: 

GH'P„e = ( - l ) lw i lJE^®^7 , 

where the morphisms 
GH'P„e = (-l)lwilJE^®^7+sx+e 
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are induced by the closed embeddings of the corresponding sets. It now follows that 
KerGr7PnQ = Z^(IntK;Wj), which is rigid by Section 3.14.1,1). 

Let now j = η + 1. We have Grn+1£n = 0; Grn+1^n = ZAo, so that 

KevGr'PnQ = ZAn, 

which is also rigid, as a sheaf on (ΠΠΡ) x C = A0, by Section 3.14.1,1). This finishes 
the proof. 

3.15. Surjectivity of the projection όλ : J —> X. 

In this subsection we will prove 

Theorem 3.15.1. — The projection p^ : φ —> X is surjective. 

Proof of this theorem will occupy the rest of this subsection. We will construct an 
open subset Î / C E such that 

(1) 2/ projects surjectively onto X; 
(2) Il is connected; 
(3) îlΠ h(Sa) φ 0, where h : Sa -+ Σ is as in (27). 
Conditions 2),3) imply that îl C φ, and Theorem follows. 
Let us now construct îl and verify l)-3). 

3.15.1. Constructing îl. — We construct îl stripwise. We will freely use the no­
tation from Sec 3.13.1. Let Ρ be an α-strip. Define a closed subset 

A(P) := 
weWp 

û(rcnw)cPxCcXxC. 

Let îl := Χ χ C\ |J A(P), where the union is taken over the set of all α-strips P. 
ρ 

Denote by j:î/-^IxC the open embedding. 
Let us now embed ÏI into Σ. We have a natural embedding : —• Zxxc = Φ€· 

As follows from (67), we have qcraJîi = 0, which implies that the map factors 
through Ker qcTa '· 

+s+s+e+s d+r 
KeiqCradd+d+r 

As follows from the diagram (65), we have a natural embedding 

(68) Lq : Kevqcra ̂  Ker β, 

and we set 

(69) Jq :— tqJy, 

which is an injection Jn : Z<u <^-> Ker Q = Φ0. 
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To summarize, we have the following commutative diagram of sheaves on X x C: 

d+r+ 
d+r 

JQ 

KerçCro 
Lq 

(Kere = $0)c d+r+d 

Jit 

d+r 

The map JQ induces an embedding of the étalé spaces: îl x Z —> £. Let : % —> £ 
be the restriction of this map onto ?/xl C îlxZ. This map is a local homeomorphism 
and an embedding, therefore, j is an open embedding. Let us identify ÎI with j^iîl). 

3.15.2. Verifying 1). — Let 

PE:SPdr+d4lxCf4l 

be the through map, where is the same as in Section 3.5.1, and TTX is the projection 
onto a Cartesian factor. We see that the composition P^jy, coincides with the compo-

sit ion ÎI X x C X. Let us check that this map is surjective. Indeed, let x G X. 
There are at most two a-strips which contain x. We therefore have: 2/ D x x C is 
obtained from x x C = C by removing a finite number of a-rays, which is non-empty. 

3.15.3. Verifying 2). — As the sets Wp are finite, it easily follows that 
— the sets îl(P) := P x C\A(P) are connected; 
— if Pi fl P2 ^ 0, then îl(Pi) fl îl(P2) ^ 0- This implies that ÎI is connected. 
The rest of the subsection is devoted by verifying 3). 

3.15.4. Reformulation of 3). — Recall that the map h : Sa —• £ is induced by 
the map Io : Zsa —» ^-1#o, see (26). The injection : —> £ is induced by the 
map JQ : Z«̂  —» Ker Q = 3>0? see (69). Let iXo : C -> I x C be the embedding 
^x0(5) = (xo*s). We have g = iKQ7rsa. Let us denote îlXo := i^îl- Observe that îlXQ 
is obtained from C by removing a finite number of a-rays. 

Lemma 3.15.2. — There exists a non-empty open subset V C X̂o such that: 
i) the map nsa induces a homeomorphism ^s^V —> V, so that we have 7r^Zy = 

++ze+e+s 
ii) the following diagram of sheaves on Sa commutes 

d+r+ 3VS d+r+d 

JVIt 

d+r+d+ 
9-HJQ) 

Io 

9 #o 
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where the arrow jys is induced by the open embedding V C Sa, and the arrow 
jv<u is the composition Ζπ-ι^ = π^1Ζγ Α π^ΧΖ^Χ = g~1Z<u, where the arrow * is 
induced by the open embedding V C îlXo. 

Let us first explain how Lemma implies 3). Indeed, it follows from Lemma that we 
have a commutative diagram of topological spaces 

(70) d+r+d+ 
d+r+d 

Σ 

d+v 

V +zs **0 
3li 

vr+ 

where the counterclockwise composition TTs^V —» îl coincides with a component of 
the map of étalé spaces of sheaves induced by jvu-

Then (70) implies that h{Sa) Π j^îl) D j<u(iXoV). 
We will now prove the Lemma. 

3.15.5. Subset W C Sa. — Let W := n^(C\K) C Sa. Denote by Jw : Zw -> 
Zsa the map induced by the open embedding jw ' W C Sa. Let us consider the 
composition hjw, which is induced by the map Io Jw : Zw —• <7_1Φο· 

Denote by π : Φ0 —> Φ€ Θ Φκ the natural embedding (recall that Φ0 = Ker Q). Set 
π0κ := Π^π : Φ0 —> Φκ, where Π χ : Φ£ Θ Φκ -» Φκ is the projection. 

Let us show 

Lemma 3.15.3. — We have (g 1TTQK)1OJW = 0. 

Proof. — Indeed, the map π factors as 

φ0 Λ Φ = ( Cone fi) [-1] ^ Φ€ΘΦΚ 

where the last arrow is the canonical map. Set π κ '= ΠχΡφ. We have 

(g-'noK^o = (g-'UK^g-'^lo = (9-1Ιίκ)(9-ιΡΦ)9-\ΐ0 = (<rW)I, 

where I is as in Section 3.4.1. Recall that in Section 3.4.1 we defined I in such a way 
that under the isomorphism #_1Φ = #!Φ[2], the map I corresponds by the conjugacy 
to the map i<$> : Rg\Zsa[—2] —> Φ, where i<$> was constructed in (31). 

We claim that: 

(71) The map (g 1π^)Ι corresponds by the conjugacy to π^Ζφ. 

Indeed, the conjugate to 

{g-1irK)I:I.sa±g-1*9~-?K9-1*K 
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is defined as not[2] ο (Rgign^Rgil, where not : Rg\gQK —» Φκ, and the statement 
(71) reduces to commutativity of the diagram 

R9\ZS„ Rg\I i W Φ Ϊ21 
Rg\g[nK[2] 

Ή9,9'ΦΚ[2} ; 

»φ[2] 

Φ[2] 
πκ[2] 

nat[2] 

•Φκ[2] 

but the triangle is commutative by the properties of adjoint functors, and the square 
commutes by functoriality of Rg\g\ 

Denote by 

X:RgiZw[-2] -+RgiZSa[-2] 

the map induced by jw, i.e., λ = Rg\(Jw)[—2]. The problem now reduces to showing 
that π ^ φ λ = O.e. χ 

By the construction of the map όφ, the map πχίφ factors as Rg\Zga[—2] ^5 
ZXoxx[-2] Φχ, where ρχ is as in (28), so that πχΖφλ = ίφκρ^λ. It is easy 
to see that ρκλ = 0, which finishes the proof. • 

It now follows that the map In Jw · Zw —• Q~1^o factors as 

Zw g 1KerqCra -> g 1Φ0, 

where the right arrow is induced by the obvious embedding iq : Ker q<£Ta Φο, cf. (68), 
coming from the definition Φο = Ker Q. 

3.15.6. Finishing the proof. — Recall, see (69), that the map Jq : Z<u —» Φο 
factors as Jq := iqJy. 

Suppose that the subset V C îl from Lemma 3.15.2 satisfies: tt^V C W. The 
statement ii) of Lemma 3.15.2 now follows from the commutativity (which is shown 
below) of the following diagram 

(72) d+r+d jvw - Zw 

3 vu ^ w 

s+e+e+v 
d+ré 

j AKerçCra 

where jvn is the same as in the statement of Lemma 3.15.2, the map jvw is induced 
by the open embedding tt^V C W. The map (J^Y is induced by Ĵ , i.e., (J^Y = 
g~l{J\^- Indeed, once the commutativity of (72) is known, we obtain the statement 
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ii) by combining commutative diagrams as follows: 

7Γ ο V 
JVW - ZW 

3VÎI 
d+r+d+ (JIY 

é w 
. Jw 

g 1KeiqCra d+r+ 

d+r+ g % 

d+r+ 
Ίο 

Let us now prove the commutativity of the diagram (72). We have an injection 
κ : Ker<7crQ —» Φ€ = ΖχΧ£ which induces an injection κ! : g~x Kerçcra —» #-1^xxC-
The commutativity of the above diagram is equivalent to the commutativity of 

(73) Z - i v jvw • Zw 

3Vîi 

d+r+d d+r+d g %xxi 

K éw 

Let us now define 
V:= (C\K)nîlXo. 

Let us check that V satisfies all the conditions: 
a) V is non-empty. The set îlXo is obtained by removing from C a finite number 

of α-rays, which implies non-emptiness of (C\K) Π îlXQ. 
b) C W —this is clear. 
c) 7rsa : k~^1V —• V is a homeomorphism —clear. 
d) Commutativity of (73). We have <7-1Ζχχ€ = Zsa- It follows that the composi­

tion κ!clw ecmals the map Zw Zsa induced by the inclusion W C Sa. Next, the 
map kJ<u : Z<u —> ΖχΧ£ is induced by the open embedding : îl —• Χ χ C. The 
commutativity now follows. This finishes the proof. 

3.16. Infinite continuation in the direction of Κ 

We need some definitions 

3.16.1. Parallelogram U. — Let U C C be an open parallelogram with vertices 
A, B,C, and D, such that AB and DC are collinear to e~lot and BC and AD are 
collinear to eia. 

3.16.2. Small sets. — Let Γ c C. Call Γ small if for every point c e C, the 
intersection Γ Π c — Κ is a finite set. 

Claim 2. — Let L C C be a bounded subset The set Γ Π (L — Κ) is then also finite. 
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Proof. — Assuming the contrary, let {71,72, · · ·, 7n> · · ·} £ Γ Π (L — Κ) so that 7̂  = 
Ci — Zi, Zi G if, Ci G L. Since L is bounded, the sequence Q has a convergent sub­
sequence Cin —> c for some c G C. Let ε G Int Κ. It follows, that Cin G c + ε — Κ for 
all η large enough, which contradicts to smallness of Γ. • 

3.16.3. Theorem. — Using notation of Section 3.5, let 

GH'P„e = (-l)lwilJE^®^7+d+r 

d+r+d+r+d5r+ 

and 
^ : Λ dz z x C = C. 

Theorem 3.16.1. — Suppose we have a section σ of Pz: 

4z Pz •C 
σ 

υd 

Then there exists a small subset Γ C XJ + K such that σ extends to (U-j-K)\(Γ + Γ_α) 
and (T + r_a) DU = 0. 

Remark For every bounded set L there are only finitely many 7 G Γ such that 
(7 + r_a) Π L Φ 0, as follows from Claim 2. 

Before proving this theorem, let us observe that it easily implies Theorem 1.3.1. 
Indeed, given x G C, we see that φ- is a disjoint union of all φζ, where px(z) = x, 
which reduces Theorem 1.3.1 to the current Theorem. The rest of this subsection is 
devoted to its proof. 

3.16.4. Reformulation in terms of sheaves. — By basic properties of an étalé 
space of a sheaf, liftings σ as in Theorem, are in 1-to-l correspondence with maps of 
sheaves fa : Zu -> $o\zxc-

For every w G Wa and a fixed z G X, set ttz(K,w) = U{K,w) Π (ζ x C) C C, 
where ÏÏ(K, w) are the same is in Sec 3.10.1 We define 82(ra,«;), Uz(r^aiw) in a 
similar way. 

We then have the following maps: 

Zc 
90 α 

82(ra,«;), Uz(r^ai 
d+r+d fa -90 " 

82(ra,«;), Uz(r^ai 
d+r 

82(ra,«;), Uz(r^ai 
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where qoCra, qoKr<*, çoKr~a are the restrictions of the maps qCT(X, ^ΚΓα, g^1*-* onto 
x0 x C. Let 0Xo be the restriction of the map Q onto xo x C, so that βΧο is the sum 
of goCr°S — <7oKr°S and çoKr_a- We now have 

(74) QU = 0. 

3.16.5. Writing fa in terms of its components. — We have components: 

fa(w) : Zu -> %&z(K,w) 

/σ(0) : Zu->Zc 

we have (if U Π ̂ ( if , w) φ 0): 

Hom(Zu;Zge = Z-gw 

where 

(75) gw : Zu —> ûnSzfKw) -* %nz(K,w) 

(the first arrow is induced by the closed embedding U Π ¥lz(K,w) C U; the second 
arrow is an open embedding) 
if U n Uz(K,w) = 0, then Hom(Zu, Z#ziKiW)) = 0. 

So, 

(76) f<j(w) = nw - gw, where nw G Ζ, 

and /σ(™) = 0 if U Π Uz(K,w) = 0. 
Analogously, Hom(Zu, Z<c) = Ζ · go, so 

(77) /(0) = n0 -g0. 

It also follows that: 

Claim 3. — for every point s G U there are only finitely many w such that fa(w) φ 0 
and s G ¥lz(K, w). 

Proof — This follows from consideration of the induced map on stalks at 5: 

(fa)s : (Zu)e = Z ^ 
w.seBz{K,w) 

Z = ( 
d+r+d5r 

d+d+r+d+dr 

The image of this map must be contained in the direct sum of only finitely many 
copies of Z, the statement now follows. • 
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3.16.6. Restriction to a sub-parallelogram V. — Let V c U be a parallelo­
gram, V = AB'C'D', such that B' G (AB), D' G (AD) (so that C G U). 

The restriction 

/σ , ν ·= /σ | ν · %V —> %U fa z c e d+r+d+r+d 
w 

can thus be expressed as 
/a,V = ™0 * 9o\v " 

wewa 
n>w ' 9w\v-

Here gw\y is the following composition: 

Zv —> Zu g-% Z<az{K,w) 
and gw is the same as in (75). 

Let S C W** consist of all w such that nw φ 0 and gw\v Φ 0. We can now rewrite 

(78) /σ,ν = 
wG5 

^ ' gw I ν 

Observe that 

(79) ^ I v ^ o i f f v n ηζ(κ,νο)φ0. 

Next, there are only finitely many w such that f(w) φ 0 and &Z(K, w) Π V φ 0. 
Indeed, &z(K,w) ΠΥ φ 0 implies G' G ΐϊζ(Κ, w), and we can set ζ = C in Claim 
3. This shows that S is a finite set. 

We comment that restricting from U to V was done in order to obtain this finiteness 
of 5. 

3.16.7. Proof of a weaker version of the Theorem. — We are going to prove 
the following statement: there exists a small set Γ C V + K, such that a|Vny extends 
to V, where V := (V + Κ)\(Γ + Κ). 

Define the extensions Ζν+κ —* %ÏÏZ(K,W) as follows: 

Gw : ZV+K Ζ(ν+Κ)η^2(Χ,υ;) —> %ÏÏz(K,w), 

where the map c is the restriction onto a closed subset and the second map is induced 
by the embedding of an open subset. 

Let Go : Ζν+κ —• Zc be the map coming from the open embedding of the corre­
sponding sets. 

Let 
Fay := no Go H-

d+r+d 
nwGw : Ζν+κ —• Zc Θ 

d+r+dr 
Znz{K,w), 

where the coefficients η^,ηο are the same as in (76), (77). Let Jv : Zv —» Ζν+κ: be 
the map coming from the open embedding of the corresponding sets. We have: 

(80) /σ,ν = FavJv. 
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Let us now find a subset V C V + Κ such that Q ο Fay\y = 0· This vanishing along 
with (80) imply that Fay determines an extension of σ|ν onto ψ. 

(1) Consider the through map for some w G S: 

βιν : Zy ίσ,λί 
Zc- 82(ra,«;), Uz(r^ai 

iff V Π Uz(v-a\w)+ds 

iff V Π Uz(v-a\w) 82(ra,«;), Uz(r^ai 

pw is the projection onto a direct summand, and the middle map is Qz. 
By (74), βη, = 0; on the other hand, βν} = nw · where 

s+e+ zv Gw %nz(K,w) rf>at,r iff V Π Uz(v-a\w) 
But fcw = 0 iff V Π Uz(v-a\w) = 0. So if nu, ^ 0, then 

(81) Vfl Uz(r-a;w) = 0. 

Since w e S and because of (79), we have 
(82) VnUz(K;w)^0. 
Prom (81) and (82) it follows that (V + Κ) Π S2(r_a;u;) = 0. Hence, we have 

(83) iff V Π Uz(v-a\w)zss+s+eesuz"+ze_çépz+<w 
Let us now consider the maps κ ο Q ο F^v, where κ is the projection onto 

®wZ&z(ra,w) as shown in the following diagram: 

Zc qCra 
iff V Π Uz(v-a\w) 

ko Qo Fay : Ζν+κ d+r+d d+r %ttz(ra,w) 
d+r+d+ 

82(ra,«;), Uz(r^ai 82(ra,«;), Uz(r^ai 

Let Mw : Zc —> Z<az(ra.w\ be the components of the map q£ra. Let 
Δ = W : 3w G S : JVW ^ 0 or Aiw/ ^ 0}c Wa. 

Here 5 is as in (78), Nww> := Π Α - ι ^ ) ^ , and nw;w' are the same as in Proposi­
tion 3.10.1. (Remark, however, that the statement of the Proposition 3.10.1 is not 
used here.) 

For each w' G Wa let us write 

&z(K,w') = dw*+K. 
Set Γ := {dw> : wf G Δ} c C. As S is finite (see end of Section 3.16.6), for any s G C 
there are only finitely many w' G Δ : (S(K,w/) 3 s. Equivalently there are only 
finitely many w' such that dw> G s — Κ so that Γ is small . 

Let 
nw : 

d+r+d+r 
iff V Π Uz(v-a\w)+dsd+r+ 
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be the projection. It follows that nwKQFaiv φ 0 only if w G Δ. Set V := V + if\(T + 
K). It follows that nwK,QFv\cy = 0, which implies K,QFay-y\cy = 0. Taking into account 
(83), we conclude βίσ,νΐν — 0, i.e., σ\γην extends onto V, as we wanted. 

3.16.8. Proof of the theorem for U. — Denote by σ' the extension of a|ynV 
onto V. Observe that the set VnU is connected and that ψΓ\V C VfïU. Thus, σ and 
σ' are two extensions of σ|νην on °̂ VflU. By Sec 3.14.1 we have σ|^ηυ = σ'|^ηυ. 
Thus, σ extends to V u U which is of the required type. 
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C H A P T E R 4 

O R T H O G O N A L I T Y C R I T E R I O N 
A SIMPLIFIED V E R S I O N 

The goal of this section is to prove Theorem 4.1.1 below. This theorem will only 
be used in the next Section 5. 

4.1. Formulation of the Theorem 

Let X be a smooth manifold. We will work on a manifold Y = X x R χ R. Let us 
refer to points of Y as (x, si, s2) G X x R x R. Let Pi, P2 : Y —• X x R be projections 

Pi(x,s1,s2) = (x,Si). 
Let us refer to points of T*Y as (x, si, «2,0;, aidsi, a2ds2), where CJ G T^X; aidsi G 

T^R; û2^2 G TS*2R. Let Ω y C Γ Τ be the closed subset consisting of all points 
(x,si,s2luj1a1dsi,a2ds2) where a\ = 0 or a2 = 0 (or both). Let gy C D(y) be 
the full subcategory consisting of all objects microsupported within Ωγ. Let ±(&γ 
be the left orthogonal complement to *βγ (consisting of all F G D(Y) such that 
#Hom(F, G) = 0 for all G G Ό(Υ)). 

Theorem4.1.1. — Fe±(&Y iff RPVF = RP2]F = 0. 

Let us start with proving that F G ±κ6γ implies RP\\F = RP2\F = 0. Indeed, 
given any G G Ό (Χ χ R), we have 

RRom(RPvF] G) = ifflom(F, P[G). 
It is well known that every element (x,si,s2,ω,a\dsi + a2ds2) G S.S.(p[G) satisfies 
a2 = 0, i.e., P[G G Έγ and 

RBom(RPvF; G) = PHom(F, P[G) = 0. 
As G is arbitrary, we conclude RP\\F = 0. One can prove the equality RP2\F = 0 in 
a similar way. 

The rest of this section will be devoted to proving the opposite implication: 

Theorem 4.1.2. — Let F G Ό(Υ) satisfy RPX]F = RP2]F = 0. Let G G ï?y. TAen 
flHom(F, G) = 0. 
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We start with introducing the major tool, namely a version of Fourier-Sato trans­
form. 

4.2. Fourier-Sato Kernel 

Let Ε be the dual real vector space to R2 so that we have a pairing (, ) : R2 χ Ε —» R. 
Let us use the standard coordinates Si, s2 on R2 and σι,σ2 on Ε so that 

((«ι, 52), (σχ, σ2)) = 5ισι -f s2a2. 

Let Y2 := Χ χ R2 χ R2. Define projections πι,π2 :Y2 -* Y: 

KI(X,S,S') = (x, s); 

7r2(x,s,s') = (x, s'), 
where s = (si,s2) € R2 and s' = (si,«2) G R2. 

Let C F2 x be the following closed subset 

K = {(y,sJs,Ja)\{s-s,1a)>0}. 

Let us also define the projections 

Pi : Y2 x Ε —• Y2^iY; 

P2 : Y2xE π2-^Ε Υ χ Ε. 
We then have the following functor: Φ : Ό (Υ) —> Ό(Υ χ Ε): 

:= Rp2*R3ûm(J,K',p\F) 

which are modified versions of Fourier-Sato transform. Let us establish certain prop­
erties of these functors (similar to those of Fourier-Sato transform). 

4.2.1. Properties of the modified Fourier-Sato transform 

Lemma 4.2.1. — Let ΈΕ ' Y x Ε —• Υ be the projection. We then have a natural 
isomorphism 

F - » RnE^(F)[2]. 

Proof. — Let ρ Ε '> Y2 x Ε —> Y2 be the projection. We then have 

(84) RnE*V(F) ~ Rn2*Rf6m(RpE\%K', RK[F). 
(Indeed, one uses p\ = 7Γχ opE, the adjunction formula for and ΈΕ °p2 = οπ2.) 

A simple computation shows that we have 

Rpe\%k = Za[-2]. 
where Δ c Y2 is the diagonal, i.e., the set of all points of the form (x,s,s). The 
statement now follows. • 
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4.2.2. Singular support estimation. — Let us define the following set 

(85) C := {(σι,σ2)|σι = 0 or σ2 = 0} C Ε. 

Let U := E\C. 

Lemma 4.2.2. — Suppose G G 6y. Tften we ftave: 

S.S.(*(G))nr(y x C/) C {(ζ,^,σ,ω,Ο,δασ)} C T*(F x Î7), 

w/iere (x, 5) G X x M2 = Y; σ G C/; ω G TX*X; Μσ G Ϊ^ΕΛ 

Proof. — First of all, by [5, Prop.5.3.9], 

(86) S.S.(Zk) = {((5,5/ ,σ),λφ-5 , ,σ)) : λ(β-β',σ) = 0, λ > 0, <β-β ' ,σ)>0}. 
By [5, proof of Prop.5.4.2], S.S.p\G is contained in the following subset of T*(Y2 x 

(a;, 5, s', σ, α;, ads, 0 · aV, 0 · da), 
where (x,s,u,ads) G Qy. 

Let us now check that 
(87) S.S.p[G Π S.S.ZK C {zero section}. 
Suppose we have an element η in this intersection which does not belong to the zero 
section. It should be of the form as in (86). Since η φ 0, λ > 0 and (s — sf,a) = 0. 
We have 

Xd(s — s', σ) = X(s — s\ da) + X(ds — dsf, σ). 
The ds' component of η is thus — X(ds',a). In order for η G S.S.^G, this component 
must vanish, which implies σ — 0. Analogously, ^σ-component of η must vanish as 
well, i.e., 5 — s' = 0. This implies that 77 is in the zero section, contradiction. This 
proves (87). 

It now follows that 
S.S.BJam(ZK;p[G) c S.S.^G) - S.S.(ZK) 

(where "—" means subtraction in each fiber of Τ*(>2 x E)), [5, Cor.6.4.5]), i.e., 
(88) S.S.RMm(ZK-p\G) C {(x,s,s',σ,ω,ads - Xd(s - s',σ))} 

where 

(89) (x, s,u;,ads) G Oy 

and s, s', σ, λ satisfy the same conditions as in (86). 
Now let us estimate 

S.S.Rp2*RMm(ZK',p[G) = S.S.(*(G)). 
By [9, Lemma 3.3], we have: if (a')°d(s')° φ 0 , then 

(x°, (β') V V 0 , (a')0d(s')° + b0da°) £ S.S.Rp2*RJ6m(ZK;p[G) 

E): 
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as long as: there exists ε such that R$am(ZK;p[G) is nonsingular at all points 
(x+, s*, s*, σ*, ω*, a*ds + a'+ds' + b*da), where 

(90) |x* — a;01 < ε, any s* € K2, | < - ( e ' ) ° | < e , | σ . - σ ° | < ε , 
|ω* -ω° |<ε , |α*| < ε, Κ ~ (α')°| < ε, 16* - 6°| < ε. 

Thus, the proof of Lemma 4.2.2 reduces to the following statement: 
Let (x°, (s') W ° , (a')°d(s')° + b0da°) € T*(Y χ Ε) satisfy: 

α) σ° = (σχ,σ®) *s su°h that 
(91) σ? ^ 0 and σ? ?έ 0: 

(a')° 7̂  0. 
Then for some ε dodordod> 0 are no solution (x+, s*, s*, σ*, ω*, a*, a*, &*) 0/ £/ie inequal­
ities (90) satisfying the conditions (coming from (88)^ 

(92) *̂ — 5̂ — 5, S. — S , (T* — (J, 
ω* = a;, a* = α — λσ, al = λσ, 6* = —λ (s — s'), 

sîzc/i ί/ιαί condition of (86) and (89) hold. 
Eliminating the variables with • and conditions on χ, ω, 6, we must, for fixed 0-vari­

ables find ε making the following list of conditions inconsistent: 
1. |e'-(*')0| < e 
2. | σ - σ ° | < ε 
3. |α - λσ\ < ε 
4. |λσ-(α ' )° | <ε 
5. αϊ = 0 or α2 = 0 
6. λ > 0 
7. λ(β-«',σ> = 0 
8. (β-β ' ,σ) > 0 
Indeed, suppose there is a solution to this system of inequalities such that a\ = 0. 

Then by condition 3, |λσι| < ε, i.e., 

(93) |λ |< ε 
M 

By condition 2, 

(94) |σ| < |σ°| + ε. 

Combining condition 4 with (93) and (94), obtain 

(95) ε > |(α')° - λσ| > |(α')Ί - λ · (|σ0| + ε) > |(α')°Ι ε 
d+r+d > ° | + ε) 

If we choose ε > 0 to satisfy (cf. condition a)) 

(96) ε < 
1 
2 

πήη{|σ?|,|σ9°|} 
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then (95) yields 

(97) e > | ( a ' ) ° | -
2ε 
Ισ?| (|σ°|+ε). 

We have assumed αχ = 0 above; if we assume a2 = 0 (cf. condition 5), we get an 
analogous inequality. Choosing ε > 0 to satisfy (96) and to violate both (97) and its 
analogue for a2 = 0, finishes the proof. 

4.2.3. — 

Lemma 4.2.3. — Let G e Ob(tfY). Then 9(G)\YxU = 0. 
Proof. — Let q : Y x U —y Χ χ U be the projection q(x,s,a) = (χ,σ). We have a 
natural map 

ι : q^Rq^G^Yxu) - *(G)\YxU 
By virtue of Lemma 4.2.2 and the fact that the fibers of q are diffeomorphic to M2, 
we see that ι is an isomorphism. 

It now remains to show that Rq*(^(G)\Yxu) = 0. 
Let Κυ := Κ Π (Y2 χ U). Let qx : Y2 x U -> Y x U, q2 : Y x U -+ F, q3 : Y x U -> 

X x U be the projections 
qi(x,s,s',a) = (χ,β',σ); 

q2(xys,o) = (x,s); 
q3(x1s,a) = (χ,σ). 

In this notation, 
Rq*(9(G)\YxU) = Rq^RMmYxU{Rqi{LKu',q2G) 

Finally, we observe that Rqi&KxU = 0 (pointwise computation). 

4.2.4. Representation of G. — Let %c : C C E be the closed embedding; here C 
is as in (85). Let Kc '·= Κ Π (Y2 χ C). Let 

p^ :Y2xC ^Y2^Y 
and 

ρξ : Y2xC Π 2XIDÇ Y x C. 
Let ac : Y x C —» Y be the projection. Let G G ί?γ. It now follows from Lemma 4.2.3 
that Ψ((3) = (idy x ic)*(idy χ ic)_1^(G), which together with Lemma 4.2.1 yields 
a natural isomorphism 

G s Rq?RpgBJ6mY2Xc(ZKc; (p?)lG)[2]. 
So that we have an induced isomorphism 

KHom(F, G) S RRom(F;RqfRpgRMmY2Xc^Kc; (p?)!G))[2]. 
Let us rewrite the RHS. 

First of all, set 

*2 :=tf P2 : Y2xC -+ Y : (x, s, s', σ) h-* (x, s'). 
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We then have 
PHom(F; Rq?RpgR^Y2xC(ZKc;(p?)lG)) 

= JRHom((^c)-1F;^(ZiCc; (pf )!G)) 
= RRomitâ^F 0 ZKc; (pf )!G). 

Next, we factor = aC7rf, where 
π? : Y2 x G πι-^° F x G 

so that we can continue 
RRomitây'F <g> Z*c; (pf )!G) = i f f l o m y x c ( ^ f ) ! ( ^ 0 ZKc); (qC)lG). 

Let us show that F := Rn^ (^2)~1F 0 κ̂γ<?) = 0 under assumptions on F from 
Theorem 4.1.2. Indeed, let (α,Ο) G G, α ^ 0. Then, for any F G D(y), we have 

RPV.F = F|yx(a?0). 
Similarly, 

RP2\F = F|yX(o5a). 
Finally, 

RPQ\F = F|yx(0,o)> 
where Po : Y x G —• Y is the projection. Since Po passes through Pi, all the restriction 
listed vanish under assumptions from Theorem 4.1.2. This concludes the proof. • 
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CHAPTER 5 

ORTHOGONALITY CRITERION 
FOR A GENERALIZED STRIP 

5.1. Conventions and notations 
Let a G (0,π/2) be an acute angle, same as in Section 1.1.1. 
Set e = e~iOL\ f = eia so that e, f is a basis of C over R and every complex number 

ζ can be uniquely written as ζ = xe + yf, x, y G R so that we identify 

(98) C ^ R2 

using the coordinates (x,y). 
Define a generalized strip which is a set of one of the following types: 

First type: 

(99) S = {xe + yf : χ > 7; y G (A, B)} C R2 = C, 

where —oo < 7 < 00 and —00 < A < B < 00. 
Second type: 

(100) S = {xe + yf : x < 7; y e (A, B)} C R2 = C, 

where —00 < 7 < 00 and —00 < A < B < 00. 

5.1.1. Convolution. — Let M, N be smooth manifolds Define a convolution bi-
functor 

* : D(M χ R2) χ Ό(Ν x R2) Ό (Μ χ Ν χ R2) 

as follows. Denote 

(101) A : M x R 2 x i V x R 2 - > M x i V x R 2 : A(m,u,n,v) = (m,n,u +υ) 

We now define 
F*S:= RA\(F KL S). 
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5.1.2. The category c?s.— Let Os C T*(SxR2) be a closed conic subset consisting 
of all points 

(#1,2/1,^2,2/2,^1^1 + b1dy1;a2dx2 Jrb2dy2) 
where (#1,2/1) G S and (αϊ,61) = ±(02,62) · 

In terms of the complex coordinate ζ = xe + yf and the identification (98) we have: 
= {(^, 5, adz + bds\z G S, s G C, α = ±6}. 

Let rJs C D(SxR2) be the full subcategory consisting of all objects microsupported 
within Qs-

5.1.3. Rays Z+ and 1-. — Let 
l+ := {(x,0)\x > 0} C R2 ; I- := {(x,0);χ < 0} C R2, 

5.1.4. Projectors P±. — Let us define the following projectors P± : S x R2 —• R2, 
where 
(102) ^±(#1,2/1,^2,2/2) = (x1±x2;y1 ±y2). 

5.2. Formulation of the criterion 

Our criterion is then as follows. 

Proposition 5.2.1. — Consider constant sheaves Zj± G D(R2). Let F G D(S x R2) 
and suppose that one of the natural maps 
(103) Zi+ *F~-+Z0*F = F 

(104) Zt_ * F -> Z0 * F = F; 
is a quasi-isomorphism. 

Suppose that both RP+\F = 0 and RP-\F = 0. Then F G -Lë?s. 

The rest of this section is devoted to proving this criterion under the assumption 
(103). The case (104) is treated in a fairly similar way and is omitted. 

5.3. Fourier-Sato decomposition 

Denote by Ε the dual vector space to R2. We have the standard identification 
Ε = R2. Let (,) be the standard pairing Ε x R2 -* R. Let Z C Ε χ R2; Ζ = 
{(C,tOKC,">>o}. 

As was explained above, we have the convolution 
* : Ό(Ε x R2) x D(S χ R2) -> Ό(Ε x S x R2). 

For F G D(S x R2) set 
(105) F (F) := Zz * F G Ό(Ε x S x R2), 
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where Ζ z G Ό (Ε χ Ε2) is the constant sheaf on Z. Notice that F(F) is an analog of 
(but is not directly equal to) the Fourier-Sato transform of [5, Ch.3.7]. 

Lemma 5.3.1. — (Fourier-Sato decomposition of F) Consider the projection q : Ε χ 
S x R2 —• S χ M2. Then for any F G D(S χ Ε2), we have a natural isomorphism 

Rq\F(F)[2] = F. 

Proof — Let us introduce the following projections (where, e.g., P24 means the pro­
jection onto the 2-nd and the 4-th factor): 

Ε x S χ Ε2 χ Ε2 
d+'r+d Ρ23 

Ρ234 
Ρ24 

Ε χ S χ Ε2 
d+r 

- S χ Ε2 
Ρ13 

- S χ Ε2 χ Ε2 r :S χ Ε2 

Introduce the following closed subset 
Z' = {(£,z,x,y) : (£,χ - y) > 0} C Ε χ S χ Ε2 χ R2. 

We can now rewrite: 
¥(F) = Rp123i(ZZf0p^F)1 

hence 
Rq\¥(F) = Λρΐ3ΐΛρ234!(Ζζ' ®PuF) = 

(projection formula [5, Prop.2.5.13(h)] is used) 
= Rpis\(Rp234\Zz^r-1F) 

We have a natural isomorphism Rp<i3vZz> = Ζ8ΧΔ[-2], where Δ C R2 x R2 is the 
diagonal. The result now follows. • 

5.4. Transfer of the conditions RP±\F = 0 to FF 

Claim 4. — Let F G D(SxR2) satisfy RP±\F = 0. We then have R(idExP±)\¥(F) = 
0. 

Proof. — Let us pick a point (77, s0) G F χ R2 and show that, say, P(id# χ 
P+),F(F)|(t?,eo)=0. We have: 

R(idE x P+),F(F)|(l7,eo) = RTC(E x S x R2; (idE x Ρ+)-%η,8ο) ®L F(P)) 

= RTC(E x S x R2; Z(id£XP+)-i(7Mo) ® Λ4ι(Ζζ H P)) 

(106) [5' Prop^5-13(ii)l RTC(E x R2 x S x R2; ΖΛ_1ρ-ι(ΐ||βο) ®pUZz®p£F), 

where: 
P12 : F x R2 x S x R2 -» F x R2 

is the projection onto the first two factors; 
p34 : Ε x R2 x S x R2 -» S x R2 
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is the projection onto the last two factors; and finally, 

A : £ x R 2 x S x R 2 -> Ε x S χ R2 : (77, su z, s2) ·-> (r?, z, si + s2) 

(as in (101)). 
We have: 

A 1(idExP+) 1(η,80) = {fas1,z,s2)\s1 + s2 +z = so}. 

Note that 

A4-i(idBxP+)-i(TMo) ^^12 = ^A-i(idExP+)-i(V,s0) ® ^p'1 Z = L(A-i(idExP+)-Mn,sQ))r\p-}Z 
and put 

Τ := (A-^iUE x P+)-1(^ «ο)) Π = {fo «1^» *2)\8i +z + s2 = s0; (τ?, si) > 0}. 

Denote by i the restriction of P34 to Τ: 

i : T ^ S x R 2 : Τ 3 (η, su z, s2) ι-> (z, s2). 

We see that i is a closed embedding and that 

i(T) = {(ζ, 8)\(η, so-s-z)>0} = Ρ7λΚ9 Κ = {υ)\(η, s0 - w) > 0} C R , 

where P+ : S x R2 R2 is as in (102). 
We thus can continue our computation from (106) 

= RTC(E x R2 x S χ R2; ZT <g> P34F) 

(using that p34lF ~ p34:F[—4] since the fibers of P34 are homeomorphic to R4 and that 
RP34\PLF - F) 

= RTC(S χ R2; (Rp^\lT) ® F[-4]) = RTC(S χ R2; Zi(T) <8> F[-4]) = 

= RTC(S χ R2; P+XZK ® F[-4]) = 

[5, Prop.2.5.13(ii)] iflTc(R2; ZK ® iîP+!F[-4l) = 0. 

The equality RP-\¥F = 0 can be proven in the same way. 

5.5. Fourier-Sato decomposition for sheaves satisfying (103) 

Define: 

(107) Π+= {(ξ,η)€Ε\ξ>0} CE. 

Suppose (103) is the case. Then we have 

(108) ¥(F) ^ F(Zi+ * F) ^ (Zz * Zi+) * F. 
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5.5.1. Computing Zz * Zi+. — Introduce the following subset 

Z+ :=ΖΠ (Π+ x R2) C Π+ χ R2. 

Lemma 5.5.7. — We have an isomorphism 

(109) ZZ*ZZ+ = ZZ+. 

Proof. — The inclusion {0} w Z+ induces a map 
(110) Zz * Zl+ -> Zz * Z0 = Zz. 

It suffices to prove the following two statements: 
(1) Let x e Z+ C Ε χ R2. The map 

(111) (Ζζ*Ζί+)ίΒ->(Ζζ+)χ = Ζ, 

induced by (110), is an isomorphism. 
(2) Let χ Ε (Ε χ R2)\Z+. Then (Zz * Zz+)x = 0. 
In preparation for the proof of 1) and 2), for a point χ := (ζ, ν) Ε .E x R2, let us 

introduce a set 

Kx = {(C,u1,u2)\(C,u1) eZ;u2e + U 2 = v} C E x R2 χ R2, 

so that we have 

(112) (Zz * ZL+)X = RTc(Kx,ZKx). 
Let 

La:{(C,Ul,W2)|(C,Ul) € ^; ^2 = 0; ux + u2 = C £ x R2 χ R2 
so that 

(113) {ZZ*Z0)X = RTc(Lx,ZLx). 
We have Lx C ^ is a closed subset. Under the identifications (112), (113), the 

map (111) corresponds to the restriction map 

KTc(Kx,ZKx) - RTc(Lx,ZLx). 
Let ν = (vi,v2), ζ = (£,η). We then have 

Κχ = {(fav),(xuV2),(x2,0))\Çxi + ÏÏUi > 0;x2 > 0;zi + x2 = ι>ι}. 
The subset Lx C Kx consists of all points with x2 = 0. 
The set Kx is identified with the set 

K'x :={(a?i,yi) G R 2 | ^ i + W i > 0 ; X I < VI}. 

The set gets identified with the subset Z4 of K'x consisting of all points with 
Xl = Vl. 

Let us check 1). Let π : R2 —» R be the projection onto the second coordinate. It 
suffices to check that the natural map 

ϋ7Γ|Ζ /̂_ —• RTTIZL^ 
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(induced by the embedding L'X C KX) is an isomorphism. We further reduce the 
statement so that it reads: the following induced map on stalks at every point y E R 
is an isomorphism: 

(114) {R*\ZKOV ^ (R*\%LOV. 

We have 

(115) {R*\ZK'X)V = RrC(KXY-ZK,XY); 

(Rn&L'Jv = RTC(L'XY,ZUXY)-

where 

(116) Ky = {(xi,v) € R2|£EI + VV > 0;xi < »i}; 

L'xy = {(xuy) e R2\fri + vy > o-,xi = 

The map (114) corresponds to the natural map 

(117) RTC{K'XY;ZK>XY)^RTC{L'XY;ZKY) 

induced by the closed embedding U C KXY. 
We have ^ > 0 (because x E II+ x R2), in which case either both V and K'XY are 

empty sets, or KXY is a closed segment and L'XY is its boundary point, which implies 
that (117) and hence (114) are isomorphisms. 

Let us now check 2). We have £ < 0. It suffices to check that {Rir\LKx)y=Q for all 
y E R. Using (115), we can equivalently rewrite this condition as follows: 

RTC(K';ZKL) = 0. 

As follows from (116), the condition £ < 0 implies that K'XY is homeomorphic to a 
closed ray, which implies the statement. • 

Combining (108) and (109), we immediately obtain: 

Corollary 5.5.2. — Suppose F E D(S x R2) satisfies (103). Then 

(118) suppF(F) C 11+ x S x R2. 

Motivated by the Corollary 5.5.2, set 

F'(F) := ¥(F)lu. E DtfK x S x R2), 

so that 

119) F'(F) = Zz+*F. 

Let 7T+ : II+ x S x R2 —• S x R2 be the projection. 
Lemma 5.3.1 and (118) imply the following isomorphism: 

(120) F[-21 ~ iÎ7r+!F'(F) = R-K+](ZZ^ * F). 
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5.5.2. Further reformulation. — Let us introduce a map 

Q :d+e+d+r+d+r+(3(ξ,η) = ηξ. 
Let also 

q : R x S x R2 -* S x R2 
be the projection. Finally, let us set 

W := {(a, (x,y))\x + ay > 0} C R x R2. 
There is a commutative diagram with a Cartesian square: 
(121) 

Z+ x S x R2 c Π+ x R2 x S χ R2 QxidM2xSxR2 R x R 2 x S x R 2 d i f x S χ M2 

A A 
Π+ x S χ R2 -

iff V Π Uz(v-a\w) 
R x S χ R2, 

d+r+d d+r 
S x R2 

The map A in this diagram is induced by the addition R2 χ R2 —• R2. 

Lemma 5.5.5. — i) "Zz+ *F is constant along fibers of Q χ idsxR2 " in the sense that 

(122) %z+ *F={Qx idSxR2)-1(Ziv * F); 
ii) If F satisfies (103), then there is a quasi-isomorphism 
(123) F = Rq\ÇZw * F)[ï\. 

Proof. — From the definition of a constant sheaf as a pull-back of Zpt, we have 
(Q x idK2)_1Z^xsxiR2 = Zz+xsxR2; and then, by the base change [5, (2.5.6)] in the 
Cartesian square of (121), we obtain (122). 

To prove (123), write 

F (1=0) Rn+,(ZZ+ * F)[2] (1= } χ idSxM2)-1(Zw * F)[2] 
= Λπ+!(ς x idSx]R2)-1JRA!(Z^ Κ F)[2] 

= RqiR(Q x idSxR2)!(Q x ids^^RA^Zw m F)\2] 

Q 1 = [ 1]^!ii(gxidsxE2)!(QxidsxR2)!(Zw*F)[l]=^!(Z^*F)[l]. • 

5.5.3. Rewriting the map (123). — Define a map I : R χ R2 —» i?, where R is 
another copy of R, as follows: Z(o, x, y) := χ + a?/. 

Let 
L : R x S x R 2 - > R x S x i î ; 

be given by L(a, z, u) = (a, Z(a, zz)). 
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Let W C R x R2 x R be given by 

W = {(a, (xu yi), t)\t -x-ay>0}. 

Let 
Ps : R x S x R2 x R -» R x R2 χ Ρ; 

Pmxr : R x S x R2 x R S x R2; 

and 
p M 2 : R x S x R 2 x P - > R x S x P 

be projections. 
We have the following cartesian diagram: 

(124) 
(a,ui,z,u2) I ^ (a,z,U2,i(a,ui +1x2)) 

d+r+d+ d+r+d+ 

(a,ui,z,u2) e H x r x S x r -
L ^ R x S x R 2 x P 3 (a,z,u,t) 

A PR2 

(α,ζ,υ,ι +u2) e R x S x R2 - L -R x S x R (a,z,t) 

d+r+d+r d+r+d 

(a, îx) h (a,2,^(a,u)) 

and W x R22 x S = L^ÇW' x S). 
By the base change [5, (2.5.6)] applied to the diagram (124), we have for all F 

satisfying (103): 

(125) ZW*F = L 1RpR2l(pRl<RF®ps1ZWf). 

Denote 

<$>F := Zw * F := RpR2i(p^lRF®p- 1ZW>) e D(R x S x R). 

5.5.4. Transferring Claim 4 to ΦΡ. — Let P'± : R x S x R -> R x R be given by 

(126) Pi (α, (x,y),t) = (a,x + ay±t). 

Lemma 5.5.4. — If F e D(S x R2) satisfies both (103) and PP+!F = 0 then 

(127) ρρ;,(φρ) = ο. 

Analogously, if F satisfies both (104) and PP_,P = 0, then RPf_^F) = 0. 
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Proof. — Proof of Lemma 5.5.4) Extend the diagram (124) as follows: 
(128) 

1 χ L2 X S χ I 2 L 1 x S x I2 x R 

Ε x S x R2 6 x id ΊΊ+ x S x R2 QxidSxR2 R x S x R2 

A 
L_ -R x S x R 

PR2 

d+r+ idK Χ P+ idn , xP+ d+r+d 

Ε x R2 tx'id Π+ x R2 · QxidR2 - R x R2 - L -^Rx R 

d+r+d d+r 

(a, w) h - (M(a, w)) 

where ι : Π+ ^ E is the open inclusion. 
We have = ΖΠ(ι χ idR2)II+ and Zz+ = (i x idR2)_1Z^. Thus by the base change 

[5, (2.5.6)], Zz+ *F G D(II+ x S χ R2) is quasi-isomorphic to (ι χ idSXR2)-1(Zz * F). 
Thus, 

R(idu+ xP+),(Zz+*F) [5, (2.5.6)] (ι x idE2)-1JR(id£; x P+)i(Zz * F) °la= 4 0, 

But on the other hand, 

¥(F) (=9) ZZ+*F (=2) (Qxidax1t2)-1(ZW*F) (=5) (Q x i d s x R » ) - 1 ^ - ^ 

hence 
P(idn+ x P+MQ x idSxM2)-1L-1#F = 0, 

or applying the base change [5, (2.5.6)] to the middle and right bottom squares of 
(128), we have 

(Q x idM2)-1(£T1PP;!^F) = 0. 
Since both maps (Q χ id^) and V are locally trivial fibrations with a vector space 
as a fiber, we conclude that RP+fèp = 0. • 

5.6. Rewriting the condition of orthogonality to 

Let F satisfy the conditions of Proposition 5.2.1 (assuming (103). Let H € r?s5 
where Ss is defined in Section 5.1.2. Proposition 5.2.1 now reduces to proving that 
jRHom(F, H) = 0. 

Let us investigate i2Hom(F, H) using the representation (123) of F. We have: 

RHom(F,H) (=3) REom(Rqi(Zw * F) ,#) [ - ! ] (=5) PHom(Pg!L-1(#F);#)[-!] 

(129) = PHomRxSxfl^F;PiW#)[-l]-

Singular support estimate shows that 
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Proposition 5.6.1. — We have: 

S.S.RL*qH C % , 

where 

(130) d+r+d+r+d 
"+" and "—" 

{(a,xi,2/i,t,R.(d(xi + ayi) ± dt) + R.da)} 

and where a £ R, (xi,yi) £ S, t e R. 

Proof. — Because q is a projection on a direct factor, by [5, Prop.3.3.2(H)] we have 
S.S.qH = S.S.q~1H which in turn can be, using [5, Prop.5.4.13], estimated by (in 
the notation of that proposition) tqf(q~1(S.S.(H))); thus 

S.S.qH C {a,z,u,ada + vdu : ζ = ±υ}. 

By [5, Prop.5.4.4], 

S.S.RL^qH C L7r(tLf 1 {a,z,u,ada + ζάζ + vdu : ζ = ±ν}). 

We have 

T*(RaxS,xR2 0 d+r Ra x S, x R2 } x(Kaxs2xKt) T*(Ma χ Sz χ ft) 
(a, z, u, ada + (dz + £da; 4- rçd?/) (a, z, ix, ada + (dz + rdt) 

ν = (ξ,η) t = £(a,u) 
dx + adt/ + t/dad+d+r+d+rdt. 

Thus 

S.S.RL*qH C Ln({a,z,u,ada + Cdz + rdt : ζ = ±τ(1,α)}) = 

= {a, z,t,ada + ζάζ + rdt : ζ = ±τ(1,α)} 
which is equivalent to (130). 

Thus, Proposition 5.2.1 follows from the following one: 

Claim5. — Let Φρ,Μ £ D(R x S x i ? ) satisfy: RP±^F = 0 (where P± are as in 
(126) J; S.S.^i C Ω#, where Ω# is as in (130). Then we have: 

#Ηοιη(Φ^;^) = 0. 

5.7. Subdivision into three cases 

We are going to subdivide the space R x S χ R with coordinates (α, îx) into 3 
parts according to the sign of a. 
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5.7.1. Subdivision of R x S x R 

U+ := (0, oo) x S x R C R x S x R 
U- := ( - o o , 0 ) x S x f l c R x S x , R ; 

i / 0 : = 0 x S x i 2 c l x S x i ? . 
Denote 

j± : U± -+ R x S x R 
the corresponding open embeddings and by 

i0 : U0 -> R x S χ R 
the corresponding closed embedding. 

5.7.2. Subdivision of Φ^. — Set 

Φ± :=j± «dr+dF 6 D t/±); 
Φ0:=ίη $ F € O(UQ). 

We have a distinguished triangle 

(131) iff V Π Uz(v-a\w)+sd+zs+s5ed+s+ 
Let 

ΡΪ+ := P'±j+; pZ~ := P'±j-; Pu° = P'±i0 
be the restrictions of P± from (126) onto E/+, Î7_, and Base change theorem implies 
that 

Ρ ^ Φ + = 0 ; 

pf,-*- = o 
Ρ£?Φ0 = 0. 

5.7.3. Subdivision of tt. — Let ${± e D(l/±); 
# ± :=d+r+d+r+z+s J i1^-

Let 6 D(t70); 
d+r+d+r+d+r+d 

Let us estimate the microsupports of these objects. Let 
Ω^± := % n f i / ± c r C / ± , 

where we assume the embeddings T*U± C T*(R x S χ R) induced by j±. 
It is immediate that S.S.(<#±) cfi[/±. 
Let 

ΩΩ := 
"+" and "— " 

{(xi,2/i,i,R.(dxi ±di)} C T*(S χ β), 

where, same as in (130), (xi,yi) are coordinates on S, and t on R. 
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Corollary [KS] 6.4.4(ii) implies that 
S.S.(^o) C Ω0. 

5.7.4. Subdivision of Claim 5. — By virtue of the distinguished triangle in (131), 
Claim 5 gets split into showing the following vanishings: 

imomExSx*0+^+;^) = ΛΗθΗΐ£/+(Φ+;ι#+) = 0; 
ifflomRxSxflU-!*-;^0 = #Homt ;_^_ ;#_) = 0; 

#HomExSXjR(io$+;^) = ΉΗοιη^Φο^ο) = 0. 
Our task now reduces to showing the following three statements: 

Claim 6. — Let Φ+,^+ G D(C/+). Suppose #Ρ±^Φ+ = 0 and S.S.(^+) C Ωυ+. 
Then 

ΉΗοπι(Φ+,^+) = 0. 

Claim7. — Let Φ_,<#_ Ε D(17_). Suppose #Ρ±Γ$+ = 0 and S.S.(^_) C Ω^_. 
Then 

ΛΗοπι(Φ_,.#_) = 0. 

ClaimS. — Let Φ0,^0 G D(t/0). Suppose ΛΡ^Φο = 0 and S.S.(#o) C Ω[/0. Tften 
βΗοπι(Φο,.#ο) = 0. 

5.7.5. Further reduction. — Let 0 be one of the symbols: +, —, or 0. Let 1+ := 
(0,oo); I- := (-oo,0); I0 ·= {0}. Let 

: 17$ x S χ R -+ /<> x R x R 
be given by 

Q<>(a,(x,2/),i) := (a,x + ay,t) 
(in the case 0 = 0 we assume a = 0). Denote by V<> C l x l x H the image of Q'^. 
Depending on S, V<> can be of one of the following types: 

(1) For some linear function /<> : 1$ —> R, 
V<> = {(α,ν,ί)|α G J<>;t; > /(α);}. 

In this case, set U<̂> := 1$ χ (0, oo) χ R; set 
Qx : Uo - Uo, 

Qi(a, := (a,χ + ay - f(a),t). 
(2) For some linear function /<£> : —» R, 

Vo = {(α,Μ)|α € 1<>;ν < /(α)}. 
In this case, set U<> := J<> χ (—oo,0) x R: set 

Qi :tfo-+U<>; 
Qi(a, {x,y),t) := {a,x + ay - f(a),t). 
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(3) 
= I<> χ Κ χ R. 

In this case, set U<> := 1$ χ (—oo, oo) χ R; set Q\ : —• U<>, 
Qi(a, (x,y),t) := (a,x + ay,t). 

It is easy to see that in each of the cases the map Q\ is surjective; furthermore it 
is a smooth fibration with its typical fiber diffeomorphic to R. We also see that the 
1-forms from vanish on fibers of Qi, which implies that the natural map 

# 0 -> QiRQutfo 
is an isomorphism. 

Set 
£o := RQv.Mo e D(U<>). 

Define conic closed subsets Ωυ± C T*U± as follows: 

Ωττ+ ·= 
"+" and "— " 

{(α, v, t, R.(dv ± dt) + R.da}, 

where (a,v,t) € U± C I± x R x R. Define a conic closed subset Ωυ0 C T*U0: 

Ωυ± := 
"+" and "—" 

{(0,v,t,R.(dv±dt)}. 

It is easy to see that 
S.S. (Îo)c i îu , . 

5.7.6. — We have 

i f f lom^o^o) = RRom^^QiZ^) = PHomu^ (RQv^^ £<>). 

Set G<> := RQv^^. Let P± φ : U<> -» R χ R be the restrictions of the following 
maDs R x R x P - > R x R : 
(132) (a. v. t) \-> (α. ν ± t). 

It now follows that 
RP£<>G<>=0. 

So, we can rewrite Claims 6—8 as follows. 

Claim 9. — Let G<>, e D(U<>) satisfy: 

(133) iff V Π Uz(v-a\w) 

S.S.(^0) G Ωυο. T/ien PHom(G0;^o) = 0. 

5.8. The case U<> = /<> χ (-co, oo) χ Ρ 
This case follows from Theorem 4.1.1 below. Below, we are going to consider the 

case U<> = /<> χ (0, oo) χ R. The case U<> = /<> x (—oo, 0) χ R is fairly similar. 
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5.9. Proof of Claim 9 for Ua = /<> χ (0, oo) χ R 

As above, our major tool is development of a certain representation of G. 

5.9.1. Representation of G. — Let Vi C /<> x R χ (0, oo) x R be given by 

(134) VÏ = {(a,ti,t;,i)| \t\ < υ}. 
Let V :— JTa x R χ (0, oo) χ (0, oo). We have an identification J : V —» Vi, 

(135) J(a,u,£i,£2) = (a,u. 6 + 6 6 - 6 , 
2 ' 2 

Let Ii : V\ —• /<> χ (0, oo) χ R be given by 
(136) Ii(a, tx, = (a,v,u + i). 
Let I = Ii J: 

I ( a , ^ ,6 ,6 ) = (a d+r+d+ 
2 u + 

6 - 6 , 
2d 

so that ξι = ν + t; ξ2 = ν — t. 
Let çi,g2 : V /φ χ R>0 x R>0, 

(137) Ci(a,w,6,6) = i = 1,2. 
Let us summarize our notation in the following diagram (a wavy line indicates that 

a sheaf is defined over the given space) : 

(a,u,v,t) (α, ν, u + ί) 

m d+r+d 

X x R x (R>0 x R) D Vi = ί (α, u, υ, t) : |ί| < ν} • Ιι Jo χ R>0 x R — G 

j ι 
H — V = /<> x R x R>0 x R>0 d+r+ - Ja x R x R>0. 

s+e+d+ d+r+d 

(a ,u ,6 ,6) > (a,u,&) 

Claim 10. — Suppose that an object G G D(/a x (0, oo) x R) satisfies (133) both with 
the sign and with the sign There exists an object H G D(V) such that 

(1) both RqvH ~ 0 and Rq2\H ~ 0; 
(2) KL\H ~ G. 

Remark. Observe that (133) reads as follows: RPLG = 0, where 

(138) P± : J<> x (0,oo) x R - > R x R : Ρ^(ο,υ,ί) = (α ,ν±ί) , 

same as in (132). 
Proof of this Claim will occupy the next subsection 
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5.10. Proof of Claim 10 
5.10.1. Functors r\ and r2 and their properties. — For F G D(J<> x R x 
(Ο,οο) χ (0, 00)) we have natural maps (coming from the adjunction) 
(139) F-*q[RqvF; F q2Rq2\F. 
Let 7*1 (P),r2(P) be the cones of these maps so that we have natural maps (in the 
conventions of [5, Ch. 1.4]) 
(140) n ( F ) - F [ l ] , 

(141) r 2 ( F ) - F [ l ] . 
We therefore have a composition map 

(142) nr2F->F[2]. 

Lemma 5.10.1. — We have Rqv.rir2 — Rq2\T\v2 = 0. 

Proof. — First of all we observe that 
(143) Rqvn ~ 0, Rq2\r2 ~ 0. 
Indeed, the question boils down to showing that Rqu applied to (139) yields a quasi-
isomorphism Rq\\F Rquq[Rqi\F. 

There is a natural transformation of endofunctors on D(/<> χ R χ (Ο,οο)): ε : 
Rqv.Qi —> Id (since Rqw is left adjoint to q[). Since q\ is a projection along (Ο,οο), it 
is well known that ε is an isomorphism of functors. By [6, Ch.IV.l, Th.l(ii)], there 
is a diagram 

RqvF >- Rqnq[RqvF 

Rqv.F 
in which the vertical arrow is induced by ε, which implies that the vertical arrow is 
an isomorphism, hence, so is the horizontal arrow. This finishes proof of (143). 

Secondly, we have a natural quasi-isomorphism 
(144) 7*1 r2 ~ r2ri. 
Indeed, let us represent qi,q2 as convolution with kernels. Let A,B,C be smooth 
manifolds. We have the convolution bifunctor ο : Ό (A χ Β) χ Ό (Β x C) -» Ό (Α χ C) 
defined by 

(145) F ο G = RnAC\(irlABF 0 nlBCG). 
Let A = R, B\ = B2 = (Ο,οο), C = pt so that P is a sheaf on Α χ Βχ χ P2, 

qi : A\ χ B\ χ P2 —• Α χ B\ χ C is the projection along P2. 
We have RqvF = FoZB2xc> 
Set qfG * q^G[l] = G ο ZCxb2 [1]. 
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Let us construct an isomorphism (natural in F and G) 

BHom(RqvF;G) ^ ifflom(F;gf G). 

Fix one of the two maps I : A\ZB2 —• ZB2XB2[1] sucn that the induced map 
RP\A\ZB2 ~~> PP\^B2XB2[M is an isomorphism, where Ρ : B2 x B2 —> -B2 is the 
projection alone: the second factor. We have an induced map 

a : F % F ο Δ,Ζβ2 Λ F ο ΖΒ2χΒ2 [1] ̂  qfRqvF 

It follows that this map induces an isomorphism 

(146) RqvF RquqfRquF. 

The induced map 

(147) ifflom(#ai!F;G) flHomfaf .RanF; qfG) #Hom(F;gf G) 

is an isomorphism for all F, G. Indeed, the right arrow is an isomorphism because of 
(146). The left arrow is an isomorphism because we have an isomorphism of functors 
qf G = G Kl Z[l] and the statement now follows from the Kunneth formula. 

Thus we have constructed an adjunction between the functors qf and Rqu in the 
sense of [6, Ch.IV.l]. In case G = RquF, the map (147) sends idRqvF to q[(idRqvF)0 
a = a, therefore a is the universal arrow associated to the adjunction (147) in 
the sense of [6, Ch.IV.l, p.81]; by the uniqueness of an adjoint functor, see [6, 
Cor.l, Ch.IV.l, p.85] and its proof, this means that a coincides with the "standard" 
adjunction map (coming from [5, Ch.3.1]) up to some natural autoequivalence of the 
functor gi^gii. This means that we have a canonical isomorphism of functors qf = q[ 
so that we won't make difference between qf and ĝ  We have 

(US) q[RqvF = F ο (ZB2xC ο ZCXB2)[1] = F ο ZB2XB2[1]. 

The above consideration shows that r\F = Cone α ~ F o ^ , where £\ := Cone(7 : 
A,ZBA -Ζβ3Χβ2[1]). 

Analogously, r2F ~ F ο £2, where £2 := Cone(J : A\ZBl %ΒλχΒλ [1])· 
Therefore, 

nr2F ~ F ο [£x M £2] a r2nF, 

as we wanted. 
We now have: Rqi\r\r2 = 0 because of (143) and 

(149) Rq2\rxr2 
(144) Rq2\r2rx 

(143) 0. 

This accomplishes proof of Lemma. 

5.10.2. Construction of the object H and proof of the Claim 10 1). — We 
set Φ = I!G and Η := ΓΙΓ2(Φ). Lemma 5.10.1 says that RquH ~ 0 and Rq2\H ~ 0, 
which proves part 1) of the Claim 10. 
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5.10.3. Reduction of part 2) of the Claim 10. — Let us deduce part 2) of the 
Claim 10 from the following statement. 

We have a map 
IH : Η = ΓΙΓ2Φ -> Φ[2], 

where the right arrow is defined in (142). Let us apply the functor PL to LH SO as to 
get a map 
(150) RLH -> ΚΙ\Φ\2] 

Claim 11. — The map (150) is an isomorphism. 

This Claim implies part 2) of the Claim 10. Indeed, we can rewrite (150) as follows. 

RLH -> ΡΙ.Φ[2] = RLtG[2] ^ G[2], 
where the rightmost arrow is an isomorphism because I is a smooth fibration with 
fibers diffeomorphic to R1. 

We now pass to proving Claim 11. 

5.10.4. Subdivision into three cases. — The map (150) factors as 

Rl\rir2(&) (140) Μ!Γ2(Φ)[1] (141) J RhM2]. 
As I!G = Φ and by [5, Prop. 1.4.4.(TR3)], the cone of the right arrow is isomorphic 

to Rl\q2Rq2\llG[2]. Analogously, the cone of the left arrow is RY\q\Rqi\r2$[\] which, 
by definition of r2, is the cone of the natural arrow 

Rl\q[Rqi\j}G —• Rl\q[Rqi\Rq2Rq2\t'G. 
Thus, isomorphicity of (150) is implied by the following three vanishing statements: 

(1) RLq2Rq2]ÏG ~ 0 
(2) KLiq[Rqi\llG - 0; 
(3) RLq[Rquq2Rq2iVG ~ 0. 

5.10.5. Proof of the 1-st and the 2-nd vanishing. — Let V2 := /<> xRx (0, oo)4. 
Let πι, π2 : V2 be given by 

πι(α,ν,ξι,ξ2,£ί,ξ2) = (α,υ,ξ1,ξ2) 
and 

L2 :={(α,υ,ξ1,ξ2,ξ'1,ξ'2)\ξ2=ξ'2};+x+x+d 
Let I/2, C V2 be a closed subset of the form: 

L2 :={(α,υ,ξ1,ξ2,ξ'1,ξ'2)\ξ2=ξ'2}; 

Lemma 5.10.2. — For any F G D(V) we have 
q2Rq2\F = P7r2!(ZL2 Ο n^F). 

Proof. — Similar to proof of (148). 
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Let X2 := Jo x °°) x R) x °°) x R)- Let ?rf, : X2 -» J0 x (0, oo) χ 1 be 
the projections along the 3rd and the 2nd factors respectively. Define closed subsets 
L± C X2: 
L± = {(a, (si,ii), (s2,i2)) G Jo x ((0,oo) x R) x ((Ο,οο) x R) : s i±£ i = s2±t2} 

Lemma 5.10.3. — For any F e D(J± x (0, oo) x R), 

{PÎ)-1RPLF = Rn${ZL_®nX F), 

where the map P i was defined in (138). 

Proof. — The proof is analogous to the proof of Lemma 5.10.2. 

We now have 
RLqlRq2\ÏG[-2] ~ RLqô1 RqvJ^G 

(151) L2 :={(α,υ,ξ1,ξ2,ξ'1,ξ'2+f+ 

where Έ[ = Ιπ* : F2 —> Jo x (0> oo) x R, as easily follows from Lemma 5.10.2. 
Let us define the following map 

J2 : Jo x R x ((0, oo) x R) χ ((0, oo) χ R) ^ Jo x ((0, oo) x R) χ ((0, oo) χ R) = X2 
as follows: 

J2(a,v,(s1A1)Js2A2)) = (a.si,v + t1,s2,v + t2). 
Let us also define a map (which is a closed embedding) 

K2:V2^ I^xRx ((0, oo) x R) x ((0, oo) χ R) 

as follows: 

Κ2(α,ν,ξ1ιξ2,ξ[,ξ2) := (α,υ, 6 + 6 ξ ι - 6 £ί+£2 £ί-£2Λ 
2 ' 2 ' 2 ' 2 

It follows that π[ = π* J2K2; π2 = π2 J2K2. 
We can now rewrite (151) as follows: 

J2l!g2Jfy2!I!G[-2] - RLq^RqyJ^G 

~ Rn${(RJ2]RK2]ZL2) ® ( π * ) " ^ ) , (152) 
Let 

c Jo x R x ((0, oo) x R) χ ((0, oo) χ R) 
t>e a closed subset consisting of all points (α, v, si, ti, s2, t2) with si — fi = s2 — t2. 

It is easy to see that K2(L2) C L2 is an open embedding. Indeed, K2(L2) consists 
Df all points (α,υ, si, £i, s2,t2) with si — ti = s2 — £2 , si > |ti|, s2 > |t2|. 

Therefore, we have a map RK2\ZL2 -» ZL'2 which induces a map 

(153) Rn$((RJ2,RK2iZL2) ® (π^)-1^) -> RTT£{{RJ2{Il.) ® (π^)"^). 
The cone of this arrow equals 

L2 :={(α,υ,ξ1,ξ2,ξ'1,ξ'2)\ξ2=ξ'2}; 
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where 
M ~ RJ2\ZN, 

and Ν = L'2\K(L2). Let us now show by a pointwise computation that M ~ 0. Indeed, 
let α := (α,σι,τι,σ2,τ2) € X2) be a point. Let us consider H*(Ma) = if*(J2-1a; Z). 

If σι — τι 7̂  σ2 — r2, then J2-1a = 0. If σχ — τχ = σ2 — r2 = /ι, then J2_1a gets 
identified with the set of all ν G R satisfying: either σι < \τ\ — v\ or σ2 < |r2 — ν\. 
Let us denote this set by Ya C R. It follows that Ya consists of all points ν satisfying: 
h + v<Qorh + v> 2σ, where σ is the maximum of σχ and σ2. In other words, Ya 
is a disjoint union of two closed rays so that H*(Yail*) = 0. This shows that M ~ 0. 

The map (153) is therefore a quasiisomorphism. In view of (151), the first vanishing 
will be shown once we prove that 

(154) Rnfi({RJ2\ZL>2) ® {^)~lG) ~ 0. 
But RJ2\LL>2 = [-1], and hence the l.h.s. equals (Pl)~l RP}_yG[-l] which is zero 
by (133). 

The second vanishing is shown analogously. 
Proof of the third vanishing Define the following subset 

L c J<> x R x ((0, oo) x R) χ ((0, oo) χ R)) : 

L = {{a1v,s1,t1,s2,t2)\(a,v,si,t1), (a,v,s2,t2) G V}. 
Similar to the proof of the 1-st vanishing, one shows that 

RLq[Rqilq2Rq2lï'G[-3] ~ R^{{RJ2{LL) ® (TT^)"1*?), 

where 
J2 : /<> x R χ ((0, oo) x R) χ ((0, oo) χ R)) X2 

and 
π*, π* : /<> x R χ ((0, oo) x R) χ ((0, oo) χ R)) -> /<> χ (0, oo) χ R 

are the same as in the proof of the 1-st vanishing. 
Observe that 

J2(L) = {(α,(*ι,ίι),(β2,*2))| \h~t2\ < 5χ + s2}. 
the projection L —• J2(L) is a smooth fibration whose fibers are diffeomorphic to R1; 
we now see that 

PJ2!ZL-ZJ2(L)[-1]GD(X2). 
We therefore need to show that 

^(Zj2(L)(8)^2x)-1G)-0 

The complement to J2(L) in X2 consists of two components 

X2\J2(L) = M+UM_, 

where 
M+ = {{(X,(sut1),(s2,t2))\ h~t2> 5i +52} 
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and 
M_ = {{(x,(s1,t1),(s2,t2))\ t\-t2< -*\ -s2}. 

We thus have a distinguished triangle 

-* Βπΐ!(ΖΛα) ® π"1 F) iWZX2 (g) πΓ1 G) -> Rnv(ZM+ Θ πΓ1 G) Θ iWZM_ Θ TT^G) ^ 
which cornes from a short exact sequence 

0 -> Zj2(L) -+ ZX2 -> ZM+ θ ZM_ -> 0. 
The second term of this triangle is quasi-isomorphic to 

tt-^tt.G, 
where π : 1$ χ (0, oo) χ R —> J<> is the projection. It follows that Rn\G ~ 0 because 
π passes through P\ (as well as P?) from (133). 

We thus need to show that Rn$(ZM± ® {^2)~XG) ~ 0. 
Introduce the following subsets N± C /<> x ((0, oo) x R) χ R: 

iV+ = {(a, (81,t1),y)\t1>81+y} 
and 

iV_ = {(a,d+d+r+d+d+rii < - s i - ? / } . 
Let gi : /<> x ((0, oo) x R) χ R -» (0, oo) χ R and q2 : 1$ x ((0, oo) x R) x R -> R 

be projections. We then have 
#π?ί(ΖΜ+ Θ (Tri)"1^) ~ ^ιι(ΖΝ+ (8) g^PP+.G) - 0 

because RP^G = 0 by (133). 
This completes the proof of the 3rd vanishing as well as the proof of Claim 10. 

5.11. Finishing proof of Claim 9 

Let /<> x R>o x R, the target of the map Ii from (136), have coordinates (α,ν,η). 
Let G, if, I be as in Claim 10 and let H' be a sheaf on 1$ x R>o x R microsupported 

on the set 
(155) 

"+" and "—" 
(a,v,rç,R.d(i;±7j) + R.da). 

We then have 
RRom(G,H') - RRom(RLH,Hf) ~ KRom(H, ΪΗ'). 

By [5, Prop.5.4.5(i)l, it follows from (155) that 

(156) S.S.(I!#') C {(a,u,Ç1^2,bda + wdu + T1d£1+T2dÇ2 ' n = 0 or r2 = 0}. 

Set Α' = Η,Β' = IlH'. 
Let also gi, q2 : /<> x R χ (0, oo) χ (0, oo) —• /<> x R x (0, oo) be projections as in 

(137): gi(a,u,£i,£2) = (a,u,&). 
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We then have Rqi\A' = 0, i = 1,2, by Claim 10,1), and we have the estimate (156) 
for Ρ' . 

Let us identify diffeomorphically R —> (Ο,οο). Under this identification, we have 
two sheaves A, B on Y x R χ R, where Y = 1$, χ R, such that 

(1) PpiîA = Rp2\A ~ 0, where pi,p2 : F x R x R —• R are projections; 
(2) Β is microsupported on the set of points (y,ui,u2,u + vidui 4- ̂ 2^2)5 where 

cj G wi, 1/2 € R; vi = 0 or v2 = 0 (or both). 
By Theorem 4.1.1, PHom(A, B) = 0, which finishes the proof of Claim 9, as well 

as Proposition 5.2.1. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2013 





C H A P T E R 6 

P R O O F OF T H E O R E M 3.4 

In Section 3.6 -3.13, we have constructed objects Φκ, ΦΓα, ΦΓ~α, as well as maps 
ίφκ : ZXoXX[-2] -> Φχ, 2φΓα : ΖΧοΧΓα[-2] -> ΦΓ«, and ίφΓ_α : ZXoXr_a[-2] -> ΦΓ-«. 
In order to finish the proof of Theorem 3.6.1, it now remains to prove: 

(1) Each of the objects Φκ, ΦΓα, ΦΓ~α belongs to ί?, to be done in Sec 6.1. 
(2) Cones of the maps ζφκ,ίφτα, ιφτ-α are in ±(&, to be done in Sec 6.2 
We only consider the case of Φκ (and the map ίφκ), because the arguments for 

the remaining cases are very similar. 
Proof of 2) is based on the orthogonality criterion of the previous section (Propo­

sition 5.2.1). 

6.1. Proof of Φκ e g\ 
Consider open subsets Σ^ C X, where Σ^ is the union of two neighboring open 

strips IntPi, IntP2 and their common boundary ray £. It is clear that Σ^ form an 
open covering of X. 

Let us consider the restriction estimate ΦΚ|ς*χ€· It suffices to show that 
S . S . ^ | s , x C ) c t t x n T * ^ x C ) 

for each element Σ^ of the open covering. Let us fix the notation: let Σ^ = Int Pi U 
Int P2 U i\ let P/ := Int P* U £, i = 1,2, be the closure of P* in Set for brevity 

F~ ΦΚ\έ£Χ€· 
Finally, we introduce the following sheaf on Σ^ x C: 

:= {̂(x,s)GE£xC : s±z{x)eK}-
Let us now suppose for definiteness that £ goes to the left. As follows from the 

construction of Φκ in Sec 3.8.4, 3.8.5, we have identifications (i = 1,2): 

F|P/x€ = (Λ*+ * 5+ Θ Λ£- * S_)|p/xC, 
as well as a gluing map (44): 

It1/2 : (Λ*+ * S+ φ A*" * S-)\txC - (Λ^+ * S+ Θ A*" * S-)\txC. 
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d+r d+r+ 
d+r 

d+r 

d+r d+r Ρ =P, 
3 2 P4 

FIGURE 1. A regular sequence - Notation 6.2.1. 

When restricted onto Λ̂ £+ * 5+|^xc, this map becomes the identity. This readily 
implies that we have an embedding 

L2 :={(α,υ,ξ1,ξ2,ξf+ 

whose restriction onto each P[ is just the identical embedding onto the direct sum-
mand. We can construct a surjection F —> ~ * S- in a similar way. All together, 
we get a short exact sequence 

0 - Λ£+ * S+ - F - Αξ~ * S- - 0, 
The marginal terms of this sequence do clearly have their singular support inside 

Ωχ Π Τ*(Σ^ x C), cf.(7), hence so does the middle term F. This finishes the proof. 

6.2. Proof of orthogonality 
In this subsection, we prove that the cone of the map ίφκ is in -1 g\ We will exhibit 

an increasing exhaustive filtration F of Φκ such that the map ίφ factors through 
Ρ1ΦΚ. Our statement then reduces to showing that Cone(Rg\Zsa[—2] —> Ρ2ΦΧ), as 
well as all successive quotients of Fl+1QK/Fl$K, i > 1, belong to -Lg'. 

6.2.1. Regular sequences. — 

Notation 6.2.1. — Let ληλη_ι · · · λι be a nonempty sequence of boundary o>rays. 
Call this sequence regular if for each k > 1 the rays λ& and λ&+ι are different and 

belong to the closure of a (unique) α-strip P&, fig.l. We also assume that Po is the 
initial strip (i.e., xo G Po). 

Note that, in general, a ray can occur in a regular sequence several times. 

6.2.2. Admissible rays. — We will freely use the notation from Section 3.8, such 
as £a, W, KK±. 

Let w G Wa be of the form £m£m-i * · · 1\{L or R} and let ί G £a be a boundary 
α-ray. We call ί λ, w-admissible, if there exists a k such that I = λ& and £m£m-i - — £\ 
is a subsequence οίλ^λ^_ι· · ·λι (i.e., there is an increasing sequence aci < · · · < «m 
such that £i = XKl, . . . , £m = \Km). 
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Remark 6.2.2. — Let w = £m£m-i * * * {L or R). If £m = £, then this condition is 
equivalent to £m£m-i — - £\ being a subsequence of λ; if £m φ £, then the condition is 
equivalent to ££m£m-i — ' £\ being a subsequence of λ. 

6.2.3. Subset P\tW. — Let Ρ be an α-strip. We define an open subset P\iW C Ρ 
as follows. 

(1) if every boundary ray of Ρ is not λ, admissible, then we set P\iW := 0. 
(2) otherwise (there are λ, ̂ -admissible boundary rays of P) we define P\jW as the 

union of Int Ρ with all λ, ̂ -admissible boundary rays of P. 

6.2.4. Subsheaves A** . — Let j := j£w : PXjW χ C -» Ρ χ C be the open 
embedding. 

As in Section 2.11, let Ap^ = Z*{(Xja): xep, s±z(x)eK}-
Accordingly, we can define subsheaves 

A p î „ : = J i J l A ? ± c A * ± 6 D ( P x C ) . 

Observe that A p ^ = 0 if Ρ has no λ, ̂ -admissible boundary rays. 

6.2.5. Subsheaves Φρ,Λ C Φρ. — We have an identification 

ΦΚ\Ρ = 
d+r+d+r 

Sw * Ap 0 
d+r+d+r 

Sw * 

For each regular sequence λ (where λ stands for ληλη_χ... Αχ), let us construct a 
sub-sheaf Φκ,λ C Φκ as follows. Set 
(157) Φρ'Λ := 

d+r+d+dd 
Sw * λ Θ 

d+r+d+r 
-Sw * Λ ρ | . 

We have an obvious embedding 
d+r+d+e+d+d 

6.2.6. Sheaves Φρ' match on the intersections. — Let Ρ and Ρ' be two 
intersecting α-strips; let £ = Ρ Π Ρ'. We then have two sub-sheaves of Φ|^, namely 
Φρ'Λ|̂ χ€ and Φρ/'λ|̂ χ€· Let us check that these two subsheaves do in fact coincide: 

Claim 12. — 
L2 :={(α,υ,ξ1,ξ2,ξ'1,ξ'2 

Proof. — Let w G Wa. Consider the following sheaf: Ap := A-p^wUxC- By defini­
tion, Ap = 0 unless £ is λ, ̂ -admissible, in which case Ap^ = A p ^ . 

Let W(i, λ) C Wa be the subset consisting of all w, where £ is λ, ^-admissi­
ble. Let W(i,X) = W( ,̂A)left U W(£,A)right, where W(£,A)left = W(^)nWfeft; 
W(i,A)right=W(AA)nW- t. 
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It now follows that Φρ,Χ\ίΧ£ι as a subsheaf of Φ p \exc = 0™ewa &w * + ® 
0 pWa Sw * Af , coincides with the following direct summand: 

fc right 
Φρ'λ|*χε = Φ(<?,λ) := 

to€W(<,A)i.ft 
Sw * 

w€W(£,À)right 

w€W(£,À)s+sd 

Analogously, we have an equality 

L2 :={(α,υ,ξ1,ξ2,ξ'1,ξ'2)\ξ2=ξ'2}; 
of subsheaves of 

d+d+d+r+d 
Sw * A f + 0 

™€W5ght 
SW*AP =Φρι\ίχ€· 

It now suffices to check that the sub-sheaf Φ(£, λ) is preserved by the gluing map 
from Sec 3.8.5. By definition of Γζκ , it suffices to check: let w G W(^, λ) and 

suppose £w G Wa (meaning that the leftmost ray of the word w goes in the opposite 
direction to £); then £w G W(^, λ). Indeed, w G W(^, λ), £w G Wa is equivalent to £w 
being a sub-sequence of λ, which is the same as £w G W(^, λ). • 

This Claim implies that there is a unique sub-sheaf Φκ>χ c Φκ such that Φρ,χ = 
ΦΚ'Χ\ρχ€ for all a-strips P. 

6.2.7. Definition of a filtration on Φκ. — 

Notation 6.2.3. — Choose and fix an infinite regular sequence 
(158) . . . ληλη_ι . . . λ2λι 
such that 

—every ray occurs in this sequence infinitely many times; 
—the ray Χι is adjacent to the α-strip Ρ ο containing xo-
Denote by λ̂ η̂  the subsequence ληλη_ι... λ2λι. 

Set ΡηΦκ := Φχ'λ(η). Let us check 

Claim 13. — We have ΡηΦχ c Ρη+1Φκ. 

Proof. — It suffices to check that ΡηΦκ |ρ^ C Ρη+1Φχ|ρχε for every strip Ρ (as 
sub-sheaves of Φ ρ ). It suffices to check that P\{n)jW C P\(n+i)iW for all w, which follows 
from: if a ray £ is λ(n\ ^-admissible, then £ is λ(n+1), ^-admissible. This follows from 
the definition of λ, ̂ -admissibility. • 

Claim 14. — Subsheaves ΡηΦκ form an exhaustive filtration of Φκ. 

Proof. — It suffices to check that \^ΡηΦκ\ρΧ£ = Φρ. This is implied by: for every 
w G Wa and every boundary ray £ of P, there exists an η > 0 such that £ G 
Ρλ(η) w, equivalently: £ is λ(n\^-admissible. Let us prove this statement. By the 
construction of λ, every finite sequence of rays, is a subsequence of for η large 
enough (because every ray occurs in the sequence {λ^}^:1 infinitely many times). 
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Let w = £m • • • £\{L or R), then the sequence ££m • • • £\ (if £ ^ or m̂ • • • £\ is a 
subsequence of Â n̂  for some n, meaning that £ is A, w-admissible. • 

6.2.8. Computing FX§K. — In this subsection, P* denotes the strip adjacent 
to Ai and different from Po. We assume that Ai goes to the right and that Po is above 
P* (all other cases are treated in a similar way). 

Let us give an explicit description of FX$K. First of all, a ray £ is ^-admissible 
iff £ = Ai and w is one of the following L, P, AiL. Therefore, P\{i) w ^ 0 iff: P 
contains Ai, that is P = Po or P = P*, and w is one of L, P, XiL. In each of this cases 
PxWtW =IntPUAi. 

Thus, F 1 * * is supported on E := IntP0 U Ai U IntP*. Let P^ = IntP0 U Ai; 
PL = Int P. U Ai. We have 

F1$K\P!ixc = A*®B*; 

F1$K\P,xC = Ao®B(h 

where A* = SR * AS,"; ^o = S« * A*T; P* = SL * A£,+ 0 SAlL * A*"; P0 = 
Sx * A£,+ © 5AlL * A*T The gluing map r * maps AO|AIXC into -A ÎAIXC &nd 
PoUixC into P*UixC5 therefore, the sheaves A* and Ao get glued into a sheaf A 
on E, and P* and P0 into a sheaf B so that Fl$K = A® B. One also sees that 
4̂ = 5# * A^~. Let j : Int Po —• E be the open embedding. 

6.2.9. The map factorizes through FX$K. — Keeping the assumptions 
of the previous subsection, let us now construct the factorization of the map : 
ZXoXx[-2] —» $K through Fl$K. The cases when Ai goes to the left or when P* is 
above Po are treated in a similar way. 

Let j : Int Po x C —• X x C be the open embedding. By definition, factors as 

(159) ZXoxK[-2] - ji(SL * A£t+Po © SR * A£-P0) -

where the first arrow is induced by the following maps in D(IntPo x C): 

lL : ZXqXK[-2] -> Z{(Xts)\x€lntP0,8+z(x)ex0+K} = $L * ^ntPQ 5 

I>R • ZXqxK[-2] -> Z{(x>s)|rcGiritp05S_2(a:)G_Xo+jft:} = SR* A t̂"pQ, 
which are induced by the closed codimension 2 embeddings of the corresponding sets. 

The right arrow in (159) factors through FX^K as follows. Let as decompose j = 
ji Jo> where jo : Int Po x C —» E x C and ji : E x C —» X x C are the open embeddings. 
We have natural maps iA : jo\(SL * A^+Po) -» A and i5 : JO\(SR * A^~Po) -> B. 
Whence a map 

û 0 %B : Joi(5L * A*+Po 0 SR * A^-Po) —> A 0 P = F1^ |ExC. 

The right arrow in (159) is then obtained by applying ju to 0 %B- For future 
references, let us consider Cone(ZXoXx[—2] —» F 1 ^ ) , which is supported on E x C. 
We now see that 

Cone(ZXoxX[-2]^P1$K)|SxC 
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is isomorphic to the Cone of the following composition map in D(E χ C): 
(160) ^xox/d-2] - M(SL * Λ£+ Θ Sr * Λ£-Ρη) 

where the right arrow is %A θ and the left arrow is induced by LL θ ÎR. 

6.2.10. Computing successive quotients of the filtration. — Let us compute 
the quotients $n := FnQK/ρη~1φκ, η > 2. Our computation will result in decom­
positions (163), (164) 

For that purpose, we choose an a strip Ρ and compute the restriction ^ := 
ρηφΚ /ρη-ΙφΚ\ 

Set 
P(n,w) := PXntW\PXn-iw C P. 

P(n,w) is a locally closed subset of Ρ so that we can define the following sheaves 
on Ρ χ C: 

\K± _ 
IYP(n,w) — ^{(x,s)\xeP(n,w)',s±z(x)eK}-We have an identification 

d+r+d+r+d 
t«€W£ft 

* Ap/"t χ 0 
™ew5ght 

°™ * iVP(n,ty)* 

Let us now describe the sets P(n,w). Below, for a w G Wa, we set trim(ii;) to be 
the word w with its rightmost letter (L or R) removed. 

Step 1 Consider all the situations when Int Ρ C P(n,w) 
This occurs iff Int Ρ is part of P\(n) w but not Ρχ(η-ΐ) w. This is equivalent to the 

following: 
Condition I: η is the minimal number satisfying: 
(1) λη is a boundary ray of P; 
(2) trim(w) is a subsequence of λ^η .̂ 
Let us reformulate these conditions. Introduce the following notation. For a word 

w set M(w) to be the minimal number such that trim(ii;) is a subsequence of \(M(W)). 
For a word w, w φ {R},{L}, we also write w = lw', where I is the leftmost ray of w. 

Let us split our consideration into two cases: 
A) I = λη, (meaning that trim(w) is non-empty); 
B)trim(i/;) is empty or l φ λη. 
Case A). The combination Condition I+Case A) is equivalent to the following 

combination: 
A) (i.e., / = λη), and 
Al) M(w) = n, and 
A2) λη is a boundary ray of P. 
It follows that given a boundary ray r of Ρ different from \n, such an r is not 

\(n\w-admissible: the admissibility would mean that the word rw is a subsequence 
of λ̂ η) (see Remark 6.2.2)); since r φ λη, rw is also a subsequence of λ^η_1\ which 
implies M(w) < n, contradiction. 

Thus, in this case we have P(n, w) = Int Ρ U λη. 
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Case B) 
Let us give an equivalent reformulation of the combination. 

Lemma 6.2.4. — The combination of conditions I and case B) is equivalent to the 
following combination: 

B) and 
BI) Xn is a boundary strip of P, and 
B2) M(Xnw) = n, and 
B3) If tiim(w) is non-empty, then I is not a boundary ray of P, and, finally, 
B4) M(rw) > η for any boundary ray r of P. 

Proof. — Let us first derive Bl)-B4) from Condition I and B): 
BI) is just the condition (1); 
B2): (2) and B) imply M(Xnw) < n. If M(Xnw) < n, then η is not the minimal 

number satisfying (1) and (2); 
Violation of B3) implies that η — 1 satisfies (1) and (2) — contradiction. 

Violation of B4) implies that M(rw) < n; since the number M(rw) satisfies (1) and 
(2), we have a contradiction. 

Let us now derive Condition I from B) and Bl)-B4). 
B1,B2 imply that η satisfies (1) and (2). Suppose η is not minimal, i.e there exists 

ρ < η such that Xp is a boundary ray of Ρ and M(w) < p. B3 implies that Xp is 
different from the leftmost ray of w. Therefore, M(Xpw) < p, which is prohibited by 
B4. • 

Let us now introduce one more condition P5. 
Let Pn-\ be (a unique) α-strip which is adjacent to both λη and λη_ι. Let P* be 

the other α-strip adjacent to λη. 
The condition B5 is as follows: 
B5)P = P*. 
Let us prove that 

Lemma 6.2.5. — The combination of conditions I and case Β is equivalent to the 
combination B, B2, B5. 

Proof. — Let us first prove that B,B1-B4 imply B5. Since λη is a boundary ray of P, 
the only alternative to B5 is Ρ = Ρη-ι· Then λη_ι is a boundary ray of Ρ and 
M(\n-\w) < η — 1 which contradicts to B4. 

Let us prove that P, P2, P5 imply PI , P3, P4. 
BI: By B5 Ρ* = P, and Xn is a boundary ray of P*; 
B3,B4: B2 implies that for all p G [M{w)\ η - 1], Xp φ Xn. This implies that P* is 

not adjacent to any of Xp with p G [M(w);n — 1] Indeed, suppose P* is adjacent to 
such a Xp. Consider the graph Γ whose vertices are strips and and whose edges are 
rays. We have two non-intersecting paths between Pn-i and P*: one of them is λη, 
we also have a path between Pn_i and P* in the connected graph composed of the 
edges λη_ιλΗ_2, · · · , λρ, which contradicts to Γ being a tree. 
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The just proven statement implies B3 and 
B4') M(rw) > η for every boundary ray of Ρ = Ρ* which differs from \(n\ 
Finally, B2) and B4') imply B4), which finishes the proof. • 

Finally, we conclude from B4', that in the situation Condition 1+B we have: 
P{n,w) = IntPUAn. 

Step 2 Let us now examine the case (call it case C) when P(n, w) is a non-empty 
union of boundary rays of P. Since P\(n-i) w C P\(n)iW, this is equivalent to P\(n-i) w 
being a proper (in particular, non-empty) subset of P\(n) w. As follows from definitions, 
this is equivalent to: 

i') there is a λ^η_1\ w-admissible ray of P; 
ii') There exists a boundary ray r of Ρ such that r is λ(n\ ^-admissible, but not 

λ̂ 71-1), ^-admissible. 
By Remark 6.2.2, the condition i') is equivalent to: 
i") there exists a boundary ray r of Ρ such that either r is the leftmost ray of w 

and M(w) < η — 1, or r is not the leftmost ray of w and M(rw) < η — 1. 
In any case, i') implies that M(w) < η — 1. 
Also by Remark 6.2.2, the condition ii') is equivalent to the following one 
ii;/) There exists a boundary ray r of Ρ such that either 
a) r is not the leftmost ray of w and M(rw) = n; 
or 
b) r is the leftmost ray of w and M(w) = n. 
The case b) contradicts to i'), which implies M(w) < η — 1. 
The condition a) implies r = Xn and hence λη is one and the only ray in Ρχ<η>,«τ 
We thus can reformulate: 
The case C occurs iff 
i;) holds and 
ii-a) λη is a boundary ray of P; 
η-β)λη is not the leftmost ray of w\ 
ii-7) M(Xnw) = n. 
In the case C we have P(n, w) = λη. 
From ii-7 we conclude that 

(161) ΧρφΚ for all p e [M(w);n- 1]. 
The condition i' is equivalent to 

(162) 3p e [M(w),n- 1] : Xp is adjacent to P. 
Let us show that Ρ = Ρη-ι' 
Indeed, by ii-α, the only alternative is Ρ = Ρ*. In this case, analogously to the 

proof of B5=^B4, the property (161) implies that P* is not adjacent to any of Xp with 
p e [M(w);n — 1], and that contradicts (162). 

Thus, we have the following condition which is equivalent to i' and ii' (the proof 
of the converse is trivial): 
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CI) Ρ = Ρη-ι; λ η is not the leftmost ray of w and M(Xnw) = n. 
In this ease P(n,w) = λη. 
Let us summarize our findings. Introduce the following notation. Let left be the 

set of all words w in W f̂t such that the leftmost ray of w is not λη and M(\nw) = n. 
Let right be the similar thing. 

We then have the following three cases when the set P(n, w) is non-empty: 
- Conditions A,Al,A2 is satisfied. Equivalently, the following conditions are the 

case: 
al) P = Pn-i or Ρ = P*; 
a2) w = \nu, where u G W£jleft if λη G bright, and u G W r̂ight if λη G £ieft. 
In this situation P(n, w) = Int Ρ U λη. 
— B,B2,B5 are satisfied. Equivalently: Ρ = P* ; w G left if λη G bright? and 

w G Wn,right if λη € l̂eft- Then P(n, w) = Int P* U λη. 
— Cl is satisfied. Equivalently: 

bl) P = Pn_i; 
b2) w G W£left if λη G r̂ight, and w G W£right if λη G £ieft. 
In this situation, we have P(n,w) = λη. 

6.2.11. Description of $n. — In particular, we see that the sheaf *§n — 
Γηφκ/ρη~1Φκ is supported on the union IntPn_i U λη U Int P*. 

Let Pi := IntP* U λη. We will now describe the restriction of (§n onto P*. 
Suppose that Xn G £\eit- We then have 

w€W(£,À)+sd+sd+ 

iuGW«right 
( ^ * Λ ^ θ 5 λ η , * Α ^ + ) θ 

«€w;ileft 
S'y; * Λρ,"*-. 

For w G right, we denote 

Bw* :— Sw * Ap/ φ S\nW * Λρ,~*~; 

for w G left, we set 

AID ·— * Apt . 

so that we can rewrite 

d+r+d 
d+r+d+r+d 

Bw* φ 
d+r+d+r+ 

4p: 

In the case λη G bright, change all signs and all orientations: we have 

d+re+d+r 
»€W-italt 

Bw* Φ 
»€W«iright 

d+r(+d 

where for w G W^ left, we denote 

Bw* :— Sw * Ap^~ φ S\nW * Λρ, ; 
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for w G W* right, we set 
AP* — <? * \K~ 
S*-W '— &w 1^ pi (2) Let Ρ'η_χ be the union of the interior of Pn-\ and λη. 

We then have in the case λη G £\eft-

AmtTpn-iUAnUlntP* 
^Wn,i,ht 

ρ' i 
Byj Φ 

«€w;>left 
APn-l 

where for w G W^ right we set 

Bw :— Sw * Â ^ 0 S\nW * Ap/-*- ^ ; 

for w G W")left we set 
Aw :— *Su> * ΛΛ . 

If λη G bright? then one has to change all the directions and all the signs: 

AmtTpn-iUd+d 
™£Wn,left 

Bw φ 
<«eW",r,ght 

d+r+d+r 

where for w G W" left we set 

Bw :— Sw * Â "̂ φ S\nW * Ap/ 5 

for ti; € W" ri „ht we set 

Aw :— Sw * ^-\ri . 
Analyzing the gluing maps, we see that 

Aw* Unxc — Awn 1\\nxc 
as sub-sheaves of $n\\nxc and similarly for Bw. Therefore, we have well defined sub­
sheaves Aw, Bw of $n: Aw is defined by the conditions: 

Aw I pi χ c — Aw* ; 

Δ I — Δ n-l 
w I -P̂  _ ι x C — -̂w ? and similarly for Bw. 

Let us stress that Bw\int pn_1uxnuint p* 1S n°t isomorphic to the direct sum of Sw * 
AmtTpn-iUAnUlntP* an°̂  ^ληυ; * p̂ _lUAnuInt P* 

We have in the case λη G îeft-
(163) d+r+d 

»ew-irlBht 
Ρ-Ιϋ Φ 

™€W«left 
4 · 

if λη G left 5 then we have: 

(164) d+r+d 
é+é+ed+d 

-̂ u, φ 
s++e+e+r+ 

Aw. 

ASTÉRISQUE 356 



6.2. PROOF OF ORTHOGONALITY 85 

p„., 

λ 
η 

Ρ* 

This ray 
is not 
a part of Σ 

FIGURE 2 

6.2.12. Reduction of the orthogonality property. — As was explained in Sec 
6.2.9, the map ιφκ factors as Z{z==XQ:SeKy[-2] Fl$K -> Φκ. 

It therefore suffices to prove that AW,BW belong to χί? , where Σ = IntPn_i U 
λη Ulnt Ρ* and that and Cone(Z{z=XOiSeK}[-2] -> Γ1ΦΚ) G ±(ëX. As was explained 
in Sec 6.2.8, the sheaf ΡΧΦΧ is supported on Σ' := IntP0 Π Χχ Π Int Ρ*, so that it 
suffices to show that 

Cone(Zfz=X0,s€in[-2] -> F1*ir)|s,xC € ±%Σ'. 
We do it in the rest of the section. 

6.2.13. Conventions. — As ζ : X —> C identifies Σ with a subset of C, we will 
suppress the map ζ from our notation. 

Suppose that the ray λη is directed to the right so that λη = θ(λη) + Μ>ο·βζα; the 
case of the opposite direction is similar. 

Assume the situation is as on Figure 2, namely, we assume that Pn_i is above Xn 
and P* is below λη. The argument for the opposite situation is similar. 

Define 
U := {c(Xn) + xeia + ye~ia e Σ : x, y G R and x > 0}; 
V := {c(Xn) + xeia + ye~ia G Σ : y G M and x < 0}. 

6.2.14. Orthogonality of Aw. — Because of the assumptions above, we have w G 
W«ght and 

Ayj Sw * Λ ρ, , 
where 

Λρ, = Z{(z,s):zSPi]s-zeK}' 
We have a short exact sequence: 
(165) 0 • Sw * Λ^ηρ/ > Aw > * Aynp/ —> 0, 
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where := Z{s,z)\zeU.s±zeK} and similarly for Av*py 
(Note that in the case λη G £\eft we need to consider a sequence analogous to (165) 

with AK~ instead of Λχ+.) 
The problem is thus reduced to proving that 

(166) Sw * A^~p^, Sw * Ay~p, G ±ί?Σ. 

Now let us use the following consideration: if j : U x C —• Σ χ C is an open inclusion 
and if F G ±ÏÏU, then j{F G ±<&Έ because RHom(j\F;G) ^ RRom(F;G\UxC). In 
application to the situation at hand, this allows us to reduce (166) to proving 

(167) Sw*AvnP,\ue±Vu 

and 

(168) Sw*Ay\Pm e±VP* 

which we are going to do using Proposition 5.2.1. 
PROOF OF (167). Denote F := Sw*AûnP,\u- We have F = Zs, where S = {(z,s) : 

z eUr\Pi,s - z e c(w) + Κ}. 
Next, U = {c(Xn)+xelot+ye~lOÎ\x > 0; y G / } , where / is a generalized open interval 

containing 0, so that U is a generalized strip and we can apply Proposition 5.2.1. 
We have U Π Pi = {c(Xn) + xeia + ye~ia\x >0;y> 0; y G / } . 
Let us now check that F satisfies all the assumptions of Prop. 5.2.1, which will 

show that F G ±(&υ. 
Namely, we need to show: a) the map ΖΓα * P —• Z{0} * P = P, induced by the 

embedding 0 G ra, is an isomorphism, 
b) PP+.P = 0; 
c) PP_,P = 0. 
PROOF OF a) is easy: the word w contains at least one letter, hence Sw is a 

convolution of > 1 sheaves of the type Z{sGa_|_#}, a G C. But the map β : ΖΓα * 
%{sea+K} —> Zo * Z{sea+K}, induced by the inclusion 0 G ra, is an isomorphism. 

PROOF OF b) It suffices to check that (RP+\F)t = 0 for every point t G C. We 
have (jR*P+.F)t = H*(P~lt Π S;Ζ). Denote Wt := P+H Π S. The space Wt consists 
of all points (z, s), where z G U Π Ρ^; s Η- ζ G Κ; s — ζ = t. Since s = ζ + t, we can 
exclude s: the space Wt gets identified with a closed subset W/ C U consisting of all 
points z G U Π Ρ^ such that 2ζ + ί G c(w) + Κ. Let us write c(w) — t — 2c(An) = 
2(xoeia + yoe~ia). We then see that W[ consists of all points θ(λη) + xel(X + ye~ta, 
where χ > 0; y > 0; y G /; χ > χο', y > 2/ο· It is now easy to see that for all x0, yo, we 
haveiJc#(W^,Z) = 0. 

PROOF OF C) Similar to above, we need to show that H*(Vt',Z) = 0, where Vt = 
PZlt Π 5, for all t G C. If t φ c(w) + K,Vt = 0· Otherwise, Vt gets identified with 
UC\ Pi i.e., the set of all points (x, y) : χ > 0; y > 0; y G I. The statement now follows. 

PROOF OF (168). Set Gi := Sw * ΑγηΡ,. We have 

F i l ? ; = {c(An) + xeia + ye"**|x < 0;y G /;y > 0}. 
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FIGURE 3. Proof of (167), part b). 

In particular, V fl P* C IntP*. Similar to above, it suffices to show that G := 
Gi|intp,xC £ g>Intp» Sjnce IntP* is a generalized strip, we can apply Proposi­
tion 5.2.1. Let us check the assumptions of this Proposition. 

We have G = Z j , where T C IntP* x C consists of all points (z, s), where z = 
c(A„) + xeia + ye~ia; x < 0; y < 0; y £ I; s - z e c(w) + K. 

a) We see that the natural map ZrQ * G —> Z0 * G = G is clearly an isomorphism. 
b)PP+!G|t = 0 for all t. This is equivalent to H'{W[, Z) = 0, where W[ = P+Hc\T. 

Similar to above, the set Wt gets identified with the set of all (x,y), where x < 0; 
y < 0; y G I; x > x0; y > y0 for some numbers XQ, yo, the statement follows. 

c) We need to check that H'(Vt', Z) = 0, where Vt' = PlHnT. We see that V/ = 0 
for all t £ c(w) + K. Otherwise, V{ gets identified with T. 

6.2.15. Orthogonality of Bw. — Let U, V be the same subsets of z(£) as above. 
We see that z(E)\U = V = V1UV2, where V± C z(Int P.) , V2 C z(Int P„_ i ) . 

For any locally closed subset C c S we set Be •= Bw ® ZcxC., € D(E x Cs). We 
then have a distinguished triangle 

—• By1 © By2 —» BM —> Pc/ —» • 

Similarly to Section 6.2.14, it suffices to prove that 

(169) B'v := Bu\uxc e *6 ; 

(170) Pvi |lntP,xC € . g,Int P, 

(171) J5v2|intP„_1xC G J_g>IntP„_i 

It is clear that U, V\,and V2 are generalized strips so that we can apply Prop. 5.2.1. 
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Proof of (169) Let Pi := U Π Pn_i; P2 := U Π Ρ* so that Pi , P2 C U are closed 
subsets and Pi Π P2 = λη. 

As above, we have 
U = {c(Xn) + xeia + 2/e"*a|x > 0; 2/ G J}, 

where J C R is a generalized open interval containing 0. The subset Pi is given 
by y > 0, and P2 by y < 0. 

We have identifications 
Bi := B^|PlxC = Su, * A*+ Θ SXnW * Ap~; 

£2 := #i/|p2xc = 5W * A*+ Θ SAn™ * Λ*". 
Whence induced identifications 
(172) SiUnxC = ^ * Af + Θ SXnW * Afn~; 

(173) B2Unxc = Sw * A*+ Θ SXnW * A*". 
The gluing map 

Bl\\nxC ^2|ληχ€ 
is induced by Γφ^_1 * and equals 

Γ = Id +n G End(S™ * Af+ Θ SAn™ * Afn"), 
where the only non-zero component of η is 

n+- : 5W * Af + - 5ω * SXn * A*" = 5λη«, * Afn" 
is defined by means of the map ν χ from (47). 

Let ife : Pfc —> 17, fc = 1,2 and io : λη —> U be closed embeddings. Denote 
by ti : in Pi —> io\(Sw * A^+ ®S\nW *AJ^~) the natural isomorphism coming from the 
identification (172). Similarly, we have a map t2 : i2|Pi —* io\(Sw*A^ ®8ΧηΧυ*Αχ~), 
coming from (173). We can rewrite the above consideration in terms of the following 
short exact sequence of sheaves of abelian groups 
(174) ο-^Β'υ-* ii.Pi Θ i2!P2 i0\(Sw * Af+ Θ SXnW * A*") 0. 

Where the left arrow is induced by the direct sum of the obvious restriction maps 
and the right arrow is —Tti Θ ι2. Let us denote the components of this map 

- Id : io\Sw * Aĵ + —• i0\Sw * Afn+; 
-v : i0\Sw * Αχ + i0\SXnW * A*n~~; 

- r i : iv.SXnW * Ap~ -> io\SXnW * Αχ~; 
r2 ' t2\Sw * Ap2+ -+ i0\Sw * A*+; 

2̂" : h\S\nW * Ap2" —> io!^™ * Afn~. 
Consider the complex B" composed of the 2 last terms of the sequence (174), 

which is quasi-isomorphic to Β'υ. This complex has a filtration by the following sub-
complexes: 

ASTÉRISQUE 356 



6.2. PROOF OF ORTHOGONALITY 89 

F1B" is as follows: 
i0\SW * -* io\S\nW * Αχ~ -» 0; 

F2Β" is as follows: 
i0\SW * Af+ Θ i2\SW * A£+ iOL(SW * Af+ Θ SAn™ * Afn") 0. 

We finally set F3P" = P". The associated graded quotients are as follows: F2/F1 
equals Conerjf— 1], which is quasi-isomorphic to SW * A^+p2. 

F3/F2 equals 
h\S\NW * Λρ~ Θ 22!#λη™ * Λρ~. 

We will need one more exact sequence. We have subsheaves (direct summands) 
SXNW * A£- C BI; SAti™ * A*" C B2. 

Since the map Γ induces identity on S\NW * Αχ~, the two subsheaves glue into a 
subsheaf S\NW * A^~ c B'V. It is clear that we have a short exact sequence: 

(175) 0 SXNW * a£" t^* , * Af+ -> 0. 

Let us now check the conditions of Prop 5.2.1. The isomorphicity of the map 
ΖΓα * Β'Υ —• Β'Υ can be checked directly. 

Let us now show that ΚΡ+\Β'Υ = 0. Because of the exact sequence (175), it suffices 
to prove that RP+\SW * Λ£+ = 0 and RP+\S\ NW * Ay = 0. This can be checked 
pointwise in a way similar to the previous subsection. 

Let us now check that RP-IB'JJ = 0. It suffices to show that PP_!, when applied 
to all associated graded quotients of the filtration F on produces zero. The latter 
can be done pointwise in a way similar to the previous sections. 

Proof of (170), (171) is very similar to the previous subsection. 

6.2.16. Orthogonality of Cone(Z{xo}xK[-2] -+ F^K). — The aim of this sub­
section is to prove that 

(176) Cone(Z{xo}xX[-2] - F^K) € ±ë'E'. 
We will freely use the notation and the results from Section 6.2.8, 6.2.9. As was 

mentioned above, Cone(Z{Xo}Xx[—2] —> ΡΧΦΚ) is supported on Σ χ C, where Σ = 
Int Po U λι U Int P*. The restriction Cone(Z{Xo}x^[-2] —> Ρ1Φκ)|ςΧ€ is isomorphic 
to the Cone of the composition arrow in (160). Denote the cone of the left arrow in 
(160) by Γι and the cone of the right arrow by Δ. Observe that Γι = jo\T, where 
Γ = Cone(^£ 0 LR)\ Γ G D(IntPo x C). The problem now reduces to showing that 

Denote AL := Cokeri^; BR := Cokeri^. Observe that AL is of the form AW with 
w = L, and BR is of the form BW with w = R , where AW, BW are as defined in Sec 
6.2.11. It is also clear that Δ = AL®BR. AS follows from the previous two subsections, 
AL, BR G hence, same is true for Δ. Let us now show that Γ G -Lg,IntP°< 

By Prop.5.2.1, it suffices to check statements a),b),c) below: 
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FIGURE 4. Proof of (176), Step b-i) 

a) P * Z{sGe«au>0} —» r is an isomorphism: it suffices to check that a similar map 

applied to each of ZXoX^[—2], Si * AK+into Po, and SR * A^Tp is an isomorphism, which 

is straightforward. 

b) RP+<T = 0. It is enough to check RP+iffk = 0, k = 1,2, where 

#1 = 5K*AIntP0 = 2 (z,s):zÇlnt Po, s —zE—Xo+lO ' 

g>2 = Coneil^xK[-2] - » 5i * AIntP0) and where 

SL*A INT PO = Z (ï,3):zelnt P0, s+zSxo+if}-

b-i) P P + I J ^ J = 0. Indeed, by the base change, let us pass to the fiber of P+ 
over t G C and calculate Prc(Zwt) where Wi = {(z, s) G C : z G IntP0, s - 2 € 
- x 0 + AT Z + s = 1 } . Eliminating s makes Wi = {z € C : 2 € Int P0, 2 G T+X0/2 - A } . 
For different values of £ this set is sketched on fig. 4. 

Thus, W\ is either empty or homeomorphic to a closed half-plane, so the result 
follows. 

b-ii) RPjr\§2 = 0. Indeed, by the base change, let us pass to the fiber of P+ over 
t 6 C and calculate P r c ( Z ^ ) [ - 2 ] -> RTC(ZW2), where W'2 = { (z , s ) € C : 2 = 
x0, s € A 2 + s = i } , W2 = {(z,s) G C : 2 € Int P0, s + z € x0 + AT z + s = t}, 
Eliminating s makes 

if t - x0 G A : W' = { x 0 } W2 = 'z G C : 2 G Int P0 

otherwise: W'2 = 0 W2 = 0 

and the map Prc(Z^)[—2] —> PPc(Zvt/2) is the obvious quasi-isomorphism. 

c) PP-iT = 0. This can be shown similarly to PP+ir = 0. 
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I D E N T I F I C A T I O N OF ΦΚ A N D Φ 

We are going to construct an identification as in (55). Namely, we will construct a 
map 

Ιφφ : VK -+ ΦΚ 
such that 

(177) ίφ = /φφΖφ, 

where ιΦ : Rg\ZK[-2] —• Φκ is the map (53) and ζΦ : RgiZK[-2] —• Φχ is the map 
(60). 

The goal of this section is to give an explicit description of /ψφ. This can be done as 
follows. Let Ρ be a closed α-strip. Let Π be a closed (—a)-strip such that Ρ Π Π ^ 0 . 
We then have identifications 

^ΦΡ|(ΠΠΡ)χ€ : Λκ+ * £+ ®AK~ * S_|(nnP)xC = ($K|px<c)|(nnP)xC = $X|(nnP)xC 

£*n|(nnp)xc : AK+ * S+ Θ Λκ~ * 5-|(nnP)xC = \uxc)\(unp)xc = ^K\(unP)xC 
meaning that the restriction /ψφ|(πηΡ)χ€ can ^e rendered as an automorphism Jjjp 
of 
AK+ * 5+ Θ Λκ_ * S'_|(nnP)xC m the abelian category of sheaves on (Π Π Ρ) χ C, so 
that we have: 

(178) -7ψφ|(πηΡ)χ€ = ^Φρ|(πηΡ)χ€^πρ^πΙ(πηΡ)χ€· 
We are now motivated for the next subsection. 

7.1. Endomorphisms of AK+ * S+ 0 AK~ * S-|(Pnn)xC 

We will do the study in a slightly more general context. Let Y be a locally closed 
connected subset of C. For a c G C, set 

Af := {(x, s)|s ± x G c + K} C y x C. 

Let W± be sets; set W := W+ U W~. Let : ^ -> C be a function. Let w G W+. 
Set := A*,y For υ; G VT_ we set Aw := x. Define the following sheaves 
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on Y x C: 
d+r+d+r+ 

dr+s 
d+r+d+d 

Let : Wi -> C; Wi = W'? U i = 1,2; cWi : Wi -> C; and let us study a 
group HomyxciS^jSWJ. 

We have 

(179) HomyxcfSw, ; Swo) —> 
ée+ere 

RomYxc(ZAwi;Sw2)' 

Let us focus on RomYxc(ZAwi ; SW2). We have an embedding SW2 ^ UW2ew2 ZaW2 
which induces an embedding 

L : HomyxciZ^^ ; SW2) ^ B.omYxC(ZAwi ; 
t̂ 2G W2 

d+rd 

(180) 
w2EW2 

eea0ae HomyxcfZ. ;ZA ). 

Let us now compute 
HomyxC(Z. ι ]ZA) = jff°(A„2; AW2\AWl). 

We have a homeomorphism Au,2 = 7 χ X so that AW2 is connected and 
H (AW2, Ayj2 \AWl) is zero unless Αυ;2\Αυ;ι is empty, in which case it equals Z. 
In other words, we have an isomorphism εωι11,2 : Ζ Homyxc(Z^1 ; %AW2) if 
^ 2 c Awi \ otherwise, YLomYxc(ZAwi]ZAu)2) = 0. Set := ε^ιυ;2(1). 

Everv element 
ν e 

w2EW2 
HomyvciZi :Z^ ) 

can be uniquely written as 

2̂ 
û̂ i ̂ 2 ̂ wi w2 5 

where the sum is taken over all w2 such that AW2 C AWl and vWlw2 are arbitrary 
integers. 

Claim 15. — The element ν lies in the image of (180) iff for every compact subset 
L C AWl : 

(181) there are only finitely many w2 such that vW2Wl = 0 and AW2 flL^O. 

Proof — We will use the following notation. For every w G W\ or w G W2, let us 
denote by lw G Γ(7 χ C;ZAw) the canonical section, such that for every y G Y x C, 
the stalk (lw)y generates the group (ZAw)y, which is equal to Ζ if y G Aw and to zero 
otherwise. 

We have 
dr0d'r+e 

w2£W2 
Ή"ΐν2ιυι *-w2 

e T(Y x C; w2EW2 
s0eeed+ 
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Let us now suppose that ν lies in the image of (180). This implies that the restric­
tion v(1WI)\l G r(L; 0 Ζ a )· Since L is compact, we have an isomorphism 

W2EW2 

W2EW2 
r(i;ZAw,)->r(L; 

d+r+d+ 
d+r+d+r 

Given a section σ G T(L; 
W2GW2 

ZAW2), denote by σ^2 G Γ(£;ZAW2) the corresponding 

component of σ. We have: aW2 = 0 for almost all w2 G W2- We have u(lWl)W2 = 
nW2Wl 1W2\l- The element on the RHS does not vanish iff nW2Wl Φ 0 and L(lAW2 φ 0 , 
which implies the statement. 

Conversely, let us assume that for any L there only are finitely many w2 G W2 such 
that nW2Wl φ 0 and L Π AW2 φ 0 . It suffices to show that 

u(lWl) G Γ(Υ x C; 
d+r+d+r 

Z i » 2 ) c r ( y x C ; 
U>2 E 

ds+ed+d+ 

Let us choose an open covering of Y x C by precompact sets Ua (i-e., the 
closure La of each [/a in 7 χ C must be compact). It suffices to show that 
v(lWl) £ T(Ua\ 0 %AW2) for each 17α. Then it suffices to show that v(lWl) G 

W2EW2 
T(La; 0 ZAW2). In fact, 1/(1^) € T(La; Π %AW2), where consists of all w2 

w2ew2 w2ew2' 
satisfying n^^ j 7̂  0, AW2 Π La ^ 0, which is finite, whence the statement. • 

As follows from the proof of the Claim, ν belongs to the image of (180) iff the 
condition (181) is satisfied for a family of compact sets La whose interiors cover 
Χ χ C. 

Proposition 7.1.1. — Elements from Homxxc(SWiî SW2) are in 1-to-l correspondence 
with the sums 

w1 eWi ,W2£W2,Awo CAWl 
Ή"ΐνιΊϋ2 ̂ ~"W\U)2 5 

satisfying: 
there exists a family of compact subsets La c X x C such that the sets Int La cover 

I x C , and: given a w\ G W\ and any La, there are only finitely many w2 G W2 such 
that nWlW2 Φ 0 and La Π AW2 φ 0 . 

7.1.1. Filtration on HomY xC(SWl\Sw2)- — Let ε e K. Let T £ : F x C - > F x C 
be the shift (x,s) 1—> (x,s + ε). We have T£{AC) C Ac, for every ε G Κ, whence an 
induced map 

Ε IntP0, s + z G xo + A' z -f -s = /}. 
These maps give rise to a map 

Ε IntP0, s + z G xo + A' z 

It is easy to see that TeiSWi = S\v{i where W[ — W\ and cw[ — cw1 + ε, so that 
Proposition 7.1.1 applies to Te\Swx-
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We say that / G F£B.omxxc(Sw! ; SW2) if / factors as / = #τε for some # : 
TeiSwx —» SV2- Using Proposition 7.1.1, one can check that such a ρ is unique, if 
exists. 

We write / = / ' mod F£ if f — f G FeHom(5Wl, SV2 ) · 
We also write / = / ' if / = / ' mod F£ for some ε G Int Κ. 
Let us prove that the filtration F is complete in the following sense. Let fn G 

B.om(Sw1] Sw2) De a sequence of homomorphisms. Let us call fn a Cauchy sequence 
if: 

Υε G Κ 3Ν(ε) : Vn, m > Ν (ε) : fn = fm mod F6. 
We say that /n converges to f if 

Υε G Κ 3ΛΓ(ε) : Vn > Ν {ε) : / = /„ mod Ρε. 

Claim 16. — Every Cauchy sequence fn converges to a unique limit f. 

Proof. — Let us first construct / . Decompose fn = Συ,1,υ,2εννϋη)ν>ιυ>26ν>ιν>2· Let V € 
XxC and let η, m > Ν (ε). Since fn—fm passes through τε, we deduce that (fn)w1w2 ~ 
(fm)w1w2 Φ 0 only if A For every w\, w2 there exists ευ)ιν)2 such that this 
condition is violated, meaning that for n,ra > N^WlW2), (fn)WlW2 = (fm)Wlw2 =: 
fw\W2 ' 

The data fWlW2 define a homomorphism / by virtue of Proposition 7.1.1. If / ' is 
another limit, it follows that f — f = F£ for all ε which implies fWlW2 = f'WlW2 for all 
wi,w2, that is / = / ' . • 

In particular, let 7 G End(A\y), 7 = Id+n and assume that for some k > 0, nk G Fe 
for some ε G Int Κ ,then 7 is invertible, and we can set 7-1 = Id — η + η2 — η3 Η 
(the sequence of partial sums of this series is Cauchy). 

We conclude with several Lemmas for the future use. 

7.1.2. Lemma on composition. — As above, let Ρ be an α-strip and let Π be 
a —α-strip. Let Y = U Π Ρ and suppose y is a bounded subset of C, so that the 
closure of F is a parallelogram; let us denote its vertices ABC Ό so that AC is one 
of the two diagonals and AC G Κ. It then follows that the closure of Ρ Π Π equals 
A + Κ Π C - Κ. Denote ε := AC. 

Lemma 7.1.2. — Let W[~ = W£ = 0. And let f : Swx —> $w2 and 9 : $w2 ~^ SW-l-
Then gf = 0 mod F2e and fg = 0 mod Ρ2ε. 

Proof — Let fWlW2eWlW2, gW2WleW2Wl be components of / ,#. 
Let us consider the compositions fWlw2ew1w29w2w1ew2w1 In order for this compo­

sition to be non-zero, there should be 
AW2 c AWl c Aw>^. 

Or, for every z G Ρ Π Π and s G C we should have the following implications: 
s - ζ e c^2(w2) + Κ s + z G cWl(wi) + Κ s - z G cW2(w2) + K. 
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Set ç := s — z — cw2{w2)- The first implication then reads as: 

çGif=>ç + 2z + cW2(w2) - cw^tui) € if 

or, equivalently, 2A + cw2{w2) — cWi (tt^) G if. Similarly, the second implication can 
be rewritten as — 2C + 0^(1^1) — c^2(^2) G if. Adding the two conditions yields 
—2ε -Η 0^2(^2) — cw2(w2) € -^î cw2 ~~ cw2(w'2) € 2ε + if. This implies that 

fwiw2ewiw29w2wi^"w2wi ' ^A^/ 

passes through τ2ε : Ζ a , —»· Î2eiZ>i ,, which implies the statement for fg. Proof 
for gf is similar. • 

Let us keep the assumption W\ = W*, W2 = and consider now the case when 
X = Π Π Ρ is not bounded. Then at least one of the following is true: 

i) there is no A G C such that X C A + if ; 
ii) there is no C G C such that X C C - if. 

Lemma 7.1.3. — Let &eep the same notation as in the previous Lemma. In the case 
i) we have Hom(5v î; Sw2) — 0· In the case ii) we have Hom(Sw2; ^Vi) = 0. 

Proof. — In Case i), given w\ G W\ and w2 G W2, it is impossible that A 
and similarly for the Case ii). • 

7.1.3. Lemma on extension. — Let y be a locally closed non-empty connected 
subset of C. Let Y + if (resp. Y — if) be the arithmetic sum (resp. difference) of Y 
and if. Let Y+, Y_ be connected locally closed subsets satisfying Y C Y+ C Υ + if ; 
Y C Y_ C Y — if. Let Z be an arbitrary connected locally closed subset C containing 
Y. 

Lemma 7.1.4. — (1) The restriction maps 

Homy+ (Sw+ ; Sw- ) Homy (Sw+ ; 5 ^ - ); 

Homy_ (Sw-; 5W+ ) -> Homy ( 5 ^ - ; 5W+ ) 
are isomorphisms; 

(2) ifte restriction maps 

Homz (5W+ ; 5W+ ) -> Homy (5W+ ; 5W+ ) ; 

Homz(5w- ; Sw-) Homy ; Sw-) 
ore isomorphisms. 

Proof. — 1) Follows from Proposition 7.1.1: the inclusion AW2 C AWl, W{ G Wi occurs 
on Y+ χ C iff it occurs on Y χ C, and similar for the inclusion AWl C AW2 on Y_ χ C. 

(2) Follows from Proposition 7.1.1 in a similar way. • 
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d+r 
dr vr 

v+r 
p5 d+r 

p7 

FIGURE 1 

7.1.4. Decomposition Lemma. — Let now Y := £ := c + (0, oo).eioc be a ray 
which goes to the right. Let a G C. We have natural maps A+ : ZA+ —> ZA- ; 
A~ : ZA- —> ZA+ ; coming from the inclusions of the corresponding sets. 

Lemma 7.1.5. — Let f : ZA+ —» Sw2? 9 : ~* ^Wi be a map of sheaves. Then f 
and g can be uniquely factored as f = /'A+; g = #'A~. 

Proof — Let w € W2. A simple analysis shows that c 4̂™ is equivalent 
to AZ2c+a ^ ^u;- Proposition 7.1.1 now implies the factorization of / . The factoriza­
tion of g can be proven similarly. • 

7.2. Restriction Φκ\η 

As above, let Π be a closed (—a)-strip. 
The goal of this subsection is to construct an isomorphism 

(182) φη : (AK+ * 5 + Θ AK~ * S_)|nxc ^ ** |nxc 

Denote by 
<fè :AK±*S±|nxc^$K|nxC 

the components. 

7.2.1. Notation. — Let us number all α-strips that intersect Π as Pi,P2,... ,Pn 
(there are only finitely many such stripes, Sec 2.3.2) as shown on the picture 1 so that 
we number the strips from the left to the right. The strips Pi and Pn are necessarily 
half planes. 
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7.2.2. Prescription of 0nl(nnPi)xC« — We have an identification 

S ÎnnPx = (^K\pl)\(unp1)xc = (AK+ * 5+ 0 AK~ * 5_)|(nnp1)xC 

This identification gives rise to a map (embedding onto a direct summand): 

AK+*S+-+$K|mnP1wc. 

We assign 0nl(nnPi)xC to be this map. 
Remark. In the Section 7.2.3 we will inductively extend this definition to the whole 
II x C. Construction of </>Â will be performed in Section 7.2.5. An attempt to construct 
(j)^ starting from a prescribed map on (II fl Pi) x C fails. 

7.2.3. Extension of ^ to IIxC. — For a subset A c C, set A := (II fl A) x C C 
n x c. 

Let us define <^ by constructing maps 

it: AK+*S+\Pk^*K\Pk, 

which agree on the intersections: 

(183) jk+i\pknpk+1 - jk \pknpk+1-

We have identifications 

(184) ik : AK+ * S+ 8 AK- * 5 _ k - ( * K k x c ) k = * * k 

coming from the gluing construction of 
We have 

ik\pknPk+1 - f̂c+i|pfcnPfc+i , rPfcPfc+i 
} 1 $K j 

where r̂ Ffc+1 is as in (44). 
We can now prescribe j£ in the following form: j£ = tkoi+ where 

it : AK+ * S + k - (AK+ * S+ © AK- * S_ )k . 

The agreement conditions (183) now read as: 

(185) f̂c+i|pfcnpfc+i r-rfĉ fc+i •+1 $K ik \PknPk+1 

The assignment from the previous subsection means that if is the identity em­
bedding onto the direct summand. Let us construct the remaining maps ik induc­
tively. Suppose ik has been already defined. According to Lemma 7.1.4, the map 
r$KPfc+1*fc |pfcnpfc+i extends uniquely to Pk+\ (this the step where the choice of + sign 
is crucial). We assign to be this map. It is clear that thus denned map 
satisfies (185) so that the maps give rise to a well defined map <jy^, as we wanted. 

Let us denote by z++ : AK+ * S + k AK+ * 5 + ^ ; : kK+ * S + | ^ -> 
AK~ * S_|pfc; the components of the map i^. 
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7.2.4. Estimate. — For k = 2 , . . . , η — 1, denote by Sk the diagonal vector of the 
parallelogram PfcHlI such that G Int Κ (there is a unique such a diagonal vector). 
Let επ G Int Κ be a vector such that ε̂  G επ + Κ for all k. 

The following Claim can be now proved by a direct computation. 

Claim 17. — (1) %1+ = 1 mod F£n for all k = 1,. . . , n. 
(2) Let &n C {1,2,..., n— 1} consist of all k such that Pk Π Pk+i goes to the right. 

We then have a transform 
pPjfcPfc+i L +- AK+ *S+|Pfcnpfc+1 AK *5_|PfcnPfc+1, 

where r̂ '=Pfc+1 ^ ^e corresponding component o/T^Pfc+1; which extends uniquely 
to U · · · U Pn. r+fc_Pfc+1 is same as N?, where i = Pk Π Pfc+i /rom (48). 

We then have: 

(186) dr++d+r+d 
d+r+d+r+d+r 

p-Pfc'-Pfc' + l 1 Η— mod F£n. 

7.2.5. Construction of φ^. -— The map is constructed in a fairly similar way 
(the major difference is that we need to start the construction from P^ and then 
continue to the left until we reach F\. 

Similar to above, we define φ^ in terms of the restrictions to Pk'. 

Ε IntP0, s + z G xo 
where is the same as above, see (184), and 

ι* :AK"*5_|pfc ^Ax+*S+eA*-*S_|Pfc . 

We have the following analogue of Claim 17. 

Claim 18. .— Let επ G Int Κ be as in Claim 17. We have (1) ijT~ = 1 mod F£n for 
all k = 1,.. . , n. 

(2) Let £u C {1,2,..., η — 1} consist of all k such that Pk Π Pk-i goes to the left. 
We then have transform 

Ε IntP0, s + z G xo + A' z -f -s = /}. [PfeHPfe-i ~* Ε IntP0, s + z G xo + A' z 

which extends uniquely to Pk-i U · · · U Pi. We then have: 

lk — 
k'efn; k'>k 

dr+df+r+d+ mod Ρεπ. 

7.2.6. The map φγι is an isomorphism. — Now that we have constructed the 
maps 0n|pfe from (182), let us prove that they are isomorphisms. 

We can write 

(187) Φτι\ι\ = lk °nipfc, 
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where iupk is an endomorpism of Λκ+ * S+ Θ AK~ * 5_|pfc whose components 
have been constructed above. We will abbreviate iupk = ΰ · The problem reduces to 
showing invertibility of 

Let us use the matrix notation 

ik = 

%k dr+e+ 

lk réévr 

e End 

+<<<+<+ 

θ 

dr+d 
vrd 

We have 

(188) ·++ —+ 
e+ree+ 

e+r 1 «T+ 
e+re+t 

as follows from Claims 17 and 18. 
Lemma 7.1.2 implies that 

0 lk 
ί ­ ο z 

2 d+r+d 0 
ο d+ré = 0. 

It now follows that X := 
dr dv 

7 + _ 
is invertible (Sec 7.1.1). 

We can multiply (188) by X 1 so as to get: 

ikX-1 = Id, 

which implies that i^X 1 and, thereby, is invertible. Furthermore, we get: 

(189) d+r+d+r 1 
d+rd 

d+e 
1 

7.3. The maps </>nl9 Φτι2 f°r a pair neighboring strips Πι and Π2 

Consider now the neighboring strips Πι and Π2 and let t = Πι Π Π2. Let us find 
the relation between \e and Φπ2|̂ · Suppose ί goes to the right, fig. 2. 

We have a canonical isomorphism 

ίΓπιΠ2 : (fcliuxc)!* ^ (*|n2xc)|£. 

Using the isomorphisms 0Πι></τι2 as in (182), we get an isomorphism 

4̂πιΠ2 := Φη2 Uxc 0 -#ΠιΠ2 ° 0Πι kxc · 

(190) Λ * 5-1- Θ Λ ~~ * S-1/vr -> Α + * 5_μ Θ Λ * S_Ur. 
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branch cut d+r+d+ 

*0 
d+r+d 

é+e+ 

π 
π 

^ 2 
e+r 

r+e+x+qw 
ΡΠ2 
*0 

FIGURE 2 

Let Pi, P2, · · · ? be all α-strips which intersect fig.2. We then have commutative 
diagrams 

K*+*s+®KK-*s-\lnPli Π̂ιΠο Λ ^ * 5 + Θ Λ ^ - * 5 _ | ^ 

dsre++ 
ΛΑ+*5+θΛΑ-*5_/ηΡ 

iu2pk\e 

which implies that 

-AninaUnPfc = (ni2pfcUnpJ 1 ο *niPfc|*nPfc. 
These formulas determine Am n2 · Let us compute: 

*n2pfc oAu1n2\INPK = »nipj*npfc 

1 zn2pfc 
zn2pfc 1 

0 AUln2\INPK = 
1 7~ + 

znxPfe 7, + _ 1 
Formula (188) yields 

1 7_ + 
7*+~ 1 

-1 
vr 

1 -7~ + 
2n2Pfc -7 + ~ 

ln2pk 
1 

Therefore, 

ΆπιΠ2|*ηΡΛ = 
1 -7*_ + 

*n2pfc LTL2PK 1 
X 

1 7_ + 

zriiPfe 1 
vr 

(191) qqq 1 

K %iPfc Zn2Pfc 
znxPfc %2Pfc 

1 tnpk 
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because iu2pk ° *n[pfc = 0 anô  ̂ π2\ ° *rïiPfc — ^ by Lemma 7.1.2. 
Let us, cf. fig.2, number all the α-strips that meet Πχ or Π2: 

ρΠι ρΠι ρΠι ρ ρ ρ . 

ρΠ2 ρΠ2 ρΠ2 ρ ρ ρ 

Let us also set P^1 := P^2 := Pi. Lemma 17 yields, 

*ΠιΡ* -
/ 

dv 

ΓΡίΡζ+1 _ de 

m<0 

ρΠι ρΠχ 

*niPfc -
vr 

Kk 
γΡιΡι+ι _ 

vr 

m<0 
τ, ρΠ2 ρΠ2 

where only those terms are included into the sums, for which the intersection ray of 
the corresponding α-strips goes to the right. Hence, 

'ÎiPfc Zn2Pfc -
/ 

m<0 
ρΠ2 pii2 

/ 

m<0 

pnx ρΠχ 

Let I := Πι Π Π2 be of the form {c(f ) + re~ia r > 0}. 
It now follows that 

(192) %iPfe ~zn2PfcUnPfc = 
Thus: 

^ΠιΠ2 Unpk = 
1 * 

- Γ * " 1 * 1dr 

This means that the same is true for Au^U-
Let us write Au1n2 in the matrix form. 

^ΠιΠ2 = 

ΛΠιΠ2 ΛΠιΠ2 

i + ~ 
ΑΠιΠ2 

^Π!Π2 

vr 

sd+s+++dr d+r+e+dr+ 

Ακ~ * S. 
le 

Ακ- * 5_ 
Ι* 

d+r 

Lemma 7.1.3 implies that 4̂π̂ π2 = 0· Indeed, the corresponding map is defined on 
an unbounded set Πι Π Π2; since the intersection ray goes to the right, we are under 
the conditions of the case i) of that Lemma. 

Let us summarize our findings. 

Claim 19. — Let Πι, Π2 be neighboring strips and ί = Πι Π Π2 goes to the right. 
Assume that Πι is above Π2. Then 
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1) the map 

ΛπιΠ2 '· 

Ε IntP0, s + 

d+ee+gf+e 

d+r+d+r+ 

+ey+e+e' 

is of the form 

4̂πιΠ2 = ΑΠιΠ2 0 

ΛΠιΠ2 4 — 
^Π!Π2 

(2) λΪπ^π = /d ; ^ΠιΠ2 = ^ / ^ΠιΠ2 =d+r+d+red s+r+d sr++d s+ez+d s+r d+dr+dPl; wftene Pi is the leftmost 
α-strip that meets both Πι and Π2 and P0 1 is £/ie rightmost α-strip that meets Πι imi 
not Π2. 

Similar result holds true in the case when the intersection ray Πι Π Π2 goes to the 
left (proof is omitted). 

Claim 20. — Let Πι, Π2 be neighboring strips and £ = Π1ΠΠ2 goes to the left. Assume 
that Πι is below Π2. Then 
1) the map 

^ΠιΠ2 · 

dr++ed+'(r+ d+r+zéf+ 

Ακ- * 5 _ AK~ * 5 _ 
£ vr 

is 0/ £Ae /orra 

^ΠιΠ2 = ΛΠιΙΙ2 ΑΠιΠ2 
0 ^ΠιΠ2 M 

(2) ^ΠιΠ2 = ^ / ^ΠιΠ2 — ^πΓπ2 Ξ ~~d+r+d+where Ρ\ is the rightmost α-strip 
that meets both Πι and Π2 and P^1 is the leftmost α-strip that meets Πι but not Π2. 

7.3.1. Identifications. — Let £ = Πι Π Π2, ^ G £~"α. 
In the notation of Section 3.10.2, we can identify S>£ ^ 5a-1 (̂ ) 5 Bw : Sw Sa-1^) 

for every w Ε W. For a word w = £n · · · or w = £n · · · i iP , set |it;| := η (we set 
|L| == \R\ = 0). 

Let := (—l)lwlp^ : 5 ^ —> Sa.-1^)-
Let us define identifications 

(193) B+,C+ : S± —• S± 

where 
d+e+e+df45es+s+s+zedaz9+azçreza 
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We can conclude from 2)s of Claims 19, 20 that 

(194) ΑΠιπ2 e C - Ï ^ C , 

where Γ^1/2 is as in (58). 

7.4. The isomorphism 7ΦΦ : Φκ -> Φκ 

Using the above developed results, we will construct a map Τψφ : Φκ —> Φκ which 
satisfies (177) (recall that such a map is unique). Equivalently, for each (—a)-strip Π, 
let us specify maps 

^ΦΦ,Π · ^K\nxc —• Φ^Ιπχε 
which agree on intersections: if Πχ Π Π2 = ί φ 0, then we should have: 

(195) /ΨΦ,Πι kxc = ^ΦΦ,Π2 kxc-

Let us now reformulate condition (177). 
Let P0 be an α strip and Π0 be a —α-strip such that x0 G Po Π Π0 (these strips 

are unique). 
Denote := ZXoxK, cf.(29). 
Let 

*Φ : £7*0 "* $K|(n0nP0)xc; 
Η · ~* ψ l(n0nPo)xC 

be the restrictions of Ζφ,ζψ. Since £7^ is supported on (Πο Π Po) x C, the condition 
(177) is equivalent to: 

(196) ^φφ|(π0ηΡ0)χ€«Φ = *Φ· 
We have identifications 

In : AK+ * S+ Θ AK~ * S-|nxc *K|nxC 
φη : Λκ+ * 5 + Θ Ακ~ * S_|nxc -* Φ*|Πχθ 

Here Γπ is defined similarly to (184) but for S±, Φκ and (—a)-strips instead of S±, 
Φκ and α-strips; and φη is as in (182). 

One can now equivalently look for /ψΦ,π in the form: 

(197) /ΦΦ,Π = ^π^πζϊ1, 
where 

Un : Λκ+ * 5 + Θ Ακ~ * 5 _ |nxc -> Λκ+ * 5 + Θ Λκ" * 5 _ |nxc 
is to be calculated. 

Since Π satisfies both i) and ii) in Lemma 7.1.3, we have 
Homnxc(AK± * S±;AK* * 5T) = 0. 

Thus, we must have: 
(198) UU(AK± * S±) C AK± * S±. 
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Using (190) and (57), we rewrite the gluing condition (195) as follows: 

(199) Un2\txc = Âu^UnAexcT^1. 

Let us now rewrite the condition (196) (from now on all our maps are restricted 
onto (IIo fl Po) x C, unless otherwise specified). Let 

v:&o ^ AK+ * « L ® A*" * SR 

be the map given by the left arrow in (52). Let u+ : £7^ —• AK+ * SL', V~ : 67"̂  —> 
AK~ * 5L be the components of v. 

We have the following obvious embeddings: 

IL : AK+ * SL -+ AK+ * 5+ 0 Ax" * S_; JH : AK" * SR -> Ax+ * 5+ 0 AK~ * S_; 

JL : AK+ * SL -> AK+ * 5+ 0 Ax~ * 5_; JH : AK" * SR -> AK+ * 5+ 0 AK" * 5_. 

The formula (187) can now be rewritten as 

<t>n0 = ^p0^nopo-

We, therefore, can split 

(200) * 5+ 0 Ax~ * 5_; JH : AK" * SR -> AK+ * 5+ 0 AK" * 5 

Next, we have 
f+fd+* 5+ 0 Ax~ * 5_; JH : 

Combining (197) and (200), we have 

* 5+ 0 Ax~ * 5_; JH : AK" * SR 

so that the condition (196) is equivalent to the condition 

(201)~ 
^ n o ( ^ 0 ^ ) ^ = ^n1oPo(/^e/^)z/ asmaPs &o A x + * 5 + 0 A x *S- |n0xc. 
Denote 

* 5+ 0 Ax~ * 5_; JH : AK" * SR G 

Let us make this condition (201) more specific. 

Lemma 7.4.1. — Let J : tf* -> (AK+ * S+ 0 Ax~ * S_)[2] 6e an arbitrary map 
in D((IIo fl PQ) x C). There exist unique maps 

^ : AK+*SL^A*+*S+; 

J~ : AK~ * SR -> AK~ * 5_ 

d+r+d+r+dr 
* 5+ 0 Ax~ * 5_; JH : AK" * SR 
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Proof. — We have identifications: 

β : PHomc(ZK;z-o1(Ax+*5+0AK-*5_))^ 

^ PHomc(ZK;4o(AK+*5+eAx-*5_)[2]) ^ PHom(£^; (Λχ+*5+θΛχ-*5_)[2])5 

where iXo : C —» (Πο Π Po) x C is the inclusion s ι—• (xo,s). Consider two more 
identifications 

a+ : ifflom(A*+ * 5L; AK+ * 5+) ^ P H o m ^ A ^ * 5L; i^1 * 5+) 
= PHom(Zx;i-1AK+*5+); 

a~ : PHom(AK" * SR; AK~ * 5Λ) ^ PHom(z~o1AK- * 5L; i ^ A * " * 5_) 
= ΛΗοπιίΖκΐί^Α^- * 5_); 

and let α = α+ θ ol~ . Then we have a chain of identifications 

PHom(AK+ * SL; AK+ * 5+) θ PHom(Ax" * 5β; AK" * 5_) 

A PHomc(Zx; z~o1(AK+ * 5+ θ AK~ * 5-)) 

Λ PHom(i70Y; (Λκ+ * 5+ θ Ακ~ * 5_)[2]). 

Let 

7 : PHom(AK+ * SL; Λκ+ * S+) θ PHom(AK" * 5Λ; Λκ" * SL) 

PHom(£7"*; (Λκ+ * S+ θ Λκ" * 5_)[2]) 

be given by the pre-composition with v. One can check that 7/? = α so that 7 is an 
isomorphism. 

The statement now follows. • 

Let Ijf denote the maps obtained from I0 by means of Lemma 7.4.1. Observe that 
the maps 1^ uniquely extend from (Πο Π Po) x C onto Π0 x C. Denote the resulting 
extensions by the symbol Î 1 : AK± * SL/R\n0xc —> AK+ * 5+ 0 AK~ * 5_|n0xC-

Rewrite the condition (201) in the form: 

UUO(ÏL®ÏR)V = (If Θΐ5>· 

It now follows that the condition (201) (and thus also (177)) will be satisfied iff 

(202) Un0\A*+*sL = I+; UUO\AK-*SR = I". 

Indeed, the implication (202) (201) is obvious, and (201) (202) follows from 
(198). 
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7.4.1. Estimate. — Let us prove the following estimates: 

Claim 21. — We have 

I+ = /L; T-=IR. d+r+d+r+ 

Let us bring the current notation into correspondence with that in Claims 17, 18. 
Set Π := Πο. Let us denote all the α-strips intersecting Π by Ρχ,..., Pn in the order 
from the left to the right, in the same way as in Claims 17, 18. Suppose that Po = Pk 
so that in0Po = ^ in the notation of Claims 17, 18. 

Let us now write $π*ρ0 = ik 1 = Id+αο, where ao is an endomorhipsm of AK+ * 
S+ Θ AK~ * 5_. Let a := oo(/l Θ IR)V. Our statement now reads as a+ = 0; a~ ξ 0. 

According to (189), we have 

an = 
0 d+r+d+r 

- ί ­ ο 
so that 

(204) Ε IntP0, s + z G xo + A' z -f -s = /}. 

Let us now examine the map it ILV. We have 

it II ' AK+ * 5L|n0nPoxC —• AK *S-|n0nP0xC = 
ŴHKh 

d+r+d+r+ 

where, as in (37), (38), ÏÏ(K,w) := {(z,s)\s- ζ G Κ + c(w)} C (Π0 Π P0) x C. 
As above, let W£ight C W£ght consists of all w such that ÏÏ(K,w) C U{K, L), 

where 

tt(K, L) = {(*, s)\s + z{x) - Z(XQ) G Κ} C (Π0 Π Ρ0) x C. 
Let : Z ^ ) L ) —• Z<a(K,w) be the corresponding map of sheaves. We then have 

i+-iL = 
d+r+dr+d 

Ew, 

where for each (z, 5) G S(if, L) there are only finitely many w such that φ 0 and 
(*,*) G 

Let A be a unique vertex of the parallelogram Πο ΠΡο such that Πο ΠΡο C A + K. 
The condition &(K, w) C &(K, L) is then equivalent to 2A — x0 + c(k;) G if, or 
c(w) + xo = — 2(A — xo) + sw where ew G Κ. Observe that xo — A G Int Κ because 
xo G ΙηΐΠο Π Po- It now follows that for each w G W£ight, the map Ewv+ : iT0 —» 
7Lft{K,w) factors as 

£7*0 ^ A * SR = %tt(K,R) —> %{(x,s)\s-z(x)+2AeK} Fw 

> %{(x,s)\s-z(x)+2A-eweK\ — ^ïï(K,w), 
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where all the arrows except the leftmost one are induced by the closed embeddings of 
the corresponding closed sets. It is easy to check that the sum Σ nwFw gives rise to 
a well-defined map 

J : ̂ {{x,s)\s-z{x)+2AeK} • 
™ew«ght 

H{K,w) 

Let δ := 2A. We have Z^z^s_z+2AeK] = Ts*Z%(K^Ry Let τδ : Z^KjR) ~» 
ΤδΛη{κ,Β) be the map induced by the closed embedding of the corresponding closed 
sets. We then have a factorization 

Ε IntP0, s + z G xo 

which implies that (i^ ILV)^ = JTS = 0. Similarly, one can check that (ik IRV) = 
0, which, by virtue of (204), that a = 0. • 

7.5. Inductive construction of the maps ί/π· 

We will now construct the maps Uu satisfying (199) and (202). Taking into account 
(198), it is possible to construct Uu in terms of its components 

U% : KK+ * Sw -> Λκ+ * S+, for all w G W~g; 

U% : AK~ * Sw AK~ * 5_, for all w G W T l . 

7.5.1. Rewriting the gluing condition. — Let us rewrite the conditions (199). 
CASE 1: £ goes to the left and w G W£ft (set ± = + on both sides of (205)) or ί 

goes to the right and w G Wg ht (set ± = — on both sides of (205)) Let us rewrite 
(199): 
(205) Uujtxc = ^ΠιΠ2^ΠιΙ*χ€ : Λ * Sw\e —> Λ * Sil^xc-
Every map as on the RHS extends uniquely to Π2 (Lemma 7.1.4) 

so that we can equivalentlv rewrite 
(206) U^2 = (T^U^UUu 
where ext means the extension onto Π2. 

CASE 2: 

(207) £ goes to the left and w G W?iirhf (set ± = - ) 
or £ goes to the right and w G W£ft (set ± = +) 

UnJtxc = T^HUS, l/xc θ ^ ^ O C / ^ k x c i V r ) , 
where : Λ, * Sw —• At * 5 ^ is as in (43). 

Recall that ^ΠιΠ2 ~ 0 by Claims 19, 20, so that we can rewrite the RHS as (using 
notation from Sec 3.8.5) 

Uujtxc = ^ΠιΠ2^ΠιΙ*χ€ : Uujtxc = ^ΠιΠ2^ΠιΙ*χ€ : qs+s+sUujtxc =s+ 
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So that we have (by separating + and — components): 

(208) Uujtxc = S+D+^ΠιΠ2^ΠιΙ*χ€ : 

(209) Uujtxc = ^ΠιΠ2^ΠιΙ*χ€ : +s+Uujtxc = ^ΠιΠ2^ΠιΙ*χ€ : 

As above, (208) can be equivalently rewritten in the same way as (206). 
Let us rewrite (209): 

Uujtxc = ^Uujtxc = ^ΠιΠ2^ΠιΙ*χ€ : ΠιΠ2^ΠιΙ*χ€ : 

Given a map Κ : AK± * Sw\e —» AX=F * one can uniquely factor it as 

+q+qs+s+sd 

where Κ' : ΛΚτ * Siw\t —» AK=F * 5n=|̂  (Sec 7.1.3) which extends uniquely to a map 
Uujtxc = ^ΠιΠ2^ΠιΙ*χ€ : d+ds+r+d 

by Lemma 7.1.4. In view of this remark, we finally write 

(210) Uujtxc = ^ΠιΠ2^ΠιΙ*χ€ : s+s+d5sd54sd+s ' ext 
Let us summarize. Gluing conditions (199) can be equivalently formulated as fol­

lows: 
For every pair of neighboring strips Πι, Π2, t = Πι PlIL?, we have (206). In the case 

(207) we also have (210). 
Condition (206) implies that 

(211) d+r+e aazr&ré"IZPE 

7.5.2. Constructing ϋγ(. — Let us proceed by the induction in the length of w. 
In the case Π = Πο and w = L or w = R, Uy[o is determined by (202). 

Given an arbitrary strip Π, there is a unique sequence 

(212) Πο,Πι,...,Πη = Π 

where all Π̂  are different and Π̂  ΠΠ^+ι ψ 0 (because the graph formed by the strips 
is a tree). Formulas (206) (applied for all pairs Π;, Πί+ι) determine , for all Π. 

Suppose that i/ff for all words w of length < N. Let w = tw' be a word of length 
N + 1 (so that the length of w' is N). Let ί = Πι ΠΠ2. The formulas (210) determine 
UJI . Given an arbitrary strip Π we can join it with Πι by a path anfl define UJJ using 
(206) in the same way as above. 

7.5.3. Estimate. — We are going to prove the following estimate. Let Π be a strip. 
Consider a map C = C+ U C_, cf. (193). We will prove 

Claim 22. — We have 
U£ = CIW = (-1)H/W. 

ASTÉRISQUE 356 



7.5. INDUCTIVE CONSTRUCTION OF THE MAPS Un. 109 

Proof. — Let us use induction in \w\. Iî w = L or w = R and Π is arbitrary, the 
estimate follows from (211). Suppose that the estimate is the case for all w with 
\w\ < N. Let now \w'\ = Ν + 1 and w' = Iw, \w\ = N. Let I = Πι Π Π2. 

Combining (210) and the inductive assumption, we have: 

C " 1 ^ = -^(n^DD+R+D+Rnoc^i^i^c^i; 
ext 

- t f i n a . n O C - ^ n ^ C J j i 
ext 

Claims 19,20 
- t f ina .nOC-^În C/w|, 

ext 
-^na.niJC-^nxnaCJ»,!/ 

'ext 
(194) ;-^(π2>Πι)Γ2ιΠ2|^ 

= (^7) I ext = hw, 

and (211) allows us to extend this equality to other strips. 

7.5.4. Proof of Proposition (3.10.1). — Let us first find an expression for the 
maps Jnp as in (178). We have 
(213) 
^ψφ,π|πηΡχ€ (197) 0n|nnPxC^n|nnPxC^n InnPxC (187) ̂ p|nnPxC«np^n|nnPxC^nlnnPxC 

Comparison with (178) yields: 

Jnp = ^πρ^τιίπηρ· 

We then have (for every w G Wa) 
Uujtxc = ^ΠιΠ2^ΠιΙ*χ€ : 

by Claim 22. 
Let us write 

-^na.niJC-^nxnaCJ»,!/ 
w'e\va 

Ζη(Κ.ιη'λ 

as 

inplw = 
d+r+d+ 

mnpD+R+D+R 

where the sum is taken over all wr such that ^(Κ,ιυ') C ÏÏ(K, w) and eww' : 
%B(K,w) —> %ïï(K,w') is induced by this embedding. We are to show that m^w' Φ ® 
implies that U(K,w) φ (d(K,w/). Assume, on the contrary that ^(K^w) = *â{K,w') 
for w,w' G Wa. Since Ρ Π Π φ 0, this is only possible when w,w' G WJ*ight or 
w,w' G Wj^. Suppose w,wf G WJ*ight. Claim 17 then implies that either wf = w, or 
c(w') — c(w) G Int if, i.e., w φ wf, as we wanted. The case w, w' G Wgft is treated in 
the same way by means of Claim 18. • 
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