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GAUSSIAN FREE FIELD AND CONFORMAL FIELD 
THEORY 

Nam-Gvu Kang, Nikolai G. Makarov 

Abstract. — In these mostly expository lectures, we give an elementary introduction 
to conformal field theory in the context of probability theory and complex analysis. 
We consider statistical fields, and define Ward functionals in terms of their Lie deriva­
tives. Based on this approach, we explain some equations of conformal field theory 
and outline their relation to SLE theory. 

Résumé (Champs gaussiens libres et théorie conforme des champs) 
Nous donnons une introduction élémentaire à la théorie conforme des champs, 

vue du point de vue des probabilités et de l'analyse complexe. Nous considérons des 
champs statistiques et définissons des fonctionnelles de Ward via leurs dérivées de 
Lie. De ce point de vue, nous expliquons certaines équations en théorie conforme des 
charnus et nous donnons leurs relations avec la théorie SLE. 
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INTRODUCTION 

Conformal field theory (CFT) has different formulations as well as multiple appli­
cations. One of the best known applications concerns the theory of 2D lattice models 
at their critical points. Borrowing ideas and intuition from quantum field theory, 
Belavin, Polyakov, and Zamolodchikov [5] introduced an operator algebra formalism 
which relates some critical models to the representation theory of Virasoro algebra. 

The underlying objects of BPZ theory are correlation functions of certain "fields," 
apparently smeared-out and renormalized continuum versions of random fields on a 
lattice. The mathematical meaning of these objects is not completely clarified, but 
the focus is instead on the algebraic structure of "local operators" which act on and 
are identified with the fields. The main assumption of the theory is that the operators 
(or fields) behave nicely under "conformal transformations." The operators related to 
the so-called stress-energy tensor (defined as the local response of the action in the 
functional integral) play a special role in generating a Virasoro algebra representation 
whose central charge c is the fundamental characteristic of a critical model. Belavin, 
Polyakov, and Zamolodchikov showed that in the case of degenerate representations, 
the correlation functions satisfy a special type of linear differential equations. Finally 
they defined a class of conformal theories ("minimal models") which describe and 
"solve" (in a physically accepted sense) discrete critical models such as Ising, Potts, 

etc. 
The paper [5] had a great influence on the developments of conformal field theory. 

The operator formalism, which does not depend on a specific (e.g., statistical) nature 
of the underlying fields, has been applied to a variety of other physical problems, 
see [11]. In mathematics, the study of abstract vertex algebras became an important 
part of modern representation theory [16], [23]. 

A different approach to critical lattice models was proposed by Schramm [38] who 
introduced stochastic Loewner evolution (SLE) as the only possible candidates for 
the scaling limits of interface curves in several such models. His idea turned out to 



2 INTRODUCTION 

be very successful and led to the rigorous proofs of some important conjectures in 
statistical physics, in particular some very non-trivial predictions of CFT. The work 
of Lawler-Schramm-Werner ;see [27], [28], [30], [29], [32]) and Smirnov [41], [43]; 
exemplifies the remarkable achievements of complex analytic/probabilistic methods. 
In connection with their developments in the SLE theory, there has been some inter­
est in interpreting the original CFT arguments in (less abstract) terms of statistical 
models, and more generally in understanding the precise relation between CFT and 
SLE, see e.g., 18] and, on the physical side, [2], [3] , and [8]. 

The goal of these mostly expository lectures is to give an elementary introduction 
to CFT from the point of view of random or statistical fields. More precisely, we 
will describe an (rather pedestrian) implementation of CFT in the specific case of 
statistical fields generated by certain non-random modification of the Gaussian free 
field (GFF). Gaussian free field is the simplest ("trivial") example of Euclidean field 
theory; its mathematical aspects are well understood, see [40], [21]. The modifications 
of the Gaussian free field that we will consider in these lectures are implicit in the 
work of Schramm and Sheffield [39] and explicit in the physical paper [37]. Related 
ideas are certainly present in the much earlier papers by Cardy [6], [7]. 

We will only cover some starting points of the BPZ theory: we will accurately define 
and explain such basic concepts as Ward's identities, stress tensor, and vertex fields 
in terms of correlation functions of our random fields, but we will not reach the part 
of the theory concerning minimal models, and the only degeneracy we study will be 
of level two. In Appendix 9 we will briefly explain the relation of our constructions to 
the operator algebra formalism by explicitly describing some form of the "operator-
field correspondence." In the last two lectures we will discuss connections with the 
SLE theory. 

It should be mentioned that we only consider the simplest conformal type of the 
theory — the case of a simply connected domain with a marked point on the bound­
ary, cf. [6], [7], and we only consider the Gaussian free field with Dirichlet boundary 
conditions. This conformal type of CFT is relevant to the theory of chordal SLE. The 
more traditional setting — CFT in the full plane ([5]) — is somewhat more involved 
and will not be discussed here. 

Many computations in these lectures are completely standard from the CFT per­
spective — we include them for the sake of consistency and to make the exposition 
self-contained. We want to emphasize one more time that what we are considering is 
a very specific model of CFT, and modern physical and algebraic theories go so much 
further. At the same time, we believe that this model is interesting in its own right, 
and its generalizations to more sophisticated conformal geometries may turn out to 
be quite non-trivial. 
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LECTURE 1 

FOCK SPACE FIELDS 

We introduce a class of random fields defined in a simply connected domain D in 
the complex plane. All our fields, which we call Fock space fields, are constructed from 
the Gaussian free field and its derivatives by means of Wick's calculus. Fock space 
fields may or may not be distributional random fields but their correlation functions 
are well-defined, and we can think of the fields as functions in D whose values are 
correlation functionals. 

Later, in Lecture 4, we will revise the definition so that the fields will have certain 
geometric/conformal properties in the sense that their values will depend on local 
coordinates ("conformal fields"). The functionals and fields that we consider in this 
first lecture are conformal fields expressed in the identity chart of D. In Lecture 12 
we will further extend the concept to include some "multivalued" (chiral) fields. 

In the first two sections we recall some basic facts concerning the Gaussian free field, 
its Fock space, and Wick's calculus, see [40] and [21]. In Section 1.3 and Section 1.4 we 
define correlation functionals and Fock space fields (as functional-valued functions). 
In Appendix 2 we will comment on the probabilistic meaning of Fock space fields. 

1.1. Gaussian free field 

> A real-valued random variable £ is Gaussian or normal with mean \x and vari­

ance a2 if 
B%¨¨¨£µ%%% l 

' 2 
aH2 

cwx 
A family (finite or infinite) of random variables is jointly Gaussian if any finite linear 
combination is Gaussian. The joint distribution of such a family is determined by 

the means and covariances of the random variables. In particular, if Ç1» • • • >£n are 
centered i.e.. a = 0) jointly Gaussian random variables, then 

i . r ;:!^ù$*====== 

k 

%¨¨¨£µ%%% 



4 LECTURE 1. FOCK SPACE FIELDS 

where the sum is over all partitions of the set L,...,ni into disjoint pairs ikjk}-

A complex-valued random variable is Gaussian if its real and imaginary parts are 
jointly Gaussian. Clearly, the formula (1.1) holds for complex-valued jointly Gaussian 
variables as well. 

> A Gaussian field indexed by some real Hilbert space vxx is an isometry 

« R — > L | ( Î Î , P ) , h^th 

such that the image consists of centered Gaussian variables; here xù*^^ I M L t t ! 
ability space. Alternatively a Gaussian Hilbert space may be thought of as a closed 
subspace of L2I bxww consisting of Gaussian (square integrable) random variables. 
Complexifying, we can extend this map to an isometry 

H:=HR + iHR—+L2(il,P), 

which we also call a Gaussian field (indexed by H). 

One wav to construct a Gaussian field is to choose an orthonormal basis $ù in HR 

and a family pp of independent standard normal variables on some probability space, 
and set ea £a • A Gaussian field indexed by HR is unique up to an isomorphism of 
L2-spaces. 

> Let D be a planar domain with the Green's function G = GD(C,z). For example, 
in the upper half-plane M := {z : > 0}, we have 

R + iHR—+L2(il,P), 
b;:! 

^^^p p 

The Gaussian free field $ in D with Dirichlet boundary condition is the Gaussian 
field indexed by the Dirichlet energy space £(D), 

$:£(D)-^L2(n,P)w<ùù. 

The Hilbert space £(D) can be defined as the completion of test functions / e C§?(D) 
with respect to the norm 

:i-2) | | / | | I= vwww2G(t,z)№f{z)dA(QdA(z), 

where A is the area measure. 

> By definition, the n-point correlation function of #, 

{zu...,Zn)^E [*(zi)... #(zn)J, (zj e D, points Zj are distinct), 

is a unique continuous function such that 

1.3) E[$(f!) • • • *(/n)] = /R + iHmml • • • UizJEfiiz!) • • • *{zn)] dA(Zl) • • • dA(zn) 

for all test functions fj with disjoint supports (here, in fact, for all test functions). 
Note that E has different meanings in (1.3); E in the left-hand side is the expectation 
of random variables and E in the right-hand side means the correlation function. 
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1.2. FOCK SPACE OF GAUSSIAN FREE FIELD AND WICK'S MULTIPLICATION 5 

(An alternative and more traditional notation for E in the right-hand side is (.).) It 
is clear that the 2-point correlation function is 2G(zliz2) by polarization and it can 
be shown that 

E[${Zl) • • • <£>(¿n)] = V TT2G(zik,zjk), 

k 

exactly as in (1.1). In other words, we can think of cw<<< as a "generalized" Gaussian 

and use the symbolic representation * ( / ) = f *(*)/(*) <L4(z) in the computation of 

correlations. 

t> Derivatives of GFF. — The fields J = d$,J = Ô*, and higher order derivatives 
are well-defined as Gaussian distributional fields, e.g., 

J(/) = -*(ô/) , / e C S ° ( D ) , 

so J is a map Cg°(D) L2(Q,P) (or J : £(D) -> L2(Q,P)). We can compute the 

correlation functions of the derivatives by differentiating the correlation functions of 
the Gaussian free field. For example, for ̂ cxx^*ùù we have in H: 

E[J(Q*(z)]=2dcG(Ç,z) = 
1 1 

C-z C-z 

E[j(()J(z)]=2dcdzG(Cz) = -
1 

;:!ôoo$ |2" 

The meaning of these expressions is similar to formula (1.3). 

1.2. Fock space of Gaussian free field and Wick's multiplication 

t> For n > 0, let HQn denote the n-th symmetric tensor power of a Hilbert space T-L: 
it is the completion of linear combinations of elements h 0 • • • 0 /n, the order does 
not matter: fGg = gef) I, with respect to the scalar product 

( / i 0 - " 0 / n , P i 0 - " 0 ^ ) ùù 
cresn i=i 

n 
^mmm$*ù 

where Sn is the group of permutations of the set l , . . . ,n} . The (symmetric) Fock 
space over % is the Hilbert space direct sum 

Fock(K) = 
oo 

n=0 

ùvcww {Heo := C). 

The algebraic direct sum ^*ù 
;,,^^ nx<<< the "symmetric tensor algebra", is a commuta­

tive algebra with respect to the natural multiplication 0. 
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6 LECTURE 1. FOCK SPACE FIELDS 

o Wiener chaos decomposition. — Let H - » L2(Q,P) be a Gaussian field in­
dexed by H. If we identify bxw with its image in L2(Q,P) and denote by bvvv the 
cr-algebra generated by 7i, then the Fock space over % can be identified with L2 := 
L2(n,a(H),P) as follows, see [21]. Denote 

Hn = span{£i • • • £m : m < n} 0 span{£i • • • £m : m < n} C L2, 

where £7-'s in the both spans are arbitrary elements of H, and consider the map 

HQn-+HniR + iHR—+L2(il,P), •MÉi'-C»), 

where v^^ù is the orthogonal projection in L2 onto x<< Under this correspondence, the 
symmetric tensor algebra multiplication corresponds to the so-called Wick's multipli­
cation in L2: 

if X e «m, Y e Un, then X 0 Y = Tim+n{XY) 

(an alternative and more traditional notation is :XY: . The identification 

L2(Çi,a(H),P) ^*m 
oo 

n=0 

^0n 

is called the Wiener chaos decomposition. The fact that the described construction 
gives a unitary map Fock bx< —» L2 is based on the following Wick's formula, which 

provides the chaos decomposition for products of Gaussian variables, and which will 
play a central role in the definition of Fock space fields. The formula is stated in terms 
of Feynman's diagrams. 

> A Feynman diagram 7 labeled by random variables £1j • • • » £n is a graph with 
vertices l,2,.. . ,n, and edges "Wick's contractions" [v,vr without common end-
points. We denote the unpaired vertices by v". The Wick's value of the diagram is 
the random variable 

1-4) 0(7) = 
nvwww 

TT m <^*ù Oft,». 
v" 

For example, the Feynman diagram with two edges {1,4}, {3,5} and two unpaired 

vertices 2,6 corresponds to 

£1 0 6 0R + iHR—+L2 0 & 0 &) := B [ £ i £ 4 № & ] & 0 fe-

Wick's formula. — Let fjfc, (1 < j < Z, 1 < k < rrij), be centered jointly 
Gaussian random variables, and let Xj = Ol 0 * * ' ® f¿m¿-T/ien 

Xi • • • Xf = 
1 

0(7), 

where the sum is taken over all Feynman diagrams (labeled by the variables vx<<< such 

that no edqe joins ù$*ùù and ;!:^ù with h =32. 
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1.3. FOCK SPACE CORRELATION FUNCTIONALS 7 

> Wick's powers and exponentials. — If £ is a centered Gaussian with variance cr2, 

then 

1.5 *ù^^ — anHn *^^ 
a 5 

where ̂ $*ù are the Hermite polynomials, 

:i.6) H2(x) = X2 - 1, tf3(z) = X3 - 3x, Ä"4(x) = X4 - 6x2 + 3,... 

Recall that the polynomials Hn are monic and orthogonal with respect to the standard 
Gaussian measure on R, so (1.5) is just the chaos decomposition in the case dim H = l. 
We define 

e0^ := 
oo 

71=0 

, £0n 

ù ù 

Using the generating function 

(1.7) etx-±t2 
2 1 

^^ 
OO 

71=0 

ù 

Til 
ù x), 

we get 
e0^ = e*" i 

2 
EC2 

^^ 
In particular, if £ and rj are jointly Gaussian, then 

e©£e©r7 = e0K+»7)e^j £[e0^e07?] = e ^ . 

1.3. Fock space correlation functionals 

> Let D be a domain in C and let $ be the Gaussian free field in D. By definition 
basic correlation functionals (the use of word "functionals" will be explained later in 
this section) are formal expressions of the type 

Xi(*i)0.--0Xn(*n), 

where points Zj e D are not necessarily distinct and ̂ ^ùmm are derivatives of the 
Gaussian free field, I.e., Xi = dadß§). We also include the constant 1 to the list of 
basic functionals. 

A general Fock space correlation functional X is a linear combination (over C) of 
basic functionals. We allow some infinite combinations, e.g., the exponentials 

eOoc$(z) = 
oo 

71=0 

m 

,,^^ 
^;,,^ (z). 

For our purposes it will suffice to consider the class of quasi-polynomial functionals 
that consists of finite linear combination of 0-products of exponentials and basic 
functionals. This class is a graded commutative algebra (with respect to formal chaos 
decomposition and Wick's multiplication), e.g., 

R + iHR—+L2(il,P), = eQ>(a+ß)*(z) ̂  

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2013 



8 LECTURE 1. FOCK SPACE FIELDS 

Notation. — We will write Sx or S(X) for the (finite) set of all points Zj, the 
nodes of X, appearing (after cancellations) in the expression of X. 

In the rest of the section we explain (or rather define) various natural operations on 
correlation functionals such as (tensor) products, "expectations", weak convergence, 
and complex conjugation. In addition, we will need to explain the meaning of the 
statements like "J = <93> is purely imaginary on the boundary." 

> Tensor products. — We use Wick's formula, which describes products of Gaus-
sians in terms of their Wick's products, to define the usual (or tensor) products 
Xi" - Xjn of correlation functionals with pairwise disjoint sets S(XA Namely, for 
basic functionals 

R + iHR—+L2(il,P),R + iHR—+L2(il,P), (fields Xjk are derivatives of $), 

we set (cf. (1.4)) 

1.8) X\- — Xm — 

[v,v'} 
EIX (zv)Xv, (zv,)] O X " (*v» ) , 

v" 

where the sum is taken over Feynman diagrams with vertices v labeled by function­
als Xjk such that there are no contractions of vertices with the same jf, and the Wick's 
product is taken over unpaired vertices v". By definition, the "expectations" in (1.8) 
are given by the 2-point functions of derivatives of the Gaussian free field, e.g., 

E[&*{£)&*(z)] =^#tf[*(C)*(*)] =2c^G (C ,z ) . 

We extend the definition of tensor product to general correlation functionals by lin­
earity. 

Proposition 1.1. — The tensor product of correlation functionals is commutative and 
associative. 

Commutativity is of course obvious. To prove that 

bcww ^-••A^y1-..yn = (Ar1...A^)(y1.-.yn), 

one needs to show that there is one-to-one correspondence between Feynman's dia­
grams corresponding to the left-hand side and the right-hand side of (1.9), which is 
an easy exercise. 

An alternative argument is as follows. Approximate the values Xjizj) of derivatives 
of the Gaussian free field involved in the formula by jointly Gaussian variables, see 
Appendix 2. Then apply Wick's calculus to the Gaussians, and take the limit. 

> Expectation values of functionals. — We define EX in terms of the chaos decom­
position of X: 

^[1] = 1, and <E[X1(z1)Q-*-QXn(zn)]=Qi (fields Xj are derivatives of $). 

ASTÉRISQUE 353 



1.3. FOCK SPACE CORRELATION FUNCTION ALS 9 

For example, 

£7 [$(*i)- . .*(*„)] = 
k 

R + iHR—+L2 

(see (1.1)) and E\ m^*mjnn = 1. Since tensor products of functional are defined 
by Wick's formula, our definition of EX is consistent with the definition of the n-
point correlation functions of derivatives of the Gaussian free field introduced earlier. 
Correlation functions are "expected values" of correlation functional. 

Given www consider the linear space Vx = {y:SynSx = 0 } . We have a linear 
map 

R + iHR—+L2(il,P)x<<<<, 

so we can think of A* as a linear functional on Vx- This explains our terminology 
("functionals") and also introduces some kind of weak topology in the space of func­
tional. For example, the statement 

ф(*1) <Цг 2)-^Ф е 2(г),w<<<<(z l tZ2->z)<<< 

means (by definition) that 

я[(ф(*1) (z2))X] ^ Е[Ф°2(г)Х] 

for every X such that z ? Sx. Essentially all statements in conformal field theory 
have a similar meaning (they hold "within correlations"). 

> Trivial functionals. — From the point of view of calculus of correlations, we can 
identify functionals X\ and X2 such that 

E[X{y) = E[X2y] 

for all y with nodes outside Sx1 U Sx2 • In this case, we will write X\ « X2 and later 
just X\ — Xo. 

Example. — We have (dd$)(z) « 0. Of course, dd& ¿ 0 as a Gaussian distributional 
field. 

It is easy to check that for all y, 

if AT » 0, then X 0 y « 0, Xy & 0. 

In particular, N = {X « 0} is an ideal of Wick's algebra, so we effectively consider 
Fock space functionals modulo Af. Also, it is clear that 

X if and only if E[X($(z1)Q---Q$(zn))]=0 

b* is the Gaussian free field) for all n and all sets [zi y ..., zn inD sx. In particular, 
X is trivial if and only if all its chaos decomposition components are trivial, and 
therefore the factor algebra preserves the grading. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2013 



10 LECTURE 1. FOCK SPACE FIELDS 

> Often we can extend the concept of a correlation functional X to the case when 
some of the nodes of X lie on the boundary — we simply define the correlations E[Xy\ 
in terms of the boundary values. 

Example. — For zedD, one has R + iHR—+L2(il,P), 

There is a natural operation of complex conjugation on correlation functionals: 

Ф(г) = = $(*), (ö*)(z) = (d$)(z), xey = xey. 

More generally, the functional X is defined (modulo • AT by the equation 

E[Xy] = E[Xy] 

for all y s of the form R + iHR—+L2(il,P), 

Example. — If J = d$ in the half-plane HI and if z e 9M, then J(z I is purely 
imaginary, i.e., J(z) = —J(z), and J(z) 0 J(z) is real. 

1.4. Fock space fields 

> Basic Fock space fields Xa are formal expressions written as Wick's products of 
derivatives of the Gaussian free field <£, e.g., 

1, $ 0 $ , <9$0<9$, 9 2 $ 0 $ 0 $ , etc. 

A general Fock space field is a linear combination of basic fields Xa, 

X = 

a. 

faXa, 

where the (basic field) coefficients fa are arbitrary (smooth) functions in D. We think 
of X as a map 

R + iHR—+L2(il,P), 

where the values X = X(z) are correlation functionals with Sx C \z} . Thus Fock 

space fields are functional-valued functions. Wick's powers <£On and Wick's exponen­

tials ^mmm of the Gaussian free field are important examples of Fock space fields. 

If Xi,..., Xn are Fock space fields and Z\ 1 ' ' ' 1 Z"n are distinct points in D, then 

X = X1(z1)--Xn(zn) 

is a correlation functional. We often refer to its "expectation" 

1.10) E f t ^ z J ' . - X M ] x < < 

as a correlation function. 
The collection of Fock space fields (modulo AT, the ideal of fields whose values 

are trivial functionals) is a graded commutative algebra (over smooth functions) with 
respect to pointwise Wick's multiplication. On the other hand, the "usual" product 
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{X1,X2)^X1X2 is not defined, but we can consider the tensor products, which are 
multivariable fields. For example, 

X = X\ 0 x2 

is defined in D x D \ {diagonal}. Its value at n:!^$ùù is the "string" X1(z1)X2(z2). 

Remark. — We often consider Fock space fields with basic field coefficients defined 
only in some open set U C D ("local fields"). It is important that underlying basic 
fields are global (originated from the Gaussian free field in D). 

> We define the differential operators d and d on Fock space fields by specifying 
their action on basic fields so that the action on $ is consistent with the definition 
of <9$,d$ (as distributional fields) and so that 

dlX 0 Y) = (dX) 0 7 + 1 0 lOY), d(X 0 Y) = (dX) 0 7 + 1 0 (BY). 

We extend this action to general Fock space fields by linearity and by Leibniz's rule 
with respect to multiplication by smooth functions. 

Examples. — We have dd[Q 0 *] « 2 J 0 J and deQa* = a J 0 e0a*. 

It is easy to see that dX is a unique (modulo AT ) field satisfying 

E[(dX)(z)y] - dzE[X(z)y], (z $ Sy), 

for all correlation functionals y . Also, it is clear that ox = dx. 

t> By definition, X is holomorphic in D if dX « 0, i.e., all correlation functions 
E\X(C)y] are holomorphic in C&D\Sy. 

Examples. — The fields J = 0$Y = JQJ are holomorphic. 

Holomorphic fields play a prominent role in conformal field theory. Their proper­
ties are quite different from those of usual holomorphic functions, and some formulas 
involving holomorphic fields look unfamiliar from the point of view of "classical" com­

plex analysis. 
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APPENDIX 2 

FOCK SPACE FIELDS AS (VERY) GENERALIZED 

RANDOM FUNCTIONS 

In this appendix we want to substantiate the concept of Fock space functionals 
and fields, which we introduced as somewhat formal algebraic objects. We already 
mentioned that we can think of functionals as "generalized" elements of the Fock 
space, and therefore view fields as "generalized" random functions (cf. fields in lattice 
models). One way to make this point of view clear is to approximate correlation 
functionals by genuine random variables. 

2.1. Approximation of correlation functionals by elements of the Fock 
space 

For each z € £>, let us choose test functions bwwù^$* supported in a disc of radius e 
about z and satisfying 

fe,z —>SZ as e —> 0 

fas measures). Define Gaussian random variables 

M * ) = *(/«,*), is the Gaussian free field), 

Je{z) = J(fCiZ) = -$(dfe,x), (92$)£(2) = $(92/e,Z), etc. 

Varying z, we get random functions which approximate the Gaussian free field and its 
derivatives in the sense of convergence of correlation functions. For example, we have 

JE[je(zi)Je(*2)] —• E[j{zl)J{z2% (Zl Ï z2). 

Indeed, the left-hand side, 

2 R + iHR—+L2(iR + l,P), d ^ G i C v i f e ^ i O f s M x < < ^ ù 

converges to 2d1d2G(zljz2) = E[J(Zl)J(z2)}. Usually, when there is no danger of 

confusion, we omit dA(Q, etc. 
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Next, we extend this approximation to Wick's products, and therefore to general 
Fock space functionals/fields. For example, we define 

X£ = -
1 
2 

J e J 
£ cww 

ww 

2 Je O Je w 
X£:D—*He2, 

where n02 is the symmetric tensor square of the Hilbert space R + nn^ù$* see Sec­
tion 1.2. Again, it is clear that the correlations of x£ converge to the corresponding 

correlations of the field X = -
2' J0J. This follows from Wick's formula and from the 

convergence of the 2-point function of J£ established in the previous paragraph. 

Thus we can say that Fock space fields are "generalized" random functions — they 
are limits of random functions in the sense of correlations. (This point of view is 
somewhat similar to the definition of Colombeau's "generalized" functions (see [10]).) 

In practical terms, we can use approximating random functions to compute correla­
tions of Fock space fields at distances much greater than the "wavelength" e. Moreover, 
we can give a similar interpretation to other equations of conformal field theory. For 
instance, operator product expansions, which we discuss in the next lecture, hold on 
approximate level as e <C I C - z\ -+ 0 so that the error term "o(l)" has vanishing 
correlations with all fields at positive distance from z. For example, 

$e(()$e(z) = log 
1 

\C-z 2 
+ 2c(z) + *®2. z) + 0(1) as e < | C - z\ -> 0. 

Here, c(z is the logarithm of conformal radius C(z), 

(2.1 c(z) = log C(z), C(z) = 
w(z) — w(z) 

w'{z) Ì 

where w is a conformal map from D onto the upper half-plane EL The logarithm of 
conformal radius can be described in terms of the Green's function, see (2.4), (3.2), 
and (4.2). 

2.2. Distributional fields 

> Some important Fock space fields admit a much stronger, more analytical inter­
pretation. We say that a Fock space field is distributional if it can be represented by a 
linear map / -»• X(f) from a space of test functions to the space L2(Q,P) of random 

variables on some probability space; the Gaussian free field and its derivatives are the 
simplest examples. This is the kind of fields studied in axiomatic (Euclidean) field 
theory; distributional fields also play an important role in analysis and probability 
theory. For any test functions with disjoint supports, assuming that x ( / 0 • • • * ( / „ ) 

is in L1, we require 

(2.2) R + iHR—+L2(il,P), f . . . E[X(z1)---X(zn)]f1(z1)---fn(zn)x<<. 
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2.2. DISTRIBUTIONAL FIELDS 15 

As we explained before, E has different meanings in this formula; E in the left-hand 
side is the expectation of random variables and E in the right-hand side means the 
correlation function, see (1.10). 

Let us show that Wick's powers <Ë>®n and exponentials eOa$ with \a\ < 1 exist as 
distributional fields 

V:CZ?(D)^L2(Sl,P), 

see 15 for a stronger statement. 

To construct the map \I> we follow the same idea as in the previous section but we 
interpret random functions 

\I>£ : D —> L2qq 

as linear operators 

x< rz < TRX^*ÙJ, NT =w<<< liî vxwww 

and prove convergence in the strong operator topology. 

Almost any choice of approximating random functions will do the job but the 
estimates are particularly simple if we define 

$£(z) = $(ra*,£), 

where x<^ùù is the normalized arclength of the circle of radius w$ùùù centered at z. 

Proposition. — As e -> 0, $£ -> $ in the sense that for all test functions f the 

random variables *e(f) converge to *(/) in L2. 

Proof. — Note that M C i is a centered Gaussian random variable with 

(2.3; var(*e(C)) = 2||mc,e||! = 21og 
1 
£ + 2c(0, 

where c(0 is the logarithm of conformal radius of D, see (2.1). Indeed, 

var($£(C)) = 2 G(Ç, rj) dmC)£ (£) dmC)£ (77). 

Set u(C,*) = GD(C,*) + log |C-* | . Then the logarithm of conformal radius can be 
written in terms of the Green's function as follows: 

(2.4) c(0 = «(C,0-

Using the harmonicity of the map Z h-> U(C,Z), we have the following expression 
for the Green potential ::!*^^ = fmCie(0G«,-) Of 77V £: 

^$*^^ ̂ ^$*ùù 
u(C,v) + logl/e 

HC,ì?) + iogi/ic-*7i 

if IC - n\ < e: 

otherwise. 

Thus we have 

var($e(C)) = 2 H mCie||| = 21og 1 
e 

+ 2 u(C,r?)drac,£(77) = 2 log 
1 
€ + MC0, 
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16 APPENDIX 2. FOCK SPACE FIELDS AS (VERY) GENERALIZED RANDOM FUNCTIONS 

which shows (2.3). Arguing as above, we show that 

tf[*e(C)<M*)] =2Jre(C,*) + 2ti(<lz), 

where 

(2.5} 

tfe(C,z) = log 
1 

mm$*ù 
if |C - z\ > 2e; 

tfe(C,z) <log D 

e 
otherwise. 

Integrating against test functions / , var (^m) $^^^^var(*(/)). In a similar way, 
cov(Se(/), * ( / ) ) - • var ($(/)). Therefore, we obtain var R + iHR—+L2(il,P), • 

> Exponentials and powers of the Gaussian free field. — We represent Wick's pow­
ers and exponentials $*ù^mm with al < 1 as distributional fields in the following 
way: 

'2.6̂  ;::!^*ù ncx lim $0n 
5 ùùù 

e0a$ = lim 
£-•0 

$*^^ ̂ ^$*lk 

where the limits are in the strong operator topology. The existence of the limits is 
shown below. Thus we have 

R + iHR—+L2(il,P), ^*m 
lim 
£->-0 

£«2 $*^mù;,, : h < i ) , 

where C(z is the conformal radius (see (2.1) and (2.3)) and 

= lim o"Hn 
xx 
xx 5 of = var($£)), 

where Hn's are the Hermite polynomials, see (1.6). For example, 

$02 = lim #2 - 2 log 
£-»0 

c 
€ 1 $04 = lim - 12$2 log c 

$*ù 
+ 12 log2 

C 

€ 
Proposition. — a) Suppose |a| < 1. 

(i) For all test functions /, the random variables e0a$£ (/) converge in L2 

as e - » 0. 
ïi) Let e0a<l>(/; denote the L2-limit. For any test functions with disjoint 

supports, the random variable e0a$ ̂ ^ . . . e©as$, ̂̂ ^^ is in L1. 

fui) Tfte linear map e0a# : / h> e0tt*(/) ¿5 distributional in the sense that 

(2.2) ftoMs. 

b) Similar properties hold for Wick's powers $0n 

Proof — a) (i) Given a sequence ^^^^ oo fm=l with Em I 0, we set #m = $£m. . Note that 

cov (e0tt*"(A e 0 ^ ( / ) ) = / / cov (e0^-(C), e0a*»(*))/(C)/(*), 

where 
cov (e0a*-(C), eQa*»(Z)) = exp (\a\2E[$m(0*n(z)]) - 1. 
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It follows from the estimate on E[$m(()<!>n(z) similar to (2.5) that 

cov(e0a$i / ) , e0^( / ) ) -
R + iHR—+L2(il,P), 

'e2 \a\2G(C,z) - 1 +L2(il,P), 

< 
\C-z\<em+£n 

(£-2\a\2 e2u(Ç,z) - 1 R + iHR—+L2 

where s = max(em,en). If |a| < 1, then the right-hand side in the above estimate 

tends to 0 as min m, n) —> oc. On the other hand, if M < i> , then the integral 

^MaG<c.*)/(C)7£) 

is finite. Thus e0tt*-(/); is a Cauchy sequences in L , which has an L-limit. This 
limit does not depend on a particular sequence ^^*m;;, oo m=l ' 

(ii) By (i), there is an almost sure convergent subsequence $$^ù;,,, $*^^ }. We first 
note that for all m, 

[2.7] B[e0a*™(/i)---e0a*-(/n; 

^*ù ^*;, 
e«2 :i<fcB[*m(,i)*m(*fc)]/l(z ̂ . . . / j ^ ). 

It follows from the estimate (2.5) that 

supi£ 
m 

e0Q*-(/i)---e0Q*-(/n)| <oo. 

Thus the random variable e0a*(/i) — e0a*(/n; is in L1. Furthermore, 

'2.8) e0a*-*(/i)---e0a*-*(/n) 
L1 e0a*(/i).-.e0a*(/»)-

(iii) It follows from the estimate (2.5) that the right-hand side of (2.7) converges to 

nnll ^$*,nn ̂ <kG(zi'Zk)Mzi)---Uzn). 

On the other hand, we have 

(2.91 £?re0ai*(Äi)"-e0a"*(z„)l = e2^<*a^fcG(^'2fe). 

Using (2.8), by passing to a subsequence, the left-hand side of (2.7) converges to 
£[e0a*(/i)---e0«*(/n) ]. Thus the linear map eo<*3> is distributional. 

b) Project eQa**(f) onto UQn. Then the convergence of $0n(/; in L2 follows from 
the convergence of e0«*£(/) . The other parts are left to the reader. • 

Remarks. — a) As Fock space fields, Wick's exponentials satisfy (2.9) without any 

restriction on o^'s. 
b) Exponentials with lai > 1 cannot be distributional since the positive 2-point 

function 
E[eQa$(z)eGâ<ï>(w)l = e2\a\2G(ziW) 
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18 APPENDIX 2. FOCK SPACE FIELDS AS (VERY) GENERALIZED RANDOM FUNCTIONS 

is not integrable in D X D. 

2.3. Insertion operators 

In this section we will use the distributional representation of the Gaussian free 

field to explain the mechanism of the insertion procedure, an operation widely used 

in the field theory. 

Let # : £ - » L2(0 ,P ' be the Gaussian free field in D. Given a real distribution 

pe£ we define the probability measure P = Pp on 0 by the equation (the "Cameron-

Martin" change of measure) 
d p = e©*(p)dP 

The following proposition describes the random field p= e©*(p)dPp= e©*(p)dP , which is the 

composition of the Gaussian free field and the identity map L2(i7,P)->L2(ft,P)ww,in 

terms of the Green potential UpD = fp(OGD(;0. 

Proposition. — The law of <Ê> with respect to P [i.e., under the insertion of eQ^^) 

is the same as the law of p= e©^^**(p)dP with respect to P. 

Proof. — For a test function / , let us compute the characteristic functions of w<^$ùù cww 

with respect to Pp. We have 

logEp[eu*W] = l o g ^ e 0 * ^ " * ' « ] = log ( e - K w f f l ' É ^ W e W w w w 

= 2it w < < < f ( z ) p ( Q G ( z , 0 -
1 
2 

*2 
II/III 

= 2it / f(z)UpD(z) -
1 

2 
t2 /111-

This means that * ( / ) is Gaussian with mean ̂ **ù<vv and variance \f\\h see (1.2). 

Proposition follows from uniqueness of the Gaussian free field. • 

We use this proposition as the motivation for the following construction on Fock 

space fields. Let us now formally take P = OL&Z0 note that <<^$*ùù but af£iZQ —> p and 

af£,Z0 e £) and define a linear operator x<<^ùùù on correlation functionals with nodes 

in D x<< by the following rules: 

(2.10 
$ ( z ) ^ $ ( z ) + 2aG(.,z0), 

$(z)^$(z) + 2aG(.,z0),$(z)^$(z) + 2aG(.,z0),$(z<<<<^^ 

We define 

E[X] := E[eQa^Xw<<^*ùùù}. 

The following proposition (with real a) is immediate from the previous proposition 

if we use the approximation technique described in Section 2.1. It is also easy to give 

a direct proof (which works for complex OJ'S as well). 

ASTÉRISQUE 353 



2.3. INSERTION OPERATORS 19 

Proposition 2.1. — We have Ê[X]=E[X]. 

Proof. — Let X = X1(z1) 0 • • - 0 Xn{zn),Xj = afta**. Then by Wick's formula 

we have 

X = Xi(^i) 0 • • • 0 X n ( 4 Xjizj) = Xj{zj) + 2adß'ÖtsG(zj,z0)i 

where we differentiate the Green's function with respect to the first variable. By 
definition, we get 

ElXjizj)] = aElXjizj^zo)] = 2adß'dßsG(zjiz0) = E[Xj{zó)]. 

It follows from the definition (1.8) of tensor products of functionals that 

E[X} = 
oo 

A:=0 

ak 
k\ 

w<< ^&k(z0)X1(z1)Q---QXn(zn) 

= an 
n 

^mm 
E <$(z)^$(z) +c<< 

n 

x< 
ElXjizj)} =E[X}. • 
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LECTURE 3 

OPERATOR PRODUCT EXPANSION 

Operator product expansion (OPE) is the expansion of the tensor product of two 
fields near diagonal. The name originates from the corresponding construction for 
local operators. With our approach, we use reverse logic — operator product expan­
sions of fields are used to define local operators, see Appendix 9. The concept of 
operator product expansion is quite general — the definition does not depend on a 
particular nature of correlation functions. In the case of Fock space fields, the OPE 
coefficients are again Fock space fields, and so we get important algebraic operations 
(OPE multiplications) on Fock space fields. 

3.1. Definition and first examples 

> We start with a simple example. 

Example. — Let be the Gaussian free field in D, and let c(z), z € D denote the 
logarithm of conformal radius of D, see (2.1) in Appendix 2. Then 

•3.1) $(C)*(*) = log 
1 

IC-*I |2 
+ 2c(z) + $Q2(z) + o(l) as C -» z, C ¿ z. 

As we mentioned in Section 1.3, the meaning of the convergence (here and in all 
similar statements) is the convergence of correlation functionals: the equation 

E[*(0*(*)X] =log 
1 

K-*l 12 
E[X) + 2c(z)E[X] + E[$Q2(z)X] + o(l) 

holds for all Fock space correlation functionals X in D satisfying zi Sx. 

To derive the operator product expansion (3.1) we use Wick's formula (1.8), 

*(C)$(2) = tf[$(C)*(*)] + HO 0 *(*) 

and the relation 

(3.2; M*(C)*(*)1 =2G(£z) = log 
1 

IC-*I 2 + 2c(z)+o(l), 
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see (2.4) for the description of c(z in terms of the Green's function. The convergence 
of $(C)©*(*) to $02(z was already explained in Section 1.3. • 

> In general, the operator product expansion of two Fock space fields is an asymp­
totic expansion of the correlation functional . XiC)Y(z) with respect to some appro­
priate (and independent of D) growth scale as w<^ù*$$ 

Particularly important is the case in which the field w<<< is holomorphic (recall 
that this means that all correlation functions E[X(Oy} are holomorphic with respect 

to Ç e D\Sy). The operator product expansion is then denned as a (formal) Laurent 
series expansion 

3.3) X(OY(z) = Cn(z)(C-z)n, C^z. 

The function C EX(C)Y(z)Z is holomorphic in a punctured neighborhood of z. 

Hence it has a Laurent series expansion and its radius of convergence is the shortest 
distance from z to the nodes of Z. 

Example. — Here is an example of a full operator product expansion. For a given 
domain D we defined 

«(C,*) = G(C,*0 + log|C-*|. 

Since c(z) = u(z¿ z) we have dc(z) = 2diu(z,z), where d\ is the complex derivative 
with respect to the first variable. The derivatives 

cn(z) := 20Î1 u(z, z) 

appear in the operator product expansion of the fields J = d<!> and 

3.4 J(CMz) = E[J(C)$(Z)] + J(C) 0 Hz) 

^ùm 
1 

u^ùmm 
+x<<<imù!:J(z)0 (̂z) + 

oo 

n=l 
Cn(z)(C - z)n, 

where Cn(z) = 
1 

w<<^*ù 
cn(z) + ( 9 V ) 0 ^ ) ) . • 

It is easy to show that there are only finitely many terms in the principle (or 
singular) part of the Laurent series (3.3) (in the case of "quasi-polynomial" Fock space 
fields that we only consider). Sometimes, we use the notation ~ for the singular part 
of the operator product expansion, 

X(QY(z) ~ 

n<0 
\CJz)(Q-z\ )"• 

We also write Sing, k_zX(OY(z[ for the right-hand side of the above equation. For 

example, we have (by Wick s calculus J 

'3.5) J(C)e0a#(*} - a 
C-z 

eOa$(z) 
w<< 
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3.2. OPE COEFFICIENTS 23 

It is clear that we can differentiate operator product expansions (3.3) both in £ and z\ 
and the differentiation preserves singular parts. For example, differentiating (3.4) we 
have 

'3.6) J(C)J(z) ~ - 1 
x<<^ù** |2" 

Also, we should keep in mind that operator product expansion is the expansion 
of functionals defined modulo Af, the trivial functionals (see Section 1.3), so we can 
disregard terms like dJ or 6-functions and their derivatives, e.g., 

'3.T J(C)J(z) ~ -d-z 
i 

w<<^ùmm 
= 0. 

More generally, if both X and Y are holomorphic, then 

X(C)Y(z) ~ 0. 

3.2. OPE coefficients 

t> The functionals appearing in the operator product expansions (e.g., 2c(z) + 
$02(z) in (3.1), Cn{z) in (3.3), or Cjik in (3.14) below) are called OPE coefficients. 

Proposition 3.1. — OPE coefficients of quasi-polynomial Fock space fields are quasi-
polynomial Fock space fields (as functions of z). 

The proof is straightforward — use Wick's calculus and the definition of fields. 
Proposition 3.1 allows us to define certain operations on Fock space fields. In partic­

ular, if X is holomorphic, then we define the *n product 

3.8) X *n Y — Cn, 

see (3.3) for Cn. 

> We will use the operations *n for all n's, see Lecture 7 and Appendix 9, but in 
this section we focus on the special case n = 0. 

Notation. — We write * for *o and call X * Y the OPE multiplication, or the 
OPE product of X and Y. 

For example, by (3.7), 

[J*J)(z) = lim \J(QJ(z)] 
<<<< 

(so we can write J * J = J J and 

(3.9 {JJ)(z) = {JQ J)(z) + E\j(z)J(z)] 

= (J®J)(z) + 
w'(z)w'(z) 

(w(z) — w(z) )2 
= (JGJ)(z) 

1 

C{zf 
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24 LECTURE 3. OPERATOR PRODUCT EXPANSION 

where C(z) is the conformal radius, see (2.1). (More generally, if both X and Y are 
holomorphic, then we can write X * Y = XY.) 

The OPE product X * Y as the coefficient of 1 can be defined for some (but not 
all, see e.g., (3.14)) non-holomorphic fields X, e.g., 

$*2 = £02 + 2C) (see(3>1)). 

The field X * Y is obtained by subtracting all divergent terms in operator product 
expansion and taking the limit, which is a usual procedure in the field theory. 

> If / is a non-random holomorphic function, then 

f*X = X*f = fX. 

However, simple examples show that (fX) * Y ^ X * (fY) in general, so unlike 
Wick's multiplication, the OPE multiplication is neither associative nor commutative 
(on holomorphic fields). On the other hand, *n satisfies Leibniz's rule 

(3.10) d(X *n Y) = (dX *n Y) + (X *n dY). 

If X is holomorphic, then differentiation of operator product expansion (3.3) with 
respect to £ gives (dX) *n Y = (n + 1)(X *n+i Y) and therefore, 

(3.11) X *n Y = —AdnX) * y, In > 1). 

Differentiation of operator product expansion (3.3) with respect to z then gives (3.10). 

3.3. OPE powers and exponentials of Gaussian free field 

We already computed <I>*2 = <I>02 + 2c, where c is the logarithm of conformal 
radius C. Further computation with Wick's formula gives 

$*3 := $ * $*2 = $*2 * $ = $03 + 6c$, etc. 

In fact, we have the following formula. 

Proposition 3.2. — We have 

(3.12) 
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$0n = (2c)n/2i/* ùù 

2c 
where Hn(z) = Y^k=oakzk are the Hermite polynomials (see (1.6)) and 

^ww^*ùù n 

k=0 

akak$*k. 

Proof. — Prom $(C)$0n(2) = 2nG(C, s)*0*""1^) +dnX)*Y, (n> 1).x<<< + o(l), we find 

$ * $0n = 2cn$0(n-1) + $0<n+1). 

assuming that (3.12) holds for <I>0n and $0(n x\ and using recurrence relation 

Hn+i(x) = xHJx) - nHn-i(x), 

we prove (3.12) for $0(n+1). 
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By definition, 

e*a* = 
oo 

71=0 

w 
<|>*n 

n! 
<< 

Proposition 3.3. — We have 

(3.13) x<<<<dnX)*Y, 

Proof. — Using the generating function (1.7) for the Hermite polynomials, we get 

e0a$ _ 
oo 

n=0 

cxw 

ni 
ww ^^ 

oo 

n=0 

^^ :2c) in 

n! 
^^ 
vw< 

^* 

$^^ 
dnX)*Y, (n> 1). • 

Remark. — If we define random functions <f>£ as in Section 2.1, then we get the 
formula 

e*a* = limeaV*% 
e—>-u 

(convergence of correlation functionals but also convergence in the strong operator 
topology if |a | < 1.) It is remarkable that two different types of normalizations, by 
averaging and by operator product expansion, produce the same result. 

As we mentioned earlier, the OPE multiplication (as the coefficient of 1 in the 
operator product expansion) does not make sense for general non-holomorphic fields, 
but we can of course consider the corresponding OPE coefficients. 

Example. — Let us denote dnX)*Y, ("vertex fields", see Section 10.2). The operator 
product expansion of two such fields has the following form: 

3.14 V<*(C)Vß(z) = 1 
x<<< \2ocß 

oo 

j,k=0 
cjk(z)(c-zy<(C<<-zf <<<< 

The first coefficients are C0,o = Va+ß and 

Ci,o = aVa+ß 0 (J + (a + ß)dc), C0,i = aVa+ß 0(J + (a + ß)dc). 

To see this, first note that 

Va(C)Vß(z) = C(C)a2C(z)ß2 exp (aßE[$(C)Hz)eGa*^ 0 eeß^zl 

We expand both 

C(0a2C(zf exp(aßE[*(Q*{z)]) = 
1 

IC-*I 2aß 
_ -a2u(<:,<:)+2aßu(C,z)+ 

<< 
dnX)*Y, (n 

IC - z\2aP 
1 + (a2 + aß)dc(z)(<: -z) + (a2 + aß)dc(z)(C - z) + • • • 

and e0Q*«) = eQa*(2) 0 (l + oJ(z)(C - z) + aJ(z){( -z)+ •••). 
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26 LECTURE 3. OPERATOR PRODUCT EXPANSION 

3.4. The field T xwww i 
2 : J * J 

We use the OPE multiplication to introduce this important field (in Lecture 7 we 
will identify it with the Virasoro field of the Gaussian free field, <£). By (3.6), T is 
defined by the operator product expansion 

(3.15 J{QJ(z) = -
1 

wp^ùm |2 -2T(z) + o(l), (C—•*). 

To express T in terms of Wick's calculus, we need the Schwarzian of D: 

(3.16) S (x) = S(z, z), S(C, z) := -12dcaa«(C, z), 

where u(Ç,z)=G(Ç,z)+iog\Ç-z\ I , as usual. 

Proposition 3.4. — We have 

(3.17) T — — 
1 

2' 
J 0 J + 

1 
12 S. 

E[J(Q*(z)] = 2dcG(C,z), we have 

(3.18 E[J(QJ(z)] =2dcdzG = - 1 
x<<< |2 

1 
ra 

5 <o^ùm 

• 

We finish this lecture with several singular parts of operator product expansions 
involving T, which we will need later. The operator product expansions can be veri­
fied by Wick's calculus. (Later we will explain them from a different perspective — 

in terms of conformal geometry.) 

Proposition 3.5. — We have 

a. T(C)*(z) ~ 
J(z) 

x<< 
• J 

b n a m ~ 
J{z) 

<<< 12 + 
dJ(z] 
p^mm mm 

c) T{QT{z) ~ 1 
2 C-z] |4 + 

2T(z) dT(z) 
+ '<-z. |2 <$*^^ ̂^ 

dì r(C)Va(z) ~ -
a2 

2 x<< 
Va (z) 

<*^*m |2 + 
avQ(z) 
x<<< d<< dnX)*Y, (n> 1). 

Proo/. — We only explain c). Use (3.17), Wick's theorem, and (3.15) to express the 

singular term of •T{QT{z) as 

1 
4 

dnX)*Y, (n> 1).dnX)*Y, 
1 
2 

1 
6 

x<<<< 1 + 
1 

<i^ùmm 2 
2 

x<<< 
J(C)0J(¿) 

: c - * : ,2 

no 
1 

2( <p^ùm < <$ù 
J(C) ©• / (* ) - i 

6 
5 ^*mm 

w<< w<<< 2 
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3.4. THE FIELD T ww<<<<< 27 

The numerator J(C) © J{z) - l 
6 S <o^mm of the last term in the above is equal (up to 

the second order terms) to 

J(z)Qj(z)-
1 

6 
m [z,z) + {C-z)[dJ(z)®J(z)-

1 

6 
mcx xo^ùmmm 

dnX)*Y, 
- - 2T(z) + (C-z)( dJ(z) © J(z) -

1 
12 

;dzS(z) 

= - 2T(z) - (C - z)dT(z), 

which completes the proof. • 
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LECTURE 4 

CONFORMAL GEOMETRY OF FOCK SPACE FIELDS 

In the first lecture we defined Fock space fields in a planar domain. We will now 
revise this definition and equip fields with certain geometric (or conformal) structures. 
We call them conformal Fock space fields. After we explain the definition, we will 
typically drop the epithet "conformal." 

Even if we only consider functionals and fields in the half-plane, it is necessary to 
think of them as defined on a Riemann surface — their correlations depend on the 
choice of local coordinates at the nodes. For example, the fields J 0 J and J * J, as 
we defined them in Lecture 3, have the same correlation functions in the half-plane 
but as conformal fields they are different — the first one is a quadratic differential 
and the second one is a Schwarzian form. 

At the end of this lecture we discuss the concept of the Lie derivative of a conformal 
field. This concept will be used in the next lecture to define the stress tensor and to 
state Ward's identities. 

4.1. Non-random conformal fields 

Recall that a local coordinate chart in a domain D (or more generally on a Riemann 
surface M) is a conformal map 

<t> : U -> (j){U) C C, (UcD open). 

The transition map between two overlapping charts </> and 0 is a conformal transfor­
mation 

h = 4>o cß-1 : </>(U n U) —* (/>(U H 17). 

By definition, a non-random conformal field / is an assignment of a (smooth) 
function 

;/ |U) : <PU —> C 
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to each local chart 4>:U -> (f)U. (We assume that this assignment respects restric­
tions to subcharts.) When local coordinates are specified explicitly, we often write w<< 
for (fH)<<(z). 

The transformation law from one coordinate chart to another can be quite compli­
cated for the fields that we will consider. Several simpler cases have special names. 

A field / is a differential of degrees (or conformal dimensionŝ  A, A.) if for any 
two overlapping charts <j> and </>, we have 

f = {h')x{h')x*foh, 

where / is the notation for (/ II </>), f for (/ II if,), and h is the transition map. In 

particular, (0,0)-differentials are called scalars. 

Schwarzian forms, pre-Schwarzian forms, and pre-pre-Schwarzian forms are fields 
with transformation laws 

f = (ti)2foh + fiShi f = tifoh + tiNhl f = foh + n\ogh\ 

respectively, where fi £ C is called the order of the form, and 

Nh = (iog h')', Sh = N'h- 1 
2 

<< 

are pre-Schwarzian and Schwarzian derivatives of h. (In all cases we consider, forms 
are holomorphic/ 

Examples. — a) Smooth w<<< -differentials v can be identified with vector fields. 

The local flow •z(t) of v in a chart (j) is given by the ordinary differential equation 
z = viz). If we have another chart 0, then the expression for the flow in this 
chart is z(t) = h(z(t)] ), and the vector field is v(z) — z = h,(z)v(z), so the 
transformation law is 

4.1) V = 
1 
h' 

v oh. 

b) If / is a holomorphic scalar function on M, then the derivatives Nt and Sf are 

computed in local coordinates, e.g., 

[Sf II (/>) := S(/||0) 

are forms of order 1. 

c) The field c, the logarithm of conformal radius is defined by the equation 

(4.2) (c II M*) = lim [G(C ,z)+log |C-z|l, 
<$*ù 

where G is the Green's function and G(Cz) of course means Gi^C^z) 
according to our convention. It is easy to see that the transformation law is 

c = co h — log \h'\, 
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4.2. CONFORMAL FOCK SPACE FIELDS 31 

so c is the real part of a pre-pre-Schwarzian form. In particular, 

c II idD)(z) = log 
w(z) — w(z) 

w'lz) << 

where idn is the identity chart of D and w is a conformal map from D onto the 
upper half-plane H, cf. (2.1). 

d) As a general rule, we define derivatives of fields bv differentiating in local coor­
dinates. Thus the field 9c, 

(dc\\ <j>) :=d(c\\ 0) 

is a pre-Schwarzian form of order l 
2* 

e) The conformal radius C = ec is a q l 
2' qq 1 

2 I-differential. Indeed, 

C= ec= e5o/l-1°sl/l'l = (h'hJ) _ l 
2 

Co/i . 

By Koebe, (C||idD)(z)xdist(z,&D). 
f Non-random fields of several variables are defined similarly but one should keep 

in mind that we need to specify local coordinates for each variable (unless some 
of them coincide). For example, the field diC^G defined as 

;4.s; (C - z)dT(z) in charts 0, ijj) 

is a (1,0)-differential in both variables. 

4.2. Conformal Fock space fields 

0 Let $ denote the Gaussian free field on M. (As a correlation functional, the 
Gaussian free field on a Riemann surface is well-defined as long as the Green's function 
exists.) As in Section 1.4, we define basic Fock space fields Xa as formal Wick's 
products of the derivatives of A general conformal Fock space field is a linear 
combination of basic fields Xa, 

X = 
a 

fot-Xoti 

where the coefficients fa are non-random conformal fields. 
We can define chaos decomposition, Wick's multiplication, and the differential 

operators 9,8 in an obvious fashion so that the space of conformal Fock space fields 
will have the structure of a graded commutative differential algebra (with complex 
conjugation) over the ring of non-random fields. 

o We now want to interpret the values of conformal fields as chart dependent 
correlation functionals. In particular we will explain the meaning of formulas like 
J = h'[Joh], where J J are expressions of 9$ in two overlapping charts. 
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32 LECTURE 4. CONFORMAL GEOMETRY OF FOCK SPACE FIELDS 

The correlations 

E[Xi(pi) • • • Xn(pn)], (pj e M are distinct), 

of conformal Fock space fields are non-random fields of several variables: we define 
them by means of Wick's formula and differentiation rules like 

Е[(даФ)(г1)(дРф)Ы} = 2d^G(Zl,z2). 

In other words, we think of the derivatives of # as Gaussians, and we differentiate 
and Wick-multiply in local coordinates. 

As in Section 1.4, we think of "strings" 

X := rz < T<< - - - Xn(zn) = (X, II 0х)Ы •••(*»» II Фп)(гп) 

as Fock space correlation functionals. Note that X specifies the choice of local charts. 
Any such X determines a linear map 

X : У I—у Е[ХУ] 

on the space of 3̂ 's with nodes in M Sx . (The functionals y also come with chart 
specifications and we define x<< as a subset of M.) 

In particular, the value X(P) of a conformal field X at some point p G M is a 
coordinate dependent functional 

[X(p) II ф) = (Х II ф)(ф(р)). 

Many formulas of conformal field theory (convergence, operator product expansions, 
transformation laws, etc.) are based on this interpretation. 

For example, we say that a field X is a differential if its transformation law is 

(4.4) X = (Xoh)(h')x(h')X*. 
Here 

Х(.):=(Х\\ф)(.) <<r z Х(.):=(Х\\ф)( .) , 
and the equation (4.4) means that for all y. 

E\X(z)y] = h'(z)xh'(z)x-E\X(h(z))y]. 

Equivalently, for all 3̂ , the non-random field р^Е[Х(р)У]<< is a differential in p G M. 
Moreover, it is enough to consider w<<of the form #(pi)0---0#(Pn). 

Examples. — a) # is a scalar field, i.e., a (0,0)-differential, J is a (l,0)-differential, 
and J 0 J is a (2,0)-differential; 

b) The field (see Proposition 3.4) 

T = - 1 
2 
-J* J = - 1 

2 J 0 J + 1 
12 

S 

is a Schwarzian form of order l 
12» 

ci е0"ф is a scalar field but е*аФ is a differential of degrees l 
2 
a2 

1 
l a* 
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4.3. CONFORMAL INVARIANCE 33 

d) J * J = J J i is a (1,1)-differential, see (3.9). 

> The operator product expansion of conformal fields (in particular, the OPE 
multiplication which we used in the examples above) is defined in terms of local 
charts. For example, if X is a holomorphic field, then there are conformal Fock space 
fields Cn such that in every chart (j) we have 

X(0Y(z) = J2(C-z)nCn(z), (C->*), 

where 
X(0 := (X II </>)(C), Y(*) •= (Y II M*). Cn(z) := (Cn \\ <f>)(z). 

It is crucial that we use the same asymptotic scale in all local charts, which results in 
non-trivial conformal structure of OPE coefficients. 

> We often consider the values of conformal fields at boundary points of D (or ideal 
boundary points of a finite Riemann surface M). By convention, we always model 
local coordinate charts on the half-plane H, i.e., we use standard boundary charts 

(j) : U -> </>(U) C H, <f){dM n 17) C R. 

Note that the transition map between standard boundary charts extends by symmetry 
to a map which is analytic at the points in R. For example, the field J = d<f> is purely 
imaginary on dM (in all standard boundary charts). 

4.3. Conformal invariance 

> A non-random conformal field / is invariant with respect to some conformal 
automorphism r of M if 

for all 0, (/II </>) = (/II </>°T-1)-

Note that in this equation we compare f(p) with f(rp). 

M 
u 

T 
tU 

ww M 

xw 4>U 4>ot 1 

FIGURE 4.1. Conformal invariance 

For example, let D be a domain in C and let us write /(z)for (/ ||i<to)(z) . Then 
/ is a r-invariant A,0 -differential if 

f(z) = f(rz)r'(z)\ 
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34 LECTURE 4. CONFORMAL GEOMETRY OF FOCK SPACE FIELDS 

and / is a r-invariant Schwarzian form if 

f{z) = f{rz)<<T'{zf+ßST{z). 

This is because r is the transition between the charts (j) o r 1 and (f> = id£>. 

The concept of conformal invariance extends to multi-variable non-random confor­
mal fields. For example, 

f(zï,z2) = 
w/(z1)wf(z2) 

(w(zi) -w(z2 2' 

where w : D -> M is a conformal map, is a conformally invariant differential in both 

variables. 

> By definition, a random conformal held (or a family of conformal fields) is r-
invariant if all correlations are invariant as non-random conformal fields. 

Clearly, the Gaussian free field is conformally invariant (i.e., invariant with respect 
to the full group Aut(M)), and a family of conformally invariant fields is closed under 
differentiations, <9,9, and Wick's multiplication. So all basic fields are conformally 
invariant. It follows that a conformal Fock space field is r-invariant if and only if all 
its basic field coefficients are r-invariant. It is also clear that the OPE coefficients of 

two conformally invariant fields are conformally invariant. 
Caution: it would be wrong to define conformai invariance by the équation 

[x il 4>) = (x Uor -V 

for correlation functionals. In fact, X is r-invariant if and only if 

E[(X II 0)*(pi) © • • • © *(pn)] =E[(XUo T-^ÌTPÌ) © • • • © $(rpny . 

(This is different from E\(X\\ò)y] = E\(X UoT-^yU 

> The following simple but useful construction (see e.g., Lecture 14) depends on 
conformal invariance. Suppose we have conformally equivalent Riemann surfaces M 
and M. Oiven a conformallv invariant field X on M. we define the field X on M as 
follows. Let f:M->M be a conformal map. We write p=f -l >)> Pj = f -l (Pi). 0 
for a fixed chart at p, and (j) = (f)0f. We set 

E[(X(p) \\<p)y]=E[(X(p) II <j>)y}, 

where y(pi, • - • ,Pn) = $(pi) 0 • • • 0 $(Pn) and y(pu . . . ,pn) = *(pi) 0 • • • 0 $(pn). 
Clearly, X does not depend on the choice of / . 

4.4. Lie derivatives 

Let v be a non-random smooth vector field, i.e., a (—1,0)-differential, see (4.1), on 
a Riemann surface M: it determines a local flow 

tßt:U->M, M*) = «(^tW), z eU, \t\ < l. 
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4.4. LIE DERIVATIVES 35 

Suppose v is holomorphic in some open set U CM [so the flow is also holomorphic). 
For a conformal Fock space field w< we define the Lie derivative CVX in U as follows. 

We first define the fields Xt by the equation of correlation functionals 

(Xt II <t>)(z) = (X y </> o ̂ t)(z), z e tu, \t\ « l, 

where ó is an arbitrary chart in U. 

For example, if M is a domain in C with the identity chart, then the equation is 

'4.5) Xt(z) = (X(1HZ) II V-*) = Wt{z))XWt{z)Y'X(1>tz) 

for (A, a.; -differentials, and 

(4.6 Xt(z) = {i>'t(z))2X(i>tz) + fiS^iz) 

for Schwarzian forms. 

It is easy to see that if X is a differential or a form, then Xt is a differential or a 
form of the same type. 

We now define the Lie derivative of X by 

CVX — 
d 
At \t=o 

Xt. 

As usual, this means that for every chart <j> and every functional y we have 

E[(CVX II 4>)y] = 
d 
dt\ \t=o 

E[(Xt II <t>)y\. 

This definition is very general — the only assumption that we make is that X 
depends smoothly on local coordinates, so the derivative exists. We need higher 
smoothness when we consider commutations of Lie derivatives. Smooth dependence 
on local coordinates can be defined as follows: E[(X\\heo<l>)y\ is a smooth function 
of e = (£i,...,£n; for any ^-perturbation he o (j) of the chart </>, 

h£(z) = z + eivi(z) H h envn(z). 

In particular, the smooth dependence of X on local charts implies that 

'4.7) 
d 

di lt=o 
E[(X | |0o/t--1 <<< = E\(CVX \\6)y] 

for any flow ft(z) = z + tv(z,t) + o(t) with the time-dependent vector field v(z,t) 

(v = v(z,Q)) ). It is easy to see that if X and Y depend smoothly on charts, then so 
does X*nY. 

Lie derivative of a differential is a differential but Lie derivative of a Schwarzian 
form is a quadratic differential. 

Proposition 4.1. — If X is a differential, then 

'4.8 CVX = (vd + vd + Xvf + Kv')X; 
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36 LECTURE 4. CONFORMAL GEOMETRY OF FOCK SPACE FIELDS 

if X is a pre-Schwarzian form of order then 

(4.9) CvX = (vd + v')X + p,v"\ 
if X is a Schwarzian form of order /i, then 

(4.10 CVX = (vd + 2v')X + iiv'". 

Proof — Without loss of generality we can consider the planar case and the identity 
chart. Differentiate (4.5), (4.6) and use (C - z)dT(z)(C - z)dT(z)(C - z)dT(z)w<< 
and (5^)o - v'". • 

It turns out that the converse is also true. For example, 

Proposition 4.2. — Suppose the equation 

CVX = (vd + vd + Xvf + \*v')X 

holds in Dhoi(^) for every vector field v. Then X is a differential. 

Notation. — If v is a smooth vector field in D, then we denote by jDhoi(̂ ) the 
maximal open set where v is holomorphic. 

Proof. — In a fixed chart </> we have 

Xt(z) =X + tLvX + o(i) = X + t(vd + vd + Xv' + Kv')X + o(t)< 

za [l + t\v' + o(t)) (1 + tKv' + o(t)) (X + (fa - z)dX + $t - z)dX + o(t)) 

xw {rt(z))\rt(z))X*X(^tz) + o(t). 

On the other hand, by definition xt = (x |Uo^_t; we have 

(C - z)dT(z)(C - z)dT(z)(C - z)dT(z)(C - z)dT(z)<<< 

which is the infinitesimal version of the transformation law for a differential. • 

The next statement follows from the elementary properties of Lie derivatives that 
we record in the next section. 
Provosition 4.3. — If X is a conformal Fock svace Held, then CVX is also a (local) 
conformal Fock space field. 

4.5. Properties of Lie derivatives 

> Basic properties: 

a) is an M-linear operator on Fock space fields; 
b) cjx) = (cvxy, 
c) E\CVX]=CJE\X\): 
d) Leibniz's rule applies to Wick's products; 
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e) Cv(dX) = d{CvX) and Cv(dX) = d(CvX). 

Let us show that Leibniz's rule also applies to OPE products. 

Proposition 4.4. — If X is a holomorphic Fock space field, then 

CV(X *n Y) = (CVX) *n Y + X *n (CVY). 

Proof. — Without loss of generality we can consider the planar case and the identity 

chart. Suppose 
X{QY{z) = YK-z)nCn(z), d ^ z . 

Then 

Xt(C)Yt(z) = (X II ^t)(0(Y II ^t)(z) 

w< ] ( C - z)n(Cn II tl>-t){z) = V ( C - z)n(Cn)t(z), 

SO 1 Xt *n Yt — (Cn)t. We now take the time derivative at t = 0. • 

> Recall that the Lie derivative of a vector field is defined in the smooth category 
as follows: 

CVlv2 = [vuv2] = 
d2 

dsdtl s=t=0 
(Xs°iPt -1pt°Xs), 

where is the flow of v\ and Xs is the flow of v2\ the local flow of [^i,^] is 

(C - z)dT(z)(C - z)dT(z) If both vector fields are holomorphic, then 

(4.11 £Vlv2 = [vi, v2] = v\v2 - v[v2 and CVlv2 = w<<<< 

which is of course a special case of (4.8). 

Proposition 4.5. — If X is a conformal Fock space field, then 

(4.12) (C - z)dT(z)(C - z)dT(z)(C - z 
(C - z)dT(z)(C - z)dT(z)(C -oo 

in the region where both vector fields are holomorphic. 

Proof. — From the definition of Lie derivative we see that the left-hand side is 

^$$i 

dsdt s=t=0 
(X y x-.o^t)-(x II V-t°X-a)]. 

Expanding the flows up to second order we use iß = vi, iß = vjvi, etc.) I, we get 

Xs ° i>-t = id -tvi - sv2 + 
1 
2 
t\ viv[ + 

1 

2 
s2v2v2 + stviv2 H , 

ip-t ° X-s = id -tvi - sv2 -f 
rz < TRJ, NT = liî rz < TRJ, NT = liî 
rz < TRJ, NT = liî rz < TRJ, NT = liî 

and the statement easily follows if we assume sufficient smoothness with respect to 
local coordinates. • 
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38 LECTURE 4. CONFORMAL GEOMETRY OF FOCK SPACE FIELDS 

> The concept of Lie derivative extends to conformal fields of several variables. 
For example, for 

X(pu--> ,pn) =A"i(pi)---Xn(pn), (pj G M are distinct), 

we fix coordinate charts <j>j at pj, and assuming that v is holomorphic at the nodes, 

we define 

CvX(zi, • • • , zn) — 
d 
dt w<< 

[(X, II 0x O tP-t)(Zl) • • • (Xn II K O tl>-t)(Zn)] -

Proposition 4.6. — Leibniz's rule holds for tensor products: 

Cv[X1(Pl)X2(p2)] = [CvX1(Pl)]X2(p2)-h[CvX2(p2)]X1(Pl). 

For example, if X is a tensor product of differentials, then 

CVX — 

3 

'y(pj)dj + v{pj)dj + Xjv'(pj) + A*ji/(pj)] X. 

> As we mentioned, Cv depends M-linearly on v. It is convenient to separate the 
C-linear and anti-linear parts of the Lie derivative. Denote 

(4.13) (C - z)dT(z)(C - z)dT(z)(C - z)d Liv, 

so that Cv = + Cv and Cv = in the following sense: jßyX jßyX . 

For example, if X is a tensor product of differentials, then 

4.14) CyX — 

j 
?{P3)d3+X3V'(P3)]Xi 

and c+x = cvx in the case of forms (see (4.9), (4.10), and (4.13)). 

It is easy to justify the corresponding Leibniz's rule for and also to verify the 
identity 

(4.15) J~V1J~'V2 ^2^1 ~~ [̂vi,V2]* 
For example, using (4.12) and (4.13) we have 

(C - z)dT(z)w<< 1 

4V 
[̂V1,V2]x<<̂ [tVi, xwww^[ÌV1,V2^bl,ÌV2]) — ^[vi,^]' 
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LECTURE 5 

STRESS TENSOR AND WARD'S IDENTITIES 

We define the stress tensor for a family T of conformal Fock space fields as a pair 
of quadratic differentials which represent the Lie derivative operators in application 
to the fields in T (and their tensor products). The corresponding formulas are known 
as Ward's identities. More precisely, for every local holomorphic vector field v, we use 
the quadratic differentials to construct a functional ("generalized random variable") 
W(v) such that the action of the operator CV on any string of fields in T is equiva­
lent, in correlations with arbitrary Fock space fields, to the multiplication by W(v). 
Alternately, the stress tensor W can be defined as the correspondence v h-> W(V). 

The existence of W is not at all obvious, and in fact it is a very special property 
of some particular families of Fock space fields. In this lecture we mostly discuss 
various forms of Ward's identities. We will comment on the nature of existence of 
stress tensor in the appendix to this lecture. 

5.1. Residue operators 

Let A be a Fock space holomorphic quadratic differential in D, let p G D, and let 
v be a non-random holomorphic vector field defined in some neighborhood of p. Then 
for every Fock space field X we define the correlation functional 

1 
2m << 

vAX(z) in a given chart 0, w<<<<= z) 

as a map 

AT i—• lim 1 

£->0 2iri \t-z\=s 
víC)E\A(C)X(z)X]dC9 

where X is any Fock space correlation functional with nodes in D \ {p}. 

This functional is of course just the residue term {vA)*-\X in the operator product 
expansion of vA and X, see Section 3.2, and therefore by Proposition 3.1 it can be 
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expressed as the value of some Fock space field. We can view the map 

X(z)*-+ 
1 

2m [z] 
vAX(z) 

as an operator on correlation functionals (represented by the values of Fock space 
fields); we denote this operator by 

AJz) = 
1 

2m w<< 
vA. 

Varying 2, we can also think of Av as an operator on Fock space fields: 

AvX)(z) = Av(z)X(z). 

Proposition 5.1. — We have 

(C - z)dT(z)(C - z)dT(z)(C - z)dT(z) 

Proof. — By Leibniz's rule (Proposition 4.4) we have 

AV1C+X = (VlA) *_! (£+ X) = £+ UVlA) *_i X] - [Ct(viA)i *-i x 

= Ct2AVlX-[Ct2{vlA)\ 

Similarly, 

AV2CtxX = Ct,AV2 - [Cl(v2A)] *_x X. 

Since v\A and v2A are (l,0)-differentials, by (4.14) we have 

¿Í>ii4) = v2d(v1A) + v'2vxA = v2v[A + v'2vxA + vxv2dA = £+(v2A), 

which proves the statement. • 

For an anti-holomorphic quadratic differential A we define 

(C - z)dT(z) 1 

2m x< 
vA 

This operator is anti-linear in v, and if A~ = A, then A~ =x<< 

5.2. Stress tensor 

Let X be a Fock space field in D. By definition, a pair of quadratic differentials 

W = (A+,A~) 

is a stress tensor for X if A+ is holomorphic, 4̂ anti-holomorphic, and the following 

equation (the "residue form of Ward's identity") 

(5.1) CVX = A+X + A~X 
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holds in -Dhoi(̂ ) for all non-random local vector fields v. (Recall that we write Dhoi(^) 
for the maximal open set where v is holomorphic.) Thus we require that the equation 

CyX(z) = 1 
2ni to 

vA+X(z) -
1 

2ni x<< 
vA~X(z) 

holds in all charts and for all vector fields v holomorphic in a neighborhood of z. 
The differentials A± (if they exist) are not uniquely determined by equation (5.1). 

Moreover, we can add (anti-)holomorphic non-random fields — they will not change 
the residue operators. For example, the Virasoro fields determine the same residue 
operators as the differentials A± do for local holomorphic vector fields. We will discuss 

this in the next lecture. 

Notation. — F(W) = F(A+,A-) is the linear space of all Fock space fields X 
such that If is a stress tensor for X. Clearly, this space contains the scalar field I 
'I(z) - 1). 1ÎT(W] is closed under complex conjugation, then we can choose 

A+ = A, A' = A; 

and 

5.2) X e T(W) if and only if C+X = AVX, C+X = AVX. 

In what follows, we will only consider the case W = (A.A). There is no difficulty 

in extending results to the anti-symmetric A~ ¿A+ ) case. 

Proposition 5.2. — If X £ T(A,A), then 

[AVl,AV2]X— A[Vl^V2]X. 

Proof. — Since AVjX = C+X, it follows from Proposition 5.1 and (4.15) that 

[AVl,AV2]X (C - z)dT(z)— — C^V2^X — -A[VltV2]X. • 

5.3. Ward's OPEs 

We can restate the definition of stress tensor in terms of the singular part of the 
operator product expansion. For a given chart (j) : U^$ùù(f)U and C e C, let us denote 
by vc the (local) vector field defined by the equation 

k II 4>M = 
i 

C-T) 
w< 

This vector field depends on </>.) Then we have 

[5.3; Singc^ [A(C)X(z)] = 
1 

2m to 
vçAX(z), z e <t>U, 
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42 LECTURE 5. STRESS TENSOR AND WARD'S IDENTITIES 

where the left-hand side means the singular part of the operator product expansion 
in chart 6. Indeed, if 

A(ri)X(z) ~ V CjWri - z)\ (n —> z), 
w<p^ùm 

then using 
1 

2m mm 
(rj-z) j 

dn 

C-v 
= (C - zY, (j < - 1 ) , 

we derive 

(5.4) 
1 

2m x<< 
A(rj)X(z) 

drj 

C-v 
<<^ùm 

u^ùmm 
Có{z){C-zy. 

Proposition 5.3. — X e F(A,A) if and only if the identities {"Ward's OPEs') 

Smg^z [A(C)X(z)] = (Ct(X)(z), S i n g ^ [A(QX(z)] = (£+*)(*) 

hold in every local chart (j). 

Proof. — If X G F (A, A), then 

Singc_>, [A(C)X(z)] = 
1 

2m to 
vcAX(z) = (£+*)(*) 

by (5.3) and the definition of stress tensor. In the opposite direction, we need to show 
that 

1 
2m << 

vcAX(z) = (£+*)(*) implies 
1 

2m (z) 
vAX(z) = (£+*)(*) 

for all vector fields v holomorphic near z. Let us write / for (v II </>). By Cauchy, 

v = 
1 

2ni 
f(C)vcdC 

integration is over some simple curve surrounding z), and since £+ is C-linear with 
respect to v, we have 

C+X(z) = 
1 

2ttz 
/(C)£+X(z)dC 

o^m 
l 

27T2 / ( 0 dC 1 
2ttz x<< 

vcAY(*) = 
1 

2m < 
(C - z)dT(z) • 

In the case of differentials or forms, it is enough to verify Ward's OPEs in just 
one chart, e.g., in the half-plane uniformization. This is clear from the corresponding 
transformation laws. 

Corollary 5.4. — Let X be a ( A, A* -differential. Then ,Xcwwww^^ if and only if the 

followina operator product expansions hold in every/some chart: 

5.5 A(QX{z) ~ 
XX(zsq<<dX(z) 

:c-z)2 c-z 
(C - z<)dT(z) 

KX(z) dX(z] 
(C -<<< z)dT(z) 

ASTÉRISQUE 353 



5.4. STRESS TENSOR OF GAUSSIAN FREE FIELD 43 

Corollary 5.5. — Let X be a form of order ¡1. Then X e Ti A, A) if and only if the 
following operator product expansion holds in every/some chart: 

A(QX(z) ~ 
x< 

<^$*ù |2 + 
dX(z) 

(C - z)dT(z) 
for a pre-pre-Schwarzian form X; 

A(OX(z) ~ 
2\i 

:c-z 3 + 
X{z) dX(z) 
C-z) + 

C-z 
for a pre-Schwarzian form X; 

A(C)X(z) ~ 6/i 
C-z] x< + 

2X z) dX z) 
X-z) 2̂ + 

C-z 
for a Schwarzian form X. 

By Proposition 4.2, we also have the following:: 

Corollary 5.6. — Suppose X e Ti A, A). Then X is a differential if and only if the 
operator product expansions (5.5) hold for X. 

5.4. Stress tensor of Gaussian free field 

Let us return to Proposition 3.5, where we stated some operator product expansions 
involving T = -\J * J; as usual J = d$ and is the Gaussian free field. Denote 

A = — 1 
2 

J 0 J. 

Then A is a holomorphic quadratic differential and A coincides with T in the upper 
half-plane uniformization. The first relation a) in Proposition 3.5 can be written as 

A(Q*(z) ~ 
d$(z) 
C-z 

Applying Corollary 5.4 we conclude: 

Proposition 5.7. — We have $ G Ti A, A). 

The other three relations in Proposition 3.5 imply that W = (A, A) is a stress 
tensor also for the fields J, T, and Va. Indeed, as we mentioned, it is sufficient to 
check Ward's OPEs in just one chart, and in the case of half-plane uniformization, 
this is what our relations give. Note that we have arrived to this conclusion as a result 
of (rather lengthy) Wick's calculus computation. There is a much easier way — the 
proof of Proposition 3.5 is immediate without any computation from Proposition 5.7 

and the following fact. 

Proposition 5.8. — a) IfXe T(W), then dX e T(W). 

b) All OPE coefficients of fields in T(W) belong to T(W). 

The first statement is of course a simple special case of the second one. (Recall 
that the non-random field [ I(z) = 1 is in F{W) and dX = X *i / . ] We will explain the 
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proof of the second statement in the next section. There is a short algebraic argument 

in the case of holomorphic fields X and Y. In this case, 

C+X = (vA) *_! X, CtY = (vA) *_! y, 

and we need to check that £+(X *„ Y) = (vA) (X *„ F . By Leibniz's rule, the 
left-hand side is 

(C - z)dT(z)(C - z)dT(z) 

while 

(5.6) (vA) *_! (X *n Y) = [(vA) *_! X] *n F + X *n [(vA) *_i F] 

= (£+X) *nF + X*n (£+y), 

see (7.2) below. • 

Proposition 5.8 allows us to construct infinitely many fields in the family T(W). 
On the other hand, the field . A = i 

2 
J 0 J itself is not in T(A, A) because otherwise 

it would have the operator product expansion (5.5) (as a differential). But, by Wick's 
calculus, we easily verify 

E\A(QA(z)] = 
1/2 

w<<< ̂ ù (in H). 

Further examples of fields which have a stress tensor can be obtained by various 
modifications of the Gaussian free field, see Lecture 10. The simplest modification is 
the following. 

Example. — Let u be a real-valued harmonic function in D. Define 

$ = $ + u, 

where $ is the Gaussian free field and denote 

A = - 1 
2 

JeJ-(du)j. 

Then (A, A) is a stress tensor for 3>. 

If we take u complex-valued, we will get an asymmetric stress tensor w<<,;:! 

for where Á+ = A is as above, and 

A~ = -
1 

2 
J 0 J - (du)J. 

5.5. Ward's identities 

Let W = (A, A) be a stress tensor for some family of Fock space fields. We will as­
sume that A is continuous up to the (ideal) boundary in the sense that all correlations 
of A(.) with Fock space fields extend to dD continuously; we understand continuity 
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on the boundary in terms of standard boundary charts. See the end of Section 4.2. 
For a smooth vector field v in D continuous up to the boundary, we define 

;5.7 W(v) = 2RW+(v), W+(y) = 
1 

2m dD 
vA — 

1 
7T D 

dv)A. 

Since vA is a linear form, and (dv)A is a (1,1)-differential, the integrals are coor­
dinate independent, and by the continuity assumption, their correlations with Fock 

space functionals X are well-̂$$$d̂^̂ êfined provided that Sx C Dhoi(v). (Recall that we 

write sx for the set of all nodes of X and Dhoi (v) for the maximal open set where v 
is holomorphic] 

The application of "random variables" W(v) is based on Green's formula 

2% 
D 

dg = g. 
^x<< 

For example, since (dv)A = d(vA) in D, we have 

EW+(v) = 0. 

By Green's formula we can write symbolically 

W+(v) = 
1 

w<< ID 
v(8A); 

however, to interpret this integral as a correlation functional we need to integrate by 
parts and therefore use the definition (5.7). 

We can extend the definition of Ward's "random variables" to the case of local 

vector fields. Namely, for an open set U C D we denote 

W+(v;U) = E 
2m IdU 

vA — 
1 
7T lu 

{8v)A, 

so that W+(v) = W+(v:D). and (with a usual interpretation] 

AJz) = 
1 

2m » 
vA = lim W+(v,B{z,s)), (z G Dhol(v)). 

Green's formula shows that if U\ C U2 and if X has no nodes in the closure of U2 \ U\, 

then 
E[W(v]Ui)X] = E[W(v;U2)X]. 

In particular, in the computation of E\W(v)X] we can replace D by the union of 
small discs around the nodes of X. 

Proposition 5.9. — Suppose {Xj} C F{W) and {zj} cUn Dhoi(v). Then 

5.8 E y ^ M • -Xnizn)] = W(t;;£7)Xi(^i) • • • Xn(zn)y 

for all correlation functionals y with nodes in D\U. 
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Proof. — As mentioned, we can replace U with the union of small discs Uj 
around w<<< Clearly, W v:U << W{v;Ud). Let us also use a partition of unity to 
represent v = <p^ùm where Vj =v in Uj and Vj — 0 in other discs. Thus the statement 
reduces to the case of a single node, where the formula is iust the definition (5.1) of a 
stress tensor. • 

We emphasize that Ward's identities (5.8) hold for any choice of local coordinates 
at the nodes Zj. Their meaning is the following: we can represent the action of the Lie 
derivative operator Cv by the insertion of the "random variable" W(v) into correlation 
functions, and this works collectively for all fields in the family T(W). 

The last proof gives the following restatement of the definition of a stress tensor in 

terms of Ward's identities (cf. Appendix 6). 

Proposition 5.10. — W = (A, A) is a stress tensor for X if and only if the following 
equation holds for all vector fields v with compact supports, for all points z G Dhoi(̂ )5 
and for all Fock space functionals Z with nodes outside supp(i>): 

ECvX(z)Z = EW(v)X(z)Z. 

We can use this restatement to derive: 

Proof of Proposition 5.8. — The argument works for all types of operator product 
expansions, but for simplicity of notation we assume that X, Y are holomorphic, so 

we have 
X(OY(z) = VJ(C - z)nCn(z). 

We want to show that 
ECvCn(z)Z = EW(v)Cn(z)Z. 

As in the proof of Proposition 4.4, we have 

EXt(OYt(z)Z = V ( C - z)nE[Cn}t(z)Z. 

Taking the time derivative at t = 0 we get 

m 
dt t=o 

EXt(Ç)Yt(z)Z = ECv[X(C)Y(z)}Z 

= EW(v)X(C)Y(z)Z = ](C - z)nEW(v)Cn(z)Z, 

d 

di it=o 
(C - z)nE[Cn]t(z)Z = V(C - z)nECvCn(z)Z. • 

5.6. Meromorphic vector fields 

Let v be a meromorphic vector field in D continuous up to the boundary, and 

let {pj} be the poles of v. We define 

W(v) = lim W(v;UE), 
£-»0 
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where Ue =D\\jB<<(Pj,s)<. (We can use any fixed local coordinates at the poles.) 
Somewhat symbolically, we have 

W+(v) = 1 
2m , 

JdD 
vA -

j 
2m 
1 

(Pj) 
vA, 

and also 

5.9̂  W+{v) = 
1 

2m dD 
vA -

1 

7T <<< 
[dv)A 

(as in the case of smooth vector fields) with the interpretation of dv in the last integral 
in the sense of distributions. 

Our goal now will be to express the differential A in terms of Ward's functionals 
W{v) with meromorphic v's. We will only consider the case where A is continuous and 
real on the boundary (in standard boundary charts); this will allow us to extend A 
to the double of D accordingly. We will do our computation in the half-plane HI and 
use the global identity chart in C; note that C is the double of HI. In the next section 
we combine the obtained representation of A with Ward's identities (5.8) and derive 
some useful equations for correlations involving the stress tensor. 

Proposition 5.11. — Let A be a holomorphic quadratic differential in HI, and W = 
w<<< ). Suppose A is continuous and real on the boundary {including oo). Then 

(5.10* (A||id)(C) = w > < ) + w + (Vf), 

where we use the notation 

>C II id)(*) = 
1 

pùm^$$ 
X e C). 

We understand the equation (5.10) in the sense of correlations with Fock space 
correlation functionals with nodes in EI \ {£}• Note that EA = 0 by assumption: in 
the identity chart of H, EA is a holomorphic function vanishing at infinity. 

Proof. — Let us start with a general observation which works for arbitrary Riemann 
surfaces. If v is a meromorphic vector field in C without poles on R U {oo} such that 

the reflected vector field 
v*{z) = v{z), zeC, 

is holomorphic in H, then we have (see (5.9)) 

W+{v) = -
1 
7T ( JD 

{dv)A + 1 
2m . dD 

vA, W+{v*) = 1 
2m lpm^ù 

v*A. 

Since A = A on R, we have 

1 
2m ]dD 

vA = — 
1 

2m dD 
v*A = -W+{v*), 
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and 
w< 

7T D 
[dv)A = -W+(v) - W+{v#). 

Let us choose V = VÇ with <^$ùùù We could have chosen v = vs + a + bz + cz2] note 
that v = z3 as a vector field has a pole at infinity.) Then if* — Vç and dv = — irôç, so 

1 

7T D 
dv)A = -A{Ç). • 

5.7. Ward's equations in the half-plane 

We continue to consider the case D = HI with the global identity chart. 

Proposition 5.12. — Suppose A satisfies the conditions of the previous proposition. 
Let X = X\ - - • Xn be the tensor product of < 3 i *3 ) -differentials Xj in F(W). Then 

(5.11 EA(C)X = 
3 

dj_ 
.a -z iw + 

w<< 

X - Zj. i2 
+ 

^ù** 

C-Zi 
+ 

Kj 

X-zj 2 EX, 

where all fields are evaluated in the identity chart of H and dj=dZj. 

Proof. — Let us choose V = V( with ( G E Then (C - z)dT(z) By Ward's identities (5.8), 

we have 
EW+(vc)X = E£+cX = 

3 

w<< 
-Ç-Zj + 

<^ùm 
^*poo 2 EX, 

EW+{v¿)X = EC^X = 
3 

w<< 

-C - Zj 
-f 

<p^$ 

X - Zj] 2 EX. 

Note that 

EW+(vz)X = EW+(v£)X = 

3 

w<<< 

.(-Zj + 
\*j 

(C-Zj I2 EX, 

and apply Proposition 5.11. • 

We repeat that we have derived the equations (5.11) in the half-plane uniformiza­
tion. Furthermore, we assumed that A was real on dD and has no singularities. For 
example, in the case of non-trivial boundary condition = $ + u, where $ is the 

Gaussian free field and it is a real-valued harmonic function in D, see Section 5.4 and 
Section 10.4), the differential 

A = -
1 

2 
j Q j - ( d u ) J w < < 

is not necessarily real on dD and A may have singularities. It is of course not difficult 
to derive Ward's equations for A — they will be different from (5.11). 

Here is a generalization of the last proposition. 
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Provosition 5.13. — We assume that A satisfies the conditions of Provosition 5.11. 
LetY,Xu...,XneJr(W)<< and let X be the tensor product of w<< Then 

E(A * Y)(z)X = EY(z)C+X + EC~V% [Y(z)X], 

where all fields are evaluated in the identity chart of EL 

(Proposition 5.12 is the special case when Y is the scalar field / , i.e., Y(z) EE 1.) 

Proof. — By Proposition 5.3 we have 

(A * Y){z) = lim [A(QY(z) - (CCF)(Z)J 

we subtracted the singular part of operator product expansion). We have 

E[A{QY{z)X] = E[W+Y{z)X] + E[W+Y(z)X] 

= EC+([Y(z)X] + ECZ^YWX] 

= EY(z)CZ(X + E{C+(Y)(z)X + ECT [Y(z)X]. 

It follows that 
E[(A*Y)<<<(z<<)X]w<<<< = KmE[Y(z)<<<<C+(X]<<+EC;([Y{z. • 
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APPENDIX 6 

WARD'S IDENTITIES FOR FINITE 

BOLTZMANN-GIBBS ENSEMBLES 

We will construct the stress tensor v i—y W(v) for the density fields of finite 
Boltzmann-Gibbs ensembles and derive the corresponding Ward's identities (well-
known in the literature under the name of the loop equation). We hope that this 
discussion will somewhat clarify the meaning of the stress tensor of statistical models. 
(A similar intuitive approach in the context of functional integration is one of the 
standard methods of introducing stress-energy tensor in quantum field theory.) 

Consider the following probability measure in Cn : 

(6.1) 
1 

w<< 
e11 << dr/|; Zn = 

cn 
<pm x<< <^ùm w<<,;:! 

where dn\ is the Euclidean volume, and H = Hin) is a given real smooth function 
which has sufficient growth at oo. 

For example, the probability measure (6.1) corresponding to 

6.2̂  (C - z) 1 
2 

w<< 

(C - z)dT(z) 2 - 2n 
3 

(C - z)dT(z)(C - z)dT(z) 

where Q(v) >̂ log |rj| is a given real function, describes the distribution of eigenvalues 

of n X n random normal matrices. 

Let v be a smooth vector field in C (with compact support), and let ibt denote its 
flow. We will write tyf for the flow {Vj} »-> {il>tVj} in Cn. 

Changing the variables n = *t(A), i.e., rjj = ipt(xj) , we get 

<p^ùmm e"' ro^t T 

where the Jacobian Jt is given by the equation |dw| = J£(A)|dA|,so 

Jt = 1 + 2t»Ti:fovl + ••• . 
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We use the notation t^[/] = e/(aj-: and o for composition.) Denote 

Wv = W[v] = d 
dt\ t=o 

[Ho9t + Jt] = 
3 

[vjdjH + VjdjH] + 2JRTr[<%], 

where (C - z)dT(z) and dj =dXj. Clearly, W is a R-linear map taking vector fields 
to random variables and its C-linear component is 

W+[v] = 
3 

VjdjH+ Tr[dv\. 

In the random normal matrix case (6.2) we have 

(C - z)dT(z) 1 
2 x<< 

v(Xj)-v(Xk) 
Xj — Xk 

-2nTr[v0Q] + Tr[0v]. 

Let F = F(X) be a random variable on Cn. Denote 

VVF = d 
dt\ t=o 

Fo^t = [vjdjF + VjdjF]. 

Its C-linear component is of course > V+F = VjdjF and W+[v] = V+tf + Tr[dv}. 
Note that x< is a differentiation (i.e., Leibniz's rule applies) in the algebra of 

random variables. 

Proposition 6.1. — We have 

(6.3; ^[WMF] + E[VVF] = 0. 

Proof. — One writes 
d 
dt t=o 

E[Fof_ t ] << 1 d 
Z dt t=o 

(C - z)dT(z) x<< 

<< 
1 d 
Z dt t=o 

FeHovt Jt << 
n 
z FW[v]e H 

• 

It follows that E[W+[v]F] + E\y+F] = 0, in particular JEfWH-ft;]] = 0 ("loop 
equation"), 

Consider now the density field p of the point process (6.1). By definition, p is a 
(1, l)-differential such that 

fp = 
1 
n 

x<<pml 

for all (scalar) test functions / . 

Proposition 6.2. — If v is holomorphic in a neighborhood of z, then 

(6.4) Vvp(z) = -Cvp(z). 
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Proof. — For a test function f supported in the region where v is holomorphic, con­

sider the random variable 
1 

n 
Tr[f) = fp. 

Then 
1 

n 
TW/]o¥ p^ùm 

1 
n 

(C - z)dT(z) fo^_t)-p = ' fpt. 

Taking derivative in t we get 

< fVvP = fCvp. 

• 

Combining (6.3) and (6.4) we conclude 

E[Cvp{z)}=E[Wvp{z)}. 

More generally, applying Leibniz's rules to Cv and Vv we get the following: 

Corollary. — We have (as in Proposition 5.10) 

E£v \p(Zl) • • • p{zk)] = E[Wvp(z!) • • • p(zk)}. 

If a statistical model has a properly defined scaling limit as n —> oo, then one 
can ask the question about the validity of Ward's identities in the limit. For exam­
ple, the rescaled density field (subtract expectation and multiply by n) of a random 
normal matrix model (6.2), under some rather general conditions, converges to the 
Laplacian of the Gaussian free field with free boundary conditions on some compact 
set S = S[Q], see [1]. Taking the logarithmic potential of the density field and sub­
tracting the terms corresponding to the boundary, one can recover the expression for 
the stress tensor of the Gaussian free field from Section 5.5. 
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LECTURE 7 

VIRASORO FIELD AND REPRESENTATION THEORY 

LetW = (A,A) be a stress tensor for some family T of Fock space fields. (We can 
assume that T is the maximal such family and write . T = T(W) in this case.) As 

we mentioned, in general the holomorphic quadratic differential A does not belong 
to T(W). The theory gets much more interesting if we can find a holomorphic field T 
which does belong to T(W) and which produces the same residue operators (for 
holomorphic vector fields) and therefore the same Ward's "random variables" W+(v) 
as the differential A does. In the appendix to this lecture we will show that under 
some rather general conditions (the family T has to be conformally invariant), such a 
field T exists and is a Schwarzian form. In this lecture, we will take this last property 
for the definition of the Virasoro field T. The Virasoro field of the Gaussian free 
field $ is 

T= -
1 
2 

J * J, J w<<< 

see Section 3.4. Further examples will be given in the next lecture. 

It should be mentioned that the whole theory could be constructed (as is custom­
ary in the conformal field theory literature) without representing the stress tensor 

(C - z)dT(z) in terms of quadratic differentials A, A — we could have just defined T as 
a Schwarzian form satisfying the Virasoro operator product expansion (with central 
charge c) 

7.1 T(QT(z) ~ 
l 
2 

C 

(C-z. 4 + 
2T < 

[C-z, 2 + 
dT z) 
C-z 

<< 

In our approach, we are trying to separate two different issues. As we argued in 
Appendix 6, for certain fields of statistical mechanics one can expect the existence 
of Ward's identities and the stress tensor. This aspect is not specific for 2D (in the 
smooth category). On the other hand, it is remarkable that conformal invariance in 
two dimension then gives us a Schwarzian form with the stated properties. 
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The material of this lecture is completely standard, see e.g., [11]; we just adapt 
it to the setting of Fock space fields. For the sake of completeness we recall some 
elementary facts of representation theory, in particular, the description of level two 
singular vectors, which we will use later in connection with the SLE theory. 

7.1. Virasoro field 

By definition, a Fock space field T is the Virasoro field for the family ?(A,A) if 

a T e T(W), and 

b) T — A is a non-random holomorphic Schwarzian form. 

fin the asymmetric case W = (A+,A-) one should consider two fields T± with the 
corresponding properties.) 

The Virasoro field T is unique (if exists). Indeed, if we have two such fields Ti,T2, 
then the non-random holomorphic Schwarzian form / := Ti - T2 belongs to T(W). 

Therefore, 
(C - z)dT(z) l 

2m vAf(z), 

and it is clear that ^w< vAf(z) = 0 for all holomorphic local vector fields, hence 

by (4.10) 
Ctf = vf' + 2v'f + iivf" = 0. 

Considering constant and linear vector fields r/, we see that / has to be zero. 

It follows that the order of T as a Schwarzian form is uniquely determined; tradi­

tionally it is denoted by l 
12 s, and c is called the central charge of the family F(W). 

Since the fields T and A determine the same residue operators for local holomorphic 
vector fields, we can replace A by T in the local Ward's identities 

CÎX(z) = 1 
2m << 

vTX(z) 

as well as in Ward's OPEs, see Sections 5.2 and 5.3. We can also use T to define the 
functionals 

W+{v) = 
1 

2ni ho 
vT w< 

1 

7T D 
Ttdv\ 

though we now need to use Green's formula to interpret such integrals. Since T 
belongs to T(W) and T is a Schwarzian form, by Corollary 5.5 we have Virasoro 
operator product expansion (7.1), which shows in particular that we can find the 

central charge from the relation 

c = 2 lim 
^ùmm 

w<p^m |4 EAlQAlz). 

In the simply connected case it is often convenient to choose A so that 

A = T in (EL id). 
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(Recall that unlike T, the differential A is not uniquely defined — we can add 
non-random holomorphic quadratic differentials to A ) If T is real and continuous up 
to the boundary, then Ward's equations in Section 5.7 obviously hold (in H) with T 
instead of A. 

Example. — As we mentioned, T= - l 
2 
J* J is the Virasoro field for the Gaussian free 

field. The central charge is c= 1. Indeed, if we set A = -l 
2 
x<<ùm then W = (A,A) is 

a stress tensor for the Gaussian free field, see Proposition 5.7. Then T is the Virasoro 
field because 

a) T e F(W) by Proposition 5.8; 

b) T is a Schwarzian form of order l 
12 

C= 1 by Proposition 3.4. 

Examples with c ̂  1 will be given in Lecture 10. 

Our next goal is to explain the relation of the Virasoro field to the representation 

theory of the Virasoro algebra. 

7.2. Commutation of residue operators 

It will be important to extend the definition of residue operators 

TJz) = 
1 

2TTZ w<< 
vT in a given chart 0), 

see Section 5.1, to the case of meromorphic (local) vector fields v. Note that if v has a 

pole at z, one has z) ^Av{z) and unlike AVi the operators Tv are chart dependent. 

Since this part of the theory is local, we can work in a fixed chart and consider the 

operators 

Yf(z) = 1 
2iri [z 

/ ( C ) n O d C 

for arbitrary holomorphic Fock space fields Y and meromorphic non-random func­
tion / . (We do not require / to satisfy any particular transformation rule.) The 
following commutation identity is the source of many useful relations, and is a typical 
example of the contour integration technique in conformal field theory. 

Proposition 7.1. — Let Y1 and Y2 be two holomorphic Fock space fields, and let fi 
and /2 be meromorphic functions. Then 

(C - z)dTw<(z) 
(C - z)dT(z)w< 

1 
27T2 < 

/2(7?) dry 
1 

2ni 
< 

(C - z)dT(z)(C - z)d 

Proof. — Let us check the identity in application to Zlz); X denotes an arbitrary 

string satisfying w<< z £ Sx. Let C_, C, and C+ be three small circles around with 
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increasing radii. The nodes of X and the poles of / other than z should be outside of 
the discs. We have 

EXYÌYÌZ(z)x< x<< 
1 

2m 
EX 

kec+ 
fi(OYl(Ç)Y?Z(z)dÇ 

^w< 
1 

{2m |2 
EX 

<<p^m 
fi(C)YHOàC 

xww 
h{rì)Y2{rì)Z{z)drì 

c<< 
1 

2m) 2 EX 
<ujj f^ec 

f1(C)f2(v)Y1(C)Y2(v)Z(z)dr1dC 

Similarly, we compute Yf Y} 
/2 fi 

Z(z) integrating the variable of /2 over the bigger cir­
cle (C) and the variable of f\ over the smaller circle (C_), 

EXY2Yf\Z(z) = 
1 

(2m 2 
EX 

x<<< rjec 
h(Of2(v)Y1(OY2(rì)Z(z)d(wdrìw. 

Subtracting, we get 

EX [Yk>Yh\z(z) = 
1 

(2m ,2 -EX 
rjec 

Î2{rj)à'n 
Ce[c+-c-} 

f1(C)Y1(OY2(r1)Z(z)dC 

<^ù 
1 

[2m 2 
EX 

w<< 
/2fa) dry 

(1) 
/i(C)rW2fa№)dC<w, 

• which completes the proof. 

Similar formula holds for the commutator p^ùm w< <^ùm w< < 

Examples. — a) Set Y1 = X and F2 = Y. If we take = then the inner integral 

gives the field X *_i Y. Taking /2(7?) = (r]-z) -n-l by Proposition 7.1, we get 

[A-._i,y*n]Z(s) = (X *_! y) .„ Z(z), 

which can be rewritten as Leibniz's rule: 

(7-2) X *_! (Y *„ Z) = (X *_! y) *n Z + y *„ (X *_i Z). 

This is the formula (5.6) we mentioned in Section 5.4. 

b) If X and y are holomorphic, then 

<^ù X * (Y * Z) - Y * (X * Z) = [X,Y] * Z, 

where [X,Y] = X * Y - Y * X. This follows from a similar argument with 
/ i (0 = 1/(C - z) and /2(T?) = 1/(7/ - z). 

In the case of residue operators of the Virasoro field, the commutation identity has 
the following form. 
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Proposition 7.2. Let T be the Virasoro field, and let Vu v2 be (local) meromorphic 

vector fields. Then in any given chart, we have 

TVl{z),TV2(z)] =-T[vuV2](z)- c 
24 2?ri 

1 

w<< 
fi(C)Yw<<HOàC 

and TVl(z),TV2(z)} = 0. 

Proof. — Let us compute the residue ww in Proposition 7.1. By Virasoro operator 
product expansion (7.1) and Taylor series expansion of vu 

vi(()=v1(r1) + v,1(r1)((-rì) + 
i^ùm 

2 
(C-v) 

2 
+ 

fi(C)YHOàC 
6 

<^*ù ̂3 
d<< 

the residue is 
1 

2ni w<< 
v1(QT(C)T(r¡)dt=(vidT + 2v'1T + c 

12 
<cv p^$ù 

Next we compute 

1 
2TT¿ w< 

V2{T])ári 
1 

2TT¿ < 
i7i(C)T(C)T(ri)dC 

<o 1 
2TT¿ ox< 

v2(ri){v1dT + 2v,1T){rì)àrì + c 
12 

1 
2TT¿ x< 

fi(C)YHOàC 

The first integral in the right-hand side is 

1 
2ni < 

2(v2v[T)(r))drì-
1 

2TTÌ w< 
(v2v1),(rì)T(rì)dri = 

1 
2TT¿ 

x<< 
[v2,i;i](7/)r(T7)dT7, 

and clearly 
< 

2m z 
]v2v"')(ri)dri = 

^ù 

2TTZ <^$ 
( t ; i t # ' ) 0 ? ) dry. 

Since the operator product expansion of T(C)T(V) has no singular part, the second 
formula follows from Proposition 7.1. • 

Remark. — In the special case of holomorphic vector fields, we get 

fi(C)w<<<<YHOàC 

where the operators act on arbitrary Fock space fields. This, of course, implies 

[A-vi i AV2] — A^VliV2^ 

which is a stronger statement than Proposition 5.2 where the action is restricted 
to fields in F(W). This extension of Proposition 5.2 has been obtained under the 
assumption of the existence of the Virasoro field. In Appendix 8 we will reverse the 
argument and derive the existence of T from Proposition 5.2. 
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60 LECTURE 7. VIRASORO FIELD AND REPRESENTATION THEORY 

7.3. Virasoro algebra 

Let A denote the (Witt's) Lie algebra of meromorphic vector fields in C with 

possible poles only at 0 and oo, 

A = Lin{4 : n E Z } , [ImJni = (m- n)£m+ni 

where 
( 4 1 idcXO = -< c1 •fn 

Given a chart 0 at p E £>, we can embed .4 into the algebra of local meromorphic 
vector fields at p: 

4 — > - ( C - * ) n+l in chart 0, 0(p) = z). 

Proposition 7.2 shows that the local operators -Tv(z) (defined in chart <j>) provide a 
projective representation of A, i.e., a Lie algebra homomorphisms 

A->C(H)/C-I, 

where H is the linear space of Fock space fields evaluated at z in chart 0, and C(H) is 
the algebra of linear maps. Equivalently, a projective representation is a linear map 

Q : A —> C(H) 

such that 
[gvi, gv2] = q[VI , v2] - u{vi, v2) - J, 

where a; : .4 x -> C satisfies the cocycle equation 

W([VUV2],V3) +U>([V2,V3],Vi) +U)([V3,V1],V2) = 0. 

It is known [19] that (essentially) the only possible form of such a cocycle is 

U{Vi,V2) = 
c 1 
24 2iri (o; 

: ^ i - < ^ 2 ) ( c ) d c , 

where c is a constant factor. (Adding to Lj(vi,v2 any linear function of the commu­

tator [v\,v2] doesn't violate the cocycle condition, but such coboundary doesn't affect 
the equivalence type of the representation.) In terms of the basis £n this means 

fi(C)YHOàC 
C 

12 -ml m2 - l)<5m+njo. 

In this case we say that p is a Virasoro algebra representation with central charge c. 

Thus we can restate Proposition 7.2 as follows. 

Proposition 7.3. — Let T be the Virasoro field. Then for each p E D and each local 

chart at p, the operators 

Ln(z) := 
1 

2m 
(*) 

<<<< n+l opm^ùù 

represent the Virasoro algebra: 

Lmi Ln] — (m — n)Lm+n + c 
12 m [m2 - l)(5m+n?o, 
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7.4. VIRASORO GENERATORS 61 

where c = 12a and a is the order of T as a Schwarzian form. 

Assuming T- =T we define the residue operators 

T~(z) = -
1 

2m x<< 
vT, 

soT~X = (TvX). It is easy to check that the operators , represent 
the second copy of Virasoro algebra: 

(7.41 [Lm,Ln\ = {m-n)Lm+n + 
C 

12 m m2 - l)Äm+n,0j 

and satisfy 
Lmi Ln} — 0. 

(In the asymmetric case, we need to consider <^ùù md << separately.) 

7.4. Virasoro generators 

We will now consider Ln's as operators X^LnX acting on fields, 

(7.5) LnX)(z) = Ln(z)X(z) (in any given chart). 

Of course, these operators are just OPE multiplications, 

LnX = T *(-„-2) X, 

i.e., 

(7.6) T(C)X(z) = --- + 
(L0X)(z) 
w<<< 2 +< 

\L-iX){z) 
<o^mm +< \L-2X)(z) + --- IC -> z). 

By (7.5) and Proposition 7.3, the operators Ln provide a Virasoro algebra represen­

tation in the space of all Fock space fields in D. 
Let us restate some facts established in the previous lectures in terms of this rep­

resentation. 

Proposition 7A. — Virasoro generators Ln act on F(W). 

Proof. — By definition, T € FiW), and we know that OPE coefficients of fields in 
T(W) belong to T(W). • 

For n > —1, we can identify the action of Ln on F(W) with Lie derivative operators 

(Lnx II 4)(z) = {Ctnx II </>)(z), (vn II mO = (C - z) \n+l w 
Thus the Lie-subalgebra Lin L_i, Lo, w<< (in the space of operators on Fock space 
fields) is isomorphic to the Lie-subalgebra Lin .{v_i,Vo,"\ (in the space of locally 
holomorphic vector fields) with the bracket (4.11). 

Proposition 7.5. — Let X be a Fock space field. Any two of the following assertions 

imply the third one (but neither one implies the other two): 
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a) X G T{W); 

b) X is a (A, À*)-differential: 

c) L>XX = 0, L0X = XX,fi(C)Yxww = ÔX, and similar equations hold for X. 

Here and below, L>kX = 0 means that LnX = 0 for all n> k. 

Proof — Under b), a) and e) are equivalent by Corollary 5.4 and (7.6). Suppose that 
a) and c) hold. Then by Proposition 5.3 and (7.6), we get 

(C+X)(z) = (v<d + Xi/()X(z) and (C+(X)(z) = (v^d + Kv'()X(z), 

which imply that the equation 

CVX = (vd + vd + Xvr + \*v')X 

holds in Dhoi(^) for each vector field v. By Proposition 4.2, we get b). • 

We call fields satisfying all three conditions (Virasoro) primary fields in T(W). 

If X G T(W) is a Schwarzian form of order /x, then 

L>3X = 0, L2X = 6uI(I(z) = 1), LxX = 0, L0X = 2X, L^X = dX. 

For n < —2 we have 

Ln — 
ß-n-2j 

-n-2 
<<< 

so the Lie-subalgebra Lin L_2,£-3, • • - (in the space of operators on Fock space 
fields) is isomorphic to the Lie algebra Lin {T,dT,. . .} (in the space of fields) with the 
bracket 

[X,Y]=X*Y-Y*fi(C)YX. 

Here we use the identity (7.3). 

7.5. Singular vectors 

There is an extensive literature concerning Virasoro algebra representation theory. 
For example, see [20] and references therein. We will only mention an elementary 
fact that we will need later. 

Proposition 7.6. — Let V be a primary field in T(W) with central charge c, and 

let À, A* be the conformal dimensions of V. Then the field 

X = [L.2 + riL2_1}V, 

where rj is a complex number, is also a primary field (of dimensions A+ 2, A* if and 
only if 

(7.7) 3 + 2<n + 4T?A = 0, c 
2 + 4A + 6r/A = 0. 
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Proof. — By assumption, 

(7.8) L>iV = 0, L0V = XV, L_iV = av. 

Observe that for any rj we have 

L_iX = dX. 

Indeed, differentiating the operator product expansion for T(C)V(z) in z, we get 
(for all n] 

Ln(dV) = d{LnV) + (n + l)Ln_iV. 

On the other hand, by (7.8) we have 

Ln(dV) = LnL-iV = (n + l)Ln-iV + L-iLnV, 

and it follows that L. -11 KV = a [LnV] , in particular L_iX = dX. 

We also have (for any 77) 

(7.9) LnX = (\ + 2)X. 

This follows from the identity L0(LnV) = (X-n)LnV, which is true because 

L0LnV = [L0, Ln]V + LnL0V = (-n + X)LnV. 

Let us now show that the equations in (7.7) are equivalent to the equations L i X - 0 
and L2X = 0 respectively, and therefore to the condition L>lX = Q. 

Since Li, L_i = 2Lq, we have LiL_iV - 2LQV = 2XV. and 

LxL^V = (LxL^L^V = L^faL-JV + 2L0L_iF 

= 2AL_iV + (2AL_iF + 2L_iF) = (4A + 2)L_XK 

Since we also have 
LiL_2F - [LUL-2]V = 3L_i V, 

the first equation in (7.7) is equivalent to ux = 0. 

Similarly, we show 

L0L0V = UX + 1 
2 << <cc L2l?_xV = 6AV, 

so the second equation in (7.7) is equivalent to L2X = 0. 

Finally we notice that since [LmiL-]=0, we have 

L>XX = 0, LqX = A*X, LZXX = dX, 

and the application of Propositions 7.4 and 7.5 complètes the proof. • 

Remark. — The field X is called a level two singular vector of the Virasoro algebra 
representation. "Level two" means that X is an "eigenvector" of Ln (see (7.9)) with 

eigenvalue Ax: 
Xx = 2 + Ay, 
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where Xy is the eigenvalue of V. Level two singular vectors of the second copy of 
Virasoro algebra (see (7.4)) are described similarly to Proposition 7.6. "Singular" 
means X is "primary." We say that V produces level two singular vector X. The 
field V is called degenerate (resp. non-degenerate) if X = 0 (resp. X ^ 0). 

At level one, X = L.1V is singular (i.e., primary) if and only if LQV = 0, i.e., A — 0: 

0 = LiL_i V = [LUL-!]V = 2L0V. 
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APPENDIX 8 

EXISTENCE OF THE VIRASORO FIELD 

Let A be a holomorphic quadratic differential and W = (A,A). Let us assume that 
the family T(W) is big enough in the following sense: if if is a holomorphic Fock 
space field, then 

Í8.1' Vn<0, VX e WW),x<<H*nX = 0x<<=>x<H is non-random. 

In other words, there are no non-random H's such that the operator product expansion 
of H and X has no singular terms. 

Interpreting a well-known postulate in the physical literature which says that scale 
(and translation) invariance at criticality implies (in 2D) the "invariance with respect 
to the full conformal group", (i.e., the applicability of conformal field theory), see [5], 
we will show that the Virasoro field exists in a conformally invariant situation. 

Proposition 8.1. — Let D be a simply connected domain and let q G dD. Suppose A 
is invariant with respect to the group Aut {D,q) and w<<<< satisfies (8.1). Then there 
exists a field T eF(A,A) such that T — A is a non-random Schwarzian form. 

Proof. — It is sufficient to show that there is a number c such that the operator 
product expansion 

8.2 A(()A(z) ~ 
i 
2 C 

<-z) |4 + 
2A(z) 
<^mm |2 + 

dA(z) 
pmw<<ll 

holds in some fixed half-plane uniformization of D with q = oo. Indeed, if this is true, 
then we can define 

T = A + c 
12 

ilkkk 

where w : D -> II is a conformal map and Sw = (w"/w'Y<www - 1 
2< w"/w')2 is the 

Schwarzian derivative of w (expressed in local charts). Clearly, T is a Schwarzian form, 
and to claim that T is the Virasoro field for T{W) we must show that T G T(W). 
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However, this follows from Corollary 5.5 because T satisfies Ward's OPE in the half-
plane uniformization, where we have T = A, and as we mentioned earlier, it is enough 
to check Ward's OPE for a form in just one chart. 

To prove (8.2) we write (in :A<7) = OH,oo): 

(8.3) A(QA(z) ~ 
CAz) 

x<<<ww + 
C2(Z) 

X-z) |2 
+ ••• 

with "undetermined" coefficients Cn, which are holomorphic Fock space fields. Recall 
Proposition 5.2 — for all X G TfW) and for all local holomorphic vector fields v\ 
and v2, we have 

[AVl, AV2]X — — A[Vliy2]X. 

Applying the commutation identity (Proposition 7.1) and the operator product ex­
pansion (8.3), we see that 

[AVl, AV2]X — 
1 

2ni ^ùù 
v2v1C1X{z) + 

1 

27T2 xww 
v2v[C2X(z) 

+ 
1 
2! 

1 
2ni ww 

v2vf;c3x(z) +.. •. 

We now set vi — 1. Then [^1,^2] = v2, so for all v2i 

oll 
V2C!X(Z) = -

w<< 
v'2AX(z), 

Le.,l)v2(C1-dA)Xw<<(z) = 0w<< According to our assumption (8.1), this gives 

d=dA + cu 

where c\ is a non-random holomorphic field. Next we set fi(C) = C- Then [vi,v2] = 
(v'2 -v2,so 

<< 
Çv2(dA)X(z) + 

^ùm 
v2C2X(z) = -

x<< 
Cv'2AX(z) + 

<< 
v2AX(z) 

for all v2, which gives 
C2 = 2A + c2, 

where c2 is a non-random holomorphic field. Next steps with tfi(C) = C* give 

C3 — C3, C4 = C4, . . . , 

where c3,c4,... are non-random holomorphic fields. 

We claim that all c/s are zero except for C4 which is constant. This is where we 
use conformal invariance. Recall that conformal invariance of A means that for all 
maps r(z) — kz + a we have 

EA(z)9(z1)^{z2) • • • = fc2J5i4(r^)$(r^i)$(rz2) 

It is in the sense of such correlations that we can write 

A{QA{z) = k4A(rOA(Tz), 
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or (according to the previous discussion) equate the operator product expansions 
dA(z) + ci (z) 2A(z) + c2 (z) c3 (z) 

x<<< + <ol^m i2 + C-z) |3 w<<vc 

k3 dA(rz) + CX(TZ) 

C-z 
+ fc2 2^(r^) + c2(r2:) 

cpllll |2 + k 
C3(TZ) 

(C-z) |3 x<<< 

Bv conformal invariance of A we can eliminate the terms with A and cL4, so we end 
up with the identities 

cn(z) = k ncn(kz + a). 
Clearly this implies that cn = 0 unless n = 4, in which case c := 2c4 is a constant. • 
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APPENDIX 9 

OPERATOR ALGEBRA FORMALISM 

Physical and algebraic literature uses the language of operator algebra formalism. 
Here we will outline the relation of this formalism to the theory that we discuss in 
these lectures. 

9.1. Construction of (local) operator algebras from holomorphic Fock 
space fields 

> Fix a coordinate chart ç at some point p e D and assume Hp) = 0; all our 
constructions will be in this chart. Let 5 be a linear set of quasi-polynomial Fock 
space fields with the following properties: 

a) all fields in # are holomorphic; 
b) led, (I(z) = 1); 
c) # is closed under OPE multiplications, i.e., all OPE coefficients of two fields 

in # belong to in particular, # is closed under differentiation; 
d) the map A i y A(0) from # to the space of correlation functionals in D\{p} 

is 1-to-l. 

For example, we can take one or several holomorphic fields, such as J, T, J 0 J, 
etc., and study the corresponding OPE families. 

Let us denote V = fA(0) : 4 G S I -, so V is a linear subspace in the space of Fock 
space functionals, and we have a bijection 

S—> V, A^a = A(0). 

(As a general rule, we will use upper and lower cases for the fields and their values, 
respectively.) For each A G J we define the corresponding operator field A as a 
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sequence of operators (the "modes" of A) 

(9.1: O n = 
1 

2m (o) 
CnA(C)dC, ( n e z ) , 

which we write as a formal power series with operator-valued coefficients 

(9.2) A[z} = 
O O 

— O O 

an 

w<<< I * 

(We use bold letters for operators. 

The indexing in the power series can be different from (9.2). It usually reflects the 

"conformal weight" of A (i.e., the eigenvalue of A as eigenvector of Ln whenever this 

makes sense, see e.g., Proposition 7.5). For example, the Virasoro operator field is 

T[z} = 
O O 

— o o 

In 

zn+2 
• 5 In — 0 

2m o 
Cn+1T(C)dC, 

see Section 7.4 where we used the notation Ln for In- As we mentioned, the opera­
tors ln generate a Virasoro algebra representation: 

;9.3 [lm, In] = (m- n)Zm+n + 
1 

12 
-m(m2 - l)5m+n,o. 

A simpler example is the operator field 

J[z) = 
OO 

— OO 

3n 
z n + l 

corresponding to the current fi(C)ww The mode operators 3n satisfy the relations 

;9.4) fi(C)YHOàCfi(C) 
Yx<<^ùùùHOàC 

which follow from the operator product expansion J(()J(z) ~ -1/(C - z] I2 and the 

commutation identity in Proposition 7.1. In a different language, the operators 

Pn = iJn^** 

together with 1 generate a representation of the Heisenberg algebra: 

Í9.5) [PmiPnì = mSm+nf<^i. 

> We can consider cu's in (9.1) as operators V -> V. Indeed, if b G V, then b = B(0) 

for some field B G and 

a n b = ( A * - n - 1 B ) ( 0 ) e V w < < < 

because ; i * - n - i 5 ) ed by c) . Thus we have a 1-to-l map 

Y : F —> End(F) [[*]], a .—• A[z], 

which can be called the operator-state correspondence (elements of V are states, and 

operator fields are usually called operators). We denote by End(V)[[;z]] the collection 
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of formal power series with operator-valued coefficients a„ G End(V). Also, we have 
the "translation" operator 

d : V —> V, da:= (dA)(0), 

and a distinguished ("vacuum") state i - / ( o ) . 
The quadruple V,Y,d,l) is a chiral operator algebra, according to the definition 

in [23]. In addition to some natural properties (axioms) involving d and 1, 

[9, an] = -nan_i, 9 1 = 0, a_il = a, a>0l = 0, 

a chiral operator algebra must have the following properties: for all a, b G V, there 

exists iv such that 

(9.6) anò = 0, D < < ( n > N ) , 

(9.7) (z - w)n [A[z], B[w]] = 0, w<<(n > AT), 

(as a formal power series). In our case, the first property is just a restatement of the 
fact that operator product expansions of quasi-polynomial Fock space fields have only 
finitely many singular terms. The second axiom will be explained later. We repeat 
that a chiral operator algebra is attached to the point p and depends on <j>\ in other 

words, the operator fields are functions 

A = A(p,<j>). 

The letter z in (9.2) for A[z] is just a dummy variable. 

9.2. Radial ordering 

In some computations we can treat operator fields A[z], which are formal power 
series with operator coefficients, as operator-valued meromorphic functions 

z i—• A(z). 

The precise meaning of the operator A(z) for any particular point z is the following: 
if v = X(0) G V, then 

A(z)v = A(z)X(0) 

in correlations with Fock space functionals whose nodes lie outside the disc B(0,\z\). 
In other words, A(z) acts from V, the space of correlation functionals in cww< <^ùmmm 

to the linear space of correlation functionals in z ? \ r 1 ß ( o , N ) . 

The operator product expansion of Fock space fields (in chart (j)) 

(9.8' A(z)B(w) = 
oo 

V— — 00 

a n 
(z — w) w<< Z > W 
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(note that the indexing in (9.8) is different from that in Section 3.1, see (3.3); also 

recall that there are only finitely many non-zero C^'s with positive v) has the following 

operator analogue: 

(9.9 KA[z]B[w] = 
CJw] 

[z — w) f + 1 ' 

Here HA\z\B\w\ww is the radial ordering of A[z] and B[w] 1 defined as a pair of formal 

power series in 2 variables associated with the regions w\ < \z\ and \z\ < \w\, 

[9.10 A[z]B[w] = 
m n 

fi(C)YHOàC 
2>m+lyjn+l ' w\ < |*|), 

(9.11) B[ui] j4[z] = 
n m 

w<<< 
zm+lwn+l ' Z\ < \w\). 

The meaning of the right-hand side is more complicated. First, we replace the negative 

powers of z — w by their Taylor expansions in the corresponding regions, e.g., 

1 1 w 
w< + + z — w z z2 5 'M < kD-

if a, = o for all but finitely many i/'s, then the right-hand side in (9.9) gives us a 

formal power series in w, z, say 

tm,n 
fi(C)YHOàC M < |*|), 

and (9.9) means exactly the equality of coefficients: 

fi(C)YHOàC 

However, if there are infinitely many Cv ^ 0, then the coefficients tm>n appearing in 

the double series in the right-hand side will be infinite sums of operators and therefore 

will not be elements of End(F) (unless we introduce some topology in V). In fact, 

one can interpret (9.9) as an asymptotic expansion of formal power series; 

HA[z]B[w]<< = 
oo 

-N 

Cn(w) 

(z-w) n+1 + O Uz - w viV> for all N > 0, 

see [23] for the meaning of the error term. 

Let us give an interpretation of (9.9) in the setting of operator algebras arising 
from holomorphic Fock spaces fields. Denote by x<< the coefficient of z-m - 1 

W - n - 1 

in the right-hand side of (9.9) for \w\ < \z\}. [As we mentioned, ̂ *ùù is an infinite 

sum of operators in V.) 

Claim. — For all strings HOàC , and for all f E V, we have 

(9.12) E(ambnf)X = E(tm,nf)X. 

Recall that ambnf is the value of some field in w<< evaluated at 0. Similarly, t"m,nf 

is an infinite sum of such values. 
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Proof of Claim. — Let us derive (9.12) from the operator product expansion (9.8). 
We will use the following notation: if 0 < S <C 1, then X G (S) means that all nodes 
of X are outside <f> 13(0,6). 

If X G (ö) and 0 < \w\ < Ö, then for all / = F(0) G V, we have 

9.13 E[(B(w)f)X] — E[B(w)F(0)X]. 

The correlation function in the right-hand side is analytic in 0 < \w\ < 6. The 
left-hand side is the numerical series 

E(bnf)X 

wn+l 
w< 

E(B *-n-! F)(0)X 
wn+l - 5 

which converges in o < m < s. 

Suppose that X G (ö) and 0 < \w\ < \z\ < ô. Then for all f G V, 

E\A(z)B(w)fX] =E\A(z)B(w)F(0)X]. 

Note that A(z)X G (¿1) where ì Si = \w\ By (9.13), we have 

E[A(z)B(w)F(0)X] = E[B(w)F(0)A(z)X] = E[(B(w)f)A(z)X] 

E[(bnf)A(z)X] 

wn+1 << 
n 

1 
vco^ùm 

m 

EambnfX 

zm+l w<< 

The double series converges absolutely and represents the analytic function 

(z,w) »—• E[A(z)B(w)F(0)X\ in 0 < \w\ < \z\ < ô. 

Similarly, 

E% 
tm.nfX 

fi(C)YHOàC 
converges absolutely and represents the same function (by operator product expan­

sion) in the region 

z-w\ < ±6} n {\8 < \w\ < \z\ < S w<< 
This implies the equality of coefficients. 

The proof of (9.12) in the region |*| <\w\ < 5 is similar. • 

9.3. Commutation identity and normal ordering 
d> The commutation identity in Proposition 7.1 can be restated in operator terms 

as follows. If we have the operator product expansion (9.8), then 

(9.14) [A[z],B[w]] = 
k>0 

CjtH 
SW(z-w) 

kl • 1 

where S(z — w) denotes the power series 

9.15 S(z — w) = 
1 
z 

00 

m=—00 

W 

Z . 
m 

and x<< z — w) are obtained from (9.15) by differentiating k times with respect to w. 
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To prove (9.14), we write 

w<<,; ^ùù 
1 

2ni < 
w<< < 

2m < 
C"M(C)¿?(r/)dCd77. 

The operator product expansion of fi(C)YH and the binomial expansion of çm at rj 

give us the (Borcherds5) formula: 

(9.16) "M(C)¿?(r/ x<< 
k>0 

xw 

k "M(C)¿?(r/ 

where x<< s are the mode ot lnus we nave 

(9.17) A\z},B[w}} = 

m n 

<<w,;lkkk 
zm+lwn+l 

w< 
k>0 e 

Ckl 
o^ùmm 

m 

m 

k z -ra — 11 wm~k 

ww 
k>0 

Ck[w] 
w^ù (z — w 

kl 

Note that (9.14) implies the axiom (9.7) because the right-hand side in (9.14) is a 

finite sum. (There are only finitely many non-zero CVs. Compare (9.8) to (9.14).) 

D> The formula (9.16) can be used to restate the radial ordering formula (9.9) in 
terms of normal ordering. By definition 

:A\z]B\w]: = A+\z]B\w] + B\w\A-\zl 

where "M(C)¿?(r/"M(C)¿?(r/ and A-[z] = A[z] — A+[z] is the principal part of 
the power series. Then the operator product expansion (9.9) takes the form 

[9.18] KA[z]B[w] = :A[z]B[w}: + 
k>0 

Ck[w] 
(z — w) fc+1 ' 

Note that all terms here are well-defined as formal power series. To prove (9.18) in 

the region \z\ > M , first we note that 

A[*]J8[w] - :A[z]B[w]:= [A-[z],B[w]]. 

It follows from (9.16) that 

A - [ * ] , B H = 
m>0 n 

[dm, òn] 
"M(C)¿?(r/ w< 

fc>o e 

Ck,£ 
'Ujt+l-. 

m>0 

m 
<< 

|2-m-l wm-k. 

On the other hand, the inner sum r̂a>0 
< 
k j 

z-m-l wm-k is the power series expansion 

of z — w] -k-1 in the region z\ > \w\. Thus we have 

[A.[z],B[w}] = 
k>0 

Ck\w] 

[z — w <oll 

Similarly, to prove (9.18) in the region \z\ < \w\. , one can use 

B[w]A[z] - :A[z]B[w]: = -\A+[z],B[wl 

ASTÉRISQUE 353 



9.3. COMMUTATION IDENTITY AND NORMAL ORDERING 75 

and (9.16). 

r> Normal ordering of operator fields can be expressed in terms of their "modes": 

:A[z]B[w]:= 
m n 

: drnbn : 
zm+lwn+l 

where 

: Qjrnbn : — 
Q"mbn 

bnQ"m 

if m < 0: 

otherwise. 

The definition can be extended to the case w = z : 

:A[z]B[z]: = 
m n 

: om6n : 
cv^mmm 
^ù$*<<< 

The right-hand side is well-defined as a formal power series: if v G V, then all but 
finitely many terms in 

m n 

:ambn: v 
"M(C)¿?(r/ 

are trivial. Clearly, the operator field :AB: corresponds to the Fock space field A*B 
under the operator-state correspondence. 

Example. — The Virasoro field T = -, l 2' J * J (see Section 7.1) corresponds to the 
Virasoro operator field 

T= -
1 

2 
:JJ: . 

The modes of T can be stated in terms of those of J : 

U19 l"n — 
1 

2 

oo 

k— — oo 
:J-k3k+n : • 

w<<< [jmi 3n. = 0 unless m + n — 0, we can understand the normal ordering 

• 3 m3 n p^ù 
3 m3 n 

<3 n3 m 

if m < n; 

otherwise, 

i.e., in Wick's sense: we put all "creation" operators on the left, so we apply "annihi­
lation" operators first. For example, 

lo = -
w< 

2' 
w<< 
k^*ù 

OO 

71=1 
. 3 —n3 n* 

> The construction (9.19) in the last example is purely algebraic: if we define 

In — 
1 
2 

oo 

k— — oo 
•P-kPk+n : 
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for any representation of Heisenberg's algebra, then we get a Virasoro algebra repre­
sentation with c = 1. We assume (9.6) for p so that the action of ln is well defined. 

For example, one can use the generators 

PO = 1 (lv = 1 for a11 V € V)ix<<<Pn = dqn ,p̂ mmP-n = ™?n, w<<<(n > 0) 

which give us a Heisenberg's algebra representation in the space of quasi-polynomials 
w<<<<< ...)e«° . We also have 

(9.20) [Jm,Pn] = -npm+n. 

This algebraic approach can be applied to construct Virasoro algebra representa­
tions with 1. For example, it is easy to verify that the generators 

(9.21) ln=ln- ib(n + l)jn 

give a representation with c = 1 - 12Ò2, see [22] where this modification is called 
Fairlie's construction. 

To prove (9.21), we use (9.3), (9.5) and (9.20): 

[ImJnì = [ImJn] +b(m + l)[Zn,pm] - 6(n + l)[lm,Pn] + 62(m + l)(n + l)[pm,pn] 

= [ImJn] - b(m - n)(m + n + l)pm+n - b2m(m2 - l)<Jm+n,o 

= (m - n)(lm+n - b(m + n + l)pm+n) +,kùù!!! 
1 - 12Ò2 

12 
-ml m2 - r w^$ùù 

= (m - n)Zm+n + c 
12 

m im2 - 1) <p^ùmm 

We will discuss these central charge modifications in the context of Fock space 
fields in the next lecture. 
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LECTURE 10 

MODIFICATIONS OF THE GAUSSIAN FREE FIELD 

In this lecture we discuss central charge modifications of the Gaussian free field in 
a simply connected domain D with a marked boundary point q. These modifications 
appeared in [37] in the context of chordal SLE theory. Similar constructions had 
been well known in the physics/algebraic literature, in particular in Coulomb gas 
formalism, see [11], Chapter 9, 

The modifications of the Gaussian free field are parametrized by real numbers b. 
We denote by T^) the corresponding OPE families. The families J7 )̂ are Aut(D, q)-
invariant and have the central charge c = 1 — 12Ò2. Their Virasoro fields are exactly 
the algebraic modifications (9.21) mentioned in Appendix 9. 

Certain vertex fields in T{p) have the fundamental property of degeneracy at level 
two — they produce singular null vectors. Combining the degeneracy equations with 
Ward's identities we obtain the equations of Belavin-Polyakov-Zamolodchikov type 
(BPZ equations), which play an important role in conformal field theory. Cardy's 
boundary version of BPZ equations will be used in Lecture 14 to relate chordal SLE 
theory to conformal field theory. 

Change of notation. — From now on, we add the subscript (0) to the notation 
of fields in the OPE family of the Gaussian free field. (This subscript will indicate 
the value of the modification parameter b.) Thus <J>(0) is the new notation for the 
Gaussian free field in D, and 

J(o) = 9*(o), T(o) = -
1 

2' 
J(0) * J(0)j etc. 

10.1. Construction 

For a simply connected domain D with a marked boundary point q e 3D, we 
consider a conformal map 

w = wDn : (£>,q) —> (H,oo), 
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from D onto the upper half-plane 3 H = {z £ C : %z > 0} . It is important that the 
function argtt/ : D —> M does not depend on the choice of the conformal map. Let us 
fix a parameter b G M and define 

(10.1) $ EE $(fe) = $(o) - 26 arg w', J EE J(6) = <9$ = J(o) + ¿6 
w" 
wf 

Note that J is a pre-Schwarzian form of order ¿6, and as a form it is conformally 
invariant with respect to Aut(D,g). 

Proposition 10.1. — The field has a stress tensor, and its Virasoro field is 

T = T{b) = -9 
2 

J * J + ZÒO J. 

T/ie central charge of x<<p5 

c = c(6) - 1 - 12Ò2. 

Proof. — Let us define 

A EE A(b) = A(0) + (¿63 - j) J(0), J := E[J] = ibw"/w'. 

Then A is a holomorphic quadratic differential. Indeed, ibdJ(o) and JJ(0) (Satisfy the 
following transformation laws: 

ibdJ(o) = ibh" J(o) o h -h ib(hf)2dJ(Q) o / 1 , 

j J(o) = ¿6 
w< 

<< 
HFJI0)OH + (HF)2(JJ(0))OH. 

We claim that W = <^$ùù is a stress tensor for <I>. Since ̂  is a pre-pre-Schwarzian 
form, by Corollary 5.5 all we need is to check Ward's OPE in HI, 

;i0.2) A(CMz) = (A(o)(C) + ibdJm(0 - J'(C)̂ (0)(C))*W ~ 
J{z) 

w<<<< + ib 
1 

<m^*ùù 2 * 

However, this is immediate from Proposition 3.5 a) and (3.4). 

Finally, let us show that 

(10.3) T = A + 
1 - 12Ò2 

12 
w<< 

where Sw = (w"/w'y- 1 
2 

{w"/w') 2 is the Schwarzian derivative of w. This will conclude 
the proof: T is a Schwarzian form of order c/12, and T G FiW) by Proposition 5.8. 

From the expressions of T and J we find 

T = A + 
1 
12J 

Sw < 
< 

2 
+ ibf. 

The last two terms can be written as 1 
2 

9 '•N2 
w 

-62 N' = 
W 

-b2Sw, so we get (10.3). • 
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Remark. — The Virasoro field T is real and has no singularities on dD including the 

point q. This is easy to verify using the formula 

E[dJ(0*(z)] = 
1 

:c-*: 2 w< 
1 

xwpmù \2 (in idH). 

In particular, it follows that we can apply Ward's equations as they are stated in 
Section 5.7. 

Notation. Denote by ̂ <ww the OPE family of the "bosonic" field ̂CIO- thé algebra 
over C) spanned by the generators "M(C)¿?(r/ w and QJQk^a* ^ùm [a G C) under OPE 

multiplication. For example, OPE family JVM contains 

1, $(6) * $(6), J(b) * J(6), dJ{b) * ($(6) * $(6)), J(fe) * e*a*(b>, etc. 

Since the OPE coefficients of two conformally invariant fields are conformally invari­
ant, the fields in J7^) are invariant with respect to Aut(Z2, q), and T(&) is their Virasoro 
field. 

10.2. Vertex fields 

Vertex fields in JVM are defined as OPE-exponentials of the bosonic field ^<<wxbn 
If a G C, then by definition 

"M(C)¿?(r/"M(C)¿?(r/ 
oo 

n=0 

qq 

n\ 
qp^^ 

We have 
"M(C)¿?(r/"M(C)¿?(r/"M(C)¿?(r/ 

where (/? := 22<I> = —2baigwf is an imaginary part of a pre-pre-Schwarzian form and 

C is the conformal radius, which is a l 
2' 

1 
2 (-differential. This gives the following 

statement. 

Proposition 10.2. — V{b) is a primary field of ,jr(b) with conformal dimensions 

A = -
a2 
2 

w<<< A* = 
<lmp 

2 
^$w< 

Note that the expression for V{b) in the upper half-plane does not depend on b. For 

example, the 1-point function is EVa = (2y w<< and the 2-point function is 

10.4] EVa(z1)Va(z2) = (Aymr2 e2a2G(zi'Z2) = (4yi№) << z\ - z2 2c*2 
z\ - z2 < 

On the other hand, the conformal properties of the vertex fields, as well as their 
Virasoro fields T, depend on the central charge. 
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80 LECTURE 10. MODIFICATIONS OF THE GAUSSIAN FREE FIELD 

In what follows, we will only consider vertex fields with a — ia purely imaginary 
(a e R) and therefore with real conformal dimensions 

A = 
a2 

2 
— ab, A* = 

a2 
2 

-haft. 

The difference A - A* = -2ab is called the conformai spiri of the vert ex fìeld. If 
the spin is —1, then the direction of the field (in correlations with real Fock space 
fields) transforms as the direction of a vector field, and so the orbits of the ordinary 

differential equation 
z = Via(z) 

[if this can be defined appropriately) are natural conformally invariant objects, see 
[341 and [371. 

Vertex fields with a = 2b have conformal dimension A = 0; they produce non-zero 
level one singular vectors dV. See Remark in Section 7.5. 

10.3. Level two degeneracy and BPZ equations 

Let x<<^*ù . From the algebraic description of level two singular vectors in Propo­
sition 7.6 it is easy to see (use A = l 

2' 
a2 — ab and c = 1 - 12Ò2 ) that the field 

X = T * V + r]d2V 

is a differential (or primary) if V = -l/(2a2) and 2a(a 4- b) = 1. 

Proposition 10.3. — // v = v& and if 2a(a + 6) = 1, then 

(10.5) T* v = 
1 

" 2a2 
d2V. 

Proof. — Since the difference is a differential, it is sufficient to verify (10.5) in the 
upper half-plane. The proof is an easy exercise in Wick's calculus. All computations 
below refer to the identity chart of the upper half-plane. In this uniformization we 
have 

* = *(o), ô* = J = J(o), T = T{0)+ibdJ, T(0) = -
1 
2 

J G J. 

Let us first compute the w<<< in the special case 6 = 0: 

;i0.6) T(0) * V{z) = T(0) 0 V(z) + ia(dJ) 0 V(z) - ia 
JOV(z) 

z — z 
+ 

3 
2 
' 2 -a > 

V(z) 

[z-z) 
2 ' 

Indeed, 

r(0)(C)V(z) = -
1 
2 

n>0 

(id n 

n! 
( J ( C ) 0 J ( C ) ) # W 0 - 0 $ W C -a2 

Z) 

= I + II + r(0)©V(s) + o(l)> 
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where the terms I and II come from 1 and 2 contractions, respectively. Since 

11 = 
< 
2 

a2 E[J{Q*{z)]] 
,2 

'Viz 

w< 
1 

2 
a2 

1 

wl:; Ï2 x<< 
2 

; c - * ) ( c - * ) 
+ 

l 

<p^mm >2 
)V(Z) 

<<f 
1 

2 
a2 

1 
x<< i2 < 

2 

z - z ) ( C ~ 2 + 
3 

z — z \2 •V(*) + o ( l ) , 

its contribution to T(0) * V is 

3 

2 
a2-

<lmm 
cw<<< 
* — z) l 2 ' 

On the other hand, it follows from iE[j(o$(z)] x<<= i/(<;-z)-i/(<;-z) that 

I = ia\ 
1 

"M( 
w< 

1 
<pmll 

| J (C )0V (z) . 

Thus its contribution to T(0) * V is 

ia(dJ) 0 V(z) - ia 
JO V(z) 

z — z x< 

To compute r * V in the general case <<lpm we note that 

10.7) (dJ) * Viz) = (8J) © Viz) - ia 
Viz) 

z — zt ¡ 2 ' 

which follows from E\dJ(C)*(z)\ = -l/(C-z) \2 +1, /(C - z \2 . Prom (10.6) and (10.7), 

we get 

T * V(z) = T(0) © V(z) + i(a + b)(dJ) © V{z) - ia 
JOV(z) 

z — z + 
' 3 

2 
a2 + ab 

V{z) 

z - z)2 ' 

The computation of the right-hand side in (10.5) is easy: 

dViz) = -a2 
Viz) 

z — z 
+ iaJQ Viz), 

1 

2a2 
921 Viz) = •-T{0)QViz) + 

i 

2a 
idJ) 0 Viz) - ia 

JO Viz) 

z - z + 
1 + a2 Viz) 

2 iz- z)2 w<< 

It follows that 

T * Via(z) - E 
2a2 

-d2Via\ iz) = i a + b 
1 

" 2a) 
idJ) © Viz) + (a2 + ab-

1 
2, 

Viz) 
iz — z 2 = 0 

provided that 2a ( a + b) = l. • 
Degenerate singular vectors give rise to (BPZ) equations for certain correlation 

functions. 
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Proposition 10.4. — Let V ^w< yia 
V{b) and 2a{a + 6) = 1. Then in the (H, oo)-

uniformization, we have 

1 
2a2 

dì •EV(z)X1{z1) • -.Xn(zn) = EV(z)C£ [Xi(zi) • • • Xn{zn)} 

+ EC~_z [ V № ( z i ) - X n ( z n ) ] , 

where vz{Q = l/{z-C and the fields Xj belong to F^) • 

Proof. — Denote X ="M(C)¿?(r/ • • • Xn(zn). Since T * V = 
1 

2a2 
92V, we have 

1 
2a2 

xw<< E[V(z)X] = E 
ïd2V 
lo? 

\z)X = E\(T*V)(z)X}. 

so we can aDDlv ProDosition 5.13. • 

Example. — The function 

f(z, z1,...,zn) = EVia(z)V^ (zi) • • • V^(zn), (z, Zj e H), 

e.g., the 2-point function (10.4), satisfies the following 2nd order linear PDE for all 
values of b: 

1 
2a2 

ww f = 
xw 

z — z 
+ 

A* 
(z — z Ì2 f 

+ 
n 

3 = 1 

di 
Z- Zj + 

^^ 

' z — z* |2 
+ 

d3 

Z-Zj + 
A*j 

> - z3 >2 
ù$ 

where A., A*. are conformal dimensions of w$ù and A* = l 
2 
;a2 + ab. 

If the fields Xj in Proposition 10.4 are not differentials (e.g., if they are forms), then 
the BPZ equations are not necessarily of PDE type. See e.g., the Friedrich-Werner 
formula in Section 14.5. 

10.4. Boundary conditions and insertions 

We can further modify our bosonic fieldswwnn,,by conditioning them to have certain 
(non-random) boundary values. 

ProDosition 10.5. — Let u be a real non-random harmonic function in D. Define 

"M(C)¿?(r/"M(C)¿?(r/ 

Then 

a) the field $ has a stress tensor and its Virasoro field is 

10.8; f = - 1 
2 

J * J + ibd J = T - (8u)J + ibd2u -
1 
21 

(<9u)2; 
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b) the vertex fields у _ е*гаФ with 2a i (a + 6) = 1 produce degenerate level two 
singular vectors. 

Conditioning changes neither the conformal nature of the fields nor the central 
charge. See Remark in Section 7.5 for the meaning of the expression "the vertex fields 
produce degenerate level two singular vectors." 

Proof. — a) The field 

(10.9) A = A-(du)J + ibd2u- 1 
2 

[du)2 

is a holomorphic quadratic differential. Indeed, denote "M(C)¿?(r/ it is a holomor­

phic 1-differential. Since both ibf and fJ are quadratic differentials with the same 
cocycle ibf( l o g / O ' , their difference is a quadratic differential. 

We claim that W = (A, A) is a stress tensor for Ф. Since Ф is still a pre-pre-
Schwarzian form, by Corollary 5.5 all we need is to check Ward's OPE (in the (H, oo)-
uniformization) of À and Ф : 

А(С)Ф(г) - №J(CMz) ~ ib- 1 
C-z, 2 + 

J(Z) 
C-z' 

However, this is immediate from (10.2) and (3.4). 
From (10.3), (10.8), and (10.9) we derive 

10.10) f = A + 1 - 12Ò2 
12 

Sw. 

It follows that T is the Virasoro field because T is a Schwarzian form of order c/12, 
and f e T(W) by (10.8) and Proposition 5.8. 

b) Denote V = eiauV, V = V^}, f = du, and let 

X :=f * V -
1 

2a2 
02V. 

It follows from the operator product expansion (see (3.4) 

л о ф ы = -<ww$*^^ 
i 

C-z 
+ dc(z) + (J О Ф)(г) + oil] 

that (/J) * V = /J © V + iafdcV - iaf'V. Thus by the relation (10.8), we have 

f * V = T * V - / J © V - iafdcV + i(a + b)f'V - 1 
ssss f2V. 

Differentiating V = emuV, we get 
1 

2o2 
d2v = i 

2a2 
iaf'V - a2f2V + 2iafeiaudV + eiaud2V) < 

The degeneracy equation (10.5) gives 

X = -fJ © V - iafdcV - i 
a 

feiaudV. 
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However, dV = d{C-a2 eQia* = iaJGV- a2dcV in EL Thus X = 0. 

(One can argue that conditioning does not change the singular parts of the operator 
product expansions of J(0V(z] and T(0V(z). In Appendix 11 we will explain this 
implies that the degeneracy equation survives under conditioning.) • 

Remarks. — a) Ward's and BPZ equations for fields with non-trivial boundary con­
ditions are in general not the same as the equations in Propositions 5.12 and 10.4. 
This is because the Virasoro field T, see (10.8), may be non-real and/or may have 
singularities on the boundary. For example, if 

(10.11 u = const • argw, w : (D,p,q) —> (H, 0, oo), 

then T has a double pole at the origin, and Ward's equations for differentials take the 

form 

ET(QX = ET(()EX + 

j 
^xw 

1 

c 
+ 

1 

C - Zj J 
)dj + A; 

C-Zj I2. 
EX 

+ 
3 

w< 
9 
c< 

+ 
1 

C-Zj 
w$ù 
xccc 

A*7 

(C - Zj) 2 EX, (in idH), 

where X = X1(z1)...Xn(zn) is the tensor product of differentials in ^(W). The BPZ 

equations can be adjusted accordingly. 
b) In the special case (see [391) 

(10.12) u = 2a arg w, 2a(a + b) = 1 

of boundary conditions (10.11), we have a different type of BPZ equations — this will 
be important for the SLE theory. The nature of the equations is the following. We can 
realize the boundary conditions (10.12) by inserting a chiral vertex which produces a 
degenerate singular vector. Chiral vertex fields will be defined in the next lecture. It 
is probably worthwhile to explain the idea in a simpler, non-chiral situation. 

Fix a point Z(\ G D and define 

$ = $ + 2a¿G20, 

where "M(C)¿?(r/ the constants a and b satisfy 2a(a + 6) = 1. and GZQ is the Green's 
function with pole at ZQ. AS in Proposition 10.5, we can build many other fields 
from $, e.g., J := <9$ or Vß := e*^. As we explained in 2.3, we can interpret such 
hat-fields in terms of an insertion: 

EX = E[eQia*(Zo)X]. 

If X is a string of differentials, then we can apply Ward's and degeneracy equations 

to derive 2nd order PDE for 

EX = C~a2 (zo)E[VÌ^(z0)X}. 

This equation will involve the insertion point ZQ. 
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APPENDIX 11 

CURRENT PRIMARY FIELDS AND KZ EQUATIONS 

In this appendix we give an algebraic proof of Proposition 10.3 (characterization 
of level two degenerate vertex fields). The proof is based on the fact that vertex fields 
in are primary fields of the corresponding current algebra. We also derive the 
so-called Knizhnik-Zamolodchikov equations (KZ equations) for correlators of current 
primary fields. 

11.1. Current primary fields 

Let {Jn} and {Ln denote the modes of the current field J and the Virasoro field T 
in Tqj) theory, respectively: 

JJz) := 
1 

2TTZ » 
K-z)nJ(()dC and Ln(z):= 

1 
2ni xw 

(C-zr^T(C)dCw 

(We consider them as operators acting on fields in J-^y) Then we have the following 

equations: 

11.1) "M(C)¿?(r/"M(C)¿?(r/ 

(11.2 [Lm, Jn] = -nJm+n + ibm(m + l)£m+n)0; 

cf. (9.4) and (9.20), and also 

(11.3 Ln —=— 
1 

2 

oo 

k= — oo 

: J_fc Jfc+n : - ib(n + 1) Jn, 

cf. (9.19) and (9.21). 

Recall that xwwwww is (Virasoro) primary if X is a A, A* (-differential; equivalently: 

(11.4; L>XX = 0, L0X = XX, L_iX = dX, 
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and similar equations hold for X (see Proposition 7.5). A (Virasoro) primary field X 

is called current primary if 

(11.5) J>iX = Jy\X — 0, 

and 

(11.61 JQX = —iqX, J0X — iq*X 

for some numbers q and wx ("charges" of X). Charges determine dimensions 
(see (11.9)): 

(11.7] A = 
1 
2 
•Q2 -bq. A* — 1 

2 
2 

¡4* 
+ 6g*. 

Examples. — a) The vertex field Va is current primary with charges q = q* = -ia, 
see (3.5). 

b) The current J in the case 6 = 0 and the Virasoro field T in the case c = 0 are 
Virasoro primary, but not current primary. 

Proposition 11.1. - ifXeF(b) is a current primary field, then 

(11.8) J-XX = - i 
x 
dX, J_iX = 

i 
xx 

ox. 

Proof. — First we note by (11.3), 

ГЦ Qì L—i X = —J—i JQX . LnX = — D 
2 

J02X - ibJ0X. 

It follows from (11.4), (11.9), and (11.6) that 

dX = L_iX = iqJ^X 

and the similar equation holds for X. • 

Proposition 11.2. — Let V be a current primary field in Jvm, and let q,q* be charges 

ofV. Then 

[L_2 + vL-i\y = 0 if 2ç(6 + q) = 1 and n =cxxxxx-
1 

2q2' 

Proof — Since V is Virasoro primary, L-iV = dV, see (11.4). By (11.8), we have 

L2_XV = L^ÔV = iqL-xJ-iV. 

It follows from (11.3), (11.6), and (11.8) that 

L_2V = -J^JoV - rZ < TRJ, NT < + ibJ-2V =<<< i(b + q)J^ùùV + ^J^L^V. 

Let X = [L_2 + r]L2_^V. Combining the above two equations we see that X is a 
linear combination of J-2V, J-\L-\V and L_i J_iV: 

X = i(b + q) J_2F + ~ J-1L-1F + inqL^J^V. 
2q 
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On the other hand, by (11.2), J_2, J-iL-i and L_i J_i are not linearly independent: 

J_o + J-1 L_i - L_i J_i = 0. 

Thus X = 0iîb + q=jg = -nq. • 

11.2. KZ equations 

Proposition 11.3. — Let Xj = Viai and X = "M(C)¿?(r/ • • • Xn(zn) be the tensor product 
of Xj ?5. Then the equation 

dzEX = 
z3 

cx 
xx 

zj Z3 
+ 

xmù 
CFjCJk 

1 
- Zk ̂ xx 

1 

Zj — Zk 
EX 

holds in the (M, oo)-uniformization. 

Proof. — It follows from Proposition 11.1 that 

dZjEX = Z(7JJE;[XI(ZI) • - • J * Xj(zj) • • • Xn(zn)] = ¿<jj 
1 

2TTZ xx^ù 

tf[J(C)*] 
C-Zj 

dC. 

By Schwarz reflection principle (J is purely imaginary on the boundary), 

t^>E[J{QX] 

has an analytic continuation / to C \ {zk,zk : k = l,.cxx..,n}. It is easy to check that 
the integral of №/(<-zj) over the circle ICI = R tends to 0 as R -> oo. Thus by 
Green's formula 

dZj EX = -ioj 
1 

2m ww 
/ ( 0 

C-Zj 
ww 

- iaj 
ww 

1 
2ni w 

/ ( 0 
c - ¿j 

wnn 1 
2TTZ >fc) 

/ ( 0 
^^^cc 

c*ùù 

Proposition now follows from (11.5) and (11.6). See Example a). • 

In contrast to the BPZ equations, KZ equations do not depend on the central 
charge. 
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LECTURE 12 

MULTIVALUED CONFORMAL FOCK SPACE FIELDS 

In the physical literature, chiral fields are described as elements of the "holomorphic 
part" of conformal field theory. We will try to interpret these objects in our "statistical" 
setting, in terms of conformal Fock space fields. 

The following example is meant to illustrate the idea of a chiral field. We define 

*n(*) = V2 
n 

vccw 
"M(C)¿?(r/"M(C)¿?(r/ 

where G is the Green's function in the unit disc D and A? n 
*3Z = 1' ßj n 

3 =1 are two 
independent copies of the eigenvalues in the Ginibre ensemble (the case Q(z) = z 2 

in the random normal matrix model mentioned in Appendix 6), see Figure 12.1. The 
random function 3>n approximates the Gaussian free field in D (with zero boundary 

conditions): 
"M(C)¿?(r/ 

as distributional fields. 
Let $n be the harmonic conjugate of 4>n and set 

xww< ^ù****** 

2 cxx 
This random function is holomorphic and ramified at many points. On approxi­
mate level, chiral vertex fields are properly normalized exponentials of #+. In the 
limit 7i —y oo, such fields will be ramified everywhere, but in correlations with any 
particular Fock space functionals, their monodromy group will be finitely generated. 

Some of the reasons to study chiral fields will become clear in the last two lectures. 

12.1. Chiral bosonic fields 

> In this section we will define multivalued fields $+ = $+ in (D,q). a simply 
connected domain D with a marked boundary point q. As in the previous lecture, 
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F I G U R E 1 2 . 1 . EIGENVALUES AND GRAPH OF $ „ 

b <E R is a fixed parameter (so c = 1 — 12b2 will be the "central charge"), and 

$ = $(M = $(o) - 26 arg-to', ,7 = ,/(m = cM> = Ja,) + ib 
w" 
w' 

where <&(o) is the Gaussian free field in D, and w : (D,q) - » ( H , o o ) is a conformal 
map. Recall that ,/ is a pre-Schwarzian form of order ib. 

Notation. - - If 7 is a path in D (or in the closure D), then we will write 

*+(7) = 
7 

J ( C ) d C . 

We think of this "generalized" Gaussian random variable as a correlation functional in 
the complement of the curve (we can define correlations with Fock space functionals X 
as long as the set of nodes xww is in D \ 7). The integral V ( 0 ) ( 0 ' i ( does not depend 
on local coordinates but the extra term in the b^Q theories requires a specification 
of coordinate charts at the endpoints of 7- In the following discussion we will use the 
identity chart id^ unless the opposite is explicitly stated. 

If z,zQ e D 'not necessarily distinct), then 

*+(Z,ZQ) = {$+(7) : 7 is a curve from ZQ to z) 

is a multivalued correlation functional 

Xi—>E[$+(z,zo)X], 

where we onlv consider curves in the complement of Sx. Since ,7 is holomorphic, 
homotopic curves give the same values. Varying the endpoints. we obtain a bi-variant 
field <&+ whose values are multivalued functionals 

$+(z,z0) = $f0)(z,zo) + iblogw' z 
zo' 
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We can "freeze" the point ZQ and consider "M(C)¿?(r/"M(C) as a function of 
one variable; more about it later, see Section 12.3. Similarly, we can consider the 
"monodromy field" z \-> $+(z,z). 

We can also define the harmonic conjugate é of bosonic field $ by the equation 

12.1) 2$+ = $ +ww< 

where dZ0$+(z,z0) is of course "M(C)¿?(r/ Then we have 

$ = 29$+ = 2$ - 2z$+ = / *d$ = / Udz - Udz. 

If both endpoints are on the boundary, then $ = -2z$+. 

> We can talk about "branches" of the multivalued field xcc in the sense of corre­
lations with a fixed functional < ww e.g., we have single-valued branches of E$+(z)X 
in any simply connected domain UCD\SX. It is in terms of such branches that we 
understand conformal properties and define derivatives of the multivalued field $>+. 
In particular: 

a) the branches of ww depend on local coordinates, e.g., $+ is a pre-pre-Schwarzian 
form of order ±ib with respect to the endpoints; 

b) the branches of ww have the usual derivatives, 

(12.2 dz*+(z,zo) = J(z), dZ0$+(z,z0) = -J(zo), 

and of course x<< rz < TRJ, NT = liî is a "holomorphic" field; 

c) if a vector field v is analytic at z and ZQ, then the branches of <£>+ at z have the 
Lie derivative 

Cv(z)Q+(z, z0) = Ct(z)$+(z, zo) = v(z)J(z) + ibv'(z), 

and the branches of w<< at ZQ have the Lie derivative 

£v(z0)$+(z,z0) = £t(z0)<S>+(z,z0) = -v(z0)J(zo) - ibv'(zo), 

so the functional 

(12.3 Cv [$+(z, z0)] = v(z)J(z) - v(z0)J(z0) + ibv'{z) - ibvf(z0 

is single-valued. 

> As we explained, the correlations of "M(C)¿?(r/ with single-valued Fock space fields 
are multivalued analytic functions in z and ZQ in the complement of the nodes. 

Examples. — a) We have 

(12.4' E[*+(z,zo)${0)(zi)] =2(G+(z,z1)-G+(z0ìz1)), 

where G+ is the complex Green's function, 

2G+(z,z1) = G{z,z1) + iG(z,z1). 
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Here G is the harmonic conjugate of the Green's function. The multivalued holo­

morphic function G+(.,Zl) is defined up to a constant. In the case when we have a 
marked boundary point q, we usually choose the constant so that 0 € G + ( ( 7 , * I ) i, which 
makes G+ conformally invariant with respect to Aut D,q) . In terms of a conformal 
map w : (D,q) - » (H,oo), we have 

G+(z,Zl) = 
1 

2 
log w(z) — w(zi) 

w(z) — w(zi) 

Note that z and z\ appear in G+ asymmetrically, and 

12.5 dzG+(z,z1) = dzG(z,z1). 

b) Differentiating (12.4) with respect to z\ we obtain the equation 

12.6 £J[$+(Z,ZÖ)J(«I)1 << 
3 

z — Zi 
<< 

1 
Z0 -ZI 

in H. 

It follows that the correlations E[$+(z,z0)J(Zl) are single-valued as functions of all 
three variables. Similarly, we can show that the correlations of 3>+ with the Virasoro 
field T are single-valued, and this fact is important because it allows us to consider 
Ward's OPE and apply Virasoro generators to #+, see below. 

It is easy to describe the fields which have single-valued correlations with $+. 
Consider the "charge" operator 

Q = 
I 

2iri 
» J 

[it is just the 0-th mode of the current and it does not depend on b). For example, 

QI = 0(I(z) = 1), QJ = 0, QT = 0, 

but 

Q# = -J, QVa = -aVa. 

A single-valued Fock space field X has single-valued correlations with 3>+ if and only if 

X e k e r Q 

(express the correlations of X with the monodromy field <&+(z,z] in terms of QX). 

Proposition. — If X,Y G kerQ, then all their OPE coefficients, in particular dX 

and X * Y", are in ker Q. 

Proof. — It follows from Proposition 7.1 that 

Q(X *n Y) = Q(X) *n Y + X *n Q(Y). • 
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> We define correlations of two or more multivalued fields only for non-intersecting 

paths. For instance, in the case of the 2-point function of 3>+, we consider non-

intersecting paths 7 and 7', and set 

(12.T B [*+(7 )*+(7 , ) ]= log 
[z - z'0)(z0 - z') 

(z-z')(z0 -z'0) 
in H, 

where the logarithm of the cross-ratio depends on the number of times one curve 

winds around the other. 

> Let us finally explain in what sense xw belongs to the theory cwww the conformal 

family of Fock space fields generated by $(b), see the previous lecture. As in the case 

of single-valued fields, this can be expressed in the form of Ward's OPE 

12.8 T ( 0 * + ( z , z 0 ) ~ 
ib 

cxxx )2 + 
J(z) 

x^*ù dZ0$+(z,z0) 

where T EE T(b) and dZ0$+(z,z0) (recall that ww is a pre-pre-Schwarzian form) or 

equivalently in the residue form of Ward s identities 

(12.9) 
1 

2ni [z 
vT<S>+(z,z0) = £v(z)$+(z,z0). 

(Similar statements hold for ZN. 

According to our discussion above, the meaning of (12.8) and (12.9) is the following. 

For every single-valued Fock space functional X and every curve 7 connecting ZN 
and z in D \ Sx, the function dZ0$+xww(z,z0x<<)<< has an analytic continuation 

bo D [Sx\J{z,zo) and the above relations hold for this analytic continuation. Note 
that the continuation depends on the homotoov class of dZ0$+(z,z0) but the singular 

parts of the Laurent series do not depend on 7 . 
To prove (12.8) we simply integrate with respect to 77 the operator product expan­

sion 

T(C)J(ri) -
2ib 

C-v) |3 + 
J(0 

^*ùùùù \2' 

which is equivalent to Ward's OPE for J, see Corollary 5.5, and interpret the result 

in the sense explained above. 

12.2. Chiral bi-vertex fields 

o Definition. — Our next goal is to construct normalized exponentials of the chiral 

bosonic fields in such a way that these multivalued fields will be Aut(D, g)-invariant 

holomorphic differentials and will belong toxwwwin the sense explained above. 

Recall that in the non-chiral case, the use of OPE multiplication automatically 

produces fields with these properties. We cannot directly extend this approach to 

chiral fields because of the difficulties with the definition of their correlation functions 

and therefore with operator product expansions. Without going into details, we will 
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just state the definition of chiral vertex fields and then verify the properties. (See also 
Section 15.2.) 

So, by definition (for z T¿ ZQ, a e C), 

Va{z,z0) = V(%(ziz0) = {V^)} = 
w'(z)wf(z0) 

(w(z) - w(z0) 2 

_ l 
2 
a2 e®a3>+b)(Ziz0) 

w<< 
w'(z)w'(z0) 

W(Z) - W(ZQ)J 2 

_ i 
2 
a2 w'(z) 

W'(ZQ) 

iab 
e0a*(~o) >,2o) 

1 

where w is any conformal map D,q) -> (M,oo) and 7 is a curve from zn to z. 

There is no difficulty in interpreting Wick's exponentials e0a*w <<< . Their cor­
relations with single-valued Fock space fields are given by Wick's calculus and by 

correlations of <^*ù , see the previous section. Clearly, eea*t°) <<< is a scalar field and 

it is invariant with respect to Aut(D). It is also clear that the field e0a*(o) Z,ZQ) is 
holomorphic in both variables. 

The function 
W,{Z)W,{ZQ) 

(w(z) - w(z0) 2 

x<<< 

does not depend on the choice of w. As we mentioned in Section 4.3, this is a non-
random holomorphic differential of dimensions cxx i 

"2( 
ra2 with respect to both variables; 

it is invariant with respect to Aut(D). It follows that dZ0$+(z is a holomorphic 
differential of conformal dimension 

A = -
a2 

2 
+ iab 

with respect to z and of conformal dimension 

A0 = -
a2 

2 
— iab 

with respect to ZQ\ it is Aut(D, q)-invariant. 

> Ward's OPE. — Let us now establish Ward's OPEs for chiral vertex fields. This 
will allow us to say that the field belongs to TQ>) . The meaning of this statement 
was explained in Section 12.1 — we need to consider correlations with single-valued 
Fock space functionals A\ It is crucial that such correlations are not ramified at £ = z, 
which is a consequence of the corresponding property of the chiral bosonic fields, 
see (12.8). 

Proposition 12.1. — We have 

(12.10; r(C)Va(z,*ö)~A-
Va(z,zo) 
(C-z)2 

x 
dzV^zo) 

cww^ùù 
:C — * z), 

where : T = T(b) and V = V(b) . Similar operator product expansion (with AQ) holds 

as £ —» ZQ. 

ASTÉRISQUE 353 



12.2. CHIRAL BI-VERTEX FIELDS 95 

Proof. — The proof is by Wick's calculus. Since chiral vertex fields are differentials, 
it is sufficient to perform the computation in the half-plane uniformization, which 
simplifies the argument. All computations below refer to the global chart of (H, oo) 
as in the proof of Proposition 10.3. Thus we have 

$ = $(O), WW =WWW 

0$ = J = J(0), T = T(0) + ibd J, R(0) = _1 
2 J 0 J. 

Let us first consider the case b = 0: 

T(O)(C)e0a*+ xw 1 
2 

n>0 

<< 
n! 

№ © ^ ( 0 ) (*+ 0 • • • © *+) - I + II, 

where the terms I and II come from 1 or 2 contractions, respectively. Thus 

I ~ -aE[j(0<S>+] J(C) 0 e0a*+ and I I - - |A2JE;[ j (C)^+]2E0A^. 

By (12.6), the singular part of operator product expansion of Tr0\ and E0A*+ at z 

reads 

a-
J(z) 

'C-z 
© E0«*+ < 

a2 E0A*+ 

2 (C-zY + 
a2 E0Q*+ 

Z- Z0 C-Z 
< 

THIS PROVES THE RELATION (12.10) WHEN 6 = 0. FOR 6^0 , ALL WE NEED TO SHOW IS THAT 

Sing c^9J(C)E0Q*+ < a 
c-z 

_ 0a$+ 
Ì26 ^< 

Since we can differentiate the singular part of operator product expansion, we just 

need to verify that 

Sing, k-. '(C)e0a*+ = —a-
cù^^ 

C-z ' 

However, this is immediate from (12.6). • 

> Global Ward's identities involving chiral vertex fields have the following meaning. 
Let X be a string of single-valued Fock space fields in the family J7^)- Then for all 
curves 7 in D\Sx and all vector fields v (which are holomorphic at the endpoints z, ZQ 
of 7 and at the nodes of AO WE have 

E[Cv(Va(i)X)]=E[W(v)Va(ry)X]<<. 

This can be established following the same argument as in Lecture 5 and using the 
fact that the function 

C^E[T(0Va(-y)X]<< 

extends to a single-valued analytic function in D \ Sx-
Ward's equations, see Section 5.7, also hold for chiral bi-vertex fields with similar 

interpretation. 
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12.3. Rooted vertex fields 

It is important to understand that chiral vertex fields exist only as bi-variant ob­
jects. Nevertheless, we can freeze one of the variables, say zo, and consider Va(z, ZQ) 
as a field that depends only on z. This of course results in the appearance of a new 
marked point unless we use the marked point q that we already have from the central 
charge modifications ( 6 ^ 0 ) . The problem with the choice of ZQ = q is that it leads 
to a divergence that has to be taken care of by some normalization procedure. 

In any case, for each 6, we construct a one-parameter family of Aut(Z2, g)-invariant, 
primary fields xww in the "holomorphic part" of J7^ theory. Below we explain the 
definition and properties of ww and clarify some points related to the fact that these 
fields are boundary differentials. 

> Boundary differentials. — Let q £ dD. According to the discussion in Lecture 
4, we say that a field F = F(z) in D is a boundary differential with respect to q 
if it depends on the choice of a standard boundary chart (see Section 4.2) <fi at g, 

(in addition to local coordinates at z) and transforms as follows: 

12.11 (F(z) II <t>) = (F{z) II 0)(*'(O)) w 
5 

where h is the transition map between charts </> and (f) satisfying <l>{q) = <f>(q) = O. 
The exponent Xq is called the dimension of F with respect to q. The following example 
of a boundary differential should help to clarify this concept. 

Example. — Define a non-random field F = F(z) in D by the equation 

F = wftwtf, 

where WA, : D -> II is a conformal map normalized in a standard boundary chart <j), 
4>{q) = 0, by the condition 

w$(z) = -
1 

4>(z) w$*ùù z —>q. 

Then F is a boundary differential of dimension a + ß with respect to q (and a 12w< 

differential with respect to z). 

Proof. — Clearly, Wfi = kw^ for some k > 0. We have 

k = lim 
z—¥q 

wé(z) 

w4>(z) 
— lim 

w< 

4>{z) 

<<m 
= lim 

*)^$ 

h o 6(z) 

4>(z) 
= h'(0), 

so F = (h'(0))a+ßF. • 

> Normalization. — Let us first consider the case 6 = 0. Fix any point q £ dD and 
define 

V°(z) = Va(z,q). 
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In terms of a uniformizing map w : (D,q) ^ (H,0) we have 

dZ0$+(z,dZ0$x<<<+(z,z0) vn,;mù 
cww 

< 

The derivative w'(q) requires a specification of a standard boundary chart at q, 

so V?{z) is a differential with respect to z and a boundary differential with respect 
to Q; both dimensions are equal to l 

2 
a2. If we fix a chart at q and require w'(q) = 1 

in this chart, then the formula simplifies: 

dZ0$+(z,z0) 2 V ) _ 1 
2 

cxx e0a*w. 

However, it somewhat hides the fact that we are dealing with a boundary dif­
ferential. We obtain an even simpler expression in terms of a uniformization 
w : (D,q) ^ (M,oo): 

12.12) dZ0$+(z 2 a2 e0a*w. 
5 

where we require that w(0 ~ - 1 / ( C - 9) as x<<w in a fixed boundary chart at q. 

The formula (12.12) of course means that we have 

V?(z,-Y)=(w'(z) 
_ Ì 2 a2 e0a*fo) [7) 

for all paths 7 connecting z and ¿7. 

Let us now consider the case 6 ^ 0 . As usual, q denotes the central charge modifi­

cation point. By definition, 

dZ0$+(z,z0) -i< ta2-+*a6e©a*̂ 0) 
5 

where w : (D,q) *-> (H,oo) is such that w(C) ~ -1/(C - (7) as C -» (7 in a fixed 
boundary chart 0 at q. Equivalently, 

12.13) V? = V?(Z;>y) = lim w 
w!! 

ze] \iotbyot (le) w 

where the curve Is is the part of 7 from z£ to z. and the point zE is at (spherical) 
distance s from a in the chart </>; va = v(i is the bi-vertex field. 

This last expression represents ya in terms of a rescaling procedure, and allows us 
to derive the properties of ya from those of bi-vertex fields. In particular, we obtain 
the following version of Ward's identities. 

D> Ward's identities for rooted fields 

Proposition 12.2. — If v is a non-random vector field smooth up to the boundary, and 
ifv(q)=v'(q)=0i then the Ward's identities 

f 12.14' ECv[V,a(z)X1(z1) - "Xn(zn)} = E[W(v)V,a(z)X1(z1) • • -Xn(zn) 

hold true vrovided that Xj e J(b), and z and Zj's are in Dhoi(v). 
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Proof. — We will use the representation (12.13) and the fact that Ward's identities 
hold for bi-vert ex fields. All we need is to show that 

lim Cv(z£) w'(z£) iocbyot / ww = 0. 

The field X(ze) = X{z,ze-le)w<< =<<<< {w'(ze)iabVa(le[ is a holomorphic differential 
in z£, so its Lie derivative has two terms, with v(z£) and v'(z£) . At the same time 

E[X(ze)X1(z1)'"Xn(zn)]w<<< =0(1),X<<E[dX(ze)X1(z1)-.-Xn(zn)]=0(l) 

as e —> 0. Since v(q) = v'(q) = 0, the Lie derivative at z£ tends to zero. • 

Since the vector fields 
vz(0 = 

L 

^ùù* 
m M) 

have a triple zero at infinity, we can apply Ward's identities to such fields and derive, 
as in Section 5.7, the corresponding Ward's equations. In particular, we have the 
following 

Proposition 12.3. — IfX = Xi(zi) • -Xn(zn) with Xj ewww then the equation 

E(T * V?){z)X = EV?(z)C+ X + EC- K(z)X] 

holds in the (M, oo)-uniformization. 

The equation obviously extends to the case when z is a boundary point. It is in 
this form that we will use Ward's equations in the SLE theory. 

t> Level two degeneracy. — In terms of the action of Virasoro generators Ln, see 
Section 7.4, and current generators ^^^$see Section 11.1, the rooted chiral vertex 
fields yia are Virasoro primary holomorphic fields of conformal dimension À = \o?—ab 

and current primary with charge q = a. As we explained in Appendix 11 this implies 
the following: 

Proposition 12.4. — Provided that ; 2a(a + 6) = 1 , we have 

T(b)*vr ww 
1 

2a2 
d2VÌa. 

This degeneracy equation is the reason for the close relation that exists between 
SLE and conformal field theory. Combining this with Ward's equation, we will derive 
Cardy's equations (see Section 14.3) that correlation functions of any fields in JVM 

under the insertion of dZ0$+(z,z0) are annihilated by the second order differential 

operators 
1 

2a2 OF cwww 

which appear in Itô's calculus (see Section 14.4) in the context of SLE martingale-
observables. We don't claim that V™ is the only field that satisfies such equations 

and therefore gives rise to relation to SLE. 
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APPENDIX 13 

CFT AND SLE NUMEROLOGY 

For convenience of the reader, we give here a summary of useful formulas concerning 
level two singular and degenerate vertex fields. We will also introduce an alternative 
parametrization which is used in the SLE theory. 

Recall that the conformal field theories x<< generated by modifications of the 
Gaussian free field are parametrized by real numbers i b G E. The central charge 
of Trb) is 

c = c{b) = 1 - 12b2. 

Parameters b and b' = —b are called dual — they have the same central charge. 

Given ò, there is a unique positive exponent 

a = a(b) = 
dZ0$+(z,z0) 

2 
satisfying the equation 

2a(a + b) = 1. 

The dual exponent a'(b) := a(ò') is 

x<<< 
1 

2a 
= a + b. 

The SLE parameter K = K,(b) is defined by the equation 

K = 
2 

~2 ' or 
b 

a 
<< 

< 

4 
- 1. 

The dual SLE parameter « ' := ac(ò;) satisfies 

KK! = 16. 

(Duplantier conjectured in [14] that SLE(k/) trace should describe the boundary of 
the hull of SLE(k) when n > 4. Duality of variants of SLE was established by Zhan 

in [46] and Dubédat in [12] independently. 
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a 

a = a(b) 
b 

w<< K = K,(b) 

b 

FIGURE 13.1. Graphs of a(b) and K(Ò) 

The correspondence dZ0$+( is a bijection dZ0$ see Figure 13.1. In terms of K 

we have 

a = 
'2 
x< b= < 

K 

8 < 
'2 
— 5 
K 

and 

c= 1 -
3 
2 

K; - 4 2̂ 

< 
= 1 -6 | 

K 

4 < 4 
< 

2 
<< 

3 « - 8 ) ( 6 - « 
2k 

Let us restate the algebraic description of level two singular vectors in Proposi­
tion 7.6. 

> Singular conformai dimensions. — Define the singular conformai dimensions 
h = h(b) and ti = ti(b) as follows: 

<ù* 
3a2 

2 
1 
2 

x< 
6 — hh 

2K 
ti << 

3 

8a2 

1 
2 << 

3ac-8 
16 << 

Note that tiIV) = hW) and /i'(ò') = W6), so the unordered pair vv^$ù is the same 
for b and £/, which means that it depends only on the central charge: 

ititi} = 1 
16 

5 - c ± v / ( l - c ) ( 2 5 - c ) ) 

(use h + ti = l 
8 

'5 - c), and /i/i' ss l 
16 s . The traditional notation for ^mù 

is ^1,2, ^2,l}- Let us also denote 

77 = r?(ò) := - 1 
2a2 

$:;;< 
<< 
< rf = W(b) := ri(b') = -4 

vw<< 

Note 

13.1 d(z,z0) c - 1 3 

6 ^*ù W = l, 

and 

(13.2) 77= - 3 
2(2/1 + 1) 

ù 

We can now restate Proposition 7.6 as follows. 
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TABLE 1. Selected special cases 

xx 2 8 8/3 6 3 16/3 4 
LERW ;ust) (SAW?) (percolation Ising (FK Ising GFF; 

b l 
2 

1 
2 

/3 
6 

/3 
6 x 

1 
2̂4 

1_ 
2̂4 0 

a 1 
1 
2 

X/3 
2 

1 
/3 

2 
'3 

V/3 
2>/2 

1 
/2 

1 1 
8 

5 
^^ 

0 
1 
2 

x 
16 

1 
x 

-?7 
1 
2 2 

2 
3 

3 
2 

3 
4 

4 
3 1 

Proposition 13.1. — A primary field O G T(b) of dimension A produces a level two 
singular vector if and only if X = h{b) or\ = h'(b). The corresponding singular vector 
is [L_2 + tiLlJO or [£_2 + rfLlJO, respectively. 

Proof — From (7.7), we find 

ri1-
c- 13 

6 
77+1=0 , 

so bj (13.1), r, = r,(b) or r/(6'). It follows from (7.7) and (13.2) that 

A = 
1 
2 

3 

Mb) 
= Kb), or À = — 

1 

2 
3 

4*7(60 
= /1(60. 

• 

Let us apply this description to vertex fields in v< We will write <^ù ) for a vertex 
field with exponent zcr, e.g., 

cx^ùmm yia 

(We can equally consider non-chiral vertex fields yia , bi-vertex chiral fields Vl°', or the 
fields yia which we define in the next lecture.) The conformal dimension of x<< is 

13.3 A = 
$ 
mp 
2 

-ob. 

> We call a primary field (level two) degenerate if it produces a null singular vector. 
See Remark in Section 7.5. 
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Proposition 13.2. — For each 6, there are exactly four exponents a (except for the case 
b = 0,± i 

2 
when some of a's coincide) such that the vertex fields produce level 

two sinqular vectors: 

a = a, a — 2b — a, (À = h(b)), 

and 
a — —a — ò, cr = 3fr + a, (A = /i/(6)). 

Tfte vertex fields x<< and Q{-a-b are degenerate, but 0{ (26-a) and £)(a+3b) are not 

'unless b = 0. ± i 
2> 

Proof. — The first statement follows from Proposition 13.1 and (13.3). The second 
statement follows from Proposition 11.2 and from the Wiener chaos decomposition of 
singular vectors (cf. the proof of Proposition 10.3) in the expressions: 

(L-2+r,L*) Q(2b-a) < 
8 — KJ 

2 
dZ0$+ 

tv — 6 

2 
<^$ù QO(2b-a). 

(L_2 + r7,L2_1)0(3b+û) w< 
4(« - 2) 

K 
jm^ù$* 
dZ0$ 

8 -3k 

k A(0) 0 (p(3fe+a) 
5 

where A(0\ and Afy\ are holomorphic quadratic differentials from the definition of the 
stress tensor of J*(o) and T{b) 1 theories, see the beginning of Lecture 10. • 

The simplest example of a non-trivial singular vector is the Virasoro field T in the 
case c = 0 (i.e., k w 8 

3 
or 6 I. In this case T is primary and, as a level two singular 

vector T corresponds to Q(a=0) K In the case 6 = 0, the differential J appears as a level 
one current-singular vector. 

Remark. — Primary fields are of particular importance from the physical point of 
view. Non-zero singular vectors are examples of non-vertex primary fields. 
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LECTURE 14 

CONNECTION TO SLE THEORY 

In this lecture we discuss SLE theory from the point of view of conformal field 
theory. Chordal Schramm-Loewner evolution (SLE) equation in D,p, q) describes 

conformally invariant random curves from p to q satisfying the so-called domain 
"Markov property." The corresponding probability laws are parametrized by a sin­
gle parameter K > 0. We will establish the following fact and explain some of its 

consequences: if the numbers a and b are related to n as 

a = 
2 
x<< b = a < 

< 
- 1 < 

< 
Is < 

2 
<< 

(see Appendix 13), then under the insertion of a boundary vertex V*a(p), all fields in 
the theory T^) satisfy the field "Markov property" with respect to the SLE filtration. 

In Section 14.1 we recall some basic definitions and facts of SLE theory. In Sec­
tions 14.2-14.3 we interpret the insertion of V*a(p) as a "boundary condition changing 
operator" and derive Cardy-type equations for correlation functions under this inser­
tion. In Section 14.4 we prove the field "Markov property": all correlation functions 

E[V:a(p)X1(z1)---Xn(zn)} 

E{V™(p)] 
• 7 (Xj e J(6)) 

are SLE martingale-observables. In the last section we consider several example of 
SLE observables. Further examples, related to vertex fields are discussed in the next 
lecture. 

14.1. Chordal SLE 

> Let ^$*ùùù be a simply connected domain with two marked boundary points 
and n be a positive parameter. The chordal Schramm-Loewner evolution with param­
eter ft, SLE(K), is a conformally invariant law on random curves in D from p to q. It is 
described by the Loewner equation driven by the standard one-dimensional Brownian 
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motion BKf More precisely, for each z e D, let gt(z) be the solution (which exists up 
to a time rz e (0, ool of the equation 

dt9t(z) = 
2 

9t\z, x<< 
<*^ùùù$^^ 

where go : (£>,p,g) -> (H,0,oo) is a given conformai map. Then it is known that for 

all i, 

dZ0$+(z,z0)dZ0$+(z,z0) 

is a well-defined conformai map from the domain 

[U.l) Dt:={zGD:rz> t} 

onto the upper half-plane M, where the SLE stopping time ^xw the solution 9t{z) of 
the Loewner equation exists for t < TZJ satisfies 

[14.2; lim wt 
w^ù* 

z) = 0. 

The SLE curve 7 is defined by the equation 

(14.3) It lit) : lim 
z^0 

9Tl dZ0$+(z,z0) 

the limit exists for all t almost surely. Also almost surely, the SLE curve is a con­
tinuous path 7 : [0,oc) -> /; (assuming local connectivity of 3D) such that Dt is 
the unbounded component of dZ0$+(z,z0) for all t > 0. The SLE path 7 is simple 
for k. e [0, 4] self-intersecting but non-self-crossing for />• e (4,8); and space-filling 
for K > 8. For the proof of these facts and other basic properties of SLE. see ¡361, 
and also "251, [26], ¡441 [451. Beffar a proved that the Hausdorff dimension of SLE 
trace is almost surely min 1 + ^/8,2), see [4]. 

K<4 •1 < /.• < 8 

FIGURE 14.1. The phases of SLE; from [24] 
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> Domain "Markov property". - If K = 0, the (non-random) curve 7 is just the 
hyperbolic geodesic from p to q in D. It satisfies the equation 

7[t,oo) =7£>t,W°>°°)-

If K > 0, then the same equation holds for the laws on random curves, which is a direct 
consequence of the SLE construction. Alternatively, one can express this property by 
the equation 

(14.4) Law(7[£,oo)|7[0,£]) = Law7Dt,7t,g[0, 00). 

(One should understand this and similar statements in the sense of conditional ex­
pectations with respect to the filtration by the Brownian motion in the definition of 
SLE.) Schramm's principle states that SLE (ft) are the only conformally invariant laws 
on non-self-crossing curves satisfying (14.4). 

> Field "Markov property". — Again we first look at the classical case K = 0. 
Consider the (non-random) field 

f(z) = fD,p,q(z) = arg </>'(*), il) : {D,p,q) —• (C\R+,0,oo). 

(Note that this field is a pre-pre-Schwarzian form.) Since E_ is the hyperbolic geodesic 
in C \R+, it is clear that the field / has the ("Markov") property 

/\Dt — ft = fDt,~it,q> 

Moreover, many other fields, e.g., /2, e-f, 5/, etc.. will have the same property with 
respect to SLE(O). 

In the case n > 0, we want to define a similar property of a collection T = {FA of 
random conformal Fock soace fields: 

14.5) Lawp7 I 7[0,£]) = LawJ1;, Tt := FDt,it,q-

fHere we assume invariance of T with respect to Aut D,p, q and define the fields Ft 
as explained in Section 4.3. While the held Xt in Section 4.4 means the pull-back 
of X with respect to the local flow, Ft in this lecture indicates the field in the SLE 
triple {Dt,7t,q) See Section 14.4.) On the level of correlation functions, the equa­
tion (14.5) should mean 

(14.6) " № i ( * i ) • "FJzn) I 7[0,*]1" = E\Flt(Zl) • -Fndzn)], 

but in order to interpret the left-hand side we need to have both random fields and SLE 
curves be defined on the same probability space. One way to proceed is to couple 
SLE(K) and the Gaussian free field, see [39] and [13], but instead of going into the 
analytic details of such a coupling we just note that if this coupling is defined properly, 
then the processes 

(14.7) /*(*!,..., *n) = E[Flt(zi) • - • Fnt(zn)] 

are local SLE martingales, and take this last property as a definition. 
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> Martingale-observables. — A stochastic process Mt is called a martingale with 
respect to a filtration At (an increasing family of <r-algebras, e.g., the cr-algebras 
generated by the Brownian motion up to time i) if Mt is ^-measurable for all t, 
E\Mt\ < oo for all t and if 

E\Mt I As] = Ms for all t > s. 

For an L1 random variable M, the process Mt = E[M I At] is a martingale. Thus 

if Fi(zi) • • • Fn(zn) in (14.6) could be replaced bv an L1 random variable, then the 
processes (14.7) would be martingales. 

We refer to anv textbook on stochastic calculus e.g., [35] for the definition of local 
martingales. In particular, for a smooth function h, the stochastic integral 

ft 

Jo 
h(Bs)dBs 

is a local martingale. In this respect, recall Itô's formula. 

Itô's formula. — / / / is in C1'2, then almost surely 

14.8) f(t,Bt)-f(0,Bo) = 
ft 

lo 
f'(s,Bs)dBs + 

w< 

Jo 
f(s,Bs)ds + 

1 
2 

ft 

/o 
f"(s,Bs)ds. 

The term 
< 

o 
f(s,Bs)ds + I 

2 

< 

^0 
f"(s,B8)ds 

is called the drift term of / t,Bt and the process f(t,Bt) is called a local martingale 
if its drift term vanishes. 

By definition, a collection T of fields has the "Markov property" with respect to 
SLE(ft) if for all <^*ùùù and all ZJ e D, , the processes (14.7 are local martingales. 
We say that the non-random fields /(zi,..., zn) - ElF^Zi) - - • Fn(zn)} are SLE( M 
martingale-observables. 

It is easy to verify by Itô's calculus that any particular correlation function is a 
martingale-observable, but our goal is to describe a large collection of SLE observables 
by means of conformal field theory (Ward's and level two degeneracy equations). 

14.2. Boundary condition changing operators 

We use this term for the correspondence X h-> X resulting from the insertion of 

a chiral bi-vertex field with endpoints on the boundary. This operation changes the 
boundary values of Fock space fields. The term is borrowed from physics, see e.g., [8], 
and in many (but not all) cases we have a good match with the physical formulas (as 
we understand them). 

> Let us recall the set-up: 

• (D,q) is a simply connected domain D with a marked boundary point q G dD; 
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• b G E is a fixed parameter and x<< <p^ù F(b)(D,q] is the OPE family 
of the bosonic field <ÏVm, see Section 10.1; the notation for the standard 
fields s *, J,T, Via, etc. refers to the family in (̂6)ï 

• the vertex field yia with a > 0,2a(a+6) = 1, rooted at the modification point q, 

is a holomorphic differential of dimension 

14.9 h:= 
a2 

2 
— ab, 

with respect to z and a boundary differential with respect to q, see Section 
12.3; 

• we normalize this field in a fixed boundary chart at q; 

• the vertex field yia produces a degenerate singular vector (see Section 12.3): 

t * via = 1 
2a2 

d2v:a. 

Let now p ZdD,p^ q, and denote by r the arc of dD from q to p oriented in 
the counterclockwise direction. We use r to define the value v:a(P) = v:a{ <<< I. In 

the half-plane uniformization consistent with the fixed boundary chart at q = oo, 
p = £ G M, we have 

dZ0$w<<+(z,z0) 

where r is the half-line -oo,£). 
> The insertion of yia GO is an operator 

A' I—• X 

on Fock space functionals/fields. By definition, this correspondence is given by the 
formula 

(14.10) $ = $> + 2iaG+(p, z) 

and the rules 

(14.11)$*^dX^dX,bùùdX^dX,w<<aX + ßy^>aX + ßy,v^ùùX®y^X®y. 

If w : (D,p, q) —)• (M, 0, oo) is a conformal map, then 

2iaG~t(p,z) = 2a arg w(z). 

Notation. — We denote by F(b) the image of ^$*ùù under this correspondence. 

Fields in x<< are Aut< [D,p, q\ -invariant because arg w is Aut {D,p,q, ̂ -invariant and 
fields in F(b) are invariant with respect to Aut( 'D,q) <^^ 

Denote 

E[X] := 
E[V*(p)X] 

E[Vr(p)} 
= £[e0ia*w(p)*], 

see Section 2.3 for the motivation of this notation. As in Section 2.3, we prove by 
induction the following: 
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108 LECTURE 14. CONNECTION TO SLE THEORY 

Proposition 14.1. — Let X G Fl ib) correspond to the string X e T( xww under the map 

given by i 14 .10 ; and 14.11) . Then 

(14.12; E[X] = E[X] 

> Examples: 

a) The current J is a pre-Schwarzian form of order ib, 

J — J — ia 
w' 

w 
= J(0) ia 

wf 

w 
+ ib-

w<< 

w' 

In the (H,0,oo) -uniformization, j(z) := EJ{z) = -
ia 

z 
b) The Virasoro field f is a Schwarzian form of order i 

12l << 

f = -
1 

2 
J*J + ibdJ = T + ia 

w' 

w 
- J(o) + h 

<< 

w 

2 

= A{0) - jj(0) + ibdJ(0) + 
c 

12 
Sw + h 

<^ù 

w 

2 
5 

where h < i 
2( a2 — aò is the conformal dimension of ̂ *ù see (14.9). In the 

(H, 0, oo)-i uniformization, ET(z) = c< 1 
9 ' 2̂  

c) The non-chiral vertex field c<< 
is a differential of conformal dimensions 

(- i 
2( a2 + ÌOéb, 1 "2( CK2 — iab) 

'14.13 •pa 2̂o:a arg if-yo; 2̂o!a arg w — 2o¿b arg tu' g0Q$(o) 

In the ( A O , oô  o)-uniformization, ÊVa = (2y)a2 we2aaarzz; 

d) The bi-vertex field Va(z,zo) is a -a2/2 ± iafr-differential in both variables, 

Va(z,z0) = 
wf(z)w'(z0) 

(w(z) - w(z0)) 2 
-è* a2 w'(z) 

<^*mmll 

iab wlz) 
>w(z0) 

—iota dZ0$+(z,z0) 
dZ0$+(z,z0) 

In the (M,O,oo; -uniformization, EVa(z, Z0) = (Z- Z0)A2Z-IAAZL0AA 

14.3. Cardy's equations 

In this section we will derive equations for correlation functions of fields in J7^. 

These equations are similar to those in Proposition 10.4. As usual, we will state them 

in the case :a<Z) = (H,oo). 
For £ G M and the tensor product X — X\(z\) - - -Xn(zn), of fields Xj G J*(&) 

(ZJ G E ) , we denote 

EzX = E[eeia*to№x], 

so EX = ÊçX\ç=0. 
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Proposition 14.2. - If2a(a + b) = 1, then in the identity chart ofW, we have 

14.14) 1 
2a2 

X\(z\) - - - X\(z\) - - -Xn(zn)Xn(zn 1 
xw^ù*$ 
vw^$ùùù 

where dz = d + 8 is the operator of differentiation with respect to the real variable £. 

Proof. — Denote 

^ — ^(^î» • • • > zn) — E^X. 
Since Rc does not depend on the boundary chart (at oo) in which we normalize V?a, 

we can assume <<^mm = E©IO*(O)M , where r is the half-line - o o , 0 , and therefore 

Rç = E [v:a(t)X] . 

Denote 
Rz = R(z;zu...,zn) = E \V:a(z)X] , z G H, 

where for z close to £ we use a path from oo to z close to r so that . Rç = limz^£ Rz. 

By the level two degeneracy equation (Proposition 12.4), we have 

1 
2a2 

Ô2 E[v:a(z)X]=E[(T*V:a)(z)X]<<. 

Applying Ward's equation (Proposition 12.3) to the right-hand side (we can apply 
this because T = A = T(0) + ibdJ{0) satisfies the conditions in Proposition 5.11), we 
conclude 

1 

2a2 
d2E [V:a(z)X] = E [V?(z)CtKX] + E [£" (V**(z)X)] 

= E [vr{z)C+X] + E [Via{z)C-_X], 

where we use Leibniz's rule and the fact that c-v:a(z) = O because V™ is a holo­
morphic differential). 

Let us now take the limit z —> £. Since dç = d + d and the field V™ is holomor­
phic, the <92-derivative in the left-hand side converges to x<<< On the other hand, 

since <m^*ù the right-hand side converges to 

E[V?(Ç)CVfX]=Ê€[£v.X\. 

Corollary. — We have 

• 

'14.15 ^*ù$$x<<<< 
X\(z\) - - -Xn 

2 
- 2a2CVQ EX = 0. 

Proof. — We will write R for R^=Q. By translation invariance, 

R* = R(zi - £, . . . , zn - £) 

and therefore 

%IC=OFLÇ = - EdJR - E B i R = - Ed*iR- • 
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110 LECTURE 14. CONNECTION TO SLE THEORY 

We will refer to equations (14.15) as Cardy's equations, cf. [6]; they are Cardy's 
boundary version of BPZ-type equations in Proposition 10.4. 

Examples. — a) If Xj's are differentials of conformal dimensions (Xj, À*j) 
(e.g., Xj 's are vertex fields), then the Lie derivative CVQ acts on EX as a differential 

operator 

CVQEX — ww 
w 

z3 
w 

AI 

3 
^^ 

^^ 
m ^^ + 

A., 

22 
3 

EX, 

see (4.8), and Cardy's equation (14.15) is a linear 2nd order PDE: 

m 
^^ 

di 
Z3 

+ 
^^ 
2? 
3 

^^ 
^^ 

^^ + 
X*j 
z2 
3 

EX = 1 
2a2 

dj+di)2EX. 

b) The 1-point function R(z) = ET(z) is a Schwarzian form of order l 
12 c, see 

Section 14.2. Recall that 

CVX = (vd + 2v')X + [ivm 

for a Schwarzian form X of order a, see (4.10). Thus 

CVQR — ̂ ^ 
d 
z 

+ 
2 
z2 

R + c/2 
z4 5 

and Cardy's equation (14.15) is 

d2R = 2a2CV0R. 

Since R(z) = h/z2., we have the identity 

6fc = 2a2 4/i + 
^^ 
2> ̂ ^ 

One can directly check this identity from h = a2/2-ab,c= l-12ò2,and 2a(a+ò) = 1. 

c) The last example can be generalized to the n-point function of T, 

R(Zl •.. , zn) = E[f (Zl) • - • f(zn) y idM ;. 

Denote Z — (Zli • • • -, Zn) 1 Zj — (Z\i • • • 5 Zj,..., zn) |. By (4.10) and Leibniz's rule (Propo­

sition 4.6), we have 

X\(z\)Xn 
n 

^^ 
^^ 

^^ 

Z3 
+ 

2 
z2> 
3 

R(z) + c 
2 

n 

3 = 1 

X\(z\) 
Z4 3 

w<< 

Cardy's equation (14.15) gives us the following recursive formula: 

14.16) 
1 

2a2 •̂1 
2 
R(z) = 

n 

3 = 1 
<< 3JL 

Z3 
+ 

2 

z2 
Z3 

R(z) + c 
2 

n 

' 3 = 1 

<^ù$ 

z4 
3 

x<< 

See [17] for this equation in the case c = 0. 
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14.4. SLE martingale-observables 

> We defined martingale-observables in Section 14.1. Let us discuss this definition 
in more detail. Suppose M is a non-random field of n variables in the half-plane. 
and suppose that M is invariant with respect to Aut H,0,oo) I. As we explained in 
Section 4.3, conformal invariance allows us to define M for any triple P,p,q) : 

(MDiP,q II id) = (M II TIT1), 

where w is a conformal map from {D,p,q) to (H,0,oo), so we can think of M as a 
function or as a collection {MDtpta} of fields. 

Consider now chordal SLE curve 7 in D from p to q so we have a family of domains 
<<ù$$$= with marked boundary points, see (14.1) and (14.3). A non-random field 

M is a martingale-observable if for any r Z\, • • • , zn G D, the process 

(14.17; Mt(2i,...,zn) = MDuluq{z1,...,zn) 

(stopped when any Zj £ Dt] is a local martingale (on SLE probability space). It is 
important that we compute Mt(zu...,Zn) in (14.17) in local coordinates chart that 
do not change with t. For instance we can use the identity chart of D, and then 
for (A,0 ̂ -differentials, we have 

Mt(z) = (w't(z))XM(wt(z)). 

Similarly, if M is a Schwarzian form of order a, then 

Mt{z) = (w't{z))2M(wt(z))+LiSWt(z). 

To verify the local martingale condition, it is enough to check that the stochastic 
differential dMt has no drift (i.e., no dt-term). 

Example. — The simplest example of an SLE martingale-observable is the 1-point 

function of the bosonic field in the case K = 4, 

M(z) - 25[$(o)0z)l = \/2argw(z). 

We have 

d argWt(z) = —\/K$S 
1 

ww< 
CLBT + 2 -

K 

2, 
3 -

] 
w2 

dt, 

so the drift disappears if n = 4. 

> Special cases of the following statement appeared in [3] and [37]. 

Proposition 14.3. — If Xj e T(b), then the non-random fields 

M(zi, ...,zn) = Ê[X1(z1)'-Xn(zn)] 

are martingale-observables for SLE(tt) 
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112 LECTURE 14. CONNECTION TO SLE THEORY 

Proof. — Let gt be the SLE conformal maps, 9t{lt) = and & = y/ïîBt. Denote 

Rç(Zl, ...,Zn) = Êt X\(z\) - - -Xn( • • • Xn(zn)] = E[eeia"U^Xi{zi)c<<<... x^zn)}. 

Then 

Mt = m(tt,t), m(t,t) = (Re\\9r1)-
Note that the function rnfot) is smooth in both variables. By Itô's formula we have 

dMt = &|*=,tm(£,t)d& + 
ù 

2 
91 X\(z\) - - -Xn(zn)x<<, 

where 

U := 
d 

ds s=0 
X\(z\) - - -Xn 
(zn),xxxxxxx 

^^ 
d 

ds s=0 
Re* II ft -l b^*ù ù 

The time-dependent flow = #t+s ° 9t 1 satisfies 

d 
ds fsAO = 

2 
/s,t(C) ~~ 6 + 5 

or /a>t = id -2s^t + o(s) ( a s 5 —y 0), 

where X\(z\) - - -Xn(zn), . Since the fields in J7 )̂ depend smoothly on local charts, it 
follows from (4.7) that 

Lt = (CvRù Hft1), 

where c<<^*ùùùù By Ward's equation (14.14), we get 

Lt = -2{CVuRit LIFT1) = -
1 

a2 
X\(z\) - - -Xn(zn), 

Thus the drift term of dMt vanishes. • 

Remark. — If we insert the degenerate vertex field -i(a+b) V*,(b) see Proposition 13.2) 
instead of yia then we get martingale-observables for the dual SLE theory, 
i.e., SLE 

14.5. Examples 

P> Example 1 (Sehramm-ShefBeld's observables). — The 1-point functions of the 
bosonic fields 

(p(z) = Ê[$DiPiq(z)] = 2aargw(z) - 26argw'(z), w : (D,p,q) —> (H,0,oo), 

were introduced as SLE martingale-observables by Schramm and Sheffield, see [39]. 
By Itô's calculus, 

lpt(z) = E[$D.ltJz)] = 2aargw t(z) - 2baigw't(z) 

= 2a a r g u e z ) — 2b arg wf(z) — 2\f2 
t 

Jo 
3 

1 

ws(z) 
dBs. 

The fact that the 2-point functions 

Ête(*i)*(z2)l = 2G(zuz2) + ${zx)(p{z2) 
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are martingale-observables is essentially equivalent to the following special case of 
Hadamard's variation formula 

14.18) dGDt(zuz2) = -4Z 
1 

wt{zi, 
w<< 

1 
wt(z2) 

dt = - 1 
2 

d{$(zi),(p{z2))f. 

Schramm and Sheffield used (14.18) to construct a coupling; of SLE and the Gaus­
sian free field such that 

(Re\\9r1)(Re\\9r1)(Rx<<<< 

Let us outline the main idea and explain how Schramm-Sheffield's coupling is 
related to the fact that all n-point functions 

M(zli...,zn) = E\$(z1).-'$(zn) 

are martingale-observables. For simplicity, we consider the case K < 4 (then SLE 
curves are Jordan, and for all z e D, z e Dt almost surely). For a fixed t, we define 
a random field in D as follows. Let GFF( x<< denote the Gaussian free field in D+ 
independent of SLE (e.g., consider the pull back of GFF(H) by some conformal map 
from Dt to H) and set 

tft = fo + GFF(A). 

It is in fact easy to define << as a distributional field in D, so that the probability 

space of w<< is the product of probability spaces of SLE and GFF. 

Claim. — For all t, the correlation functions of <^ù are identical to those of 

Proof. — We first show that 

E[9t(z!) • • • tftOO] = ESLEMt(zu ...,zn) 

by applying Wick's calculus to the GFF component of E = EsLE ® ^GFF-Then 
we verify that Mt is a global martingale (this requires some simple estimates from 
complex analysis and stochastic calculus). It follows that 

EsLEMt(zu ..., zn) = Mo(21,..., zn) = E[$(zi) •. • $(zn)]. • 

See [391 for the version of this statement in the case 4 < K < 8, and for the limiting 
case t t = oo. A more subtle question of uniqueness of SLE/GFF coupling was settled 
by Dubédat [13]. 

t> Example 2 (Friedrich-Werner's formula). — Let us apply Ward's equations to 
the function 

E[f (Zl) • ..f(zn) II idM] = E[v;a(0)T(Zl) • - TOO II idH] 

bv replacing one oi <ù^* 's in the right-hand side by the corresponding Lie derivatives, 
see Propositions 5.9 and 5.11. (As usual, ide is the identity chart in the upper half-
plane M.) Denote Z — ( Z\, . . . , ZN ), Zj — ( Z\, . . . , Zj • ' ' , zn J, and 

R(£,z) = E[V*a(Wz1)---T(zn)]] 
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this non-random field is a boundary differential in £. Then we have 

14.191 R(Ç;z,z] = CVxR(&z), (in id ï ï ) , 

where vz{$ = i/(z-a In particular, at wxxx setting R(z,z) = R(0;z,z) I, we get 
a recursive formula 

R(z,z) = 
h 
z2' 

R(z) + 
71 

3 = 1 

1 

z 
+ 

1 
Z-Zj 

x^$ù 2 

Z-Zj |2 (Re\\9r1) C 

2 

^^ 

^^m 

cww 

x^ù*** V4' 

In the case K = 8 
3' c = 0,/i = 5 

8' and ~~ G M, this equation coincides with 
Friedrich-Werner's formula (see [181) for the function 

B(x) = lim 
^*ùù 

P(SLE 8 
3^ hits all Xj,Xj + i£\/2]; 

£2n 

(Also, the equation (14.16) coincides with their "dynamical" formula in [17].) Since 
B = R = 1 for n = 0, we conclude that 

B(x!,..., xn) = E[f (xi) • • • f(xn) II idM ;. 

One can in fact interpret the argument in [18] in terms of Lie derivatives and directly 
relate it to the equation (14.19). 

We will use the restriction property of SLE 8 
3^ see [311 or Example 3 below: 

> the law of SLE '8 
s) in M conditioned to avoid a fixed hull K is identical to the 

law of SLE '8 
3 in M \ K: 

> equivalently, there exists À such that for all K, 

P(SLE( '8 
3̂  avoids K) = : * * ( O ) ] \ 

where $* is the conformal map ( E \ k, O, oo) $ (E ,O , oo ) satisfying 
(Re\\9r1) The restriction exponent À of SLEi 8 

3> is equal to 5 
8'> 

Define the non-random field . A(£,xi,... ,xn) of n + 1 variables as follows: 

> A is a boundary differential of conformal dimension À with respect to £ and of 

conformal dimension 2 with respect to Xj\ 

> (A(Ç,xi,...,xn) II idM) = B(xi - £, ...,xn -£)• 

Claim. — We have A 0;x,x) = CVxA(0;x). 

(So B and R satisfy the same recursive equation and are therefore equal.) 

Proof of Claim. — Denote X — ( X\,..., xn ) . We write P(x) for the probability that 

SLE '8 
3 

path hits all segments [xj,Xj +iey2] and P(x I -tx) for the same probability 
conditioned on the event that the path avoids x, x + iey/2 . By construction, 

14.20) P(x,x) «£2(n+1)A(0;x,x). 
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On the other hand, by the restriction property of SLE 8 
3 , we have 

;i4.21) P(x, x) = P(x) - P{x I -^x) (1 - P(x)) 

^e2n A(0; x) - * ' (0 )M*i)2 • • - *'(xn)2A(y(0); *(Xl),..., *(xn))), 

where 

^*ùùcww (* - z)2 + 2e2 + 

It follows from (14.20) and (14.21) that 

A(0]x,x) = 
1 

e2 
A(0; x) - tt'(0)A¥'(si)2 • - • *,(x„)2i4(*(0);(Re\\9r1) . . . , *(*„)) 

(Re\\9r1) 

where i; is the vector field of flow •*t(z) = y/{z-x)2-2b + x. Clearly v = vx. • 

> Example 3 (Lawler-Schramm-Werner's restriction formula). — Restriction prop­

erty of SLE 8 
3> 

follows, by optional stopping theorem, from the fact that for each 
compact hull K, 

Mt = (EVÌa{lt;Dt\K) \\gt) 

is a local martingale. This is a special case of Lawler-Schramm-Werner's formula 

14.221 the drift term of dMt = 1 
3 cSht £)MTD*, (Re\\9r1) 

which holds for all « < 4. , On the event 7[0,oo)nX = 0, a conformal map is defined 
by 

ht : Slt = 9t(Dt \ K) —> M, fct = gft o *K o ft1, 

where gt is a Loewner map from Dt = D\j[0,t] onto M, 7(t) - % o 7 ( t ) , and ^ K is 
the conformal map (M \ if, 0, oo) -> (M, 0, oo) satisfying ^ ( o o ) = 1. Let it = hut). 

Then ht satisfies (see e.g., [31]) 

(14.23) ht(z) = 2/i;te)2 

ht(z)-Çt 
c< 

2h't(z) 

z-tt 

We now explain why the central charge and the Schwarzian derivative appear in 

the formula (14.22). To prove this formula, denote 

F(z,t) := (EVQt(z) II ID). 

Then F(z,t) = (EVu\\ hT^iz) and 

Mt = F{iut) = (EVçiMt) | |ID). 

The function F is smooth in both variables, so by Ito's formula, 

the drift term of dMt = F(£ut)dt + x 
2 

F"{Zut) dt. 
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lit) Dt\K 

xx 

7(*) xx 

K 

9t 

il, ht 

9t 

M 

6 (Re 6 

Figurk 14.2. THE CONFORMAI MAPS. (Re\\9r1) and /?f 

For the first term of the right-hand side, we represent F in terms of the Lie derivatives: 

F(zit) = 
d 

d.s I s=0 
(EVn II ^<<< -i xx zt xx 

d 
d.s xx 

^ H I I / i ; - ^ / - / ) ^ ) 

= (ECVVH II 

where (Re\\9r1)xx^^ 
(Re\\9r1)xx^^ 

and 

(u II idH) = 
d 
ds 5 = 0 

(Re\\9r1)<<< 

It follows from (14.23) that 

> Il idH)(C) = -2A;(Çt)2- 1 

6 - C 
+ 2 / ^ ( 0 

1 
(Re\\9r1) 
(Re\\9r1) By Proposition 5.12 we have1 

F(z,t) = -2lr[(tt)2k[(z)x{EAn(Çt)Vu{ht(z)) II id,, ) + 2{ECVU Vn, || idn, )(*), 

where À is the conformal dimension of V. It follows from conformal invariance that 

F(z,t) - "2(£MJll(6)Vhl(z) II id) + 2(EC„fi Vn, || id)(*). 

Let us now apply Proposition 5.3 to the right-hand side of the above equation: 

FiQ.l) - lim F(z.t) = -2(EAQt * Vh,fó) II id). 

At the same time, we have1 

K 
2 

w ft.*) w 
w 
2 

( # d £ k = ^ h , ( 0 II id) = 2 ( № , * V^(ft) II id). 
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LECTURE 15 

VERTEX OBSERVABLES 

In this last lecture we will look at some examples of "primary" SLE observables, i.e., 
observables that have a covariant dependence on local coordinates. This is the type 
of dependence that appears as a result of rescaling or normalization of probabilities 
and expectations, in particular in lattice models. As we explained in the previous 
lecture, correlators of primary fields in J7^-theories are examples of such observables. 
In this lecture we will expand our collection of primary fields by considering normal­
ized tensor products of chiral vertex fields and their conjugates. Further "primary" 
observables can be obtained from singular vectors and, in some cases, by such opera­
tions as differentiation, integration, and "screening." By Ito's calculus, "primary" SLE 
observables are solutions to 2nd order linear differential equations, which in general 
are not easy to solve. The knowledge of a large collection of (multi-point) primary 
fields allows us, in some cases, to identify particular solutions by calculus of confor­
mal dimensions. This is somewhat related to "Coulomb gas" methods in the physical 
literature. 

15.1. Holomorphic 1-point vertex fields 

t> Definition. — We want to construct holomorphic single variable differentials 
in J7^-theory. Chiral vertex fields rooted at q, the central charge modification point, 
considered under the boundary condition changing operation (see Section 14.2) seem 
to be natural candidates. The problem with this construction is the divergence at q 
so, as in Section 12.3, where we defined rooted vertex fields, we will use a certain nor­
malization procedure. (We will use it again to define correlators and, more generally, 
tensor product of such fields in the next section.) 

The idea is to start with a (well-defined) chiral bi-vertex field, 

(15.1 Via(z,z0) = ^ ( ^ O ^ ^ ' ^ g T ^ K ) 1 " 2 ^ 6 ^ - ^o)"a2e0^(z''o), 
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see the last example in Section 14.2 and normalize it so that the limit exists as 
ZQ ~> q. We denote this limit by yia x< . Then it satisfies the equations of, <^ù -theory, 
in particular Cardy's equations. It turns out that by simply ignoring all terms in 
(15.1) involving the point ZQ, we arrive to the following correct definition: 

(Re\\9r1)(Re\\9r1)(Re\\9r1)(Re^<<cw 
(Re\\9r1)(Re\\9r1)(Re\\9r1)(Re1<< 

where A = i 
2 
a2 -ab. Instead of ww^^ we write vwwor V™ww in this lecture. See 

Appendix 13.) More accurately, the expression for O^* can be described as a limit 
similar to the formula (12.13) in Section 12.3. The vertex fields O'*7' are invariant 
with respect to Aut(D,p, q). 

Proposition 15.1. — The 1-point function M = EO^ is an SLE martingale-

observable. 

It is of course very easy to verify this statement by Ito's calculus but the point 
is that we can get it as a limit of Cardy's equations for bi-vertex fields. Indeed, 
let Rt Z, ZQ denote the 1-point function martingale of the bi-vertex field. We have 

Rt(z,z0) = Mt(z)Et(z,z0), 

where 

Et(z,zo) = wt{z0)a(w[{zQ))ß(wt(z)-wt(zQ))1 

with appropriate exponents. Since Rt is a local martingale, the drift of Mt is equal 
to that of 

-Mt 
dEt 
Et 

dAft. 
dEt 
Et ' 

It is trivial to see that 
dEt 
Et 

0 ¿o —> q), 

for any combination of the exponents, and this proves the statement. (We will refer 
to this argument again in the next section.) 

> Conformai dimensions. — The normalization procedure in the définition of w^^ 

produces covariance with respect to q. 

Proposition 15.2. — The 1-point function M = EO& = waa(wf)x is an Aut 'AP, q)-
invariant holomorphic X-differential with respect to z and a boundary Xq-differential 
with respect to o, where 

X = 
a2 
2 

— eró, Xa = X + aa. 

Every martingale-observable with the stated properties is the correlation function of 
some vertex field 0^a\ 
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Proof. — See Example in Section 12.3 for the value of Xq. The last part, first men­

tioned in Smirnov, see [42], follows from Itô's formula. Let<<<<<< Mt = f(wt)(w't)\ 

Driftlessness of Mt reduces to Cauchy-Euler equation in EL 0, oo). Thus M(z) = 
dzai + C2za2 or dza + C2za logz in the E, O, oo; l-uniformization. We can take 

C2 = 0 because M is a boundary differential at q. • 

Note that 

a) À = 0 if and only if a — 26 (or a = 0); 

b) À = 1 if and only if a = —2a or a = 1 
a 

= 2(a + 6); 

c) Xq — 0 if and only if a — 2(6 — a) (or a = 0). 

> Special cases. — Suppose a v<<^*ùù0. 
a) If À = 0 (i.e., M is a scalar), then 

M — wß i ß = \q = l-4/K, ( « ^ 4 ) 

(a conformal mao onto a wedee). Thèse "wedee" observables are some of the sim-
plest (and well-known) SLE martingale-observables. For example, if K = 2, then the 

observable 

15.2) ^MDiPn = P(z,p) 
NqP(.,p) 

plays an important role in the theory of loop-erased random walks (LERWs), see [32]. 
Here P is the Poisson kernel, and NqP(. ,p) is its normal derivative at q. 

Remark. — For K > 4, the wedge observables M have the following probabilistic 
interpretation. Let r\E denote a point on dD at distance e from q (in a local chart (/>). 

Then 

lim 
P(rz=TV€] 

c<< 
•= const ö ( M ( 2 b > ( z ) II 0), 

where const is the normalization constant, and also 

lim 
£->0 

P(TZ>TV£] 

<< 

is a linear combination of real and imaginary parts of M^\z) IL cf) . These facts 
follow from Cardy's formula (15.10) which we discuss later in this lecture; rz and <<< 
are the SLE stopping times (14.2). In particular, it is clear from this interpretation 
why wedge observables are scalars with respect to z and have non-trivial conformal 
dimensions with respect to q. 

b) If \q = 0, then 

M = (w'/w)x = ( / ' ) \ A = 8/K - 1, 

where : / = log to is a map onto the strip. Smirnov used this observable with hi = iß 
3 

in his study of the random cluster version of the Ising model, see [43]. 
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120 LECTURE 15. VERTEX OBSERVABLES 

Remark. — If K e (4,8) then the boundary values of this M have the following 
interpretation (another special case of Cardy's formula, see Proposition 15.8). For 
VedD\{p,q} letP(Vle) denote the probability that the SLE curve hits the boundary 
interval with endpoint 77 of length e, where e <C 1 is measured in a local chart 6. Then 

lim 
£-K) 

^$*ùx<< 

w< = const I Xa = X +Xa = 

where const is the normalization constant which depends on (D,p,q) and K. Clearly, 
if the limit exists and is non-trivial, then it gives a boundary martingale-observable 
of conformal dimensions A at 77 and zero at q. On the other hand, M^2b~2a^ is the 
only observable with these properties. This argument certainly does not prove the 
existence of the limit but it provides a quick "physical" answer. (See the formula 
(15.8) involving Beffara's observables for a similar statement at interior points.) 

c) If A + Xq = 0, then o — 2b — a and 

M = 
< 

w2 
A 

<< ( / ' ) \ A = 
3 
K < 

1 
2' 

where / = -1/w is a map onto the half-plane. In the case K = 2, bhis observable 
M is the derivative of the LERW observable (15.2). In the case K = 3, M plays a 
crucial role in Smirnov's work on spin Ising model, see 9 . In both cases, one can 
explain the relation A + \q = 0 from the point of view of discrete models — it comes 
from the rescaling of the corresponding partition functions. Smirnov suggested that 
the two series b) and c) of SLE observables describe the general random cluster and 

O(N) models, respectively. 

15.2. Normalized tensor products 

t> Definition. — To define the product of Xa = X + and 0^\z2) , z\ + Z2, we 
again need normalization because Xa = X +Xa = X + diverges. Applying the 
same idea as in Section 15.1 (normalizing the product of bi-vertex fields properly and 
then taking a limit), we define 

(15 .3 )0 (<7 lH^ i ) *0^\z2) = M1M2(w1 - ̂ 2)-i-2e0^i^o)^)+^2^o)^Xa = X + 
5 

where Mj = E[0^\ = w'^iw'jYi/2-*'0 and wj = w{zj),w,ú = w'(zjXa = X +). Again, a 
simple way to express this definition is to say that we ignore all (/-terms in the cross-
ratio (12.7) when we compute the correlation function of Wick's exponentials. The 
term W\ — w2 \v1cr2 appears from the following computation: if ai, a2 are two non-
intersecting paths connecting from q tO ZI.ZO, respectively, then ignoring the g-terms, 

ASTÉRISQUE 353 

file:///v1cr2
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we have 

Xa = X +Xa = X + 
OIL JOC2 

E[J{0)(OJ{o)(v)]dÇdV 

w< 
Q¡2 

1 
<^*ù 

C=*i 
w< 

dry = -log(zi - z2) 1 
in H) 

Note the monodromy in the correlation function of the tensor product. There is 
no difficulty in extending the concept of martingale-observable to multivalued func­
tions — each continuous branch should be a martingale-observable. 

In a similar way, we can use E[^0)(Zl)^0)(z2)} = log(zi - z2 to define 

(15.4) 0(<7l)(*i)*CK-2)(z2) = M1M2(w1 -^}2)^^e0icTl<ï>w(^)+^^Î))^). 

t> General 1-point vertex fields. — This last definition (15.4) can be extended to 
the case z = z\ = z2, cf. (3.9) , so if we denote 

Xa = X +Xa = X +Xa = X + 

then we have 
0(<7l)(*i)*CK-2)(z2) = M1M2(w1 -^}2)^^e0icTl<ï>w(^)+^^Î))^). 
0(<7l)(*i)*CK-2)(z2) = M1M2(w1 -^}2)^^e0icTl<ï>w(^)+^^Î))^). 

where 

A = 
a2 
2 

— ab, A* — 
x 

2 — (7*0 

(the conformal dimensions with respect to z). 

\> Special cases. — Up to constant factors, we have the following relations: 
a) The non-rooted bi-vertex chiral field of $^^ 

lùm 
)-theory, 

O™ (*i) •cwww (z2) = Via(Zl,z2). 

This can be shown by direct substitution <Ji = a, a2 = —a into (15.3). We get (15.1) 
because <$^ù*** *+0)=2<<3№+0 (zi,z2/ . Alternately, we can take the limit ZQ —> q 
in the identity 

Viff(zlìzo)V-iff(z2ìzo) = Via(zx,z2)> 

b) The non-rooted and non-chiral vertex field of J7^)-theory, 

Q(a,-a) _ yia^ 

see (14.13). This follows from the identity *+0) + *+0)=23№+0) = *(o); 

c) The dual vertex field of J7^)-theory, 
^e0icTl<ï>w(^)+^^Î))^^e0icTl<ï>w(^)+^^Î))^ 

(It is the properly normalized and modified exponential of the harmonic conjugate 
bosonic field see (12.1).) Note that *$^^^^ is a real field if a G R. (In general < c<<< 

is real if and only if cr* = a.) 
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122 LECTURE 15. VERTEX OBSERVABLES 

> Multipoint vertex fields. — We can extend the definition to products of n fields, 

e.g., 

OM(ZI) • • • • • 0^(zn) = M1.--Mn Ylivjj - wky^k e®^i^o)(^)+-+^^o)(^). 

xw< 
In particular, we have 

(15.5) EO^'^Hzi) * • • •*0<<r""«>(zn) = T \ E O ^ ^ \ Z J ) W < < TT Ljik(zj,zk), 

3 j<k 
where 

EO^'^Hzi) * • • •*0<<r""«>(zn) = T\EO^^\ZJ) TT Ljik(zj,zk)cw<<$ùù<ww, 

In general, the operation • is commutative (in the sense of multivalued functions), 
associative, and real (i.e., A*B = A*B). 

> Cardy's equations and SLE martingale-observables. — It is not difficult to show 
that Cardy's equations survive under the normalization procedure. 

Proposition 15.3. — Normalized correlations M of chiral vertex fields (and their com­
plex conjugates) satisfy Cardy's equations: 

CVoM = 
1 

2a2 
dj + dj 

2 
M. 

Example. — Let M = EX, where 

X(zu ...,zn) = 0^^\Zl) • •. • • ö^*"\zn). 

In (H, 0, oo), M reads as 

n 

3 

a j a Z • 3 
-CT*ja 
3 iZj Zj) x<<< 

<^*ù 
[Zj - Zk) ùp^m [Z3 - zk] x<< 'k(z3~zk] <p^mm (Zj - Zk w<<,:; 

and satisfies the 1st order linear PDE 
1 
a 

3 

{dj+dj)M = 
< 

c< 
<< 4-

<^ù 
c<< 

i M. 

Cardy's equation for M is the 2nd order PDE 

1 
2a2 

dj + dj 2 
M = -(a + b] 

<< 

z2 
3 

+ 
<J*j 
z2 1 

M + 
1 
2 

< 
< 

+ 
< 
< 

2 
M 

< < 
di 
Z3 

+ 
A; 

z2 
3 

< 

Z3 
+ 

< 

z2 
3 

M = CVfìM. 

Proposition 15.4. — Normalized correlations of chiral vertex fields (and their complex 

conjugates) are SLE observables. 

This follows from the argument in the proof of Proposition 15.1. 

t> Conformal dimensions at q. — The next proposition gives a necessary and suf­
ficient condition for a multipoint vertex field to be a 0-boundary differential at q. 
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Proposition 15.5. — Let EO^'^Hzi) * • • •*0<<r"x<<"«>(zn) = xwwww Then X is 

a boundary differential at q of dimension 

Xq(X) = (a - 6)E + 1 
2 

C2 
w< E := 

3 
^$ùùx<<< 

In particular, Xq(X) = 0 «/ and only if E = 0 or E = 2b - 2a. 

Proof. — Let Mjizj) = EO^^(zj) and Ej = a* + <7*j. Since XI(EX) is a 0-
boundary differential at it follows from (15.5) that 

A , ( X ) = V V M J ) + VA,(LJIFC) 

J ^*ùù 

ùù 
^ùi 

(a-6)Ei + i 
2 

i2' 
3 

x< 
<<< 

Ê -Efc = (a-6)E + 1 
2 

-»2 • 

15.3. 1-point martingale-observables 

t> Vertex observables. — Recall the expression for the 1-point observables that we 
get from vertex fields: 

EO^'^Hzi) * • • •*0<<r""«>(zn) = T\EO^^\ZJ) TT Ljik(zj,zk), 

where 

15.6; A = 
a2 
2 

• — (JÒ, 

We can rewrite M in terms of the conformal radius: 

M = iaa*Caa*\w'\™*waaw°*a{w')x(w')x*. 

Recall that C — \w — w\/\w'\\ and (C II idp) x dist ^$ùùù . If we ignore the constant 
factor iacr*, then 

E^-Efc =ww (a-

It FOLLOWS that THE 1-DOINT OBSERVABLE ̂$ùùùù has non-trivial boundary values on 
dD w<<< ONLY IF EITHER a OR CR* IS ZERO. 

> Unlike the holomorphic case, see Proposition 15.2, not all 1-point martingale-
observables can be represented by vertex fields. For example, Schramm's observable 

M(z) = P{z is to the left of 7}, (0 < K < 8, z G D) 

is not of the form pE^-Efc = (a . (The winding number of the positively oriented closed 

curve 7 U qp around z is well-defined because z is off the curve 7 almost surely. This 

winding number is either 0 or 1 since 7 is almost surely non-self-crossmg. We say 
that z is to the left of 7 if this winding number is 1.) Indeed, Schramm's observable 
has dimensions A = A* = Xq = 0 but the scalar field I (Hz) = 1) is the only vertex 
field with such dimensions. 
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In addition to vertex observables, we can consider expectations (and correlations) of 
singular vectors (so we get "primary" observables). The simplest is the case of level one 
singular vectors, which are (up to conjugation) just the ^-derivative of scalar fields. 
It is of course always true that derivatives of martingale-observables are martingale-
observables. Conversely, if a martingale-observable X is a (l,0)-differential, then for 

any curve a, r X 
a 

is a local martingale. We continue this discussion in the next 
section. 

> Example: Schramm's observables. — Let M(z) = P{z is to the left of 7}. Then 
dM is a martingale-observable with 

A = 1, A* = 0, Xq = 0. 

It is easy to find a vertex field with thèse conformai dimensions (applying (15.6) and 
Proposition 15.5), namely O -2A,2Ò) , so its correlation function 

flW-2A,2Ò) << 
"w — w 

\w\ 

8 
K 

-2W> 
W 

is a natural candidate for dM (up to a constant) If K = 2, then 

E^-Efc = (a-= EO^-V ̂ *ù 
wwf 

w(w — w) 

is the other possible martingale-observable. However, M is the function of arg w only, 
so it cannot be a "primitive" of E^-Efc = (a-

Let N be a primitive of EQ{-2a,2b) , i.e., dN = EQ(-2A'2H\ In (H, 0,oo) on a circle 
i G 

z — re 
we have àN = (sin 0) 8 -2 d#, therefore 

N(z) = 
.(9 

'0 
ísin^ 8 -2 dt. 

Taking into account the boundary values of M, we get the presumptive formula 

M(z) = 

-o 
'0 (sin¿ 8 < '--2 dt 

7T 
'0 sini 8 -2di 

< 6 = aigw(z). 

We only need to apply the optional stopping time (and some basic SLE properties) 

to justify it rigorously. 
> Example: Beffara's observables. — Let K < 8 and P (z,e) denote the probability 

that the SLE curve hits the disc at z of size e, where e <C 1 is measured in a local 
chart (j). We define 

(15.7) M(z) II 4>) w< lim 
£->U 

P(z,e) 
e5 • 1 

where 6 is some positive number. If the limit exists and is non-trivial (for all z £ D), 
then M is a real martingale-observable of conformal dimensions 

A - A* = 
1 

2 
^*ù Aq = 0. 
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It is clear that the vertex field @(b—o, b—a) has those properties. (The only other 

possibility icr.cr*) = ±(VS, —yS\ with K = 4 gives wrong boundary values.) We can 
conjecture that M is j£Q(b-a,b-a] up to a constant. Then 

ö = 2\ = (b-a)2 - 2b(b -a) = l -w< 
8 

and 
M(z) = const y K 8 < 8. < -2 < Z ll — 8 (in H). 

The justification of this conclusion (in particular, the existence of the limit (15.7)) is 
not as easy, e.g., see [33]. Beffara proved the estimate 

(15.8) P(z,s)^e i- K 8 , ^*ùùù (b—a,b—a) 

and used it together with the second moment estimate to derive that the Hausdorff 
dimension of SLE curves is almost surely 1 + i 8 

tv. see [41. 

15.4. Multi-point observables 

There are many natural, geometrically defined SLE multi-point observables, e.g., 
various multi-point generalizations of Schramm's and Beffara's observables, or the 
Friedrich-Werner observables in the case K Í 8 

3* Can vertex fields ("Coulomb gas 
formalism") be useful in the (heuristic) identification of (at least some) of them? The 
answer is not obvious but in any case it is clear that it would be useful to construct, 
in addition to vertex observables, as many "primary" observables as possible. For 
example, Friedrich-Werner's formula involves correlations of a singular vector. One 
can consider singular vectors (of all levels) and one can also modify correlations of 
primary fields by "screening," one of the basic operations in Coulomb gas formalism. 
Let us start with a historically important: 

> Example: Carày's observables. — Let K > 4, z e D, r] e qp C dD, where qp is 
the positively oriented arc from q to p. Three "geometric" observables: 

M(z, rj) = P{TZ < tv,), P(TZ = rv), P(TZ > tv,), 

are all real with all conformal dimensions zero. No such vertex exists except the scalar 
field / . We will argue as in the case of Schramm's observable in Section 15.3. We try 
to identify the derivative 3M with a multi-ooint vertex field which has conformal 
dimensions 

'15.9' A = 1, A* = 0, Â  = 0, Xq = 0. 

By dimension calculus, see (15.6) and Proposition 15.5, we immediately find that the 
vertex field O {-2a z) w< 0(26) < satisfies 15.9 . Let AT be a martingale-observable 
(scalar in all variables) such that 

dzN(z,V)--= const EO '-2a\z)*OVb\rj) = const w _ 4 
K << 

1-4 W — Wjj 8 - V , 
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126 LECTURE 15. VERTEX OBSERVABLES 

where w = w(z) «HUÍ WRJ = W(r)) , We will take 

w 
p 

E^-Efc = (a-E^-Efc = ( 
E^-Efc = (a-E^-Efc = (a-

cx^*ùù 
*<7 
w 

E^-Efc = (a-E^-Ef 
E^-Efc = (a-E^-Ef 

• 5 

where £ is the integration variable. The integral converges because K > 4. By 

Schwarz-Christoffel, iV is a conformal map onto the triangle with angles (1 - 4/«) 7T 

at N(p) = 0 and N(q) = 1, and (8//C- l)?r at ARTO) with 3îiV(77) w<<< i 
2* 

Using the 

stopping time r = rzArr] and the fact (basic complex analysis) that 

NT = 0 if rz < TRJ, NT = liîrz> T,,, Nr = 
1 
2 + ¿3iV(r7) if =rfl, 

we easily justify Cardy's formulae 

15.10 P(rz > r„) - UN(z) -
^sN(z) 

E^-Efc = (a-
E^-Efc = (a-w<< 

*ùùw< 

5iV(r/) ' 

r> Cardy's formulae in the boundary case (z = m G ÔL> describe the probability 
that the SLE curves hit some boundary intervals. 

Proposition 15.6. — If rjo G 7]p, then 

P(j hits rjrj0) = 

E^-Efc = (a-xwwxww 
rz < TRJ, NT = liî<< 
rz < TRJ, NT = liî<<ww 
rz < TRJ, NT = liî<ww< 

- y 

where Q is the integration variable. 

Proof. — The event T'HO > T-Q, does not occur. Thus we get 

P(7 hits r^0 ) = P(rm <Trj) = l - P(rm =Trl) = l - N^/Nirj). • 

The denominator in the right-hand side is a constant by conformal invariance. In 
the 'H, 0, oo -uni for miz at ion, we have 

(15.li; P(7 hits [x — £, x]) = 
1 

x< 

x 

lo 
8 - 2 , 1 - f _ 4 

K 
at, 

where CK = 
1 

'0 t 
8 *-2 1-t < 4 < di. cf. 361 < 

Proposition 15.7. — Let rz < TRJ, Denote by P( rz < the probability that 7 hits a 

(boundary) e-neighborhood of rjo but not the arc rjorj, then (up to the same constant 
as in the previous proposition) 

lim 
£-•0 

x<<^*ùù 

€ 
= EO{ (-2a w< << ̂ $ ùùù 

Indeed, the limit is the probability density function of P( x<<^*ùmm 
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Proposition 15.8. — Let k e (4,8) ). For r¡ e dD (rj t¿ p, q) let /(77, e) denote the 
boundary interval with endpoint rj of lenqth e, where e <C 1 is measured in a local 
chart (j). Then 

LIM 
£->0 

1 

€ 8 _1 
P(j hits Ifa, e)) = const M(2b-2a) (V) II ¿ ) , 

where const is the normalization constant which depends on Ap5 q) and k. 

Proof. — It suffices to show this in the (H, 0,00)--uniformization. Then the statement 
follows from (15.11). • 

> Screening. — This is a general method of constructing primary observables which 
we already used in the case of Schramm's and Cardy's observables. The simplest 
situation is as follows. Suppose we want to find 2-point boundary SLE K martingale-
observables x<<^*ùùù with given dimensions let's say A, A, and 0, at 7?i,7?2 e OD, 
and g, respectively. It is not difficult to write down a differential equation in H, 0, 00) : 

15.12) c 
E 

< x<< )2M-+ 
<< 

Vi 
- + 

< 
»72 ' 

M - A 
1 

<* + 
1 

^x<< M = 0. 

We will try to guess some solutions. 
Vertex observables give us solutions only for some special values of A, e.g., 

EO(b-a)(r¡i) *Oib-a)(r)2) for A = 1/2 - k/16. 

(If k = 4, then we actually have solutions 

JE;O^)(77I)^O(-^^^<<<X)(772)0 

We can also consider singular vectors (like T for v<< 8 
3' A = 2 as in Friedrich-Werner's 

formula) but, again, they only work in some special cases. 

We will now discuss a different type of 2-point boundary martingale-observables 
M (m, m) . Consider the field 

rz < TRJ, NT =<<< liî rz < TRJ, NT = li<<îc<<^^ 

where we choose 

s = —2a or s — 
1 

a 
= 2a + 2b 

(so that the "screening" field ̂$ùù is a 1-differential). In the (H,0,oo) -uniformization, 
we have 

(15.13) foi,™0 = viiaV22aCsa(m - mria2(C - mri8(C - mY2S-

By proposition 15.5, Xq = 0 if and only if 

<T\ + 02 + s = 0 or 2b — 2a. 

The idea is to integrate out the variable C The following lemma is obvious. 
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Lemma 15.9. — For any path a in dD, the field 

15.14) AFFAI, = 
w< 

N(r?i,7/2;C) integration with respect to Ç 

is a martingale-observable with conformal dimensions =a]/2-ajb,Xq = 0. 

We are free to choose the path a as we wish but since we do not want to have any 
additional marked points, the natural choices for a are the following arcs: 

mq, mq, mm 

(or integer combinations of those; in some other cases, we can also consider small 
half-loops around 7]j or q) . However, there are integrability restrictions: e.g., to use 
a = mq we need 

sa\ > —1 and s (a + a\ + a2) < —1, 

see (15.13). 

Example. — Suppose A > i 
2 

9 If we choose 

(15.15 s = —2a, <7i = b — Jb2 + 2A, a2 = b + Vb2 + 2A, 

then we have 
Ai = A2 = A, Xq = 0. 

The integrability condition is always satisfied at 771 and it is satisfied at a if and 
only if k > 4. It follows that for k > 4 and A > - ( « - 4 ' 2 16K we have solutions 
(15.14) with a — rjiq . On the other hand, the integrability condition is satisfied at 
no if ERO < a + Ò, so for ALL k > 0 and A such that 

« - 4 
< 16k 

2 
< A< 

1 
2 

1 -< 
8. < 

we have solutions 15.14] with a = mm . These solutions generalize Cardy's ob­
servables mentioned earlier, which correspond to the case A = 0. For example, 
one of these solutions is LSW/KPZ (Lawler-Schramm-Werner/Knizhnik-Polyakov-
Zamolodchikov) martingale-observable. 

For 771, ?72 € R+ with f]2 < rji and A > 0, let 

rz < TRJ, NT w< limE 
<<< 

x<<^*mmmm A 

rz < TRJ, NT = liî 2 w< 

where t — tTj1 ATrj2. We identify M with a martingale-observable obtained by a method 
of screening. To see this, let 

rz < TRJ, NT = liî rz < TRJ, NT = liî 

The non-negative bounded process 

rz < TRJ, NT = liî 

[m(vi) - mim)] )2 
A 

= exp -2A 
w< 

Jo 

1 
^*ùù$$ 

1 

Ws(rj2) 

2 
ds 
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is decreasing and has the limit as t —> r. The existence of M follows from Lebesgue s 
dominated convergence theorem. It is obvious that boundary dimensions of M 
at 771,772, and q, are À, À, and 0 respectively. It can be shown that Mt is a martingale. 
Thus M is a solution to (15.12) and therefore u satisfies 

(15.16) 
AC 

4 
(9m + 9*2. )2u + 

$*< 

m 
+ 

<p^m 

V2 
u-X( 

1 

x< 

1 

V2 

2 
U = 0. 

On the other hand, it follows from the scaling property of chordal SLE that 

rz < TRJ, NT 1, 
x< 
<< < 

Define / on (0, l )by/(x)=u(l ,a : ) . It follows from (15.16) that / satisfies the second 

order ODE, 

^*$w< 2 (-2 + /CÌX -2 

ac ARIL — X 
<^*ù$^^ 4 A 

AC X2 
x<<< 

A general solution of this equation is 

f{x) = C+x*+F 1 -
<< 
AC 

,2<z+, 
4 
AC 

+-2g+,£ <w^*^^^^<< 1 -
4 

5 
AC 

<^*^$<< 
4 

AC 
+ 2g_,x 5 

where exponents q± are given by 

Q± = 
1 

2 
2 
AC 

± 
< 
2 

2 
<$*^^ 

2 + 
4A 
AC 

Since / is bounded on [0,1), C_ = 0. The other constant p^x<< is determined bv the 

condition / 1- = 1-Thus 

Affai, 772) = fai - V2] \ -2> ^2 

^1 

< < 1 -
4 
AC 

,2a, 
4 
AC 

+ 2(7, 
*?2 

< 
< 1 -

4 
5 

AC 

,29, 
4 

5 
AC 

+ 2g,l 

where rz < TRJ, NT = liî is the LSW/KPZ exponent (e.g., see Section 6.9 in [251). With the 
choice of s,<7I,(T2 in (15.15), and a = (771,00) , M has the representation (15.14) in 
the identity chart of M (up to constant) for K > 4 (the integrability condition at q). 

Remark. — This construction can be extended to the case of several screening fields; 
it can be applied to singular vectors, etc. 
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