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MICROLOCAL PROPERTIES OF SHEAVES
AND COMPLEX WKB

Alexander GETMANENKO & Dmitry TAMARKIN

Abstract. — Kashiwara-Schapira style sheaf theory is used to justify analytic con-
tinuability of solutions of the Laplace transformed Schrédinger equation with a small
parameter. This partially proves the description of the Stokes phenomenon for WKB
asymptotics predicted by Voros in 1983.

Résumé (Propriétés microlocales des faisceaux et méthode BKW complexe). — La théorie
microlocale des faisceaux de Kashiwara-Schapira est utilisée pour obtenir le prolon-
gement analytique des solutions de la transformée de Laplace de I’équation de Schro-
dinger dépendant d’un petit paramétre. Ceci démontre partiellement le phénomeéne
de Stokes pour les développements asymptotiques BKW, prédit par Voros en 1983.
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CHAPTER 1

INTRODUCTION

In this document we are going to study the following PDE on one unknown function
¥ in two complex variables z, s:

(1) - \Ilzz + V(x)‘I’ss = Ov

where V(z) is a given polynomial; the weakest possible assumptions on V(z) will be
formulated in Section 2.7.1.
This equation is related to the Schrédinger equation

2) — R20%(z, ) + V(@)$(x, h) = 0

by means of the Laplace transform 1/h — 5. According to resurgent analysis, the
analytic behavior of ¥(z, s) determines quasi-classical asymptotics of solutions of (2).

A multivalued solution ¥ of (1) can be specified by means of prescribing its initial
values. Our problem is now as follows. Consider a class of initial value problems for
(1) with a fixed type of the analytic behavior of the initial data; we are to find a
manifold where solutions of these problems are defined.

1.1. Cauchy problem

We study the Cauchy problem for (1) of the following type. We fix a point zg € C
and prescribe ¥(zg,s) = vo(s) and %ﬁ"")h:mo = 11(s) as multivalued analytic
functions of s. Let us now give a more precise account.

1.1.1. Initial data. — Fix an acute angle o € (0,7/2). Let S, := (0,00) X (—a, a+
27) be an open sector of aperture 27 + 2a. Let mg, : Sy — C be the covering map
ns, (r,¢) := re‘®. The map mg, induces a complex structure on S, so that mg_ is a
local biholomorphism. The initial conditions are given by two holomorphic functions

(3) 1o and ; on S,.

SOCIETE MATHEMATIQUE DE FRANCE 2013



2 CHAPTER 1. INTRODUCTION

1.2. Multi-valued solution to a multi-valued Cauchy problem

We first fix a complex surface ¢ along with a local biholomorphism p : J — CxC.
Let us also fix a map

4) h:Sy—d

fitting into the following commutative diagram

C—25CxC

Sa __}'L‘g' d
where i;, : C — C x C is given by the formula iy, (s) = (zo, s).
The equation (1) gets transferred onto ¢f by means of a local biholomorphism py.
Call this equation “the transferred equation”.
The coordinates (z, s) on C x C give rise to local coordinates on (. Given a function

v
¥ on ¢, we then have a well defined derivative ov as a holomorphic function on (.

z
We say that a solution ¥ of the transferred equation is a solution of the Cauchy

problem with initial data (3) on J, if ¥ o h = 1g; %\—f— oh=1.

1.3. Formulation of the result

Our main result is a construction of a complex surface J and a map h as in (4),
such that for every choice of the initial data, there exists a unique solution ¥ of the
Cauchy problem on (.

We prove (Section 3.16) that the surface  “extends infinitely in the direction of K”,
where K C C is the following cone:

(5) K :={re'*;r > 0;—a < ¢ < a}.

Let us give a more precise formulation. Fix a point z € C such that V(z) # 0. Consider
a one-dimensional complex manifold J” := p;l (zxC), where the projection onto zxC
gives a local biholomorphism P? : J° — C. Let U C C be an open parallelogram
whose sides are parallel to vectors e!® and e~*. Let 0 : U — ° be a section of P®.

Let also r_, C K be the ray [0, 00).e~%.
We prove that

Theorem 1.3.1. — There exists a set I' C C satisfying:
(1) for every point s € C, the intersection (s — K) NT is at most finite,
2)UcCc(U+K\T+r_y);
(3) o extends uniquely onto (U + K)\(I'+r_g).

This theorem is proved in Section 3.16: it easily follows from Theorem 3.16.1, as
explained after its formulation.
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1.4. INTRODUCING SHEAVES 3

Theorem 1.3.1 assumes existence of a nonempty set U and a section o; this fact is
the content of Theorem 3.16.1.

Our construction of J, as well as the proof of the above Theorem 1.3.1, are based
on sheaf-theoretical methods [5]. The relation between linear PDEs and sheaves is
well known and constitutes the subject of Algebraic Analysis. Our document is also
motivated by the classical work of Voros [10, Section 6] where an explicit description
of the singularities of solutions of (1) was derived heuristically, see [10], p.213, line
15 from the bottom; additional insights came from [8] and [3]. Important works on
this problem using methods of hard analysis include [1] and [4]; the history of this
subject with several different approaches is reviewed in the introduction to [3].

In the next subsection, we will briefly describe the idea of our sheaf-theoretic ap-
proach.

1.4. Introducing sheaves

We start with introducing a covering space X of C, and defining the so-called action
function on X.

1.4.1. A covering space X. — Let TP be the set of zeros of V(z) — “turning
points” of V (z).

We assume z¢ ¢ TP. Let X be the universal covering of C\TP. We can choose a
determination of 1/V (z) and its primitive S(z) = [* 1/V(€)d¢ on X. It will be more
convenient for us to use the notation z := S(z). Since dS(z) is nowhere vanishing
on X, we can use z as a local coordinate on X. As above, we denote by s the coordinate
on C, so that (2, s) are local coordinates on X x C.

Equation (1) gets transferred onto X x C and in the coordinates (2, s) it looks as
follows:

(6) -V, +¥,,+lot. =0

where l.o.t. stands for a differential operator of order < 1 applied to ¥. We now pass
to a sheaf-theoretical consideration.

1.4.2. Solution sheaf and its singular support. — Let Sol be the solution sheaf
of (6). According to [5, Th.11.3.3], the singular support of Sol is of a very special
form which is determined by the highest order term of (6) (see Section 3.2 for more
details). More specifically, let (z,s,(dz + ods) be local coordinates on T*(X x C).
Then

(7 S5.5.80l € Qx ={(2,8,{dz+0ds) : (=0 or(=—0}

It turns out that this condition contains enough information on Sol in order to deal
with solving the Cauchy problem. In fact, at this stage, we abstract from our PDE,
and only remember that its solution sheaf has its singular support as specified.
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4 CHAPTER 1. INTRODUCTION

1.4.3. Initial value problem in sheaf-theoretical terms. — Choose and fix a
preimage xXg € X of zg. Define a map g : S, — X x C by setting g(5) := (%o, 7g, (3)).
Cauchy-Kowalewski theorem implies that the initial conditions (3) are in 1-to-1 cor-
respondence with elements of I'(S,, g~!Sol), see Section 3.3 for more detail.

As explained in the same Section, the latter group can be identified with

R°Homx xc(RgiZs, [—2], Sol).
Therefore, the initial data (3) can be interpreted as a map
(8) my : RgiZs,[—2] — Sol,
see (22).

1.4.4. Semi-orthogonal decomposition of RgiZg_[—2]. — Let D(X x C) be the
bounded derived category of sheaves of abelian groups on X x C. Let & ¢ D(X x C)
be the full triangulated subcategory consisting of all objects whose singular sup-
port is contained in Qx as in (7). Let 1€ Cc D(X x C) be the so-called left semi-
orthogonal complement to &, i.e., a full subcategory consisting of all objects Y such
that RHom(Y, X) = 0 for all X € &. We prove

Theorem 1.4.1. — (1) There exists the following distinguished triangle in D(X x C):
— RgiZs, [—2] kil d—-4 H
where ® € €, § € L€ (“semi-orthogonal decomposition”);

(2) The complex of sheaves ® has no negative cohomology.

This theorem coincides (up-to slight reformulations) with Theorem 3.4.1. The ob-
ject ® and the map i : RgiZg, [—2] — P are constructed in Sec 3.6-3.13. The bulk of
the document (Section 4-Section 6) is devoted to showing that the constructed object
® and a map ig satisfy the above theorem.

It is well known that the distinguished triangle in part 1 of Th.1.4.1 | if exists,
is unique up to a unique isomorphism, meaning that & is defined uniquely. It also
follows that the precomposition with ig:

ig o — : ROHomy yxc(®,S0l) — ROHomch(Rgnga[—2],Sol)

is an isomorphism of groups. This implies that the map m., cf. (8), uniquely factors
as follows:

RgZs,[-2] —® =¥ Sol.

Let ®¢ := 7<(®. Condition 2) of Theorem 1.4.1 implies that ® is a sheaf of abelian
groups. We have a composition

(my)o : ®o — & — Sol.
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1.4. INTRODUCING SHEAVES 5

1.4.5. Etalé space of &, and solving the initial data problem. — Let X be the
étalé space of ®;. We have a local homeomorphism py, : ¥ — X X C so that we have a
unique complex structure on ¥ making px, into a local biholomorphism. It turns out,
that the map (my)o gives rise to a solution of the transferred equation on X. Indeed,
every such a solution can be equivalently described as an element ¥ € I'(3; p5, ISol).
We also have a canonical section p € I'(Z; py, 1®y) (by the construction of the étalé
space); the map (my)o induces a map v :pgli’g — pEISOI, and we set ¥ := v(p).

It is now straightforward (Section 3.5.2) to prove that thus constructed solution ¥
is a solution on ¥ of the Cauchy problem with the initial data (3).

By choosing an appropriate connected component f of ¥ we finish the construc-
tion. We prove several nice properties of . In Section 3.14 we show (f is Hausdorff.
In Section 3.15 we show that the projection py : J — X is surjective. Finally, in Sec-
tion 3.16 we prove that f extends infinitely in the direction of K (see the beginning
of Section 3.16 for the exact definition).
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CHAPTER 2

CONVENTIONS AND NOTATIONS

Throughout the document, we fix an acute angle o € (0,7/2).

2.1. Various subsets of C

We introduce the following subsets of C:

— K is the closed cone consisting of all complex numbers whose argument belongs
to [—a, a], including 0;

— g =€ .[0,00); r_q := e7¥*.[0, 00);

2.2. Sector S,

Weset Sy :={7€C: —a<Im7 <27+ a}. Let ng, : Sq — C be the map given
by mg_ (7) := €”. Some complex analysts call S, an étalé open sector with aperture
2m + 2a.

2.3. Potential V(z). Stokes curves. Assumptions

Throughout the document, we fix an entire function V(z) on C. We assume that
V(z) has only finitely many zeros which are traditionally called ’turning points’.
The conditions in Sec 2.3.2 below will be also assumed throughout the document.

2.3.1. Stokes curves and further assumptions. — Let w € C, V(w) =0 be a
k-fold zero of V(z). We define an a-Stokes curve 2(t), 0 < t < C, emanating from w
as follows:

—2(t) is a smooth curve with 2(0) = w and —V(2)(dz/dt)? € e?*Rs,.

The following facts are well known, [2].

(1) There are exactly k + 2 a-Stokes curves emanating from w.

(2) One can choose C (to be a positive real number or +00) in such a way that
either 2(C) := tleré coincides with another turning point of V(z), or 2(C) = o0. In

the latter case we say that the Stokes curve terminates at infinity.
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8 CHAPTER 2. CONVENTIONS AND NOTATIONS

2.3.2. Further assumptions. — We will assume the following properties of V'(z).

a) All a-and (—a)-Stokes curves terminate at infinity.

b) Every a-Stokes curve intersects only finitely many —a-Stokes curves, and every
(—a)-Stokes curve intersects only finitely many a-Stokes curves.

It is well known in the complex WKB theory that for every polynomial V(z) one
can find an « satisfying these assumptions.

2.4. Universal cover X

Let % be the complement in C to the (finite) set of turning points of the potential
V(x). a-Stokes curves split % into regions called a-Stokes regions; similarly, one can
define —a-regions. Throughout the document, we denote by X the universal cover
of %, and by px : X — % — C the covering map.

2.5. Initial point zg

We fix a point o € X. We assume that px(zo) does not belong to any of a-or
—a-Stokes lines.

2.6. Action function on X

Fix a choice of /V(z) on X and a function
9) 2: X —>C : dz(z)=+V(z)dz.

It follows that dz is nowhere vanishing, i.e., z is a local coordinate near every point
of X. The function z has the meaning of the action function. We use the notation z
because 2z will play the role of a local coordinate on X. The function 2z should not be
confused with the map px : X — C.

2.7. Subdivision of X into a-strips

Let P C % be a closed a-Stokes region on %, that is, P is one of the regions into
which the complex plane C is subdivided by a-Stokes curves.

Let us now switch to the universal cover p : X — %. It follows that p~!P splits into
a disjoint union of its connected components p~'P = [ p_ Py, where p : P, = P.
Call each such P, (for every a-Stokes region P) an a-strip. By (2, §2.2], the function
z maps each a-strip homeomorphically into a generalized strip on C, i.e., a subset
of C of one of the following types, fig. 1. Here the removed points (;, {;, correspond to
the turning points of V' (z).

Throughout the document a-strips will be denoted by means of the letter P with
different subscripts. We will often identify « strips with their images in C under z.
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t
Im(C, e ) <Im(ze”"*)<Im(C,e”™) Im(g,e’'™)<Im(ze™) Im(ze ™) <Im(T,e

z#C,,C, z#T, z#C,

—ia

FicURE 1. Three types of a-strips

2.7.1. Weakest Possible Assumptions on V(z). — The results and proofs of
our document also hold true for any entire function V(z) with finitely many zeros,
satisfying the following condition that corresponds to Condition A of [2, §2.2]:
i S(@)] =

)

for any curve C in C satisfying arg S(z) = *a.

2.7.2. Boundary rays. — Let Py, P; be a-strips and PyNP; # @. Then £ = P,NP,
is a ray on X which is identified by means of z with either é(¢) + e**.(0,00) C C or
é(f) — €*@.(0,00) C C, where é(¢) is a complex number. We denote by £% the set
of all such rays, to be called boundary a-rays. Every boundary a-ray belongs to the
boundaries of exactly two a-strips; the boundary of every a-strip is a disjoint union of
boundary a-rays. Boundary a-rays will be often denoted by the letter £ with different
subscripts.

We say that a boundary a-ray ¢ goes to the left if its image under z is é(¢) —
€'@.(0,00). Otherwise we say that a boundary a-ray ¢ goes to the right. Accordingly,
we get a splitting £% = £y U Lo

2.7.3. Strips form a tree. — Consider a graph whose vertices are a-strips and
we join two distinct vertices with an edge if the corresponding strips intersect (along
some boundary a-ray). Since X is simply connected, it follows that this graph is a
tree.

2.8. (—a)-Strips

One has a similar decomposition of X into (—a)-strips which are defined based
on —a-Stokes regions of X. Throughout the document, —a-strips will be denoted
by means of the letter II with different subscripts. Similar to above, every —a-strip
is homeomorphically mapped under z into a generalized strip whose each boundary
ray is parallel to the line e~**.R. We define boundary —a rays in a similar way (as
intersection rays of two —a-strips). The function z identifies each boundary ray ¢ with
either ¢(£) +e%*.(0,00) (we then say £ goes to the right), or &(¢) —e~**.(0, 00) (£ goes
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10 CHAPTER 2. CONVENTIONS AND NOTATIONS

FIGURE 2. Intersection of an a-strip with several (—a)-strips. Thick gray
lines indicate branch cuts arising from the many sheets of the projection
X — C,.

to the left). We denote the set of all boundary —a-rays by £~ %. We have a splitting
£7% = Lot U Lrigny Boundary —a-rays will be denoted by the letter ¢ with various
subscripts.

2.9. Interaction of o and —a-strips

Choose a (red) a-strip and look at all (—a)-strips (blue) that intersect it. These
(—a)-strips cut the a-strips into parallelograms and two semi-infinite parallelograms,
e.g., fig. 2.

2.10. Categories

For a topological space M, we denote by D(M) the bounded derived category of
sheaves of abelian groups on M.

2.10.1. Sub-categories i?y; L&Y, — Let Y be a one dimensional complex man-
ifold equipped with a local biholomorphism z : Y — C. For example, Y = X.

We then refer to points of 7*(Y x C) as follows (y, s,{dz,0ds), where y € Y,
s € C and (,0 € C, so that (y,s) € Y x C and (¢, o) define the following real 1-form
onY xC:

(¢dz + (dz + ods + ods) /2.

Let us fix a closed subset 2y C T*(Y x C) to consist of all points (y, s, (, o), where
¢ ==o.

We denote by 6 C D(Y x C) the full triangulated subcategory consisting of all
objects F with S.S.(F) C Qy. We denote by +&* c D(Y x C) the full subcategory
consisting of all objects G such that RHom(G,F) =0 for all F € &Y.
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2.11. Sheaves

Let Y be a topological space endowed with a continuous map z : ¥ — C. If
Y C X, then we always assume that z : ¥ — C is the restriction of the action
function z : X — C. We define the following sheaves on Y x C:

K K-
Ayt =Ly o) ste)ekys Ay T = Liy,s)ls—2(y)ek)-
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CHAPTER 3

STATEMENT OF THE PROBLEM AND MAIN RESULTS

We start this section with giving a precise formulation for the problem of analytic
continuation of solutions to (1). It turns out to be more convenient to transfer this
PDE to X x C by means of the covering map px : X — C.

Next, we give a sheaf-theoretical reformulation of the problem, and explain how the
solution (i.e., a complex surface f along with a local biholomorphism py :  — X xC)
can be deduced from of a certain semi-orthogonal decomposition Theorem 3.4.1. The
rest of this section is devoted to proving basic properties of J modulo Theorem 3.4.1,
namely Hausdorffness and infinite continuabilty in the direction of K, which are the
main results of this document. To this end we need an explicit construction of the
distinguished triangle of the semi-orthogonal decomposition in Theorem 3.4.1. This
triangle is obtained via combining four other distinguished triangles.

It now remains to prove Theorem 3.4.1, which is now reduced to showing that
each of the above mentioned four triangles (and hence the combined triangle) gives a
semi-orthogonal decomposition. This is done in the rest of the document.

3.1. Transfer of the equation —¥,, + V(z)¥,s =0to X x C

Our main equation (1) can be transferred to X x C via the covering map p x Idc :
X x C — U x C. We will use the action function z on X as in (9). Recall that z is a
local coordinate near every point of X. Our notation is summarized in fig.1.

It is easy to see that the transferred equation has the following form

(10) — U, + Uy, + Lot =0,

where l.o.t stands for the differential operator of order < 1 applied to W.
Let Sol be the sheaf of solutions of our transferred equation: Sol is a sheaf of abelian
groups on X x C.

3.2. Singular support of the solution sheaf Sol

It is well known that to every linear PDE on a manifold M one can put into
correspondence a Dys-module, where Dy is the sheaf of differential operators on M;
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14 CHAPTER 3. STATEMENT OF THE PROBLEM AND MAIN RESULTS

FIGURE 1

the solution sheaf of the PDE will then match with the solution sheaf of the Py
module.

In our situation, let us rewrite the equation (10) in the form L¥ = 0 for an
appropriate linear differential operator L on X x C. Define a @D x xc-module M as
follows

M= Dxxc/DxxcL.

We then have an obvious isomorphism
(11) Solﬂf@m(j)xw(m; Oxxc)-

Indeed, every solution ¥ of (10) on an open subset U C X x C gives rise to a
Dx xc-module map

ly : Dxxclu = Oxxclv
where Iy (T) := TW. Then, for any 7" € Dxxc(U), lg(T'L) = T'"LY = 0. Hence, ly
descends to a map
ly : My — Oxxclu,

which determines the map (11). It is straightforward to see that thus constructed map
(11) is in fact an isomorphism of sheaves.

The usefulness of this fact comes from a Kashiwara-Schapira’s theorem on singular
support of the object

(12) RHomg . . .(M; Oxxc) € D(X x C)

(derived solution sheaf of i). Let us now prove that this object is quasi-isomorphic
to Sol.

The object (12) can be conveniently computed by means of the following free
resolution R of JM:

(%) : Oﬁ@XxC")'\*@XxC"’O;
where the map X is as follows: A(T') = TL. We obtain that the object Hamg,  (M; Oxxc)
is represented in D®(X x C) by the two term complex

Homag . (R; Ox xc)
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3.3. INITIAL CONDITIONS 15

which is the same as
(13) 0— Oxxc = Oxxc— 0.
It is classically known, e.g., [7, Th.3.1.1], that the action of the operator L is locally
surjective, meaning that we have a short exact sequence of sheaves
0 — Sol = Oxxc 5 Oxxc — 0.
This means that the complex of sheaves (13) is quasi-isomorphic to Sol so that finally
Sol & RHom g, . (M; Ox xc).

Kashiwara-Schapira’s theorem [5, Th.11.3.3] says that the singular support of the
object (12) equals the characteristic variety of the Dx xc-module . In our situation,
this characteristic variety is well-known to be equal to the zero set of the principal
symbol of the operator L. This set is

(14) {(2,8,{dz+0ds) : (==x0} C T*(X xC),

which is the same as Qx from Section 2.10.1. Thus, by Kashiwara-Schapira’s theorem,
[5, Th 11.3.3], we conclude that

5.8.50l = Qx, Sole &%,
where €~ is defined in Section 2.10.1.

3.3. Initial conditions

Let zo € X be an initial point satisfying the assumptions from Sec 2.5. Let us pose
a Cauchy problem for the equation (10) similar to Section 1.2.

Let S, and 7g, : S — C be the same as in Sec 2.2. Set ¢ := Idx x7g, : X X Sy —
X x C. The equation (10) gets transfered to X x S, by means of the map g. The
transfered equation is of the form
(15) L'¥ =0,
where ¥ is an unknown function on X x S, and L’ is a linear differential operator

L'=-Y,,+e ¥ +lot,

and all coefficients of L’ are holomorphic on X x S, because 9, = e~"8,. The solution
sheaf of this equation is canonically isomorphic to ¢~Sol.
Let us fix two holomorphic functions g, on S, and pose the initial conditions
by requiring
U(xo,s) = 9°(s) and 0,¥(xo,s) = ¥'(s), s € S,.
Cauchy-Kowalewski theorem implies that there exists a neighborhood of z¢ x S,

(16) UcCX xS,
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16 CHAPTER 3. STATEMENT OF THE PROBLEM AND MAIN RESULTS

on which there exists a unique solution ¥ € I'(U, g~!Sol) of our Cauchy problem. We
have a natural map

T'(U, g Sol) — I'(x¢ X Sa,q *S0l|x,x5.) = I'(Sa; g~ *Sol),
where
(17) g:S4 =X xC : g(s)=(xp,7s,(8)).
Thus, our initial data give rise to an element
(18) ¥ € T'(Sq; 9~ 'Sol).

3.3.1. Definition of a solution. — Let us formulate the definition of a multivalued
solution of the initial value problem in the sheaf-theoretical language.

Suppose we are given a complex surface ¥ endowed with a local biholomorphism
py : ¥ — X x C. We can now transfer our differential equation from X x C to X. The
solution sheaf of the transferred equation is then Soly, := py 1Sol.

In order to transfer the initial condition (18), let us fix a factorization h of the map
g:

(19) S B 2% X xC,
where h is a complex-analytic map. We then have
['(Sa; 97 S0l) = T'(Sa; h~p5'Sol) = I'(Sa; h~'Soly).

The initial condition 1 now gives rise to an element s, € I'(Sy; A~ Soly).

Let us now formulate the notion of a solution to this problem.

We have a restriction map res : I'(3; Soly) — I'(Sa; h~1Solx), which is defined as
follows:

res : I'(2; Soly) = Hom(Zg; Sols;) — Hom(h™'Zgz; h~'Soly)
= Hom(Zs,; h~*Solg) = I'(Sa; ' Soly).
We call an element ¥ € I'(3; Sols) a solution of the initial value problem with the

initial data 1, if res(¥) = 1. Since Soly, is a sub-sheaf of @ ( the sheaf of analytic
functions), the unicity of analytic continuation implies:

Claim 1. — Suppose ¥ is connected. For every initial condition i, the initial value
problem has at most a unique solution.

3.3.2. Equivalent formulation. — One can define a notion of a solution to the
initial value problem directly in terms of the initial data °,!: we can require that a
solution ¥ should satisfy: ¥ o h = °; g—woh = 1. It is clear that this new notion of
a solution coincides with the one from thg previous subsection. Indeed, the restriction
of ¥ onto the neighborhood U as in (16) must coincide with the solution provided by
the Cauchy-Kowalewski theorem.

The notion of solution from this (or previous) subsection is related to the no-
tion of solution from Sec 1.1 as follows. First of all we have dz = \/V(z)dz, where
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3.4. SEMI-ORTHOGONAL DECOMPOSITION OF RgiZs, [—2] 17

\/V(z) is a nowhere vanishing holomorphic function on X. Set 1o = %° and 1 (s) =
V'V (z0)¥(s). We then see that the notion of solution of the Cauchy problem with
the initial data g, %1, as in Sec 1.1, coincides with the current notion of solution of
the initial value problem given by the initial data 1°,!.

3.3.3. Formulation of the analytic continuation problem. — Our analytic
continuation problem is now as follows. Find a connected complex surface  along
with a complex analytic local diffeomorphism py :  — X x C and a factorization
g = hpy, where h : S, — ( is as in the previous subsection, satisfying: given any
initial condition 1 as in (18), there should exist a global solution to the initial value
problem with the initial data . By Claim 1, this solution is then unique.

3.4. Semi-orthogonal decomposition of Rg:Zg, [—2]

Our main tool in solving the analytic continuation problem is a certain semi-
orthogonal decomposition theorem, to be now stated.
Let i?x, 1 %X be the same as in Section 2.10.1.

Theorem 3.4.1. — (1) There exists a distinguished triangle
(20) — RgiZs,[-2] 5 ® — 6 X4

where ® € €% and 6 € 1§,
(2) The object ® belongs to D>o(X x C) (that is, the complex of sheaves ® has no
negative cohomology).

Remark. The distinguished rectangle (20) is called “left semi-orthogonal decom-
position of RgiZgs, [—2]”. It is well known that such a triangle, if exists, is unique up-to
a unique isomorphism.

We will devote the rest of this section to deducing a solution to the analytic con-
tinuation problem from this theorem.

3.4.1. Factorization of the initial condition. — Since g : S, — X x C is
locally a closed embedding of real codimension 2, whose normal bundle is canonically
trivialized, we have a natural transformation of functors

(21) kg t—gl2

Since Sol is microsupported on 2x, one can easily check that Sol is non-characteristic
with respect to g. According to [5, Prop.5.4.13], k induces an isomorphism g~!Sol —
g'Sol[2]. We now have an isomorphism

(22) T(Sa; 9 'Sol) = R°Hom(Zs, ; g~ *Sol)
= R°Hom(Zs,; g'Sol[2]) = R°Hom(Rg\Zs, [-2]; Sol).
Let us denote the images of ¥ under these identifications as follows:

vy : Lg, — g~ 'Sol;
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18 CHAPTER 3. STATEMENT OF THE PROBLEM AND MAIN RESULTS

my, : Zs, — g'Sol[2];
my : @iZg, [—2] — Sol.

Since Sol € €, the semi-orthogonal decomposition (20) implies that m, uniquely
factors as
(23) my : RgZs,[~2] 2 @ ¥ Sol.

The map is defines, by the conjugacy, a map I’ : Zg, — g¢'®[2]. Let also ¢; :
g'®[2] — g'Sol[2] be the map induced by 9’. The equation (23) now implies the
following factorization (by the conjugacy between Rgi and g'):

(24) ml, : Zs, 5 g'0[2] & ¢'Sol[2].

Since ®[2] is microsupported within Qx, the transformation &, cf. (21), induces an

isomorphism kg : g:1<I> — g'®[2] so that we have a unique map I: Zg, — g~'® such

that I' = kgI. Let ¢ : g~'® — g~1Sol be the map induced by 1)’. We can now rewrite
(24) as follows:

(25) vy : Ls, RN g '® EA g~ Sol.

3.4.2. Truncation. — The second statement of the theorem implies that ®g :=
T<o® is a sheaf of abelian groups. The canonical map ¢ : 7<¢® — ® induces a map
c:g71®y — g 1.

Let us show that

Proposition 3.4.2. — The map 1 factorizes uniquely through c'.

Proof. — We have a distinguished triangle

— g0 S g7 - g 0@ B,

which induces a long exact sequence
-+ R"'Hom(Zs, ;9 '750®) — R°Hom(Zs, ;g™ ®))
% R°Hom(Zs, ;g7 *®) — R°Hom(Zs, ;9 ' 70®) - .
1

where the arrow * is given by the composition with ¢’. Since the functor g~' is exact,
g 1750® € D5o(S,) so that RS°Hom(Zs, ;9™ 750®) = 0, meaning that the map *

is an isomorphism. This implies the statement. O
Denote by
(26) Ip:Zs, — g '@

the factorization map (unique by the above Proposition):
1:Zs, 8 g71%, S g7'®.

We can also factorize: i
vy Zs, 55 g7 18, % g71Sol.
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3.5. Etalé space of @,

3.5.1. Choice of a covering space ¥. — Set py : ¥ — X X C to be the étalé
space of ®y. Observe that the étalé space of g~ 1®¢ is Su X xxc &. The étalé space
of Zg, is S X Z, so that we have a map

Sa X Z — Sq XxxC X

over Sy, induced by the map I,. Let us restrict this map to S, = S, x 1 and denote
by h the through map

(27) h:8,=8,%x1—>8,XZ— 8, XxxcX— X.

By the definition of fibered product, we have psh = g.
Thus, py : ¥ - X X C and h : S, — X yield a factorization of the map (17), as
required by (19).

3.5.2. Solving the initial value problem. — Let us show that the initial value
problem v € I'(S4; 9~ 1Sol) has a solution on ¥, in the sense of Section 3.3.1, where
¥ is as in Section 3.5.1.

We have a canonical map A : Zy — py. 1%, which comes from the canonical section
of p5;'®o: over a point of ¥ corresponding to ((2,8),P(z,s) € (P0)(a,s)), the stalk of
this canonical section equals ¢(; ). Let us apply the functor h~! and obtain a map

I':Zs, =h 'Zg — h'p5' @y = g7 1.
Lemma 3.5.1. — We have I’ = 1.

Proof. — 1t is easy to see that for each s € S,, the map I’ induces the same map on
stalks as I. O

We have a composition Fy : Zs 2 p51<1>0 og pEISOI. Let us prove that F is
a solution to the initial value problem. Indeed, applying h~! induces a map Zg, —
g~ !Sol which, by virtue of Lemma, coincides with v, which means that F, is a
solution.

3.5.3. Solving the analytic continuation problem. — We replace ¥ with its
connected component f containing the image of h. It is clear that ( is a solution to
the analytic continuation problem as in Section 3.3.3.

3.6. Structure of the object ®.

We construct the semi-orthogonal decomposition of ¢iZg [—2] via representing
91Zs,[—2] as a cone of some arrow A — B, and then constructing the semi-orthogonal
decompositions for A and B; these decompositions are then glued into the desired de-
composition of ¢iZg_[—2].

SOCIETE MATHEMATIQUE DE FRANCE 2013



20 CHAPTER 3. STATEMENT OF THE PROBLEM AND MAIN RESULTS

3.6.1. Decomposition of 7g_1Zs, € D(C). — Let mg, : So — C be the projec-
tion. We are going to represent 7s_1Zg, as a cone of a certain map. To this end let
us introduce the following subsets of C (same as in Sec 2.1)

K={rei“’ :r>0; —a<p<al;

r,={re? : r>0;, p=a};

r_o={re? : r>0; p=—a}.

We have natural restriction maps

Ze % 2k T L,
in D(C).
The identification Zg, = ﬂga Z¢ induces, by conjugacy, a map

pc : WSQ!ZSQ — Zc.
We are now up to defining a map pg : 7s,1Zs, — Zk. We have
7T§:K = (0,00) X (—a;a] L (0,00) X [2m — a; 2w + ) =: K1 U K».

Denote by 43 : K3 — Sq, iz : Ko — S, the closed embeddings. We have natural
surjections of sheaves on S,:
111 Zg, — t1uZgk, and 1o : Zg, — i0Zk,.

The map 7, induces open embeddings 75, i1 : K3 — K and wg, i : Ky —
K. We have g, (K1) = K\rqa; s, K2 = K\r_,. These open embeddings induce
the following embeddings of sheaves on C: mg_1i1Zk, — Zg; Ts ik, — Zk.
Combining these maps with ¢1, t2, we get the following through map

pK : TsaZs, > T vinlyk, — Lk.

One checks that pgr Pk = pcr.Pc. Let us now construct the following sequence
of maps

PCrq

(28) ZC Zr

@

—PKrq O

y\
PKr_,

Kk—1L

r—o

It is clear that the composition of every two consecutive maps is zero. In fact, this
sequence is exact, which can be shown by proving exactness of the induced sequences
on stalks for every point z € C.
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Let ¢’ : C — X x C be given by ¢'(s) = (%o, s) so that g = ¢rg,. Applying g/ to
the exact sequence above yields the following exact sequence of sheaves:

(29) Zxo xC—————————— Zxc. X

QV

0——gZs, )

%)
g!l(PKr_a)

ZxOXK E—— Z

—91(PKrq) o 0

X0 XT_qa

3.6.2. Semi-orthogonal decomposition for Zy,xc,Zx,x k1 Lxgxrie

Theorem 3.6.1. — There are objects ®C, ®K | ®¥= ®"-= in the category of sheaves of
abelian groups and maps in D*(X x C):

igc ¢ Zxgxc|—2] — ®C igx : Luoxi|—2] — X
iora : Lxgxry [—2] — BT i~ : Lyxoxr_,|—2] — @«

whose cones are in L€ and ®C, K T« PT-= € G,

Based on this theorem, let us construct a semi-orthogonal decomposition of ¢iZg, .
Let us rewrite the sequence (29) as

O—-)g!ZSa—L)%i)y—)O,

where X = Zyyxc ® Zxoxk and Y = Zyyxry D Zxyxr_,,- By virtue of Theorem 3.6.1
we have semi-orthogonal decompositions of X and ¥%

X 7 P /
N I 3= N S i = 3

where &' = €@ @K € §; Y = P> @ ®™-= € €; ¢, € L. The map Pyq: X[-2] —
%', by the universality of X', uniquely factors as

(30) Pyq = (Py

for some @ : X' — %' so that we have a commutative diagram

¥[-2) — Y[-2]

|

Q

We have g1Zg_ [—2] = Coneg[—1]. Set ® := Cone ¢[—1]. It is well known that the
commutative diagram above implies existence of a map

(31) iq, : gnga[—-2] — o
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22 CHAPTER 3. STATEMENT OF THE PROBLEM AND MAIN RESULTS

fitting into the following commutative diagram whose rows are distinguished triangles:

— s, [-2] — X[-2] —= y[-2]

Li@ LP% l/Py
& o Q ‘?/ +1

Furthermore, we have a distinguished triangle

— Cone(ig) — Cone Py — Cone Py, 3,
which implies that § := Cone(ig) € € satisfies all the conditions of Theorem 3.4.1.
We will now give an explicit description of the sheaves ®C, ®K ®T+« as well as the

maps igc,igk ,igr+a rom Theorem 3.6.1. This theorem will be proven in Section 6.
3.6.3. ®C. — We set ®C = Zx . We have a codimension 2 embedding

iC,xo I(C—-)XXC,
so that we have a natural map

Zxoxc|—2] = Zx xc,

and we assign igc to be this map.

3.7. Notation: convolution functor D(X x C) x D(C) - D(X x C)

Define a convolution functor
(32) * : D(X xC)xD(C) - D(X xC)
as follows. Let & € D(X x C), ¥ € D(C). Let
a: X xXCxC—-XxC : a(z,s1,s2) = (x,81 + S2)

Set
F*¥ = Ra(FKI).

3.8. Construction of &¥

3.8.1. Subdivision into a-strips. — Let us split X into a-strips as in Section 2.7.
We will freely use the notation from this section below.

We will define a sheaf ®% on X x C via prescribing the following data.

(1) For each a-strip P we will define a sheaf ®X on P x C. Recall that by a-strip
we always mean a closed a-strip.

(2) Let Py, P, be intersecting closed a-strips so that Py N P, = £ € £. We will
construct an isomorphism

PP, | g K ~ oK
gk : ®p lexc — @p,lexc,

PPy _ (FP1KP2)—1
& .

where we assume ' %
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Since every triple of distinct closed a-strips has an empty intersection, the data
1),2) define a sheaf ®¥ unambiguously. More precisely, there exists a sheaf ®¥ en-
dowed with the following structure:

— isomorphisms jp : ®¥|pxc = @K for every a-strip P satisfying: for every pair
of intersecting strips P; and Py, P N P, = £, the following maps must coincide:

PPy

K jPlll K oK K
®7 |gxc = ®p lexc = @B, lexc
and
K ngleC K
O |gxc "= @p,lexc

The sheaf ®X is unique up-to a unique isomorphism compatible with all the structure
maps jp.

3.8.2. Words. — We will use the notation from Section 2.7.2. Let W be the set
of words from the alphabet £* U {L, R} such that:

(1) each word is non-empty and its rightmost letter is L or R

(2) every word is either of the form

(33) (b - -~ L3856, L)
where

61,83,55,"’ S fgght) £2a£41€63”’€f1c:ft
or

(34) (bn---1R)

where
ly,l3,--- € Z)lo;ft; l2,04, 0, .. € f?ight

(alternating pattern).
Let W = W, UWQ ., where

Wity = {(tn-++) : tn € Ligg} U{LY;,  Wig ={(ln--) : €n € Lrign} U{R}.

Let us stress that W, contains words both ending with L and words ending with
R, and the same is true for Wg, ;.

3.8.3. Sheaves 5,5, on C. — Given a ray £ € £p.q, let is define the following
sheaf on C:

(35) St = Lisetr26(0)+K}>
Given a ray £ € £y, We set
Se = Lisc—26(0)+K}>

where ¢(¢) is as in Section 2.7.2.
Set

(36) SL = Lisez(xo)+K}; SR = Lise—2(x0)+K}
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Let
Sy =S¢ * S, %Sy, *Sp, fw:=4.0,L € W
Sw :=S’g1 *ng *---*S[n *x SR, ifw::(fl---énREW"‘,
where * denotes the convolution functor D(C) x D(C) — D(C) in the sense of (32).
It is clear that Sy = Zg(w)4+ Kk, Where we set:

(37) é(w) = 2(x0) — 26(Ln) + 26(fn—1) — - - + (=1)"28(¢41) if w:=£1..4,L;

(38) é(w) = —z(x0) + 2¢(£n) — 26(Lp—1) +--- — (—1)"2¢(¢1) if w:=4£1.4,R.
Let us further set

(39) S_ 1= @uwewe  Su; S+ = Quewe, Sw-

right left

3.8.4. Definition of ®%. — For any subset U C X, we define the following sheaf
on U x C:

(40) O = AKX~ xS_ @ AETY xS,
U U U

where A = Z{(z,s)|s+=(zx)cK} are the same as in Sec 2.11.
Set 'I>K £ AIU{ * S1. In particular, we have defined sheaves <I>K * for every a-strip

P.
3.8.5. Construction of the identification I‘P 1P2 __ We have identifications:
(I)Pllgxc—szhxc— *S+@AK_*S_
Let us now construct the gluing maps
POl A xS @ Af xS o AL T xS @Al xS .
There are two cases.

CASE A). Let £ € £s,.

Assume that the z-image of P, is above the z-image of P; in the complex plane,
fig. 2, a).

Let us define the following morphism of sheaves on £ x C

(41) v AT - S AST,
or, more explicitly,
(42) v Ziseo()-eio0,00), s—2eK} = Lisc2c(e)+K} * Lizes(@)—eix.[0,00),5+ 2K}

We have Z{scas(0)+K} * Lizes(t)—eix.[0,00),s+26K} = L{zes(t)—eia.[0,00);5€—2z+28(6)+K}-
The map vf is thus determined by the closed embedding

{z € &(€) — €*.[0,00);8 € —2z + 2¢(€) + K} C {z € &(£) — €**.[0,00), s — 2z € K}.
Let us now define a map
KoAE % S_ — AT xS,
as follows. We have A~ S_ = Doewe AE™ %S,

right
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a) b) ]
Pz cut P’/

P
P, o)

l/‘a(z) »

FIGURE 2. Notations in the construction of the sheaf ®¥: a) £ € £, b)
Le f :-lighc

‘We denote
l/K
(43) NP AF= %8, 5 AFT xS % S,y = AfT x Sy

Observe that fw € W, so that AKX % Sy, is a direct summand of AL x S;. We
therefore can define N as the direct sum of all N, w € Wiieht-
Let
NK :Af{_ *xS_ EBA;“' * S, —>A£{_ *S_ @A xS,
be the extension of NeK whose all components are zero, except for Af TxS_ —
AF* % S which equals NX.
We set

(44) 2 = 1d+N§.
Finally, we set
raf = (@hP)' =1d-Nf.

Let us now rewrite the definition for the gluing maps in a more uniform way. Let P
and P’ be two neighboring strips such that P N P’ goes to the left. Let us define the
sign
(45) ¥(P,P') =1if P’ is above P, and ¥(P, P') = —1 if P’ is below P.

We now have
(46) IPE = 1d+9(P, P')NK.
CASE B). Let £ € £righs, fig. 2,b). Assume first that P, is below P;.

The formulas are similar to the case A but + and — get exchanged. We have a map

(47) v AT S MK« s,
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which gives rise to a map

(48) NE . Af+*S+'-j§Af—*Sg*S+ — AT xS_.
Similar to above, we define a map
NEAE « S, @A +S_ 5 AT« S @A~ +S
as the extension of NV, EK whose all components are zero except for Af x5, — Agf “%S_
which is NJX.

We set

(49) ol = 1d+Nf;

Il = (5™ =1d-Nf.

Similarly to above, let us rewrite the definition as follows. Let P and P’ be two
neighboring strips such that P N P’ goes to the right. Let us define the sign

(50) 9(P, P') = 1 if P’ is below P; 9(P,P') = —1 if P is below P'.
We now have

(51) TEE .= 1d+9(P, P')NK.

3.8.6. Description of the map igx : Zxyxx[—2] — ®¥. — Let P, be the strip
such that xg € Int P,.
By construction,
(I)KllntPoXC = Aﬁ:-Po * S+ @ Allx{:t_Po *S_.
The direct summand inclusions

S, —8Sy; Sp—S-

induce maps AII!{IZ'PO * S — AIIfJPo * Sy, AI‘K’M—P0 * Sp — A{flt_Po *S_.
We have the following closed embedding of codimension 2:

T = Xg o z € Int Py
seK s+z(z) € +z(x0) + K|
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We have the following maps in D(Int Py x C):

(52)
Z{ z€lnt Py } — Ai’fljpo * Sz,
s+z(r)€z(x0)+K
Z{ zz:}c{o }[—2] (8% D - ¢K|Int PyxC
Z z€lnt Py - AIIflt_Po * Sr
{s——z(z)e—z(xo)+K}

We thus have constructed a map
(53) Z{ =% }[—2] = Ty k[ —2] = @1t pyxc

As Zy,x x[—2] is supported on Int Py, our map extends canonically to a map igx :
Zxoxk|—2] — ®¥ in D(X x C).

3.9. Alternative construction of ®X via —a-strips

It is clear that one can repeat all the steps of the previous section using —a-strips
instead of « strips. We denote the resulting sheaf UX; we also get an analogue of the
map igpk, to be denoted by

(54) bgx : Lgx i [—2] = UK.

By means of X, we also get a semiorthogonal decomposition of Zx,xx[—2]. This
implies the existence of a unique isomorphism

(55) Iys : oK _, oK

satisfying igx = Iyeigkx (because of the unicity of semiorthogonal decomposition).
We will now briefly go over the construction of X,

3.9.1. Notation for —a-strips. — Let £™% = £¢ U £, be the set of all
intersection rays of —a-strips. £ consists of the rays going to the left, Z,’;ight consists
of the rays going to the right. Every ray £ € £y (resp. £ € £ygy,) is of the form
p.(€) = &(£) — (0,00)e~**; (resp. p.(£) = é(£) + (0,00)e~*) for some &(¢) € C.

Let W= W, &, W3 be defined in the same way as W*, Wi, W2 .. (W g
consists of words of the form w = £,€,_1 - €261 L or w = £, - - - {1 R where £, € £
and we have an alternating pattern £, 1 € Lrghes fn1 € L -5 if &1 € Lrighe,

then the right-most letter of w is L; if £; € £, then the right-most letter of w is R;
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we also add a one letter word L to W_g.) Similarly to the previous section, we set
Se = Zisse2e0y+x3 €D(C), L€ Lrgi;
Sy = Zisse—200)+k) € D(C), L€ Lrighss
SL = Zisses(xo)+k} € D(C);
SR = Z{s.se—z(xo)+x} € D(C).

For we W%, w=1{,---£1(L or R) set

Sy = S’gn * S'gn_l Kok S’gl * (S'L or S’R).
Set

S_:= @wew—a S’w, g+ = @wew;ggw~

3.9.2. Sheaves VXK. — Let Ag * mean the same thing as in Section 2.11. On every
(—a)-strip II consider the sheaf on IT

UE = AT+ S @ Af *5_.

3.9.3. Gluing maps. — Let II;, II; be neighboring strips, II; NII; = 2.

CASE A. If £ goes to the left, we denote by II; the bottom strip, fig. 3, a).
We then define a map
DZK : Af‘ — A£{+ xSy
similar to v} from the previous subsection. The maps 7§ induce maps
NK :Ag(_ * Sy —»Af"’*g_
and
NE AFY xS, @ AF—+S_ - A %8, - A~ +85_,

in the same way as in Sec 3.8.5.

We now set

(56) Ioi? :==1d +Nf.

We set Tgi™ o= (Igi?)~! = Id -NK.

Similarly to the previous subsection, we can combine the definitions as follows.
Let IT and II' be intersecting —a-strips whose intersection ray £ := IINII' goes to the
left. Define a number ¥(II,II') = 1 if IT is below II' and ¥(II,II") = —1 otherwise. We
then have Fgg/ = Id +9(I, I")N¥X.

CASE B. Analogously, assume that £ = II; N II; goes to the right and that I, is
below IIy, fig. 3, b). Similar to above, we have a map

(57) vf AT 5 A% 5,
which enables us to define maps

NE:AEY %S, —» AF~+ 5,
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a) b)
cut
/ I,
Nl I (NI
I, I,
cut

FIGURE 3. Notations in the construction of the sheaf ¥¥: a) £ € £z, b)
£ € Lrigns.

NEAET « 8, @ Af~+S_ - AT S, @A~ %5
in the same way as above. We set
(58) Fg};(nz = Id +N¥;

(59) ol = (Ip) ™t = 1d -N§.
Finally, given two intersecting —a-strips II and I’ whose intersection ray £ goes to
the right, we set ¥(II,I") = 1 if II' is below II and ¥(II,II') = —1 otherwise so that
M’ = 1d +9(IL T')NE.

The sheaf UX is obtained by gluing of the sheaves ¥1; along the boundary rays by
means of the maps I'J¥ , similarly to ®¥.

The map
(60) igx : Zaoxk[—2] — UK,

same as in (54), is constructed similarly to igx.

3.10. The map Iyg

We now pass to discussing the identification Iy : Y% — ®¥ as in (55). Explicit
formulas for the map I'ye are complicated, see Section 7. Let us, however, formulate
a result on this map, to be proven in Section 7.

Let P be an a-strip and IT be a —a-strip. Suppose P NII # &. We have identifica-
tions

O |prn = OF | pam = Ay * St © Afoy * S-;
WX pan = Ui |pam = Apap * 54 @ AR+ S5-.
Set inp := Iya|pnn. In view of the above identifications, we can rewrite:

inp : Agr_:l'l *§+ @A}Ifgn xS — Agrtl'l * Sy 69Agﬁ_l'l xS
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We are now going to take advantage of direct sum decompositions of both parts of
this map.

3.10.1. Decomposing irjp into components. — Let us now rewrite both sides
of this map as follows.
For a w € Wiy or w € W g, we define &(K,w) C (PNII) x C:

G(K,w) := {(z, s)|s + 2(z) € é(w) + K},

where é(w) is as in (37), (38).
We then have

ABAn* S+ @A *S- = @ Lk w)s

weEW™
ARfn* Sy @ Afp*S- = @ Lk, )
GEW-a
Next,
Hom( @@ Zakoy P Zaxw)= ][] Hom(Zaxs); P Zaxw)
WEW—& weEW™ WEW ~« weEW™
(61) = [l  Hom(Zaw.a);Zagw)-

BEW - ;weWe
In Sec 7.1 we prove that Hom(Zyk @); Za(k,w)) = 0 unless &(K,w) C @(K,®),

in which case Hom(Zyk,4); Zg(K,w)) = Z-€@w, Where €y ., is the homomorphism
induced by the embedding &(K,w) C &(K,w). Elements of

H Hom(Zy(k w); Za(x,w))
DEW~weWo

are thus identified with infinite sums of the form

(62) Z Ngwdw)
D,w

where ng, € Z, and %(K,w) C @(K,w). By Prop.7.1.1, under the inclusion (61) the

set Hom( @ Zgk,a); D Zegk,w)) is identified with the set of all sums as in
BEW weWe
(62), satisfying
for every point y € (PN1II) x C and every w € W2, there are only finitely many
w € W such that ngy # 0 and y € G(K,w).

3.10.2. Identification W™ — W< ,— Let us first define an identification A :
P — L% Let £ € £~ Suppose £ goes to the right. Let P be the leftmost strip
among all a-strips that intersect £. There are exactly two boundary rays of P, ¢; and
£, such that é(4;) = é(¢,) = é(£), £ goes to the left, and £, goes to the right. Let us
assign A(¢) = ¢,.
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Similarly, if £ € £~ %, £ goes to the left, we consider the leftmost strip P among all
a-strips that intersect £. There are exactly two boundary rays of P, ¢; and £, such
that

(63) &(l) = e(Lr) = &(0).

¢; goes to the left, and ¢, goes to the right. Let us assign A(¢) = ¢;. The map A
extends in the obvious way to a map A : W% - W*: a word ¢, --- /1L € W™¢
(resp. £+ 1R € W™?) is mapped into A(£,) - A(¢1)L (resp. A(£,)--- A(€1)R).
Because of (63), we have @(K,w) = G(K, A(w)) for all v € W™,

3.10.3. Formulation of the result. — Let us write ip in the form (62):
(64) inp = Z NpwCihw-
HEW—a;weWa

In order to formulate the result, let us introduce some notation. For w € W™,
W=14L, --01L € W™* (resp. W = £, ---£1R € W™?), set || := n, to be the length
of w ( in particular |L| = |R| = 0).

Proposition 3.10.1. — (1) We have nga () = (-1)®l;
(2) If ngw # 0 and w # G(w), then G(K,w) # G(K,w) (we have a strict embed-
ding G(K,w) C G(K,w)).

This proposition is proven in Sec 7.5.4.

3.11. Description of &'«

We construct the sheaf @~ and a map igr. in a way very similar to the construction
®X | using the decomposition of X into a-strips and replacing K with r, everywhere.
We then get sheaves

AB]:E = Z{(m,s)h:eU,seC;s:tzera}'
P =ApT xS @A TS,
If ¢ goes to the left (resp. to the right) we still have a map
Vet AjeT — Ajet xSy resp. vpe t AR — AT % Sy,

so that we can define the gluing maps I‘g‘,f % similarly to I‘?KP 2,

3.12. Description of -«

In order to construct - and igr-. we switch to —a-strips ( sticking to a-strips
leads to a failure to define the maps v, ). The construction is then similar to the
construction of X (just replace K with r_, everywhere).
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3.13. Constructing the map (30)

Let us construct a map ¢, satisfying (30). It will be convenient for us to replace
®X with the isomorphic sheaf UK.

First, we will construct maps qcr, : ®¢ — ®%*; ggr 4ot UK _ Pr+e gatisfying
LyK = (Cr,taC; tg*+a = JKri UK.

We define @ as follows:

qCrq

@C—>q)ra
dKrg
(65) Q: / ®
gk T g,

The categorical definition of the maps in this diagram was discussed in Section 3.6.
Let us now pass to constructing the above mentioned maps qcr, and gxr,,,.

3.13.1. The map gcr,. — We have ®C = Zx ¢ so that
Hom(®C; &™) = I'(X x C; ®")

so that a map gcr, can be defined by means of specifying a section q € I'(X x C; ®*«).
This can be done strip-wise: we can instead specify, for every closed strip P, sections
qp € I'(P x C; @) which agree on intersections as follows. Let P; N P, = £. We then
have restriction maps

£xC : i X L) — xCe,2), =12
I'P,xC <I>'}',l I'(¢xC <I>; i =1,2
We then should have

(66) qp, |exc = qp,|exc.

It is clear that any collection of data qp, satisfying (66) for all pairs of neighboring
strips, determines a section q € I'(X x C; ®*«) in a unique way.
We have Z = ['(P x C; A5 * % S,,) for all w € W2,
Let us take the direct sum of these identifications over all w € W< so as to get a
map
sp: Z[W® - I'(P x C; ),
where Z[W?] is the Z-span of the set W. Similarly, we define
s¢: Z[W?] — T'(€ x C; ®p*),

where £ is the intersection ray of a pair of neighboring a-strips . The maps sp, s; are

inclusions; denote by I''(P x C; ®}),I"(£ x C; ®;~) the images of these inclusions.
FP1P2

As easily follows from the definition of the gluing maps I'g:.?, the restriction maps
induce isomorphisms
lexc : T'(P x C; @) — I'(£ x C; ®}*),

where / is a boundary ray of P.
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Since the graph formed by a-strips and their intersection rays is a tree, it follows
that given an element qp, € I''(Py x C; CIJ'}?(‘)), we have unique elements

gp e T'(P x C; %)

satisfying (66). We set qp, := sp,(L+ R), where L, R are words of of length 1 in W*
viewed as elements in Z[W?]. This way we get a section q and a map gcr, . It is clear
that Condition igra = gcr, tec is satisfied.

Denote by ep € Z[W?] a unique element such that sp(ep) = qp. Denote by Wp C
W¢® a finite subset such that

ep = E €pyW,

weEWPp

where ep,, € Z\0.

3.13.2. Map qg,_, : ¥X — ®"-o. — Let us define this map stripwise. For every
—a-strip II we have a map AIH( . A;['“i induced by the embedding of the corre-
sponding closed subsets of II x C. Whence induced maps Af-[{ %8, — A;{ai * Su.
Taking a direct sum over all w € W* yields a map

AE* 5, @ AE= x5 S AT+ S @ AT+ 5,

and we assign gxr__ 1 : \Il{[( - <I>;-I‘° to be this map. It is clear that thus defined maps
agree on all intersection rays, thereby defining the desired map gxr__. The condition
ig'—a = QKr_,lyx is clearly satisfied.

3.13.3. Map gk, : ¥ — @, — We first construct a map g, : ®¥ — &
using a strip in the same way as we constructed gx,_,, .
We set

/
9Kro = gy, Jvo.

The condition igra = qxr, tyx is clearly satisfied.

3.13.4. Restriction of ¢ to a parallelogram. — Let P and II be a pair of
intersecting a-and (—a)-strips.

First, in view of identification A, let us write w instead of A~'w € W~2. Next, for
aw € W and asubset A C C, let us define a subset &(A,w) C (PNII) xC as follows.
Ifw € Wi (resp., w € W2,,,), we set &(A,w) = {(z,s)|s+2(z) € é(w)+A} (resp.,
(A, w) = {(z,s)|s — z(z) € é(w) + A}; these notations are compatible with those of
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Section 3.10.1. Set Ag := (IIN P) x C. We then have identifications
(I’%r\P = Zay;

Ufnp = €B Zek w)

weEW—«

— .
Qe = @ Zﬁ(rmw)’
weWe

r—o __
Crnp = @ Zﬁ(r-a,w)'
wEW—<

Let us now rewrite the maps from diagrams (65) in terms of these identifications.

3.13.5. The map qcr, revisited.— Let ECr« : Za, — Zg,w) be the map
induced by the closed embedding of the corresponding sets. According to Sec 3.13.1,

(67) qCr, = Z ePwESra~
weWp

3.13.6. The map gk,_,. — It follows that the map

qKr_, * @ Zg(kw) — @ Zg(r_ o ,w)
weWa weEWa

is a direct sum, over all w € W%, of the maps

Zig(kw) = Lg(r_ ., w)>

over all w € W2,

3.13.7. The map gk, . — Let w,w’ € W be such that @(K,w) D &(rq;w’).
Let Ei,{:ﬁ' : Zig(K,w) — Lg(ry;w) be the map induced by this embedding.

We then have
Qkr, = P _nire ENre.
Proposition 3.13.1. — (1) nEre = (-1)lvl;
(2) for every compact subset L C (P NII) x C and every w € W<, there are only
finitely many w' € W such that nyy # 0 and LN G(r_q;w') # 9;
(3) if nEFs £ 0, then we have a strict embedding @(w', K) C G(w, K).

ww’

Proof. — Parts 1) and 3) follow from Section 3.13.3 and Prop. 3.10.1, part 2) follows
from Prop.7.1.1. O

3.14. Y and { are Hausdorff

Recall that ¥ was defined in Section 3.5.1 and ¢ in the Section 3.5.3.
Let us start with some general observations.
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3.14.1. Generalities on étalé spaces. — Let F be a sheaf of abelian groups on
a Hausdorff topological space X. Call F' rigid if its étalé space is Hausdorff. The
following facts are easy to check.

(1) Let U C X be a Hausdorff open subset. Then Zy is rigid. Indeed, the corre-
sponding étalé space is (Z\{0}) x U U {0} x X.

(2) Every sub-sheaf F; of a rigid sheaf F' is rigid. Indeed, the étal’e space of F; is
identified with a closed subspace of a Hausdorff étalé space of F'.

(3) Let 0 > A — B — C — 0 be an exact sequence of sheaves, where A,C are
rigid. Then so is B. Indeed, let A’ — B’ 5 C’ be the étalé spaces of A, B, and
C. Let by,by € B'. Suppose 7(b;) # m(be); we then have separating neighborhoods
m(by) € Up; m(be) € Uy so that 71Uy, n~1U, separate by and be. Let now m(by) =
7(b2) = c but by # bs. Since 7 is a local homeomorphism, there are neighborhoods W;
of b; in B’ such that W; are projected homeomorhically into C’. By possible shrinking
we may achieve that W; project to the same open subset U € C’; ¢ € U, so that we
have homeomorphisms ;" 1. U — W;. We then have a continuous map 6 : U — A,
where d(u) = 7y 'u — 7 'u € A, C A’. Since by # ba,6(c) # 0, so that we have
a neighborhood U’ C U of ¢ on which § does not vanish. It now follows that the
neighborhoods 7 LU’ do separate by and b,.

(4) Let iy, : F, = Fpp1, n > 0 be a directed sequence of embeddings, where Fy and
all F,,1/i,F, are rigid. Then F := lim F, is also rigid. Indeed, 3) implies that all F,

are rigid. Let F,, F' be the étalé spaces of F,, F. We have induced maps F, — F’;
F; — Fy, which induce a map lim F;, — F' which can be easily proven to be a
homeomorphism. Since all the maps F;, — F}, are closed embeddings, it follows
that F’ is Hausdorff.

(5) Let p : Y — X be a local homeomorphism, where Y is Hausdorff. Let @ #
U c V C X be open sets, where V is connected. Suppose we are given a section
s: U — Y. There exist at most one way to extend s to V. Indeed, let s1,50: V =Y
be extensions of s. Let us prove that the set W := {v € V : s1(v) # s2(v)} is
open. Indeed, let v € W. The points s;(v), s2(v) can be separated by neighborhoods
U, Uy C Y. Let U := s U1 Nsy~ U,; U is a neighborhood of v. It now follows that
3:(U) C Uy, therefore s;(%) do not intersect; we have thus found an open neighborhood
% C W of v, hence W is open.

Let us now prove that W’ := {v € V : s1(v) = s2(v)} is open. It is clear that s;(U)
are open subsets of Y, so that W’ = s,(U) N s2(U) is open.

Finally, V = W U W’ and W' # @. This implies W = @.

3.14.2. Reduction to rigidity on II N P. — Since J C X is a connected com-
ponent, it suffices to prove that ¥ is Hausdorff. The latter reduces to showing that
p3'((PNTI) x C) is Hausdorff for every pair of intersecting a-strip P and —a-strip
I1, which is equivalent to the rigidity of the sheaf ®o|npyxc, Which is isomorphic
to Ker @.
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3.14.3. Filtration on ®g|grpxc. — Let us choose an arbitrary identification
Zso — W; n s wy,. Define a filtration on § := & @ UX|gnpyc by setting

G" = ®|nnpxc ® Zak,uwy) D D Lak,w,)-
It is clear that
®Clpnpxc = cP' c---g'c---cg
is an exhaustive filtration. It is also clear that ¥ C @ is a direct summand. Denote
by PY : § — G the projection.
Set
F,,®q := Ker Q|gn.
It follows that F is an exhaustive filtration of ®¢|mnpxc. By Section 3.14.1 2), it
suffices to show that each sheaf F), is rigid.

3.14.4. Sheaf F, D F,,. — We have the following projection onto a direct summand

n
Py : @5 p © Opvp — @ Lia(xiwm) © L ajwm) = Ln-
m=1
Let F, := Ker P,Q|g~. We have: F, is a sub-sheaf of F},, so that it suffices to show
that each F), is rigid.

3.14.5. Further filtrations on §",#,,F.. — Fix n € Zs¢. Let us re-label the
words w,wa, . ..,w, to, say Wi, Ws, ..., W,, so that the following holds true:

if i > j, then it is impossible that G(K,w;) is a proper subset of G(K,w;).

Since we are dealing with only finitely many words, this is always possible. Let j <
n. Set Fjﬁn = Zﬂ(K,wl) DD Zﬁ(K,w,-) C ﬁn Set Fi £, = Zﬁ(ria,wﬂ DD
Ziirsawy;) C Ln- We also set FPH1G" = g F*H1 £, = £, Let Gr'g"; Gr' £, be
the associated graded quotients.

Proposition 3.13.1 and Section 3.13.6 imply that the map P, ¢) preserves the filtra-
tion F: P,Q : F1G" — FI £,. Set F/F}, := Ker P, Q|ign. It is clear that this way we
get a filtration on F),. Let Gr’ F] be the associated graded quotients. Our problem
now reduces to proving rigidity of Gr’ F] by Section 3.14.1, 3). Since P, ¢ preserves
F, we have

Gr'F! c Ker(Gr'P,Q : Gr'g" — Gr' £,,).
By Sec 3.14.1 2), the problem reduces to showing rigidity of Ker(Gr’ P,Q : Gr’ §" —
Grl ™).

3.14.6. Finishing the proof. — Let j < n. We then have Gr’ g" = Lak,w;)
Grig, = Zy(xosw;) ® La(r_ 5;w;)- By Section 3.13.6 and Proposition 3.13.1, we have:
Gr'P,Q = (-1)™E} & Ey =,

where the morphisms
E:rj;a : Zﬁ(K,Wj) - Zﬁ(ria;wj)
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are induced by the closed embeddings of the corresponding sets. It now follows that
Ker Gr’ P, () = Zg(1ns K;w;), Which is rigid by Section 3.14.1,1).
Let now j = n+ 1. We have Gr" " #,, = 0; Gr""’lﬁ" = Za,, so that

KerGr'P,Q = Za,,

which is also rigid, as a sheaf on (IIN P) x C = Ay, by Section 3.14.1,1). This finishes
the proof.

3.15. Surjectivity of the projection py: J — X.

In this subsection we will prove
Theorem 3.15.1. — The projection py : J — X 1is surjective.

Proof of this theorem will occupy the rest of this subsection. We will construct an
open subset % C ¥ such that

(1) % projects surjectively onto X;

(2) % is connected,;

(3) UNh(S,) # @, where h: S, — X is as in (27).

Conditions 2),3) imply that % C , and Theorem follows.

Let us now construct % and verify 1)-3).

3.15.1. Constructing %. — We construct % stripwise. We will freely use the no-
tation from Sec 3.13.1. Let P be an a-strip. Define a closed subset

AP):= |J @(ta,w)cPxCcCXxC.
weWp
Let % := X x C\|J A(P), where the union is taken over the set of all a-strips P.
P
Denote by j,l)f : U —» X x C the open embedding.

Let us now embed % into ¥. We have a natural embedding Jo, : Zq, — Zx xc = ®C.
As follows from (67), we have gcr, Jyy = 0, which implies that the map Jy, factors
through Ker gcr,, :

g c
Joy 1 Zqy — Kerqer, — @

As follows from the diagram (65), we have a natural embedding

(68) tq : Kerqcy, — Ker 0,
and we set
(69) Jg == 1475,

which is an injection Jy : Zq¢, — Ker @ = ®y.

SOCIETE MATHEMATIQUE DE FRANCE 2013



38 CHAPTER 3. STATEMENT OF THE PROBLEM AND MAIN RESULTS

To summarize, we have the following commutative diagram of sheaves on X x C:

’e (Ker @ = &)—— o€ @ &K,

/
Jq

Z¢y — Kerqey, ——— = @

Ju

The map Jj induces an embedding of the étalé spaces: U xZ — X. Let jo: ¥ — X
be the restriction of this map onto % x1 C % x Z. This map is a local homeomorphism
and an embedding, therefore, j is an open embedding. Let us identify % with jq,(%).

3.15.2. Verifying 1). — Let
Ps:23B xxCc

be the through map, where py; is the same as in Section 3.5.1, and 7x is the projection
onto a Cartesian factor. We see that the composition P jq coincides with the compo-

JX
sition % % X x C ™ X. Let us check that this map is surjective. Indeed, let z € X.
There are at most two a-strips which contain z. We therefore have: %4 Nz x C is
obtained from xz x C = C by removing a finite number of a-rays, which is non-empty.

3.15.3. Verifying 2). — As the sets Wp are finite, it easily follows that
— the sets U(P) := P x C\A(P) are connected;
— if Py N P, # @, then U(P;) N U(P,) # &. This implies that % is connected.
The rest of the subsection is devoted by verifying 3).

3.15.4. Reformulation of 3). — Recall that the map h : S, — X is induced by
the map Iy : Zg, — g~ '®, see (26). The injection jg, : % — % is induced by the
map Jy : Zgy — Ker@ = &g, see (69). Let ix, : C — X x C be the embedding
ix,(8) = (X0,5). We have g = ix,7g,. Let us denote Uy, := z';ol U. Observe that Uy,
is obtained from C by removing a finite number of a-rays.

Lemma 3.15.2. — There exists a non-empty open subset V C Ux, such that:

i) the map s, induces a homeomorphism WE:V — V, so that we have WE:ZV =
Zﬂ,;lv;

ii3 the following diagram of sheaves on S, commutes

J
ngle>ZSa
Ljvw Io
_ 97 (Jo) -
g IZW g9 19,
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where the arrow jyg is induced by the open embedding 7r§1V C S., and the arrow
Jjva is the composition Z 5lv = Mg, 17y 5 g, Z%o = g~ 'Zq,, where the arrow * is

induced by the open embeddmg V C Usx,-

Let us first explain how Lemma implies 3). Indeed, it follows from Lemma that we
have a commutative diagram of topological spaces

hl -1,
Sa

(70) mglV T,

TSa l/ Ju
%

Vo Ugyy——=U

where the counterclockwise composition ngV — U coincides with a component of
the map of étalé spaces of sheaves induced by jy¢.

Then (70) implies that h(Sq) N ju (%) D julix,V).

We will now prove the Lemma.

3.15.5. Subset W C S,. — Let W := ng!(C\K) C S,. Denote by Jw : Zw —
Zg, the map induced by the open embedding jw : W C S,. Let us consider the
composition hjw, which is induced by the map IoJw : Zy — g~ 1®.

Denote by 7 : &g — & @ X the natural embedding (recall that ®; = Ker Q). Set
mok = Hgm: &g — ®K, where g : € @ &K — ®K is the projection.

Let us show

Lemma 3.15.3. — We have (g~ mox)IoJw = 0.

Proof. — Indeed, the map 7 factors as
By 5 & = (ConeQ)[-1] B oo oF,
where the last arrow is the canonical map. Set g := IIx Ps. We have
(97 'mor)lo = (97 k) (9™ 'm)To = (97 Mk ) (9™ Pa)g~"eTo = (9™ 'mx)L,

where I is as in Section 3.4.1. Recall that in Section 3.4.1 we defined I in such a way
that under the isomorphism g~!® = g'®[2], the map I corresponds by the conjugacy
to the map ip : Rg1Zg, [—2] — ®, where ig was constructed in (31).

We claim that:
(71) The map (g_lﬂ'K)I corresponds by the conjugacy to Tiig.
Indeed, the conjugate to
1 _I(DK

-1
(g7 'kl :Zg, S g l@? S5 g
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is defined as nat[2] o (Rgig'mx ) RgiI, where nat : Rgig'®% — & and the statement
(71) reduces to commutativity of the diagram

Ry Zs, 2% Rog'd[2) —22 7P Rgg'aka) ;

ia[2] L / [nat[zl

3[2] X[2]

Tk [2]

but the triangle is commutative by the properties of adjoint functors, and the square
commutes by functoriality of Rgig'.
Denote by

A RggZW[-—2] — Rg'Zg, [—2]

the map induced by jw, i.e., A = Rgi(Jw)[—2]. The problem now reduces to showing
that mxieA = 0.e. x
By the construction of the map ig, the map mxie factors as RgiZs,[-2] 25

Zixox K [—2) ¥ K where px is as in (28), so that mxis\ = igxpiA. It is easy
to see that pg A = 0, which finishes the proof. O

It now follows that the map IoJw : Zw — g~ '®, factors as

Iw _ _
Zw % g~ Ker qcr, — 97 ®o,

where the right arrow is induced by the obvious embedding ¢, : Ker gcr, < ®o, cf.(68),
coming from the definition ®; = Ker §.

3.15.6. Finishing the proof. — Recall, see (69), that the map Jy : Zg, — P
factors as Jg := 1qJ3,.

Suppose that the subset V C % from Lemma 3.15.2 satisfies: ngalV C W. The
statement ii) of Lemma 3.15.2 now follows from the commutativity (which is shown
below) of the following diagram

(72) nglv JW—*ZW

ljvw ij
J3)

9 'Zy — g~ Kerqgcr,
where jy ¢, is the same as in the statement of Lemma 3.15.2, the map jyw is induced

by the open embedding 7r§:V C W. The map (Jg))' is induced by Ji, i.e., (J§) =
g~ *(J3,). Indeed, once the commutativity of (72) is known, we obtain the statement
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ii) by combining commutative diagrams as follows:

jvw
ngl vy Zw
@

J
| ne| N
(Jg)'

9 ' Zy — g~ Ker qcy, Zs,
-1
g—lJQ 9 "qL /
g7 1%

Let us now prove the commutativity of the diagram (72). We have an injection
k : Kerqcr, — ®C = Zx «c which induces an injection &’ : g~ Kergcr, — 9™ Zxxc-
The commutativity of the above diagram is equivalent to the commutativity of

(73) Z,o1y e Ty

Ljv% l/"‘lcjw
K',(ng),

9 %y — g7 Zx xc

Let us now define
V= (C\K) N Ux,.

Let us check that V satisfies all the conditions:

a) V is non-empty. The set %, is obtained by removing from C a finite number
of a-rays, which implies non-emptiness of (C\K) N Usx,.

b) 75V C W —this is clear.

c) Ts, : TFE:V — V is a homeomorphism —clear.

d) Commutativity of (73). We have g~ 'Zx xc = Zs,, . It follows that the composi-
tion k', equals the map Zw — Zg, induced by the inclusion W C S,. Next, the
map kJy : Zgy — Zxxc is induced by the open embedding jq : % — X x C. The
commutativity now follows. This finishes the proof.

3.16. Infinite continuation in the direction of K

We need some definitions

3.16.1. Parallelogram U. — Let U C C be an open parallelogram with vertices

— — . — —_—
A,B,C, and D, such that AB and DC are collinear to e™'® and BC and AD are
collinear to e*®.

3.16.2. Small sets. — Let I' C C. Call T' small if for every point ¢ € C, the
intersection I' N ¢ — K is a finite set.

Claim 2. — Let L C C be a bounded subset. The set I' N (L — K) is then also finite.
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Proof. — Assuming the contrary, let {y1,72,.--,Yn,.--} € N (L — K) so that v; =
¢, — 2, %, € K, ¢; € L. Since L is bounded, the sequence c; has a convergent sub-
sequence ¢;, — c for some ¢ € C. Let € € Int K. It follows, that ¢;, € c+ ¢ — K for
all n large enough, which contradicts to smallness of T'. O

3.16.3. Theorem. — Using notation of Section 3.5, let

pyx : - EB X xCPY X,

4. =pyx(2),
and
P, : dzpﬂxzx((::(c.
Theorem 3.16.1. — Suppose we have a section o of P,:

P,

N

Then there ezists a small subset ' C U+ K such that o extends to (U+K)\(I'+r_,)
and (T +r_,)NU =2.

4.

Remark For every bounded set L there are only finitely many v € T such that
(y+r_o)N L # 2, as follows from Claim 2.

Before proving this theorem, let us observe that it easily implies Theorem 1.3.1.
Indeed, given z € C, we see that J* is a disjoint union of all J,, where px(z) = z,
which reduces Theorem 1.3.1 to the current Theorem. The rest of this subsection is
devoted to its proof.

3.16.4. Reformulation in terms of sheaves. — By basic properties of an étalé
space of a sheaf, liftings o as in Theorem, are in 1-to-1 correspondence with maps of
sheaves f, : Zy — Pol.xc-

For every w € W% and a fixed z € X, set &,(K,w) = G(K,w)N(zx C) c C,
where @(K,w) are the same is in Sec 3.10.1 We define &,(rq,w), @,(r_o,w) in a
similar way.

We then have the following maps:

c
g

Z¢

Zy I3 ® T

@w Zﬁz (ro,w)

Krg

Kr_,

D, e, (kw) — Doy Lt (s 0 )
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where g€, go%T=, go®*-= are the restrictions of the maps ¢¢=, ¢%¥=, ¢%*-= onto
xo x C. Let @, be the restriction of the map @ onto xo x C, so that @y is the sum
of go€*=, —goX*=, and go®X*-=. We now have

(74) Qf, =0.

3.16.5. Writing f, in terms of its components. — We have components:

folw) : Zu — Zg,(kxw)

fU(O) . ZU b d Z(C
we have (if UN &,(K,w) # 9):
Hom(ZU;Zﬂz(K,w)) =Z gu

where

(75) v : Zu = Lung, (kw) = La,(Kw)

(the first arrow is induced by the closed embedding U N &,(K,w) C U; the second
arrow is an open embedding)
if UN &,(K,w) = &, then Hom(Zu,Zgz(K,w)) =0.

So,

(76) fo(w) =ny - g, wheren, € Z,

and f,(w) =0if UN &,(K,w) = 2.
Analogously, Hom(Zy, Z¢c) = Z - go, so

(77) f(0) =no - go.

It also follows that:

Claim 3. — for every point s € U there are only finitely many w such that f,(w) # 0
and s € G,(K,w).

Proof. — This follows from consideration of the induced map on stalks at s:
(fo)s: (Zu)s=Z— P zZ=(P G(K w)s.
w:s€ G, (K,w) wEW™

The image of this map must be contained in the direct sum of only finitely many
copies of Z, the statement now follows. O
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3.16.6. Restriction to a sub-parallelogram V. — Let V C U be a parallelo-
gram, V = AB'C'D’, such that B’ € (AB), D’ € (AD) (so that C' € U).
The restriction

fov = falv : Zv = Zu B 2c @ D Za.xw)

can thus be expressed as

fa,V = nO'gO|V + Z Ty 'gwlv-
weEWe

Here g, |v is the following composition:
Zv — Zy 53 Zg, (k)

and g,, is the same as in (75).
Let S € W consist of all w such that n,, # 0 and g, |v # 0. We can now rewrite

(78) fov = Z Moy * gle

weS
Observe that

(79) gulv #0if VN &G, (K,w) # 2.

Next, there are only finitely many w such that f(w) # 0 and &,(K,w) NV # @.
Indeed, &.(K,w) NV # & implies C' € &,(K,w), and we can set z = C’ in Claim
3. This shows that S is a finite set.

We comment that restricting from U to V was done in order to obtain this finiteness
of S.

3.16.7. Proof of a weaker version of the Theorem. — We are going to prove
the following statement: there exists a small setT' C V + K, such that o|yvny extends
to V, where ¥ := (V + K)\(T' + K).

Define the extensions Zv g Gy Zyg,(k,w) as follows:

Gu @ Zvik = Lvik)nt, (Kw) — L, (Kw),

where the map c is the restriction onto a closed subset and the second map is induced
by the embedding of an open subset.

Let Go : Zv+kx — Zc be the map coming from the open embedding of the corre-
sponding sets.

Let

Fyv :=mn0Go + z NGy : Zv+kx — Zc @ @ Ly, (Kw)
weS weEW™

where the coefficients n.,,ng are the same as in (76), (77). Let Jv : Zv — Zvik be
the map coming from the open embedding of the corresponding sets. We have:

(80) fa,V = Fu,VJV‘
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Let us now find a subset ¥ C V + K such that ¢ o F;, v|y = 0. This vanishing along
with (80) imply that F, v determines an extension of o|y onto V.
(1) Consider the through map for some w € S:

Zc¢ @wewa Zﬁz(ra;w)

fa, w
Bw : Zv 7y <] / <] p“’Zﬁz(r_mw)

Duewe Za. (kw) — Bupewe L. (r_aw)

pw is the projection onto a direct summand, and the middle map is @),.
By (74), B, = 0; on the other hand, 8,, = 1y, * by, Where

restr

Gw
hw : Zv = Lg,(kw) — LZ6,(r—aw)-
But hy = 0if VN &,(r_o;w) = 2. So if ny, # 0, then

(81) VN, (r_qw) =2.
Since w € S and because of (79), we have
(82) VNE,(K;w)#0o.

From (81) and (82) it follows that (V + K) N &,(r_,; w) = &. Hence, we have
(83) pwo Qo Fa',V : Z(V+K) - Zﬁz(r_a,w) =0.

Let us now consider the maps k o ¢ o F,v, where k is the projection onto
®wZg, (r,,w) @ shown in the following diagram:

Crq

9z
Le —— @wewa L, (ro;w)

Fa,V K
KO QOFO',V : ZV+K —3 o / o — @ Zﬁz(l‘a,‘w)
weWa

DueweZa, (Kw) — Buewe L. (r_ow)

Let My, : Z¢c — Zg, (r,;w) be the components of the map qf'a. Let
A={w : 3we€S : Nyyw #0or My #0}C W,

Here S is as in (78), Nyw' = NA-1(w);ws a0nd Mg, are the same as in Proposi-
tion 3.10.1. (Remark, however, that the statement of the Proposition 3.10.1 is not
used here.)

For each w’' € W let us write
G, (K,w')=dy + K.

Set T' := {dy : w’' € A} C C. As S is finite (see end of Section 3.16.6), for any s € C
there are only finitely many w’ € A : @(K,w') > s. Equivalently there are only
finitely many w’ such that d,s € s — K so that I is small .

Let

Tw ! @ Lg,(rquwy = L, (raw)
w' eEWe
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be the projection. It follows that 7, kQF, v # 0 only if w € A. Set ¥ :=V + K\(I'+
K). Tt follows that 7, kG Fy|y = 0, which implies kK QF, v|y = 0. Taking into account
(83), we conclude QF, v|y =0, i.e., o|yqy extends onto ¥/, as we wanted.

3.16.8. Proof of the theorem for U. — Denote by ¢’ the extension of o|ynv
onto ¥. Observe that the set NU is connected and that ¥NV c ¥NU. Thus, ¢ and
o' are two extensions of o|yny onto ¥/ N U. By Sec 3.14.1 we have o|yqu = ¢'|ynu-
Thus, o extends to ¥ U U which is of the required type.
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CHAPTER 4

ORTHOGONALITY CRITERION
A SIMPLIFIED VERSION

The goal of this section is to prove Theorem 4.1.1 below. This theorem will only
be used in the next Section 5.

4.1. Formulation of the Theorem

Let X be a smooth manifold. We will work on a manifold Y = X x R x R. Let us

refer to points of Y as (z,s1,82) € X X Rx R. Let P;, P, : Y — X x R be projections
Pi(xy S1, 32) = (x7 Si)-

Let us refer to points of T*Y as (z, s1, S2,w, a1ds1, agdss), where w € T X; a1ds; €
Ty R; agdsy € T, R. Let Qy C T*Y be the closed subset consisting of all points
(z, 81, 82,w,a1ds1,azdss) where a; = 0 or az = 0 (or both). Let &y C D(Y) be
the full subcategory consisting of all objects microsupported within Qy. Let + &y

be the left orthogonal complement to &y (consisting of all FF € D(Y) such that
RHom(F,G) =0 for all G € D(Y)).

Theorem 4.1.1. — F € L 6y iff RP\\F = RPyF = 0.

Let us start with proving that F € 1y implies RP))F' = RPyF = 0. Indeed,
given any G € D(X x R), we have

RHom(RP,,F;G) = RHom(F, P,G).

It is well known that every element (z, s1, S2,w, a1ds; + azdss) € S.S.(p’lG) satisfies
az =0, ie., PG € €y and

RHom(RPyF;G) = RHom(F, P,G) = 0.

As G is arbitrary, we conclude RP; F' = 0. One can prove the equality RP»F =0 in
a similar way.
The rest of this section will be devoted to proving the opposite implication:

Theorem 4.1.2. — Let F € D(Y) satisfy RP\\F = RPyF = 0. Let G € Gy. Then
RHom(F,G) =0.
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We start with introducing the major tool, namely a version of Fourier-Sato trans-
form.

4.2. Fourier-Sato Kernel

Let E be the dual real vector space to R? so that we have a pairing (,) : R2xE — R.
Let us use the standard coordinates si,ss on R? and 01,03 on E so that

((s1,82), (01,02)) = 8101 + $202.

Let Y := X x R? x R2. Define projections my,my : Yo — Y
m1(z,s,8') = (z, s);
mo(z, 8,8') = (z,5'),

where s = (s1,52) € R? and s’ = (s}, s5) € R
Let K C Y2 x E be the following closed subset

K ={(y,s,8,0)|(s —§,0) > 0}.
Let us also define the projections
pr: YaxE - Y, BY;
pe : Yax E ™X8F vy x E.
We then have the following functor: ¥ : D(Y) — D(Y x E):
U(F) := Rpa.RHom(Z; pi F)
which are modified versions of Fourier-Sato transform. Let us establish certain prop-

erties of these functors (similar to those of Fourier-Sato transform).

4.2.1. Properties of the modified Fourier-Sato transform
Lemma 4.2.1. — Let rg :' Y X E — Y be the projection. We then have a natural
isomorphism
F — R U(F)[2].
Proof. — Let pg : Yo X E — Y3 be the projection. We then have
(84) Rnp,U(F) ~ Ry RH#om(RpmZy; Ry F).

(Indeed, one uses p; = 7 0pg, the adjunction formula for pgi, and mgopy = Tgoms.)
A simple computation shows that we have

RppZk = Za[-2].

where A C Y, is the diagonal, i.e., the set of all points of the form (z,s,s). The
statement now follows. ]
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4.2.2. Singular support estimation. — Let us define the following set
(85) C :={(01,02)lc1 =00r o, =0} C E.
Let U := E\C.

Lemma 4.2.2. — Suppose G € Gy. Then we have:
SS.(¥(G)NT*(Y xU) C {(z,s,0,w,0,bdo)} Cc T*(Y x U),
where (z,8) € X xR:2=Y;0€U; weTiX; bdo € T}U
Proof. — First of all, by [5, Prop.5.3.9],
(86) S.5.(Zx) = {((s,8',0),Md(s—5§',0)) : Ms—s',0)=0, A>0, (s—¢,0) >0}
By [5, proof of Prop.5.4.2], S.S.p} G is contained in the following subset of T* (Y2 x
E):
) (z,s,8',0,w,ads,0-ds',0 - do),
where (z, s,w,ads) € Qy.
Let us now check that
(87) 5.8.p1G N S.8.Zy C {zero section}.

Suppose we have an element 7 in this intersection which does not belong to the zero
section. It should be of the form as in (86). Since  # 0, A > 0 and (s — s’,0) = 0.
We have
M(s —§',0) = Ns —§',do) + MNds — ds, o).
The ds’ component of 7 is thus —A(ds’, o). In order for n € S.S.7}G, this component
must vanish, which implies o = 0. Analogously, do-component of 7 must vanish as
well, i.e., s — s’ = 0. This implies that n is in the zero section, contradiction. This
proves (87).
It now follows that

S.S.R¥om(Zx; piG) C S.8.(p}G) — 8.8.(Zx)
(where “—" means subtraction in each fiber of T*(Y; x E)), [5, Cor.6.4.5]), i.e.,

(88) S.S.R#em(Zk;p\G) C {(z,s,5',0,w,ads — Ad(s — s',0))}
where
(89) (z,8,w,ads) € Ny

and s, s',0, A satisfy the same conditions as in (86).
Now let us estimate

S.S.Rpy. RHom(Zk; p\G) = S.S.(¥(G)).
By [9, Lemma 3.3], we have: if (a’)%d(s')? # 0 , then
(%, (s)°,0%,w°, (')°d(s")° + bodo®) & S.S.Rps. RHam(Zic; p G)
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as long as: there ezists ¢ such that RHom(Zy;p\G) is nonsingular at all points
(Twy Sy Shy O, Wy, axds + alds’ + bydo), where

(90) |z, —2° <e, anys, €R% |8\ —(s)°<e |ox—00<e,
lwe =l <€,  ax| <e, lal—(a)°| <e, |by -0 <e.
Thus, the proof of Lemma 4.2.2 reduces to the following statement:
Let (29, (s')°,0% w0, (a’)%d(s)° + bydo®) € T*(Y x E) satisfy:
a) 0° = (09,09) is such that

(91) 02 #0 and 09 # 0;
b) (a')° # 0.

Then for some € > 0 there are no solution (Ty, Sk, S, Ox, W, G, @, by) of the inequal-
ities (90) satisfying the conditions (coming from (88))

_ _ I ol -
(92) { Ty =2, Sx = 8, s, =5, Ox =0,

We =W, Gy=a—M\o, a,=DMXo, b.=-A(s—¢),
such that condition of (86) and (89) hold.

Eliminating the variables with x and conditions on z,w, b, we must, for fixed 0-vari-
ables find € making the following list of conditions inconsistent:

1. |8 — (s)°| < &

2. lo—0<e

3. la—Ao|<e

4. Do —(a') <e
5. a;=0o0ra; =0
6. >0

7. Ms—s",0)=0
8. (s—¢8,0)>0

Indeed, suppose there is a solution to this system of inequalities such that a; = 0.
Then by condition 3, |Ao1| < ¢, i.e.,

€
93 Al < +—
(93) N < o
By condition 2,
(94) lo| < |6°| + €.

Combining condition 4 with (93) and (94), obtain

3

95)  e>1(@)’ = Aol 2 |(@)°] = - (Io°] +€) 2 |(a)°] = or] (Io° +¢)

If we choose € > 0 to satisfy (cf. condition a))

1 .
(96) e < 5 min{|of), 03]
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then (95) yields
(97) e > (@)] = 2= (1% +¢).
o7
We have assumed a; = 0 above; if we assume ap = 0 (cf. condition 5), we get an
analogous inequality. Choosing € > 0 to satisfy (96) and to violate both (97) and its
analogue for as = 0, finishes the proof.

4.2.3. —
Lemma 4.2.3. — Let G € Ob(€y). Then ¥(G)|yxv = 0.

Proof. — Let q: Y x U — X x U be the projection ¢(z,s,o) = (z,0). We have a
natural map
L: q_qu*(\I’(G)IYxU) = ¥(G)lyxu

By virtue of Lemma 4.2.2 and the fact that the fibers of g are diffeomorphic to RZ,
we see that ¢ is an isomorphism.

It now remains to show that Rq.(¥(G)|yxv) =0.

Let Ky :=KN(YaxU). Let q1 : YoxU - Y xU,q: Y xU—=Y,q3: Y xU —
X x U be the projections
,a 0);
q2(z, 8,0) = (z,8);
q3(z,s,0) = (z,0).

q]_((l,',S,S/,O') = (.’L’,S

In this notation,
Rq.(¥(G)lyxv) = Ras« RHomy xv(RauZk,; 65G).

Finally, we observe that Rq1Zkxy = 0 (pointwise computation). O
4.2.4. Representation of G. — Let i¢c : C C E be the closed embedding; here C
is as in (85). Let K¢ := KN (Y2 x C). Let

¥ VaxC—-Y, BY

and )

pS : YaxC ™X8° vy xC.
Let ¢° : Y x C — Y be the projection. Let G € €y. It now follows from Lemma 4.2.3
that ¥(G) = (idy X i¢)«(idy X i¢)'¥(G), which together with Lemma 4.2.1 yields
a natural isomorphism

G= Rq*CRpg*Rmyzxc(ZKc; (plc)'G)p]
So that we have an induced isomorphism
RHom(F, G) = RHom(F; Rq RpS, R¥omy, xc(Zk; 0F)'G))[2).

Let us rewrite the RHS.
First of all, set

7 i =q¢%p§  YaxC = Y : (z,8,8,0)— (z,5).
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We then have
RHom(F; RgC Rp§, R¥famy, xo(Zxo; 05)'G))
= RHom((§) ™' F; #m(Zx ; (r)'G))
= RHom((7{)7'F ® Zk,; (05)'G).
Next, we factor p{ = ¢“7{, where
79 Yy xC "8 vy xC
so that we can continue
RHom((n§)™'F ® Zo; (pf)'G) = RHomy xc (R(x{ )i ((n§) ' F ® Zk.); (4°)'G)-
Let us show that F := Rr§((n$)"'F ® Zk.) = 0 under assumptions on F from

Theorem 4.1.2. Indeed, let (a,0) € C, a # 0. Then, for any F' € D(Y'), we have

RP\F 2 Flyx(a,0)-
Similarly,

RPyF = Flyx(0,q)-
Finally,

RPyF = Flyx(0,0)s
where Py : Y xC — Y is the projection. Since Py passes through P, all the restriction
listed vanish under assumptions from Theorem 4.1.2. This concludes the proof. O
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CHAPTER 5

ORTHOGONALITY CRITERION
FOR A GENERALIZED STRIP

5.1. Conventions and notations

Let a € (0,7/2) be an acute angle, same as in Section 1.1.1.
Set e = e~%*; f = €' 50 that e, f is a basis of C over R and every complex number
z can be uniquely written as z = ze + yf, z,y € R so that we identify

(98) C 5 R?

using the coordinates (z,y).
Define a generalized strip which is a set of one of the following types:
First type:

(99) S={ze+yf : >v; ye€ (4,B)} CcR?*=C,

where —oc0 <y < o0 and —o0 < A< B < 0.
Second type:

(100) S={ze+yf : 2<v; ye (A4,B)}CR*=C,
where —co <y < 00 and —00 < A < B < .

5.1.1. Convolution. — Let M, N be smooth manifolds Define a convolution bi-
functor

x : D(M x R?) x D(N x R?) - D(M x N x R?)
as follows. Denote

(101) A : MxR2xNxR?—>MxNxR?: A(m,u,n,v)=(m,n,u+0)

‘We now define
F %8S := RA(FRXLS).
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5.1.2. The category &s.— Let 25 C T*(SxR?) be a closed conic subset consisting
of all points

(%1,Y1, T2, Y2, a1dx1 + b1dyy; azdzy + badys)

where (z1,y1) € S and (a1,b1) = £(asz,b2) .
In terms of the complex coordinate z = ze+ yf and the identification (98) we have:

Qs = {(z,s,adz + bds|z € S,s € C,a = +b}.
Let €s C D(SxR?) be the full subcategory consisting of all objects microsupported
within Qg.
5.1.3. Rays [/, and [_. — Let
Iy :={(z,0)|z >0} cR?; [_:={(z,0);z <0} C R?,
5.1.4. Projectors Pi. — Let us define the following projectors Py : S xR? — R?,

where

(102) Py (1,91, %2,y2) = (T1 £ T2;91 £ Y2)-

5.2. Formulation of the criterion
Our criterion is then as follows.

Proposition 5.2.1. — Consider constant sheaves Z;, € D(R?). Let F € D(S x R?)
and suppose that one of the natural maps

(103) Zi, *F = ZoxF=F

(104) Zy *F —Zo*xF=F;

i a quasi-isomorphism.
Suppose that both RPy\F =0 and RP_\F = 0. Then F € 1 €s.

The rest of this section is devoted to proving this criterion under the assumption
(103). The case (104) is treated in a fairly similar way and is omitted.

5.3. Fourier-Sato decomposition

Denote by E the dual vector space to R2. We have the standard identification
E = R2 Let (,) be the standard pairing E x R?> — R. Let Z C E x R%; Z =

{(¢; w){¢,u) = 0}

As was explained above, we have the convolution
x : D(E xR?) x D(S x R?) — D(E x S x R?).
For F € D(S x R?) set
(105) F(F):=Zz * F € D(E x S x R?),
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where Zz € D(E x R?) is the constant sheaf on Z. Notice that F(F) is an analog of
(but is not directly equal to) the Fourier-Sato transform of [5, Ch.3.7].

Lemma 5.3.1. — (Fourier-Sato decomposition of F') Consider the projection q : E X
S x R? — S x R%. Then for any F € D(S x R2), we have a natural isomorphism

RqF(F)[2] = F.
Proof. — Let us introduce the following projections (where, e.g., p24 means the pro-

jection onto the 2-nd and the 4-th factor):
E xS x R? x R?

D123 D24
P23
q

E xS xR2 SxR2<~—— SxR2xR2-_=8 xR?

P13

Introduce the following closed subset
Z' ={(& 2 2,y) : (£, x—y) >0} CExSxR?xR2
We can now rewrite:

F(F) = Rp1asi(Zz ® p3,' F),

hence
RqiF(F) = Rp131Rpasa(Zz @ py F) =

(projection formula [5, Prop.2.5.13(ii)] is used)

= Rp13(RpssnZz @1 'F)

We have a natural isomorphism RpgsqZz: = Zgxa[—2], where A C R? x R? is the
diagonal. The result now follows. O

5.4. Transfer of the conditions RP. F =0 to FF

Claim 4. — Let F € D(SxR?) satisfy RPy\F = 0. We then have R(idg x PL)\F(F) =
0.

Proof. — Let us pick a point (17,s0) € E x R? and show that, say, R(idg x
P+)!]F(F)|(n’30) = 0. We have:

R(idg x Py)WF(F)|(n,s0) = RT(E x 8 x R?; (idg X Py) ' Zy,s0) ®F F(F))
= RT(E x S X R* Ziagx P, )-1(n,50) ® RAI(Z7 B F))

[5, Prop.2.5.13(ii)]

(106) RI.(E x R? x 8 x RZ;ZA_,P;I (ns0) ©® P12 Lz @ p3g F),

where:

p2: ExRZx S xR?— E xR?
is the projection onto the first two factors;

p3a: ExRZx S xR? - S xR?
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is the projection onto the last two factors; and finally,
A: ExR?xSxR? - ExSxR?: (n,s1,2,8)— (n,2,81 + s2)

(as in (101)).
We have:

A7 Y(idg x Py) " (m, s0) = {(n, 51, 2,82)|51 + 52 + 2 = s}

Note that
Za-1(iapxPy)-1(n,50) ® P12 Lz = La-1(idpxPy) 1 (n,s0) ® L1z = Lia-1(idpx Py) 1 (nys0)) 9, 2
and put
T := (A7 (idp x P4) 7" (n, 50)) NP1z Z = {(1, 51, 2, 82)|s1 + 2 + 52 = s0; (n, 51) > O}.

Denote by i the restriction of pz4 to T":

i:T—-SxR?: T>(n,s1,28)— (2,82).
We see that i is a closed embedding and that
i(T) = {(z,8)|(n,80 — s — 2) > 0} = P7'K, K = {w|(n,so — w) >0} C R?,

where P, : S x R? — R? is as in (102).
We thus can continue our computation from (106)

= RI(E x R? x 8 x R} Zr ® p3, F)

(using that p3,' F' =~ p}, F[—4] since the fibers of p34 are homeomorphic to R* and that
Rpaapy, F =~ F)

= RT.(S x R%; (Rp3yZr) ® F[—4]) = RI«(S x R* Zyry ® F[-4]) =
= RT.(S x R}, P['Zk ® F|—4]) =

[5, Propi.5.13(ii)] RPC(RZ; Tk ® RP+!F[—4]) —o.
The equality RP_iFF = 0 can be proven in the same way. O

5.5. Fourier-Sato decomposition for sheaves satisfying (103)
Define:

(107) I, = {(¢n) € El¢ >0} CE.
Suppose (103) is the case. Then we have

(108) F(F) 5 F(Zi, * F) > (Zz * T, ) * F.
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5.5.1. Computing Zz * Z;, . — Introduce the following subset
Z, :=Zn (Il x R*) c I, x R%

Lemma 5.5.1. — We have an isomorphism

(109) Zz*ZLy, =1Zz,.
Proof. — The inclusion {0} — [} induces a map

(110) LgxLy, — Lz *Lo=1ZLgz.

It suffices to prove the following two statements:
(1) Let € Z; C E x R?. The map

(111) (Zz * Zl+)z - (ZZ+):1: =17,

induced by (110), is an isomorphism.
(2) Let z € (E x R?)\Z. Then (Zz *Z;, )5 = 0.
In preparation for the proof of 1) and 2), for a point z := ({,v) € E x R?, let us
introduce a set
Ky = {(¢u1,u2)|(¢ u1) € Zsup € Lijuy + up =v} C E x R? xR,

so that we have

(112) (Zz xZy, )z = RT (K, Zk, ).
Let
Lo {(¢ u1,u2)|(C u1) € Zyup = O3us +uz = v} C E x R x R?
so that
(113) (Zz % Zo)y = RTc(Ly, ZL, ).

We have L, C K, is a closed subset. Under the identifications (112), (113), the
map (111) corresponds to the restriction map

RT.(Ky,Zx,) — RTe(Ly, 21, ).
Let v = (v1,v2), ¢ = (§,n). We then have
Kz = {((&n), (z1,v2), (2,0))|€z1 + my1 > 0322 > 0521 + @2 = 01}

The subset L, C K, consists of all points with x5 = 0.
The set K, is identified with the set

K} = {(z1,11) € R*|éx1 + myn > 0571 < 01}

The set L, gets identified with the subset L’ of K. consisting of all points with
I = vy.

Let us check 1). Let m : R? — R be the projection onto the second coordinate. It
suffices to check that the natural map

RW!ZK; — R?T!ZL;
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(induced by the embedding L, C K) is an isomorphism. We further reduce the
statement so that it reads: the following induced map on stalks at every point y € R
is an isomorphism:

(114) (RmZky)y — (RmZr, )y

We have

(115) (RmZk,)y = RT (K, Lk, );
(RmZry,)y = RT(Lgy; Z1,);

where

(116) K;y ={(z1,y) € R?*|éz1 +ny > 0;z1 < v1 };

L;y = {(z1,y) € R*|€z1 + ny > O;21 = v }.
The map (114) corresponds to the natural map

(117) RT.(KL,; Zk;,) — RTo(L,y; Z1,,)

zy)

induced by the closed embedding L;, C K.

We have £ > 0 (because z € I x R?), in which case either both L}, and K}, are
empty sets, or K ;y is a closed segment and L;y is its boundary point, which implies
that (117) and hence (114) are isomorphisms.

Let us now check 2). We have £ < 0. It suffices to check that (RmZg,_),=0 for all

y € R. Using (115), we can equivalently rewrite this condition as follows:
RT.(K, Zky,) = 0.

zy;

As follows from (116), the condition £ < 0 implies that K, is homeomorphic to a
closed ray, which implies the statement. O

Combining (108) and (109), we immediately obtain:

Corollary 5.5.2. — Suppose F € D(S x R?) satisfies (103). Then
(118) suppF(F) c Il x S x R2
Motivated by the Corollary 5.5.2, set
F/(F) := F(F)|n, xsxr2 € D(IT4 x S x R?),
so that
(119) F'(F)=17Zgz, +F.

Let my : Iy x S x R2 — S x R? be the projection.
Lemma 5.3.1 and (118) imply the following isomorphism:

(120) F[-2] ~ RnyF'(F) = Rryy(Zz, * F).
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5.5.2. Further reformulation. — Let us introduce a map

Q: My —-R, QEn)=n/
Let also
¢:RxSxR?—- S xR?
be the projection. Finally, let us set
W := {(a, (z,9))|z + ay > 0} C R x R?%.

There is a commutative diagram with a Cartesian square:
(121)

QXidg2 g g2

Z, xSxR? c T, xR? xS xR?2 RxR2xSxR? > Wx8xR?

T

Qxidg,
I, x S x R? xR xSxR?

S x R?

The map A in this diagram is induced by the addition R? x R? — R2.

Lemma 5.5.3. — i) “Zz_ x F is constant along fibers of Q x idgxg2" in the sense that
(122) Zz, *F = (Q x idsxge) ™! (Zw * F);

ii) If F satisfies (103), then there is a quasi-isomorphism

(123) F 2 Rq(Zw * F)[1].

Proof. — From the definition of a constant sheaf as a pull-back of Z,;, we have
(Q x idg2) "' Zwxsxr? = Zz, xsxr?; and then, by the base change [5, (2.5.6)] in the

Cartesian square of (121), we obtain (122).
To prove (123), write

F D Rryy(Zz, * P)[2] "2 R (Q x idgxps) ™ (Zw + F)[2]

= Rr(Q x idgxr2) "' RA|(Zw R F)[2]
= RqR(Q X idsxg2)1(Q X idgxr2) "RA(Zw R F)[2]

90 RR(Q % idsxre)(Q % idsxse)'(Zw * F)[=Rai(Zw + F)[1]. O

5.5.3. Rewriting the map (123). — Define a map [ : R x R?> — R, where R is
another copy of R, as follows: l(a, z,y) := z + ay.
Let

L:RxSxR?—->RxS xR,
be given by L(a, z,u) = (a, z,l(a, u)).
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Let W’ C R x R? x R be given by

W' = {(a, (z1,91),t)|t — z — ay > 0}.
Let

ps : RxSxR?x R—RxR?xR;

prxr: RXx S xR?x R— S x R?
and
pre :RxSXxRZxR—-RxSxR

be projections.
We have the following cartesian diagram:

(124)
(a,u1, 2, ux) — (a, 2, u2, £(a, u1 + uz))
m m
(a,u1,zu3) € RxRExSxRI—L ~RxSxRExR 5  (a2ut)

[ SR [

(a,z,u3 +ug) € R x S x R? RxSxR Y (a,z,t)

w w
(a’v 2, u) — (a’ 2, e(a'v U))
and W x R2, x S = L=}(W' x S).
By the base change [5, (2.5.6)] applied to the diagram (124), we have for all F
satisfying (103):
(125) Zw * F = L™ Rpga\(pgy pF ® 3 ' Zw).

Denote
®p := Zw * F := Rpge)(pgs pF ® p5'Zw+) € D(R xS x R).
5.5.4. Transferring Claim 4 to ®r. — Let P, : Rx S x R — R X R be given by
(126) P! (a,(z,y),t) = (a,z + ay + t).
Lemma 5.5.4. — If F € D(S x R?) satisfies both (103) and RP F = 0 then
(127) RP.(®F)=0.

Analogously, if F' satisfies both (104) and RP_F = 0, then RP’ ,(®r) = 0.
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Proof. — Proof of Lemma 5.5.4) Extend the diagram (124) as follows:
(128)

RxR2xSxR?—2+RxSxR2xR

|4 l

ExSxR DN, wgxr2 2R p gy R L . RxSxR
‘/id;;xm. Lidn+xP+ lideP_i_ lp;
E x R? exid )H+ % R2 QXidg2 R x R? L’ Ry R
w w

(a" ’LU) _ (aa e(aa w))

where ¢ : II, — E is the open inclusion.

We have Z, = ZN(vxidg2)I} and Zz, = (ixidgz)"'Zz. Thus by the base change
[5, (2.5.6)], Zz, * F € D(II1 x S x R?) is quasi-isomorphic to (¢ X idgxgz) "} (Zz * F).
Thus,

[5, (2:5.6)] Claim 4

R(idn, x Pi)(Zz, x F) (¢ x idg2) "'R(idg x Py )(Zz * F) 0.
But on the other hand,
F(F) ) Lz, xF = (Q x idgxg2) " (Zw * F) ® (Q x idgxr2) 'L ®F

hence
R(idn, X Pu)(Q X idgxge) "'L7'®p =0,

or applying the base change [5, (2.5.6)] to the middle and right bottom squares of
(128), we have
(Q x idgz) (L) "' RP,(®F) = 0.

Since both maps (Q X idgz) and L’ are locally trivial fibrations with a vector space
as a fiber, we conclude that RP},®r = 0. O

5.6. Rewriting the condition of orthogonality to &

Let F satisfy the conditions of Proposition 5.2.1 (assuming (103). Let H € Gg,
where Gs is defined in Section 5.1.2. Proposition 5.2.1 now reduces to proving that
RHom(F, H) = 0.

Let us investigate RHom(F, H) using the representation (123) of F. We have:

RHom(F, H) "2 RHom(Rqi(Zw * F), H)[-1] "2’ RHom(RqL~ (®r); H)[-1]

(129) = RHomeSxR(CI)F§RL*Q!H)[—I]'

Singular support estimate shows that
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Proposition 5.6.1. — We have:
S.S.RL.¢'H C Qg,
where

(130) Qu:=|J {(&21,51,t,R(d(z1 + ay1) + dt) + R.da)}

“pr gnd “—7

and where a € R, (z1,y1) €S, t € R.

Proof. — Because q is a projection on a direct factor, by [5, Prop.3.3.2(ii)] we have
S.S.¢'H = S.S.q"'H which in turn can be, using [5, Prop.5.4.13], estimated by (in
the notation of that proposition) q’(g;1(S.S.(H))); thus

S.S.qH cC {a,z,u,ada + vdu : ¢ =tv}.
By |5, Prop.5.4.4],

S.S.RL.q'H C L.(*L' "{a,2,u,ada + (dz + vdu : ¢ = +v}).

We have

T*(Ry X S, X Ri:(z,y)) e R, x S, x Ri:(z’y) X(RaxS,xR;) T*(Rq X S, X Ry)

(a,z,u,ada + {dz + &dz + ndy) (@, z,u,ada + {dz + Tdt)
v=(£n) t={(a,u)
dz+ady+yda < dt.

Thus

S.S.RL.g'H C L.({a,z,u,ada+ C(dz+1dt : (=+7(1,a)}) =

= {a,2,t,ada+ (dz +7dt : (==%7(1,a)}

which is equivalent to (130). O

Thus, Proposition 5.2.1 follows from the following one:

Claim5. — Let ®p,9% € D(R x S x R) satisfy: RP,,®r = 0 (where P. are as in
(126)); S.S.# C Qg , where Qg is as in (130). Then we have:

RHom(®p; ) = 0.

5.7. Subdivision into three cases

We are going to subdivide the space R x S x R with coordinates (a, z,u) into 3
parts according to the sign of a.
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5.7.1. Subdivision of Rx S x R

Uy :=(0,0) x SXxX RCRxS xR
U- :=(-00,0) x SXx RCR XS X R;
Up:=0xSxRCRxSXR.
Denote
j+: UL > RxSXR
the corresponding open embeddings and by '
i0: U =R xS xR

the corresponding closed embedding.

5.7.2. Subdivision of ®r. — Set

®;:=j;'r € D(Us);

Py := ’L'(Tl(I)F S D(Uo)
We have a distinguished triangle
(131) = @y BB - Dp — gDy B

Let
PJt = PLj.; PY :=P,j_; PU =Pii

be the restrictions of P, from (126) onto Uy, U_, and Uy. Base change theorem implies
that

Plro, =0
Plro_ =o;
Plr@, =0.
5.7.3. Subdivision of #. — Let # 4 € D(U4);
Hy = ji K.
Let J¢ € D(U));
Ho = 265‘[
Let us estimate the microsupports of these objects. Let
Qu, =QyNT*Uyx C T"U4,

where we assume the embeddings T*Uy C T*(R x S x R) induced by j.
It is immediate that S.S.(#+) C Qu,.
Let
Q:=|J {(=1,5,tR(dz; £dt)} cT*(S x R),
“4” and “—”

where, same as in (130), (x1,y1) are coordinates on S, and ¢ on R.
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Corollary [KS] 6.4.4(ii) implies that
S.S.(#0) C Qo.

5.7.4. Subdivision of Claim 5. — By virtue of the distinguished triangle in (131),
Claim 5 gets split into showing the following vanishings:

RHomgxsxR(j+1®+; ) = RHomy, (24;H ) = 0;
RHom]RxsxR(j_gé_;ﬂ) = RHOmu_ (@_;ﬂ_) = 0;
RHomesxR(iOCI)_,_;ﬂ) = RHOmUO (@0;5‘{0) =0.

Our task now reduces to showing the following three statements:
Claim 6. — Let ®,,%, € D(Uy). Suppose RPL ®, = 0 and S.S.(#4) C Qu,.
Then
RHom(<I>+,5‘{+) =0.

Claim7. — Let ®_,#%_ € D(U_). Suppose RPy ®, = 0 and S.S.(#_) C Qu_.
Then
RHom(®_, % _) = 0.
Claim 8. — Let ®y, % € D(Up). Suppose RPi];’(Do =0 and S.S.(#o) C Qu,. Then
RHom(‘I)o,ﬂo) = 0.
5.7.5. Further reduction. — Let ¢ be one of the symbols: +, —, or 0. Let I, :=
(0,00); I_ := (—00,0); I := {0}. Let
Qo :UpxSXxR—IysxRxR
be given by
Qlo(a', (.’E, y)7 t) = (a1 T + ay, t)
(in the case ¢ = 0 we assume a = 0). Denote by V¢ C R x R x R the image of Q.

Depending on S, V¢ can be of one of the following types:
(1) For some linear function f¢, : Is — R,

Vo ={(a,v,t)|a € Io;v > f(a); }-
In this case, set Ug := I % (0,00) X R; set
Q1:Uy — Uy,

Ql(aa (il), y),t) = (a,:z: +ay — f(a)vt)'
(2) For some linear function f¢ : Iy — R,

Vo ={(a,v,t)|a € Ip;v < f(a)}-
In this case, set Ug := I, X (—00,0) X R; set
Q1: Uy — Uy
Q1(a, (z,9),1) := (a,2 + ay — f(a),?).
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@)
V<>=I<>XRXR.

In this case, set Uy, := Iy X (—00,00) X R; set @1 : Uy — Uy,
Ql(a” ('7:7 y)a t) = (a,w + ay, t)

It is easy to see that in each of the cases the map @), is surjective; furthermore it
is a smooth fibration with its typical fiber diffeomorphic to R. We also see that the
1-forms from Qy,, vanish on fibers of @1, which implies that the natural map

Ho — QiRQuH s

is an isomorphism.
Set
Lo == RQuHt o € D(Uy).
Define conic closed subsets Qy, C T*Uy as follows:

Qu, = |J {(@vt,R(dv+£dt)+Rda},

“4” and “—»

where (a,v,t) € Uy C I+ X R x R. Define a conic closed subset Qyy, C T*Up:
Qu, = | {0v,tR(dv*dt)}.

“qm and «—7

It is easy to see that
SS(fQ) C QUO'
5.7.6. — We have
RHom(®g; # ) = RHom(®o; @} £6) = RHomu, (RQu®s; £o).

Set G := RQ1P. Let P:E<> : Uy — R x R be the restrictions of the following
maps RxRx R— R xR:

(132) (a,v,t) — (a,v ).
It now follows that
RPL°Go =0.
So, we can rewrite Claims 6—8 as follows.
Claim 9. — Let Gy, Lo € D(Uy) satisfy:
(133) RPL°Gy =0;
S.8.(£s) € Qu,- Then RHom(G¢; £¢) = 0.

5.8. The case Uy = I, X (—00,00) X R

This case follows from Theorem 4.1.1 below. Below, we are going to consider the
case Uy = I X (0,00) x R. The case Uy = Iy x (—00,0) x R is fairly similar.
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5.9. Proof of Claim 9 for Uy, = I, x (0,00) X R

As above, our major tool is development of a certain representation of G.

5.9.1. Representation of G. — Let V3 C Iy X R x (0,00) x R be given by

(134) Vi ={(a,u,v,t)| |t| < v}.
Let V := I x R x (0,00) % (0,00). We have an identification J : V — V7,
(135) J(a,u,&1,8&) = (a,u, & ;62 , %)
Let I : V1 — I x (0,00) X R be given by
(136) Ii(a,u,v,t) = (a,v,u+t).
Let I=1,J:
Io,u6,8) = (a, 52 0y 28

2 "7
sothat & =v+t; & =v—t.
Let q1,92: V = I x R5o x Ry,
(137) Qi(aau7§1a§2) = (aauyéi)v i= 172
Let us summarize our notation in the following diagram (a wavy line indicates that
a sheaf is defined over the given space):

(a,u,v,t)t (a,v,u+t)

m m
X xR x (Rsg x R) > Vi ={(a,u,v,t) : |t|<v}i>1<>x]R>o><]RmG
]J /
I
HM'V=I<>XRXR>OXR>OT>IQXRXR>0.

(aaua§17£2)= (a,u’gi)

Claim 10. — Suppose that an object G € D(I x (0,00) x R) satisfies (133) both with
the sign “+” and with the sign “—”. There exists an object H € D(V') such that

(1) both RquH ~ 0 and RgaH ~ 0;

(2) RLLH ~ G.

Remark. Observe that (133) reads as follows: RP1,G = 0, where
(138) Pl:Iyx(0,00)xR—RxR : Pi(a,v,t)=(a,v+tt),

same as in (132).
Proof of this Claim will occupy the next subsection
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5.10. Proof of Claim 10

5.10.1. Functors r; and r, and their properties. — For F € D(Ils x R x
(0,00) x (0,00)) we have natural maps (coming from the adjunction)

(139) F — ¢\RquF; F — gyRgaF.

Let 71 (F),r2(F) be the cones of these maps so that we have natural maps (in the
conventions of [5, Ch.1.4])

(140) ri(F) — F1],

(141) ro(F) — F[1].
We therefore have a composition map

(142) rireF — F[2].
Lemma 5.10.1. — We have Rqiir1r9 = Rgairire = 0.

Proof. — First of all we observe that
(143) Rqyri ~0, Rqury ~0.

Indeed, the question boils down to showing that Rq;, applied to (139) yields a quasi-
isomorphism Rqu F = Rqyiq} RqniF.

There is a natural transformation of endofunctors on D(I, X R x (0,00)): € :
Rq1q, — 1d (since Rgqy) is left adjoint to g}). Since g; is a projection along (0, 00), it
is well known that € is an isomorphism of functors. By [6, Ch.IV.1, Th.1(ii)], there
is a diagram

Rgy F — Rqug\Rqu F

ey

Rqn F

in which the vertical arrow is induced by &, which implies that the vertical arrow is
an isomorphism, hence, so is the horizontal arrow. This finishes proof of (143).
Secondly, we have a natural quasi-isomorphism

(144) T1Tro ~ T2T1.

Indeed, let us represent qi,qs as convolution with kernels. Let A, B,C be smooth
manifolds. We have the convolution bifunctor o : D(A x B) x D(B x C) — D(A x C)
defined by

(145) FoG= RWAC!(WL‘BF® ﬂ!BCG)'

Let A =R, By = By = (0,00), C = pt so that F' is a sheaf on A X By x B,
q1: A1 X By x B — A x By x C is the projection along B,.

We have Rq/F' = FoZp,xc-

Set ¢’ G = ¢71G[1] = G 0 Zoxp,[1].
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Let us construct an isomorphism (natural in F' and G)
RHom(Rgq1F; G) = RHom(F;¢? Q).
Fix one of the two maps I : A/Zg, — Zpg,xB,[1] such that the induced map

RPA\Zg, — RPZg,xB,[1] is an isomorphism, where P : By x By — Bj is the
projection along the second factor. We have an induced map

a:F3 FoAZp, 5 FolZp,yp,[l] > ¢®RquF.
It follows that this map induces an isomorphism
(146) RguF — Rqug{ RquF.
The induced map
(147) RHom(Rgy F; G) — RHom(q¥ Rq1i F; ¢¥ G) =3 RHom(F;¢?G)

is an isomorphism for all F,G. Indeed, the right arrow is an isomorphism because of
(146). The left arrow is an isomorphism because we have an isomorphism of functors
¢’ G = GRZ[1] and the statement now follows from the Kiinneth formula.

Thus we have constructed an adjunction between the functors q? and Rqq in the
sense of [6, Ch.IV.1]. In case G = RqyF, the map (147) sends idgg,,r to ¢; (idrg, r)©
a = a, therefore a is the universal arrow associated to the adjunction (147) in
the sense of [6, Ch.IV.1, p.81]; by the uniqueness of an adjoint functor, see [6,
Cor.1, Ch.IV.1, p.85] and its proof, this means that o coincides with the “standard”
adjunction map (coming from [5, Ch.3.1]) up to some natural autoequivalence of the
functor ¢} Rgy,. This means that we have a canonical isomorphism of functors ¢ 2 ¢}
so that we won’t make difference between ¢¥ and ¢} We have

(148) @i RquF = F o (Zpyxc © Zexs,)[1) = F o Zp,x B,[1].

The above consideration shows that 11 F = Conea ~ F o #;, where ¥£; := Cone(I :
A\Zp, — ZB,xB,[1])-
Analogously, roF ~ F o £5, where £5 := Cone(I : A\Zp, — Zp, xB, [1])-
Therefore,

rireF ~ F o[£ ¥ £o] ~ ror F,

as we wanted.
We now have: Rgyiri72 = 0 because of (143) and

(149) Rqoirire (14%) Rqairor; (14%) 0.

This accomplishes proof of Lemma. O

5.10.2. Construction of the object H and proof of the Claim 10 1). — We
set ® = I'G and H := ri73(®). Lemma 5.10.1 says that RgH ~ 0 and RganH ~ 0,
which proves part 1) of the Claim 10.
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5.10.3. Reduction of part 2) of the Claim 10. — Let us deduce part 2) of the
Claim 10 from the following statement.

‘We have a map
vy H =r1r2® — @[2],

where the right arrow is defined in (142). Let us apply the functor RI, to ¢g so as to
get a map

(150) RI,H — RIi®[2]
Claim 11. — The map (150) is an isomorphism.

This Claim implies part 2) of the Claim 10. Indeed, we can rewrite (150) as follows.
RLH — RI,®[2] = RLI'G[2] = G[2],

where the rightmost arrow is an isomorphism because I is a smooth fibration with
fibers diffeomorphic to R.
We now pass to proving Claim 11.

5.10.4. Subdivision into three cases. — The map (150) factors as

RLriro(®) Y RLry(@)[1] Y RIp0[2).

AsTI'G = ® and by [5, Prop.1.4.4.(TR3)], the cone of the right arrow is isomorphic
to RI;ghRgxI'G[2]. Analogously, the cone of the left arrow is RI g} Rq1im2®[1] which,
by definition of rs, is the cone of the natural arrow

RLgiRquI'G — RLiq; RguRgyRaxI'G.

Thus, isomorphicity of (150) is implied by the following three vanishing statements:
(1) RI!qlzquI!G ~0
(2) RLi¢i RquI'G ~ 0;
(3) RLig} Rq11¢5Rga1I'G ~ 0.

5.10.5. Proof of the 1-st and the 2-nd vanishing. — Let V5 := I, xR x (0, 00)%.
Let 71,72 : V5 be given by

m(a,v,§1,62,€1,€2) = (a,v,61,€2)
and
m2(a,v, 61, €2,61,€2) = (a,v,€1,63)
Let Lo, C V5 be a closed subset of the form:
Ly = {(a,v,&1,62,1, &)1 = &}
Lemma 5.10.2. — For any F € D(V) we have
¢y RqnF = Rry(Zy, @ mp ' F).
Proof. — Similar to proof of (148). O
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Let X5 := I % ((0,00) x R) x ((0,00) x R). Let w{¥, 75 : X5 — Iy x (0,00) X R be
the projections along the 3rd and the 2nd factors respectively. Define closed subsets
Ly C Xa:

Ly ={(a,(s1,t1),(s2,t2)) € I x ((0,00) x R) x ((0,00) Xx R) : s1 £t =855 Lt}
Lemma 5.10.3. — For any F € D(I1 x (0,00) x R),
(PY)"'RPLF = RrX (2, o} 'F),
where the map P! was defined in (138).
Proof. — The proof is analogous to the proof of Lemma 5.10.2. O

We now have
RIigbRgaI'G[-2] ~ RLig; 'Rg2 171G

(151) ~ Rryy(Zr, ® (m3)7'G),
where 7} = Im; : Vo — I, X (0,00) x R, as easily follows from Lemma 5.10.2.

Let us define the following map
Jo i Iy x R x ((0,00) X R) x ((0,00) x R) = I x ((0,00) x R) % ((0,00) x R) = X5
as follows:

J2(a7v7 (Slvtl)v (327t2)) = (a’ 81,V +t1,82,v + t2)'

Let us also define a map (which is a closed embedding)

Ky : Vo — Iy x Rx ((0,00) x R) x ((0,00) x R)
as follows:
+ _ /+ / 1 el
KZ(a7v7§l7€2a€17££) = (CL,’U, 61 2 52; 61 2 62, 61 2 52; fl 2 €2

It follows that 7} = X JoKo; mh = 75 Jo K.
We can now rewrite (151) as follows:

).

RLighRgnI'G[—2] ~ RLig; *RgaI7'G

(152) ~ R\ (RJ2RK2Z1,) ® (13 )7 G),

Let

Ly Cc Iy x R x ((0,00) x R) x ((0,00) x R)

be a closed subset consisting of all points (a, v, s1,t1, S2,t2) With 81 — t; = 83 — ta.

It is easy to see that Ko(Ly) C L) is an open embedding. Indeed, K2(L2) consists
of all points (a,v, 81,t1, S2,t2) with s — t; = 82 —t2 , 81 > |t1], s2 > |t2|.

Therefore, we have a map RKaZr, — Zr; which induces a map
(153) Rl (RJyRKnZ1,) ® (13)7'G) — Ry (RJ2Zyy) ® (73) 7' G).
The cone of this arrow equals

Rrf (M (n)7'G),
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where
M ~ RJyZn,

and N = L4\ K(L3). Let us now show by a pointwise computation that M ~ 0. Indeed,
let o := (a,01,71,09,72) € X2) be a point. Let us consider H*(M,,) = H?(J; 'o; Z).

If 01 — 11 # 02 — T2, then J{la =@.If oy — 1 = 09 — T2 = h, then J{la gets
identified with the set of all v € R satisfying: either o1 < |11 — v| or g3 < |12 — 0.
Let us denote this set by Y, C R. It follows that Y, consists of all points v satisfying:
h+v <0or h+v > 20, where o is the maximum of o; and o2. In other words, Y,
is a disjoint union of two closed rays so that H? (Y, Z) = 0. This shows that M ~ 0.

The map (153) is therefore a quasiisomorphism. In view of (151), the first vanishing
will be shown once we prove that

(154) R\ (RJnZry) ® (n5)'G) ~ 0.
But RJuZy; = Zg: [—-1], and hence the Lh.s. equals (P1)~'RP!,G[-1] which is zero
by (133).

The second vanishing is shown analogously.
Proof of the third vanishing Define the following subset

L C Iy x R x ((0,00) x R) x ((0,00) x R)) :
L= {(a’ v, Sl,tl, S2, t2)|(aa v, 81, tl)a (aa v, 82, t2) € V}
Similar to the proof of the 1-st vanishing, one shows that
RIiq, Rqugy RgaI' G[—3] ~ Ra}y (RInZ1) ® (n3) ' G),

where
Jo : I X R x ((0,00) x R) x ((0,00) x R)) = Xo
and
7, Iy x R x ((0,00) x R) x ((0,00) x R)) — I, x (0,00) x R

are the same as in the proof of the 1-st vanishing.
Observe that

J2(L) = {(a, (s1,t1), (s2,t2))| |t1 — t2| < s1+ s2}.

the projection L — Jy(L) is a smooth fibration whose fibers are diffeomorphic to R!;
we now see that

RInZy ~ Zj,(1)[-1] € D(X3).
We therefore need to show that
Rrf (Zyy (1) ® (m3)7'G) ~ 0
The complement to J2(L) in X5 consists of two components
Xo\J2(L) = My UM_,
where
My = {{(z, (s1,t1), (s2,t2))| t1 — t2 > 51 + 82}
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and
M_ = {{(z, (s1,t1), (s2,t2))| t1 — t2 < —51 — 82}
We thus have a distinguished triangle

— Rmy(Z ) ® 75 ' F) = Rmy(Zx, ® 13 'G) — Rmy(Zy, ®73'G) & Rmy(Zy_ ©7;'G) 5

which comes from a short exact sequence
0— Zj,) = ZLx, = Ly, ® Zpy_ — 0.
The second term of this triangle is quasi-isomorphic to
7 'RmGQG,

where 7 : I, x (0,00) x R — I, is the projection. It follows that RmG ~ 0 because
7 passes through P} (as well as P2) from (133).

We thus need to show that RmsX (Zp, ® (75)71G) ~ 0.

Introduce the following subsets Ny C Iy x ((0,00) x R) x R:

Ny = {(av (slvtl)vy)l t1 2 81 +y}
and
N_ ={(a,(s1,t1),9)| t1 < —s1 — y}.
Let g1 : I % ((0,00) x R) x R — (0,00) x R and g2 : Iy x ((0,00) x R) x R - R
be projections. We then have
Rri{ (Zm, ® (73)7'G) ~ Rqu(Zn. ® g; ' RPL,G) ~ 0

because RP},G = 0 by (133).
This completes the proof of the 3rd vanishing as well as the proof of Claim 10.

5.11. Finishing proof of Claim 9

Let Iy x Rsg % R, the target of the map I; from (136), have coordinates (a,v,7n).
Let G, H,I be as in Claim 10 and let H' be a sheaf on I X Rso X R microsupported
on the set

(155) U (av,nRd(v+n) +Rda).
LK+H al‘ld “_n

We then have
RHom(G, H') ~ RHom(RIL,H, H') ~ RHom(H,T'H’).
By [5, Prop.5.4.5(i)], it follows from (155) that

(156) S.S.(I!H’) c {(a,u,&1,&2,bda + wdu + T1d€; + T2dé2 © 7 =0 or 7 = 0}.

Set A'=H,B' =1'H'.
Let also q1,q2 : Io X R X (0,00) x (0,00) — I, X R X (0,00) be projections as in
(137) qi(a’9u, 51,52) = (a,u, Ez)
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We then have RgyA’ =0, i = 1,2, by Claim 10,1), and we have the estimate (156)
for B’.

Let us identify diffeomorphically R — (0,00). Under this identification, we have
two sheaves A,BonY x R x R, where Y = I, x R, such that

(1) Rp11A = RpyA ~ 0, where p1,ps : Y X R X R — R are projections;

(2) B is microsupported on the set of points (y, uy, us,w + v1du; + vadusy), where
w € T;Y ug,up € R; v =0 or vz =0 (or both).

By Theorem 4.1.1, RHom(A, B) = 0, which finishes the proof of Claim 9, as well
as Proposition 5.2.1.
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CHAPTER 6

PROOF OF THEOREM 3.4

In Section 3.6 -3.13, we have constructed objects ®X, T« ®*-=, as well as maps
iox : Zooxi|—2] = ®K, igra : Zxgxr, [=2] = ¥, and igr—a : Zxgxr_, [—2] = PF<.
In order to finish the proof of Theorem 3.6.1, it now remains to prove:

(1) Each of the objects ®%, T« ™= belongs to &, to be done in Sec 6.1.
(2) Cones of the maps igx,igra,ig —a are in - &, to be done in Sec 6.2

We only consider the case of ®* (and the map igx ), because the arguments for
the remaining cases are very similar.

Proof of 2) is based on the orthogonality criterion of the previous section (Propo-
sition 5.2.1).

6.1. Proof of o¥ € .

Consider open subsets ¥; C X, where ¥, is the union of two neighboring open
strips Int P;, Int P, and their common boundary ray £. It is clear that ¥, form an
open covering of X.

Let us consider the restriction estimate ®% |z, xc. It suffices to show that

S.8.(®¥ |5, xc) € Qx NT* (X, x C)

for each element ¥, of the open covering. Let us fix the notation: let ¥, = Int P; U
Int P, U ¢; let P/ :=1Int P, U ¢, ¢ = 1,2, be the closure of P; in ¥,. Set for brevity

F = q)KlszC‘
Finally, we introduce the following sheaf on ¥, x C:
AIZ{gi = Z{(Z,S)GEg xC : stz(x)eK}:

Let us now suppose for definiteness that £ goes to the left. As follows from the
construction of ®¥ in Sec 3.8.4, 3.8.5, we have identifications (i = 1,2):

Flpixc = (AS" x84 @ A5 * S_)|prxc,
as well as a gluing map (44):

Dot (A # 81 @ AS xS )lexe = (Af * 84 @ AKT %S )lexc
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FIGURE 1. A regular sequence — Notation 6.2.1.

When restricted onto Agg"’ * St |exc, this map becomes the identity. This readily
implies that we have an embedding

ASY %S, — F,

whose restriction onto each P/ is just the identical embedding onto the direct sum-
mand. We can construct a surjection F' — Agl_ * S_ in a similar way. All together,
we get a short exact sequence

0o AfT*Sy > F - A5 +S_ =0,

The marginal terms of this sequence do clearly have their singular support inside
Qx NT*(X, x C), cf.(7), hence so does the middle term F'. This finishes the proof.

6.2. Proof of orthogonality

In this subsection, we prove that the cone of the map igx is in ~&. We will exhibit
an increasing exhaustive filtration F' of ®X such that the map i factors through
F1®X . Our statement then reduces to showing that Cone(RgiZg, [—2] — F*®¥), as
well as all successive quotients of Fit1®K /Fi®K 4 > 1, belong to 1 €.

6.2.1. Regular sequences. —

Notation 6.2.1. — Let A\, \,_1--- A1 be a nonempty sequence of boundary a-rays.

Call this sequence regular if for each k > 1 the rays Ay and Mgy are different and
belong to the closure of a (unique) a-strip Py, fig.1. We also assume that P, is the
initial strip (i.e., xo € P).

Note that, in general, a ray can occur in a regular sequence several times.

6.2.2. Admissible rays. — We will freely use the notation from Section 3.8, such
as £, W, AK=,

Let w € W< be of the form £,,€,_1---¢;{L or R} and let £ € £* be a boundary
a-ray. We call £ \, w-admissible, if there exists a k such that £ = A and €, lm—1 -+ - 41
is a subsequence of AgAk—1--- A1 (i.e., there is an increasing sequence k1 < -+ < Ky
such that £; = A, ..., m = Ax,.)-
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Remark 6.2.2. — Let w = £ fp—1--- (L or R). If ¢,, = ¢, then this condition is
equivalent to £,,¢,,_1 - - - £ being a subsequence of \; if £, # £, then the condition is
equivalent to ££,,£,,_1 - - - {1 being a subsequence of .

6.2.3. Subset P, ,. — Let P be an a-strip. We define an open subset Py, C P
as follows.

(1) if every boundary ray of P is not A, w-admissible, then we set P ,, := @.

(2) otherwise (there are A\, w-admissible boundary rays of P) we define P, ,, as the
union of Int P with all A\, w-admissible boundary rays of P.

6.2.4. Subsheaves Agiw. — Let j := jf, : Prw X C — P x C be the open
embedding.
As in Section 2.11, let Agi = Z{(z,s): ©€P, stz(z)eK}-
Accordingly, we can define subsheaves
ARS =3 ART C AR e D(P x C).

Observe that Ag iw = 0 if P has no A, w-admissible boundary rays.

6.2.5. Subsheaves <I>f§”\ C ®%. — We have an identification
o¥lp= P SuxAE"o P S.xAET.
weEWZ 1e weW .

For each regular sequence A (where X stands for A, A\,_1 ... A1), let us construct a
sub-sheaf ®X* ¢ &K as follows. Set

(157) o= P SuxAfi,0 P SwrARl..
weEWZ 1, weEW L,
We have an obvious embedding

opt — of.

6.2.6. Sheaves <I>§’)‘ match on the intersections. — Let P and P’ be two
intersecting a-strips; let £ = P N P’. We then have two sub-sheaves of <I>5< , namely

<I>f§’>‘| exc and @g,’)‘ux(c. Let us check that these two subsheaves do in fact coincide:

Claim12. —
K K
Q5" exc = ®p/ " exc

Proof. — Let w € W<, Consider the following sheaf: A}jé’w = Af.f: iw|é><c~ By defini-
tion, Af;’w = 0 unless £ is A\, w-admissible, in which case A%,w = Af.f il[.

Let W(£,A) C W be the subset consisting of all w, where £ is A, w-admissi-
ble. Let W(£,\) = W (£, A)iete U W (£, A)sighe, where W (£, N)iege = W (£, X)) N W,
WL, MNright = W(£,A) N W2,
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It now follows that @g’)‘lexc, as a subsheaf of ®K |, c = GaweW;*f Sy * AT @

@wewgght Sw * Af ~, coincides with the following direct summand:

Mo =0(4N) = P SurAfte P SuxAf.
wEW(f,A)le“ weW(f,A),-,gh;
Analogously, we have an equality
5 exc = B(L, \)
of subsheaves of
P SurAfTe P SuxAfT =05 e
weW,, wEW‘r’;ght

It now suffices to check that the sub-sheaf ®(¢, A) is preserved by the gluing map
I‘g,}?, from Sec 3.8.5. By definition of Fg}?l, it suffices to check: let w € W (¢, A) and
suppose Lw € W* (meaning that the leftmost ray of the word w goes in the opposite
direction to £); then fw € W (£, A). Indeed, w € W (¢, \), fw € W is equivalent to fw
being a sub-sequence of A, which is the same as fw € W (¢, \). O

This Claim implies that there is a unique sub-sheaf ®5* C ®K such that @g’)‘ =
KX pyc for all a-strips P.

6.2.7. Definition of a filtration on ®¥. —

Notation 6.2.3. — Choose and fix an infinite regular sequence
(158) c ARAn—1 .. A2
such that

—every ray occurs in this sequence infinitely many times;
—the ray A1 is adjacent to the a-strip Py containing xo.
Denote by A\(™) the subsequence ApAn—_1 ... A2);.

Set Fn®K .= K™ Let us check
Claim 13. — We have F"®¥ c Frt1pXK,

Proof. — Tt suffices to check that F"®X|p,c C F"t1®K|p ¢ for every strip P (as
sub-sheaves of ®X). It suffices to check that Py () w C Ppmany ,, for all w, which follows
from: if a ray ¢ is A("), w-admissible, then ¢ is A("*t1) w-admissible. This follows from
the definition of A\, w-admissibility. O

Claim 14. — Subsheaves F"®X form an exhaustive filtration of ®X.

Proof. — It suffices to check that | J F"®¥|pxc = <I>f§ . This is implied by: for every
w € W% and every boundary ray ¢ of P, there exists an n > 0 such that ¢ €
Py(n) 4, equivalently: £ is A w-admissible. Let us prove this statement. By the
construction of \, every finite sequence of rays, is a subsequence of A(™ for n large
enough (because every ray occurs in the sequence {);}{2, infinitely many times).
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Let w = £, ---£1(L or R), then the sequence €l,, --- £y (if £ # £p,) or £y, -+ 4y is &
subsequence of A(® for some n, meaning that £ is A, w-admissible. O

6.2.8. Computing F'®X. — In this subsection, P, denotes the strip adjacent
to A\; and different from Py. We assume that A; goes to the right and that Fp is above
P, (all other cases are treated in a similar way).

Let us give an explicit description of F1®¥ . First of all, a ray £ is A(), w-admissible
iff £ = A\; and w is one of the following L, R, A;L. Therefore, P\o ,, # @ iff: P
contains A1, that is P = Py or P = P,, and w is one of L, R, A\; L. In each of this cases
P)‘u)’w =Int PU\;.

Thus, F1®X is supported on ¥ := Int Py U A\; U Int P,. Let P} = Int Py U Ay;
P, =1Int P, U A\;. We have

Fl(I)KlP( xC = A+ @ B,;
F'®%|piyc = Ao @ By,

— K-, — K-, — K+ K-, —
where A, = Sgp*xAp,"; Ap = SR*Apé ; By = Sp % Ap, EBSML*AP: ; Bp =
S, * AIF?L @ Si, L * Agé_ The gluing map I‘g‘;{P* maps Ag|x, xc into Au|r, xc and
Bo|x, xc into By, xc, therefore, the sheaves A, and Ag get glued into a sheaf A

on ¥, and B, and By into a sheaf B so that F1®K = A @ B. One also sees that
A=Sp+* Ag_. Let j : Int Py — X be the open embedding.

6.2.9. The map iy factorizes through F'®¥K. — Keeping the assumptions
of the previous subsection, let us now construct the factorization of the map iy :
Zyox i |—2] — @K through F'®K. The cases when \; goes to the left or when P is
above P, are treated in a similar way.

Let j : Int Py x C — X x C be the open embedding. By definition, iy factors as

(159) Lok [—2] = 51(SL * Al p, © Sk * A{fl;,,o) - oK,

where the first arrow is induced by the following maps in D(Int Py x C):

Lp ZxoxK['—2] - Z{(z,s)|m€lnt Py,s+2(z)€xo+K} = St * AIIE;;:O;

LR : ZxoxK[_2] - Z{(z,s)lmelnt Py,s—z(x)€—xo+K} = Sp * AIKnt_po’

which are induced by the closed codimension 2 embeddings of the corresponding sets.

The right arrow in (159) factors through F1®¥ as follows. Let as decompose j =
J1jo, where jo : Int Py x C — £ xC and j; : ¥ x C — X x C are the open embeddings.
We have natural maps i4 : joi(SL * AIISJPO) — A and ig : jo(Sg * Afflt_Po) — B.
Whence a map

ia®Dip :jgg(SL * AIISJPO @ Sg * AIIr{lt_Po) — A®B= F1¢K|2xc.

The right arrow in (159) is then obtained by applying ji1 to i4 @ ip. For future
references, let us consider Cone(Zy,x x [—2] — F1®X), which is supported on ¥ x C.
We now see that

Cone(ZxOxK[—Q] — F1<I>K)|EXC
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is isomorphic to the Cone of the following composition map in D(X x C):
(160) Zixyxk[=2] = Jor(Sp * Afyfp, ® Sr* Afyip,) = A® B,

where the right arrow is i4 @ ip, and the left arrow is induced by vz @ tg.

6.2.10. Computing successive quotients of the filtration. — Let us compute
the quotients §" := F"®X /F"~1®KX n > 2. Our computation will result in decom-
positions (163), (164)

For that purpose, we choose an « strip P and compute the restriction ﬁ; =
FreK /Fr-19K|p,

Set

P(n,w) := Pxn y\Pyn-1,, C P.
P(n,w) is a locally closed subset of P so that we can define the following sheaves
on P x C:
Ag(:::,qw) = Z{(m,s)|z€P(n,w);s:I:z(z)EK}-
We have an identification
gp= P Sux Abdhw) ® D Sux AB i)

a a
wewlef: wewright

Let us now describe the sets P(n,w). Below, for a w € W, we set trim(w) to be
the word w with its rightmost letter (L or R) removed.

Step 1 Consider all the situations when Int P C P(n,w)

This occurs iff Int P is part of Py(n) ,, but not Pyx-1) .. This is equivalent to the
following:

Condition I: n is the minimal number satisfying:

(1) A, is a boundary ray of P;

(2) trim(w) is a subsequence of A(™).

Let us reformulate these conditions. Introduce the following notation. For a word
w set M (w) to be the minimal number such that trim(w) is a subsequence of A(M (%)),
For a word w, w # {R},{L}, we also write w = lw’, where [ is the leftmost ray of w.

Let us split our consideration into two cases:

A) I = A\, (meaning that trim(w) is non-empty);

B)trim(w) is empty or [ # A,

Case A). The combination Condition I+Case A) is equivalent to the following
combination:

A) (i.e.,, = A,), and

Al) M(w) =n, and

A2) ), is a boundary ray of P.

It follows that given a boundary ray r of P different from Ap, such an r is not
M) w-admissible: the admissibility would mean that the word rw is a subsequence
of A (see Remark 6.2.2)); since 7 # A, rw is also a subsequence of A"~V which
implies M (w) < n, contradiction.

Thus, in this case we have P(n,w) =Int PU A,.
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Case B)
Let us give an equivalent reformulation of the combination.

Lemma 6.2.4. — The combination of conditions I and case B) is equivalent to the
following combination:

B) and

B1) A, is a boundary strip of P, and

B2) M(\,w) =n, and

B3) If trim(w) is non-empty, then | is not a boundary ray of P, and, finally,

B4) M(rw) > n for any boundary ray v of P.

Proof. — Let us first derive B1)-B4) from Condition I and B):

B1) is just the condition (1);

B2): (2) and B) imply M (A,w) < n. If M(A,w) < n, then n is not the minimal
number satisfying (1) and (2);

Violation of B3) implies that n — 1 satisfies (1) and (2) — contradiction.
Violation of B4) implies that M (rw) < n; since the number M (rw) satisfies (1) and
(2), we have a contradiction.

Let us now derive Condition I from B) and B1)-B4).

B1,B2 imply that n satisfies (1) and (2). Suppose n is not minimal, i.e there exists
p < n such that )\, is a boundary ray of P and M(w) < p. B3 implies that ), is
different from the leftmost ray of w. Therefore, M (A,w) < p, which is prohibited by
B4. O

Let us now introduce one more condition B5.

Let P,_; be (a unique) a-strip which is adjacent to both A, and A,_1. Let P, be
the other a-strip adjacent to A,.

The condition B5 is as follows:

B5)P = P..

Let us prove that

Lemma 6.2.5. — The combination of conditions I and case B is equivalent to the
combination B, B2, B5.

Proof. — Let us first prove that B,B1-B4 imply B5. Since A, is a boundary ray of P,
the only alternative to B5 is P = P,_;. Then \,_; is a boundary ray of P and
M(Ap—1w) < n —1 which contradicts to B4.

Let us prove that B, B2, B5 imply B1, B3, B4.

B1: By B5 P, = P, and A, is a boundary ray of P,;

B3,B4: B2 implies that for all p € [M(w);n — 1], Ap # An. This implies that P, is
not adjacent to any of A, with p € [M(w);n — 1] Indeed, suppose P, is adjacent to
such a A,. Consider the graph I' whose vertices are strips and and whose edges are
rays. We have two non-intersecting paths between P,_; and P,: one of them is A,
we also have a path between P,_; and P, in the connected graph composed of the
edges Ap—1An—2, ', Ap, Which contradicts to I" being a tree.
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The just proven statement implies B3 and
B4’) M(rw) > n for every boundary ray of P = P, which differs from A(™).
Finally, B2) and B4’) imply B4), which finishes the proof. |

Finally, we conclude from B4’ that in the situation Condition 1+B we have:
P(n,w) =Int PU A,.

Step 2 Let us now examine the case (call it case C) when P(n,w) is a non-empty
union of boundary rays of P. Since Py(n-1) 4y C Py(m) 4, this is equivalent to Py(n-1) 4,
being a proper (in particular, non-empty) subset of Py (n) .w- As follows from definitions,
this is equivalent to:

i’) there is a A(»~1) 1-admissible ray of P;

ii’) There exists a boundary ray r of P such that r is A\("™), w-admissible, but not
A1) w-admissible.

By Remark 6.2.2, the condition i') is equivalent to:

i") there exists a boundary ray r of P such that either r is the leftmost ray of w
and M(w) <n —1, or r is not the leftmost ray of w and M(rw) < n — 1.

In any case, i') implies that M(w) <n —1.

Also by Remark 6.2.2, the condition ii’) is equivalent to the following one

ii"”) There exists a boundary ray r of P such that either

a) r is not the leftmost ray of w and M (rw) = n;

or

b) r is the leftmost ray of w and M(w) = n.

The case b) contradicts to i’), which implies M (w) < n — 1.

The condition a) implies 7 = A\, and hence ) is one and the only ray in Pyx) ,,-

We thus can reformulate:

The case C occurs iff

i’) holds and

ii-a) A, is a boundary ray of P;

ii-B) Ay, is not the leftmost ray of w;

ii~y) M(Apw) = n.

In the case C we have P(n,w) = \".

From ii-y we conclude that

(161) Ap # Ap for all p € [M(w);n —1].
The condition i’ is equivalent to
(162) dp € [M(w),n—1] : A, is adjacent to P.

Let us show that P = P,,_;:

Indeed, by ii-a, the only alternative is P = P,. In this case, analogously to the
proof of B5=-B4, the property (161) implies that P, is not adjacent to any of A, with
p € [M(w);n — 1], and that contradicts (162).

Thus, we have the following condition which is equivalent to i’ and ii’ (the proof
of the converse is trivial):
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Cl) P = P,_1; A, is not the leftmost ray of w and M(\,w) = n.

In this case P(n,w) = \,.

Let us summarize our findings. Introduce the following notation. Let W2, ¢, be the
set of all words w in W, such that the leftmost ray of w is not A, and M(A,w) = n.
Let W7 ighe De the similar thing.

We then have the following three cases when the set P(n,w) is non-empty:

— Conditions A, Al, A2 is satisfied. Equivalently, the following conditions are the
case:

al) P=P,_; or P =P,

a2) w = Ayu, where u € Wy ¢ if Ay € Lrignt, and u € W gt if An € Plett-

In this situation P(n,w) = Int PU A,.

— B,B2,B5 are satisfied. Equivalently: P = P, ; w € W5 1. if A, € Lrignt, and
w € W oni if An € Liere. Then P(n, w) = Int P, U Ap.

— C1 is satisfied. Equivalently:

bl) P =P, y;

b2) w € W2 o if An € Lrignt, and w € W 1y i Ay € L.

In this situation, we have P(n,w) = A,.

6.2.11. Description of % . — In particular, we see that the sheaf &, & =
F"®X /Fn~1®¥ is supported on the union Int P,_; U A, U Int P,.
Let P} := Int P, U \,. We will now describe the restriction of &, onto P;.
Suppose that A\, € L. We then have

G.pixc = @ (Sw*Ag*/_@S/\nw*Agf)@ EB S‘”*Agj_'

wEWR Light wEWR g
«
For w € WZ .1, we denote

P, -
By =Sy * AR ® Sxw x AL
«
for w € W7 ., we set
Pl
Ay =Sy + AKT.
so that we can rewrite

g9.= @ Bre P A

a «
wewn,right wewn,leﬁ

In the case A, € £rignt, change all signs and all orientations: we have

9. @ Bre @ A,

a a
wewn,left wewn,right

where for w € W7 | ¢, we denote

P! -
By = S'w * Ag/-’- 52 S)\nw * Agl )
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[e7
for w € W2 ope, we set

AL =8, « AK".
(2) Let P/_; be the union of the interior of P,_; and A,.
We then have in the case A\, € Llegi:

P,_ P_
Golexe= @ Boe D AT

weEWS wEW?

n,right n,left
where for w € W2 ., we set

/

- - K

By" ! = Sy * Afn @ S)\nw * Ap;jll;
[ed
for w € W7 ¢ we set
P._
Ayt = Sy x AST

If A, € Lright, then one has to change all the directions and all the signs:

P! _ Pl _
Gulr_xe= @D B e D A5

o «@
wEWD |0 weEWR ioht

o4
where for w € W7, we set

P K K-
Bwn = S‘w * A)\n+ D S/\nw * AP’r,z—l;

o
for w e W2 1 We set

P _ K—
ADt = 5, A

Analyzing the gluing maps, we see that

P; P, _
Av [a.xc = A" A xC
as sub-sheaves of &, |, xc and similarly for B,,. Therefore, we have well defined sub-
sheaves A, By, of §,: A, is defined by the conditions:
P;
Aylpixc = Au';
P,
Aw‘P,’l_GC = Ay y
and similarly for B,,.
Let us stress that By |t P,_;ur,ulnt P, 1S 1ot isomorphic to the direct sum of .S, *
K+ K—
Atre P_yurnung P, A0 Sx,w * Afnt P _yUr,UInt P,
We have in the case A\, € Llegi:

(163) 9,= @ B.o P Ay

[ a
wewn,right wewn,left

if Ap, € Liegs, then we have:

(164) 9,= @ B.o P A
“’sz,len wewcn!,right
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6.2.12. Reduction of the orthogonality property. — As was explained in Sec
6.2.9, the map igx factors as Z,—x, sex}|—2] = F1®¥ — ®X.

It therefore suffices to prove that A,, B, belong to J'i?z, where ¥ = Int P,,_; U
An UInt P, and that and Cone(Z(,—x, scx}|—2] — F'®¥) € L&X. As was explained
in Sec 6.2.8, the sheaf F1®¥X is supported on ¥’ := Int P, N A\; N Int P,, so that it
suffices to show that

Cone(Zz—x,,sck} (2] = F'®%)|zixc € Lgv.

We do it in the rest of the section.

6.2.13. Conventions. — As 2z : X — C identifies ¥ with a subset of C, we will
suppress the map z from our notation.

Suppose that the ray A, is directed to the right so that A, = é(\,) + Rso.€; the
case of the opposite direction is similar.

Assume the situation is as on Figure 2, namely, we assume that P,,_; is above A\,
and P, is below \,. The argument for the opposite situation is similar.

Define

U:={é(\) +ze“ +ye ™€ X : z,y € R and = > 0};
V= {é(\) + e +ye " * € X : z,y € R and z < 0}.
6.2.14. Orthogonality of A,. — Because of the assumptions above, we have w €
Wiien and
Ay =8y * AR,
where

K—
AP; =Z{(z,s):zEP,j;s—zEK}'
We have a short exact sequence:

(165) 0 — Sy * Afrp — Auw — Su * Afrp — 0,
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where A{fi := Z(s,2)|2€U;stze K} and similarly for A{fr:]tpi.

(Note that in the case A, € Liet We need to consider a sequence analogous to (165)
with AK~ instead of AX+.)

The problem is thus reduced to proving that

(166) Suw*Afop, SwxAfsy € LE67.

Now let us use the following consideration: if j : U x C — ¥ x C is an open inclusion
and if F € 18, then iF € &~ because RHom(5F;G) 2 RHom(F; G|yxc). In
application to the situation at hand, this allows us to reduce (166) to proving

(167) Sw * Agnplv € 16V
and
(168) Sw*Ay|p, € L&

which we are going to do using Proposition 5.2.1.

PROOF OF (167). Denote F' := Sy, * Ay p, lu. We have F' = Zg, where S = {(z,s) :
zeUNP,,s—z€é(w)+ K}

Next, U = {&(\n)+ze'*+ye~ |z > 0;y € I}, where I is a generalized open interval
containing 0, so that U is a generalized strip and we can apply Proposition 5.2.1.

We have U N P, = {é(\,) + ze*® + ye~i®|z > 0;y > 0;y € I}.

Let us now check that F' satisfies all the assumptions of Prop. 5.2.1, which will
show that F € 1§V,

Namely, we need to show: a) the map Z,, * F — Zg * F' = F, induced by the
embedding 0 € r,, is an isomorphism,

b) RPy F = 0;

¢) RP_\F =0.

PROOF OF a) is easy: the word w contains at least one letter, hence S, is a
convolution of > 1 sheaves of the type Z(,catkx}, @ € C. But the map 8 : Z,, *
Zi{sca+K} S Zo * Z{sca+K}, induced by the inclusion 0 € r,, is an isomorphism.

PROOF OF b) It suffices to check that (RP,F); = 0 for every point t € C. We
have (R*P.. F); = H:(P_:lt N S;Z). Denote W; := P_‘flt N S. The space W; consists
of all points (z,s), where z e UNP); s+ 2 € K; s — 2z = t. Since s = z + t, we can
exclude s: the space W; gets identified with a closed subset W, C U consisting of all
points z € U N P, such that 2z + ¢t € é(w) + K. Let us write é(w) — t — 2é(\,) =
2(xe*™ 4 yoe ™). We then see that W/ consists of all points &(\,) + ze'* + ye™**,
where £ > 0;y > 0;y € I;z > xo;y > yo. It is now easy to see that for all zg,yo, we
have H?(W;,Z) = 0.

PROOF OF c) Similar to above, we need to show that H?(V;;Z) = 0, where V; =
P-'tNS, forallt € C. If t ¢ é(w) + K, V; = @. Otherwise, V; gets identified with
UNP, i.e., the set of all points (z,y) : £ > 0;y > 0;y € I. The statement now follows.

PROOF OF (168). Set Gy := Sy * Ayp,. We have

VNP, ={é(\n) + ze* + ye |z < 0;y € I;y > 0}.
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o

F1cUurg 3. Proof of (167), part b).

In particular, V N P, C Int P,. Similar to above, it suffices to show that G :=
Gilmtp.xc € €™ P Since Int P, is a generalized strip, we can apply Proposi-
tion 5.2.1. Let us check the assumptions of this Proposition.

We have G = Z7, where T' C Int P, X C consists of all points (z,s), where z =
éAp) +xe +ye ' 2 <0,y<0;yel; s—z€é(w)+ K.

a) We see that the natural map Z, * G — Zy * G = G is clearly an isomorphism.

b)RP;1G|; = 0 for all ¢. This is equivalent to H? (W, Z) = 0, where W; = P;'tNT.
Similar to above, the set W/ gets identified with the set of all (z,y), where < 0;
y<0;y€l;x>x0;y > yo for some numbers g, yo, the statement follows.

¢) We need to check that H®(V/,Z) = 0, where V/ = P~'tNT. We see that V/ = @
for all t ¢ é(w) + K. Otherwise, V; gets identified with T

6.2.15. Orthogonality of B,,. — Let U,V be the same subsets of 2(X) as above.
We see that 2(X)\U =V = V; U Vs, where Vi C z(Int P,), Vo C z(Int P,_1).
For any locally closed subset C C ¥ we set Bo := By, ® Zexe, € D(Z x Cy). We
then have a distinguished triangle
~3 By © By, — By, = By .

Similarly to Section 6.2.14, it suffices to prove that

(169) Bl := Bylyxc € * €Y;
(170) Bv,|mt P, xC € e
(171) Byt P,y xc € L€ 1

It is clear that U, Vj,and V5, are generalized strips so that we can apply Prop. 5.2.1.
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Proof of (169) Let Py := U N P,_1; Py := U N P, so that P;,P, C U are closed
subsets and P; NPy = A,.
As above, we have
U = {é(M\n) + 2™ + ye ™|z > 0;y € I},

where I C R is a generalized open interval containing 0. The subset P; is given
by y > 0, and P, by y < 0.
We have identifications

By = By|p,xc = Su * AL T @ Sxw x Ap
By := By|p,xc = Sw x AR & Sx,w x AR
‘Whence induced identifications
(172) Bila.xc = Su * AXT @ Sy 0 x AL

(173) Balauxc = Su * AXT @ Sy x AT
The gluing map
Bll)\nxC - leAnxC

is induced by Fg’}{lp* and equals

' =Id +n € End(S,, * Af\{: @ Sx,w * Afr\"n_)7
where the only non-zero component of n is
ntT Sy x AR = Sy x Sx, x AT = Sxw x AX
is defined by means of the map 1//{2 from (47).

Let i, : P — U, k = 1,2 and ig : A\, — U Dbe closed embeddings. Denote
by ¢1 : i1B1 — i01(Sw *Af\{: @D Sx,w* Af\(n_) the natural isomorphism coming from the
identification (172). Similarly, we have a map ¢ : 2181 — 01(Sw *Af:' D®Sx,w *Af\{n ~),
coming from (173). We can rewrite the above consideration in terms of the following
short exact sequence of sheaves of abelian groups
(174) 0 — By — i1B1 @ in1By — i0(Sw * AL @ Saw x AY ) — 0.

Where the left arrow is induced by the direct sum of the obvious restriction maps
and the right arrow is —I'ty @ t2. Let us denote the components of this map

—1d s igrSu * AT — igiSy * AXT;
—v i Sy * Ai{: — To1Sa,w * Afn—;
—r1 1 inSaw * AT = d0Saw * AL
Ty Sy * A§2+ — §01 Sy * Af\{:;
Ty 928K, w * Ag; — i01S\, w * Afn_.
Consider the complex B” composed of the 2 last terms of the sequence (174),

which is quasi-isomorphic to By;. This complex has a filtration by the following sub-
complexes:
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F1B" is as follows:
11y * A/({;f = iSx,w * Aff;_ — 0;
F2B" is as follows:
i01Sw * AKY @ ip Sy * AR — i01(Sy ¥ AKT @ 55,0 x AKT) — 0.

We finally set F3B" = B". The associated graded quotients are as follows: F2/F?!
equals Coner; [—1], which is quasi-isomorphic to Sy, * AF Py
F3/F? equals
1S, w * Agl_ @ i1 Sx, w * Ag;
We will need one more exact sequence. We have subsheaves (direct summands)
Sx,w* A" C B1;  Sx,w*Af, C B

Since the map I' induces identity on S ., * Aﬁ{" ~, the two subsheaves glue into a
subsheaf Sy, ., * AIU< T C By. It is clear that we have a short exact sequence:

(175) 0= Sx,w*AS™ = By = inSy x AT — 0.

Let us now check the conditions of Prop 5.2.1. The isomorphicity of the map
Zy,, * By; — By can be checked directly.

Let us now show that RPy By, = 0. Because of the exact sequence (175), it suffices
to prove that RP,S,, * Agj = 0 and RP4 Sy, v * AIU{_ = 0. This can be checked
pointwise in a way similar to the previous subsection.

Let us now check that RP_Byj; = 0. It suffices to show that RP_;, when applied
to all associated graded quotients of the filtration F on B”, produces zero. The latter
can be done pointwise in a way similar to the previous sections.

Proof of (170), (171) is very similar to the previous subsection.

6.2.16. Orthogonality of Cone(Zx,}xx[—2] — F'®¥). — The aim of this sub-
section is to prove that

(176) Cone(Zxoyxx[~2] — F'&%) € L&

We will freely use the notation and the results from Section 6.2.8, 6.2.9. As was
mentioned above, Cone(Zx,}xx[—2] — F'®K) is supported on ¥ x C, where ¥ =
Int Py U A; UInt P,. The restriction Cone(Zx,}xk[—2] = F'®¥)|sxc is isomorphic
to the Cone of the composition arrow in (160). Denote the cone of the left arrow in
(160) by I'; and the cone of the right arrow by A. Observe that I'; = joI', where
' = Cone(tr, & tr); T € D(Int Py x C). The problem now reduces to showing that
Felt@g™ ™ and A et@”.

Denote Ay, := Cokerig; Bgr := Cokerig. Observe that Ay, is of the form A, with
w = L, and Bg is of the form B,, with w = R, where A,,, B,, are as defined in Sec
6.2.11. It is also clear that A = A; @ Bgr. As follows from the previous two subsections,
Ap,Bg € LE?E, hence, same is true for A. Let us now show that I' € LghntPo,

By Prop.5.2.1, it suffices to check statements a),b),c) below:
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FIGURE 4. Proof of (176), Step b-i)

a) I'* Z{seceion.,3 — I is an isomorphism: it suffices to check that a similar map
applied to each of Zyx, x k[—2], SL * AIII{J p,» and Sk * AIKnt_ p, is an isomorphism, which
is straightforward.

b) RP.,T' = 0. It is enough to check RP§, =0, k = 1,2, where

ﬁl = Sg * Af;lt Py, = Z{(z,s):zelnt Py, s—z€—x9+K}>s
G, = Cone(Zxyxk[—2] — S * Af, p,) and where

+ -
SL ¥ AInt Py — Z{(z,s):zGInt Py, s+z€xo+K}-

b-i) RP;17, = 0. Indeed, by the base change, let us pass to the fiber of P,
over t € C and calculate RT'.(Zw,) where W7 = {(z,s) e C: z €e Int Py, s — z €
—xo + K z+ s = t}. Eliminating s makes W; = {z € C: z € Int P, z € 22X — K}.
For different values of ¢ this set is sketched on fig. 4.

Thus, W, is either empty or homeomorphic to a closed half-plane, so the result
follows.

b-ii) RP;1%, = 0. Indeed, by the base change, let us pass to the fiber of P, over
t € C and calculate RT'(Zw;)[-2] — RT.(Zw,), where W = {(2,5) € C: 2z =
x, S EK z2+s=1t}, Wao={(2,8) € C: z€IntPy,s+2z€x0+K 2+ s =t}
Eliminating s makes

ift—xpe K: Wi={xo} Wa={2€C:z€lIntPFy}
otherwise: Wi =0 Wy =0

and the map RI(Zw;)[~2] — RI'¢(Zw,) is the obvious quasi-isomorphism.

¢) RP_,I' = 0. This can be shown similarly to RP.,I" = 0.
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IDENTIFICATION OF &% AND U¥

We are going to construct an identification as in (55). Namely, we will construct a
map
Iq/q:. : \IJK — <I>K

such that

(177) ie = lyoly,

where ip : RgiZx[—2] — ®K is the map (53) and iy : RgiZx[—2] — V¥ is the map
(60).

The goal of this section is to give an explicit description of I'ye. This can be done as
follows. Let P be a closed a-strip. Let II be a closed (—a)-strip such that PNII # @.
We then have identifications

wop|mnpyxc : AFT xSy ® AXT % S_|mnpyxc = (2F | pxc)lmnpyxc = 2X|mnp)xc

vort|@npyxc : AT xSy @ AX™ % S_|(mnpyxc = (¥ |nxc)@mnpyxc = ¥¥|mnp)xc
meaning that the restriction Iq/q>|(nm P)xC can be rendered as an automorphism Jip
of
AR+ xS, & AKX~ % S_|(npyxc in the abelian category of sheaves on (IIN P) x C, so
that we have:

(178) Iys|(mnpyxc = top|mnp)xcInplgllmnp)xc:

We are now motivated for the next subsection.

7.1. Endomorphisms of A¥+ xS, & A%~ % S_| prmxc

We will do the study in a slightly more general context. Let Y be a locally closed
connected subset of C. For a ¢ € C, set

A = {(z,s))stzecc+K}CY xC.

Let W be sets; set W := WT UW~. Let ¢y : W — C be a function. Let w € W,.
Set A, = AY .. For w € W_ we set A, := Ag (- Define the following sheaves

c(w)”
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onY xC:
SW = @ ZAw'
wew
Letc; : W; » C; W, = W} UW,,i=1,2 cw, : W; — C; and let us study a
group Homy xc(Sw,; Sw,)-
We have
(179) Homch(Swl;Swz) :-> ]:[ Homch(ZAwl;Swz).
w; EW;

Let us focus on Homy xc(Za,,, ; Sw,). We have an embedding Sw, < [[,,,ew, Za
which induces an embedding

L Homec(ZAwl ) SWz) — Homch(ZAwl; H Zsz)
w2 EW>

w2

(180) = [ Homyxc(Za,,;Za,,)-
waEW3

Let us now compute
HonlY><(C(ZAw1 ) Zsz ) = HO(sz; A‘wz \Aw1 )

We have a homeomorphism A4,, = Y x K so that A,, is connected and
H%(Ay,; Aw,\Aw,) is zero unless A,,\A,, is empty, in which case it equals Z.
In other words, we have an isomorphism €y,w, : Z = Homch(ZAwl;Zsz) if
Ay, C Ay, ; otherwise, Homec(ZAwl;Zsz) = 0. Set ew,wy = Ewqw, (1)-
Every element
Vv E H Homec(ZAwl;Zsz)
w2 €W,

E V’wl w2 e’wl w2
w2

where the sum is taken over all wp such that A,, C A,, and v,., are arbitrary
integers.

can be uniquely written as

Claim 15. — The element v lies in the image of (180) iff for every compact subset
LCAy,:

(181) there are only finitely many wy such that vy, =0 and Ay, N L #0.

Proof. — We will use the following notation. For every w € W; or w € Wy, let us
denote by 1,, € I'(Y x C;Z4, ) the canonical section, such that for every y € Y x C,
the stalk (1,), generates the group (Z4, )y, which is equal to Z if y € A,, and to zero
otherwise.

We have

V(lw) = Y Nugwlu, €TV xC [ Za,,)

waEWy waEW,
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Let us now suppose that v lies in the image of (180). This implies that the restric-

tion v(1y,)|L €T(L; @ Za,,). Since L is compact, we have an isomorphism
w2 EW2

P r&;za,,) - T @ Za,,)
waEWs w2 €W
Given a section o € I'(L; €@ Za,,), denote by oy, € I'(L;Z4,, ) the corresponding
w2 €W
component of 0. We have: o, = 0 for almost all wy € Wa. We have v(1y, )w, =

Tysw, 1w, |L- The element on the RHS does not vanish iff ny,,.,, # 0 and LNA,,, # @,
which implies the statement.

Conversely, let us assume that for any L there only are finitely many wo € W5 such
that ny,w, # 0 and LN A,, # @. It suffices to show that

v(lw,) ET(Y xC; @ Za,,) CTE¥ xC [ Za.,)-
wa EW2 w2 €Wy

Let us choose an open covering of ¥ x C by precompact sets U, (i.e., the
closure L, of each U, in Y x C must be compact). It suffices to show that
v(ly,) € T'(Us; @ Za,,) for each U,. Then it suffices to show that v(1.,) €

wa EW3
[(La; @ Za,,) Infact, v(1y,) €T(Le; [ Za,,), where W; consists of all w,
wa €Wy wa €W
satisfying ny,w, # 0, Ay, N Ls # 0, which is finite, whence the statement. O

As follows from the proof of the Claim, v belongs to the image of (180) iff the
condition (181) is satisfied for a family of compact sets L, whose interiors cover
X x C.

Proposition 7.1.1. — Elements from Homx xc(Sw, ; Sw,) are in 1-to-1 correspondence

with the sums
E Nwywe Cwywa s

w1 EW1,w2€W2, Ay CAw,
satisfying:
there exists a family of compact subsets L, C X x C such that the sets Int L, cover
X x C, and: given a w; € Wy and any L,, there are only finitely many wo € Wy such
that Ny, w, 0 and Ly, N Ay, # 9.

7.1.1. Filtration on Homy xc(Sw,;Sw,). — Lete e K. Let T, : Y xC—->Y x C
be the shift (z,s) — (z,s + ¢). We have T.(A.) C A, for every ¢ € K, whence an
induced map
Te 1 Za, = Tala, = Lr.(a,)-
These maps give rise to a map
Te © SW) i TE!SW1'

It is easy to see that To1.Sw, = Sw;, where W{ = W; and Cw; = Cw, + ¢, so that
Proposition 7.1.1 applies to T¢1Sw, .

SOCIETE MATHEMATIQUE DE FRANCE 2013



94 CHAPTER 7. IDENTIFICATION OF &¥ AND ¥¥

We say that f € F*Homxxc(Sw,;Sw,) if f factors as f = gr. for some g :
TaSw, — Sw,. Using Proposition 7.1.1, one can check that such a g is unique, if
exists.

We write f = f' mod F* if f — f' € F*Hom(Sw,, Sw,)-

We also write f = f/ if f = f/ mod F* for some ¢ € Int K.

Let us prove that the filtration F' is complete in the following sense. Let f, €
Hom(Sw,; Sw,) be a sequence of homomorphisms. Let us call f, a Cauchy sequence
if:

Ve e K AN(e) : Vn,m > N(¢) : fo = f,n mod F*.

We say that f,, converges to f if

Vee K IN(e):VYn> N(e): f = fn mod F*.
Claim 16. — FEvery Cauchy sequence f, converges to a unique limit f.

Proof. — Let us first construct f. Decompose f, = thwzew( Sr)wiws€wywy- LEL Y €
X xC and let n,m > N(g). Since f,, — fm passes through 7., we deduce that (f5)w,w, —
(fm)wiw, 7 0 only if Ay, C Tc Ay, . For every wy, wy there exists €44, such that this
condition is violated, meaning that for n,m > N(€w,w,), (fr)wiws = (Fm)wiws =
Furws:

The data fy,w, define a homomorphism f by virtue of Proposition 7.1.1. If f’ is
another limit, it follows that f — f' = F* for all ¢ which implies fu,w, = f,,,, for all
wy, we, that is f = f'. a

In particular, let ¥ € End(Aw ), v = Id+n and assume that for some k > 0, n* € F*¢
for some € € Int K ,then 7 is invertible, and we can set v ! = Id—n+n? —n3 + ...
(the sequence of partial sums of this series is Cauchy).

We conclude with several Lemmas for the future use.

7.1.2. Lemma on composition. — As above, let P be an a-strip and let II be
a —a-strip. Let Y = II N P and suppose Y is a bounded subset of C, so that the
closure of Y is a parallelog_r%m; let us denote its vertices ABCD so that AC is one
of the two diagonals and AC €| K. It then follows that the closure of P NII equals
A+ KNC — K. Denote ¢ := AC.

Lemma7.1.2. — Let Wi = W5 = @. And let f : Sw, — Sw, and g : Sw, — Sw;.
Then gf =0 mod F? and fg =0 mod F?%.

Proof. — Let fuy,w,€wiwss Jwaw, Ewew, D€ components of f,g.
Let us consider the compositions fu,w,€w,w;Jw;w, €wyw, I order for this compo-
sition to be non-zero, there should be

AW2 C Aw1 C Awl2
Or, for every z € PNII and s € C we should have the following implications:

s—z€cw,(w)+K=>s+z€cy,(w)+K=s—2z€cw,(wy) + K.
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Set ¢ := s — 2 — cw, (w2). The first implication then reads as:
€ K=c¢+2z+cw,(w2) —cw,(w1) €K

or, equivalently, 24 + cw, (w2) — cw, (w1) € K. Similarly, the second implication can
be rewritten as —2C + cw, (w1) — cw,(w3) € K. Adding the two conditions yields
—2¢ + cw, (w2) — cw, (wh) € K; cw, — cw,(w)) € 2¢ + K. This implies that
f‘wlwzew1wzgw§w1ew§w1 : ZA,_‘,/2 - ZA’wg
passes through 75 : Z4 , — T2e1Z4,, , which implies the statement for fg. Proof
2 w2

for gf is similar. |

Let us keep the assumption W; = W;t, Wo = W5 and consider now the case when
X =IIN P is not bounded. Then at least one of the following is true:

i) there is no A € C such that X C A+ K;;

ii) there is no C € C such that X c C' — K.

Lemma 7.1.3. — Let us keep the same notation as in the previous Lemma. In the case
i) we have Hom(Sw,; Sw,) = 0. In the case ii) we have Hom(Sw,; Sw,) = 0.

Proof. — In Case i), given w; € W; and we € Wy, it is impossible that A,, C Ay,,
and similarly for the Case ii). d

7.1.3. Lemma on extension. — Let Y be a locally closed non-empty connected
subset of C. Let Y + K (resp. Y — K) be the arithmetic sum (resp. difference) of Y
and K. Let Y, Y_ be connected locally closed subsets satisfying Y C Yy C Y + K;
Y CY_ CY — K. Let Z be an arbitrary connected locally closed subset C containing
Y.

Lemma 7.1.4. — (1) The restriction maps
Homy, (Sy+; SW{) — Homy(SW1+; SW{);

Homy._(Sy-; Sy+) — Homy (Syy,—; Syy+)

are isomorphisms;
(2) the restriction maps

Homz(SW; ; SW1- ) — Homy(SWZ- ; Swl— )
are isomorphisms.

Proof. — 1) Follows from Proposition 7.1.1: the inclusion A,, C A, , w; € W; occurs
on Y, x C iff it occurs on Y x C, and similar for the inclusion A4,,, C A, on Y_ x C.
(2) Follows from Proposition 7.1.1 in a similar way. a

SOCIETE MATHEMATIQUE DE FRANCE 2013



96 CHAPTER 7. IDENTIFICATION OF &¥ AND ¥

Figure 1
7.1.4. Decomposition Lemma. — Let now Y := £ := ¢ + (0 oo) €' be a ray
which goes to the right. Let a € C. We have natural maps A} Lys — Ly-

-—2c+a.
Ag i Lp; = Lyy v coming from the inclusions of the correspondmg sets.
ct+a

Lemma7.1.5. — Let f : Zy+ — Sw,, 9: Z,- — Sw, be a map of sheaves. Then f
and g can be uniquely factored as f = f'A\F; g=g'\;.

Proof. — Let w € W,. A simple analysis shows that AT < A, is equivalent
to AZy.,, D Ay. Proposition 7.1.1 now implies the factorization of f. The factoriza-
tion of g can be proven similarly. O

7.2. Restriction ®¥ |

As above, let IT be a closed (—a)-strip.
The goal of this subsection is to construct an isomorphism

(182) on : (AK+ *S. @ AE~ S—)ll’IxC Bt (I)Klr[xc.
Denote by

o5 A¥E % Sy lnxe — ®F|nxc

the components.

7.2.1. Notation. — Let us number all a-strips that intersect Il as Py, Ps,..., P,
(there are only finitely many such stripes, Sec 2.3.2) as shown on the picture 1 so that
we number the strips from the left to the right. The strips P; and P, are necessarily
half planes.
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7.2.2. Prescription of ¢I4i|(l'lﬂ Pyyxc- — We have an identification
" |nnp, = (@%|p)lmnp)xc = (AFF %S4 & A%~ % S_)|(mnpy) xc-
This identification gives rise to a map (embedding onto a direct summand):
AR % 8, — @%|(mnp)xc-

We assign ¢ﬁ|(nnp1)xc to be this map.

Remark. In the Section 7.2.3 we will inductively extend this definition to the whole
II x C. Construction of ¢; will be performed in Section 7.2.5. An attempt to construct
¢q starting from a prescribed map on (IIN Py) x C fails.

7.2.3. Extension of ¢;f to IIxC. — For asubset A C C,set A:=(IINA)xCC
IT x C.
Let us define ¢E by constructing maps

+ ., AK+ K
Jx ¢+ AT x84 g, — %Py,
which agree on the intersections:

(183) j]j.l,-]IPkﬂPk_;.l =j]j|PkﬁPk+l'

We have identifications
(184) u AKT xS @ AR« S_|p, — (®¥|poxc)lp. = %P,

coming from the gluing construction of ® .

We have

_ Py Py
k| PunPesy = tht1|PenPeys © Do 1

2741 s as in (44).

We can now prescribe j; in the following form: j;i = ¢ o if where

if cAKT xS |p, - (AFFT xSy @ AKX« S])|p,.

where I

The agreement conditions (183) now read as:
. PyPiy1
(185) l;c‘-+1|PkﬁPk+1 = Fq:;( k+122:_|PknPk+1'

The assignment from the previous subsection means that zf is the identity em-
bedding onto the direct summand. Let us construct the remaining maps i induc-
tively. Suppose ix has been already defined. According to Lemma 7.1.4, the map
l"g’;(P“‘i,*c' |Pnp,,, extends uniquely to Pyt (this the step where the choice of + sign
is crucial). We assign i/, ; to be this map. It is clear that thus defined map iﬁ_,_l
satisfies (185) so that the maps j:+1 give rise to a well defined map ¢}, as we wanted.

Let us denote by if ™ : AKT xSy |p, — AK* x Sy|p; if ™ : AKT xSy |p, —

A= x S_|p,; the components of the map z:
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7.2.4. Estimate. — For k = 2,...,n — 1, denote by &; the diagonal vector of the
parallelogram Py NII such that & € Int K (there is a unique such a diagonal vector).
Let en € Int K be a vector such that e, € e + K for all k.

The following Claim can be now proved by a direct computation.

Claim17. — (1) if* =1 mod F" for allk=1,...,n.
(2) Let Ry C {1,2,...,n—1} consist of all k such that Py N\ Pxy1 goes to the right.
We then have a transform

PyPry1 | AK+ K-
1—‘+— : A *S+|PkﬂPk+1 — A *S—lpkﬁPk+1’

where Pi’“_Pk“ is the corresponding component of Pg’}fk“, which extends uniquely

to P U---UP,. I"f’“_Pk“ is the same as N}{, where £ = Py N Pyy1 from (48).
We then have:

(186) i—=— Y ™% mod Fem
k'€ Rm; k'<k
7.2.5. Construction of ¢;. — The map ¢ is constructed in a fairly similar way

(the major difference is that we need to start the construction from P, and then
continue to the left until we reach P;.
Similar to above, we define ¢ in terms of the restrictions to Pj:

bnlp =tk oy,
where ¢, is the same as above, see (184), and
i A T xS _|p, o AFT xS, @ AKT xS _|p,.
We have the following analogue of Claim 17.
Claim 18. — Let e € Int K be as in Claim 17. We have (1) iy~ =1 mod F*" for
allk=1,...,n.

(2) Let £u C {1,2,...,n— 1} consist of all k such that Py N Px—1 goes to the left.

We then have transform
Py_1Py | AK-— K
I1—+ i\ * S"'Pknpk—l — ART x S+|PkﬂPk‘1

which extends uniquely to Px_1 U ---U Py. We then have:

it = z Ff"_{_“P"' mod F°T,
k'€ fm; k'>k
7.2.6. The map ¢p is an isomorphism. — Now that we have constructed the

maps én|p, from (182), let us prove that they are isomorphisms.
We can write

(187) énlp, = tk 0 inpy,
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where inp, is an endomorpism of AK* x S, @ AKX~ x S_|p, whose components if*

have been constructed above. We will abbreviate ifp, = ix. The problem reduces to
showing invertibility of ix.
Let us use the matrix notation

it ixt AKt xS,
1k = € End 3]
it iy AE— xS N
We have
-t 1 -t
(188) ( ok ) = ( LA
i, i i 1
as follows from Claims 17 and 18.
Lemma 7.1.2 implies that
2
0 it _ igtodf~ 0 _
im0 0 i oip T
i++ i—+
It now follows that X := .’:L_ k] is invertible (Sec 7.1.1).
o %
We can multiply (188) by X ! so as to get:
ikX—l =1Id,

which implies that i, X! and, thereby, 4, is invertible. Furthermore, we get:
1 =it
189 ipl= k
e s=( )

7.3. The maps ¢mn,, ¢, for a pair neighboring strips II; and II,

Consider now the neighboring strips II; and II; and let £ = II; N II,. Let us find
the relation between @ﬁl l¢ and @ﬁzh. Suppose £ goes to the right, fig. 2.
We have a canonical isomorphism

Hm, 1, ¢ (@, xc)le = (@lmyxc)le-

Using the isomorphisms ¢, , ¢r1, as in (182), we get an isomorphism

A1, = ¢, |exc © Hiym, © ¢, |exc :

(190) ARt %8, @ AX~ % S_|4xc = AXT xS, @ AX™ % S_|oxc.
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branch cut

FIGURE 2

Let Py, Py,..., P, be all a-strips which intersect ¢, fig.2. We then have commutative
diagrams

Anm,

AF xS, @ A= %S|, b AS* xS, @ AR %S |, o

i, Py le i, Py e
1Pk 2Py,

AB*T xS, @ AKX« S‘lmPk

which implies that
e . -1 _ .
Amm,lenp, = (imypglenp,) ™" 0 tm, Py lenpy -
These formulas determine A, m,. Let us compute:

i, P, © Am,m,|enp, = i, P lenp

1 — - 1 =+
( i — "TaPy ) O*Al'lll'h‘iﬁp,c = ( e ', P )
e, 1 i 1
Formula (188) yields
-1
. —t
i+— = o
zHng 1 _anpk 1
Therefore,

5 1 —i=t 1 i=T
An1n2lgnpk = < — T2 Py ) X ( e II; Py ) =

-t 1 i 1

T2 Py I, P

._+ . .—+
(191) - 1 ‘m P T U, Py
O\ i, — i 1
11, Py M2 Py NPy
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because ifi_p, oif'p, =0 and igfp oifi p, =0 by Lemma 7.1.2.
Let us, cf. fig.2, number all the a-strips that meet II; or Ila:

I1 11 I1 .
po PN .. P P, P,..., Py
11 II I1
plz pf2 ..., P2 P, P,... P,

Let us also set PHl = PH2 := P;. Lemma 17 yields,

/
T In
=__Z PPy PPt
ZHIPk T T'fm+1

I<k m<0
! IT
- —Z PPy1 _ PI2p72
anpk = T T mt1
I<k m<0

where only those terms are included into the sums, for which the intersection ray of
the corresponding a-strips goes to the right. Hence,

/

- P“2P plipTL
P, ~ P, = Z ZP’" m

m<0 m<0

Let £ := II; N II; be of the form {&(¢) + re~** r > 0}.
It now follows that

- b P lp
(192) Zﬁlpk —iﬁzpk‘[mpk = F b

Thus:
- 1 *
Al'lll‘lg |£nP,c = _Fponl P, 1 *

This means that the same is true for A, .
Let us write A, in the matrix form.

++ A=+ K+ K+
Al'hl'[g AH1H2 A * S+ A * S+
Anlnz = . 3] - 55}
Ai-— AK= % S§_ AK=xS_
Al'lll'lz n1n2 4 L

Lemma 7.1.3 implies that fiﬁfm = 0. Indeed, the corresponding map is defined on
an unbounded set IT; N II,; since the intersection ray goes to the right, we are under
the conditions of the case i) of that Lemma.

Let us summarize our findings.

Claim 19. — Let 11,115 be neighboring strips and ¢ = II; N IIy goes to the right.
Assume that I1; is above II5. Then
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1) the map
AK+ * S+ AK+ * S+
Anlnz . ® ®
A= xS_ AK— % S_

L

3 A+
11
Am,m, = ( v

is of the form

(2) Aty = Id ; Ag, = Id ; Ay,

_ Rt
-T2,

14

0 )
A, Anm, )

P‘; where Py is the leftmost

a-strip that meets both II; and I1; and POrIl is the rightmost a-strip that meets I1y but

not Ils.

Similar result holds true in the case when the intersection ray II; NII; goes to the

left (proof is omitted).

Claim 20. — Let I1;, 115 be neighboring strips and £ = I1; NI, goes to the left. Assume

that I1; is below Ily. Then

1) the map

AK+ * S+ AK+ * S+

Amm, ® ®
A= % S_ AK=— % S_
¢ ¢
is of the form
A++ Ai—+
= (A ),
0 An,
P p;

(2) fiﬁfm = Id; Aﬁ:ng = Id; Aﬁ:}h = -I'_% °" where Py is the rightmost a-strip
that meets both I1; and IIy and Pgll is the leftmost a-strip that meets II; but not Il,.

7.3.1. Identifications. — Let £ =1II; NII,, £ € £~ °.

In the notation of Section 3.10.2, we can identify S = Sa-1(0); Buw : Sy S SA-1(w)
for every w € W. For a word w = £, ---£1L or w = £, ---£1 R, set |w| := n (we set
L] = |R| =0). ~

Let Cy, := (—l)lwle : Sy — SA—I(w).

Let us define identifications

(193)

B:,Cy:51 — Sy

where

B:tlé'w = By; Ci|§w = Cly.
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We can conclude from 2)s of Claims 19, 20 that
(194) Ap,m, = CTITo™C,

where 1—\1‘11’}(1'12 is as in (58).

7.4. The isomorphism Iyg : ¥¥ — ®K

Using the above developed results, we will construct a map Iyg : ¥¥ — &% which
satisfies (177) (recall that such a map is unique). Equivalently, for each (—a)-strip II,
let us specify maps

Iyem : V¥ ke — ®|nxc
which agree on intersections: if IT; N II; = ¢ # @, then we should have:
(195) Iye m, lexc = Tve,m, |exc.
Let us now reformulate condition (177).

Let Py be an « strip and Il be a —a-strip such that xo € Po N IIj (these strips
are unique).

Denote gé{ = Zxox K cf.(29).

Let

Zg) : g(l){ - ¢'I(l(].-.[ol"ll:’()))(‘C;
Z?Il : gé{ - \IJKl(noﬁPo)XC
be the restrictions of ig,%y. Since & {,{ is supported on (IIy N Py) x C, the condition
(177) is equivalent to:
(196) T'ya|monpo)xciv = ig-
We have identifications
i At « §+ &) AK= g—'HxC — \I/Klnxc
¢ AXT xS, @ AFT % S_|nwe = ¥ |nxc.

Here i is defined similarly to (184) but for Si, ¥¥ and (—a)-strips instead of S,
®K and o-strips; and ¢y is as in (182).

One can now equivalently look for I'ys i in the form:

(197) Iyen = ¢nUniy’,
where
Un: AXH « S, @ AKX~ % §_|nwe = ABT %S, @ A~ % S_|nxc

is to be calculated.
Since II satisfies both i) and ii) in Lemma 7.1.3, we have

Homppxc(AK® + So; AXF 5 S2) = 0.
Thus, we must have:
(198) Un(AK® % 8§1) c AKE 5 8,
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Using (190) and (57), we rewrite the gluing condition (195) as follows:
(199) Un,lexc = Amym, Un, lexcT g

Let us now rewrite the condition (196) (from now on all our maps are restricted
onto (IIo N Py) x C, unless otherwise specified). Let

v:I§ = AX* xS @ AKX~ Sp

be the map given by the left arrow in (52). Let vt : F& — AK+T xS v~ : FE
AK~ % S; be the components of v.
We have the following obvious embeddings:

Ip:ABEY S 5 AKY « 8, @ AK— % S_; Ip:A¥ xS > AK T« S, @ AK— % 5_;
I AX %S, - AKX+ 5§, @ AK~ %8, Tp:AX xS > AKT x5, o AKX~ xS .

The formula (187) can now be rewritten as

P11, = LPy i, Py
We, therefore, can split
(200) ig = tpo(IL ® IR)V = dn,igsp,(IL @ Ir)v.
Next, we have
iy = in, (I, ® Ip)v.
Combining (197) and (200), we have
Iye,m,iy = ¢ﬁ})UHO(iL ® Ig)v;

so that the condition (196) is equivalent to the condition
(201)
Un, (I ® Ir)v = igtp, (It ® Ir)v asmaps Fg — AF* xS, @ AKX~ xS _|myuc .

Denote
imep, (I ® Ir)v =: Io.

Let us make this condition (201) more specific.

Lemma7.4.1. — Let 4 : F& — (AT x S, @ AKX~ % S_)[2] be an arbitrary map
in D((TIp N Py) x C). There exist unique maps

j+ ;AK+*SL—>AK+*S+;

g AET % Sp - AXT xS
such that

J= od I
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Proof. — We have identifications:

~

B : RHomc(Zg;ig, (AKXt xS, @ AK~x5_)) 5

2 RHomc(Zg; ik, (AXT+S, @AK~+S_)[2]) S RHom(T§ ; (AX xS, @AK~xS_)[2)),

where iy, : C — (IIp N Py) x C is the inclusion s — (xg,s). Consider two more
identifications

ot : RHom(AX* % Sp; A+ % 81) 5 RHom (i AR « Spi LAY + Sy)
= RHom(Zg; i A%t % S);
o~ : RHom(AX~ x Sp; AK= % Sg) 5 RHom(i;olAK_ * SL;z';OlAK‘ *S_)
= RHom(Zg; iy A%~ % S_);
and let o = ot ® a~. Then we have a chain of identifications
RHom(AX* x Sp; A%+ x S, ) ® RHom(AX~ * Sp; A=+ 5_)
% RHomg (Zk; i, (AR %S4 @ A~ % 5_))
2, RHom(TK; (AK+ % S, @ AK— x S_)[2)).
Let
v : RHom(AX* % Sp; A%* % S, ) @ RHom(AK~ % Sp; A%~ % S_)
— RHom(F¢; (AK* % S, @ AKX~ % S_)[2))

be given by the pre-composition with v. One can check that y8 = o so that v is an
isomorphism.
The statement now follows. O

Let I(jt denote the maps obtained from I by means of Lemma 7.4.1. Observe that
the maps I¥ uniquely extend from (IIy N Pg) x C onto ITy x C. Denote the resulting
extensions by the symbol I* : AX* x Sp gl xc — AX¥F % S, @ AKX~ % S_|myxc.

Rewrite the condition (201) in the form:

UHo(fL @ iR)V = (Ia- (&) IO_)I/
It now follows that the condition (201) (and thus also (177)) will be satisfied iff
(202) Untolax+xs, =115 Unplax-vs, =17

Indeed, the implication (202) = (201) is obvious, and (201) = (202) follows from
(198).
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7.4.1. Estimate. — Let us prove the following estimates:

Claim 21. — We have
(203) It=1I; I =Ig

Let us bring the current notation into correspondence with that in Claims 17, 18.
Set II := IIy. Let us denote all the a-strips intersecting II by P, ..., P, in the order
from the left to the right, in the same way as in Claims 17, 18. Suppose that Py = P4
so that irg,p, = i in the notation of Claims 17, 18.

Let us now write iﬁipo = iy ' = Id +ao, where a is an endomorhipsm of AK* «
S, ®AK~xS_. Let a:= ao(IL @ Ir)v. Our statement now reads as a* = 0; a~ = 0.

According to (189), we have

0 -t
ag =
=( %)
so that

(204) a=—(i{ Iy @i TIr)v.
Let us now examine the map i I v. We have

-1 AKF K- -
it I, AR % Splmenpoxe = AXT xS |merpoxe = P Zag,w)
wEWS

right

where, as in (37), (38), G(K,w) := {(z,8)|]s —z € K + é(w)} C (TIp NPy) x C.
As above, let Wi, C W3, consists of all w such that &(K,w) C &(X,L),
where
G(K,L) = {(z,s)|s + z(z) — 2(x0) € K} C (IIo N Py) x C.

Let Ey, : Zyx,1) — Zga(k,w) be the corresponding map of sheaves. We then have

itIL= Y nyB.,

!
wEWright

where for each (z,s) € &(K, L) there are only finitely many w such that n,, # 0 and
(2,8) € G(K,w).

Let A be a unique vertex of the parallelogram IToNPq such that IIgNPy C A+ K.
The condition @(K,w) C &(K,L) is then equivalent to 24 — xo + é(w) € K, or
é(w) + xo = —2(A — x¢) + €, where €, € K. Observe that xo — A € Int K because
xo € IntIIp N Py. It now follows that for each w € W, ., the map Eyvt : Fy —
Zy(k,w) factors as

vT o, — Fy
Fo— A" * Sp = Zuk,R) = L{(z,s)|s—2(c)+2AcK} —

— ZLi{(z,5)|s—2(c)+2A—eweK} = La(K w)>
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where all the arrows except the leftmost one are induced by the closed embeddings of
the corresponding closed sets. It is easy to check that the sum > n,F,, gives rise to
a well-defined map

J: Lia,o)ls-s@yt2aeky = D QK w)

(e}
wGWright

Let 6 := 2A. We have Z{(z,s)}s-—z+2AeK} = Tg*Zg(K,R). Let 75 : Zg(K,R) —
Ts5«Zgk,r) be the map induced by the closed embedding of the corresponding closed
sets. We then have a factorization

'i',:_ILI/ =Jrsv~,

which implies that (i;_I Lv)T = J7s = 0. Similarly, one can check that (i;+I RV)T =
0, which, by virtue of (204), that a =0. O

7.5. Inductive construction of the maps Up.

We will now construct the maps Uy satisfying (199) and (202). Taking into account
(198), it is possible to construct Uy in terms of its components

U AR+ %8, — AKT x5, for all w € W g;

Uw : AK=x8, > AK=xS_, forallwe W-%, .
II right

7.5.1. Rewriting the gluing condition. — Let us rewrite the conditions (199).
CASE 1: £ goes to the left and w € W{, (set £ = + on both sides of (205)) or £

goes to the right and w € W, (set £ = — on both sides of (205)) Let us rewrite
(199):
(205) Ul lexc = Amm, UF, lexc : AFE % Syle = AXE xSy exc.

Every map as on the RHS extends uniquely to II; (Lemma 7.1.4)
so that we can equivalently rewrite

(206) UY = (Lo U |e)ext,
where ext means the extension onto II,.
CASE 2:

(207) £ goes to the left and w € Wi, (set £ = —)
or £ goes to the right and w € Wiy, (set £ = +):
UY lexc = Tt (UR. |exc ® 9T, L) U |exc N,
where N’ : A, * Sy — AZ’ * Spy is as in (43).

Recall that Aﬁftnz = 0 by Claims 19, 20, so that we can rewrite the RHS as (using
notation from Sec 3.8.5)

AEE UR Joxc + (AR, U loxc + AR T, 9(T, IL)UE |exc NY).
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So that we have (by separating + and — components):

(208) UY lexc = A2 UY |oxc.
(209) AT, UR lexe + Af T, 92, ) URY |exe Ni*) = 0.

As above, (208) can be equivalently rewritten in the same way as (206).
Let us rewrite (209):

Uf lexe Ny = =0, Ty ) Af Ty AT, UR, lexc
Given a map K : AK* x 5, |, — AKF x S1|,, one can uniquely factor it as
K = K'NY,
where K’ : AXF % Sy, — AKF % S|, (Sec 7.1.3) which extends uniquely to a map
Kl : AXF % Splm, — AKF xSz |m,

by Lemma 7.1.4. In view of this remark, we finally write

(210) URY = (—0(H2,H1)f1ﬁfn1fiﬁfanﬁﬂ|e)

ext

Let us summarize. Gluing conditions (199) can be equivalently formulated as fol-
lows:

For every pair of neighboring strips IIy,II5, £ = II; NII,, we have (206). In the case
(207) we also have (210).

Condition (206) implies that

(211) Ul = UK I

7.5.2. Constructing Ujj. — Let us proceed by the induction in the length of w.
In the case Il = IIp and w = L or w = R, Uy, is determined by (202).
Given an arbitrary strip II, there is a unique sequence

(212) o, My,..., I, =1I

where all II; are different and IT; NI, # @ (because the graph formed by the strips
is a tree). Formulas (206) (applied for all pairs II;, I1;11) determine Uf, Uf for all II.

Suppose that UY for all words w of length < N. Let w = fw’ be a word of length
N +1 (so that the length of w’ is N). Let £ = II; NII2. The formulas (210) determine
Uy, . Given an arbitrary strip II we can join it with II; by a path and define Uyj using
(206) in the same way as above.

7.5.3. Estimate. — We are going to prove the following estimate. Let II be a strip.
Consider a map C = C U C_, cf. (193). We will prove

Claim 22. — We have
UY = CI, = (-1)1,,.
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Proof. — Let us use induction in |w|. If w = L or w = R and II is arbitrary, the
estimate follows from (211). Suppose that the estimate is the case for all w with
|lw| < N. Let now |w'| = N + 1 and w’ = lw, |w| = N. Let £ = II; N II,.

Combining (210) and the inductive assumption, we have:

CT'UR; = (—19(112,Hl)C‘lﬁﬁfmAﬁfmCIwh)ext (—19(112,Hl)C_lfinlnzCIwh)e

xt

Claims 19,20 1~ 1%
2% (o, )C AR, CLule)  (~9(2, )C* Ay, CLle)

(194) ~w
= (_19(1-[27 Hl)rnlngll)eXt

= (N;D)lext = Il’wa
and (211) allows us to extend this equality to other strips. O

7.5.4. Proof of Proposition (3.10.1). — Let us first find an expression for the
maps Jpp as in (178). We have

(213)
(197) 1 (187) . o
Ivanlnnpxc = ¢nlnnpxcUnlmnpxcip lmnpxc = taplnnpxcinpUn|onpxcignlmnpxc-

Comparison with (178) yields:

Jup = inpUn|unp.

We then have (for every w € W)
Jnply = inplu (1),

by Claim 22.
Let us write

inplw : Zg(x,w) — @ Lk w')
w/ewa

inply = Z mggleww’a
w EW’
where the sum is taken over all w’ such that @(K,w') C @(K,w) and ey :
Z(kw) — Luk,w) is induced by this embedding. We are to show that mIIF, # 0
implies that @(K,w) # @(K,w’). Assume, on the contrary that &(K,w) = G(K,w’)
for w,w’ € W, Since P NIl # &, this is only possible when w,w’ € Wiiegnt OF
w,w' € Wi Suppose w,w’ € Wg,,. Claim 17 then implies that either w’ = w, or
é(w') — é(w) € Int K, i.e., w # w’, as we wanted. The case w, w’ € W, is treated in
the same way by means of Claim 18. O
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