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Mars 2012 

ARITHMETIC A N D POLYNOMIAL PROGRESSIONS 
IN THE PRIMES 

[after Gowers, Green, Tao and Ziegler] 

by Julia WOLF 

1. INTRODUCTION 

In 2004 Green and Tao [25] proved the following groundbreaking result. 

THEOREM 1 (Green-Tao theorem). — The primes contain arbitrarily long arithmetic 
progressions. Moreover, the same is true of any subset of the primes of positive relative 
densityS1^2) 

Theorem 1 vastly generalizes van der Corput's result [11] that there are infinitely 
many 3-term arithmetic progressions in the primes, as well as a significant strength­
ening due to Green [22], which established the existence of 3-term progressions in any 
subset of the primes of positive relative density. It also represents a special case of a 
conjecture by Erdôs and Turân [12], dating back to 1936. 

CONJECTURE 2 (Erdôs- Turân conjecture). — Any subset I Ç N satisfying 

xex 

1 

x 
+00 

contains arbitrarily long arithmetic progressions. 

What is truly remarkable about Theorem 1 is the diversity of methods which 
are brought together in its proof: it combines tools from arithmetic combinatorics 
(especially so-called higher-order Fourier analysis) with traditional analytic number 

W It is easy to see that the primes cannot contain an infinite arithmetic progression. Suppose that 
P(j) = a + jd for some a, d G N takes prime values for j = 0,1,..., k. Then P(a) = 0 mod a and 
P(a) > a. But if P(a) = ma for some integer m > 1, it is no longer prime and hence k < a. 
(2) The longest currently known arithmetic progression in the primes, 43 142 746 595 714 191 + 
23 681 770 x 223 092 870 x j , where j = 0,1,... 25, was found by Périchon with software by 
Wrôblewski and Reynolds in 2010. 
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390 J. WOLF 

theory, all while taking inspiration from ergodic theory. The Erdôs-Turân conjecture 
suggests that the existence of arithmetic structure in the primes is in fact merely a 
consequence of their density, and so it is perhaps not surprising that analytic and 
combinatorial (rather than classical number-theoretic) methods should play a major 
role. Indeed, in 1975 Szemerédi [47] showed in a purely combinatorial fashion that any 
subset of the integers of positive upper density contains arbitrarily long arithmetic 
progressions.(3) Denoting by [N] the set of integers { 1 , 2 , . . . , N}, we have the following 
finitary version of this statement. 

THEOREM 3 (Szemerédi's theorem). — Suppose that A Ç [N] is a subset of density 
a which contains no k-term arithmetic progressions. Then 

OL = Ofc(l), 

where 0^(1) is a quantity that tends to zero as N tends to infinity. 

However, our current understanding of the decay rate of a does not allow us to 
immediately deduce Theorem 1. Indeed, the best known bound on the density of a 
subset of [N] that contains no 3-term progressions, due to recent work of Sanders 
[43], is of the form (log N)~^~°^\ falling just short of the density of the primes. For 
longer progressions, the discrepancy is much more alarming. For length 4, the best 
known bound on a is of the form exp(—Cy/\og log N) [26], while for longer progressions 
it is (loglogiV)~c for some small positive constant c depending on k [17]. On the 
other hand, the best known example of a 3-term progression free set has density 
exp(—c\/\og N) [3], which is believed by many to be closer to the truth. However, 
proving upper bounds of this shape seems very much out of reach of currently available 
techniques (but see a recent result of Schoen and Shkredov [46]). 

Many excellent expository articles have been written on the proof of the Green-Tao 
theorem [23, 36, 48]; in particular, it was covered in the Séminaire Bourbaki in 2005 
by Bernard Host [33]. In contrast to Host's ergodic theoretic perspective we adopt a 
more analytic viewpoint in the present exposition. Moreover, our main focus will be 
on the developments that have taken place since the original proof of the Green-Tao 
theorem, which have brought new understanding and a number of additional exciting 
results to the subject. 

Shortly after the proof of Theorem 1, Green and Tao [31] extended their result 
from arithmetic progressions to solutions of more general systems of linear equations 
in the primes. This work covered essentially all systems of linear equations for which 
the conclusion is neither trivially false nor known to be extremely difficult (such as 
those systems related to Goldbach's conjecture or the twin primes problem), but was 

(3) A qualitative proof was given by Furstenberg [14] in 1977 and initiated the long-standing and 
fruitful interaction between combinatorics and ergodic theory. 

ASTÉRISQUE 352 



(1054) ARITHMETIC AND POLYNOMIAL PROGRESSIONS IN THE PRIMES 391 

conditional on two conjectures: the inverse conjecture for the uniformity norms, and 
the Môbius nilsequences conjecture. The latter was established by Green and Tao [28] 
shortly afterwards, and the former very recently by the same authors in joint work 
with Ziegler [30]. With the completion of this very substantial research programme 
the authors are able to assert not only the existence of general linear patterns in the 
primes, but give precise asymptotics for their frequency in the interval [N]. 

In a further step towards generalization, Tao and Ziegler [50] proved in 2008 that 
the primes contain arbitrarily long polynomial progressions. 

THEOREM 4 (Tao-Ziegler theorem). — Given polynomials P i , . . . , P ^ £ Z[m] such 
that P\(0) = ••• = -Pfc(O) = 0, there exist infinitely many integers x,m such that 
x + P i ( ra ) , . . . , x + Pk(m) are simultaneously prime. Moreover, the same is true of 
any subset of the primes of positive relative density. 

The first non-trivial example of such a polynomial pattern is a configuration con­
sisting of two elements that differ by a square, which corresponds to Pi(m) = 0, 
P2(m) = m2. In dense subsets of the integers the existence of such a configuration 
is guaranteed by a theorem of Sârkôzy [45], which is obtained using a sophisticated 
application of the circle method. In fact, and in contrast with the situation for 3-term 
arithmetic progressions described above, the best known bound in Sârkôzy's theorem 
is strong enough to directly imply the existence of square differences in any positive-
density subset of the primes. In the case of more general polynomial configurations, 
however, the results from arithmetic combinatorics are very far from implying a state­
ment resembling that of Theorem 4. Worse, there is currently no quantitative theorem 
at all in the literature asserting that if a subset A Ç [TV] is dense enough, then it 
contains a polynomial configuration of the above type.(4) (5) What we do have is a 
qualitative polynomial Szemerédi theorem due to Bergelson and Leibman [6] proved 
by ergodic theoretic methods, whose statement is fundamental to the proof of The­
orem 4. Moreover, Tao and Ziegler rely heavily on an induction technique which 
allowed Bergelson and Leibman to linearize a system of polynomials in successive 
stages, known as PET induction [4]. 

The general strategy of proof for Theorem 4 is largely the same as in the case of 
(linear) arithmetic progressions. There are two main novelties here: first, a transfer­
ence principle is explicitly formulated for the first time, which was implicit in and 
absolutely fundamental to the proof of the Green-Tao theorem. Roughly speaking, 
the problem is that the von Mangoldt function (a weighted indicator function of the 

(4) A paper by Green [21], which proves the existence of a 3-term progression whose common differ­
ence is a sum of two squares in any dense subset of the integers, may be regarded as an exception. 
(5) There are, however, colouring results of this type, see the combinatorial proof of the polynomial 
van der Waerden theorem by Walters [54]. 
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primes) is unbounded, while the quantitative techniques from arithmetic combina­
torics only apply to bounded functions. However, it turns out that the von Mangoldt 
function can be majorized by a so-called pseudorandom measure which is quite well-
behaved. In particular, it can be shown that many statements involving truly bounded 
functions hold also, by transference, for functions that are bounded by this pseudoran­
dom measure. The transference principle has received significant simplifications and a 
new conceptual context through work done by Gowers [18], and it is this more recent 
viewpoint that we shall adopt in our exposition. A similar approach was independently 
discovered by Reingold, Trevisan, Tulsiani and Vadhan [40] in theoretical computer 
science, where the transference principle is known as the dense model theorem and 
has found several applications in the context of complexity theory. 

The second novelty concerns a new family of norms. In his work on Szemerédi's 
theorem, Gowers [17] introduced the Uk norms, often called uniformity norms or 
Gowers norms, and showed that the (k + l)-term progression count of a function is 
approximately invariant under small perturbations in the Uk norm - in other words, 
the uniformity norms control long arithmetic progressions. This raises the question of 
what can be said about functions that are large in the Uk norm, which is answered by 
the so-called inverse theorem. It is one of the central results in arithmetic combina­
torics (although for k > 3, its strong form was only a conjecture until very recently) 
and states, roughly speaking, that if the Uk norm of a function is large, then the func­
tion correlates with a polynomial structure of degree k — l.(6) The inverse theorem, 
together with the above-mentioned approximate invariance under small perturbations 
in the Uk norm, is essentially sufficient to prove Szemerédi's theorem. 

It is not too difficult to see that the uniformity norms are not sufficient for control­
ling polynomial configurations. To put it very simply, the reason is that in a linear 
configuration such as x, x + d, x + 2d, which defines a 3-term progression, the range of 
both variables x and d is essentially linear in N. In contrast, in a configuration such 
as x, x + m2, which represents a square difference, the range of m has to be restricted 
to y/N. Dealing with smaller parameter ranges required Tao and Ziegler to introduce 
new local uniformity norms, and study some of their properties. 

To conclude this section we give a brief overview of the structure of this paper. In 
Section 2 we define the uniformity norms and develop some of the fundamental no­
tions of higher-order Fourier analysis, following Gowers's harmonic analysis approach 
to Szemerédi's theorem. In Section 3 we show how one uses the existence of a pseu­
dorandom measure and the transference principle together with Szemerédi's theorem 
to obtain the Green-Tao theorem on arithmetic progressions in the primes. Finally, in 

(6) The uniformity norms have also appeared in the context of ergodic theory. A deep result of Host 
and Kra [34] on the structure of characteristic factors for certain multiple ergodic averages is in some 
sense analogous to the above-mentioned inverse theorem. 
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Section 4, we give more detail on the additional ingredients that are needed to treat 
polynomial configurations and obtain a proof of the Tao-Ziegler theorem. 

We shall give computations mostly in model cases. The reader wishing to skip the 
proofs should be able to do so at only moderate cost. 

2. HIGHER-ORDER FOURIER ANALYSIS A N D SZEMERÉDI'S 
THEOREM 

The first non-trivial case of Szemerédi's theorem, namely the existence of 3-term 
progressions in sufficiently dense subsets of the integers, was established by Roth [41] 
in 1953. Here and in the sequel the symbol <C stands for "is bounded above by a 
constant times". 

THEOREM 5 (Roth's theorem). — Suppose that A Ç [N] is a subset of density a 
which contains no 3-term arithmetic progressions. Then 

a <C (log log TV)-1. 

The proof proceeds via a dichotomy between randomness and structure, which 
relies heavily on the Fourier transform. Given a function / : ZJV —• C, we define its 
Fourier transform / : ZN —» C, for each t G Z/v, by 

f(t) = Exf(x) exp(2nixt/N), 

where, as is standard in the field, we use the expectation operator ExezN to denote 
the normalized sum YlxezN-^ Now given A Ç [JV], if all non-trivial Fourier coef­
ficients of the characteristic function 1A are "small" (the trivial one, with the above 
normalization, being equal to the density a), then we can count the number of 3-term 
progressions in A precisely. This is because a set whose Fourier coefficients are small is 
distributed somewhat uniformly in the interval [N], and, for the purpose of counting 
3-term progressions, behaves like a random set whose elements are chosen indepen­
dently with probability a. Specifically, the number of 3-term progressions in such a 
uniform set of density a is roughly a3N2, which is the number expected in the random 
case. On the other hand, if A is non-uniform, then there must exist a large Fourier 
coefficient. By the definition of the Fourier transform, this means that the character­
istic function of A exhibits a bias in some preferred "direction", i.e. it has increased 
density on the (approximate) level set of at least one non-trivial character. This level 

(7) One often prefers to work with the discrete Fourier transform on the finite abelian group 
instead of [N] Ç Z. It is not difficult to embed [N] into the slightly larger group ZN/ for some 
prime N' while sacrificing a factor of at most a constant. In the sequel we shall therefore make no 
distinction between [AT] and ZJV, and switch between the two settings whenever convenient. 
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set can be seen to contain a very long arithmetic progression (of length tending to 

infinity with N), and so by focusing on A restricted to this progression and rescaling, 

the argument can be iterated. The process stops when the density of A exceeds 1, 

which is clearly absurd. The trade-off between the density increase obtained at each 

step, and the size of the arithmetic progression on which this increase is obtained, 

gives rise to the bound on a stated above.(8) 

Unfortunately, the first part of this dichotomy breaks down when one tries to count 

progressions of length at least 4: it is not true that a set which is uniform in the Fourier 

sense defined above always contains the expected number of 4-term progressions. 

EXAMPLE 1. — The set ACZN defined by 

A = {x e ZN : x2 € [-aN,aN)} 

is uniform in the sense that sup^Q |1A(£)I ^s "small", but it contains "too many" J^-term 
progressions. 

Indeed, it is straightforward to show, using Gauss sums, that the Fourier transform 

on the non-trivial frequencies is very small (of the order of N~^^2~°^). It is perhaps 

less immediate to confirm that this set contains many more than the expected number 

of 4-term progressions, which is easily seen to be approximately a4N2. The reason is 

the elementary quadratic identity 

x2 - 3(x + d)2 + 3(x + 2d)2 -{x + 3d)2 = 0, 

which holds for all x,d G Z ^ . Indeed, since (x + 3d)2 is a small linear combination 

of x2, (x + d)2 and (x + 2d)2, the event that x + 3d lies in A is not independent 

of x, x + d and x + 2d being in A, and so the number of 4-term progressions in A is 

more like ca3N2 for some absolute constant c. (9) 

2.1. The uniformity norms 

If the Fourier transform is unable to help us reliably count 4-term progressions, 

we require an alternative analytic tool that does so. Developing such a tool was one 

of several profound innovations that were introduced by Gowers [17] in his harmonic 

analysis approach to Szemerédi's theorem. 

(8> Various important refinements have been made to this basic Fourier iteration method, notably 
by Bourgain [7] and Sanders [43]. 
(9) It turns out that quadratic identities of this type are the only obstructions to uniform sets con­
taining the expected number of solutions to a given system of linear equations, see [19]. 
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DEFINITION 1 (Uniformity norms). — Let k > 2 be an integer. For any function 
f : ZN —> C, define the Uk norm via the formula 

= kl[daXk(^ - rj)dp\i 

u;G{0,l}fc 

J?M/(x + o;.y), 

where for y = (z/i,... ,2/fc) £ ^jv undo; = (o;i,. . . ,0;*) G {0, l}k we have written 
UJ • y = uiyi + • • • + uJkVk, as well as g ^ ' / = / if \UJ\ = oji + • • • + ujk is even and f 
otherwise. 

First, it is not hard to show (but neither is it obvious) that this expression defines a 
norm for all k > 2. The main technical device for this purpose is the so-called Gowers-
Cauchy-Schwarz inequality, which is proved using several applications of the ordinary 
Cauchy-Schwarz inequality. It states that for any family of functions : Z;v —> C, 
UJ G { 0 , w e have the bound 

\ExezN,yezkN 
U>e{o,i}k 

^g„{x + oj.y)\< 

u;€{0,l} 
Ibwllc/* 

With the help of this inequality it is straightforward to verify that the uniformity 
norms form a nested sequence 

11/11^ < | l / H t f 3 < - " < l l /IU < •--ll/lloo-

We also record the fact that the Uk norms can be defined inductively via the formula 

||/||?/fc=E,eZJ|Ah/||2 

where Ahf(x) = f(x)f(x + h) should be viewed as a discrete derivative of / . To see 
this, consider the case where / is a phase function of the form f(x) = exp(27rig(x)/N)1 
so that Ahf(x) = exp(2ni(g(x) — g{x + h))/N). Finally, one checks by simple calcu­
lation that 

= Ex,a,b6Z„/(*)/(* + a) fix + b)f(x + a + b) = Ti\f(t)\4 = \\f\\*, 

so that the U2 norm is equivalent, for bounded functions, to the £°° norm of the Fourier 
transform. (10) This immediately implies that the proof of Roth's theorem based on 
the randomness-structure dichotomy sketched above can be rephrased replacing the 
Fourier transform by the U2 norm. And proofs involving the U2 norm turn out to 
be much more amenable to generalization than those involving the Fourier transform 
itself (although we shall recover some sort of "generalized Fourier transform" later). 

(10) Geometrically, we can picture the U2 norm as averaging the value of / over all 2-dimensional 
parallelograms with vertices x, x + a, x + b and x + a + b, and analogously its fcth-order sibling as 
averaging over A;-dimensional parallelepipeds. These parallelepiped structures also play an important 
role in ergodic theory, where corresponding semi-norms were defined by Host and Kra [34]. 
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2.2. The generalized von Neumann theorem 

It was shown by Gowers that the Uk norm controls the count of (k + l)-term 
progressions in the following sense. 

PROPOSITION 6 (Uk norm controls + l)-APs). — Let k > 2 be an integer, and 
let /o, / i , . . •, fk %N —> C be functions satisfying \\fj < 1 for j = 0 , 1 , . . . , k. Then 

\^x,dezNfo(x)fi(x + d)f2(x + 2d)...fk(x + kd)\< min \\fj\\uk. 
0<j<k 

Having defined the Uk norms, and more importantly realized their potential for 
controlling progressions, the proof of this statement is not very difficult (if a little 
tedious). It involves a number of applications of the Cauchy-Schwarz inequality, com­
bined with a suitable reparametrization of the progression itself. To give the reader a 
taste, we shall show in the next few lines how to control 3-term progressions by the 
U2 norm when all functions fj are equal to / . 
PROOF FOR k = 2: We first set u = x + d and write 

|EM/0r ) / ( s + d)f(x + 2d)\2 = \Ex,df(x)f(u)f(2u - x)\2, 

which by Cauchy-Schwarz and the boundedness assumption on / is bounded above 
by 

Eu\Exf(x)f(2u - x)|2 = E„Ex,x,/(x)/(2w - x)f(x')f(2u - x'). 

Reparameterizing once more by setting x' = x + a and 2u — x' = x + b gives 

®x,a,bf(x)f(x + a)f(x + b)f(x + a + b) = ||/||^2, 

which concludes the p r o o f . • 
This argument can of course be generalized, not only to longer progressions but 

to solutions of (almost) any system of linear equations with integer coefficients. This 
generalization was carried out by Green and Tao [31] in their paper on linear equa­
tions in the primes, resulting in the following proposition, dubbed the generalized 
von Neumann theoremS12^ In the statement a notion of complexity of a system of 
linear forms appears, of which we shall not give the exact definition since it is rather 
cumbersome and will not play an important role in the remainder of the article.(13) 

The attentive reader will have noticed that we have in fact shown that \Ex,df(x)f{x + d)f(x + 
2d) I < 11/11̂ 2? which is stronger than the statement originally claimed. For three distinct functions 
/05/15/2, however, Proposition 6 is best possible. 
(12) Our terminology is non-standard here. Green and Tao gave this name to Proposition 13 below, 
which we shall refer to as the relative generalized von Neumann theorem. 
(13) The definition of the complexity of a linear system is based on how many times one needs to 
apply the Cauchy-Schwarz inequality in the proof of Proposition 7. For a precise statement see 
Definition 1.5 in [31]. 
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PROPOSITION 7 (Generalized von Neumann theorem). — For i = 1 , . . . , m, let 
fi : Ziv —• C be a family of functions satisfying ||/i||oo < 1 for Mi = 
Suppose that (Li)1?=1 is a system of linear forms of complexity k — 1 in d variables 
with integer coefficients. Then we have 

d+r+d+r 
m 

i=l 
fi(Li(x))\ < min \\fiWuk. 

= l,...,m 
The reader may wish to bear in mind a (k + l)-term arithmetic progression as an 

example of a system of complexity k — 1, in which case we recover Proposition 6. 
What matters for the purpose of counting linear configurations in dense sets (and in 
the primes) is that the average on the left-hand side can be controlled by some Uk 
norm. (14) 

2.3. Inverse and decomposition theorems 

This section is not strictly necessary for a first attempt at understanding the Green-
Tao and the Tao-Ziegler theorem, and may thus be omitted on first reading. But it 
does play a crucial role for some of the subtler points we wish to make later on in the 
context of both linear and polynomial patterns. 

Proposition 6 above says that the count of (k + l)-term arithmetic progressions is 
stable under small perturbations in the Uk norm. In particular, if we could write the 
indicator function 1A of a set A as 1A = g + h, where ||/i||c/fc is sufficiently small and 
q is bounded, then we would have 

^x,dezN 
dr+ 

k 
lA(x + jd) « Ex,dezN 

k 

j=0 

g(x + jd) 

Now if the part g = 1A — h had some helpful structure, in particular one that might 
allow us to actually compute the average on the right-hand side, then we would be 
able to give a good (and hopefully strictly positive) estimate of the quantity on the 
left-hand side. In particular, we might be able to show that if the density a of A Ç [TV] 
is fixed and N is sufficiently large, then 

d+r+d+rd 
k 

j=0 
A{x + jd) > c(a) 

for some constant c(a) only depending on a. It is not hard to prove that this statement 
is equivalent to Szemerédi's theorem. 

A function whose Uk norm is small is said to be uniform of degree k — 1. A natural 
question therefore arises: if h represents the uniform part of a decomposition of the 
characteristic function 1A, what does the non-uniform part g look like? Equivalently, 

(i4) What the smallest such k is turns out to be an interesting question, see [19]. 
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what is the structure of a function whose Uk norm is large? Let us first answer this 
question for k = 2. 

THEOREM 8 (Inverse theorem for U2). — Let S > 0. Suppose that f : ZN —» C safe-
/&e5 ll/lloo < 1 ||/||i/2 > <5. Then there exists a linear phase function <f> : Z^ —> C 
such that 

^ / ( r r ) ^ ) ! >S2, 

This function <j> is of the form (f>(x) = exp(27rixt/N) for some t G Zjy. 

Proof. — We have already seen that ||/||t/2 = ||/||4, which can be bounded above 
by ||/||TOll/lloo- Thus for a bounded function, the condition ||/||c/2 > S implies that 
ll/lloo > Therefore, by definition of the Fourier transform, there exists a linear 
phase function (f){x) = exp(2irixt/N) for some t G ZN such that \Exf(x)4>(x)\ > S2. 

In other words, if / has large U2 norm, then it correlates with a linear phase. For 
higher values of k, we can a priori only make a rather trivial statement, for which we 
need the following definition. 

DEFINITION 2 (Dual function). — For any f : —> C, define the dual function 2)/ 
of order k by the formula 

2>/(a0 = Eyez* 
++red+zr+(( 

= kl[daXk(^ - rj 

It is immediate from this definition and that of the Uk norm that if ||/||[/fc is large, 
then so is the inner product (/, 0 / ) := Exf(x)0f(x), where 0 / is the kth. order dual 
function of / . Therefore, a function whose Uk norm is large correlates with its own 
fcth order dual function. This is not a very useful statement, however, since we have 
little tangible information about the structure of the dual function of an arbitrary 
function / . However, we shall encounter these soft obstructions to uniformity again 
later on. 

In fact, a much stronger and more explicit statement is true, which is called the 
inverse theorem for the Uk norm. For simplicity, we shall first state the case k = 3. We 
shall informally call a function a generalized quadratic phase if it "behaves quadrati-
cally" on an "approximate subgroup" OÎZN, and give a rigorous definition in the more 
general case below.(15) 

(is) por example, <j) can be expressed as 1B(#) exp(2niq(x)/N), where B(K,p) = {x G 2>N '• \\xt/N\\ <p 
for all t G K} is a Bohr set whose width p and dimension \K\ are bounded in terms of <5, and 
q : B —• ZJV is a function that satisfies the quadratic identity q(x) — q(x + a) — q(x + b) — q(x + c) + 
q(x + a + b) + q(x + a + c) + q(x + b + c) — q(x + a + b + c) = 0, whenever all these terms are defined. 
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THEOREM 9 (Inverse theorem for U3). — Let ô > 0. Suppose that f : Z;v —• C satis­
fies ll/lloo < 1 and ||/||c/3 > ô. Then there exists a generalized quadratic phase (j) such 
that 

\Exf(x)<t)(x)\>c(ô), 

for some constant c(S) that depends on S. 

Note that it is easy to see by direct calculation that when f{x) = exp(2iriq(x)/N) 
for some quadratic polynomial q, then ||/||c/3 = 1, so the inverse theorem gives a weak 
converse to this statement: if the U3 norm is bounded away from 0, then / correlates 
with a generalized quadratic phase. 

The proof of this inverse theorem is ingenious and combines a number of heavy­
weight tools from additive combinatorics. It was largely contained in Gowers's proof of 
Szemerédi's theorem [17] culminating in a slightly weaker statement than Theorem 9; 
the strengthened version stated above is due to Green and Tao [24] who added one 
additional ingredient to the proof. The very rough idea of the proof of Theorem 9 is 
as follows: if \\f\\u3 is large, then by the inductive definition of the U3 norm we know 
that for many values of ft, Ahf has large U2 norm. This means that, for many values 
of ft, the derivative Ahf of / correlates with a linear phase function. The main diffi­
culty lies in collecting these weak linear structures together in such a way that one is 
able to integrate the statement and conclude that / itself correlates with a quadratic 
structure. This crucial step is achieved with the help of a purely combinatorial result 
known as Freiman's theorem [13, 42]. (16) The bound in Theorem 9, i.e. the depen­
dence of c(S) on <5, which is currently quasi-polynomial in nature as a consequence 
of a recent result of Sanders [44], has been shown to be equivalent to the bound in 
Freiman's theorem, and improving it remains an important focus of research in the 
area. 

It is only very recently that Green, Tao and Ziegler [30], in a major breakthrough, 
were able to prove an inverse theorem for higher values of k. Both statement and proof 
draw inspiration from ergodic theory, and in particular the deep structure theory of 
characteristic factors induced by the analogue of the Uk norms in the ergodic context, 
developed in a seminal article by Host and Kra [34].(17) We shall need the following 
definition, which made its first appearance in [5]. 

DEFINITION 3 (Nilsequence). — Let G be a k-step nilpotent group, i.e. a connected, 
simply connected Lie group with central series G = G\ D ••• D Gfc+i = { 1 } . 

(16) Freiman's theorem states that a set B Ç Z whose sumset B + B = {b + b' : 6, b' G B} is small, 
i.e. \B + B\ < K\B\ for some constant K, is efficiently contained in a somewhat rigid algebraic 
substructure (a generalized arithmetic progression) whose size and dimension depend only on K. 
(17) For related work on the analysis of multiple ergodic averages see also Conze and Lesigne [10], 
Furstenberg and Weiss [15] and Ziegler [55]. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2013 



400 J. WOLF 

Let F Ç G be a discrete co-compact subgroup. Then the quotient G/T is a fc-step 
nilmanifold, and a sequence of the form (F(gnx))ne^ with g G G,x G G/T and con­
tinuous F : G/T —> R 25 ca//erf a fc-step nilsequence. 

Note that G/T = R/Z is an example of a 1-step nilmanifold, and that any function 
of the form n h-> F(X + na) for a G R and continuous F is a 1-step nilsequence. 
In particular, the linear characters n t—> exp(27rma) are examples of basic 1-step 
nilsequences. For higher values of k, including k = 2, a A:-step nilsequence displays an 
undeniably non-commutative character.(18) A simple example of a 2-step nilmanifold 
is given by the quotient of the matrix group G and its discrete subgroup T defined by 

G = 
1 Z R 

0 1 M 

0 0 1 

, r = 

1 z z 

0 1 z 

0 0 1 

which can be identified topologically with the 2-torus. Now let g G G be given by 

9 = 

1 m (3 

0 1 a 

0 0 1 

where m G Z and+d+r+d+r+d+r+d+r+dG R. Then a shift of (x,y) G T2 by g is given by 
(x,y) i-> (x + a , + /? + mx), and the nilsequence F(gn(x,y)) for n G N is given 
by F(x + na,?/ + n/3 + | m n ( n + l )a ) , clearly exhibiting the claimed quadratic be­
haviour. Observe in particular that a quadratic phase function such as 
n i—• exp(7rm(n + l )a) belongs to the family of basic 2-step nilsequences.(19) 

We are now able to state the inverse theorem for the Uk norm, which asserts that 
a function whose Uk norm is large correlates with a (k — l)-step nilsequence. 

THEOREM 10 (Inverse theorem for Uk). — Let 0 < 5 < 1 and k > 1 be an integer. 
Then there exists a finite collection Mk,8 of k-step nilmanifolds G/T, each equipped 
with some smooth Riemannian metric dc/r as well as constants C(k,S), c(k,S) > 0 
with the following property. Whenever N > 1 and f : [N] —• C with \\f\\oo < 1 is a 
function such that (d rld dlr ) ^ 8, then there exist a nilmanifold G/T G Mk,ô> some 
g G G and a function F : G/T —> C with Lipschitz constant at most C(k,S) with 
respect to the metric do/Y? such that 

\En€lN]f(n)F(g"x)\>c(k,5) 

(is) This partly explains our difficulty in defining a "generalized quadratic phase" above. 
(19) pother examples of 2-step nilsequences, such as the Heisenberg nilflow, are given in full detail 
in Section 12 of [24]. 
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The passage from weak linearity of the derivative to the quadratic nature of the 
function itself, which we briefly alluded to earlier, amounts in the more general case 
to a certain "cohomological" task, in which one has to show that a certain "cocyle" is 
essentially a "coboundary". This work is very recent and the current proof is almost 
certainly not the right one, so we shall say no more about it here but instead refer 
the interested reader to the carefully crafted announcement [29]. 

Given an inverse theorem, it is possible to deduce a decomposition theorem that 
allows us to write a bounded function / as a sum / = g + h, where h is uniform 
of degree k — 1 and g has polynomial structure of degree k — 1. Note that in the 
case k = 2, such a decomposition simply consists of a partition of the usual Fourier 
expansion into small and large coefficients, which is straightforward to write down 
since the linear characters form an orthonormal basis. For k > 2, no such canonical 
basis exists, and a number of other methods have been employed, such as an energy 
increment strategy on factors [27], or the so-called boosting method from theoretical 
computer science [51]. The connection between inverse theorems and decomposition 
theorems has recently been formalized by Gowers [18] (see also the first application 
in [20]), who showed that the Hahn-Banach theorem from functional analysis can 
be used to deduce decomposition theorems from inverse theorems for a large class of 
norms, including the uniformity norms. In the same paper, he showed that the Hahn-
Banach theorem gives an alternative proof of the transference principle, which we shall 
discuss in Section 3.2. Moreover, we shall see in Section 3.4 that it is precisely the 
existence of a higher-order inverse and corresponding strong decomposition theorem 
which provides asymptotics for linear configurations in the primes. 

2.4. Polynomial generalizations 

It is natural to ask for polynomial generalizations of Szemerédi-type theorems: 
is it true that any sufficiently dense subset of the first N integers contains a given 
polynomial configuration? For example, is it true that any sufficiently dense subset 
of [N] contains a configuration of the form x, x + n2 for x, n G N ? The latter question 
was answered in the affirmative by Sârkôzy [45], whose theorem (with the best known 
bound due to Pintz, Steiger and Szemerédi [38]) we state below.(20) 

THEOREM 11 (Sârkôzy's theorem). — Suppose that A Ç [N] is a subset of density a 
which contains no two distinct elements whose difference is a perfect square. Then 

a < (logiV)-^loglogloglogiV. 

(20) An analogous statement is easily seen to be false for a difference of the form n2 + 1. Since 
there are no squares congruent to 2 mod 3, we can take the set of multiples of 3 as a (very dense) 
counterexample. 
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By the prime number theorem, the exceptionally strong quantitative information 
in Theorem 11 immediately implies the existence of square differences in any positive 
density subset of the primes, for density reasons alone. The proof of Sârkôzy's theorem 
proceeds via classical Fourier analysis on Z, following the circle method approach of 
Hardy and Littlewood, and can be extended to configurations of the form x, x + P(n), 
where P is an "intersective" polynomial.(21) Unfortunately, no such quantitative re­
sults are known for more general polynomial systems such as x, x + n2, x + 2n2 or 
x,x -f n,x + n2. What we do have is a result of Bergelson and Leibman [6], proved 
entirely within the realm of ergodic theory, which states in a purely qualitative fashion 
that any subset of the integers of positive upper density contains the translate of a 
simultaneous image of a system of polynomials with zero constant coefficient.(22) 

THEOREM 12 (Bergelson-Leibman theorem). — Let A Ç Z be a set of positive up­
per density, and let Pi,..., Pk be polynomials with rational coefficients satisfying 
Pi(0) = 0 for i = l , . . . , fc . Then there exist x,n G Z such that x + Pi{n) G A 
fori = l,...,k. 

Theorem 12 follows from an abstract result about the convergence of multiple 
ergodic averages in a measure-preserving dynamical system, via Furstenberg's corre­
spondence principle [14]. The latter gives an explicit way of constructing a dynamical 
system in such a way that the recurrence results obtained therein can be transferred 
to corresponding statements in the integers. A combinatorial proof of the Bergelson-
Leibman theorem is yet to be found. We shall discuss this theorem further in the 
context of the primes in Section 4.1. 

3. LINEAR CONFIGURATIONS IN THE PRIMES 

Having explored what is known about arithmetic structure in dense subsets of the 
integers in some detail in the preceding section, we now turn our attention to the 
primes. It is convenient to weight the indicator function of the primes so that their 
density is roughly constant throughout an interval. The tool traditionally used for 
this purpose is the von Mangoldt function, denoted by A and denned by 

A(n) = 
log(p) if n = pm for some m G M, 
0 otherwise. 

(21) An intersective polynomial has a root modulo g for every q G N. 
(22) rpkg most generai version of Theorem 12 is in fact multidimensional and holds for any system of 
intersective polynomials. 
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The prime number theorem tells us that Ene^A(n) = 1 + o(l) (and is in fact equiv­
alent to this statement). The first obstacle that needs to be overcome when trying 
to prove Theorem 1 is that the primes are not equidistributed amongst all residue 
classes. As a trivial example, note that very few primes (indeed) are even. However, 
it is easy to check that the odd primes no longer show any bias towards either residue 
class modulo 2 after applying the map x i-> (x — l ) /2 . In a similar manner, one can 
remove the bias with respect to two of the residue classes modulo 3, and similarly 
for all small primes p. This is called the W-trick by Green and Tao, and leads to the 
definition of the modified von Mangoldt function A : N —> M+ via the formula(23) 

Â(n) = 
' d+rd d+d+ \og(Wn + 1 ) if Wn + 1 is prime, 

10 otherwise, 

where (j) is the Euler totient function and W = rip<™ P 1S ^ne product of aU primes not 
exceeding a threshold wS24^ Clearly the normalization is chosen so that EnG^]A(n) = 
1 + o(l), by the Siegel-Walfisz theorem on primes in arithmetic progressions.(25) 

A second and much more serious obstacle is that the function A is unbounded, 
and therefore none of the results from the preceding section are directly applicable. 
Overcoming this latter impediment is where the main achievement of Green and Tao 
lies: they developed a way of "transferring" known results and techniques for dense 
subsets to a non-dense setting. The main idea is to embed the primes into a well-
behaved set with respect to which they are dense. A natural candidate for such a set 
would be the set of almost primes. However, it turns out to be more convenient to 
use not a set but a majorizing pseudorandom measureS2^ 

DEFINITION 4 (Pseudorandom measure). — We say that v : Z;v —> R+ is a fc-pseu-
dorandom measure that majorizes the primes if it satisfies the following properties S27^ 

• v is normalized: 

1&xeZNu(x) = 1 + o(l); 

(23) In order to establish the existence of arbitrarily long progressions in a positive-density subset 
A of the primes, one needs to replace the residue class n = 1 mod W by n = b mod W, where 
(65 W) = 1 and the residue class b is chosen according to the pigeonhole principle so as to coincide 
with a positive fraction of A. 
(24) parameter w can be thought of as roughly log log AT, although Green and Tao remark that 
it is possible to set it equal to a very large constant. 
(25) Note that A(n) differs from A(Wn + 1) only on the negligible set of prime powers. 
(26) Tne pseudorandom measure should more accurately be called a weight function, or probability 
density. It is also sometimes referred to as an enveloping sieve, see for example [39]. 
(27) rphe exact vaiues 0f the constants depending on k which appear in the definition are rather 
unimportant, and in fact it is quite probable that these conditions can be somewhat relaxed in 
general. 
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• v majorizes A: for all e îV < n < 2ekN', where €k = (2k(k + 4)!) 1, we have 

dr+d+ds+e+d+r+d+'r+d+r 

• v satisfies the linear forms condition: for any t < 3k — 4, m < k • 2k 1, 

= kl[daXk(^ - rj)dp\i(ri) - dpXk(Ç - rj)da\i(ri)\ 

where the rational coefficients of the affine linear forms ipi : 1}N Zjy have 
denominator at most k, and the satisfy a mild non-degeneracy condition; 

• v satisfies the correlation condition: for any h i , . . . , hm G ZJV, m < 2k~1, 

ExezNv(x + h i ) . . . v(x + hm) < 
l<i<j<m 

r(hi - hj), 

where r : ZJV -+ M+ satisfies ExezNrq(x) < C{m,q) for all 1 < q < oo. 

In Section 3.1, we extend Proposition 6 to functions that are not necessarily 
bounded by a constant, but rather by a pseudorandom measure. Subsequently we 
give an outline of the key step of the proof of the Green-Tao theorem, namely the 
transference principle, which allows us to apply Szemerédi's theorem to functions that 
are majorized by a pseudorandom measure. It is only in Section 3.3 that we concern 
ourselves with the concrete existence of a pseudorandom majorant for the primes. 
Finally, in Section 3.4, we briefly discuss more general linear configurations in the 
primes, and sketch how recent developments in higher-order Fourier analysis yield 
asymptotics for such configurations. 

While we do not give complete proofs of the results stated, we intend to point 
out where the individual properties of the measure v come into play. For reasons 
of brevity we shall be rather cavalier about the use of o(l) and O(l) notation. In 
practice, however, one needs to check carefully that the quantities this notation hides 
do not grow too large upon multiplication with each other. 

3.1. The generalized von Neumann theorem relative to a pseudorandom 
measure 

Our first task is to extend Proposition 6 to the case where each function fa is 
bounded by a pseudorandom measure v. The argument is very similar to the one 
we gave earlier for k = 2, except that one now needs the linear forms condition to 
take care of the various averages of v that arise from multiple applications of the 
Cauchy-Schwarz inequality. 

PROPOSITION 13 (Relative generalized von Neumann). — Suppose that v is a 
(k 1) -pseudorandom measure, meaning in particular that it satisfies the corre­
sponding linear forms condition. Suppose that /o, / i , . . . , fk • %N C are functions 
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satisfying \fj(x)\ < v(x) for all j = 0 ,1 , . . . , k. Then there exists a constant C(k) 
such that 

\^x,dezN]lfj(x + jd)\ <dr C(k) min \\fj\\uk. 
0<j<k 

We shall only give the proof in the case where k = 2 and the minimum on the 
right-hand side is attained for j = 0, which contains all the ingredients of the general 
case but is less notation-intensive. 
PROOF FOR k = 3: Reparametrizing the system 

E*|d/o(aO/i(a; + d)f2{x + 2d) = Eyuy2f0(yi + y2)fi{y2/2)f2(-yi) 

to ensure that the variables yi, y2 are separated, the triangle inequality implies that 

|EX|d/o(x)/i(a: + d)/2(x + 2d)| < Eyiis(-yi)\®y2fo(yi + i/2)/i(y2/2)|. 

A first application of the Cauchy-Schwarz inequality, using the fact that Eu = l+o(l), 
gives an upper bound of 

(i + 0(i)) (Eyiu(-yi)KJo(yi + 2/2)/i(W2)|2)1/2, 

and expanding out the square yields 

(1 + o(l)) (Ey2,y-/1(j/2/2)/1(^/2)E!/lI/(-j/1)/o(j/i + y2)fo(yi + • 

A second application of Cauchy-Schwarz gives an upper bound of (1 + o(l)) times 

(Eyily^y2ly^(-yi)^(-ï/i)^(^/2)i/(i/2/2)/o(yi + y2)fo(yi + l/2)Mv'i + !fe)/o(!/i + , 

which can be rewritten as 

(1 + o{l)) (ExMMf0(x)Mx + h1)f0(x + h2)f0(x + h± + h2)W(x, huh2))1/4 , 

where W(x, hi,h2) = Eyi/(—y)u(—y — h\)v{(x — y)/2)v((x — y + h2)/2). It remains to 
show that at not unreasonable cost, we can replace the function W by the constant 
function 1. In other words, we want to show that 

ExM,h2fo(x)fo(x + fti)/o(s + h2)f0(x + fti + h2)(W(x,huh2) - 1) 

is small. But by Cauchy-Schwarz and the boundedness assumption on /o, we have 
that the latter expression is bounded by 

{ExMMv(x)v(x + h{)v{x + h2)v(x + hx + h2))1/2 

(ExMMv(x)v{x + hi)u(x + h2)v(x + hx + h2)(W(x,huh2) - 1)2)1/2. 

Now (W(x,huh2) - l)2 = W(x,hx,h2)2 - 2W(x,h1,h2) + 1, so each of the four 
expectations involved is of a form to which the linear forms condition applies. In 
particular, each of the four expectations equals 1 + o(l), giving a final bound of o(l) 
as desired. • 
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It can easily be checked that if v is a (k + 1)-pseudorandom measure, then so is 
| ( 1 + )̂> and hence Proposition 13 also applies to functions bounded by 1 + v (up 
to constant factors). This is a fact which we shall need in the next section, where we 
shall decompose / = A, which is majorized by v, as / = g + h, where g is bounded by 
1 and h has small Uk norm. In this case Proposition 13 says that contributions from 
h are negligible to any average counting arithmetic progressions in / . 

3.2. The transference principle 

We now turn to the heart of the proof of the Green-Tao theorem, namely the trans­
ference principle. To reiterate, the main idea is that if a theorem (such as Szemerédi's 
theorem or the inverse theorem) is true for bounded functions, then it should be true 
for functions that are majorized by a pseudorandom measure. Indeed, a first step 
in this direction was taken by Kohayakawa, Luczak and Rôdl [35], who proved the 
existence of 3-term progressions in dense subsets of a (truly) random set. Since then, 
a number of results from additive combinatorics have been transferred to the context 
of dense subsets of random sets (see for example [32]). With the benefit of hind­
sight therefore, establishing a similar result for dense subsets of pseudorandom sets 
seems rather natural, even though at the time it represented a clear conceptual leap 
that marks the main advance in the work of Green and Tao (and the earlier paper 
by Green on Roth's theorem in the primes [22]). The transference principle was not 
stated explicitly in [25] but was for the first time isolated in [50]. Both papers proceed 
by decomposing A into an almost periodic and a weakly mixing part, reminiscent of 
Furstenberg's ergodic structure theorem [14].(28) Here we shall follow the more recent 
analytic approach due to Gowers [18], which was also simultaneously and indepen­
dently discovered by Reingold, Trevisan, Tulsiani and Vadhan [40] in the context of 
theoretical computer science. This rather general and powerful method is based on 
the Hahn-Banach theorem, or the duality of linear programming as it is known to 
computer scientists.(29) 

THEOREM 14 (Transference principle). — For every S,rj > 0, there exists e > 0 
with the following property. Let v be a (k + 1)-pseudorandom measure satisfying 
\\v — l\\uk < €> and suppose that f : ZN R is a function satisfying 0 < / < v. 
Then there exists a function g such that 0 < g < (1 — S)-1 and \\f — g\\uk < V-

(28> Specifically, one writes / = E(/|$) + (/ - E(/|$)) for a a-algebra $ constructed out of level sets 
of dual functions using an energy increment strategy. For further details see Host's exposition [33]. 
(29) por example, this method gives strongly quantitative quadratic decomposition theorems, which 
resemble an inversion formula for a type of "quadratic Fourier transform" [20]. It has also found 
important, more combinatorial applications in recent work of Conlon and Gowers [8]. 
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Let us first sketch how this result, together with the relative generalized von Neu­
mann theorem and Szemerédi's theorem, implies the Green-Tao theorem. 
SKETCH PROOF OF THEOREM 1: We wish to estimate from below the average 

EXidf(x)f(x + d)...f(x + kd), 

where / (n) = A(n), the modified von Mangoldt function defined above, is bounded 
above by (a constant time) v. Theorem 1 4 gives us a function 0 < g < 1 + ô such 
that | | / — g\\uk < rj, and so by Proposition 13 the above average is, up to small error 
terms, equal to (a constant multiple of) 

^x,d9{x)g{x + d)... g(x + kd). 

Now g is an (almost) bounded function, so Theorem 3 applies, implying that the latter 
average is bounded below by a constant depending only on the density of g. But the 
density of g is strictly positive since Eg = Ef-E(f-g), and \E(f—g)\ < \\f—g\\u* < V> 
concluding the proof for an appropriate choice of the parameters ô and rj.d+r+d+r• 

Before we delve into a sketch proof of Theorem 14, we first verify that when v is a 
(k + 1)-pseudorandom measure, the Uk norm cannot distinguish it from the constant 
function 1, and so the additional hypothesis in Theorem 14 is always satisfied. 

LEMMA 15 . — If v is a (k + 1)-pseudorandom measure, then \\v — l||c/fc = o(l). 

Proof — We simply rearrange the definition of the Gowers norm and write 

= kl[daXk(^ - rj)dp\i(ri) 
wG{0,l}' 

(i/lx + u-h) - 1) =d+r+d+r+dfc. 
SC{0,l}fc 

d+r+d 

d+r 
ij(x-\-u)' h) 

The latter expression equals 

sc{o,i; 
(-l)|5|Efcll...|hfc(Ea 

cues 
v{x + UJ - /&)), 

where the expectation in x can be written as Exz/(^i(#)) • • • ^(^m(x)) for some linear 
forms fa. For each hi,...,hk, this expectation evaluates to 1 + o(l) by the linear 
forms condition, and the result follows on summing. • 

Let us recall the statement of the classical Hahn-Banach theorem in the context 
of finite dimensional vector spaces over R, which will be used as a black box in the 
proof of the transference principle. Consequently, the function g that appears in its 
statement is not constructed explicitly, but rather its existence is the result of an 
argument by contradiction. 

THEOREM 1 6 (Hahn-Banach theorem). — Let X = (R^H • ||) be a normed space 
and let x e X be a vector with \\x\\ > 1. Then there is a vector z G R^ such that 
(x,z) > 1 and such that \{y,z)\ < 1 whenever \\y\\ < 1. 
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Defining the dual norm of || • || by ||#||* = sup{|(x, y)\ : < 1}, we can reformulate 

the statement of the theorem as follows: if x G X satisfies > 1, then there exists z 

such that (x,z) > 1 and ||z||* < 1. We shall actually need a slightly modified version. 

For z = 1,2, let || • ||i be a norm defined on a subspace V* of R^, and assume that 

V1-\-V2=RN. For a i ,a2 G R+, define the norm 

||x|| = inf{ai||ari||i +a2|k2||2 :x = xi + x2}, 

whose dual is easily seen to be(30) 

\\z\\* =max{aï1M\laï1\\z\r2}. 

With this notation we immediately deduce the following corollary. 

COROLLARY 17. — Let Vi,V2 be as above, and let ai,a2 G R+. Suppose that it is 

not possible to write the vector x G R^ as X\ + x2 in such a way that X{ G V{ for each 

i, and ai| |#i| | i +oj2||#2||2 < 1. Then there exists a vector z G R^ such that (x,z) > 1 

and such that \\z\\* < ai for i — 1,2. 

We are now in a position to sketch the deduction of the transference principle from 

Corollary 17. Note that the statement of the transference principle can indeed be 

viewed as a kind of decomposition theorem: we want to write the function / , which 

is bounded by the pseudorandom measure z/, as a sum g + h, where h = f — g is small 

in Uk and g is (almost) bounded. 

SKETCH PROOF OF THEOREM 14: Suppose for the sake of contradiction that it is not 

possible to write / = g+h with ||#||oo < (1 — <̂ )_1 and \\h\\uk < rj. Then the hypotheses 

of Corollary 17 are satisfied with Vi = (RN, || • ||oo), V2 = (RN, \\ - \\uk), ax = 1 - S 

and a2 = 77-1. Therefore there exists (j) G RN satisfying ||0||^O = | | 0 | | i < l — S and 

Ml* <V~' but < / , 0 ) > l . 

Now suppose for a moment (and this is a significant oversimplification) that <\> only 

took positive values. Then we would have 

K (/,</>>< <M> = (1,0) + (v - 1,0>. 

Now since <f> has Uk dual norm bounded by r/-1 and ||1 — vWu* < e> this is, up to an 

error of ery-1, equal to 

{i,4>) = Hh<i-s, 

giving the desired contradiction if e is chosen sufficiently small. Of course, in reality 

things are not quite as easy as that. Denoting by 0 + = max(0,</>) the positive part 

of 0 , we have 

!<(/,</>><(/,</>+> <{v, </>+). 

(30) jjere iî n* _ Sup{|(2,cc)| : x eVi, \\x\\i < 1} is a semi-norm. 
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In order to proceed as above, that is, to say that the latter inner product is ap­
proximately equal to (1 ,0+) , we would need to know that </>+ is bounded in the Uk 
dual norm. But a priori we know nothing about where (f) is positive or negative, just 
that its Uk dual norm is bounded. One can, however, use the Weierstrass approxima­
tion theorem to obtain a polynomial P such that </>+ « P(</>). So it suffices to show 
that ||P(0)||^fc is bounded whenever ||0||̂ fc is. For, in that case, we could continue the 
above string of inequalities, up to an error depending on the quality of the polynomial 
approximation, via 

("> P(4>)) ~ (1) P(4>)) ~ (1) 4>+) <i — S. 

In order to show that ||P((/>)||̂ fc is bounded under the assumption that ||0||̂ fe is, it 
suffices by linearity to consider the case where P is a monomial X1X2 • • -xm. Since 
||</>||̂ fe is small, we know that <j> is essentially a fcth order dual function (although of 
course this needs to be made precise). Thus, in order to complete the proof of the 
transference principle it is enough to prove a lemma to the effect that products of 
dual functions have bounded Uk dual norm. Since the function h that gave rise to the 
bound ||0||̂ fc < V-1 is only bounded by 1 4- v instead of 1, we need to consider dual 
functions of functions that are bounded by a pseudorandom measure.(31) 

LEMMA 18. — Suppose that the functions / i , . . . , fm : ZN —• C satisfy \fj(x)\ < v(x) 
for each j = 1 , . . . , m, where v is a (k + 1)-pseudorandom measure. Then there exists 
a constant C(m) such that 

l | 2 ) / i " -2 ) /m| |^ <C(m] 

where 0 refers to the kth order dual operator introduced in Definition 2. 

Proof. — We need to show that 2)/i • • • 0/m) is bounded by a constant depending 
on m whenever g : Z^ —> C is such that \\g\\uk < 1- The inner product can be written 
as 

ExezNg(x) 
m 

3 = 1 
d+r+d+r+ 

u;€{0,l}fe\Ofc 
fjix + whW), 

and with a change of variable h^ = h + becomes 

ExezNg(x) 
m 

3 = 1 
d+r+d+re+dr+ 

ue{o,i}k\ok 
fjix + uj-h + w H(j)). 

(31) In order to make this step precise, one defines another norm ||/||BAC = max{|(/, 0g)\ : 
0 < g < 1 + i/}, whose dual ||/||^AC = inf{^i lA*l : / = Y^i A*0/i>° < /i < 1 + "} measures 
the extent to which a function / can be written as a small linear combination of dual functions. 
A sufficient condition for H/iĤ fe to be at most r\ is then that ||^||BAC < V> and hence the actual 
condition on (f) we end up with is H^ll^^ < r1~1- This, together with the remark following the proof 
of Proposition 13, explains the hypotheses in Lemma 18. 
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Rearranging, we obtain 

^H=(H(1),...,H(™))e(zkN)™^'xezNg{x) 

o;6{0,l}fc\0A 

d+r+d+r 
m 

d+r+d 

fiix + UJ-H + UJ-H^). 

which, with gu%HW = L-=1 J Ax + UJ • H^n equals a Gowers inner product of the 
form 

= kl[daXkd+r+d+d+(^ - rj)dp\i(ri) -
u;e{0,l}fc\Ofc 

9u>-H(x + V'H). 

By the Gowers-Cauchy-Schwarz inequality from Section 2.1, we find that this expres­
sion is bounded above in absolute value by 

^He(zkKT)™\\9\\uk 
we{o,i}fc\o* 

Htfw.tfllc/fc < SUp EHe/Zfc )m||̂ w.H||c7fc. 
d+r+d+r+d 

But for fixed uo G {0, l}fc\0fc, as H runs through ( Z ^ ) M , LO-H runs through all values 
of ZJV, so the expression we are trying to bound can be rewritten as 

iiiu(1),...,u(™)eZAril̂ ceziv,/iez£r 
u>'e{o,i}fc 3=1 

m 
T-r . , = kl[daXk(^ - rj)dp\i(ri) 

— ErE€Ziv,̂ €Ẑ  
m 

d+r 
Eti(i)eZAr 

a>'e{0,l}fc 

= kl[daXk(^ - rj)dp\i( 

By hypothesis on / j and Holder's inequality the latter average is bounded above by 

^xezN,hezkM (^Wzjv 
w'e{o,i}fc 

v(x+u+u>''h))m = E ^ ^ E ^ 
u/G{0,l}fc 

i/(yW-/i))m, 

which, by the correlation condition in Definition 4 applied to the expectation in y and 

the triangle inequality, is bounded by 

dr++d+r 

wVw"G{0,l}fc 
r(ft • (a/ - w")))m < C(m) 

u>'^cj"£{0,l}k 
sup E ^ r ^ . ^ ' - ^ O r . 

But for u/ ^ a;", h • (a/ — a/') uniformly covers ZN &S H runs through Z ^ , and r is 
assumed to have bounded moments of all order, so the proof is complete. • 

Even though Green and Tao's original approach to the transference principle is 
quite different, this lemma also played a crucial role there. It is the only point in the 
argument where the correlation condition is used, and it concludes our sketch of the 
proof of the transference principle. • 
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3.3. Existence of a pseudorandom measure 

In order to complete the proof of the Green-Tao theorem, it remains to establish 
the existence of a pseudorandom measure that satisfies the conditions given in Defi­
nition 4. That is, we need to find a majorant for the modified von Mangoldt function 
that averages roughly 1 and satisfies the linear forms and correlation conditions. As 
we observed before, the Siegel-Walfisz theorem tells us that EnG[jv]A(n) = 1 + o(l), 
but higher-order correlations, such as the ones necessary for the linear forms and cor­
relation conditions, are in general rather poorly understood. However, it is possible 
to replace A, which can be written as 

A(n) = 

d\n 

i(d) l o g - , 

where JJL is the Môbius function(32), by a truncated version which is localized not to 
primes but to "almost" primes, meaning integers with no small prime factors. For 
example, averages such as 

Ene\N]AR(n + hi) • • • AR(n + hm 

for arbitrary h i , . . . , hm, where the truncated divisor sum AR (for R a small power 
of N) is defined by 

Aft(n) = 
d\n,d<R 

fx(d) log 
R 

d 
d\n 

u(d) log. 
R 

d1 

are much better understood as they fall within the remit of sieve theory methods. In 
particular, concrete asymptotics for such averages were given in the work of Goldston 
and Yildirim [16] on small gaps between primes. A promising candidate for a majorant 
for A is thus the function 

v(n) = 
è(W)AR(Wn + l)2 

W logR 

where W is the product of small primes introduced at the start of Section 3.(33) 

It was observed by Tao ([49], see also [33] and Appendix D of [31]) that the 
necessary correlation estimates can, in a qualitative sense, be deduced from a quite 
elementary fact about the Riemann zeta function, namely that it has a simple pole of 

(32) The Môbius function /x(n) is defined to be 1 when n is the product of an even number of distinct 
prime factors, -1 when it is the product of an odd number of distinct prime factors, and 0 otherwise. 
By definition /z(0) = 1. 
(33) Qne can check that if Wn + 1 is prime and n is of order comparable to iV, with N sufficiently 
large, then Ap(Wn + 1) = logR. 
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order 1 at z = 1. The trick is to smooth the truncated divisor sum AR even further, 
introducing a mollifier x ' R —• R supported on [—1,1] and writing 

Aj*fv(n) = 

D\N 

e+eg \ogd\ 
logRJ 

Replacing AR by A#?x in the definition of the majorant v above (and renormalizing 
by a factor of (logi?)2) makes the latter rather easier to handle. In the original proof 
of Green and Tao the function log+ x, which appears in the definition of AR above, 
was expressed as a contour integral 

log, x = 
1 

2m 

xz 

z2 
dz 

along the vertical line ^R + it, which allowed them to estimate correlations of AR 
using a multiple contour integral involving the Riemann zeta function £. This required 
knowledge of the classical zero-free region of £ to the left of the line z = 1. The 
mollifier x> °n the other hand, can be expressed in terms of its Fourier transform, 
which decays rapidly and allows one to truncate the integrals involved to a short range, 
so that more elementary information about £ is sufficient for their estimation. From 
a number-theoretic point of view the verification of the linear forms and correlation 
conditions is not particularly instructive but rather technical, so we shall give no 
further details here.(34) 

3.4. Asymptotics and solutions to systems of linear equations 

Looking back at the global sketch of the argument used to prove the Green-Tao 
theorem immediately following Theorem 14, we observe that this strategy, employed 
in [25], only yields a lower bound on the number of fc-term arithmetic progressions in 
the primes belonging to the interval [TV]. It was subsequently shown in [31] that the 
transference principle together with the inverse theorem for the U3 norm (Theorem 9) 
implies that there are asymptotically 

6 4 
N2 

log4 N 

4-term progressions in the primes up to N. The term N2/log4 N arises from Cramer's 
probabilistic model of the primes, where we imagine each integer being prime inde­
pendently with probability 1/logiV. The local factor 

6 4 = 
dr 

r 

P2(P~3) 

d+r+d+d 
« 0.4764 

contains the arithmetical information. 

<34> For an elementary verification of the fact that Ev = 1 + o(l), see Host's treatment [33]. 
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Asymptotics for arithmetic progressions of length k + 1 for k > 3 were given 
conditional on the Uk inverse theorem (Theorem 10), which was only conjectured 
at the time. Furthermore, Green and Tao required an additional fact regarding the 
Môbius function, namely the Môbius and nilsequences conjecture, which they were 
able to resolve shortly afterwards [28]. 

THEOREM 1 9 (Môbius is orthogonal to nilsequences). — Let G/Y be a k-step nil-
manifold and F(gnx) be a k-step nilsequence. Then for any C > 0, we have 

\Ene[N]»(n)F(gnx)\ « (log7V)-c, 

where the implied constant depends on G/T, k, C and the Lipschitz constant of F 
(but not on x or g). 

Let us briefly outline how to use the transference principle, the inverse theorem and 
Theorem 19 to obtain asymptotics for fc-term arithmetic progressions in the primes. 
First, note that the transference principle and the inverse theorem can be combined 
to give a transferred inverse theorem, that is, an inverse theorem for functions that 
are bounded by a pseudorandom measure instead of a constant.(35) Using the decom­
position of the von Mangoldt function in terms of the Môbius function together with 
relatively standard methods from analytic number theory, Theorem 19 implies that 
A — 1 is almost orthogonal to all (k — l)-step nilsequences. One immediately deduces 
that A — 1 has small Uk norm: otherwise A — 1 correlates with one of the nilsequences 
by the transferred inverse theorem, which leads to a contradiction. Then, by the rela­
tive generalized von Neumann theorem (Proposition 13) , the average over a product 
of different instances of A = 1 + (A — 1) is essentially, up to local factors, just the 
product over the constant part. The error terms remain ineffective without GRH. 

Using a relative version of the more general Proposition 7 together with the trans­
ferred inverse theorem, one obtains asymptotics not only for long arithmetic progres­
sions in the primes, but more generally for all systems of affine linear forms of finite 
complexity, no two of which are linearly dependent.(36) This solves the generalized 
Hardy-Littlewood prime tuples conjecture, excluding only notoriously hard problems 
such as the twin primes and Goldbach's conjecture (which have infinite complexity). 
A quirky consequence, for example, is a strengthening of Vinogradov's result [53] that 
every sufficiently large odd integer can be written as a sum of three primes pi -\-p2 +p%: 
one may impose the additional constraint that p\ —p2 be equal to a prime minus l.(37) 

(35) Such a statement was first given as Proposition 10.1 in [31]. 
(36) Qne needs to adjust the majorant slightly since it is now necessary to simultaneously control 
Abj_,..., A6t for different values of b±,..., 6t, where Afc(n) = ^ççp- log(Wn + b) whenever Wn + b is 
prime, and zero otherwise. 
(37) por a precise statement of the generalized Hardy-Littlewood prime tuples conjecture, see Con­
jecture 1.4 in [31]. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2013 



414 J. WOLF 

4. POLYNOMIAL PROGRESSIONS IN THE PRIMES 

The general philosophy of the proof of Theorem 4 is the same as that of the Green-
Tao theorem. However, there are two immediate and serious obstacles to a straight­
forward adaptation of the argument. The first is that, as mentioned in Section 2.4, 
there is no quantitative version of a polynomial Szemerédi theorem, and we only have 
the qualitative Bergelson-Leibman theorem (Theorem 12) at our disposal. However, it 
is possible to obtain a "pseudo'-quantitative, finitary version of Theorem 12. This re­
mains completely ineffective, which is why the final statement in Theorem 4 contains 
no explicit bounds. We discuss this step in more detail in Section 4.1. 

The second and in some sense more serious difficulty is a direct consequence of 
the polynomial nature of the problem. Recall that when we were dealing with linear 
systems such as x, x + d, x + 2d, if the variable x ranged over the interval [AT], then the 
range of the variable d was still comparable to [N]. However, in the case of polynomial 
systems such as x, x + m2, the range of the variable m has to be restricted to a smaller 
range [M] = [y^N]. This means that we can no longer control our averages by the 
uniformity norms introduced in Section 2.1. Instead, one has to define local versions 
of these norms, in which the ranges of some of the parameters are restricted to smaller 
scales. We shall give the precise definition of these norms in Section 4.2. 

The resulting modifications of the remainder of the argument are somewhat more 
routine, but contain numerous subtleties and are technically formidable. In Section 4.3 
we show how to explicitly derive a relative generalized von Neumann theorem for 
the specific case of the polynomial system x, x + ra2 mentioned above. This involves 
linearizing the polynomial system by the so-called Polynomial Exhaustion Theorem 
(or PET induction), which is an inductive process on polynomial systems that was 
crucial to the proof of Theorem 12.(38) A key ingredient for showing that these local 
uniformity norms are good for transference will be established, again in a special 
case, in Section 4.4. Of course, one requires somewhat more stringent conditions on the 
majorizing pseudorandom measure v in order to be able to handle polynomial systems, 
labelled the polynomial forms and the polynomial correlation condition. Because of 
their technical complexity, we shall not state these formally but only describe some 
of the ideas that go into verifying these properties in Section 4.5. 

The generalization of the argument to arbitrary families of polynomials brings 
with it an intimidating amount of notation, which we shall try to avoid as much 
as possible by presenting only special cases of (parts of) the argument. There are 
many different scales of parameters involved in the proof of Theorem 4: a coarse 
scale (the range M of m above, which should be thought of as a small power of N 

(38) See also [54] for a combinatorial application. 
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depending on the maximal degree of the family of polynomials P i , . . . , P^), the degree 
of pseudorandomness required of the measure, the sieve level R, the error term in the 
transference principle, the "complexity" of the polynomial system and a fine scale 
H arising from applications of van der Corput's lemma. Since we cannot accurately 
represent the dependencies between these parameters in the remaining pages, we have 
chosen to refer to all error terms by o(l) and ask the reader to take on trust (or to 
check for themselves) that these errors can be made to depend on each other in the 
way required. 

4.1. The quantitative Bergelson-Leibman theorem 

First we shall outline very briefly how to obtain a quantitative but ineffective 
polynomial Szemerédi theorem from the Bergelson-Leibman theorem. This approach 
is very much in line with Tao's general efforts to bring results from ergodic theory to 
the discrete setting. To save space and remain closer to the original presentation of 
Tao and Ziegler, we shall from now on adopt ergodic theory notation, setting X = ZJV, 
using the integral fx instead of the expectation Exex and writing T for the shift map 
on X, which acts by Tf(x) = f(x — 1). 

THEOREM 20 (Quantitative Bergelson-Leibman theorem). — Let 6 > 0, and let 
g : X —> R be any function satisfying 0 < g < 1 -f o(l) as well as Jx g > S — o(l). 
Then 

Eme[M] 
X 

rI\(Wm)/Wg.mmTPk(Wm)/Wg >d+r+d+s+d+r+d+_ Q^ 

for some c(S) depending on ô, Pi,..., Pk (but not on N orW). 

The appearance of the parameter W in the statement may appear odd, but its role 
is identical to that in the linear case: it helps us deal with non-uniform distribution 
modulo small primes. In fact, the above statement with g replaced by the normalized 
counting function / : X —> R+, defined by 

/ (» ) = 
d+r+d+r+d+d whenever n 6 [N/2], Wn + b € A, 
0 otherwise, 

where A is a subset of the primes of positive relative density, precisely corresponds 
to the "moreover" part of Theorem 4. As before, the parameter R denotes the sieve 
level and the ratio between logi? and log AT represents the relative density between 
the primes and almost primes. The integer b is chosen by the pigeonhole principle to 
ensure that 

\{ne\N/2]:Wn + beA}\^ W N 
6(W) log AT 

SKETCH PROOF OF THEOREM 20: The deduction of Theorem 20 from (a multi­
dimensional version of) Theorem 12 proceeds by a non-standard application of the 
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Furstenberg correspondence principle [14]. One argues by contradiction and supposes 
that Theorem 20 fails. An averaging argument attributed to Varnavides [52] tells us 
that it does so in a strong way.(39) After lifting to a higher-dimensional setting to 
eliminate the dependence on W and ra, one invokes Furstenberg's correspondence 
principle to pass from the (quasi-)finite formulation to a dynamical system involving 
several commuting transformations, whose recurrence properties correspond to the 
structural information we already possess about the function g. Finally, weak sequen­
tial compactness is used to derive a contradiction with the multidimensional version 
of Theorem 12. • 

This procedure can be written up in detail in less than two pages, and naturally 
gives no explicit bounds for c(S) in terms of £.(40) 

4.2. Local uniformity norms 

Motivated by the discussion in the introduction to this section, we need to introduce 
several scales into our usual definition of the Uk norm. 

DEFINITION 5 (Averaged local uniformity norms). — For steps a = (a i , . . . , â ) G Zd, 
define the local uniformity norm U^JJ of f : Zjy —» R(41) by the formula 

ll/lltf" - ^m^W1)eh/Ml 
x u>e{o,i}d 

rpa'1Tly ' j 

where u — (a;i,... ,cud), = {m^\ . . . , m ^ ) and a-m^ = aim[Wl^ ha^ra^^. 
Moreover, given any integer t > 0 and any Q = (Qi , . . . , Qd) G Z[hi,..., ht, W]d, 

write Q(hi,... ,ht,W) for the d-tuple (Qi(hly..., ht, W),..., Qd{h\,..., hu W)) of 

polynomials. Define the averaged local uniformity norm U^?^ 'W>) as 

d+rd+r+d+r+d 
d+r+d 

= ^h1,...Me[H]\\f\\2jQ{h1,...,ht,w)' 

While the global uniformity norms in Definition 1 measure the extent to which 
a function / behaves like a polynomial of degree at most k on all of ZJV, the local 
norms measure the extent to which / is polynomial on arithmetic progressions of the 
form {x + a - m : m i , . . . G [\/M]}. The averaged version arises from various 
applications of van der Corput's lemma (Lemma 21 below). It turns out that these 
averages need to be taken over tiny ranges H (H should be thought of as a very small 
power of AT, basically depending on all other parameters in the problem). This is one 

(39) Whenever we can assert the existence of one non-trivial progression in a subset A Ç [N] of 
density a, it is easy to show by averaging that we actually have c(a)N2 many. 
(40> See Appendix B of [50]. 
(4i) We shall omit the complex conjugate signs here since the functions we will be dealing with only 
take positive real values. 
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of the subtleties that make the adaptation of the argument from the linear case not 
entirely straightforward.(42) 

It can be verified without too much trouble that each of the formulae in Definition 5 
does indeed define a norm. An example which will make an appearance later on is the 
averaged local norm defined by 

11/llL = EM,€[H]Efc fc/erv^n 
X 

ji2(h'-h)k rji2(h'-h)k' r 

Here t = 2, d = 1 and Q(h, h', W) = 2(h' - h). 
Contrary to the global Uk norms, which are by now rather well understood, we 

know relatively little about the local ones. In the next section we shall use them 
to bound above a polynomial average in the spirit of the relative generalized von 
Neumann theorem. 

4.3. The relative generalized von Neumann theorem for polynomials 

The proof of the relative generalized von Neumann theorem for polynomial systems 
contains an important new ingredient over the linear case, borrowed from relevant 
work in ergodic theory (in particular, the proof of Theorem 12) . PET induction is 
needed to linearize the polynomial system in successive stages before the Cauchy-
Schwarz inequality can take over to bound the resulting linear system by an expression 
resembling a local uniformity norm. In a final step one has to get rid of a certain weight 
function introduced by this procedure, by applying the Cauchy-Schwarz inequality 
one more time, similarly to what we saw in Proposition 13. In order to carry out the 
linearization procedure, one requires a slight but well-known variant of the Cauchy-
Schwarz inequality which allows one to replace coarse-scale averages by coarse-scale 
averages of shifts over much smaller scales. 

LEMMA 2 1 (van der Corput). — Let N,M,H be as above. Let (xm)mG^ be a 
sequence of reals satisfying xm <Ce Ne for all e > 0, m E Z. Then 

EmG[M]Zm = Eke[IJ]EmG[Mpm+h + o(l) 

and 

\Eme[M]xm\2 < Ehihre[H]Eme[M]Xm+hXm+h' + o(l). 

Proof — By assumption on the growth of xm, 

= kl[daXk(^ - rj)dp\i(ri) - dpXk( 

(42) rphg parameter w will not appear in our sample calculations, but is necessary for the final result 
(see Theorem 20 and the discussion that follows). 
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for all h G [H]. The same is certainly true for the average in h, and so the first part 
of the result follows. The second part is obtained by applying the Cauchy-Schwarz 
inequality to the first. • 

We shall use the very simple example of a polynomial system x, x + m2 to illustrate 
how to combine PET linearization and Cauchy-Schwarz to prove a polynomial version 
of the relative generalized von Neumann theorem.(43) It should give the reader an idea 
of what kinds of polynomial averages of v need to be controlled by the polynomial 
forms condition, which we shall not state formally in this text. 

EXAMPLE 2. — Let / i , / 2 : ZN —• K be any functions satisfying \fj(x)\ < v{x) 
for j = 1,2, where v satisfies the polynomial forms condition. Then 

|Eme[M] 
x 

FITM / 2 | « | | / 2 | | ^ 2 + o(l). 

Proof of Example 2. — The first step is reminiscent of Weyl differencing: we turn the 
polynomial system into one that is somewhat more linear. We begin with 

|EMG[M] 
}x 

FITM2F2\2 < ( 
JX 

hhg+f 
fx 

^\Eme[M]Trn /2I2) , 

which equals 

(1+0(1)) 
x 

= kl[daXk(^ - rll 

by assumption on v. By the second part of van der Corput's lemma(44), we have 

Jx 
v\Eme[M)Trn /2I2 = E/i,h'e[H]Em€[Af] 

X 
vT{m+h) F2T(m+h') /2 + 0(l). 

As mentioned above, it turns out that the range H needs to be very small compared 
with M (we shall see why in Example 3 below). Exploiting the translation invariance 
of the integral over X, we shall now shift the entire integrand by — (m + h)2 to obtain 
new shifts Ri(m,h,h') = - ( r a + h)2, R2(m,h,ti) = 0, R'2(m,h,hf) = 2m(h' - h) + 
(hf2 — h2), the latter now being linear in m. So we need to estimate from above the 
expression 

^h,h'e[H]^"me[M] 
Jx 

rjiRxim.HX) vj>2m(ti-h)+(h'2-h2) ^ 

(43) Of course, this system is covered by the strong bound in Sârkôzy's theorem (Theorem 11) and 
therefore the procedure that follows is not strictly speaking necessary in this case. However, even the 
only slightly more complicated system x, x + ra, x + m2 results in a local uniformity norm involving 
ten different variables, for which the amount of notation required would be almost as off-putting as 
the general case, given by Proposition 5.9 in [50]. 
(44) Here we need the estimate v <^e Ne for every e > 0. Fortunately this is a simple consequence of 
the well-known fact that the number of divisors of an integer AT is <Ce Ne for any e > 0. 
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Let k G [\/M], and observe that the first part of van der Corput's lemma yields that 

the above expression is equal to 

^h,h'e[H]^me[M] 
fx 

= kl[daXk(^ - rj) 2(m-k)(h'-h)Hh'2-h2) j2 + 0^y 

where gx = TRl(m-k>h>h Letting Q0 = Q0(*, A, h') = 2(h' - h)k and shifting again, 

we have 

^h,h'e[H]Eme[M] 
X 

= kl[daXk(^ - rj)d TQO{k,h,h') Y2^^Qo(fc,/l̂ ,)̂ 1^2m(/l,-/̂ ) + (/l,2-^2) ̂  + 

the crucial point being that the final instance of f2 is independent of k. Writing 

g2 = T2rn(h ~h)+(h ~h )]/ and applying the Cauchy-Schwarz inequality one more time, 

we obtain an upper bound of 

fàh,h'£[H]^me[M] 
X 

LEfcG[V^]TQo/2TQ^1|2^)1/2(E^^G[//]EMG[M] 
X 

S2)1/2+0(l) 

The average in g2 is exactly of a form controlled by the polynomial forms condition, 

and hence bounded above by a constant. The first average, on the other hand, can be 

rewritten (ignoring the square-root) as 

E/i,/i'e[H]Eib,fc/e[VM] 
X 

TQO(k,h,hf)f2TQ0(kf,h,hf)f2W^ h'9 fc5 fc'), 

where W(h,h',k,kf) = Em€[M]p2TQO(FE^'/L/^IR^(FC/»'I'/I/)^, and g[ is identical to gx 
except with k replaced by k'. Now clearly 

Eh,h'€[H]®>k,k'€[VM] 
X 

TQO(k,h,h')f TQO(k',h,h')f = Ufu2 

and it thus remains to replace the weight function W, consisting of averages of shifts 

of i/, by 1 asymptotically. This is done by applying the Cauchy-Schwarz inequality one 

more time to the difference between the expression we have and the local uniformity 

norm we are aiming for, and expanding out the square (W(h, h',k, k') — l)2 similarly 

to the end of the proof of Proposition 13. All resulting averages of shifts of v are 

controlled by the polynomial forms condition. • 

The general PET induction scheme assigns a weight vector to each family of poly­

nomials, and the aim is to reduce the weight of the polynomials that appear in the 

average (in some ordering) until the point where one reaches linearity in the variable 

m for all "active" functions (those that have not been replaced by v). 
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4.4. Transference in the polynomial case 

In order to apply the transference technique from Section 3.2, we need to check 
that the local uniformity norms satisfy the required properties (in the terminology of 
Gowers [18], that they are quasi-algebra predual norms). In particular, we need an 
analogue of Lemma 18 for the local norms. As before, we shall only do a toy calculation 
so as to avoid overburdening the reader with notation. As a simple example of a dual 
function consider 

2>exf - Eh,h'€[H]Ektk'e[I/M]-
2{h-ti)(k-k') j 

which corresponds to the local uniformity norm || • ||ear we obtained when bounding the 
system x,x + m2 in the preceding section. While in Section 3 we showed directly that 
the Uk dual norm of a product of these dual functions was small, we shall proceed 
more indirectly here and prove the consequence of this fact that we actually need, 
namely that the product of dual functions is practically orthogonal to v —1.(45) Again, 
our hope is that following the calculation in this example will convey a good picture 
of the type of polynomial correlation condition the majorant v needs to satisfy. 

EXAMPLE 3. — Let / i , . . . , fm : ZJV —> R be any functions satisfying \fj(x)\ < v(x) 
for j = 1 , . . . , m, where v satisfies the polynomial correlation condition. Then 

1jj (2)ex/l---2)ex/m)(^-l) = 0(l), 

where the dual operator 0PT is the one defined above. 

Before we begin the proof, note that if one simply applied absolute value signs 
and bounded everything above by v, then the pseudorandomness properties of v 
would only imply an upper bound of O(l). One might also naively want to proceed 
by applying the Cauchy-Schwarz inequality many times, but this would result in 
problems since m could be too large to be multiplied with some of the o(l) error 
terms. 

Proof of Example 3. — The left-hand side can be rewritten as 

= kl[daXk(^ - rd+rdj)dp\i(ri) - jjj vuu)\ 
m 

Xj=1 

= kl[daXk(^ - rj)dp\i(ri 

Here the range of the variables h will be the very short interval [H], while that of 
the variables k is the coarse scale [\/M]. Setting Uj = Yli^ji^i ~~ K) an(^ shifting 

(45) rpne generai statement to this effect is Proposition 6.5 in [50]. 
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each variable kj by Uj(n — nf) for n,n' G [M1/4], this expression equals, by van der 
Corput's lemma 

= kl[daXk(^ - rj)dp\i(ri) - dpXk(Ç - rj)da\i(ri)\ 
m 

d+r+d+r 

p2(/ij-/i;)((fcj-fc;)+wj(n-n/))f _ 1) + 0(1). 

Note that this was only possible because each h belonged to the narrow range [H]. The 
introduction of the new variables now allows us to get away with a single application 
of Cauchy-Schwarz by separating n and nf. With this in mind, we shift the entire 
integral by n'u, where u = 2[}]™1(/i/ — h[) is again small compared with M1/4, and 
find that the above is equal to 

Jlin,n'e[MV4]̂ h1,...,hm,fe'1,...,̂ Efci km,k'v...,k'm 
f rjrnu 
X 

m 

7 = 1 

^(hj-h'^kj-k^) F.)TN'U(U - 1) + O(L). 

We can now factor this expression as 

= kl[daXk(^ - rj)dp\i(r 
Jx 

esesd+er+s+ 
m 

3 = 1 

g Tnu+2(k-k')(hj-h'j) , x E„,cr»/fl/41Tn'U(l/ - 1) + 0(1), 

which by Cauchy-Schwarz and the assumption on is at most 

fàhU...,hm,h'1,...,h>rr 
X 

d+d+r+d+r 
m 

3 = 1 

F , U,Tnu+2(k-k'Kh*-h'i\D+R+D+RA2\I-/2 

{¥.n,€,m/i]Tn^{u-l)f)^ 

X 
{¥.n,€,m/i]Tn^{dr+u-l)f)^+o{l), 

It turns out that this is precisely the kind of average that is controlled by the poly­
nomial correlation condition.(46) In particular, upon expanding the square, the first 
average equals 1 + o(l), while the second splits into three separate averages over v 
whose constant contributions cancel, leaving us with a final estimate of o(l). • 

4.5. Existence of the pseudorandom measure 

Finally, one needs to look for a measure v that majorizes the function / defined in 
Section 4.1 pointwise, and satisfies the polynomial forms and polynomial correlation 
conditions, of which we hope to have given the reader a taste in the preceding two 
sections. In any case, the exact conditions are somewhat artificial and a compromise 
between what is needed and what can be proved about the primes. 

(46) It is important here that m can be arbitrarily large (otherwise this statement reduces to a special 
case of the polynomial forms condition), and that the inside averages are over coarse scales. 
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As in the linear case, the construction of v can be given completely explicitly by 

i/(n) = 
d+r+d 

w 
\ogR 

i\Wn+b 
d+r+d ' log cT 

UogJB 

2 

where x is a smooth compactly supported cutoff obeying the normalization condition 
JQ1 \x'(t)\2dt = 1. Correlations over coarse scales are controlled rather well, either 
by the methods of Goldston and Yildirim, or using the more elementary approach 
described in Section 3.3 which exploits the smoothness of x- However, those averages 
that involve parameters on the finer scale [H], which we were forced to introduce in 
Example 2 and whose magnitude was determined by the calculation in Example 3, 
are no longer controlled by elementary sieve theory methods. Indeed, some of the 
estimates required would be equivalent to understanding the distribution of primes 
in short intervals, which are beyond current techniques. 

The way to handle this situation is to first fix the fine-scale parameters and es­
timate the remaining sums using sieve theory methods, before the resulting (now 
tractable) sums are averaged over finer scales. In the process of verifying the poly­
nomial forms and correlation conditions, one needs to control the density of varieties 
such as {x G Fp : WP(x) + b = 0}. In the most general case this requires the Weil 
conjectures, but here the polynomial P will always be linear in at least one of the 
coarse-scale variables and one can get away with much more elementary estimates, 
avoiding the modern tools from arithmetic geometry altogether. An adaptation of the 
combinatorial Nullstellensatz in [1] to the case of several jointly coprime polynomials 
turns out to be sufficient.(47) The verification of the pseudorandomness conditions 
for v is nevertheless highly technical, and we shall be able to say no more about it in 
the present exposition.(48) 

5. CONCLUDING REMARKS 

The proof of Theorem 4 shows that there are cNMj logfc N polynomial progressions 
x + Pi ( ra ) , . . . , x + Pk (jn) in the primes with x G [N], ra G [M], for some constant c. 
Moreover, it is true that there are infinitely many "short" progressions, that is progres­
sions for which ra is comparable to x1/2^, where d is the maximal degree of the family 
of polynomials. Indeed, disregarding the values of x of size <C AT, we can assume that 
x is comparable to N and similarly, ra is comparable to M. For fixed k, one therefore 
obtains infinitely many progressions of the form x + P i ( r a ) , . . . , x + Pfc(ra) in which 

<47) See Appendix D of [50]. 
(48) rpne interested reader is in the first instance referred to the excellent discussion on page 270 of 
[50]. 
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m is comparable to xl/2d. By a diagonalization argument one can actually obtain 
infinitely many such progressions with m = x°^\ In a subset A of the integers of 
positive upper density something stronger is true: there is a fixed m / 0 for which the 
set {x : x + Pj(m) G A for all j G [&]} is infinite, and in fact of positive upper density 
(this follows from the Bergelson-Leibman theorem). A similar result for the primes, 
even in the simplest case, amounts to saying that the primes have bounded gaps ar­
bitrarily often, which even by the strong results of Goldston, Pintz and Yildirim is 
not known unconditionally. 

The conjectured asymptotics for polynomial configurations in the primes are given 

by the Bateman-Horn conjecture [2]. 

CONJECTURE 22 (Bateman-Horn conjecture). — Let Pi,...,Pk G Z[m] be irre­

ducible polynomials with positive leading coefficient, of degree d\,... ,dk, respectively, 

such that the product Pi • • • Pk has no non-trivial constant factor'.(49) Then the number 

of positive integers m G [N] such that Pi (m),..., Pk (m) are all prime is asymptotic 

to 

C(Pu...,Pk) 
di--dk 

d+r 

d+r 

du 

\ogku 

where 

C(Pi,...,ft) = 
d+r+d+r 

1 1 ( 1 - 1 ) * ' 

and OJ(P) is the number of solutions to the congruence Pi(x) • • • Pk(x) = 0 mod p. 

While the work of Tao and Ziegler is consistent with these predictions, these asymp­
totics are out of reach for now. This is largely due to the lack of an inverse theorem 
for the local Gowers norms (see Section 3.4 for a discussion of how such an inverse 
theorem for the global Gowers norms implies asymptotics for certain linear configu­
rations) . 

Some interesting work has also been done on this sphere of problems in the function 

field setting. In particular, Lê [37] proved a version of the Green-Tao theorem for 

function fields: for every k, there exists / ,g G ¥q[t], g ^ 0 such that the elements 

of {/ + Pg : P G Fq[t],deg(P) < k} are all irreducible. While the function field 

setting appears to be a useful model for polynomial problems in the integers, it turns 

out that the naive analogue of the Bateman-Horn conjecture is false in this context.(50) 

(4Q) If a prime p divides Pi • • • Pkj it can be the only prime amongst the values of the polynomials, 
(so) por a discussion see [9]. 
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