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GAUSSIAN FREE FIELD AND CONFORMAL FIELD
THEORY

Nam-Gyu Kang, Nikolai G. Makarov

Abstract. — In these mostly expository lectures, we give an elementary introduction
to conformal field theory in the context of probability theory and complex analysis.
We consider statistical fields, and define Ward functionals in terms of their Lie deriva-
' tives. Based on this approach, we explain some equations of conformal field theory
and outline their relation to SLE theory.

Résumé (Champs gaussiens libres et théorie conforme des champs)

Nous donnons une introduction élémentaire a la théorie conforme des champs,
vue du point de vue des probabilités et de ’analyse complexe. Nous considérons des
champs statistiques et définissons des fonctionnelles de Ward via leurs dérivées de
Lie. De ce point de vue, nous expliquons certaines équations en théorie conforme des
champs et nous donnons leurs relations avec la théorie SLE.

© Astérisque 353, SMF 2013
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INTRODUCTION

Conformal field theory (CFT) has different formulations as well as multiple appli-
cations. One of the best known applications concerns the theory of 2D lattice models
at their critical points. Borrowing ideas and intuition from quantum field theory,
Belavin, Polyakov, and Zamolodchikov [5] introduced an operator algebra formalism
which relates some critical models to the representation theory of Virasoro algebra.

The underlying objects of BPZ theory are correlation functions of certain “fields,”
apparently smeared-out and renormalized continuum versions of random fields on a
lattice. The mathematical meaning of these objects is not completely clarified, but
the focus is instead on the algebraic structure of “local operators” which act on and
are identified with the fields. The main assumption of the theory is that the operators
(or fields) behave nicely under “conformal transformations.” The operators related to
the so-called stress-energy tensor (defined as the local response of the action in the
functional integral) play a special role in generating a Virasoro algebra representation
whose central charge c is the fundamental characteristic of a critical model. Belavin,
Polyakov, and Zamolodchikov showed that in the case of degenerate representations,
the correlation functions satisfy a special type of linear differential equations. Finally
they defined a class of conformal theories (“minimal models”) which describe and
“solve” (in a physically accepted sense) discrete critical models such as Ising, Potts,
etc.

The paper [5] had a great influence on the developments of conformal field theory.
The operator formalism, which does not depend on a specific (e.g., statistical) nature
of the underlying fields, has been applied to a variety of other physical problems,
see [11]. In mathematics, the study of abstract vertex algebras became an important
part of modern representation theory [16], [23].

A different approach to critical lattice models was proposed by Schramm [38] who

introduced stochastic Loewner evolution (SLE) as the only possible candidates for
the scaling limits of interface curves in several such models. His idea turned out to



2 INTRODUCTION

be very successful and led to the rigorous proofs of some important conjectures in
statistical physics, in particular some very non-trivial predictions of CFT. The work
of Lawler-Schramm-Werner (see [27], [28], [30], [29], [32]) and Smirnov ([41], [43])
exemplifies the remarkable achievements of complex analytic/probabilistic methods.
In connection with their developments in the SLE theory, there has been some inter-
est in interpreting the original CFT arguments in (less abstract) terms of statistical
models, and more generally in understanding the precise relation between CFT and
SLE, see e.g., [18] and, on the physical side, [2], [3], and [8].

The goal of these mostly expository lectures is to give an elementary introduction
to CFT from the point of view of random or statistical fields. More precisely, we
will describe an (rather pedestrian) implementation of CFT in the specific case of
statistical fields generated by certain non-random modification of the Gaussian free
field (GFF). Gaussian free field is the simplest (“trivial”) example of Euclidean field
theory; its mathematical aspects are well understood, see [40], [21]. The modifications
of the Gaussian free field that we will consider in these lectures are implicit in the
work of Schramm and Sheffield [39] and explicit in the physical paper [37]. Related
ideas are certainly present in the much earlier papers by Cardy [6], [7].

We will only cover some starting points of the BPZ theory: we will accurately define
and explain such basic concepts as Ward’s identities, stress tensor, and vertex fields
in terms of correlation functions of our random fields, but we will not reach the part
of the theory concerning minimal models, and the only degeneracy we study will be
of level two. In Appendix 9 we will briefly explain the relation of our constructions to
the operator algebra formalism by explicitly describing some form of the “operator-
field correspondence.” In the last two lectures we will discuss connections with the
SLE theory.

It should be mentioned that we only consider the simplest conformal type of the
theory — the case of a simply connected domain with a marked point on the bound-
ary, cf. [6], [7], and we only consider the Gaussian free field with Dirichlet boundary
conditions. This conformal type of CFT is relevant to the theory of chordal SLE. The
more traditional setting — CFT in the full plane ([5]) — is somewhat more involved
and will not be discussed here.

Many computations in these lectures are completely standard from the CFT per-
spective — we include them for the sake of consistency and to make the exposition
self-contained. We want to emphasize one more time that what we are considering is
a very specific model of CFT, and modern physical and algebraic theories go so much
further. At the same time, we believe that this model is interesting in its own right,
and its generalizations to more sophisticated conformal geometries may turn out to
be quite non-trivial.
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LECTURE 1

FOCK SPACE FIELDS

We introduce a class of random fields defined in a simply connected domain D in
the complex plane. All our fields, which we call Fock space fields, are constructed from
the Gaussian free field and its derivatives by means of Wick’s calculus. Fock space
fields may or may not be distributional random fields but their correlation functions
are well-defined, and we can think of the fields as functions in D whose values are
correlation functionals.

Later, in Lecture 4, we will revise the definition so that the fields will have certain
geometric/conformal properties in the sense that their values will depend on local
coordinates (“conformal fields”). The functionals and fields that we consider in this
first lecture are conformal fields expressed in the identity chart of D. In Lecture 12
we will further extend the concept to include some “multivalued” (chiral) fields.

In the first two sections we recall some basic facts concerning the Gaussian free field,
its Fock space, and Wick’s calculus, see [40] and [21]. In Section 1.3 and Section 1.4 we
define correlation functionals and Fock space fields (as functional-valued functions).
In Appendix 2 we will comment on the probabilistic meaning of Fock space fields.

1.1. Gaussian free field

> A real-valued random variable £ is Gaussian or normal with mean y and vari-
ance o? if
E[e“g] _ eiut—éazt""
A family (finite or infinite) of random variables is jointly Gaussian if any finite linear
combination is Gaussian. The joint distribution of such a family is determined by
the means and covariances of the random variables. In particular, if &,...,&, are
centered (i.e., u = 0) jointly Gaussian random variables, then

(1.1) E[é‘lfn] =ZHE[§ik5jk],
k



4 LECTURE 1. FOCK SPACE FIELDS

where the sum is over all partitions of the set {1,...,n} into disjoint pairs {ix, ji}.

A complex-valued random variable is Gaussian if its real and imaginary parts are
jointly Gaussian. Clearly, the formula (1.1) holds for complex-valued jointly Gaussian
variables as well.

> A Gaussian field indexed by some real Hilbert space Hg is an isometry
HR _)L]%I(Qap)’ h'_>€h

such that the image consists of centered Gaussian variables; here (2, P) is some prob-
ability space. Alternatively a Gaussian Hilbert space may be thought of as a closed
subspace of L?(2, P) consisting of Gaussian (square integrable) random variables.
Complexifying, we can extend this map to an isometry

H := Hg + iHr — L*(Q, P),
which we also call a Gaussian field (indexed by H).

One way to construct a Gaussian field is to choose an orthonormal basis {e, } in Hg
and a family {£,} of independent standard normal variables on some probability space,
and set e, — &,. A Gaussian field indexed by Hg is unique up to an isomorphism of
L?-spaces.

> Let D be a planar domain with the Green’s function G = Gp((, z). For example,
in the upper half-plane H := {z : Sz > 0}, we have

Gu(C, ) = log ]g\.

The Gaussian free field ® in D with Dirichlet boundary condition is the Gaussian
field indexed by the Dirichlet energy space £(D),

& : £(D) — L2(Q, P).

The Hilbert space £(D) can be defined as the completion of test functions f € C§°(D)
with respect to the norm

(1.2 11 = [[ 26097 E a4 dAE)
where A is the area measure.
> By definition, the n-point correlation function of ®,
(21,--.,2n) — E[®(21)...®(2s)], (2 € D, points z; are distinct),

is a unique continuous function such that

(1.3) E[®(f1) - 2(fn)] =/fl(zl)-“fn(zn)E[@(Zl)--*I’(zn)] dA(z1) - - dA(zn)

for all test functions f; with disjoint supports (here, in fact, for all test functions).
Note that E has different meanings in (1.3); F in the left-hand side is the expectation
of random variables and E in the right-hand side means the correlation function.

ASTERISQUE 353



1.2. FOCK SPACE OF GAUSSIAN FREE FIELD AND WICK’S MULTIPLICATION 5

(An alternative and more traditional notation for E in the right-hand side is (.).) It
is clear that the 2-point correlation function is 2G(z1, 22) by polarization and it can
be shown that

FE [@(zl) . zn) E H 2G(Zlk’ ka)

exactly as in (1.1). In other words, we can think of ®(z) as a “generalized” Gaussian
and use the symbolic representation ®(f) = [ ®(z)f(z)dA(z) in the computation of
correlations.

> Derivatives of GFF. — The fields J = 8®, J = 0®, and higher order derivatives
are well-defined as Gaussian distributional fields, e.g.,

J(f)=-2(0f), feC5(D),
so J is a map C§°(D) — L?(Q, P) (or J : £(D) — L%(Q, P)). We can compute the

correlation functions of the derivatives by differentiating the correlation functions of
the Gaussian free field. For example, for ¢ # z we have in H:

1 1
(-2 (-2

E[J(¢)J(2)] = 20,0:G((,2) = — G _lz)z

The meaning of these expressions is similar to formula (1.3).

E[J(Q)®(2)] =28,G(¢,2) =

1.2. Fock space of Gaussian free field and Wick’s multiplication

> For n > 0, let H®™ denote the n-th symmetric tensor power of a Hilbert space H;
it is the completion of linear combinations of elements f; ® --- ® f,, (the order does
not matter: f © g = g ® f), with respect to the scalar product

(i@ O fng0--0g) = Y [[F9m)
oc€S, j=1

where Sy, is the group of permutations of the set {1,...,n}. The (symmetric) Fock
space over H is the Hilbert space direct sum

Fock(H) = é?’l@", (H®? := C).

n=0

The algebraic direct sum Y - HO™, the “symmetric tensor algebra”, is a commuta-
tive algebra with respect to the natural multiplication ©®.

SOCIETE MATHEMATIQUE DE FRANCE 2013



6 LECTURE 1. FOCK SPACE FIELDS

> Wiener chaos decomposition. — Let H — L%(Q, P) be a Gaussian field in-
dexed by H. If we identify H with its image in L?(Q, P) and denote by o(#) the
o-algebra, generated by #, then the Fock space over  can be identified with L? :=
L2(Q,0(H), P) as follows, see [21]. Denote

Hp, =span{f; -+ &m i m < n} Ospan{&; - &, :m < n} C L?,
where {;’s in the both spans are arbitrary elements of H, and consider the map
HO™ — Hp, §1®...®€n,___>ﬂ—n(§1...§n)’

where 7, is the orthogonal projection in L? onto #,. Under this correspondence, the
symmetric tensor algebra multiplication corresponds to the so-called Wick’s multipli-
cation in L?:

if X€Hm, YeH, then XOY =mpnin(XY)

(an alternative and more traditional notation is : XY :). The identification

o0

L*(Q,0(H), P) = (HHO"

n=0
is called the Wiener chaos decomposition. The fact that the described construction
gives a unitary map Fock(H) — L? is based on the following Wick’s formula, which
provides the chaos decomposition for products of Gaussian variables, and which will
play a central role in the definition of Fock space fields. The formula is stated in terms
of Feynman’s diagrams.

> A Feynman diagram 7 labeled by random variables &1,...,&, is a graph with
vertices 1,2,...,n, and edges (“Wick’s contractions”) {v,v'} without common end-
points. We denote the unpaired vertices by v”. The Wick’s value of the diagram is
the random variable

(1.4) oy) = H E&&] O &orr-

!
{v,0'} v

For example, the Feynman diagram with two edges {1,4},{3,5} and two unpaired
vertices 2,6 corresponds to

—
(£10& 0 &)(E4 O & © &) = E[€1€4] E[€365)€2 © &6-

Wick’s formula. — Let i, (1 < j < 1,1 < k < my), be centered jointly
Gaussian random variables, and let X; = €1 © -+ © &jm,. Then

X1"-Xe=Z®(’7),

where the sum is taken over all Feynman diagrams (labeled by the variables &;x) such
that no edge joins &, k, and &k, with j1 = ja.

ASTERISQUE 353



1.3. FOCK SPACE CORRELATION FUNCTIONALS 7

> Wick’s powers and exponentials. — If ¢ is a centered Gaussian with variance o2,

then
(1.5) 9" = o™ H, <§) ,

o
where H,, are the Hermite polynomials,
(1.6) Hy(z) =2? -1, Hs(z)=2>—-3z, Hy(z)=2*-62°+3,...
Recall that the polynomials H,, are monic and orthogonal with respect to the standard

Gaussian measure on R, so (1.5) is just the chaos decomposition in the case dim H = 1.
We define

(e o) on
I o i
e®t r;) —
Using the generating function
X un
_142
(1‘7) ezt = Z‘n—'Hn(x)a
n=0

we get
2
cO€ — E-1EE
In particular, if £ and 7 are jointly Gaussian, then
€O O = O&+n) oEén E[e®¢ 0] = eFtn,

1.3. Fock space correlation functionals

> Let D be a domain in C and let ® be the Gaussian free field in D. By definition
basic correlation functionals (the use of word “functionals” will be explained later in
this section) are formal expressions of the type

Xl(zl) OO Xn(zn)y
where points z; € D are not necessarily distinct and X;’s are derivatives of the
Gaussian free field, (i.e., X; = 0*0%®). We also include the constant 1 to the list of
basic functionals.

A general Fock space correlation functional X is a linear combination (over C) of
basic functionals. We allow some infinite combinations, e.g., the exponentials

o0 an
Oad(z) _ = Hon
e = Z 5 O™ (2).

n=0
For our purposes it will suffice to consider the class of quasi-polynomial functionals
that consists of finite linear combination of ®-products of exponentials and basic
functionals. This class is a graded commutative algebra (with respect to formal chaos
decomposition and Wick’s multiplication), e.g.,

e0a2(2) ) (OB2(2) — (O(a+B)8(2)

SOCIETE MATHEMATIQUE DE FRANCE 2013



8 LECTURE 1. FOCK SPACE FIELDS

Notation. — We will write Sx or S(X) for the (finite) set of all points z;, the
nodes of X, appearing (after cancellations) in the expression of X.

In the rest of the section we explain (or rather define) various natural operations on
correlation functionals such as (tensor) products, “expectations”, weak convergence,
and complex conjugation. In addition, we will need to explain the meaning of the
statements like “J = 09 is purely imaginary on the boundary.”

> Tensor products. — We use Wick’s formula, which describes products of Gaus-
sians in terms of their Wick’s products, to define the usual (or tensor) products
Xy -+ X, of correlation functionals with pairwise disjoint sets S(X};). Namely, for
basic functionals

X = X;1(2j1) © -+ © Xjn;(2jn,), (fields X are derivatives of @),
we set (cf. (1.4))
(1.8) A1 X = Z H E[Xy(20) X (20)| O X o (201),
{val} ,UII
where the sum is taken over Feynman diagrams with vertices v labeled by function-
als X such that there are no contractions of vertices with the same j, and the Wick’s

product is taken over unpaired vertices v”’. By definition, the “expectations” in (1.8)
are given by the 2-point functions of derivatives of the Gaussian free field, e.g.,

E[3®(0)0"®(2)] = 805 E[2(C)®(2)] = 20[05G((, 2).
We extend the definition of tensor product to general correlation functionals by lin-

earity.

Proposition 1.1. — The tensor product of correlation functionals is commutative and
associative.

Commutativity is of course obvious. To prove that
(1.9) X XV Vo= (X1 Xn) (V1o i)y

one needs to show that there is one-to-one correspondence between Feynman’s dia-
grams corresponding to the left-hand side and the right-hand side of (1.9), which is
an easy exercise.

An alternative argument is as follows. Approximate the values X(2;) of derivatives
of the Gaussian free field involved in the formula by jointly Gaussian variables, see
Appendix 2. Then apply Wick’s calculus to the Gaussians, and take the limit.

> Expectation values of functionals. — We define EX in terms of the chaos decom-
position of X

E[1]=1, and E[X;(21) ®---©® Xn(zn)] =0, (fields X; are derivatives of ®).

ASTERISQUE 353



1.3. FOCK SPACE CORRELATION FUNCTIONALS 9

For example,

E[®(z1) - ®(z)] = > [[26G(2i0, ;1)
k

(see (1.1)) and E[e®*®()] = 1. Since tensor products of functionals are defined
by Wick’s formula, our definition of EX is consistent with the definition of the n-
point correlation functions of derivatives of the Gaussian free field introduced earlier.
Correlation functions are “expected values” of correlation functionals.

Given X, consider the linear space Vx = {¥ : Sy N Sx = @}. We have a linear
map
V¥ — C, Y+— E[XY],

so we can think of X as a linear functional on Vy. This explains our terminology
(“functionals”) and also introduces some kind of weak topology in the space of func-
tionals. For example, the statement

B(21) @ B(22) — °%(2), (21,22 — 2)
means (by definition) that
E[(®(21) @ ®(22))X] — E[2%%(2)X]

for every X such that z ¢ Sxy. Essentially all statements in conformal field theory
have a similar meaning (they hold “within correlations”).

> Trivial functionals. — From the point of view of calculus of correlations, we can
identify functionals A3 and X, such that

E[X))] = E[X2))]

for all Y with nodes outside Sy, U Sx,. In this case, we will write X; ~ X, and later
just X = AXs.

Example. — We have (00®)(z) ~ 0. Of course, 90® # 0 as a Gaussian distributional
field.

It is easy to check that for all ),
if Y~0, then X©)Y=0, XY=O0.

In particular, N' = {X =~ 0} is an ideal of Wick’s algebra, so we effectively consider
Fock space functionals modulo A. Also, it is clear that

X ~0 if and only if E[X(®(21) @ -+ © ®(2,))] =0

(® is the Gaussian free field) for all n and all sets {z1,...,2,} in D\ Sx. In particular,
X is trivial if and only if all its chaos decomposition components are trivial, and
therefore the factor algebra preserves the grading.

SOCIETE MATHEMATIQUE DE FRANCE 2013



10 LECTURE 1. FOCK SPACE FIELDS

> Often we can extend the concept of a correlation functional X’ to the case when
some of the nodes of X' lie on the boundary — we simply define the correlations E[X))
in terms of the boundary values.

Example. — For z € D, one has e®*®() =1,
There is a natural operation of complex conjugation on correlation functionals:
0(2) = 8(2), (99)(2) = (09)(2), XOY=X0OY.
More generally, the functional X is defined (modulo A) by the equation
E[XY] = E[*)]
for all V’s of the form ®(z1) ©® - -- © ®(zy,).

Example. — If J = 0® in the half-plane H and if z € 9H, then J(z) is purely

imaginary, i.e., J(z) = —J(z), and J(z) ® J(z) is real.

1.4. Fock space fields

> Basic Fock space fields X, are formal expressions written as Wick’s products of
derivatives of the Gaussian free field ®, e.g.,

1, 300, 0000, 8°P0d0OP, etc.

A general Fock space field is a linear combination of basic fields X4,
X = Z f aXa

where the (basic field) coefficients f, are arbitrary (smooth) functions in D. We think
of X as a map
z+— X(2), (z€D),

where the values X = X(z) are correlation functionals with Sy C {z}. Thus Fock
space fields are functional-valued functions. Wick’s powers #©” and Wick’s exponen-
tials e®*® of the Gaussian free field are important examples of Fock space fields.

If X1,...,X, are Fock space fields and z1,..., 2, are distinct points in D, then
X =X1(z1) - Xn(zn)
is a correlation functional. We often refer to its “expectation”
(1.10) E[X1(21) - Xn(2n)]
as a correlation function.

The collection of Fock space fields (modulo A, the ideal of fields whose values
are trivial functionals) is a graded commutative algebra (over smooth functions) with
respect to pointwise Wick’s multiplication. On the other hand, the “usual” product
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1.4. FOCK SPACE FIELDS 11

(X1, X2) — X1 X5 is not defined, but we can consider the tensor products, which are
multivariable fields. For example,

X=X ®X
is defined in D x D \ {diagonal}. Its value at (z1, 22) is the “string” X;(z1)X2(22).
Remark. — We often consider Fock space fields with basic field coefficients defined

only in some open set U C D (“local fields”). It is important that underlying basic
fields are global (originated from the Gaussian free field in D).

> We define the differential operators 8 and & on Fock space fields by specifying
their action on basic fields so that the action on ® is consistent with the definition
of 8®,0® (as distributional fields) and so that

IXOY)=0X)oY +X 0 (YY), I(X0Y)=(0X)0oY +X 0o (dY).

We extend this action to general Fock space fields by linearity and by Leibniz’s rule
with respect to multiplication by smooth functions.

Examples. — We have 0[® © ®] ~ 2J ® J and 9e®*® = aJ © e®*?,

It is easy to see that X is a unique (modulo N) field satisfying
E[0X)(5Y] = 0.E[X(:Y], (= ¢ Sy).
for all correlation functionals . Also, it is clear that X = 0X.

> By definition, X is holomorphic in D if X =~ 0, i.e., all correlation functions
E[X({)Y)] are holomorphic in ( € D\ Sy.

Examples. — The fields J = 0®, X = J ® J are holomorphic.

Holomorphic fields play a prominent role in conformal field theory. Their proper-
ties are quite different from those of usual holomorphic functions, and some formulas
involving holomorphic fields look unfamiliar from the point of view of “classical” com-
plex analysis.
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APPENDIX 2

FOCK SPACE FIELDS AS (VERY) GENERALIZED
RANDOM FUNCTIONS

In this appendix we want to substantiate the concept of Fock space functionals
and fields, which we introduced as somewhat formal algebraic objects. We already
mentioned that we can think of functionals as “generalized” elements of the Fock
space, and therefore view fields as “generalized” random functions (cf. fields in lattice
models). One way to make this point of view clear is to approximate correlation
functionals by genuine random variables.

2.1. Approximation of correlation functionals by elements of the Fock
space

For each z € D, let us choose test functions f. ,(.) supported in a disc of radius €
about z and satisfying
fe,—0, as € —0

(as measures). Define Gaussian random variables
®.(2) = ®(fe,2), (P is the Gaussian free field),
Je(z) = J(fe,z) = "(I)(a.fe,z)a (82(1’)5(2) = q)(azfs,z)a etc.

Varying z, we get random functions which approximate the Gaussian free field and its
derivatives in the sense of convergence of correlation functions. For example, we have

E[J.(21)Je(22)] — E[J(21)J(22)], (21 # 22).
Indeed, the left-hand side,

2 [[ G(¢.0011(091er) =2 J[ 061t @ femat0),

converges to 2010:G(21,22) = E[J(21)J(22)]. Usually, when there is no danger of
confusion, we omit dA((), etc.
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Next, we extend this approximation to Wick’s products, and therefore to general
Fock space functionals/fields. For example, we define

Xe = _é(JQ J)e = _%(JE 0J), Xe:D— H®2’

where #©? is the symmetric tensor square of the Hilbert space H = £(D), see Sec-
tion 1.2. Again, it is clear that the correlations of X, converge to the corresponding
correlations of the field X = —%J ® J. This follows from Wick’s formula and from the
convergence of the 2-point function of J; established in the previous paragraph.

Thus we can say that Fock space fields are “generalized” random functions — they
are limits of random functions in the sense of correlations. (This point of view is
somewhat similar to the definition of Colombeau’s “generalized” functions (see [10]).)

In practical terms, we can use approximating random functions to compute correla-
tions of Fock space fields at distances much greater than the “wavelength” €. Moreover,
we can give a similar interpretation to other equations of conformal field theory. For
instance, operator product expansions, which we discuss in the next lecture, hold on
approximate level as € < | — 2| — 0 so that the error term “o(1)” has vanishing
correlations with all fields at positive distance from z. For example,

D, (C)P:(2) = log +2¢(2) + ®2%(2) +0o(1) as e < |{ — 2| = 0.

1
I¢ =2
Here, c(z) is the logarithm of conformal radius C(z),

w(z) — w(z)
w'(2)
where w is a conformal map from D onto the upper half-plane H. The logarithm of

conformal radius can be described in terms of the Green’s function, see (2.4), (3.2),
and (4.2).

(2.1) c(z) =logC(z), C(z)=

2.2. Distributional fields

> Some important Fock space fields admit a much stronger, more analytical inter-
pretation. We say that a Fock space field is distributional if it can be represented by a
linear map f ~— X (f) from a space of test functions to the space L?(f2, P) of random
variables on some probability space; the Gaussian free field and its derivatives are the
simplest examples. This is the kind of fields studied in axiomatic (Euclidean) field
theory; distributional fields also play an important role in analysis and probability
theory. For any test functions with disjoint supports, assuming that X (f1)--- X(f»)
is in L!, we require

22)  EB[X(f)-X(f)] = / / E[X(21) - X(z)] fr(z1) - Ful2).
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2.2. DISTRIBUTIONAL FIELDS 15

As we explained before, E has different meanings in this formula; E in the left-hand
side is the expectation of random variables and E in the right-hand side means the
correlation function, see (1.10).

Let us show that Wick’s powers ®®" and exponentials e®*® with |a| < 1 exist as
distributional fields
¥ : C°(D) — L3(Q, P),
see [15] for a stronger statement.

To construct the map ¥ we follow the same idea as in the previous section but we
interpret random functions
U, :D— L2

as linear operators
VoiCR(D) — I s [ fE
and prove convergence in the strong operator topology.

Almost any choice of approximating random functions will do the job but the
estimates are particularly simple if we define

D (2) = @(me),
where m, . is the normalized arclength of the circle of radius € < 1 centered at z.

Proposition. — As ¢ — 0, & — P in the sense that for all test functions f the
random variables ®.(f) converge to ®(f) in L.

Proof. — Note that ®.(¢) is a centered Gaussian random variable with
1
(2.3) var (2:(¢)) =2 || mC,e”% =2log - + 2¢(C),

where ¢(() is the logarithm of conformal radius of D, see (2.1). Indeed,

var (®.(¢)) = 2 / / G(E,m) dme (€) dme o ().

Set u(¢,z) = Gp({,z) + log|¢ — z|. Then the logarithm of conformal radius can be
written in terms of the Green’s function as follows:

(24) c(¢) = u(¢, ¢)-
Using the harmonicity of the map z — u((, z), we have the following expression
for the Green potential Up " (= [ m¢ (€)G(E, ")) of me

U7 () = u(¢,n) +1logl/e if |¢ — 7] < e
P u(¢,n) +log 1/|¢ — 7| otherwise.

Thus we have

1
var(®.(0) = 2 | meo[} = 210g - +2 [ u(¢,m)dme.(n) = 2log - + 2u(6,C),
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16 APPENDIX 2. FOCK SPACE FIELDS AS (VERY) GENERALIZED RANDOM FUNCTIONS

which shows (2.3). Arguing as above, we show that

E[(I)e(C)q)E(Z)] = 2Kc(¢, 2) + 2u((, 2),
where

1 .
K:((,2) = lOgK_—ZT if |¢—z| > 2e;

(2.5) 1
|K€(C, z)[ < log - otherwise.

Integrating against test functions f, var (®c(f)) — var(®(f)). In a similar way,
cov(®(f), ®(f)) — var (®(f)) . Therefore, we obtain var (®.(f) — ®(f)) — 0. g

> FErponentials and powers of the Gaussian free field. — We represent Wick’s pow-
ers ®°" and exponentials e®*® with |a| < 1 as distributional fields in the following
way:

2.6 PO" = lim PO, % = lim e®*®e
€

e—0 e—0 ’

where the limits are in the strong operator topology. The existence of the limits is
shown below. Thus we have

Qad __ —a? 2 P,
e¥® =C(2)™“ lim £ e, (Ja| < 1),

where C(z) is the conformal radius (see (2.1) and (2.3)) and

o o
oO" = lim o Hy, (B—E) (02 = var(®,)),

€

where H),’s are the Hermite polynomials, see (1.6). For example,

C C C
02 _ 2 _ b (CTRNNRT 4 _ 210y & 2 &
P%° = 6lm(l)<I>E 2log . PY* = shn(l)q)e 12®7 log . + 12log -

Proposition. — a) Suppose |a| < 1.
(i) For all test functions f, the random variables e®*®<(f) converge in L?
as € — 0.

(ii) Let e®*®(f) denote the L?-limit. For any test functions with disjoint
supports, the random variable e®*®(f;)--- e®2®(f,) is in L .

(iii) The linear map e®*® : f — e®*®(f) is distributional in the sense that
(2.2) holds.

b) Similar properties hold for Wick’s powers ®©™.
Proof. — a) (i) Given a sequence {e, }3_; with e, | 0, we set ®,,, = ®. . Note that

cov (eeo‘q”" (f), e@x®n (f) = // cov (eea‘p"‘(C), e®x®n (2))£(©)f(2),

where
cov (e2*®m((), e®*®n(2)) = exp (laPE[@n(¢)®n(2)]) — 1.
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It follows from the estimate on E[®,,(¢)®,(z)] similar to (2.5) that

!cov (eQa‘i’m(f), @ (f)) _ //K_ - (ezlalzc(c,z) — 1)f(C)m|

= | //Ic—zl<e,,.+e,, (g‘2|°‘|2 e - 1)f(()f—(._z)|,

where € = max(em,&n). If |@| < 1, then the right-hand side in the above estimate
tends to 0 as min(m,n) — co. On the other hand, if |a| < 1, then the integral

[ #erocaroie

is finite. Thus {e®*®=(f)} is a Cauchy sequences in L2, which has an L-limit. This
limit does not depend on a particular sequence {€,,}30_;.

(i) By (i), there is an almost sure convergent subsequence {e®*®m« (f;)}. We first
note that for all m,

(2.7) E[e®*®m(f1)--- 2% (f,)]
z// @ Dick B@m(@)®m (@ £ (51) .- fi(25).

It follows from the estimate (2.5) that

sup E|e®®m(f1)--- e®%% (f,)| < co.
m
Thus the random variable e®*®(f;)--- e®*®(f,) is in L. Furthermore,

(2.8) €O (f1) - %Pme (f,) L5 0O2(fy) - €O22(f,).

(iii) It follows from the estimate (2.5) that the right-hand side of (2.7) converges to

2 -
[ [ e T ) - ).
On the other hand, we have
(2.9) E[e®*%(z)) .. 9% (2,)] = e?Zsck rC(z2k),
Using (2.8), by passing to a subsequence, the left-hand side of (2.7) converges to
E[e®*®(f;)--- e®*®(f,)]. Thus the linear map e®*?® is distributional.

b) Project e®*®¢(f) onto H®". Then the convergence of ®9"(f) in L? follows from
the convergence of €®*®<(f). The other parts are left to the reader. O

Remarks. — a) As Fock space fields, Wick’s exponentials satisfy (2.9) without any
restriction on a;’s.
b) Exponentials with |a| > 1 cannot be distributional since the positive 2-point

function
E[e®a<l>(z) e@&‘b(w)] — e2|0¢|2G(z,w)
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18 APPENDIX 2. FOCK SPACE FIELDS AS (VERY) GENERALIZED RANDOM FUNCTIONS
is not integrable in D x D.

2.3. Insertion operators

In this section we will use the distributional representation of the Gaussian free
field to explain the mechanism of the insertion procedure, an operation widely used
in the field theory.

Let ® : £ — L%(Q, P) be the Gaussian free field in D. Given a real distribution
p € & we define the probability measure pP= P, on 2 by the equation (the “Cameron-
Martin” change of measure)

dP = e®®P 4p.
The following proposition describes the random field ® : £ — L?(Q, 13), which is the
composition of the Gaussian free field and the identity map L2(Q, P) — L2(, P), in
terms of the Green potential Up, = [ p({)Gp(-, ().

Proposition. — The law of ® with respect to p (i.e., under the insertion of e®®(P))
is the same as the law of ® :=2UP + ® with respect to P.

Proof. — For a test function f, let us compute the characteristic functions of ®(f)
with respect to P,. We have

log Ep[eitcp(f)] _ logE[egcb(p) eitfb(f)] = log (e—%czEcb(f):’E[eorb(p) e®it®()])
) 1
=21t [[ 120016 (=€) - 38 1 712
) 1
—2it [ f)UBG) - 52 I £ 1.

This means that ®(f) is Gaussian with mean 2 [ fU? and variance | f||, see (1.2).
Proposition follows from uniqueness of the Gaussian free field. O

We use this proposition as the motivation for the following construction on Fock
space fields. Let us now formally take p = ad,, (note that p € €, but af. ,, = p and
afe », € £) and define a linear operator & — X’ on correlation functionals with nodes

in D\ {20} by the following rules:
(2.10) { P (z) —> ®(2) + 2aG(., 20),
' X +— 0X, X+ dX, XOYr— X0

We define
E[X] := E[®*®(0) x].

The following proposition (with real «) is immediate from the previous proposition
if we use the approximation technique described in Section 2.1. It is also easy to give
a direct proof (which works for complex a’s as well).
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2.3. INSERTION OPERATORS 19

Proposition 2.1. — We have E[X] = E[X).

Proof. — Let X = X1(21) © -+ © Xp(2n), X; = 83 5P ®. Then by Wick’s formula
we have

X=X1(2) 00 Xnlzm), Xi(2) = X;(2) +200% 85 G2, 2),

where we differentiate the Green’s function with respect to the first variable. By
definition, we get

E‘[Xj(zj)] = aE[X;(2;)®(20)] = 20485"551G(zj,zo) = E[)?](z])]

It follows from the definition (1.8) of tensor products of functionals that

- 2. ok
Elx) = S E[8%(20)X1(21) @+ © X (20)]
k=0
H ZO z] = | ZJ) E[f] O
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LECTURE 3

OPERATOR PRODUCT EXPANSION

Operator product expansion (OPE) is the expansion of the tensor product of two
fields near diagonal. The name originates from the corresponding construction for
local operators. With our approach, we use reverse logic — operator product expan-
sions of fields are used to define local operators, see Appendix 9. The concept of
operator product expansion is quite general — the definition does not depend on a
particular nature of correlation functions. In the case of Fock space fields, the OPE
coeflicients are again Fock space fields, and so we get important algebraic operations
(OPE multiplications) on Fock space fields.

3.1. Definition and first examples

> We start with a simple example.

Example. — Let ® be the Gaussian free field in D, and let ¢(z), z € D denote the
logarithm of conformal radius of D, see (2.1) in Appendix 2. Then

(31)  ®(Q)P(z) = 1°g|‘<“_1—z;5

As we mentioned in Section 1.3, the meaning of the convergence (here and in all
similar statements) is the convergence of correlation functionals: the equation
1
E[®(()®(2)X] =log K——Z—PE[X] +2c(2) E[X] + E[®°%(2)X] + o(1)

holds for all Fock space correlation functionals X in D satisfying z ¢ Sy.

+2¢(2) + ®92(2) +0(1) as (= z, ( # 2.

To derive the operator product expansion (3.1) we use Wick’s formula (1.8),
B(¢)®(2) = E[2(¢)2(2)] + () © 2(2)
and the relation

(3.2) E[®({)®(2)] =2G(¢,2) =log + 2¢(2) + 0(1),

1
¢ = 2
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see (2.4) for the description of ¢(z) in terms of the Green’s function. The convergence
of ®(¢) ® ®(2) to ®9?(2) was already explained in Section 1.3. O

> In general, the operator product expansion of two Fock space fields is an asymp-
totic expansion of the correlation functional X (¢)Y (z) with respect to some appro-
priate (and independent of D) growth scale as { — z.

Particularly important is the case in which the field X ({) is holomorphic (recall
that this means that all correlation functions E[X (¢)Y)] are holomorphic with respect
to ¢ € D\ Sy). The operator product expansion is then defined as a (formal) Laurent
series expansion

(3.3) XQY() =) Cu()(C-2)", ¢(— 2

The function ¢ — EX({)Y(2)Z is holomorphic in a punctured neighborhood of z.
Hence it has a Laurent series expansion and its radius of convergence is the shortest
distance from z to the nodes of Z.

Example. — Here is an example of a full operator product expansion. For a given
domain D we defined

Since ¢(z) = u(z, z), we have dc(z) = 201u(z, z), where 0y is the complex derivative
with respect to the first variable. The derivatives

cn(2) =200 u(z2, 2)

appear in the operator product expansion of the fields J = 9% and ®:

(3-4) J(O)2(2) = E[J(Q)®(2)] + J(C) © 2(2)
_ _c%z +8c+ J(2) 0 B(2) + 3 Cal2)(C — 2)",
where Cp,(z) = %(cn(z) +(8"J) © ®(z)). O

It is easy to show that there are only finitely many terms in the principle (or
singular) part of the Laurent series (3.3) (in the case of “quasi-polynomial” Fock space
fields that we only consider). Sometimes, we use the notation ~ for the singular part
of the operator product expansion,

X(QY(2) ~ D Cal2)(¢ = 2)™
n<0
We also write Sing,_,, X({)Y (2) for the right-hand side of the above equation. For
example, we have (by Wick’s calculus)

(3.5) J(¢) 2% o ¢ ? - c0a®(2).
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3.2. OPE COEFFICIENTS 23

It is clear that we can differentiate operator product expansions (3.3) both in ¢ and z;
and the differentiation preserves singular parts. For example, differentiating (3.4) we
have

(3.6) J(Q)J(2) ~ — s

(¢—2)?
Also, we should keep in mind that operator product expansion is the expansion

of functionals defined modulo N, the trivial functionals (see Section 1.3), so we can
disregard terms like 0J or é-functions and their derivatives, e.g.,

3.7) J(OT () ~ —ag(z_i_;) = 0.

More generally, if both X and Y are holomorphic, then
XY (z) ~0.

3.2. OPE coefficients

> The functionals appearing in the operator product expansions (e.g., 2¢(z) +
®92(2) in (3.1), Cp(2) in (3.3), or Cjx in (3.14) below) are called OPE coefficients.

Proposition 3.1. — OPE coefficients of quasi-polynomial Fock space fields are quasi-
polynomial Fock space fields (as functions of z).

The proof is straightforward — use Wick’s calculus and the definition of fields.
Proposition 3.1 allows us to define certain operations on Fock space fields. In partic-
ular, if X is holomorphic, then we define the %, product

(3.8) X 4 Y = Cp,
see (3.3) for C,.

> We will use the operations x, for all n’s, see Lecture 7 and Appendix 9, but in
this section we focus on the special case n = 0.

Notation. — We write * for 9 and call X xY the OPE multiplication, or the
OPE product of X and Y.

For example, by (3.7),
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24 LECTURE 3. OPERATOR PRODUCT EXPANSION

where C(z) is the conformal radius, see (2.1). (More generally, if both X and Y are
holomorphic, then we can write X *Y = XY.)

The OPE product X * Y as the coefficient of 1 can be defined for some (but not
all, see e.g., (3.14)) non-holomorphic fields X, e.g.,

®*2 = 992 + 2¢, (see (3.1)).

The field X x Y is obtained by subtracting all divergent terms in operator product
expansion and taking the limit, which is a usual procedure in the field theory.

> If f is a non-random holomorphic function, then
f*x X=Xxf=fX.

However, simple examples show that (fX) *Y # X x (fY) in general, so unlike
Wick’s multiplication, the OPE multiplication is neither associative nor commutative
(on holomorphic fields). On the other hand, *,, satisfies Leibniz’s rule

(3.10) X %, Y)=(0X %, V) + (X %, OY).

If X is holomorphic, then differentiation of operator product expansion (3.3) with
respect to ¢ gives (0X) *, Y = (n + 1)(X #,41 Y) and therefore,

1
(3.11) X x, Y = E(O"X)*Y, (n>1).
Differentiation of operator product expansion (3.3) with respect to z then gives (3.10).

3.3. OPE powers and exponentials of Gaussian free field

We already computed ®*2 = ®92 + 2¢, where c is the logarithm of conformal
radius C. Further computation with Wick’s formula gives

3 =P xD*? = P*? % & = B3 4 6P, etc.
In fact, we have the following formula.

Proposition 3.2. — We have

(3.12) POn = (2c)"/2H;;(%),

where Hy(2) = 3 p_, akz* are the Hermite polynomials (see (1.6)) and
H;(a®) = Zakakq)*k.
k=0

Proof. — From ®(¢)®°"(2) = 2nG((, 2) @O~V (2) + @O+ () + (1), we find
® * O = 2cn@° (1) 4 O+,

Assuming that (3.12) holds for #®" and ®®(*~1) and using recurrence relation
Hpi1(z) = zHp(z) — nHpyy (),

we prove (3.12) for dO(+1), O
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By definition,
oo P*n

= E an
n=0

Proposition 3.3. — We have
(3'13) e*acb — Ca2 e@a@_

Proof. — Using the generating function (1.7) for the Hermite polynomials, we get

— i a_nq)Gn — i an(zc)%nH* (i) — e*a@ —ca2‘ O
n=0 n! n=0 n! " \/QE
Remark. — If we define random functions ®. as in Section 2.1, then we get the
formula
e*e? = lim £ %«
e—0

(convergence of correlation functionals but also convergence in the strong operator
topology if |a] < 1.) It is remarkable that two different types of normalizations, by
averaging and by operator product expansion, produce the same result.

As we mentioned earlier, the OPE multiplication (as the coefficient of 1 in the
operator product expansion) does not make sense for general non-holomorphic fields,
but we can of course consider the corresponding OPE coefficients.

Example. — Let us denote V* = e**® (“vertex fields”, see Section 10.2). The operator
product expansion of two such fields has the following form:

(3.14) VUOV(E) = (s (J;O Cir(2)(¢ = 2) (€~ 2)*).
The first coefficients are Cp o = V**+# and

Cio=aV**tP @ (J+ (a+B)dc), Coi=aV*tP o (J+ (a+ B)d).
To see this, first note that

VE((VA(2) = C(Q)* C(2)" exp (aBE[®(¢)®(2)]) 6222 © e@F2(),
We expand both

C(0)"" C(e)P" exp (B E[B(OB(2)]) = gz e 20 G 70l

(a+8)? _ _
= S (14 @+ ae(a)(C — )+ (o + aB)Fel2)(E — 2) -+

and e®*®() = ¢®®() © (1+ aJ(2)(¢ - 2) +aT (2)({ —2) +---).
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3.4. The field T = —3J * J

We use the OPE multiplication to introduce this important field (in Lecture 7 we
will identify it with the Virasoro field of the Gaussian free field, ®). By (3.6), T is
defined by the operator product expansion

1
To express T in terms of Wick’s calculus, we need the Schwarzian of D:
(3.16) S(z) = 8(2,2), S(¢,2) :=—120:0,u((, 2),

where u((, z) = G((, z) + log | — 2|, as usual.

Proposition 3.4. — We have

(3.17) T:—%J®J+ 11—28.
Proof. — Differentiating E[J({)®(2)] = 20.G((, z), we have
1 1

O

We finish this lecture with several singular parts of operator product expansions
involving T', which we will need later. The operator product expansions can be veri-
fied by Wick’s calculus. (Later we will explain them from a different perspective —
in terms of conformal geometry.)

Proposition 3.5. — We have

2) T(O2() ~ 22,
b) T(C)J(2) ~ ¢ CJ_(ZZ))z + i‘]_(zz),

1 4 2T (2) N 0T (2)

-2t (-2 (-2

o a2 Ve(z)  0Ve(z)

B TV ~ =5 oo +

Proof. — We only explain ¢). Use (3.17), Wick’s theorem, and (3.15) to express the
singular term of T'({)T(z) as

1 1/1
170 JQ) () 0J(=) ~ 5 (552 +

0) TOT() ~

1 )2 _J(Q o J(z)
)2

(& =2
L1 JQ0J(E) - 48(62)
2~ )8 Sk
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The numerator J(¢) ® J(z) — £5(¢, z) of the last term in the above is equal (up to
the second order terms) to

J(2)© J() - 55(,2) + (¢ — 2) (97(2) © J(2) - 50,516, 2)

= —27(2) + (¢~ 2)(8J(2) © J(2) - 115325(2))
=—2T(z) — (¢ — 2)0T(2),
which completes the proof. O
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LECTURE 4

CONFORMAL GEOMETRY OF FOCK SPACE FIELDS

In the first lecture we defined Fock space fields in a planar domain. We will now
revise this definition and equip fields with certain geometric (or conformal) structures.
We call them conformal Fock space fields. After we explain the definition, we will
typically drop the epithet “conformal.”

Even if we only consider functionals and fields in the half-plane, it is necessary to
think of them as defined on a Riemann surface — their correlations depend on the
choice of local coordinates at the nodes. For example, the fields J ® J and J * J, as
we defined them in Lecture 3, have the same correlation functions in the half-plane
but as conformal fields they are different — the first one is a quadratic differential
and the second one is a Schwarzian form.

At the end of this lecture we discuss the concept of the Lie derivative of a conformal
field. This concept will be used in the next lecture to define the stress tensor and to
state Ward’s identities.

4.1. Non-random conformal fields

Recall that a local coordinate chart in a domain D (or more generally on a Riemann
surface M) is a conformal map

$:U—¢U)cCC, (UCcCD open).

The transition map between two overlapping charts ¢ and 5 is a conformal transfor-
mation

h=dog¢ l:¢(UNU) — ¢(UND).

By definition, a non-random conformal field f is an assignment of a (smooth)
function

(fll¢):9U —C
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to each local chart ¢ : U — ¢U. (We assume that this assignment respects restric-
tions to subcharts.) When local coordinates are specified explicitly, we often write f(z)

for (f || ¢)(2)-

The transformation law from one coordinate chart to another can be quite compli-
cated for the fields that we will consider. Several simpler cases have special names.

A field f is a differential of degrees (or conformal dimensions) (A, A.) if for any

two overlapping charts ¢ and ¢, we have
f=WPR)Foh,

where f is the notation for (f || ¢), f for (f || ¢), and h is the transition map. In
particular, (0,0)-differentials are called scalars.

Schwarzian forms, pre-Schwarzian forms, and pre-pre-Schwarzian forms are fields
with transformation laws

f=M)2Foh+uSh, f=hfoh+uNs f=Foh+pulogh,

respectively, where y € C is called the order of the form, and

1
Ni = (logh'),  Sn=Nj, = 5N,

are pre-Schwarzian and Schwarzian derivatives of h. (In all cases we consider, forms
are holomorphic.)

Examples. — a) Smooth (—1,0)-differentials v can be identified with vector fields.
The local flow 2(t) of v in a chart ¢ is given by the ordinary differential equation
2z = v(z). If we have another chart #, then the expression for the flow in this
chart is Z(t) = h(z(t)), and the vector field is () = Z = R'(2)v(z), so the
transformation law is

(4.1) v = 77’17'60h.

b) If f is a holomorphic scalar function on M, then the derivatives Ny and Sy are
computed in local coordinates, e.g.,

(Sr 1) = Ss14)

are forms of order 1.

c¢) The field ¢, the logarithm of conformal radius is defined by the equation
(42) (cll¢)(2) = Jim [G(¢2) +1og|¢ = ],

where G is the Green’s function and G((,z) of course means G(¢~1(,¢712)
according to our convention. It is easy to see that the transformation law is

c¢=¢oh—log|h|,
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so c is the real part of a pre-pre-Schwarzian form. In particular,
w(z) — w(z)
w(z) I
where idp is the identity chart of D and w is a conformal map from D onto the
upper half-plane H, cf. (2.1).

(c|lidp)(2) = log

d) As a general rule, we define derivatives of fields by differentiating in local coor-
dinates. Thus the field dc,

(Oc|| ¢) = 0(c|l ¢)
is a pre-Schwarzian form of order —%.

e) The conformal radius C = €° is a (—3, —3)-differential. Indeed,
C = e° = efh=le Ml — (') ~3C o h.

By Koebe, (C || idp)(z) = dist(z,dD).

f) Non-random fields of several variables are defined similarly but one should keep
in mind that we need to specify local coordinates for each variable (unless some
of them coincide). For example, the field 902G defined as

(4.3) 0:0,G(¢,z) (in charts ¢,v)

is a (1, 0)-differential in both variables.

4.2. Conformal Fock space fields

> Let & denote the Gaussian free field on M. (As a correlation functional, the
Gaussian free field on a Riemann surface is well-defined as long as the Green’s function
exists.) As in Section 1.4, we define basic Fock space fields X, as formal Wick’s
products of the derivatives of ®. A general conformal Fock space field is a linear
combination of basic fields X,

X = ZfaXou

where the coefficients f, are non-random conformal fields.

We can define chaos decomposition, Wick’s multiplication, and the differential
operators 0,0 in an obvious fashion so that the space of conformal Fock space fields
will have the structure of a graded commutative differential algebra (with complex
conjugation) over the ring of non-random fields.

> We now want to interpret the values of conformal fields as chart dependent
correlation functionals. In particular we will explain the meaning of formulas like
J = h'[J o h], where J, J are expressions of P in two overlapping charts.
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The correlations
E[X1(p1) - Xn(pn)], (pj € M are distinct),

of conformal Fock space fields are non-random fields of several variables: we define
them by means of Wick’s formula and differentiation rules like

E[(0°®)(21)(8°®)(22)] = 20805G (21, 22).
In other words, we think of the derivatives of ® as Gaussians, and we differentiate
and Wick-multiply in local coordinates.

As in Section 1.4, we think of “strings”
X = X1(21) - Xn(zn) = (X1 || 41)(21) -+ (Xn || 6n)(2n)

as Fock space correlation functionals. Note that X specifies the choice of local charts.
Any such X determines a linear map

X :Y+— E[X))]
on the space of }’s with nodes in M \ Sx. (The functionals } also come with chart
specifications and we define Sy as a subset of M.)

In particular, the value X(p) of a conformal field X at some point p € M is a
coordinate dependent functional

(X(@) | 6) = (X || ¢)((p))-

Many formulas of conformal field theory (convergence, operator product expansions,
transformation laws, etc.) are based on this interpretation.

For example, we say that a field X is a differential if its transformation law is
(4.4) X = (X o h) (W)Y W),
Here _
X()=Xe)(), X():=(XI[e)0[(),
and the equation (4.4) means that for all Y,
E[X(2)Y] = K () W (2)™ E[X (h(2))Y].
Equivalently, for all Y, the non-random field p — E[X (p)))] is a differential in p € M.
Moreover, it is enough to consider V’s of the form ®(p;) ®--- © ®(p,).
Examples. — a) ® is a scalar field, i.e., a (0,0)-differential, J is a (1,0)-differential,
and J © J is a (2,0)-differential;
b) The field (see Proposition 3.4)
1 1 1
is a Schwarzian form of order

1.
12>
c) e®*? is a scalar field but e**? is a differential of degrees (—1a?, —3a?);
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d) JxJ = JJ is a (1,1)-differential, see (3.9).

> The operator product expansion of conformal fields (in particular, the OPE
multiplication which we used in the examples above) is defined in terms of local
charts. For example, if X is a holomorphic field, then there are conformal Fock space
fields C,, such that in every chart ¢ we have

X(QY(2) =Y (¢—2)"Cu(2), ((— 2),
where
X(@Q) =X 11¢)Q), Y(z)=(Y4)(2), Cn(z):=(Cnl)(2)
It is crucial that we use the same asymptotic scale in all local charts, which results in
non-trivial conformal structure of OPE coefficients.

> We often consider the values of conformal fields at boundary points of D (or ideal
boundary points of a finite Riemann surface M). By convention, we always model
local coordinate charts on the half-plane H, i.e., we use standard boundary charts

6:U—>¢(U)CH, ¢OMNT)CR.

Note that the transition map between standard boundary charts extends by symmetry
to a map which is analytic at the points in R. For example, the field J = 0® is purely
imaginary on &M (in all standard boundary charts).

4.3. Conformal invariance

> A non-random conformal field f is invariant with respect to some conformal
automorphism 7 of M if

forall ¢, (fll¢)=(fllgor™").
Note that in this equation we compare f(p) with f(7p).

FIGURE 4.1. Conformal invariance

For example, let D be a domain in C and let us write f(2) for (f || idp)(z). Then
f is a 7-invariant (A, 0)-differential if

f(z) = f(r2)7'(2),
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and f is a 7-invariant Schwarzian form if

f(2) = f(r2)7"(2)* + uS:(2).
This is because 7 is the transition between the charts ¢ o 77! and ¢ = idp .

The concept of conformal invariance extends to multi-variable non-random confor-
mal fields. For example,
Flar, ) = 0 E2)
(w(z1) —w(z2))?
where w : D — H is a conformal map, is a conformally invariant differential in both
variables.

> By definition, a random conformal field (or a family of conformal fields) is 7-
invariant if all correlations are invariant as non-random conformal fields.

Clearly, the Gaussian free field is conformally invariant (i.e., invariant with respect
to the full group Aut(M)), and a family of conformally invariant fields is closed under
differentiations, 8,0, and Wick’s multiplication. So all basic fields are conformally
invariant. It follows that a conformal Fock space field is T-invariant if and only if all
its basic field coefficients are T-invariant. It is also clear that the OPE coefficients of
two conformally invariant fields are conformally invariant.

Caution: it would be wrong to define conformal invariance by the equation
(Xlo)=(X|gor™)
for correlation functionals. In fact, X is T-invariant if and only if
E[(X[|¢)2(p1) O ©®(pn)] = E[(X g0 77)®(7p1) © -+ © (7pn)].
(This is different from E[(X || ¢)Y] = E[(X || o 77 1)V].)

> The following simple but useful construction (see e.g., Lecture 14) depends on
conformal invariance. Suppose we have conformally equivalent Riemann surfaces M
and M. Given a conformally invariant field X on M, we define the field X on M as
follows. Let f: M — M be a conformal map. We write p = f~ @), pj = £ (®;), é
for a fixed chart at p, and ¢ = ¢ f. We set
E((X(®)6)Y] = E[(X®) | $)¥],

where Y(p1,...,p2) = ®(p1) ©--- © ®(p,) and V(1. ..,Pn) = B(B1) © - © B(By).
Clearly, X does not depend on the choice of f.

4.4. Lie derivatives

Let v be a non-random smooth vector field, i.e., a (—1, 0)-differential, see (4.1), on
a Riemann surface M it determines a local flow

Yo U= M, y(z) = v(¥e(2)), zeU, |t <1
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Suppose v is holomorphic in some open set U C M (so the flow is also holomorphic).
For a conformal Fock space field X, we define the Lie derivative £,X in U as follows.

We first define the fields X; by the equation of correlation functionals
(Xell9)(2) = (X | ¢ov—)(2), z€ U, |t| <1,

where ¢ is an arbitrary chart in U.

For example, if M is a domain in C with the identity chart, then the equation is

(4.5) Xi(2) = (X (92) || ¥—¢) = (¥4(2)) @1@) " X (ve2)
for (A, A, )-differentials, and
(4.6) Xi(2) = (¥4(2))* X (te2) + Sy, (2)

for Schwarzian forms.

It is easy to see that if X is a differential or a form, then X; is a differential or a
form of the same type.

We now define the Lie derivative of X by
d
WX=—| X
£oX dt ‘t:O ¢

As usual, this means that for every chart ¢ and every functional J we have
d
E((L.X | )V = | _ El(X: [ o))

This definition is very general — the only assumption that we make is that X
depends smoothly on local coordinates, so the derivative exists. We need higher
smoothness when we consider commutations of Lie derivatives. Smooth dependence
on local coordinates can be defined as follows: E[(X || ke 0 ¢))] is a smooth function
of e = (ey,...,€&,) for any e-perturbation h. o ¢ of the chart ¢,

he(z) = z+e1v1(2) + -+ - + €pvp(2).

In particular, the smooth dependence of X on local charts implies that

(47) | Elx 190 7] = Bl(L.X || 9)Y]

for any flow fi(z) = z + tv(z,t) + o(t) with the time-dependent vector field v(z,t)
(v = v(2,0)). It is easy to see that if X and Y depend smoothly on charts, then so
does X %, Y.

Lie derivative of a differential is a differential but Lie derivative of a Schwarzian
form is a quadratic differential.

Proposition 4.1. — If X is a differential, then
(4.8) L,X = (v8+ 00 + M + M) X;
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if X is a pre-Schwarzian form of order u, then

(4.9) L,X = (w0 +v") X + "

if X is a Schwarzian form of order u, then

(4.10) L,X = (v0+2v") X + .

Proof. — Without loss of generality we can consider .the plana? case and t.he identity
chart. Differentiate (4.5), (4.6) and use Yo =1, Yo = v, Yy = v, (Ny)o = v,
and (Sy)o =v". O

It turns out that the converse is also true. For example,
Proposition 4.2. — Suppose the equation
L,X = (00 + 90 + M + A\ X
holds in Dyo1(v) for every vector field v. Then X is a differential.
Notation. — If v is a smooth vector field in D, then we denote by Dpo(v) the
maximal open set where v is holomorphic.
Proof. — In a fixed chart ¢ we have
Xi(2) = X +tLy X +o(t) = X + t(vd + 00 + M + A\v') X + o(t)
= (1+tM +0(t)) (1 +tA +0(t)) (X + (¢ — 2)0X + (¢ — 2)0X + o(t))
—
= (¥4(2)* (@1(2)) " X (%e2) + o(2).
On the other hand, by definition X; = (X || ¢ 0 ¥_;) we have
—_—
(X [l ¢ op—e)(2) = () ($1(2)) " (X || 9)(W22) + o(2),
which is the infinitesimal version of the transformation law for a differential. O
The next statement follows from the elementary properties of Lie derivatives that
we record in the next section.

Proposition 4.3. — If X is a conformal Fock space field, then L,X is also a (local)
conformal Fock space field.

4.5. Properties of Lie derivatives

> Basic properties:
a) L, is an R-linear operator on Fock space fields;
b) L£,(X) = (L. X);
¢) E[L,X] = L,(E[X]);
d) Leibniz’s rule applies to Wick’s products;
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e) L,(0X) =0(L,X) and L,(0X) = (L, X).
Let us show that Leibniz’s rule also applies to OPE products.
Proposition 4.4. — If X is a holomorphic Fock space field, then
Ly(X %, Y) = (LX) %, Y + X x, (L£,Y).

Proof. — Without loss of generality we can consider the planar case and the identity
chart. Suppose

XQY(2) =) ((—2)"Cn(2), ¢— 2

Then
X:(QYe(2) = (X | ¥-) ()Y || ¥-1)(2)
= (€= (Call #-0)(2) = 3¢~ 2)(Cael2)
80 X *, Y; = (Cp):. We now take the time derivative at ¢t = 0. O

> Recall that the Lie derivative of a vector field is defined in the smooth category

as follows:
2

9
5597 |y (Xs 0¥t = e 0 Xs),

where ; is the flow of v; and x; is the flow of vy; the local flow of [vy,vs] is
X_vi°%_yi°Xyz o5 If both vector fields are holomorphic, then

Evl’vz = [’Ul,’UQ] =

(4.11) Loy, v2 = [v1,03] = v1vh —vivy  and L, Ty = [v1, v,
which is of course a special case of (4.8).

Proposition 4.5. — If X is a conformal Fock space field, then

(4.12) Loy Loy X — Loy Loy, X = Ly, v X

in the region where both vector fields are holomorphic.

Proof. — From the definition of Lie derivative we see that the left-hand side is
82
0sot

Expanding the flows up to second order (we use 9 = vy, 1) = vy, etc.), we get

(X 1 x5 0 9—t) = (X || =t © x=s)]-

s=t=0

1 1
X—s 0 W_¢ = id —tvy — svg + §t2vlv’1 + 532v2v§ + stvyvh + -+ -,

1 1
P_t 0 X—s = id —tvy — SUL + :?-t?vlv{ + 532v2v§ + stvjvg + -+ -,
and the statement easily follows if we assume sufficient smoothness with respect to

local coordinates. (]
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> The concept of Lie derivative extends to conformal fields of several variables.
For example, for

X1, ,pn) = X1(p1) -+ Xn(pn), (pj € M are distinct),

we fix coordinate charts ¢; at p;, and assuming that v is holomorphic at the nodes,
we define

LX (ot zn) = | (X191 0%0)(e1) - (Xl 00 (zn)]
Proposition 4.6. — Leibniz’s rule holds for tensor products:
Ly [X1(p1)X2(p2)] = [LoX1(p1)] X2(p2) + [LoX2(p2)] X1(p1)-
For example, if X is a tensor product of differentials, then

L,X = Z (pj)0; + v pj)a + 20 (pj) + Asjv’ (p])] X.

> As we mentioned, £, depends R-linearly on v. It is convenient to separate the
C-linear and anti-linear parts of the Lie derivative. Denote
(4.13) 2L =Ly — Ly, 2L, =Ly +iLlsy,
so that £, = £ + L3 and £7 = L in the following sense: £, X = L,
For example, if X is a tensor product of differentials, then

(4.14) LIX = Z v(p;)0; + X' (p;)] X,

>

and L X = £,X in the case of forms (see (4.9), (4.10), and (4.13)).

It is easy to justify the corresponding Leibniz’s rule for £} and also to verify the
identity
(4.15) cret —chct = ql sl

For example, using (4.12) and (4.13) we have
1 )
‘C:—lc-{’ £+ ‘C+ = Z(['[vh'uz] - ‘C[ivl,ivz] - Zﬁ[ivl,vg] Zﬁ[vl,wz])

[”1#’2]
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LECTURE 5

STRESS TENSOR AND WARD’S IDENTITIES

We define the stress tensor for a family F of conformal Fock space fields as a pair
of quadratic differentials which represent the Lie derivative operators in application
to the fields in F (and their tensor products). The corresponding formulas are known
as Ward’s identities. More precisely, for every local holomorphic vector field v, we use
the quadratic differentials to construct a functional (“generalized random variable”)
W (v) such that the action of the operator £, on any string of fields in F is equiva-
lent, in correlations with arbitrary Fock space fields, to the multiplication by W (v).
Alternately, the stress tensor W can be defined as the correspondence v — W (v).

The existence of W is not at all obvious, and in fact it is a very special property
of some particular families of Fock space fields. In this lecture we mostly discuss
various forms of Ward’s identities. We will comment on the nature of existence of
stress tensor in the appendix to this lecture.

5.1. Residue operators

Let A be a Fock space holomorphic quadratic differential in D, let p € D, and let
v be a non-random holomorphic vector field defined in some neighborhood of p. Then
for every Fock space field X we define the correlation functional

1 . .
o - vAX(2) (in a given chart ¢, ¢(p) = 2)
as a map
X lim —— (O E[AQ)X (2)X] d¢,

e—0 271'2 ’C—Z|=E
where X is any Fock space correlation functional with nodes in D \ {p}.

This functional is of course just the residue term (vA)%_; X in the operator product
expansion of vA and X, see Section 3.2, and therefore by Proposition 3.1 it can be
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expressed as the value of some Fock space field. We can view the map

1
X(2) — 3 ) vAX(2)

as an operator on correlation functionals (represented by the values of Fock space
fields); we denote this operator by

1
Av(z) = % ﬁz) 'UA.

Varying z, we can also think of A, as an operator on Fock space fields:
(AuX)(2) = Ay(2) X (2).
Proposition 5.1. — We have
Ay Lf — ALY =Cf Ay, — LT A,

Proof. — By Leibniz’s rule (Proposition 4.4) we have

Ap L X = (01 A) x_1 (L] X) = L [(v14) -1 X] — [LF (11 4)] x_1 X

=LF A, X — [CF (11 A)] %1 X.
Similarly,
A L X = L] Ay, — [LF (v2A)] %1 X.

Since v1 A and v2A are (1,0)-differentials, by (4.14) we have

L} (v14) = v20(v1 A) + vhv1 A = V0] A + Vhv1 A + 110204 = L (v24),

which proves the statement. O

For an anti-holomorphic quadratic differential A~ we define

1
“(2)=—-— ¢ TVA".
Av (Z) 27 (z)U

This operator is anti-linear in v, and if A~ = A, then A, = A,.

5.2. Stress tensor
Let X be a Fock space field in D. By definition, a pair of quadratic differentials
W= (A% A7)

is a stress tensor for X if AT is holomorphic, A~ anti-holomorphic, and the following
equation (the “residue form of Ward’s identity”)

(5.1) L,X=AfX+A, X
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holds in Dy,c(v) for all non-random local vector fields v. (Recall that we write Dy (v)
for the maximal open set where v is holomorphic.) Thus we require that the equation

L,,X(z):-il— vAYX(2) - = ¢ 5A-X(2)

T (2) 21 (2)

holds in all charts and for all vector fields v holomorphic in a neighborhood of 2.

The differentials A* (if they exist) are not uniquely determined by equation (5.1).
Moreover, we can add (anti-)holomorphic non-random fields — they will not change
the residue operators. For example, the Virasoro fields determine the same residue
operators as the differentials A* do for local holomorphic vector fields. We will discuss
this in the next lecture.

Notation. — F(W) = F(A*, A7) is the linear space of all Fock space fields X
such that W is a stress tensor for X. Clearly, this space contains the scalar field I
(I(z) =1). If F(W) is closed under complex conjugation, then we can choose

At =A, A =4,
and
(5.2) X € F(W) ifandonly if L£IX =A,X, LIX = A, X.

In what follows, we will only consider the case W = (A, A). There is no difficulty
in extending results to the anti-symmetric (A~ # AT) case.

Proposition 5.2. — If X € F(A, A), then
[Ay,, Agy ) X = — Ay, 0y X
Proof. — Since Ay, X = L} X, it follows from Proposition 5.1 and (4.15) that
[Au, A )X = (L3 LHIX =L X = A, v X. O

v2) 1 [v2,v1]

5.3. Ward’s OPEs

We can restate the definition of stress tensor in terms of the singular part of the
operator product expansion. For a given chart ¢ : U — ¢U and ( € C, let us denote
by v the (local) vector field defined by the equation

1
[ve [ ¢1(n) = Y
(This vector field depends on ¢.) Then we have
1
(53) Singo. [4QOXC)] = 55 §_wAX(@), =gV,
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where the left-hand side means the singular part of the operator product expansion
in chart ¢. Indeed, if

AMX(z)~ Y Ci()n -2V, (n— 2),

j<-1
then using
1 dn . .
5 (z)(n—Z)JE‘_‘; =(¢—2), (F<-1),
we derive
1
(54) i ) A(m)X (Z)C =Y Ci(2)(¢—2).

71<-1

Proposition 5.3. — X € F(A, A) if and only if the identities (“Ward’s OPEs”)
Sing,_,, [A(Q)X (2)] = (£, X)(2), Singc_,, [A(Q)X (2)] = (£, X)(2)

hold in every local chart ¢.

Proof. — If X € F(A, A), then

Sing. [4QX()] = 5 weAX () = (€120

by (5.3) and the definition of stress tensor. In the opposite direction, we need to show
that

1 1
R — = + i i e = +
ami f,) vcAX(2) = (£, X)(2) implies ami §., vAX (2) = (L] X)(2)

for all vector fields v holomorphic near z. Let us write f for (v || ¢). By Cauchy,

1
v=gm [ FOuaC

(integration is over some simple curve surrounding z), and since £} is C-linear with
respect to v, we have

LEX(z) = / QL X(2)d¢
1

27r2/f C— ]{z) veAX(z) = ‘2‘7;?2) vAX(2). O

In the case of differentials or forms, it is enough to verify Ward’s OPEs in just
one chart, e.g., in the half-plane uniformization. This is clear from the corresponding
transformation laws.

Corollary 5.4. — Let X be a (X, \,)-differential. Then X € F(A, A) if and only if the

following operator product expansions hold in every/some chart:

(5.5) A<<>X<z)~(2)f(j))2+i)‘_(j A(g)f(z)~?5f22)3+i?<}zz>.
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Corollary 5.5. — Let X be a form of order u. Then X € F(A, A) if and only if the
following operator product expansion holds in every/some chart:

A()X (2) ~ @ _“z)z + 8<X_(i) for a pre-pre-Schwarzian form X;
A X(2) ~ @ ipz)3 (;(_(ZZ))2 + aCX—(Z) for a pre-Schwarzian form X;
A(Q)X () ~ Op 2X(z) | 9X(2) for a Schwarzian form X.

C—2f "2 (-2

By Proposition 4.2, we also have the following:

Corollary 5.6. — Suppose X € F(A, A). Then X is a differential if and only if the
operator product expansions (5.5) hold for X.

5.4. Stress tensor of Gaussian free field

Let us return to Proposition 3.5, where we stated some operator product expansions
involving T = ——%J x J; as usual J = 0® and @ is the Gaussian free field. Denote

1
A——§J®J.

Then A is a holomorphic quadratic differential and A coincides with 7" in the upper
half-plane uniformization. The first relation a) in Proposition 3.5 can be written as

A(Q)B(z) ~ T’—“

—Zz

Applying Corollary 5.4 we conclude:

Proposition 5.7. — We have ® € F(4, A).

The other three relations in Proposition 3.5 imply that W = (A4, A) is a stress
tensor also for the fields J, T, and V*. Indeed, as we mentioned, it is sufficient to
check Ward’s OPEs in just one chart, and in the case of half-plane uniformization,
this is what our relations give. Note that we have arrived to this conclusion as a result
of (rather lengthy) Wick’s calculus computation. There is a much easier way — the
proof of Proposition 3.5 is immediate without any computation from Proposition 5.7
and the following fact.

Proposition 5.8. — a) If X € F(W), then 0X € F(W).
b) All OPE coefficients of fields in F(W) belong to F(W).

The first statement is of course a simple special case of the second one. (Recall
that the non-random field I(z) = 1is in F(W) and 80X = X ; I.) We will explain the
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proof of the second statement in the next section. There is a short algebraic argument
in the case of holomorphic fields X and Y. In this case,
LTX =@wA)x_1 X, LY =@wA)*_,1Y,
and we need to check that £} (X %, Y) = (vA) *_1 (X *, Y). By Leibniz’s rule, the
left-hand side is
(L3X) %0 Y + X %, (LTY),

while
(5.6) (VA) -1 (X %, Y) = [(vA) %1 X] #, Y + X #,, [(vA) x_1 Y]
= (‘CjX) *n Y + X *, (£U+Y)7
see (7.2) below. d

Proposition 5.8 allows us to construct infinitely many fields in the family F(W).
On the other hand, the field A = —3J ® J itself is not in F(A, A) because otherwise
it would have the operator product expansion (5.5) (as a differential). But, by Wick’s
calculus, we easily verify

E[A(Q)A(2)] = %z (in H).

Further examples of fields which have a stress tensor can be obtained by various
modifications of the Gaussian free field, see Lecture 10. The simplest modification is
the following.

Example. — Let u be a real-valued harmonic function in D. Define
5=®+w
where ® is the Gaussian free field and denote

A= —%J@ J — (8u)J.

Then (A, A) is a stress tensor for ®.
If we take u complex-valued, we will get an asymmetric stress tensor (;1\+,A\—)
for ®, where AT = A is as above, and

~

A =-

%jQJ—(éu)j.

5.5. Ward’s identities

Let W = (A, A) be a stress tensor for some family of Fock space fields. We will as-
sume that A is continuous up to the (ideal) boundary in the sense that all correlations
of A(.) with Fock space fields extend to D continuously; we understand continuity
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on the boundary in terms of standard boundary charts. See the end of Section 4.2.

For a smooth vector field v in D continuous up to the boundary, we define
1

(5.7) W) = 2RWHe), W)= oo [ ua- % /D (Bv)A.

Since vA is a linear form, and (8v)A is a (1,1)-differential, the integrals are coor-
dinate independent, and by the continuity assumption, their correlations with Fock
space functionals X are well-defined provided that Sy C Dyo(v). (Recall that we
write Sy for the set of all nodes of X and Dy (v) for the maximal open set where v
is holomorphic.)

The application of “random variables” W (v) is based on Green’s formula

oL

For example, since (9v)A = d(vA) in D, we have
EW™*(v) =0.
By Green’s formula we can write symbolically
W) = = [ o(@a);
however, to interpret this integral as a correlation functional we need to integrate by

parts and therefore use the definition (5.7).

We can extend the definition of Ward’s “random variables” to the case of local
vector fields. Namely, for an open set U C D we denote

1 1 =
+ (0 — N
Wt(v;U) = 57t Jow vA - /U(BU)A,

so that W (v) = W+ (v; D), and (with a usual interpretation)

Ay(z) = 1 _?{ ) vA = lim W (v; B(z,¢)), (2 € Dhoi(v)).

T 2m e—0

Green’s formula shows that if U; C U; and if X’ has no nodes in the closure of U \ Uy,
then

E[W(v;Uy)X] = E[W (v;Up)X].
In particular, in the computation of E[W (v)X] we can replace D by the union of
small discs around the nodes of X'.

Proposition 5.9. — Suppose {X;} C F(W) and {z;} C U N Dyoi(v). Then
(5.8) EYL,[X1(21) - Xn(zn)] = EW(v;U)X1(21) -+ Xn(20)Y

for all correlation functionals Y with nodes in D\ U.
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Proof. — As mentioned, we can replace U with the union of small discs U;
around z;’s. Clearly, W(v;U) = > W(v;Uj;). Let us also use a partition of unity to
represent v = »_ v;, where v; = v in U; and v; = 0 in other discs. Thus the statement
reduces to the case of a single node, where the formula is just the definition (5.1) of a
stress tensor. O

We emphasize that Ward’s identities (5.8) hold for any choice of local coordinates
at the nodes z;. Their meaning is the following: we can represent the action of the Lie
derivative operator £, by the insertion of the “random variable” W (v) into correlation
functions, and this works collectively for all fields in the family F(W).

The last proof gives the following restatement of the definition of a stress tensor in
terms of Ward’s identities (cf. Appendix 6).

Proposition 5.10. — W = (A, A) is a stress tensor for X if and only if the following
equation holds for all vector fields v with compact supports, for all points z € Dy (v),
and for all Fock space functionals Z with nodes outside supp(v):

EL,X(2)Z=EWW)X(2)Z.
We can use this restatement to derive:

Proof of Proposition 5.8. — The argument works for all types of operator product
expansions, but for simplicity of notation we assume that X,Y are holomorphic, so
we have

X(@Q)Y(2) = (¢ = 2)"Cn(2).
We want to show that

EL,Ch(2)2 = EW(v)Cyr(2)2.
As in the proof of Proposition 4.4, we have

EX,(OYi(2)Z = 3.(C — 2)"ElCalu(2) 2.

Taking the time derivative at ¢ = 0 we get

%L:OEXt(C)Yt(z)Z = EL,[X(Q)Y(2)]2
=EW®)X(Q)Y(2)Z =) _((—2)"EW(v)Cn(2)Z,
%Lzo > (¢ = 2)"E[Culi(2)Z2 = Y (¢ — 2)"EL,Cn(2) Z. O

5.6. Meromorphic vector fields

Let v be a meromorphic vector field in D continuous up to the boundary, and
let {p;} be the poles of v. We define

W () = lim W (s; ),
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where U, = D \ UB(pj,€). (We can use any fixed local coordinates at the poles.)
Somewhat symbolically, we have

1 1
+ - _ - A
W) = /w vA zj:m' f{m” ’

and also

(5.9) W (v) = % [ va- % /D (Bv)A

(as in the case of smooth vector fields) with the interpretation of v in the last integral
in the sense of distributions.

Our goal now will be to express the differential A in terms of Ward’s functionals
W (v) with meromorphic v’s. We will only consider the case where A is continuous and
real on the boundary (in standard boundary charts); this will allow us to extend A
to the double of D accordingly. We will do our computation in the half-plane H and
use the global identity chart in C; note that C is the double of H. In the next section
we combine the obtained representation of A with Ward’s identities (5.8) and derive
some useful equations for correlations involving the stress tensor.

Proposition 5.11. — Let A be a holomorphic quadratic differential in H, and W =
(A, A). Suppose A is continuous and real on the boundary (including o). Then

(5.10) (Alld)(¢) = W (ve) + W (ve),
where we use the notation
1
id = € Q).
(e 1)) = 7=, (C€©)
We understand the equation (5.10) in the sense of correlations with Fock space
correlation functionals with nodes in H \ {{}. Note that EA = 0 by assumption: in
the identity chart of H, F A is a holomorphic function vanishing at infinity.

Proof. — Let us start with a general observation which works for arbitrary Riemann
surfaces. If v is a meromorphic vector field in C without poles on R U {co} such that
the reflected vector field

v#(2) =v(z), zeC,

is holomorphic in H, then we have (see (5.9))

1 = 1 1
Wtw)=-= — Wt w#) = — #
(v) - /D(BU)A + 571 Jop vA, (v™) i /BD v7 A,
Since A = A on R, we have
1 P
571 Jop vA 371 Jop v# A W (v#),
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and

- /D (Bv)A = —W*(v) - WFHoH).

Let us choose v = v¢ with ¢ € H. (We could have chosen v = v; +a+ bz +c2?; note
that v = 23 as a vector field has a pole at infinity.) Then v# = vg and Oov = —md¢, SO

1 _
= /D (Bv)A = —A(Q). O

™

5.7. Ward’s equations in the half-plane

We continue to consider the case D = H with the global identity chart.

Proposition 5.12. — Suppose A satisfies the conditions of the previous proposition.
Let X = X --- X, be the tensor product of (A\;, A«;)-differentials X; in F(W). Then

A aj Avi
(5.11) A(O)X = Z[ et -+(C—z]) ]EX

where all fields are evaluated in the identity chart of H and 0; = 0.

Proof. — Let us choose v = v with ¢ € H. Then v# = vg. By Ward’s identities (5.8),
we have

A.
EW* ()X = EL}, X § : [ ot _sz)z]EX,
_ Py A _
+ —_ + - J *J
EW*(0)X = BLLX =) [f— Rl zj)z]EX.
Note that
EWF (o)X = EW+(v)X =3 [ % o v ]EX
4 4 C — % (C — ZA)2 )
j J J
and apply Proposition 5.11. O

We repeat that we have derived the equations (5.11) in the half-plane uniformiza-
tion. Furthermore, we assumed that A was real on 0D and has no singularities. For
example, in the case of non-trivial boundary condition (<’I; = & 4 u, where & is the
Gaussian free field and u is a real-valued harmonic function in D, see Section 5.4 and
Section 10.4), the differential

~ 1
A=-3707~(0u)J]

is not necessarily real on 0D and A may have singularities. It is of course not difficult
to derive Ward’s equations for A — they will be different from (5.11).

Here is a generalization of the last proposition.
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Proposition 5.13. — We assume that A satisfies the conditions of Proposition 5.11.
LetY, X1,...,Xn € F(W) and let X be the tensor product of X;’s. Then

E(AxY)(2)X = EY ()L} X + EL,_[Y(2)X],
where all fields are evaluated in the identity chart of H.
(Proposition 5.12 is the special case when Y is the scalar field I, i.e., Y(2) =1.)
Proof. — By Proposition 5.3 we have
(A*Y)(2) = lim [AQY (2) = (L3, Y)(2)]
(we subtracted the singular part of operator product expansion). We have
E[AQ)Y(2)X] = EW,[Y (2)X] + E[WY (2)X]

= EL] [Y(2)X] + EL, [V (2)X]

= EY (2)L3 X + E(L3.Y)(2)X + EL, [Y (2)X].
It follows that

E[(AxY)(2)X] = égn E[Y(2)L3, X] + EL, [Y (2)X]. O
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APPENDIX 6

WARD’S IDENTITIES FOR FINITE
BOLTZMANN-GIBBS ENSEMBLES

We will construct the stress tensor v — W(v) for the density fields of finite
Boltzmann-Gibbs ensembles and derive the corresponding Ward’s identities (well-
known in the literature under the name of the loop equation). We hope that this
discussion will somewhat clarify the meaning of the stress tensor of statistical models.
(A similar intuitive approach in the context of functional integration is one of the
standard methods of introducing stress-energy tensor in quantum field theory.)

Consider the following probability measure in C™ :
1
(6.1) Z—eH(")Idnl; Zy = / el = / e |dy),

where |dn| is the Euclidean volume, and H = H(n) is a given real smooth function
which has sufficient growth at oo.

For example, the probability measure (6.1) corresponding to
1
(6.2) H(n) =5 ) logln; —msl* —2n) Qn;), n={n}eC",
J#k J
where Q(n) > log |n| is a given real function, describes the distribution of eigenvalues
of n x n random normal matrices.

Let v be a smooth vector field in C (with compact support), and let v; denote its
flow. We will write ¥, for the flow {n;} — {¢yn,} in C™.

Changing the variables n = W;()), i.e., n; = ¥:(A;), we get

/eH:/eHOq/th,

where the Jacobian J; is given by the equation |dn| = J;(A)|d )|, so

Je=1+2tRTr[Ov] + - .
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(We use the notation Tr[f] = " f();) and ¢ for composition.) Denote

W, =Wl

| = ELO [H oW, + Ji) = > [v;0;H + ;0;H] + 2R Tx[9w],
J

where v;(\) = v(}A;) and 9; = 0y,. Clearly, W is a R-linear map taking vector fields
to random variables and its C-linear component is

WH] = v;0;H + Tr[v].

In the random normal matrix case (6.2) we have

Ak)
22 /\ —~ A — 2n Tr[vdQ)] + Tr[0v)].

Let F = F()) be a random variable on C™. Denote

Vol = dt lt:O
Its C-linear component is of course VI F = 3" v;0; F and W [v] = VI H + Tr[9v].

Note that V, is a differentiation (i.e., Leibniz’s rule applies) in the algebra of
random variables.

FoVW, = Z[’UjajF + 1_1j5jF].

Proposition 6.1. — We have
(6.3) E[Wv]|F]+ E[V,F]=0.
Proof. — One writes

d 1d
—| E[FoVU_,]=—=— FoW_,)el
dtlt=0 [FroW—] Z dtlt=0 /( oWi)e

1d HoW 1/ H
= —— t = — F
T t=0/Fe A 7 Wlv]e

It follows that E[W*[v]F] + E[V}F] = 0, in particular E[W*[v]] = 0 (“loop
equation”).

O

Consider now the density field p of the point process (6.1). By definition, p is a

(1,1)-differential such that
1
/ fo= n Z F(A)

for all (scalar) test functions f.

Proposition 6.2. — If v is holomorphic in a neighborhood of z, then
(6.4) Voup(z) = —Lop(2).
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Proof. — For a test function f supported in the region where v is holomorphic, con-
sider the random variable

i) = [ 1o
Then 1 )
L{flo o = Tl op-d = [(fov-)-p= [ fo

Taking derivative in ¢ we get
~ [1v0= [ 120

Combining (6.3) and (6.4) we conclude

E[L.p(2)] = E[Woup(2)].
More generally, applying Leibniz’s rules to £, and V, we get the following:

Corollary. — We have (as in Proposition 5.10)
EL,[p(21) - p(zk)] = E[Wop(21) -+ p(2)]-

If a statistical model has a properly defined scaling limit as n — oo, then one
can ask the question about the validity of Ward’s identities in the limit. For exam-
ple, the rescaled density field (subtract expectation and multiply by n) of a random
normal matrix model (6.2), under some rather general conditions, converges to the
Laplacian of the Gaussian free field with free boundary conditions on some compact
set S = S[Q)], see [1]. Taking the logarithmic potential of the density field and sub-
tracting the terms corresponding to the boundary, one can recover the expression for
the stress tensor of the Gaussian free field from Section 5.5.
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LECTURE 7

VIRASORO FIELD AND REPRESENTATION THEORY

Let W = (A, A) be a stress tensor for some family F of Fock space fields. (We can
assume that F is the maximal such family and write 7 = F(W) in this case.) As
we mentioned, in general the holomorphic quadratic differential A does not belong
to F(W). The theory gets much more interesting if we can find a holomorphic field T
which does belong to F(W) and which produces the same residue operators (for
holomorphic vector fields) and therefore the same Ward’s “random variables” W (v)
as the differential A does. In the appendix to this lecture we will show that under
some rather general conditions (the family F has to be conformally invariant), such a
field T exists and is a Schwarzian form. In this lecture, we will take this last property
for the definition of the Virasoro field T. The Virasoro field of the Gaussian free
field @ is

T:~%J*J, J =09,

see Section 3.4. Further examples will be given in the next lecture.

It should be mentioned that the whole theory could be constructed (as is custom-
ary in the conformal field theory literature) without representing the stress tensor
v+ W (v) in terms of quadratic differentials A, A — we could have just defined T as
a Schwarzian form satisfying the Virasoro operator product expansion (with central
charge c)

N 3c 2T(z)  0T(2)
(1) O~ et Y s
In our approach, we are trying to separate two different issues. As we argued in
Appendix 6, for certain fields of statistical mechanics one can expect the existence
of Ward’s identities and the stress tensor. This aspect is not specific for 2D (in the
smooth category). On the other hand, it is remarkable that conformal invariance in
two dimension then gives us a Schwarzian form with the stated properties.
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The material of this lecture is completely standard, see e.g., [11]; we just adapt
it to the setting of Fock space fields. For the sake of completeness we recall some
elementary facts of representation theory, in particular, the description of level two
singular vectors, which we will use later in connection with the SLE theory.

7.1. Virasoro field

By definition, a Fock space field T is the Virasoro field for the family F(A, A) if
a) T € F(W), and
b) T — A is a non-random holomorphic Schwarzian form.
(In the asymmetric case W = (A*, A~) one should consider two fields T* with the
corresponding properties.)

The Virasoro field T is unique (if exists). Indeed, if we have two such fields T3, T5,
then the non-random holomorphic Schwarzian form f := T; — T, belongs to F(W).
Therefore,

1
LHFC) = g3 §_vASC)

and it is clear that f(z) vAf(z) = 0 for all holomorphic local vector fields, hence
by (4.10)

LrIf=vf +20f+m" =0.
Considering constant and linear vector fields v, we see that f has to be zero.

It follows that the order of T as a Schwarzian form is uniquely determined; tradi-
tionally it is denoted by 1—120, and c is called the central charge of the family F(W).

Since the fields T' and A determine the same residue operators for local holomorphic
vector fields, we can replace A by T in the local Ward’s identities

LFX(z) = %%)UTX(Z)

X2

as well as in Ward’s OPEs, see Sections 5.2 and 5.3. We can also use T to define the

functionals . .
N 1 _
Wt (v) = 57 /BD vT W/DT((%)’

though we now need to use Green’s formula to interpret such integrals. Since T
belongs to F(W) and T is a Schwarzian form, by Corollary 5.5 we have Virasoro
operator product expansion (7.1), which shows in particular that we can find the
central charge from the relation

c=2lim(¢ - 2) BA(C)A(2).

In the simply connected case it is often convenient to choose A so that

A=T in (H,id).
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(Recall that unlike T, the differential A is not uniquely defined — we can add
non-random holomorphic quadratic differentials to A.) If T is real and continuous up
to the boundary, then Ward’s equations in Section 5.7 obviously hold (in H) with T’
instead of A.

Example. — As we mentioned, T = —%J xJ is the Virasoro field for the Gaussian free
field. The central charge is ¢ = 1. Indeed, if we set A = —1J © J, then W = (4, 4) is
a stress tensor for the Gaussian free field, see Proposition 5.7. Then T is the Virasoro
field because

a) T € F(W) by Proposition 5.8;

b) T is a Schwarzian form of order 5 (c = 1) by Proposition 3.4.

Examples with ¢ # 1 will be given in Lecture 10.

Our next goal is to explain the relation of the Virasoro field to the representation
theory of the Virasoro algebra.

7.2. Commutation of residue operators

It will be important to extend the definition of residue operators

1

T,(2) = —7{ vT (in a given chart ¢),
2mi (2)

see Section 5.1, to the case of meromorphic (local) vector fields v. Note that if v has a

pole at z, one has T, (z) # A,(z) and unlike A,, the operators T,, are chart dependent.

Since this part of the theory is local, we can work in a fixed chart and consider the

operators

Y;(2) = o ;{ RISOLs

T 2m

for arbitrary holomorphic Fock space fields Y and meromorphic non-random func-
tion f. (We do not require f to satisfy any particular transformation rule.) The
following commutation identity is the source of many useful relations, and is a typical
example of the contour integration technique in conformal field theory.

Proposition 7.1. — Let Y and Y? be two holomorphic Fock space fields, and let fi
and fa be meromorphic functions. Then

VAEYAE = 5 . fdng § AOVIOYiAC

Proof. — Let us check the identity in application to Z(z); X’ denotes an arbitrary
string satisfying ¢~ 'z & Sx. Let C_, C, and C, be three small circles around z, with
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increasing radii. The nodes of X and the poles of f other than z should be outside of
the discs. We have

1
EXY} Y} 2(2) = 5~ EX » AQOYY(QYEZ(z)dC
:_—(2;@2 X ]{e HOYHQAC P fanY ) Z()dn
C+ n

1
B ?{m b FQRMYHOY*n)Z(2)dndC

Similarly, we compute Yfz2 Yfl1 Z(z) integrating the variable of f, over the bigger cir-
cle (C) and the variable of f; over the smaller circle (C_),

BXYY} 2(z) = pe 7{ P HOR@Y OY 2 dcdn

1
(273)2

Subtracting, we get

1 y2 _ 1 LQOY?2(n)Z
BX [V} V2] 2() = o BX §__ fan)an f{elm_ _ HOY QY )z
__1 2
=GB p g HOYOYimZEc,
which completes the proof. O
Similar formula holds for the commutator [Y}, (2),Y, (z)]

Examples. — a) Set Y! = X and Y2 =Y. If we take f; = 1, then the inner integral
gives the field X *_; Y. Taking f2(n) = (7 — z)~""!, by Proposition 7.1, we get

[Xx_1,Y*,]Z(2) = (X %1 Y) %, Z(2),

which can be rewritten as Leibniz’s rule:
(7.2) Xt (Y, 2)=(Xx1Y) 5, Z+Y %, (X -1 Z).
This is the formula (5.6) we mentioned in Section 5.4.

b) If X and Y are holomorphic, then
(7.3) Xx(Y*Z)-Yx(X*xZ)=[X,Y]*Z,
where [X,Y] = X xY — Y % X. This follows from a similar argument with
f1(€) =1/(C - 2) and fo(n) =1/(n - 2).

In the case of residue operators of the Virasoro field, the commutation identity has
the following form.
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Proposition 7.2. Let T be the Virasoro field, and let vy, vo be (local) meromorphic
vector fields. Then in any given chart, we have

[Tv1 (z) Tv2 (z)] v1,02]( ) i % f (vlvm Ullll’U2)(<) dC

and [T, (z),m] =0.

Proof. — Let us compute the residue f(n) in Proposition 7.1. By Virasoro operator
product expansion (7.1) and Taylor series expansion of vy,
/I( III
n) (n)
v1(€) = vi(n) + vi(m)(¢ —n) + 12 €=+ == -+

the residue is

1

3wt ), AOTOT G = (00T + 2T+ 500" ) o).

Next we compute

1 1
3wt 0 5 w@TOTIAC

2mi
= o @O+ 2T dn+ S5 b vt (n)dn.
2mi J 12270 J ()
The first integral in the right-hand side is
1 / ]' ! f
— T - — d
omi f., 2(v20i T)(n)dn — 5— (Z)(Uzvl) (m)T( =5 ¢ [z, ua](m)T(n)dn,
and clearly
1 " ]' "
— dn=—-—— dn.
o ACTRULIEEy NCTAIOLY
Since the operator product expansion of T'(¢)T(n) has no singular part, the second
formula follows from Proposition 7.1. O
Remark. — In the special case of holomorphic vector fields, we get

[Tvl ) Tvz] = _T[vl 2]
where the operators act on arbitrary Fock space fields. This, of course, implies
[Avlaszl = —A[’Ul,‘U2]7

which is a stronger statement than Proposition 5.2 where the action is restricted
to fields in F(W). This extension of Proposition 5.2 has been obtained under the
assumption of the existence of the Virasoro field. In Appendix 8 we will reverse the
argument and derive the existence of 1" from Proposition 5.2.
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7.3. Virasoro algebra

Let A denote the (Witt’s) Lie algebra of meromorphic vector fields in C with

possible poles only at 0 and oo,
A=Lin{ln,:n€Z}, [ln,la]=(m—n)lnin,
where
(€n [ 1dc)(¢) = —¢1*™.
Given a chart ¢ at p € D, we can embed A into the algebra of local meromorphic
vector fields at p:
Ly — —(¢ —2)"*'  (in chart ¢, ¢(p) = 2).
Proposition 7.2 shows that the local operators —T5,(z) (defined in chart ¢) provide a
projective representation of A4, i.e., a Lie algebra homomorphisms
A— L(H)/C-T,
where H is the linear space of Fock space fields evaluated at z in chart ¢, and £(H) is
the algebra of linear maps. Equivalently, a projective representation is a linear map
0: A— L(H)
such that
[ov1, ova] = o[v1,v2] —w(v1,v2) - I,
where w : A x A — C satisfies the cocycle equation
w([v1,v2],v3) + w([vz,v3],v1) + w([vs, v1],v2) = 0.
It is known [19] that (essentially) the only possible form of such a cocycle is
c 1
w(vi,v2) = 24970 j{o)(véuvl - v1"v2)(¢)dg,

where c is a constant factor. (Adding to w(vy,v2) any linear function of the commu-
tator [v1, va] doesn’t violate the cocycle condition, but such coboundary doesn’t affect
the equivalence type of the representation.) In terms of the basis £, this means

Wl bn) = ——1€2—m(m2 — 1)ém+n.0-

In this case we say that p is a Virasoro algebra representation with central charge c.
Thus we can restate Proposition 7.2 as follows.

Proposition 7.3. — Let T be the Virasoro field. Then for each p € D and each local
chart at p, the operators

Inte) = g (€2 T

represent the Virasoro algebra:

(L, L] = (M — 1) Lyngn + —

12m(m2 = 1)bm+4n,0,
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where ¢ = 12y and p is the order of T as a Schwarzian form.

Assuming T~ =T we define the residue operators
1 —

T, (2)=—— T

T@ =55, 7T

so T," X = (T,X). It is easy to check that the operators L;;, L X = (L,X), represent
the second copy of Virasoro algebra:

_ C
(7'4) [L;w L;] = (m - n)Lm+n + Em(mz - 1)5m+n,0’

and satisfy
[Lin, L] = 0.

(In the asymmetric case, we need to consider L, and L separately.)

7.4. Virasoro generators

We will now consider L,,’s as operators X — L, X acting on fields,
(7.5) (LnX)(2) = Ln(2)X(2) (in any given chart).
Of course, these operators are just OPE multiplications,

Lo X =T *(—pn_9) X,

ie.,
(LoX)(2) n (L-1X)(2)
(¢—2)? (—=z
By (7.5) and Proposition 7.3, the operators L,, provide a Virasoro algebra represen-
tation in the space of all Fock space fields in D.

(76) T()X(z)=---+ + (L2 X)(2) 4+ (C— 2).

Let us restate some facts established in the previous lectures in terms of this rep-
resentation.

Proposition 7.4. — Virasoro generators L, act on F(W).
Proof. — By definition, T' € F(W), and we know that OPE coefficients of fields in
F (W) belong to F(W). O
For n > —1, we can identify the action of L,, on F(W) with Lie derivative operators
(LnX 1 9)(2) = (L3 X 1 9)(2),  (va ]| 9)(C) = (¢ = 2)™F".
Thus the Lie-subalgebra Lin{L_;, Lo, --- } (in the space of operators on Fock space

fields) is isomorphic to the Lie-subalgebra Lin{v_1,vo,---} (in the space of locally
holomorphic vector fields) with the bracket (4.11).

Proposition 7.5. — Let X be a Fock space field. Any two of the following assertions
tmply the third one (but neither one implies the other two):
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a) X € F(W);

b) X is a (A, A.)-differential;

c) L>1X =0, LoX =X, L_1X = 0X, and similar equations hold for X.
Here and below, L>; X = 0 means that L,X =0 for all n > k.

Proof. — Under b), a) and c) are equivalent by Corollary 5.4 and (7.6). Suppose that
a) and c) hold. Then by Proposition 5.3 and (7.6), we get

(L3 X)(2) = (00 + Xg)X(2) and (L X)(2) = (vc0 + Av() X (2),
which imply that the equation
L,X = (v8+ 50 + M\ + A\ X
holds in Dye1(v) for each vector field v. By Proposition 4.2, we get b). a

We call fields satisfying all three conditions (Virasoro) primary fields in F(W).
If X € F(W) is a Schwarzian form of order p, then

L>sX =0, LyX =6ul(I(z)=1), L1 X =0, LoX=2X, L_,X=20X.

For n < —2 we have ,
o~ T
L, = m*,
so the Lie-subalgebra Lin{L_5,L_3,...} (in the space of operators on Fock space
fields) is isomorphic to the Lie algebra Lin{T, 8T, ...} (in the space of fields) with the
bracket
(X, Y]=X*xY -Y*X.

Here we use the identity (7.3).

7.5. Singular vectors

There is an extensive literature concerning Virasoro algebra representation theory.
For example, see [20] and references therein. We will only mention an elementary
fact that we will need later.

Proposition 7.6. — Let V' be a primary field in F(W) with central charge ¢, and
let A, A\« be the conformal dimensions of V. Then the field

X =[L_y+nL%)V,

where 1 is a complex number, is also a primary field (of dimensions A + 2, \.) if and
only if

(7.7) 3420+ 4\ =0, §+4)\+6n/\=0.
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Proof. — By assumption,
(7.8) LV =0, LiV=\V, L_,V=0V.
Observe that for any 1 we have

L1 X =0X.

63

Indeed, differentiating the operator product expansion for T(¢)V(z) in z, we get

(for all n)
L,(0V)=0(L,V)+ (n+1)L,_1V.

On the other hand, by (7.8) we have
L,(0V)y=L,L_1V=(n+1)L,_1V+L_1L,V,

and it follows that L_;(L,V) = 8(L,V), in particular L_1 X = 0X.

We also have (for any 7)

(7.9) LoX = (A +2)X.

This follows from the identity Lo(L,V) = (A — n)L,V, which is true because
LoL,V =[Lo,L,)V + L,LoV = (—n+ X)L, V.

Let us now show that the equations in (7.7) are equivalent to the equations L; X =

and Ly X = 0 respectively, and therefore to the condition L>; X = 0.
Since [L1, L_1] = 2Lg, we have L1L_;V = 2LyV = 2)\V, and
L\L2\V = (L1L_1)L_1V = L_y(L1L_1)V + 2LoL_,V
=2 \L_1V + (2A\L_1V +2L_,V) = (44X +2)L_,V.

Since we also have
LlL__QV = [Ll, L_Q]V = 3L_1V,

the first equation in (7.7) is equivalent to L; X = 0.
Similarly, we show
LoL oV = (4X+ 3o)V, LoL%,V =6V,
so the second equation in (7.7) is equivalent to Lo X = 0.
Finally we notice that since [L,,, L;;] = 0, we have
L3, X=0, LyX=AX, L;X =0X,

and the application of Propositions 7.4 and 7.5 completes the proof.

0

a

Remark. — The field X is called a level two singular vector of the Virasoro algebra
representation. “Level two” means that X is an “eigenvector” of Ly (see (7.9)) with

eigenvalue Ay :
AX =2+ /\V,
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where Ay is the eigenvalue of V. Level two singular vectors of the second copy of
Virasoro algebra (see (7.4)) are described similarly to Proposition 7.6. “Singular”
means X is “primary.” We say that V produces level two singular vector X. The
field V is called degenerate (resp. non-degenerate) if X = 0 (resp. X # 0).

At level one, X = L_,V is singular (i.e., primary) if and only if LoV = 0,i.e., A = 0:
0=LiL_;V =[Ly,L_4]V =2LyV.
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APPENDIX 8

EXISTENCE OF THE VIRASORO FIELD

Let A be a holomorphic quadratic differential and W = (A, A). Let us assume that
the family F(W) is big enough in the following sense: if H is a holomorphic Fock
space field, then

(8.1) Vn<0, VXeFW), Hx,X=0 = H isnon-random.

In other words, there are no non-random H'’s such that the operator product expansion
of H and X has no singular terms.

Interpreting a well-known postulate in the physical literature which says that scale
(and translation) invariance at criticality implies (in 2D) the “invariance with respect
to the full conformal group”, (i.e., the applicability of conformal field theory), see [5],
we will show that the Virasoro field exists in a conformally invariant situation.

Proposition 8.1. — Let D be a simply connected domain and let ¢ € 0D. Suppose A
is tnvariant with respect to the group Aut(D,q) and F(W) satisfies (8.1). Then there
exists a field T € F(A, A) such that T — A is a non-random Schwarzian form.

Proof. — 1t is sufficient to show that there is a number ¢ such that the operator
product expansion

3c 2A(z)  0A(z)
C=2)* (-2 (-2
holds in some fixed half-plane uniformization of D with ¢ = co. Indeed, if this is true,
then we can define

(8.2) A(QA(2) ~

C
T=A+ =S,
T

where w : D — H is a conformal map and S, = (w”/w') — }(w”/w')? is the
Schwarzian derivative of w (expressed in local charts). Clearly, T is a Schwarzian form,
and to claim that T is the Virasoro field for F(W) we must show that T € F(W).
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However, this follows from Corollary 5.5 because T satisfies Ward’s OPE in the half-
plane uniformization, where we have T' = A, and as we mentioned earlier, it is enough
to check Ward’s OPE for a form in just one chart.

To prove (8.2) we write (in (D, q) = (H, 00))
Ci(z) |, Ca(2)
8.3 A(O)A(z) ~ +
(53 QAG) ~ 75 + 2
with “undetermined” coefficients C),, which are holomorphic Fock space fields. Recall

Proposition 5.2 — for all X € F(W) and for all local holomorphic vector fields v;
and v,, we have

[Av,, Ap, ] X = —Apy, 0y X.

Applying the commutation identity (Proposition 7.1) and the operator product ex-
pansion (8.3), we see that

1 1 ,
vy 4y =5 o X
[Ay,, Av, )X 5 fiz) v C1 X (2) + 9 }i) vov1C2 X (2)

11 )
t oo 752) v CaX () 4o

We now set v; = 1. Then [vy,vs] = v, so for all v,

7{ 1201 X (2) = —]{ v, AX (2),
(2) (2)
ie., f(z) v2(C1 — 0A)X (z) = 0. According to our assumption (8.1), this gives

oh :6A+Cl,

where ¢; is a non-random holomorphic field. Next we set v1(¢) = ¢. Then [v1,v2] =
¢vh — vq, SO

)Cw(@A)X(z) + —%(z) v2C X (2) = — j{z) CvhAX (2) +}€ v AX (2)

(z 2)

for all vy, which gives
Cy =2A + co,
where ¢ is a non-random holomorphic field. Next steps with v1(¢) = ¢* give
C3=C3, C4=C4,...,
where c3, ¢4, ... are non-random holomorphic fields.

We claim that all ¢;’s are zero except for ¢4 which is constant. This is where we
use conformal invariance. Recall that conformal invariance of A means that for all
maps 7(2) = kz + a we have

EA(z)q)(zl)q)(Zz) e = szA(TZ)q)(Tzl)q)(Tzz) coe
It is in the sense of such correlations that we can write

A(C)A(2) = K*A(T¢) A(T2),
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or (according to the previous discussion) equate the operator product expansions
0A(2) + c1(2) + 2A(2) + c2(z) cs3(z)

= =27 TE-ar
30A(T2) +c1(t2) 5 2A(T2) + co(72) cs(rz)
S e N (A (e

By conformal invariance of A we can eliminate the terms with A and dA, so we end
up with the identities

cn(2) = k* "cp(kz + a).
Clearly this implies that ¢, = 0 unless n = 4, in which case ¢ := 2¢4 is a constant. [
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APPENDIX 9

OPERATOR ALGEBRA FORMALISM

Physical and algebraic literature uses the language of operator algebra formalism.
Here we will outline the relation of this formalism to the theory that we discuss in
these lectures.

9.1. Construction of (local) operator algebras from holomorphic Fock
space fields

> Fix a coordinate chart ¢ at some point p € D and assume ¢(p) = 0; all our
constructions will be in this chart. Let § be a linear set of quasi-polynomial Fock
space fields with the following properties:

a) all fields in § are holomorphic;

b) I€F (I(z)=1);

¢) § is closed under OPE multiplications, i.e., all OPE coeflicients of two fields
in § belong to §; in particular, § is closed under differentiation;

d) the map A — A(0) from § to the space of correlation functionals in D \ {p}
is 1-to-1.

For example, we can take one or several holomorphic fields, such as J, T, J ® J,
etc., and study the corresponding OPE families.

Let us denote V = {A(0) : A € §}, so V is a linear subspace in the space of Fock
space functionals, and we have a bijection

F—V, A a= A0).

(As a general rule, we will use upper and lower cases for the fields and their values,
respectively.) For each A € § we define the corresponding operator field A as a
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sequence of operators (the “modes” of A)
1
T (0)
which we write as a formal power series with operator-valued coefficients

(9.2) Al =Y z:j_l :

—0o0

(We use bold letters for operators.)
The indexing in the power series can be different from (9.2). It usually reflects the

“conformal weight” of A (i.e., the eigenvalue of A as eigenvector of Ly whenever this
makes sense, see e.g., Proposition 7.5). For example, the Virasoro operator field is

N 1 "
TE=) i bo=5- }{O)c H7(C)d,

—00
see Section 7.4 where we used the notation L, for l,,. As we mentioned, the opera-
tors l,, generate a Virasoro algebra representation:

1
(9.3) [y 1] = (M = 2l + ﬁm(m2 = 1)dmn,0-

A simpler example is the operator field
— J
J[z] = znj—l

—00

corresponding to the current J = 0®. The mode operators j,, satisfy the relations

(94) [JmaJn] = n6m+ny07

which follow from the operator product expansion J(¢)J(z) ~ —1/(¢ — z)? and the
commutation identity in Proposition 7.1. In a different language, the operators

together with 1 generate a representation of the Heisenberg algebra:

(9.5) (P> Pr] = MOmin o

> We can consider a,,’s in (9.1) as operators V' — V. Indeed, if b € V, then b = B(0)
for some field B € §, and

apb=(Ax_,_1 B)(0) eV
because (A *_,_1 B) € § by ¢). Thus we have a 1-to-1 map
Y :V — End(V)[[z]], a+r— A[z],

which can be called the operator-state correspondence (elements of V' are states, and
operator fields are usually called operators). We denote by End(V')[[2]] the collection
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of formal power series with operator-valued coefficients a,, € End(V). Also, we have
the “translation” operator

8:V —V, 8a:=(0A)(0),

and a distinguished (“vacuum”) state 1 = I(0).
The quadruple (V,Y,8,1) is a chiral operator algebra, according to the definition
in [23]. In addition to some natural properties (axioms) involving 8 and 1,

[0,a,) = —na,—1, 81=0, a_1l1=a, a>l=0,

a chiral operator algebra must have the following properties: for all a,b € V, there
exists IV such that

(9.6) anb=0, (n>N),
(9.7 (z —w)"[A[z], Blw]] =0, (n> N),

(as a formal power series). In our case, the first property is just a restatement of the
fact that operator product expansions of quasi-polynomial Fock space fields have only
finitely many singular terms. The second axiom will be explained later. We repeat
that a chiral operator algebra is attached to the point p and depends on ¢; in other
words, the operator fields are functions

A= A(p, ).

The letter z in (9.2) for A[z] is just a dummy variable.

9.2. Radial ordering

In some computations we can treat operator fields A[z], which are formal power
series with operator coefficients, as operator-valued meromorphic functions

z — A(z2).
The precise meaning of the operator A(z) for any particular point z is the following:
if v = X (0) € V, then
Az)v = A(2) X (0)
in correlations with Fock space functionals whose nodes lie outside the disc B(0, |z|).

In other words, A(z) acts from V, the space of correlation functionals in D\ {¢~10},
to the linear space of correlation functionals in D \ ¢~ B(0, |z]).

The operator product expansion of Fock space fields (in chart @)
- Cy(w)

V=—00
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(note that the indexing in (9.8) is different from that in Section 3.1, see (3.3); also
recall that there are only finitely many non-zero C,’s with positive v) has the following

operator analogue:
C,lw
9.9) RA[]Blu] = 3 (??E[)JH

Here RA[z|B[w] is the radial ordering of A[z] and B[w] defined as a pair of formal
power series in 2 variables associated with the regions |lw| < |z| and |z| < |w],

(9.10) Alz]Blw] = ZzzmH 1 (lwl <121),

(9.11) BlwA[z] = Zzzm;‘;’zﬂ (121 < fwl).

The meaning of the right-hand side is more complicated. First, we replace the negative
powers of (z — w) by their Taylor expansions in the corresponding regions, e.g.,

1 1 w
—;+z—2+"', (|w|<|z|)

z—w
If C, = 0 for all but finitely many v’s, then the right-hand side in (9.9) gives us a
formal power series in w, z, say

SN s (ol < 2],
and (9.9) means exactly the equality of coefficients:
anb, =t n.
However, if there are infinitely many C,, # 0, then the coefficients t,, ,, appearing in
the double series in the right-hand side will be infinite sums of operators and therefore

will not be elements of End(V) (unless we introduce some topology in V). In fact,
one can interpret (9.9) as an asymptotic expansion of formal power series;

RA[z]Blw] = Z = (w) +0 ((z—w)"N) for all N >0,

n+1

see [23] for the meaning of the error term.

Let us give an interpretation of (9.9) in the setting of operator algebras arising

from holomorphic Fock spaces fields. Denote by t,, » the coeflicient of z7m gyl

in the right-hand side of (9.9) for {|w| < |2|}. (As we mentioned, t,, , is an infinite
sum of operators in V.)

Claim. — For all strings X, p ¢ Sx, and for oll f € V, we have
(9.12) E(ambnf)X = E(tmnf)X

Recall that @, b, f is the value of some field in § evaluated at 0. Similarly, ¢,, » f
is an infinite sum of such values.
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Proof of Claim. — Let us derive (9.12) from the operator product expansion (9.8).
We will use the following notation: if 0 < § < 1, then X € (6) means that all nodes
of X are outside ¢~!B(0, ).

If X € (6) and 0 < |w| < 6, then for all f = F(0) € V, we have
(9.13) E[(B(w)f)X] = E[B(w)F(0)X].

The correlation function in the right-hand side is analytic in 0 < |w| < 4. The
left-hand side is the numerical series

ZE(bnf)X __Z B*—n lF)(O)X

w'"r+1 wn+1

)

which converges in 0 < |w| < 4.
Suppose that X € (§) and 0 < |w| < |z| < 6. Then for all f €V,

E[A(2)B(w)fX] = E[A(z)B(w)F(0)X].
Note that A(z)X € (61), where é; = |w|. By (9.13), we have

E[A(2)B(w)F(0)X] = E[B(w)F(0)A(2)X] = E[(B (w)f)A(Z)X]
(bnf)A(2)X] EanbnfX
=2 2 w2+1(z Z wn+1 Z azm+1 '
The double series converges absolutely and represents the analytlc function
(2,w) — E[A(2)B(w)F(0)X] in0 < |w| < |z] <é.

Similarly,
m n X
By el !

2m+1qn+1
converges absolutely and represents the same function (by operator product expan-
sion) in the region
{lz —w| < 16} N {30 < |w| < |2] < &}.
This implies the equality of coefficients.
The proof of (9.12) in the region |z| < |w| < § is similar. a

9.3. Commutation identity and normal ordering

> The commutation identity in Proposition 7.1 can be restated in operator terms
as follows. If we have the operator product expansion (9 8), then

(9.14) [Alz], Blw]] =) Ck[w] w),

k>0

where §(z — w) denotes the power series

(9.15) 5z —w) = i (9)7",

4 z
m=-—

and 6(*) (2 — w) are obtained from (9.15) by differentiating k times with respect to w.
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To prove (9.14), we write

Lf{ 2mi j{ ¢™A(C)B(n)d¢dn.

mHy bn = p
la ] 2mi

The operator product expansion of A(¢)B(n) and the binomial expansion of (™ at 7
give us the (Borcherds’) formula:

m
(9'16) [arm bn] = Z ( k )ck,m+n—ka
k>0
where ¢y ¢’s are the mode of C. Thus we have

(917)  [A[z], Bw]] ZZZJE;USH ZZ ch-el ( )Z_m_lwm—k

k>0 ¢
S IAT LS
k>0

Note that (9.14) implies the axiom (9.7) because the right-hand side in (9.14) is a
finite sum. (There are only finitely many non-zero Cg’s. Compare (9.8) to (9.14).)

> The formula (9.16) can be used to restate the radial ordering formula (9.9) in
terms of normal ordering. By definition
:Alz] Blw]: = A4 [2] Blw] + Blw]A_[z],
where AL [z] =3, oamz ™', and A_[z] = A[z] — A4 [2] is the principal part of
the power series. Then the operator product expansion (9.9) takes the form

Ck w]

(9.18) RA[2|Blw] = : A[z] B[w]: +Z( — )

k>0

Note that all terms here are well-defined as formal power series. To prove (9.18) in
the region |z| > |w|, first we note that

A[z]Blw] — : A[z] Blw]: = [A_[2], B[w]].
It follows from (9.16) that

[A(), Bl = 3 37 tom bl S Yt X (1)

m>0 n k>0 ¢ m>0

On the other hand, the inner sum Y, .o (7')2~™ *w™ ¥ is the power series expansion
of (z —w)~*~! in the region |z| > |w|. Thus we have

Ck[w]
[A-la, Blul] = 3 o= e
k>0
Similarly, to prove (9.18) in the region |z| < |w|, one can use

Blw]A[z] — : A[2] Blw]: = —[A[z], Blw]]
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and (9.16).

> Normal ordering of operator fields can be expressed in terms of their “modes™

: A[2) Bluw]:= ZZ b

where
anb, if m <0;
@b, = .
b.a., otherwise.

The definition can be extended to the case w = z :
A[Z]B[Z] = ZZ Zm+n+2

The right-hand side is well-defined as a formal power series: if v € V| then all but

finitely many terms in
by v
ZZ amtn+2
are trivial. Clearly, the operator ﬁeld :AB: corresponds to the Fock space field A* B
under the operator-state correspondence.

Example. — The Virasoro field T = —%J * J (see Section 7.1) corresponds to the
Virasoro operator field

T=—=:JJ:
The modes of T' can be stated in terms of those of J :
1 o0
(9.19) l, = 3 Z ‘I kI kn -
k=—00

Since [j,,,J») = 0 unless m + n = 0, we can understand the normal ordering
. Imdn  Em<n
Indm otherwise,

i.e., in Wick’s sense: we put all “creation” operators on the left, so we apply “annihi-
lation” operators first. For example,

1 oo
.2 . .
lo= —3Jo~ Zj—njn'
n=1
> The construction (9.19) in the last example is purely algebraic: if we define

oo
Z ‘P—kPi+n:

k=—00
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for any representation of Heisenberg’s algebra, then we get a Virasoro algebra repre-
sentation with ¢ = 1. We assume (9.6) for p so that the action of I, is well defined.
For example, one can use the generators

po=1 (lv=1forallveV), p,=0,, P_,=ngn, (n>0)

which give us a Heisenberg’s algebra representation in the space of quasi-polynomials
f(g1,42,...)e%. We also have

(9.20) [lmsPp] = =Py

This algebraic approach can be applied to construct Virasoro algebra representa-
tions with ¢ # 1. For example, it is easy to verify that the generators

(9.21) I, =1, —ib(n+1)j,
give a representation with ¢ = 1 — 12b2, see [22] where this modification is called
Fairlie’s construction.
To prove (9.21), we use (9.3), (9.5) and (9.20):
[y bn) = [l In] + 0(m + D[, o] = b(1 + 1) [, ] + 62 (m + 1) (1 + 1) [P, P
=[lm,ln] —b(m —n)(m+n+1)p 4, — b*m(m® = 1)bmn,0

1— 122 2

= (m - n)(lm-}-n - b(m +n+ 1)pm+n) + 12 m(m - 1)5m+n,0

c
= (m — n)lm+n + -1—2m(m2 - 1)(5m+n,0.

We will discuss these central charge modifications in the context of Fock space
fields in the next lecture.
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LECTURE 10

MODIFICATIONS OF THE GAUSSIAN FREE FIELD

In this lecture we discuss central charge modifications of the Gaussian free field in
a simply connected domain D with a marked boundary point g. These modifications
appeared in [37] in the context of chordal SLE theory. Similar constructions had
been well known in the physics/algebraic literature, in particular in Coulomb gas
formalism, see [11], Chapter 9.

The modifications of the Gaussian free field are parametrized by real numbers b.
We denote by F(3) the corresponding OPE families. The families F ) are Aut(D, q)-
invariant and have the central charge ¢ = 1 — 12b%. Their Virasoro fields are exactly
the algebraic modifications (9.21) mentioned in Appendix 9.

Certain vertex fields in F() have the fundamental property of degeneracy at level
two — they produce singular null vectors. Combining the degeneracy equations with
Ward’s identities we obtain the equations of Belavin-Polyakov-Zamolodchikov type
(BPZ equations), which play an important role in conformal field theory. Cardy’s
boundary version of BPZ equations will be used in Lecture 14 to relate chordal SLE
theory to conformal field theory.

Change of notation. — From now on, we add the subscript (0) to the notation
of fields in the OPE family of the Gaussian free field. (This subscript will indicate
the value of the modification parameter b.) Thus ®(g) is the new notation for the
Gaussian free field in D, and

1
J(O) = 8€I>(0), T(O) = —5.](0) * J(O), etc.

10.1. Construction

For a simply connected domain D with a marked boundary point ¢ € 90D, we
consider a conformal map

W=Wp,q - (qu) — (H,OO),
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from D onto the upper half-plane H = {z € C : Sz > 0}. It is important that the
function argw’ : D — R does not depend on the choice of the conformal map. Let us
fix a parameter b € R and define

1

L, W
(10.1) P = ‘I)(b) = (I)(o) —2bargw’, J= J(b) =00 = J(o) + ’va

Note that J is a pre-Schwarzian form of order ib, and as a form it is conformally
invariant with respect to Aut(D, q).

Proposition 10.1. — The field ® ) has a stress tensor, and its Virasoro field is
T=Te = —%J* J + ibaJ.
The central charge of ) is
c=c(b) =1—12v°.
Proof. — Let us define
A=Ay = Ap) + (@0 — j)Jy, j:=E[J]=1ibw"/w'.

Then A is a holomorphic quadratic differential. Indeed, ib0J(o) and jJ(o)satisfy the
following transformation laws:
ibBJ(O) = ibh,,j(o) oh+ ib(h,)zaj(o) oh,
n

. LRI - ..
3J0) = zb(ﬁ)h’,](o) o b+ (W)2(GJ)) © h.

We claim that W = (A, A) is a stress tensor for ®. Since ® is a pre-pre-Schwarzian
form, by Corollary 5.5 all we need is to check Ward’s OPE in H,

1 .
(€ —2)?

(102) AQ2() = (40O +iB0Ta(¢) = () () ~ T2 +ib

However, this is immediate from Proposition 3.5 a) and (3.4).
Finally, let us show that

1—126%
(10.3) T=A+ —12—b—Sw,

where S, = (w” /w')’—3(w" /w’)? is the Schwarzian derivative of w. This will conclude
the proof: T is a Schwarzian form of order ¢/12, and T' € F(W) by Proposition 5.8.
From the expressions of T and J we find

T=A+ 1S —j2+ib"
TATRPw T g T

The last two terms can be written as 262 N2 — b2N,, = —bS,,, so we get (10.3). O
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Remark. — The Virasoro field T is real and has no singularities on 0D including the
point g. This is easy to verify using the formula
1 1 -
E[0J()®(2)] = (in idm).

=22 (C—2)7?
In particular, it follows that we can apply Ward’s equations as they are stated in
Section 5.7.

Notation. Denote by F(;) the OPE family of the “bosonic” field ® ), the algebra
(over C) spanned by the generators 1,879%® ) and 879%e**®® (a € C) under OPE
multiplication. For example, OPE family F ) contains

*Ot@(b)
?

]., ‘I’(b) * ‘I’(b), J(b) * J(b), 8J(b) * (<I>(b) * (I)(b)), J(b) * € etc.

Since the OPE coefficients of two conformally invariant fields are conformally invari-
ant, the fields in F ;) are invariant with respect to Aut(D, q), and T(p) is their Virasoro
field.

10.2. Vertex fields

Vertex fields in F{3) are defined as OPE-exponentials of the bosonic field ® = ® ).
If a € C, then by definition

o0 n

o — _ xad __ o *
V=V = e _ZTJQ n,
n=0
We have
V(C;,) — eagov(oa) — empcaz ean)(O)’
where ¢ := E® = —2bargw’ is an imaginary part of a pre-pre-Schwarzian form and

C is the conformal radius, which is a (—3, —3)-differential. This gives the following

statement.

Proposition 10.2. — V&) is a primary field of F) with conformal dimensions
2 2
/\:—% +iab, A*z—%—iab.

Note that the expression for V&‘,) in the upper half-plane does not depend on b. For

example, the 1-point function is EV* = (2y)°‘2, and the 2-point function is

— 551202
(10.4) EV“(zl)V“(zg) — (4y1y2)‘”2 e2a2G(z1,z2) — (4y1y2)°‘2 21 z2’ ¢ .

21 — 29
On the other hand, the conformal properties of the vertex fields, as well as their
Virasoro fields T', depend on the central charge.
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In what follows, we will only consider vertex fields with o = i purely imaginary
(o € R) and therefore with real conformal dimensions
2 2
o

o
A——;-Ub, A*—?+0’b~

The difference A — A\, = —20b is called the conformal spin of the vertex field. If
the spin is —1, then the direction of the field (in correlations with real Fock space
fields) transforms as the direction of a vector field, and so the orbits of the ordinary
differential equation

5 =V"(2)
(if this can be defined appropriately) are natural conformally invariant objects, see
[34] and [37].

Vertex fields with o = 2b have conformal dimension A = 0; they produce non-zero
level one singular vectors V. See Remark in Section 7.5.

10.3. Level two degeneracy and BPZ equations

Let V = Vfg). From the algebraic description of level two singular vectors in Propo-
sition 7.6 it is easy to see (use A = 3a® — ab and ¢ = 1 — 12b?) that the field

X =Tx*V+nd%V
is a differential (or primary) if n = —1/(2a?) and 2a(a + b) = 1.

Proposition 10.3. — IfV = V("g) and if 2a(a+b) =1, then

1 2

Proof. — Since the difference is a differential, it is sufficient to verify (10.5) in the
upper half-plane. The proof is an easy exercise in Wick’s calculus. All computations
below refer to the identity chart of the upper half-plane. In this uniformization we
have

1
Let us first compute the T * V in the special case b = 0:

(10.6) T x V(z) = T(o) © V(2) +1a(8J) © V(z) — il ?_V,(;) 4 g 2 (zv_(zz))z‘
Indeed,
T(O) (C)V(Z) = _% (1/:;)71 (J(C) ®© J(C))@(Z) [OXEENO) (D(Z)C—a,z (Z)
n>0 :

=I1411+4 T(o) © V(2) + 0o(1),
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where the terms I and II come from 1 and 2 contractions, respectively. Since

I = 2o (B (O2(2)]) V()
Ll 1 2 1
(e e e )Y
1 1 2 3
(e T t eV,
its contribution to T{g) * V is
3 V(z
2a2 (2 —( z))2
On the other hand, it follows from E[J(¢)®(z)] =1/(( — 2) — 1/({ — 2) that
. 1 1
Thus its contribution to T{g) * V is
1a(8J) ©V(z) — iai?Tv;i)'

To compute T * V in the general case b # 0, we note that
V(2)
(z—2)?
which follows from E[0J({)®(2)] = —1/(¢ — 2)2+1/(¢ — 2)2. From (10.6) and (10.7),
we get

(10.7) (8J) * V(z) = (8J) ® V(2) — ia

T xV(z) = Tgy © V(2) + i(a + b)(9J) @ V(z) — ia?-2YE) | (g—dQ 4 ab) V()

The computation of the right-hand side in (10.5) is easy:

NV(z) = — ( ) +zaJ®V( ),
) z 2
%OZV(z) =T\ O V(2) + 55(8J) OV(z) —ial f_vi ) 1 Z“ (ZV_(Z))?-

It follows that

V(z)
(z-2)
provided that 2a(a + b) = 1. a

T*via(z)—%ﬂazvia( )-z(a—f-b——)(@J)@V( )+ <a2+ab——%) =0

Degenerate singular vectors give rise to (BPZ) equations for certain correlation
functions.
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Proposition 10.4. — Let V = (ig) and 2a(a + b) = 1. Then in the (H,o0)-
uniformization, we have

—2%2—0§EV(z)X1(z1)  Xn(zn) = BV()LE [Xa(21) - Xn(zn)]
+ E‘C;; [V(Z)Xl (21) o Xn(zn)]a
where v;(¢) = 1/(z — () and the fields X; belong to F).

Proof. — Denote X = Xi(21) -+ Xn(2p). Since T+ V = %8211, we have

2
s EVX] = B[S X()X] = BT +»)(2)x],

so we can apply Proposition 5.13. O

Example. — The function
f(z,21,. .., 20) = BV (2)V9" (z1) - V" (2,), (2,2; € H),
e.g., the 2-point function (10.4), satisfies the following 2nd order linear PDE for all

values of b:
1 o, ( 0. A
2222 —<z—2+(z—2)2>f

- Aj 0; A
+Z<Z—Zj+(z*zj)2+ MEEETAL 5

Z—Zj

where Aj, A,; are conformal dimensions of Vii and A, = %az + ab.

If the fields X; in Proposition 10.4 are not differentials (e.g., if they are forms), then
the BPZ equations are not necessarily of PDE type. See e.g., the Friedrich-Werner
formula in Section 14.5.

10.4. Boundary conditions and insertions

We can further modify our bosonic fields ® ;) by conditioning them to have certain
(non-random) boundary values.

Proposition 10.5. — Let u be a real non-random harmonic function in D. Define
-0 +u J=08.
Then

a) the field ® has a stress tensor and its Virasoro field is

(10.8) T —-;—f*f+ib8f=T— (0u)J + ibdPu — -;—(Bu)z;
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b) the verter fields V = e*ia® yith 2a(a + b) = 1 produce degenerate level two
singular vectors.

Conditioning changes neither the conformal nature of the fields nor the central
charge. See Remark in Section 7.5 for the meaning of the expression “the vertex fields
produce degenerate level two singular vectors.”

Proof. — a) The field
(10.9) A= A (8u)J + ibd0%u — %(81&)2

is a holomorphic quadratic differential. Indeed, denote f = OJu; it is a holomor-
phic 1-differential. Since both #bf’ and fJ are quadratic differentials with the same
cocycle ibf(log h')’, their difference is a quadratic differential.

We claim that W = (A\, Z) is a stress tensor for ®. Since ® is still a pre-pre-
Schwarzian form, by Corollary 5.5 all we need is to check Ward’s OPE (in the (H, oo)-
uniformization) of A and @ :

However, this is immediate from (10.2) and (3.4).
From (10.3), (10.8), and (10.9) we derive
(10.10) ToA4l _1;%2 S

It follows that T is the Virasoro field because T is a Schwarzian form of order c/12,
and T € F(W) by (10.8) and Proposition 5.8.

b) Denote V = ei¥y, V = Vig), f = 0u, and let
PO R
X:=T*V—- V.
* 2a?
It follows from the operator product expansion (see (3.4))

1
J()®(z) = T +0c(z) + (J © ®)(2) + o(1)
that (fJ) * V=fJoV+iafdcy —iaf'V. Thus by the relation (10.8), we have
TV =TV~ {70V ~iafdch +ila+H)fV - 3D,
Differentiating V = €%V, we get
LZA____l_ s e 2 2295 ; iau iau 52
550V = — (zafV Q% f2V + 2iaf eIV + 61049 v).

The degeneracy equation (10.5) gives
X=-fJOV—iafdcy — gfe“wav.
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However, 8V = §(C~* ¢®®) = jaJ © V — a28cV in H. Thus X = 0.

(One can argue that conditioning does not change the singular parts of the operator
product expansions of J({)V(z) and T(¢)V(z). In Appendix 11 we will explain this
implies that the degeneracy equation survives under conditioning.) O

Remarks. — a) Ward’s and BPZ equations for fields with non-trivial boundary con-
ditions are in general not the same as the equations in Propositions 5.12 and 10.4.
This is because the Virasoro field T', see (10.8), may be non-real and/or may have
singularities on the boundary. For example, if

(10.11) u=const-argw, w: (D,p,q) — (H,0,00),

then 7 has a double pole at the origin, and Ward’s equations for differentials take the
form

ET(()X = ET(QEX + Y [( R .

1 1 = /\*' v PO
Pl o ThElER i

where X = X (21) - - - X, (2n) is the tensor product of differentials in F (W) The BPZ
equations can be adjusted accordingly.

b) In the special case (see [39)])
(10.12) u=2aargw, 2ala+b) =1

of boundary conditions (10.11), we have a different type of BPZ equations — this will
be important for the SLE theory. The nature of the equations is the following. We can
realize the boundary conditions (10.12) by inserting a chiral vertex which produces a
degenerate singular vector. Chiral vertex fields will be defined in the next lecture. It
is probably worthwhile to explain the idea in a simpler, non-chiral situation.

Fix a point zg € D and define

® = &+ 24iG,,,

where ® = ®(;), the constants a and b satisfy 2a(a + b) = 1, and G, is the Green’s
function with pole at zp. As in Proposition 10.5, we can build many other fields
from EI;, eg., J = 0% or VP := e*8%. As we explained in 2.3, we can interpret such
hat-fields in terms of an insertion:

EX = E[e®®(0) x].

If X is a string of differentials, then we can apply Ward’s and degeneracy equations
to derive 2nd order PDE for

EX =™ (20) E[V{§) (20)X].

This equation will involve the insertion point zg.
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APPENDIX 11

CURRENT PRIMARY FIELDS AND KZ EQUATIONS

In this appendix we give an algebraic proof of Proposition 10.3 (characterization
of level two degenerate vertex fields). The proof is based on the fact that vertex fields
in F{y) are primary fields of the corresponding current algebra. We also derive the
so-called Knizhnik-Zamolodchikov equations (KZ equations) for correlators of current
primary fields.

11.1. Current primary fields

Let {J,} and {L,} denote the modes of the current field J and the Virasoro field T
in F(3) theory, respectively:

1 1
— _ ,\n —_ _ \n+1
()= 5 § €= 2IQAC and L@ =50 § (- D™TOAC

(We consider them as operators acting on fields in F(3).) Then we have the following
equations:

(111) [vat]n] :n5m+n,0;

(11.2) [Lm, Jn] = —ndmqn + ibm(m + 1)0m4n,0;
cf. (9.4) and (9.20), and also

o0
(11.3) L, = —-% Z tJ ok Jktn: —ib(n + 1) Jy,

k=—o00

cf. (9.19) and (9.21).
Recall that X € F(3) is (Virasoro) primary if X is a (A, A,)-differential; equivalently:

(11.4) L1 X =0, LoX =AX, L_,X=0X,
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and similar equations hold for X (see Proposition 7.5). A (Virasoro) primary field X
is called current primary if

(11.5) J>1X = J51 X =0,
and
(11.6) JoX = —igX, JoX =igX

for some numbers ¢ and gq. (“charges” of X). Charges determine dimensions
(see (11.9)):

1 1
(11.7) A= §q2 —bg, A= §qf + bq..
Examples. — a) The vertex field V* is current primary with charges ¢ = ¢, = —ia,

see (3.5).

b) The current J in the case b = 0 and the Virasoro field T in the case ¢ = 0 are
Virasoro primary, but not current primary.

Proposition 11.1. — If X € F) is a current primary field, then

s

(11.8) J1X = —gax, J1X = —8X.
Proof. — First we note by (11.3),
(11.9) L X =~-J1JoX, LoX = ~%J3X —ibJoX.
It follows from (11.4), (11.9), and (11.6) that
0X =L 11X =igJ1 X
and the similar equation holds for X. O

Proposition 11.2. — Let V be a current primary field in F), and let q,q. be charges
of V. Then
1
2q?
Proof. — Since V is Virasoro primary, L_1V = 9V, see (11.4). By (11.8), we have
L2V =L_10V =iqL_1J_,V.
It follows from (11.3), (11.6), and (11.8) that

[Lo+nL?,]V=0 if 2q(b+q)=1and n=—

L_oV =—J_oJyV — %JLV +ibJ_oV = Z(b + q)J_gV + g{;J_lL_lv.

Let X = [L_5 + nL?,]V. Combining the above two equations we see that X is a
linear combination of J_sV, J_1L_1V and L_1J_1V:

X =i(b+q)JaV + §%J_lL_lv +ingL_1J_,V.
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On the other hand, by (11.2), J_2,J_1L_; and L_,J_; are not linearly independent:
Jo+J 1 L_1—L_1J_1=0.
ThusX:Oifb+q=ﬁ=—nq. |

11.2. KZ equations

Proposition 11.3. — Let X; = V@i and X = X1(21) -+ Xn(2n) be the tensor product
of X;’s. Then the equation

53 = (- 52 ooy o )er

k
holds in the (H, oo)—uniformization.

Proof. — It follows from Proposition 11.1 that

. .1 E[J(C)X]
0o, BX = ig; B[X1(21) - J % Xj(27) - Xu(2n)] = 1055 ) d¢.
By Schwarz reflection principle (J is purely imaginary on the boundary),
(— E[J(O)X]
has an analytic continuation f to C\ {zk,2x : k = 1,...,n}. It is easy to check that

the integral of f({)/(¢ — z;) over the circle |(| = R tends to 0 as R — oo. Thus by
Green’s formula

. EX = —
Oz, JJZW@}{Z)C -d¢

: f(C) 1 f(©)
—i0; kz;é] (% fizw Hd( + Y ?{20 ﬁd()

Proposition now follows from (11.5) and (11.6). See Example a). O

In contrast to the BPZ equations, KZ equations do not depend on the central
charge.
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LECTURE 12

MULTIVALUED CONFORMAL FOCK SPACE FIELDS

In the physical literature, chiral fields are described as elements of the “holomorphic
part” of conformal field theory. We will try to interpret these objects in our “statistical”
setting, in terms of conformal Fock space fields.

The following example is meant to illustrate the idea of a chiral field. We define
Pn(2) = V23 (G2, X)) = Gz, ),
j=1

where G is the Green’s function in the unit disc D and {A;}7.;, {;}}-; are two
independent copies of the eigenvalues in the Ginibre ensemble (the case Q(z) = |z|?
in the random normal matrix model mentioned in Appendix 6), see Figure 12.1. The
random function ®,, approximates the Gaussian free field in D (with zero boundary
conditions);
¢, — @

as distributional fields.

Let ®,, be the harmonic conjugate of ®,, and set

o = ®, + z’E)n'
2

This random function is holomorphic and ramified at many points. On approxi-
mate level, chiral vertex fields are properly normalized exponentials of ®;}. In the
limit » — oo, such fields will be ramified everywhere, but in correlations with any
particular Fock space functionals, their monodromy group will be finitely generated.

Some of the reasons to study chiral fields will become clear in the last two lectures.

12.1. Chiral bosonic fields

> In this section we will define multivalued fields ®+ = @?;,) in (D, q), a simply

connected domain D with a marked boundary point ¢q. As in the previous lecture,
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FiGure 12.1. Eigenvalues and graph of &,

b € R is a fixed parameter (so ¢ = 1 — 12b? will be the “central charge”), and

w”

b = q)(b) = (1)(0) = 2barg U}/, J = J(b) =00 = J(()) + Lb—/
w
where ® gy is the Gaussian free field in D, and w : (D,q) — (H, 00) is a conformal
map. Recall that J is a pre-Schwarzian form of order ¢b.

Notation. — If 7 is a path in D (or in the closure D), then we will write
() = [ I dc.
gl

We think of this “generalized” Gaussian random variable as a correlation functional in
the complement of the curve (we can define correlations with Fock space functionals X
as long as the set of nodes Sy is in D\ ). The integral /w J(0)(¢)d¢ does not depend
on local coordinates but the extra term in the b £ 0 theories requires a specification
of coordinate charts at the endpoints of . In the following discussion we will use the
identity chart idp unless the opposite is explicitly stated.

If z, 29 € D (not necessarily distinct), then
®*(z,20) = {®*(7) : v is a curve from zg to z}
is a multivalued correlation functional
X — E[<I>+(z,zo)2{],

where we only consider curves in the complement of Sy. Since .J is holomorphic,
homotopic curves give the same values. Varying the endpoints, we obtain a bi-variant
field ®* whose values are multivalued functionals

Bt (2, 20) = Dy (2, 20) + iblogw/|” .
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We can “freeze” the point zp and consider ®*(z) = ®*(z,2p) as a function of
one variable; more about it later, see Section 12.3. Similarly, we can consider the
“monodromy field” z — &1 (z, 2).

We can also define the harmonic conjugate & of bosonic field ® by the equation
(12.1) 20" = @ + i®,

where ® = ®(z, 2zg) is of course ®(z) — ®(20). Then we have
$ = 230" = i® — 20t = /*d¢> = /z‘idz —iJdz.

If both endpoints are on the boundary, then = —2i®+.

> We can talk about “branches” of the multivalued field ®* in the sense of corre-
lations with a fized functional X, e.g., we have single-valued branches of E®*(2)X
in any simply connected domain U C D\ Sx. It is in terms of such branches that we
understand conformal properties and define derivatives of the multivalued field ®+.
In particular:

a) the branches of ®* depend on local coordinates, e.g., ®* is a pre-pre-Schwarzian
form of order +ib with respect to the endpoints;

b) the branches of ®* have the usual derivatives,
(12.2) 0,01 (2,20) = J(2), 05,9 (z,20) = —J(20),
and of course 8,®* = 9,,®* = 0, so ®* is a “holomorphic” field;

c) if a vector field v is analytic at 2z and 2g, then the branches of ®* at z have the
Lie derivative

Ly(2)®1(2,20) = LT (2)®T (2, 20) = v(2)J(2) + ibv/(2),
and the branches of ®1 at zp have the Lie derivative
L(20)®T (2, 20) = L} (20)@T (2, 20) = —v(20)J (20) — ibv'(2p),
so the functional
(12.3) L, [®1(2,20)] = v(2)J(2) — v(20)J (20) + bV’ (2) — ibv' (20)
is single-valued.

> As we explained, the correlations of ®*(z, zg) with single-valued Fock space fields
are multivalued analytic functions in z and 2y in the complement of the nodes.

Examples. — a) We have
(12.4) E[q)zb)(z, ZO)(I)(O) (Z1 )] = 2(G+(z, 21) — G+ (20, Zl)),
where G is the complez Green’s function,

2G*(z,21) = G(z,21) +iG(z, 21).
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Here G is the harmonic conjugate of the Green’s function. The multivalued holo-
morphic function G*(.,2;) is defined up to a constant. In the case when we have a
marked boundary point ¢, we usually choose the constant so that 0 € G*(q, 21), which
makes Gt conformally invariant with respect to Aut(D,q). In terms of a conformal
map w : (D, q) = (H, 00), we have

1. w(z) —w(z)

o) = 518 ) —ute)

Note that z and z; appear in G asymmetrically, and

(12.5) 0.G*(z,21) = 0,G(z, 21).

b) Differentiating (12.4) with respect to z; we obtain the equation

1 1
+ — _ .
(12.6) E[®%(2,20)J(21)] = pann— in H.

It follows that the correlations E[®* (2, 29)J(21)] are single-valued as functions of all
three variables. Similarly, we can show that the correlations of ®* with the Virasoro
field T are single-valued, and this fact is important because it allows us to consider
Ward’s OPE and apply Virasoro generators to &%, see below.

It is easy to describe the fields which have single-valued correlations with ®¥.
Consider the “charge” operator
1
=—09J
@ 2mi f

(it is just the 0-th mode of the current and it does not depend on b). For example,
QI=0(I(z)=1), QJ=0, QT =0,
but
QP =-1I, QV*=—-aV“
A single-valued Fock space field X has single-valued correlations with ®* if and only if

X € kerQ

(express the correlations of X with the monodromy field ®*(z, z) in terms of QX).

Proposition. — If X,Y € kerQ, then all their OPE coefficients, in particular 80X
and X Y, are in ker Q.

Proof. — Tt follows from Proposition 7.1 that
QX #, Y)=Q(X) *, Y + X %, Q(Y). a
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> We define correlations of two or more multivalued fields only for non-intersecting
paths. For instance, in the case of the 2-point function of ®*, we consider non-
intersecting paths v and +/, and set

z—2p) (20— 7).

12.7 E[o+(7)8+ (v)] = log C=2000 %)y
(12.7) [T (7)@T ()] = log =) 0=2) ,
where the logarithm of the cross-ratio depends on the number of times one curve
winds around the other.

> Let us finally explain in what sense @2;) belongs to the theory F(3), the conformal
family of Fock space fields generated by ®(;), see the previous lecture. As in the case
of single-valued fields, this can be expressed in the form of Ward’s OPE

ib J(2)
C—2p2 -z
where T' = T and ot = <I>(4;)), (recall that ®* is a pre-pre-Schwarzian form) or
equivalently in the residue form of Ward’s identities

1

2 + _ +
(12.9) 57 (Z)vT‘I> (2,20) = Ly(2)PT (2, 20).

(12.8) T(C)®*(z,20) ~ (— 2z,

(Similar statements hold for z.)

According to our discussion above, the meaning of (12.8) and (12.9) is the following.
For every single-valued Fock space functional X and every curve v connecting z
and z in D \ Sy, the function ¢ — E [T(¢)®*(y)X] has an analytic continuation
to D\ (SxU{z, 20}) and the above relations hold for this analytic continuation. Note
that the continuation depends on the homotopy class of v in D\ Sy but the singular
parts of the Laurent series do not depend on ~.

To prove (12.8) we simply integrate with respect to n the operator product expan-
sion oib 70

i
TQIo ~ e ¥ =
which is equivalent to Ward’s OPE for J, see Corollary 5.5, and interpret the result
in the sense explained above.

12.2. Chiral bi-vertex fields

> Definition. — Our next goal is to construct normalized exponentials of the chiral
bosonic fields in such a way that these multivalued fields will be Aut(D, q)-invariant
holomorphic differentials and will belong to F(;) in the sense explained above.

Recall that in the non-chiral case, the use of OPE multiplication automatically
produces fields with these properties. We cannot directly extend this approach to
chiral fields because of the difficulties with the definition of their correlation functions
and therefore with operator product expansions. Without going into details, we will
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just state the definition of chiral vertex fields and then verify the properties. (See also
Section 15.2.)

So, by definition (for z # 29, a € C),
Vo) = Vo) = V) = (i D) <
B wl(z)w/(z()) _%az w’(Z) iab @a@*;) (2,20)
(o —etor)  Ggy) <0

where w is any conformal map (D, q) — (H, co) and ~ is a curve from 2p to z.

There is no difficulty in interpreting Wick’s exponentials @00 (#20)  Their cor-
relations with single-valued Fock space fields are given by Wick’s calculus and by
correlations of ®*, see the previous section. Clearly, @*®(0)(#%0) 5 5 scalar field and
it is invariant with respect to Aut(D). It is also clear that the field P20 (#:%0) i

holomorphic in both variables.

The function
( w'(z)w'(zo) )—%az
(w(z) — w(20))?
does not depend on the choice of w. As we mentioned in Section 4.3, this is a non-
random holomorphic differential of dimensions —%az with respect to both variables;
it is invariant with respect to Aut(D). It follows that V(3 (2, 20) is a holomorphic

differential of conformal dimension
2

o
A=——+iad
) + 1
with respect to z and of conformal dimension
2
a
A =—— —iab
0 B (764

with respect to zp; it is Aut(D, q)-invariant.

> Ward’s OPE. — Let us now establish Ward’s OPEs for chiral vertex fields. This
will allow us to say that the field V(s belongs to F). The meaning of this statement
was explained in Section 12.1 — we need to consider correlations with single-valued
Fock space functionals X. It is crucial that such correlations are not ramified at { = z,
which is a consequence of the corresponding property of the chiral bosonic fields,
see (12.8).

Proposition 12.1. — We have

Ve(z,20)  0.V(z,20)
2 T )

(¢ —2) (-2

where T = Ty and V = V(). Similar operator product expansion (with \o) holds

as ¢ = zp.

(12.10) T(C)V(z, 2) ~ A (¢ — 2),
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Proof. — The proof is by Wick’s calculus. Since chiral vertex fields are differentials,
it is sufficient to perform the computation in the half-plane uniformization, which
simplifies the argument. All computations below refer to the global chart of (H, co)
as in the proof of Proposition 10.3. Thus we have

P = ® ), = @{5),

0 =J=1Jg, T=Tyo+ ib0J, Ty = -—%J@ J.
Let us first consider the case b = O'

o +
Tio)(¢)e®*® ——Z 5 ( J(O) (@ - @@F) ~I+TI,
n>0

where the terms I and II come from 1 or 2 contractions, respectively. Thus
I~ —aE[J(()®]J(() © e®*®" and T~ —1a?E[J(()®T]*e®*®".

By (12.6), the singular part of operator product expansion of 7oy and e@a® gt
reads

2 e®a<I>+ 2 e®a<I>+

J( ) Gadt & o'
T TR T w (s
This proves the relation (12.10) when b = 0. For b # 0, all we need to show is that

Sing,_,, 8J(¢) @odt — @ oadt

(¢—2)?
Since we can differentiate the singular part of operator product expansion, we just

need to verify that
e®a®+

(—z

However, this is immediate from (12.6). |

Sing,_,, J(¢) @t — o

> Global Ward’s identities involving chiral vertex fields have the following meaning.
Let X be a string of single-valued Fock space fields in the family F(). Then for all
curves v in D\ Sx and all vector fields v (which are holomorphic at the endpoints z, 2o
of v and at the nodes of X') we have

E[L,(V*()X)] = E[W©)V*(1)X].

This can be established following the same argument as in Lecture 5 and using the
fact that the function
(= B[T()V(7)X]
extends to a single-valued analytic function in D \ Sy.
Ward’s equations, see Section 5.7, also hold for chiral bi-vertex fields with similar
interpretation.
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12.3. Rooted vertex fields

It is important to understand that chiral vertex fields exist only as bi-variant ob-
jects. Nevertheless, we can freeze one of the variables, say zp, and consider V(z, 2¢)
as a field that depends only on z. This of course results in the appearance of a new
marked point unless we use the marked point g that we already have from the central
charge modifications (b # 0). The problem with the choice of zgp = ¢ is that it leads
to a divergence that has to be taken care of by some normalization procedure.

In any case, for each b, we construct a one-parameter family of Aut(D, ¢)-invariant,
primary fields V,*(z) in the “holomorphic part” of F(3) theory. Below we explain the
definition and properties of V., and clarify some points related to the fact that these
fields are boundary differentials.

> Boundary differentials. — Let ¢ € 0D. According to the discussion in Lecture
4, we say that a field FF = F(z) in D is a boundary differential with respect to ¢
if it depends on the choice of a standard boundary chart (see Section 4.2) ¢ at g,
(in addition to local coordinates at z) and transforms as follows:

(12.11) (F(2) |l ) = (F(=) | §) (W' ()™,

where h is the transition map between charts ¢ and ¢ satisfying o(q) = (Z(q) =0.
The exponent ), is called the dimension of F with respect to g. The following example
of a boundary differential should help to clarify this concept.

Example. — Define a non-random field F = F(z) in D by the equation
F = wg(u})?,
where wy : D — H is a conformal map normalized in a standard boundary chart ¢,
¢(q) = 0, by the condition
. 1
w¢(z)——M+--- , Z—q.
Then F is a boundary differential of dimension « + 8 with respect to ¢ (and a (8, 0)-
differential with respect to z).

Proof. — Clearly, wg = kwy for some k > 0. We have

Cowe(2) . d(2) . hodz)
PG T e T A e) =K(0),

so F = (K(0))*+AF. O
> Normalization. — Let us first consider the case b = 0. Fix any point ¢ € 8D and

define
V& (z) =V(z,q).
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In terms of a uniformizing map w : (D, q) — (H, 0) we have
Ve =we () 3 % - (w(g) H

The derivative w'(q) requires a specification of a standard boundary chart at g,
so V*(z) is a differential with respect to z and a boundary differential with respect
to ¢; both dimensions are equal to —%oﬂ. If we fix a chart at ¢ and require w’(g) =1
in this chart, then the formula simplifies:

2 1.2 +
Vka = w® (w/)—§a e®a‘1>(0)‘

However, it somewhat hides the fact that we are dealing with a boundary dif-
ferential. We obtain an even simpler expression in terms of a uniformization
w: (D,q) — (H,o00):

(12.12) Ve = (w') 39" 2%

where we require that w(¢) ~ —1/(¢ — q) as { — ¢ in a fixed boundary chart at gq.
The formula (12.12) of course means that we have
V(s,7) = (0() H 20

for all paths v connecting 2z and gq.
Let us now consider the case b # 0. As usual, ¢ denotes the central charge modifi-
cation point. By definition,

a _— o N—La2+iab Oadl
V=V = )2 e” O,

where w : (D,q) — (H,o00) is such that w({) ~ —1/(( —¢) as ( — ¢ in a fixed
boundary chart ¢ at q. Equivalently,

(12.13) Ve = V(z;7) = lim w'(2.) V% (ve),
e—0

where the curve «. is the part of v from z. to z, and the point z. is at (spherical)
distance € from ¢ in the chart ¢; V& = V(‘l’,‘) is the bi-vertex field.

This last expression represents V.2 in terms of a rescaling procedure, and allows us
to derive the properties of V& from those of bi-vertex fields. In particular, we obtain
the following version of Ward’s identities.

> Ward’s identities for rooted fields

Proposition 12.2. — If v is a non-random vector field smooth up to the boundary, and
if v(q) = v'(q) = 0, then the Ward’s identities

(12.14) EL, [V (2)X1(21) - - Xn(2n)] = E[W(0)V2(2)X1(21) - - Xn(2n)]

hold true provided that X; € F), and z and z;’s are in Dpoi(v).
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Proof. — We will use the representation (12.13) and the fact that Ward’s identities
hold for bi-vertex fields. All we need is to show that

3 iabyra
611_1336 Ly(ze) [w,(zs) v ('76)] =0.
The field X (2.) = X(2,2¢;7) = [w'(2¢)**®*V*(7.)] is a holomorphic differential

in z, so its Lie derivative has two terms, with v(z.) and v'(2;). At the same time
E[X(zE)Xl(zl)an(zn)] = 0(1), E[@X(zE)Xl(zl)---Xn(zn)] =0(1)
as € — 0. Since v(q) = v'(q) = 0, the Lie derivative at z. tends to zero. |

Since the vector fields )
v2(C) = T2 (in H)

have a triple zero at infinity, we can apply Ward’s identities to such fields and derive,
as in Section 5.7, the corresponding Ward’s equations. In particular, we have the
following

Proposition 12.3. — If X = X1(z1) -+ Xn(2n) with X; € Fp), then the equation
E(T*V¥)(2)X = EVX(2)LY X + EL, [V (2)X]

holds in the (H, co)-uniformization.

The equation obviously extends to the case when z is a boundary point. It is in
this form that we will use Ward’s equations in the SLE theory.

> Level two degeneracy. — In terms of the action of Virasoro generators L,, see
Section 7.4, and current generators J,, see Section 11.1, the rooted chiral vertex
fields V@ are Virasoro primary holomorphic fields of conformal dimension A = %aQ—ab
and current primary with charge ¢ = a. As we explained in Appendix 11 this implies
the following:

Proposition 12.4. — Provided that 2a(a + b) = 1, we have
. 1 .
Ty * Vit = 5 50°Ve".

This degeneracy equation is the reason for the close relation that exists between
SLE and conformal field theory. Combining this with Ward’s equation, we will derive
Cardy’s equations (see Section 14.3) that correlation functions of any fields in Fz)
under the insertion of V@(¢), (¢ € R) are annihilated by the second order differential
operators )

2—(1—2—652 — Ly,
which appear in It6’s calculus (see Section 14.4) in the context of SLE martingale-
observables. We don’t claim that V¢ is the only field that satisfies such equations
and therefore gives rise to relation to SLE.
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APPENDIX 13

CFT AND SLE NUMEROLOGY

For convenience of the reader, we give here a summary of useful formulas concerning
level two singular and degenerate vertex fields. We will also introduce an alternative
parametrization which is used in the SLE theory.

Recall that the conformal field theories F(;) generated by modifications of the
Gaussian free field are parametrized by real numbers b € R. The central charge
of Fp is

c=c(b) =1—12b%
Parameters b and b’ = —b are called dual — they have the same central charge.

Given b, there is a unique positive exponent

V2 +2-b
a=a(b) = ——
2
satisfying the equation
2a(a+b) =1.
The dual exponent a/(b) := a(b) is
1
= =
a=5=a +0.
The SLE parameter xk = k(b) is defined by the equation
K= 2 or b_=& -1
T a2 a 4

The dual SLE parameter ' := x(b') satisfies
kk' = 16.

(Duplantier conjectured in [14] that SLE(x’) trace should describe the boundary of
the hull of SLE(x) when x > 4. Duality of variants of SLE was established by Zhan
in [46] and Dubédat in [12] independently.)
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a = a(b) /

FIGURE 13.1. Graphs of a(b) and x(b)

The correspondence b +» « is a bijection R < R, see Figure 13.1. In terms of k

we have
2 K 2
=4/—= b=4/=—1/—
o=z 0= 5
czl_gL_l_ \/j_\/7 3k —8 (6—"?)

Let us restate the algebraic description of level two smgular vectors in Proposi-
tion 7.6.

> Singular conformal dimensions. — Define the singular conformal dimensions
h = h(b) and A’ = h’(b) as follows:

po 81 6=k 3 1 3-8
T2 T2 2w VT 82 20 16

Note that h’(b) = h(b') and h'(b’) = h(b), so the unordered pair {h, '} is the same
for b and b’, which means that it depends only on the central charge:

(b A} = {1_16_(5—431 (1 —c)(25—c))}

(use h + h' = §(5 —c¢), and hk' = Jc). The traditional notation for {h,h'}
is {h1,2,h2,1}. Let us also denote

and

1 K
n=n(b) := T oa2 = 1 n=n(b):=n0)=-=

Note

c—13
(13.1) ntn=—— m=1
and

3

(13.2) n= —m'

We can now restate Proposition 7.6 as follows.
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TABLE 1. Selected special cases

K 2 8 8/3 6 3 16/3 4
(LERW) (UST) (SAW?) (percolation) (Ising) (FK Ising) (GFF)
p | L 1 V3 V3 . 0
2 2 6 6 V24 V24
Y ST T S Y
2 2 V3 V3 2v2 V2
1 5 1 1 1
L I 0 3 16 1
1 2 3 3 4
7| 3 2 3 3 1 3 '

Proposition 13.1. — A primary field O € F) of dimension A produces a level two
singular vector if and only if A = h(b) or A = h'(b). The corresponding singular vector
is [L—2 + nL%,]O or [L_g + n'L%,)O, respectively.

Proof. — From (7.7), we find

-1
- 1=,
6
so by (13.1), n = n(b) or n(b'). It follows from (7.7) and (13.2) that
1 3 1 3
)\:———-——-—:h, e —— ,'
5~ 1) (b), or A 3~ ) h(b")

O

Let us apply this description to vertex fields in F). We will write 0) for a vertex
field with exponent io, e.g.,

o) =vje.
(We can equally consider non-chiral vertex fields V'’ bi-vertex chiral fields V%, or the
fields V* which we define in the next lecture.) The conformal dimension of O() is

0,2

> We call a primary field (level two) degenerate if it produces a null singular vector.
See Remark in Section 7.5.
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Proposition 13.2. — For each b, there are exactly four exponents o (except for the case
b=0, i% when some of o’s coincide) such that the vertex fields O@) produce level
two singular vectors:

o=a, oc=2b—a, (A=h(b)),
and
c=—-a-b o=3b+a, (A=hH(b)).
The vertez fields O and O~ gre degenerate, but O~ gnd O@+30) gre not
(unless b= 0,%1).

Proof. — The first statement follows from Proposition 13.1 and (13.3). The second
statement follows from Proposition 11.2 and from the Wiener chaos decomposition of
singular vectors (cf. the proof of Proposition 10.3) in the expressions:

—a 8—K K—6 —a
(L—2 + n Lz_])O(Zb ) = [A(b) + TA(O)] O] O(2b )’

4(k — 2 -3
(L_a+7'L2,)0Be) = (Ln_) [A(b) +8 KA(O)] o OBt+a)
K
where A(g) and A are holomorphic quadratic differentials from the definition of the
stress tensor of F(oy and F() theories, see the beginning of Lecture 10. O

The simplest example of a non-trivial singular vector is the Virasoro field T in the
case ¢ =0 (ie, k = g or 6). In this case T is primary and, as a level two singular
vector T' corresponds to @@=0)_ In the case b = 0, the differential J appears as a level

one current-singular vector.

Remark. — Primary fields are of particular importance from the physical point of
view. Non-zero singular vectors are examples of non-vertex primary fields.
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LECTURE 14

CONNECTION TO SLE THEORY

In this lecture we discuss SLE theory from the point of view of conformal field
theory. Chordal Schramm-Loewner evolution (SLE) equation in (D, p,q) describes
conformally invariant random curves from p to ¢ satisfying the so-called domain
“Markov property.” The corresponding probability laws are parametrized by a sin-
gle parameter k > 0. We will establish the following fact and explain some of its
consequences: if the numbers a and b are related to « as

:ﬁ b:a(g_l):\/g_\/g

(see Appendix 13), then under the insertion of a boundary vertex V¢(p), all fields in
the theory F;) satisfy the field “Markov property” with respect to the SLE filtration.
In Section 14.1 we recall some basic definitions and facts of SLE theory. In Sec-
tions 14.2-14.3 we interpret the insertion of V?%(p) as a “boundary condition changing
operator” and derive Cardy-type equations for correlation functions under this inser-
tion. In Section 14.4 we prove the field “Markov property”: all correlation functions

E[V*ia(p)Xl(zl) X (zn)]
E[Vie(p)]
are SLE martingale-observables. In the last section we consider several example of
SLE observables. Further examples, related to vertex fields are discussed in the next
lecture.

s (Xj S .7'—(1,))

14.1. Chordal SLE

> Let (D,p,q) be a simply connected domain with two marked boundary points
and k be a positive parameter. The chordal Schramm-Loewner evolution with param-
eter k, SLE(k), is a conformally invariant law on random curves in D from p to q. It is
described by the Loewner equation driven by the standard one-dimensional Brownian
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motion By:. More precisely, for each z € D, let g;(2) be the solution (which exists up
to a time 7, € (0, 00]) of the equation

2
gt(Z) — \/EBt '
where go : (D,p,q) — (H,0,00) is a given conformal map. Then it is known that for
all ¢,

atgt(z) = BO — O7

we(2) == g1(2) — VK By

is a well-defined conformal map from the domain
(14.1) Dy:={zeD:7, >t}

onto the upper half-plane H, where the SLE stopping time 7, (the solution g¢(z) of
the Loewner equation exists for ¢ < 7,) satisfies

(14.2) gm we(z) = 0.

The SLE curve 7 is defined by the equation
(14.3) Y = () = lim g7 (2 + Vi By )

the limit exists for all ¢ almost surely. Also almost surely, the SLE curve is a con-
tinuous path v : [0,00) — D (assuming local connectivity of dD) such that D; is
the unbounded component of D \ 7[0,¢] for all ¢ > 0. The SLE path ~ is simple
for x € [0,4]; self-intersecting but non-self-crossing for x € (4,8); and space-filling
for k > 8. For the proof of these facts and other basic properties of SLE, see [36],
and also [25], [26], [44], [45]. Beffara proved that the Hausdorff dimension of SLE(x)
trace is almost surely min(1 + /8, 2), see [4].

k<4

F1GURE 14.1. The phases of SLE; from [24]

ASTERISQUE 353



14.1. CHORDAL SLE 105

> Domain “Markov property”. — If k = 0, the (non-random) curve 7 is just the
hyperbolic geodesic from p to q in D. It satisfies the equation

'7[t» o) = YD¢,verq [O) 00).

If k > 0, then the same equation holds for the laws on random curves, which is a direct
consequence of the SLE construction. Alternatively, one can express this property by
the equation

(14.4) Law (1[t, 00)[710, 8]) = Lawp, [0, 0)-

(One should understand this and similar statements in the sense of conditional ex-
pectations with respect to the filtration by the Brownian motion in the definition of
SLE.) Schramm’s principle states that SLE(k) are the only conformally invariant laws
on non-self-crossing curves satisfying (14.4).

> Field “Markov property”. — Again we first look at the “classical” case k = 0.
Consider the (non-random) field
f(Z) = fD,p,q(Z) = argz/)'(z), ¢ : (D)pv q) — (C \ R—HO? OO)
(Note that this field is a pre-pre-Schwarzian form.) Since R_ is the hyperbolic geodesic
in C\ Ry, it is clear that the field f has the (“Markov”) property

flp, = ft = Dy ying
Moreover, many other fields, e.g., f2, ef, 8f, etc., will have the same property with
respect to SLE(0).
In the case k > 0, we want to define a similar property of a collection F = {Fj} of
random conformal Fock space fields:
(14.5) Law (F | 7[0,]) = LawF;, Fi = Fp, req-

(Here we assume invariance of F with respect to Aut(D, p, q), and define the fields F;
as explained in Section 4.3. While the field X; in Section 4.4 means the pull-back
of X with respect to the local flow, F; in this lecture indicates the field in the SLE
triple (D¢, 7, q). See Section 14.4.) On the level of correlation functions, the equa-
tion (14.5) should mean

(14.6) “E[Fi(21)* Fu(zn) | 7[0,t]]” = E[Fre(21) - - - Fat(2n)],

but in order to interpret the left-hand side we need to have both random fields and SLE
curves be defined on the same probability space. One way to proceed is to couple
SLE(k) and the Gaussian free field, see [39] and [13], but instead of going into the
analytic details of such a coupling we just note that if this coupling is defined properly,
then the processes

(14.7) fi(z1,.. ., 2n) = E[Fi(21) -+ - Fre(zn)]

are local SLE martingales, and take this last property as a definition.
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> Martingale-observables. — A stochastic process M; is called a martingale with
respect to a filtration A4; (an increasing family of o-algebras, e.g., the o-algebras
generated by the Brownian motion up to time t) if M; is A;-measurable for all ¢,
E|M;| < oo for all ¢ and if

E[Mt | AS] =M, forallt>s.

For an L! random variable M, the process My = E[M | A;] is a martingale. Thus
if Fy(21)--- Fn(zn) in (14.6) could be replaced by an L! random variable, then the
processes (14.7) would be martingales.

We refer to any textbook on stochastic calculus, e.g., [35] for the definition of local
martingales. In particular, for a smooth function h, the stochastic integral

/O h(B.)dB,

is a local martingale. In this respect, recall It6’s formula.

Itd’s formula. — If f is in C12, then almost surely

t t . 1 t
(148) f(t,8) - f0,B0) = | f(s.B)dB.+ [ flsBds+5 [ £(s.B)ds,
0 0 0
The term
t . 1 t
/ f(s,Bs)ds + —/ f"(s,Bs)ds
0 2 Jo
is called the drift term of f(t, B;) and the process f(t, B) is called a local martingale

if its drift term vanishes.

By definition, a collection F of fields has the “Markov property” with respect to
SLE(k) if for all F; € F and all z; € D, the processes (14.7) are local martingales.
We say that the non-random fields f(z1,...,2n) = E[Fi(21)--- Fn(2n)] are SLE(k)
martingale-observables.

It is easy to verify by It0’s calculus that any particular correlation function is a
martingale-observable, but our goal is to describe a large collection of SLE observables
by means of conformal field theory (Ward’s and level two degeneracy equations).

14.2. Boundary condition changing operators

We use this term for the correspondence X' — X resulting from the insertion of
a chiral bi-vertex field with endpoints on the boundary. This operation changes the
boundary values of Fock space fields. The term is borrowed from physics, see e.g., [8],
and in many (but not all) cases we have a good match with the physical formulas (as
we understand them).

> Let us recall the set-up:

e (D, q) is a simply connected domain D with a marked boundary point ¢ € 9D;
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eb € R is a fixed parameter and Fy = F)(D,q) is the OPE family
of the bosonic field ®(;), see Section 10.1; the notation for the standard
fields @, J, T, V', etc. refers to the family in F);
« the vertex field V* with a > 0, 2a(a+b) = 1, rooted at the modification point g,
is a holomorphic differential of dimension
2
a

(14.9) h = 5~ ab,

with respect to z and a boundary differential with respect to ¢, see Section
12.3;
o we normalize this field in a fized boundary chart at g;

o the vertex field Vi produces a degenerate singular vector (see Section 12.3):
1 1 ia
T * Vit = 2—11-5821/* .

Let now p € 8D, p # q, and denote by 7 the arc of 0D from ¢ to p oriented in
the counterclockwise direction. We use 7 to define the value V%(p) = V%(p;7). In
the half-plane uniformization consistent with the fixed boundary chart at ¢ = oo,
p =¢& € R, we have

vise) = 2wl
where 7 is the half-line (—o0, §).

> The insertion of V%(p) is an operator

X— X
on Fock space functionals/fields. By definition, this correspondence is given by the
formula
(14.10) ® = & + 2iaG* (p, 2)

and the rules
(14.11)  0X = 98X, X dX, aX +BY > aX+BY, XOYXoY.
If w: (D,p,q) = (H,0,00) is a conformal map, then

2iaG* (p, 2) = 2a arg w(z).

Notation. — We denote by ]?(b) the image of F(;) under this correspondence.

Fields in f(b) are Aut(D, p, q)-invariant because arg w is Aut(D, p, q)-invariant and
fields in F(3) are invariant with respect to Aut(D, g).

Denote ,
E[V*(p)X]
E[Vi*(p)]
see Section 2.3 for the motivation of this notation. As in Section 2.3, we prove by

induction the following:

E[x] = — E[e®*%0® x|,

SOCIETE MATHEMATIQUE DE FRANCE 2013



108 LECTURE 14. CONNECTION TO SLE THEORY

Proposition 14.1. — Let X e ]?(b) correspond to the string X € F)y under the map
given by (14.10) and (14.11). Then

(14.12) E|X] = E[X].

> Examples:

a) The current Jisa pre-Schwarzian form of order b,

! ! "
T=J—ia= = Jyg) — ia— + ib—-
w w w
In the (H, 0, oo)-uniformization, j(z) := EJ(z) = —%;
b) The Virasoro field T is a Schwarzian form of order Se,
=R 1~ -~ R / 2
T=—37%T+ibd] =T +iaJio) + h(%)
2 w w
Ay — 30y + b0 0) + 5w+ h( L)
= A ~ o) + 00 (0) + pEw (;) ,
where h = fa® — ab is the conformal dimension of V/¢, see (14.9). In the
= 1
(H, 0, co)-uniformization, ET(z2) = h—;
z
¢) The non-chiral vertex field V* is a differential of conformal dimensions
(=302 + iab, —1a? — iab),
(1413) 1’}04 — g2caarg wye g2aaargw—2abarg ’w'COt2 e@aq)(o).

In the (H, 0, 00)-uniformization, EV® = (2y)*” e20aars z;
d) The bi-vertex field V(z, z) is a —a?/2 + iab-differential in both variables,

V) = (G 2 at) ()™ o) et

In the (H, 0, 0o)-uniformization, EV®(z, z9) = (z — 20)® z~**®zoa.

14.3. Cardy’s equations

In this section we will derive equations for correlation functions of fields in j-\'(b).
These equations are similar to those in Proposition 10.4. As usual, we will state them
in the case (D, q) = (H, 00).

For £ € R and the tensor product X = Xi(21)---Xn(2s), of fields X; € F
(z; € H), we denote

EcX = E[e®“®0© x),

S50 EX = E5X|§=0.
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Proposition 14.2. — If 2a(a + b) = 1, then in the identity chart of H, we have
1
E—z

where O = 0 + 0 is the operator of differentiation with respect to the real variable €.

b

1 ~ ~
(14.14) WagEEX = E¢[Lo X], ve(2) =

Proof. — Denote
RE = Rg(zl, “e ,Zn) = EéX.
Since R¢ does not depend on the boundary chart (at co) in which we normalize V¢,

eGia‘I’:[;)[T], where 7 is the half-line (—o0, &), and therefore

Re = E [V}*(§)X].

we can assume V4(£) =

Denote

R, =R(z;21,...,2,) = E[V]*(2)X], z€H,
where for z close to § we use a path from oo to z close to 7 so that R = lim,_,¢ R,.
By the level two degeneracy equation (Proposition 12.4), we have

%BZE [Vie(2)X] = E[(T = Vi*)(2)X] .

Applying Ward’s equation (Proposition 12.3) to the right-hand side (we can apply
this because T' = A = T{g) + ib0J (o) satisfies the conditions in Proposition 5.11), we
conclude

S0 E [Vi(2)X] = B[V (2)LEX] + B [, (VI*(2)X)]
= E[V*(2)L5, X] + B [V;*(2) £, X],

where we use Leibniz’s rule and the fact that £,V ?(2) = 0 (because Vi is a holo-
morphic differential).

Let us now take the limit z — £. Since 8¢ = 9 + 9 and the field V@ is holomor-
phic, the §%-derivative in the left-hand side converges to 9ZR¢. On the other hand,
since £ = &, the right-hand side converges to

E [Vi*(€) Ly X] = E¢[Lo X].

Corollary. — We have
(14.15) [( 3o+ 5]»)2 - 2a2£v0]E’X = 0.

Proof. — We will write R for R¢—o. By translation invariance,
R€ =R(21 _57"'azn“£)

and therefore

Ole=oRg¢ = —) O;R—Y O0;R=-) 0, R. O
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We will refer to equations (14.15) as Cardy’s equations, cf. [6]; they are Cardy’s
boundary version of BPZ-type equations in Proposition 10.4.

Examples. — a) If X;’s are differentials of conformal dimensions (A;, ;)
(e.g., X;’s are vertex fields), then the Lie derivative £,, acts on EX as a differential
operator

= 0;  Aj 0 Ao
BX = _% A9 M
‘C'vo Z( Zj + 2]2 Zj + 2? )EX’
see (4.8), and Cardy’s equation (14.15) is a linear 2nd order PDE:

8j )\j 0; )\*j =~ 1 31\2 5
-2+ -2+ FHNVEX=— ; ; .
Z( zj+z]2- Z]-+Z]2.) 2a2(251+3]) EX
b) The 1-point function R(z) = ET(z) is a Schwarzian form of order e, see
Section 14.2. Recall that
L,X = (v0+ 20) X + w"’

for a Schwarzian form X of order u, see (4.10). Thus

0 2 c/2
Ly R= (—;+;§)R+ el
and Cardy’s equation (14.15) is
0*R = 2a*L,, R.
Since R(z) = h/z2, we have the identity
9.2 ¢
6h = 2a(4h + 2 ).

One can directly check this identity from h = a?/2—ab,c = 1—12b%, and 2a(a+b) = 1.

¢) The last example can be generalized to the n-point function of f,
R(z1-+,2,) = E[T(21) - T(2n) || idm .

Denote 2z = (21,...,2n), 2 = (21,...,%j,...,2n). By (4.10) and Leibniz’s rule (Propo-
sition 4.6), we have

! 9; 2 "\ R(z;
LuR=3 (= %+ F)RE + 53 (?)'

z

See [17] for this equation in the case ¢ = 0.
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14.4. SLE martingale-observables

> We defined martingale-observables in Section 14.1. Let us discuss this definition
in more detail. Suppose M is a non-random field of n variables in the half-plane,
and suppose that M is invariant with respect to Aut(H,0,00). As we explained in
Section 4.3, conformal invariance allows us to define M for any triple (D, p,q) :

(Mppq |lid) = (M [|w™"),

where w is a conformal map from (D, p,q) to (H,0,00), so we can think of M as a
function or as a collection {Mp p, 4} of fields.

Consider now chordal SLE curve 7 in D from p to g so we have a family of domains
(D¢, t,q) with marked boundary points, see (14.1) and (14.3). A non-random field
M is a martingale-observable if for any 21,--- , 2, € D, the process

(14.17) Mi(z1,...,2n) = Mp, v, ,q(21, ..., 2n)

(stopped when any z; ¢ D) is a local martingale (on SLE probability space). It is
important that we compute M;(z1,...,2,) in (14.17) in local coordinates chart that
do not change with ¢. For instance we can use the identity chart of D, and then
for (A, 0)-differentials, we have

A
My(z) = (wi(2))" M (we(z)).
Similarly, if M is a Schwarzian form of order p, then
2
My(z) = (wi(2)) M (we(2)) + pSw, (2)-

To verify the local martingale condition, it is enough to check that the stochastic
differential d M; has no drift (i.e., no dt-term).

Example. — The simplest example of an SLE martingale-observable is the 1-point
function of the bosonic field in the case k = 4,

M(z) = E[®()(2)] = V2argw(z).
We have
1 K 1
dargwt(z) = —\/E%w—tdBt + (2 — ‘2-)(\\5‘5?(1t7

so the drift disappears if k = 4.
> Special cases of the following statement appeared in [3] and [37].
Proposition 14.3. — If X; € F), then the non-random fields
M(z,...,z3) = E[X1(21) -+~ Xn(20)]

are martingale-observables for SLE(k).
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Proof. — Let g; be the SLE conformal maps, g:(v:) = &, and & = /k B;. Denote
P~ ia®}
R{(zly sy zn) = E{ [Xl(zl) te Xn(zn)] = E[eQ Q(O)(g)Xl(zl) T Xn(zn)] .
Then
=m(&,t), mEt)=(Rellg; ")

Note that the function m(¢,t) is smooth in both variables. By It6’s formula we have
dMy = Ogle=¢,m(&,t)dé: + Bglg _e,m(€,t)dt + Ly dt,

where

d -
E‘ ( 3% ”gt-l—s = ds ’ ft |g ofs,tl)‘

The time-dependent flow fs,t = gt+599; satlsﬁes

d 2
0= o an

where vg(2) = 1/(£ — z). Since the fields in F(;) depend smoothly on local charts, it
follows from (4.7) that

Lt =

or fop=1id —2sv¢, +0(s) (as s — 0),

Ly = (LoRe,  971),
where v = —2v¢,. By Ward’s equation (14.14), we get
- 1 -
Ly = =2(Log, Re, | 9:") = =5 (%le=e.Re [l 9.7)-
Thus the drift term of dM; vanishes. O

Remark. — 1If we insert the degenerate vertex field V_&()a“Lb) (see Proposition 13.2)

instead of V:}b), then we get martingale-observables for the dual SLE theory,
i.e., SLE(x'), (k' = 16).

14.5. Examples

> Ezample 1 (Schramm-Sheffield’s observables). — The 1-point functions of the
bosonic fields

p(z) = E[@D,p‘q(z)] = 2aargw(z) — 2bargw’(z), w:(D,p,q) — (H,0,00),

were introduced as SLE martingale-observables by Schramm and Sheffield, see [39].
By Ito’s calculus,

$1(2) = E[®p, 1,,q(2)] = 2aargwy(z) — 2barg w;(z>

= 2aargw(z) — 2bargw’(z 2\/_/

The fact that the 2-point functions
E[2(21)®(22)] = 2G (21, 22) + §(21)P(22)
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are martingale-observables is essentially equivalent to the following special case of

Hadamard’s variation formula
1 1 1
14.18 dGp,(z1,22) = 43— ———<dt = —=d(@(21), P(22)),-
( ) D, (21, 22) welen) S i) 3 (P(=1), B(22)),
Schramm and Sheffield used (14.18) to construct a coupling of SLE and the Gaus-

sian free field such that
E[(’ISDJ’,Q I 7[0’ t]] = QDty’Yt»q'

Let us outline the main idea and explain how Schramm-Sheffield’s coupling is
related to the fact that all n-point functions
M(z1,...,2) = E[®(21) - ®(2n)]

are martingale-observables. For simplicity, we consider the case k < 4 (then SLE
curves are Jordan, and for all z € D, z € D, almost surely). For a fixed t, we define
a random field ¥; in D as follows. Let GFF(D;) denote the Gaussian free field in D
independent of SLE (e.g., consider the pull back of GFF(H) by some conformal map
from D; to H) and set
U, = ¢, + GFF(Dy).

It is in fact easy to define ¥, as a distributional field in D, so that the probability
space of U, is the product of probability spaces of SLE and GFF.

Claim. — For all t, the correlation functions of U, are identical to those of 3.

Proof. — We first show that
E[W(z1) - Yi(2n)] = EsLeMi(21, ..., 2n)

by applying Wick’s calculus to the GFF component of E = FEgig @ Egrr. Then
we verify that M; is a global martingale (this requires some simple estimates from
complex analysis and stochastic calculus). It follows that

EsigMi(z1,...,20) = Mo(21,...,2) = E[{I;(zl) e ;I;(zn)] O
See [39] for the version of this statement in the case 4 < k < 8, and for the limiting

case t = 0co. A more subtle question of uniqueness of SLE/GFF coupling was settled
by Dubédat [13].

> Erample 2 (Friedrich-Werner’s formula). — Let us apply Ward’s equations to
the function
E[T(z1)--T(z) | idu] = E[Vi*0)T(21) - - T(z) || ids ]
by replacing one of T'(z;)’s in the right-hand side by the corresponding Lie derivatives,

see Propositions 5.9 and 5.11. (As usual, idy is the identity chart in the upper half-
plane H.) Denote z = (21,...,2n), 2; = (21,...,%; -+, 2n), and

R(&z) = E[VI*(O)T(z1) - T(2n)];
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this non-random field is a boundary differential in £&. Then we have
(14.19) R(&2,2) = Lo, R(§; 2),  (in idm),

where v,(¢) = 1/(z — ). In particular, at £ = 0, setting R(z, z) = R(0; 2, z), we get
a recursive formula

R(z,z) = Z%R(z) +

n
j=

(-

Lo, 4+ —2 )R(z)+fz(R(—zf).
1 j=1

z =z (z — 2)?

In the case kK = %, (¢c=0,h = %) and z; = z; € R, this equation coincides with
Friedrich-Werner’s formula (see [18]) for the function

P(SLE() hit X+
B(x) = lim (SLE(3) hits all [a:],z]-i—ze\/i])
e—0 e2n

(Also, the equation (14.16) coincides with their “dynamical” formula in [17].) Since
B =R =1 for n = 0, we conclude that
B(zy,...,2n) = E[T(z1) - T(xn) || idu ].
One can in fact interpret the argument in [18] in terms of Lie derivatives and directly
relate it to the equation (14.19).
We will use the restriction property of SLE(%); see [31] or Example 3 below:

> the law of SLE(2) in H conditioned to avoid a fixed hull K is identical to the
law of SLE($) in H\ K;

> equivalently, there exists A such that for all K,
P(SLE(3) avoids K) = [¥(0)]",
where Wy is the conformal map (H \ K,0,00) — (H,0,00) satisfying
W' (00) = 1. (The restriction exponent A of SLE($) is equal to 3.)
Define the non-random field A(§,z1,...,x,) of n + 1 variables as follows:

> A is a boundary differential of conformal dimension A with respect to £ and of
conformal dimension 2 with respect to x;;

> (A(&, z1,...,2,) ||idyg) = B(z1 — &, ..., 20 — ).
Claim. — We have A(0;z,x) = L, A(0; x).
(So B and R satisfy the same recursive equation and are therefore equal.)

Proof of Claim. — Denote © = (z1,...,T,). We write P(x) for the probability that
SLE(8) path hits all segments [z;,z; +icv/2] and P(x | -z) for the same probability
conditioned on the event that the path avoids [z, + iev/2]. By construction,

(14.20) P(z,x) ~ 2"V A(0; z, x).
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On the other hand, by the restriction property of SLE(%), we have
(14.21) P(z,z) = P(z) — P(z | -z)(1 — P(z))
~ e (A0 ) — ' (0) M (21)% - - U/ (2,) 2 A(T(0); ¥(z1), - . ., ¥(zn))),
where
U(z) = (2 —z)?+ 22 + 2.
It follows from (14.20) and (14.21) that

A(0;z,x) = 5%(A(O; z) — W (0) ' (21)% - U (2,)2A(T(0); ¥(1), - . ., ¥(zn)))
~ Lo A(0; ),

where v is the vector field of flow ¥;(z) = /(2 — )2 — 2t + z. Clearly, v=v,. O

> Ezample 3 (Lawler-Schramm-Werner’s restriction formula). — Restriction prop-
erty of SLE(%) follows, by optional stopping theorem, from the fact that for each
compact hull K,

M, = (EV}*(v; Ds \ K) || ¢)
is a local martingale. This is a special case of Lawler-Schramm-Werner’s formula
(1422) the drift term of th = 'é—CSht (ﬁt)Mt dt, (ft = \/EBt),
which holds for all k < 4. On the event ¥[0,00) N K = &, a conformal map is defined
by
he: Q= gi(D\K) —H, he=go¥xog ',
where §; is a Loewner map from D, = D\ [0, ¢] onto H, 5(t) = ¥x o(t), and U is
the conformal map (H \ K, 0,00) — (H, 0, 00) satisfying % (00) = 1. Let & = hy(&:).
Then h; satisfies (see e.g., [31])
. 2h! 2 /
(1423) ht(Z) — h’t(gt)’v _ 2h’t(z)
he(2) —&  #—&
We now explain why the central charge and the Schwarzian derivative appear in
the formula (14.22). To prove this formula, denote

F(z,t) :== (EVq,(2) ||id).
Then F(z,t) = (EVy || h;*)(2) and
M, = F(&,t) = (EVa,(&) || id).
The function F' is smooth in both variables, so by It6’s formula,

the drift term of dM; = F(€,,t)dt + gF”(ﬁt, t)dt.
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¥(t) D\ K A(t) D

U g
#

& 9t(K) &

FIGURE 14.2. The conformal maps, Yk, g¢, g:, and hy

For the first term of the right-hand side, we represent F in terms of the Lie derivatives:
. d _ d _ _
Plat) = | (BValhil)(:) = —| _ (BVallh" o £2)()
= (EL,Vh ” ht—l)(z)a
where fs: = hiqs0 h{l and
. d ; _
(v llidr) = | _ for=heoh;.

dsls
It follows from (14.23) that

(v |l idu)(¢) = —2h{(&)*

1 I 1
PO S

By Proposition 5.12 we have N
F(z,t) = =2hy(&) hi(2) (B An()Vi (ha(2)) | idu ) +2(BLy, Vo, | ida, ) (2),
where A is the conformal dimension of V. It follows from conformal invariance that
F(z,t) = —2(EAq,(&)Va, (2) || id) + 2(ELy,, Vo, |lid)(2).
Let us now apply Proposition 5.3 to the right-hand side of the above equation:
F(&,t) = lim Fz,t) = =2(EAg, Vo, (&) | id).

At the same time, we have

SE(6,t) = 5 (BOlemg, Vo, (§) I1id) = 2B, * Va, (&) | id).
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LECTURE 15

VERTEX OBSERVABLES

In this last lecture we will look at some examples of “primary” SLE observables, i.e.,
observables that have a covariant dependence on local coordinates. This is the type
of dependence that appears as a result of rescaling or normalization of probabilities
and expectations, in particular in lattice models. As we explained in the previous
lecture, correlators of primary fields in f(b)—theories are examples of such observables.
In this lecture we will expand our collection of primary fields by considering normal-
ized tensor products of chiral vertex fields and their conjugates. Further “primary”
observables can be obtained from singular vectors and, in some cases, by such opera-
tions as differentiation, integration, and “screening.” By It6’s calculus, “primary” SLE
observables are solutions to 2nd order linear differential equations, which in general
are not easy to solve. The knowledge of a large collection of (multi-point) primary
fields allows us, in some cases, to identify particular solutions by calculus of confor-
mal dimensions. This is somewhat related to “Coulomb gas” methods in the physical
literature.

15.1. Holomorphic 1-point vertex fields

> Definition. — We want to construct holomorphic single variable differentials
in f(b)—theory. Chiral vertex fields rooted at ¢, the central charge modification point,
considered under the boundary condition changing operation (see Section 14.2) seem
to be natural candidates. The problem with this construction is the divergence at ¢
S0, as in Section 12.3, where we defined rooted vertex fields, we will use a certain nor-
malization procedure. (We will use it again to define correlators and, more generally,
tensor product of such fields in the next section.)

The idea is to start with a (well-defined) chiral bi-vertex field,

(15.1) Via(z, ZO) — woa(wl)%az—abw(—)—oa(wé)§02+ab(w _ wO)_GQ eQiU‘P?}))(Z,zo),
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see the last example in Section 14.2 and normalize it so that the limit exists as
2o — q. We denote this limit by W"(z). Then it satisfies the equations of ]?(b)—theory,
in particular Cardy’s equations. It turns out that by simply ignoring all terms in
(15.1) involving the point zp, we arrive to the following correct definition:

o) (2) = "}*icr(z) _ waa(w/))‘e@'a@fo) (z,q),

where A = 02 — ob. (Instead of O we write O©) for 17*"” in this lecture. See
Appendix 13.) More accurately, the expression for @(°) can be described as a limit
similar to the formula (12.13) in Section 12.3. The vertex fields @(°) are invariant
with respect to Aut(D,p, q).

Proposition 15.1. — The 1-point function M = EO) s an SLE martingale-
observable.

It is of course very easy to verify this statement by It6’s calculus but the point
is that we can get it as a limit of Cardy’s equations for bi-vertex fields. Indeed,
let R¢(z, z0) denote the 1-point function martingale of the bi-vertex field. We have

Ry(z, z0) = My(2)E¢(z, 20),

where
Ey(2, 20) = wi(20)* (w}(20))” (we(2) — we(20))”

with appropriate exponents. Since R; is a local martingale, the drift of M; is equal

to that of

dE, dE;
—dM, .

5, Mg

_Mt

It is trivial to see that

for any combination of the exponents, and this proves the statement. (We will refer
to this argument again in the next section.)

> Conformal dimensions. — The normalization procedure in the definition of O(?)
produces covariance with respect to q.

Proposition 15.2. — The 1-point function M = EO©) = w?%(w')* is an Aut(D, p,q)-
invariant holomorphic A-differential with respect to z and a boundary \,-differential
with respect to q, where

0.2

)\=-7—ab, Ag=A+oa.

Every martingale-observable with the stated properties is the correlation function of
some vertex field O(°),
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Proof. — See Example in Section 12.3 for the value of A;. The last part, first men-
tioned in Smirnov, see [42], follows from It&’s formula. Let M; = f(w:)(wh).
Driftlessness of M; reduces to Cauchy-Euler equation in (H,0,00). Thus M(z) =
C12° + C22°2 or C12* + Cr2*log z in the (H, 0, 00)-uniformization. We can take
C2 = 0 because M is a boundary differential at q. O

Note that
a) A =0 if and only if o = 2b (or o = 0);

1
b)/\=1ifand0nlyifa=—2aora:E=2(a+b);
¢) Aq =0 if and only if o = 2(b—a) (or 0 = 0).

> Special cases. — Suppose o # 0.
a) If A =0 (i.e., M is a scalar), then
M=uwP, B=X\=1-4/k, (k#4)
(a conformal map onto a wedge). These “wedge” observables are some of the sim-

plest (and well-known) SLE martingale-observables. For example, if x = 2, then the
observable

(15.2) SMp g = P(zp)

N q P ( 7p)
plays an important role in the theory of loop-erased random walks (LERWs), see [32].
Here P is the Poisson kernel, and NgP(.,p) is its normal derivative at q.

Remark. — For « > 4, the wedge observables M have the following probabilistic
interpretation. Let 7. denote a point on 0D at distance € from ¢ (in a local chart ¢).
Then

P(r, =T,
lim Pl =m.) _ const S(M®@)(2) || ¢),
e—0 £
where const is the normalization constant, and also
. P(ry, >
llm ( z 77&)
e—0 Eﬁ

is a linear combination of real and imaginary parts of (M%) (2) || ¢). These facts
follow from Cardy’s formula (15.10) which we discuss later in this lecture; 7, and 7,
are the SLE stopping times (14.2). In particular, it is clear from this interpretation
why wedge observables are scalars with respect to z and have non-trivial conformal
dimensions with respect to gq.

b) If \; = 0, then
M= (' /w=(f), A=8/k-1,

where f = logw is a map onto the strip. Smirnov used this observable with k = 1—3?
in his study of the random cluster version of the Ising model, see [43].
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Remark. — If x € (4,8), then the boundary values of this M have the following
interpretation (another special case of Cardy’s formula, see Proposition 15.8). For
n € OD\{p, ¢} let P(n, ) denote the probability that the SLE curve hits the boundary
interval with endpoint 7 of length ¢, where ¢ < 1 is measured in a local chart ¢. Then

lim —————P(Z’ )

e—0 £

= const (M@=29(n) || ),

where const is the normalization constant which depends on (D, p, q) and . Clearly,
if the limit exists and is non-trivial, then it gives a boundary martingale-observable
of conformal dimensions A at 5 and zero at q. On the other hand, M(2—29) ig the
only observable with these properties. This argument certainly does not prove the
existence of the limit but it provides a quick “physical” answer. (See the formula
(15.8) involving Beffara’s observables for a similar statement at interior points.)

c) If \+ Ay =0, then 0 = 2b— a and

w’' \A 3 1
M:(——) — ()Y, A=2_-,
o7 () s
where f = —1/w is a map onto the half-plane. In the case k = 2, this observable

M is the derivative of the LERW observable (15.2). In the case k = 3, M plays a
crucial role in Smirnov’s work on spin Ising model, see [9]. In both cases, one can
explain the relation A + A; = 0 from the point of view of discrete models — it comes
from the rescaling of the corresponding partition functions. Smirnov suggested that
the two series b) and c) of SLE observables describe the general random cluster and
O(N) models, respectively.

15.2. Normalized tensor products

> Definition. — To define the product of O()(z)) and 0©2)(z,), 21 # 2z, we
again need normalization because E[Qa)(zl,q)ézg)(z%q)] diverges. Applying the
same idea as in Section 15.1 (normalizing the product of bi-vertex fields properly and
then taking a limit), we define

(15.3) OV (21) % 0 (25) = My Ma(wy — wg)*17% 7 ¥ioy (1) +i72%) (22,
where M; = E[0)] = w;ja(w;)"?/2—"jb and w; = w(z;),w; = w'(z;). Again, a
simple way to express this definition is to say that we ignore all g-terms in the cross-
ratio (12.7) when we compute the correlation function of Wick’s exponentials. The
term (w; — wy)?'%2 appears from the following computation: if oy, s are two non-
intersecting paths connecting from q to z1, 22, respectively, then ignoring the g-terms,
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we have

E[2 ) (21) D) (2)] / / [J0)($)J(oy(m] d¢dn

Q2
1 |$==
= — dn = —log(z1 — 2z2), (in H).
/a2 ¢—nl¢=q
Note the monodromy in the correlation function of the tensor product. There is
no difficulty in extending the concept of martingale-observable to multivalued func-

tions — each continuous branch should be a martingale-observable.

In a similar way, we can use E[<I>(O)(z1)<I>E'6)(zQ)] = log(z1 — Z2) to define

(15.4) O(al)(zl) *O(gz)(z2) _ M1]\712(w1 _ wQ)alag e@zalézz)(zl)-kz'az@%)(zz).

> General 1-point vertezx fields. — This last definition (15.4) can be extended to
the case z = 21 = 23, cf. (3.9), so if we denote

07 (2) = O (2) x 0@ (2),
then we have
0(0,0.)(2) — (w _ ,u—))aa,, waawa,a(w/),\(,l?))\, e@iaéz))«ia‘éz))’

where

a? o?
/\—-7—0'17, )\*—7—0'*17

(the conformal dimensions with respect to z).

> Special cases. — Up to constant factors, we have the following relations:

a) The non-rooted bi-vertex chiral field of ]?(b)—theory,

0@ (21) x O (23) = Vi (21, 22).
This can be shown by direct substitution o1 = 0,02 = —0o into (15.3). We get (15.1)
because <I>(JB)(z1) — @ (22) = @ (21, 22). Alternately, we can take the limit zo — ¢
in the identity .
Vw(zl,zo) “(29,20) = V' (21, 22);
b) The non-rooted and non-chiral vertex field of f(b)-theory,
Olo—0) _ Pio.

see (14.13). This follows from the identity ® (0) + <I>(0) = 2§R<I>(0) = ®q);

¢) The dual vertex field of F)-theory,

oloo) — (w — u—))azlw|20a|w/|2/\ e@—ai(o).

(It is the progerly normalized and modified exponential of the harmonic conjugate
bosonic field ®, see (12.1).) Note that O(%:9) is a real field if o € R. (In general O(?:7+)
is real if and only if 0, = 7.)
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> Multipoint vertezx fields. — We can extend the definition to products of n fields,
e.g.,

0(01)(,21) T O(O’n)(zn) = M,---M, H(wj — wy)79° e@ialézz,)(z1)+...+ian<1>a’3)(zn)'
i<k
In particular, we have

(15.5)  EOWCHT) (z) x4 OOnwn) (5,) HE(o(w*ﬂ (z) [ ] Lin (25> ),
i<k
where

Lj (25, 26) = (w; — wk) 7 (W5 — wg) 77 (wy — k)77 (05 — wy)7*77*.

In general, the operation x is commutative (in the sense of multivalued functions),
associative, and real (i.e., Ax B = A x B).

> Cardy’s equations and SLE martingale-observables. — It is not difficult to show
that Cardy’s equations survive under the normalization procedure.

Proposition 15.3. — Normalized correlations M of chiral vertez fields (and their com-
plex conjugates) satisfy Cardy’s equations:

1 _\2
EvoM = ﬁ(zaj +8j) M
Example. — Let M = EX, where
X(21y- -y 20) = O (7)) % oo x OnTen) (7)),
In (H, 0,00), M reads as

T =27 Ly = 20775 = 3077 oy = 20727 35 = 2™

i<k
and satisfies the 1st order linear PDE

g,
—Za +8;)M = Z(z, Z]f)
Cardy’s equation for M is the 2nd order PDE
1 N2 O; O O;  Oxi\2
(D 9+)) M=—(a+b)Z(z—]§+ Z]])M-i_ (sz + zjf) M

8 N 8 A
z}:(_z_j+z_§_z_i+2_§)M=£qu.

J

Proposition 15.4. — Normalized correlations of chiral vertez fields (and their complex
conjugates) are SLE observables.

This follows from the argument in the proof of Proposition 15.1.

> Conformal dimensions at q. — The next proposition gives a necessary and suf-
ficient condition for a multipoint vertex field to be a 0-boundary differential at q.
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Proposition 15.5. — Let X (z1,...,2,) = 0171 ()% - -k O@n:0+n) (2,). Then X is
a boundary differential at q of dimension

A(X)=(a—-bd)Z + %22, Y= Z(O’j + 04j)-
J

In particular, A\y(X) = 0 if and only if £ =0 or ¥ = 2b — 2a.
Proof. — Let M;(z;) = EO:9+)(z;) and &; = 0} + 0.;. Since X/(EX) is a 0-
boundary differential at g, it follows from (15.5) that

Ag(X) =D A(My) + Y Ag(Ljk)

i<k

=Y ((a-H% + 35 + 3 5% = (- b)s + ;52 O
J i<k

15.3. 1-point martingale-observables

> Vertex observables. — Recall the expression for the 1-point observables that we
get from vertex fields:

M(a,a,) = EO(U’G*) — ('LU _ m)aa*waawv*a(wl))\(W))\*7

where
o? o2
. = — b A* = —* 0.
(15.6) A 5 ~ b, 5 O b

We can rewrite M in terms of the conformal radius:
M = {99+ (99~ |w/|aa, waawa*a(w/)/\(W))\* .
Recall that C = |w — @|/|w’|; and (C | idp) = dist(-, 0D). If we ignore the constant

factor i??+, then
O(O’,O’.) — O(a' ,5’).
It follows that the 1-point observable M(?°+) has non-trivial boundary values on

dD \ {p, q} only if either o or o, is zero.

> Unlike the holomorphic case, see Proposition 15.2, not all 1-point martingale-
observables can be represented by vertex fields. For example, Schramm’s observable

M(z) = P{zis to the left of v}, (0 <k <8, z€ D)

is not of the form M = M(%+)_ (The winding number of the positively oriented closed
curve y U c;z\) around z is well-defined because z is off the curve 7 almost surely. This
winding number is either 0 or 1 since <y is almost surely non-self-crossing. We say
that z is to the left of v if this winding number is 1.) Indeed, Schramm’s observable
has dimensions A = A\, = Ay = 0 but the scalar field I (I(z) = 1) is the only vertex
field with such dimensions.
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In addition to vertex observables, we can consider expectations (and correlations) of
singular vectors (so we get “primary” observables). The simplest is the case of level one
singular vectors, which are (up to conjugation) just the d,-derivative of scalar fields.
It is of course always true that derivatives of martingale-observables are martingale-
observables. Conversely, if a martingale-observable X is a (1,0)-differential, then for
any curve q, faX is a local martingale. We continue this discussion in the next
section.

> Ezample: Schramm’s observables. — Let M(z) = P{z is to the left of v}. Then
OM is a martingale-observable with

A=1, A, =0, A =0.

It is easy to find a vertex field with these conformal dimensions (applying (15.6) and
Proposition 15.5), namely O(~2%2%) 5o its correlation function

8_

EO(-2a.2) _ (k_“_’) =2w
lwl w

is a natural candidate for M (up to a constant). (If kK = 2, then

wl

EOW@2b) — po.-1) _ w
w(w — W)
is the other possible martingale-observable. However, M is the function of argw only,
so it cannot be a “primitive” of EOQ(1,—1).)
Let N be a primitive of EQ(=2220) je AN = EO(=22.25) n (H,0,c0), on a circle
z =re' we have dN = (sin )= ~2d#, therefore

6
N(z) = / (sint)=~2dt.
0
Taking into account the boundary values of M, we get the presumptive formula

9 (sint)*~2d¢

=—— 0=argw(z).

J7 (sint)x—2d¢
We only need to apply the optional stopping time (and some basic SLE properties)
to justify it rigorously.

> Ezample: Beffara’s observables. — Let k < 8 and P(z,¢) denote the probability
that the SLE curve hits the disc at z of size €, where ¢ < 1 is measured in a local
chart ¢. We define

. P(z€)

(15.7) (M(2) || ) = lim =5,
where § is some positive number. If the limit exists and is non-trivial (for all z € D),
then M is a real martingale-observable of conformal dimensions

1
A=A =38, A =0
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It is clear that the vertex field @(®~%%=%) has those properties. (The only other
possibility (o, 0,) = £(v/8, =/ ) with k = 4 gives wrong boundary values.) We can
conjecture that M is EQ®~%5=%) yp to a constant. Then

6=2)\=(b—a)2—2b(b—a)=l—g

and

M(z) = consty&+tR—2. }z|1“% (in HI).
The justification of this conclusion (in particular, the existence of the limit (15.7)) is
not as easy, e.g., see [33]. Beffara proved the estimate

(15.8) P(z,¢) < e~ § EO®~b~9)

and used it together with the second moment estimate to derive that the Hausdorff
dimension of SLE curves is almost surely 1+ §x, see [4].

15.4. Multi-point observables

There are many natural, geometrically defined SLE multi-point observables, e.g.,
various multi-point generalizations of Schramm’s and Beffara’s observables, or the
Friedrich-Werner observables in the case k # %. Can vertex fields (“Coulomb gas
formalism”) be useful in the (heuristic) identification of (at least some) of them? The
answer is not obvious but in any case it is clear that it would be useful to construct,
in addition to vertex observables, as many “primary” observables as possible. For
example, Friedrich-Werner’s formula involves correlations of a singular vector. One
can consider singular vectors (of all levels) and one can also modify correlations of
primary fields by “screening,” one of the basic operations in Coulomb gas formalism.
Let us start with a historically important:

> FEzample: Cardy’s observables. — Let Kk >4,z€ D, n € qu\) C 0D, where c/];) is
the positively oriented arc from ¢ to p. Three “geometric” observables:

M(z,n) = P(r, <1y), P(r,=m,), P(1,>1),

are all real with all conformal dimensions zero. No such vertex exists except the scalar
field I. We will argue as in the case of Schramm’s observable in Section 15.3. We try
to identify the derivative OM with a multi-point vertex field which has conformal
dimensions

(15.9) A=1, A=0, A\ =0, X =0.
By dimension calculus, see (15.6) and Proposition 15.5, we immediately find that the

vertex field O(~29)(z) x O®) () satisfies (15.9). Let N be a martingale-observable
(scalar in all variables) such that

d.N(z,n) = const EO(~2%(z) x O (1) = const w_%w,l,_% (w— wn)%_Qw',
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where w = w(z) and w, = w(n). We will take

Jy BO24() % 0B (1)
N(z) =

[ EOC2)(¢) x 0C9) ()

where ( is the integration variable. The integral converges because x > 4. By
Schwarz-Christoffel, N is a conformal map onto the triangle with angles (1 —4/k) 7
at N(p) =0 and N(q) = 1, and (8/x —1)7 at N(n) with RN(n) = 3. Using the
stopping time 7 = 7, A 7, and the fact (basic complex analysis) that

N,=0ifr, <7, N.=1lifr1,>m7, NT=%+1'%N(17) if , =1,

we easily justify Cardy’s formulae

(15.10) P(r, > 1,) =RN(z) — %V]\%, P(r,=m1,) = ggg;;

> Cardy’s formulae in the boundary case (z = 19 € D) describe the probability
that the SLE curves hit some boundary intervals.

Proposition 15.6. — Ifno € 7/1;), then

[ BOT29(0) » 0@ ()

P Y hits 7/77\’] = ’
( )= TTBoC0x 0m)

where ( is the integration variable.
Proof. — The event {r,, > 7,} does not occur. Thus we get
P('y hits 17, ) =P(rp, <1y) =1—P(7y, =75) =1 —N(no)/N(n). O

The denominator in the right-hand side is a constant by conformal invariance. In
the (H, 0, 0o)-uniformization, we have

(15.11) P (v hits [z —¢,2]) = —Cl— / tR72(1 —t)"* dt,
K JO

where C, = fol tR2(1 —t)~ = dt, cf. [36].

Proposition 15.7. — Let 19 € (31\7 Denote by P(g;m0,m) the probability that v hits a
(boundary) e-neighborhood of ng but not the arc nfo\n, then (up to the same constant
as in the previous proposition)

e—0

lim -11(56’7—0”2 = EO29) () x 0@ (7).

Indeed, the limit is the probability density function of P(7,, = 7).
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Proposition 15.8. — Let k € (4,8). For n € 0D (n # p,q) let I(n,e) denote the
boundary interval with endpoint n of length €, where ¢ < 1 is measured in a local
chart ¢. Then

lim 31 P(y hits I(n,€)) = const (M®*=22) (1) || ¢),

e—=0 gx—1

where const is the normalization constant which depends on (D,p,q) and k.

Proof. — Tt suffices to show this in the (H, 0, oo)-uniformization. Then the statement
follows from (15.11). O

> Screening. — This is a general method of constructing primary observables which
we already used in the case of Schramm’s and Cardy’s observables. The simplest
situation is as follows. Suppose we want to find 2-point boundary SLE(x) martingale-
observables M (n1,72) with given dimensions let’s say A, A, and 0, at 01,72 € 0D,
and g, respectively. It is not difficult to write down a differential equation in (H, 0, 00) :

%+%)M_,\(i2+_1§)M:0.

K
15.12 = (8, +8,,)*M +
(15.12) 7 (O, + n,) (m . Tt

We will try to guess some solutions.
Vertex observables give us solutions only for some special values of A, e.g.,
EO®=9 (1) % 0= (n,) for A =1/2 — k/16.
(If k = 4, then we actually have solutions
EOM) (1) x 0V (1).)

We can also consider singular vectors (like T for kK = %, A = 2 as in Friedrich-Werner’s

formula) but, again, they only work in some special cases.

We will now discuss a different type of 2-point boundary martingale-observables
M(m,n2). Consider the field

N(m1,m2;¢) = EOU (1) % 02) (1) % O (¢),

where we choose

s=—2a or s:é=2a+2b

(so that the “screening” field O®) is a 1-differential). In the (H, 0, co)-uniformization,
we have

(15.13) N(m,m2; Q) = 07032 C**(m — m2) 772 (¢ — m)7**(¢ — m2) ™",
By proposition 15.5, A\; = 0 if and only if
o1+02+s=0 or 2b-2a.

The idea is to integrate out the variable ¢. The following lemma is obvious.
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Lemma 15.9. — For any path « in 8D, the field
(15.14) M(ni,m2) = / N(m,m2;¢) (integration with respect to )
[e3
is a martingale-observable with conformal dimensions \; = 0]2 /2 —0;b,A\g =0.

We are free to choose the path a as we wish but since we do not want to have any
additional marked points, the natural choices for o are the following arcs:

me, My, M
(or integer combinations of those; in some other cases, we can also consider small
half-loops around n; or ¢q). However, there are integrability restrictions: e.g., to use
a= 17/1\ q we need
so1 > —1 and s(a+o0;+02) < -1,
see (15.13).

Example. — Suppose \ > —%bz. If we choose

(15.15) s=-2a, o1=b— Vb +2\ o3=b+ Vb +2\
then we have

AM=X=A A=0
The integrability condition is always satisfied at 7; and it is satisfied at ¢ if and
only if k > 4. It follows that for k > 4 and A > —(k — 4)2/(16k) we have solutions
(15.14) with a = 17r1\q . On the other hand, the integrability condition is satisfied at
19 if 02 < a + b, so for all kK > 0 and A such that

_A)2
<2 <50-5)

we have solutions (15.14) with o = 717, . These solutions generalize Cardy’s ob-
servables mentioned earlier, which correspond to the case A = 0. For example,
one of these solutions is LSW/KPZ (Lawler-Schramm-Werner/Knizhnik-Polyakov-
Zamolodchikov) martingale-observable.

For n1,m2 € Ry with g2 < m; and A > 0, let
. wi (11w (12) A
M(nq, := lim E( ¢ ¢ ,
(o) = B () = )
where 7 = 7, ATp),. We identify M with a martingale-observable obtained by a method
of screening. To see this, let

u(n, m2) == (m — 772)2'\M(7h,772)-

The non-negative bounded process

— )2l ()0} t
((n<wt<2;21)) ?’f&m D) — exp (- 2*/0 (ws<1m> - ws<1n2>)2ds)
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is decreasing and has the limit as t — 7. The existence of M follows from Lebesgue’s
dominated convergence theorem. It is obvious that boundary dimensions of M
at m1, 72, and g, are A, A, and 0 respectively. It can be shown that M; is a martingale.
Thus M is a solution to (15.12) and therefore u satisfies

1 2
(15.16) g(am + 0y,)%u + (%+%)u—)\(a— %) u=0.
On the other hand, it follows from the scaling property of chordal SLE that

u(n,m2) =U(1,@).
m

Define f on (0,1) by f(z) = u(1,z). It follows from (15.16) that f satisfies the second

order ODE,
Fray= 22022 ey 4 22 fa),

£k z(l-x)
A general solution of this equation is

4 4 4 4
—-C ‘1+F(1——,2 24 ) c_ "—F(l——,2_,— 2, )
f(z)=Cyz =204, ~ +2¢4,2) +Cx =20, —+2¢-,2
where exponents ¢+ are given by

1 2 /1 2 4

= - — — —_ - 2)2 —_—

% 2 ni (2 n)+/~z
0.

Since f is bounded on (0,1), C_ = 0. The other constant C is determined by the
condition f(1—) = 1. Thus

_ q 4 4 72 4 4
M = (g — 2*(@) F(l——,2,— 2,—) F(l——2,— 2 1)
(m1,m2) = (m —m2) " 20, - +2 " / —2¢,—+2¢,1),

where ¢ = ¢4 is the LSW/KPZ exponent (e.g., see Section 6.9 in [25]). With the
choice of s,01,09 in (15.15), and @ = (1,00), M has the representation (15.14) in
the identity chart of H (up to constant) for k > 4 (the integrability condition at g).

Remark. — This construction can be extended to the case of several screening fields;
it can be applied to singular vectors, etc.
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