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Séminaire BOURBAKI 
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Juin 2011 

A GLOBAL TORELLI THEOREM 
FOR HYPERKAHLER MANIFOLDS 

[after M . Verbitsky] 

by Daniel HUYBRECHTS 

Compact hyperkahler manifolds are higher-dimensional generalizations of K3 sur
faces. The classical Global Torelli theorem for K3 surfaces, however, does not hold in 
higher dimensions. More precisely, a compact hyperkahler manifold is in general not 
determined by its natural weight-two Hodge structure. The text gives an account of 
a recent theorem of M. Verbitsky, which can be regarded as a weaker version of the 
Global Torelli theorem phrased in terms of the injectivity of the period map on the 
connected components of the moduli space of marked manifolds. 

1. INTRODUCTION 

The Global Torelli theorem is said to hold for a particular class of compact com
plex algebraic or Kahler manifolds if any two manifolds of the given type can be 
distinguished by their integral Hodge structures. 

The most prominent examples for which a Global Torelli theorem has been proved 
classically include complex tori and complex curves. Two complex tori T = Cn/T 
and T' = C n / r / are biholomorphic complex manifolds if and only if there exists 
an isomorphism of weight-one Hodge structures HX(T, Z) = Hl(T' ,Z). Similarly, two 
smooth compact complex curves C and C are isomorphic if and only if there exists an 
isomorphism of weight-one Hodge structures i7 1 (C, Z) = i7 1 ( (7 / ,Z) that in addition 
respects the intersection pairing. 

Here, we are interested in higher-dimensional analogues of the following Global 
Torelli theorem for K3 surfaces. 

• Two complex K3 surfaces S and S' are isomorphic if and only if there exists 
an isomorphism of Hodge structures H2(S,Z) = H2(S',Z) respecting the intersection 
pairing. 
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376 D. HUYBRECHTS 

The result is originally due to Pjateckii-Sapiro and Safarevic in the algebraic case 
and to Burns and Rapoport for K3 surfaces of Kahler type (but as Siu proved later, 
every K3 surface is in fact Kahler), see [4, 2] for details and references. 

Recall that for complex tori T and T', any Hodge isomorphism Hl{T,Z) ^ HX(T' ,Z) 
is induced by an isomorphism T = Tf. Also, for complex curves any Hodge isometry 
can be lifted up to sign. A similar stronger form of the Global Torelli theorem holds 
for generic K3 surfaces. 

• For any Hodge isometry (p : H2(S, Z) ^> H2(S\ Z) between two generic (!) K3 sur
faces, there exists an isomorphism g : S S' with <p = ±g*. 

1.1. Is there a Global Torelli for hyperkahler manifolds? 

Compact hyperkahler manifolds are the natural higher-dimensional generalizations 
of K3 surfaces and it would be most interesting to establish some version of the 
Global Torelli theorem for this important class of Ricci-flat manifolds. In this context, 
the second cohomology H2(X,Z) is the most relevant part of cohomology and not 
the much larger middle cohomology which one would usually consider for arbitrary 
compact Kahler manifolds. As we will recall in Section 2, the second cohomology of 
a compact hyperkahler manifold comes with a natural quadratic form, the Beauville-
Bogomolov form, and its canonical weight-two Hodge structure is of a particularly 
simple type. 

So, is a compact hyperkahler manifold X determined up to isomorphism by its 
weight-two Hodge structure H2 (X, Z) endowed with the Beauville-Bogomolov form? 
More precisely, are two compact hyperkahler manifolds X and X' isomorphic if 
H2(X,Z) and H2(X',Z) are Hodge isometric, i.e. if there exists an isomorphism 
of weight-two Hodge structures H2(X,Z) = H2{X',Z) that is compatible with the 
Beauville-Bogomolov forms on both sides? Unfortunately, as was discovered very 
early on, a Global Torelli theorem for compact hyperkahler manifolds cannot hold 
true literally. 

The first counterexample was produced by Debarre in [8]: 

• There exist non-isomorphic compact hyperkahler manifolds X and X' with iso
metric weight-two Hodge structures. 

See also [25, Ex. 7.2] for examples with X and X' projective (and in fact isomorphic 
to certain Hilbert schemes of points on projective K3 surfaces). 

In Debarre's example X and X' are bimeromorphic and for quite some time it was 
hoped that H2(X,Z) would at least determine the bimeromorphic type of X. As two 
bimeromorphic K3 surfaces are always isomorphic, a result of this type would still 
qualify as a true generalization of the Global Torelli theorem for K3 surfaces. This 
hope was shattered by Namikawa's example in [21]: 
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• There exist compact hyperkdhler manifolds X and X' (projective and of dimension 

four) with isometric Hodge structures H2(X,Z) = H2(X\Z) but without X and X' 

being bimeromorphic (birational). 

Nevertheless, at least for the time being the second cohomology of a compact 

hyperkahler manifold is still believed to encode most of the geometric information on 

the manifold. Possibly other parts of the cohomology might have to be added, but no 

convincing general version of a conjectural Global Torelli theorem using more than 

the second cohomology has been put forward so far. 

At the moment it seems unclear what the existence of a Hodge isometry 

H2(X, Z ) = H2(X', Z ) between two compact hyperkahler manifolds could mean 

concretely for the relation between the geometry of X and X' (but see Corollary 

6.5 for special examples). However, rephrasing the classical Torelli theorem for K3 

surfaces in terms of moduli spaces suggests a result that was eventually proved by 

Verbitsky in [24]. 

1.2. Global Torelli via moduli spaces 

The following rather vague discussion is meant to motivate the main result of [24] 

to be stated in the next section. The missing details and precise definitions will be 

given later. 

1.2.1. — We start by rephrasing the Global Torelli theorem for K3 surfaces using 

the moduli space 9Jt of marked K3 surfaces and the period map (P : DJl —> P(A ® C ) . 

A marked K3 surface (5,0) consists of a K3 surface 5 and an isomorphism of lattices 

0: H2(S, Z ) A, where A : = 2(—E$) + 3U is the unique even unimodular lattice of 

signature (3 ,19) . Two marked K3 surfaces (5,0) and (5 ' ,0 ') are isomorphic if there 

exists an isomorphism (i.e. a biholomorphic map) g : 5 S' with 0 o g* = 0'. Then 

by definition mt = {(S, 0)}/~. 

The Global Torelli theorem for K3 surfaces is equivalent to the following statement. 

• The moduli space 9Jt has two connected components interchanged by 
(5 , 0) i—• (5 , —cj)) and the period map 

$>: m DA := {x e P(A (8) C) | x2 = 0, (x.x) > 0 } , (5,0) H-> [0(ff 2 ' °(5))] 

is generically infective on each of the two components. 

Remark 1.1. — Injectivity really only holds generically, i.e. for (5,0) in the com

plement of a countable union of hypersurfaces (cf. Remark 3.2). This is related to 

the aforementioned stronger form of the Global Torelli theorem being valid only for 

generic K3 surfaces. 
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Let us now consider the natural action 

0(A) x SW SW, (y>, (5 ,0)) ^ (5, y> o 0). 

For any (5 ,0) G 9Jt° in a connected component 5PT° of № the subgroup of 0 (A) that 
fixes M° is 0 o Mon(X) o where the monodromy group Mon(5) C 0 ( i J 2 (5 , Z)) 
is by definition generated by all monodromies ni(B,t) —» 0 ( i J 2 (£ , Z)) induced by 

arbitrary smooth proper families % B with % t = 5. 

The transformation —id G 0 (A) induces the involution (5,0) i—• ( 5 , - 0 ) that 

interchanges the two connected components and, as it turns out, there is essentially no 

other {p G 0 (A) with this property. This becomes part of the following reformulation 

of the Global Torelli theorem for K3 surfaces: 

• Each connected component dJt° C 3JI maps generically injectively into D\ and 

for any K3 surface S one has 0 ( i f 2 ( 5 , Z))/Mon(S) = { ± 1 } . 

In order to show that this version implies the one above, one also needs the rather 

easy fact that any two K3 surfaces S and S' are deformation equivalent, i.e. that 

there exist a smooth proper family % —> B over a connected base and points t, t' G B 

such that S = %t and S' = %t> • In particular, all K3 surfaces are realized by complex 

structures on the same differentiable manifold. 

1.2.2. — Let us try to generalize the above discussion to higher dimensions. Restrict

ing to compact hyperkahler manifolds X of a fixed deformation class, the isomorphism 

type, say A, of the lattice realized by the Beauville-Bogomolov form on H2(X, Z) is 

unique, cf. Section 2. So the moduli space 9DTA of A-marked compact hyperkahler man

ifolds of fixed deformation type (the latter condition is not reflected by the notation) 

can be introduced, cf. Section 4.2 for details. 

For the purpose of motivation let us consider the following two statements. Both 

are false (!) in general, but the important point here is that they are equivalent and 

that the first half of the second one turns out to be true. 

• (Global Torelli, standard form) Any Hodge isometry H2(X,Z) ^ H2(X',Z) 

between generic X and X' can be lifted up to sign to an isomorphism X = X'. 

• (Global Torelli, moduli version) i) On each connected component 9Jt̂  C 9#A the 

period map $ : dK\ —• -DA is generically infective, ii) For any hyperkahler manifold 

X parametrized by 9JlA one has 0(H2(X, Z) ) /Mon(X) = { ± 1 } . 

Remark 1.2. — In both statements, generic is meant in the sense of Remark 1.1. The 

standard form would then indeed imply that arbitrary Hodge isometric X and X' 

are bimeromorphic. For details on the passage from generic to arbitrary hyperkahler 

manifolds and thus to the bimeromorphic version of the Global Torelli theorem, see 

Section 6.1. 
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Only rewriting the desired Global Torelli theorem in its moduli version allows 

one to pin down the reason for its failure in higher dimensions: As shall be ex

plained below, condition i) is always fulfilled and this is the main result of [24]. 

It is condition ii) which need not hold. Indeed, a priori the image of the natural 

action D i f f (X) —> 0(H2(X1 Z ) ) can have index larger than two and hence M o n ( X ) 

will. 

1.3. Main result 

The following is a weaker version of the main result of [24]. Teichmuller spaces 

are here replaced by the more commonly used moduli spaces of marked manifolds. 

Additional problems occur in the Teichmuller setting which have been addressed in a 

more recent version of [24] (see Remark 4.8). 

T H E O R E M 1.3 (Verbitsky). — Let A be a lattice of signature (3,6 — 3) and let %R°K 

be a connected component of the moduli space 9Jl\ of marked compact hyperkahler 

manifolds ( X , <t> : H2 ( X , Z ) A ) . Then the period map 

g> : 3R£ -> DA C P(A <8> C ) , ( X , <j>) ^ [0(tf 2 ' ° ( X ) ) ] 

is generically infective. 

More precisely, all fibers over points in the complement of the countable union 

of hyperplane sections D\ f l |Jo#aeA a ± c o n s ^ of exactly one point. For the precise 

definition of the moduli space of marked hyperkahler manifolds OJIA, the period map <9), 

and the period domain D\, we refer to the text. 

The following results are the starting point for the proof of the theorem: 

- The period map £P is étale, i.e. locally an isomorphism of complex manifolds. 

This is the Local Torelli theorem, see [3] and Section 1^.1. 

- The period domain D\ is known to be simply connected. This is a standard fact, 

see Section 3.1. 

- The period map $ is surjective on each connected component. The surjectivity of 

the period map has been proved in [17], see Section 5.2. 

These three facts suggest that 9JIA may be a covering space of the simply connected 

period domain which would immediately show that each connected component 

maps isomorphically onto D\. There are however two issues that have to be addressed: 

• The moduli space SPÎA is a complex manifold, but it is not Hausdorff. 

• Is the period map : 3JIA —> D\ proper? 

Verbitsky deals with both questions. First one passes from SPÎA to a Hausdorff space 

5D?A by identifying all inseparable points in SPTA- The new space 9JIA still maps to DA 
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via the period map. This first step is technically involved, but it is the properness of 
: 9JIA —> D A that is at the heart of Theorem 1.3. 

In this text we give a complete and rather detailed proof of Verbitsky's theorem, 
following the general approach of [24]. Some of the arguments have been simplified 
and sometimes (e.g. in Section 3) we chose to apply more classical techniques. Our 
presentation of the material is very close to Beauville's account of the theory of K3 
surfaces in [4]. Unfortunately, due to time and space restrictions we will not be able 
to discuss the interesting consequences of Verbitsky's theorem in any detail. Some of 
the beautiful applications will be touched upon in Section 6. 

Acknowledgments 

For comments and questions on an early version of the text, I wish to thank 
A. Beauville, O. Debarre, P. Deligne, R. Friedman, K. Hulek, K. O'Grady, and 
M. Rapoport. I am most grateful to E. Markman. The presentation of the mate
rial is inspired by our discussions on preliminary versions of [24]. He made me aware 
of various technical subtleties in [24] and suggested improvements to this note. ( 1 ) 

2. RECOLLECTIONS 

We briefly recall the main definitions and facts. For an introduction with more 
details and references, see e.g. [13]. 

DEFINITION 2.1. — A compact hyperkahler (or irreducible holomorphic symplectic) 
manifold is a simply connected compact complex manifold of Kahler type X such that 
H°(X, is spanned by an everywhere non-degenerate two-form a. 

As long as no hyperkahler metric is fixed, one should maybe, more accurately, 
speak of compact complex manifolds of hyperkahler type but we will instead mention 
explicitly when a hyperkahler metric is chosen. Recall that by Yau's solution of the 
Calabi conjecture, any Kahler class a G Hljl(X,R) can be uniquely represented by 
the Kahler form of a Ricci-flat Kahler metric g. In fact, under the above conditions 
on X , the holonomy of such a metric is Sp(n), where 2n = dimc(X). In particular, 
besides the complex structure J defining X, there exist complex structures J and K 
satisfying the usual relation K — I o J = — J o I and such that g is also Kahler with 

This text was prepared while enjoying the hospitality and financial support of the Mathematical 
Institute Oxford. The author is a member of the SFB/TR 45 'Periods, Moduli Spaces and Arithmetic 
of Algebraic Varieties' of the DFG. 
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respect to them. As will be recalled in Section 4.4, there is in fact a whole sphere of 
complex structures compatible with g. 

Example 2.2. — K3 surfaces are the two-dimensional hyperkahler manifolds. Recall 
that a compact complex surface S is a K3 surface, if the canonical bundle fi| is trivial 
and HX(S, 9s) = 0- It is not difficult to prove that K3 surfaces are in fact simply 
connected. That they are also of Kahler type, a result due to Siu, is much deeper, see 
[4] for the proof and references. 

The second cohomology H2(X,Z) of a generic compact Kahler manifold can be 
endowed with a quadratic form, the Hodge-Riemann pairing, which in dimension 
> 2 depends on the choice of a Kahler class and, therefore, is usually not integral. 
For a compact hyperkahler manifold X the situation is much better. There exists a 
primitive integral quadratic form qx on H2 (X, Z) , the Beauville-Bogomolov form, the 
main properties of which can be summarized as follows: 

• qx is non-degenerate of signature (3,&2(X) — 3). 

• There exists a positive constant c such that q(a)n = cjx a2n for all classes 
a e H2(X,Z), i.e. up to scaling qx is a root of the top intersection product on 
# 2 ( X , Z ) . 

• The decomposition H2(X,C) = ( # 2 ' ° © # ° ' 2 ) ( X ) 0 Hl^(X) is orthogonal with 
respect to (the C-linear extension of) qx- Moreover, qx(&) = 0 and qx(o;a) > 0. 

The second property ensures that qx is invariant under deformations, i.e. if % —> B 
is a smooth family of compact hyperkahler manifolds over a connected base B, then 
q % t = q % s for all fibres 9C8,9CtC %. Here, an isomorphism H2(%S,Z) ^ H2(%UZ) is 
obtained by parallel transport along a path connecting s and t. In fact, at least for 
6 2 ( X ) ^ 6 the primitive quadratic form qx only depends on the underlying differen-
tiable manifold. 

The last property shows that the weight-two Hodge structure on H2 (X, Z) endowed 
with qx is uniquely determined by the line a € i f 2 ' ° ( X ) C H2(X, C). 

Note that the lattice A defined by ( i7 2 (X, Z),qx) is in general not unimodular and 
there is no reason why it should always be even (although in all known examples it is). 
No classification of lattices that can be realized by the Beauville-Bogomolov form on 
some compact hyperkahler manifold is known. Also note that no examples of compact 
hyperkahler manifolds are known that would realize the same lattice without being 
deformation equivalent and hence diffeomorphic. For a K3 surface S the Beauville-
Bogomolov form coincides with the intersection form on H2(S, Z) which is isomorphic 
to the unique even unimodular lattice of signature (3,19). 
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Example 2.3. — i) The Hilbert scheme (or Douady space) Hilb n (5) parametrizing 

subschemes Z C S of length n in a K3 surface S is a compact hyperkahler manifold 

of dimension 2n (see [3]). Moreover, ( # 2 (H i lb n (S ) , Z) , q) ^ H2(5, Z) 0 Z ( - 2 ( n - 1)) 

for n > 1 and in particular 6 2 (Hilb n (S)) = 23. Note that Hilb n (5) can be deformed 

to compact hyperkahler manifolds which are not isomorphic to the Hilbert scheme of 

any K3 surface. 

ii) If T is a two-dimensional complex torus C2/T and £ : Hilb n(T) —> T is the mor-

phism induced by the additive structure of T, then the generalized Kummer variety 

i f n - 1 ( T ) := E _ 1 ( 0 ) is a compact hyperkahler manifold of dimension 2n — 2. In this 

case, (H2(Kn-\T),Z),q) ^ H2{T, Z ) e Z ( - 2 n ) for n > 2 and thus b2(K
n~1(T)) = 7. 

Again, the generic deformation of K n _ 1 ( T ) is a compact hyperkahler manifold not 

isomorphic to any generalized Kummer variety itself. 

hi) The only other known examples were constructed by O'Grady, see [22, 23]. 

They are of dimension six, resp. ten. 

3. PERIOD D O M A I N A N D T W I S T O R LINES 

3.1. Period domain 

Consider a non-degenerate lattice A with a quadratic form q (not necessarily uni-

modular or even) of signature (3,6 - 3). Later A will be H2(M,Z) of a hyperkahler 

manifold M endowed with the Beauville-Bogomolov form. 

The period domain associated to A is the set 

The quadratic form q is extended C-linearly. Thus, D is an open subset of the smooth 

quadric hypersurface defined by q(x) = 0 and, in particular, D has the structure of a 

complex manifold of dimension 6 — 2 which is obviously Hausdorff. 

The global structure of the period domain D is also well-known. Let G r p o ( 2 , F ) 

be the Grassmannian of oriented positive planes in a real vector space V en

dowed with a quadratic form and consider Rb with the diagonal quadratic form 

(+1, +1 , +1, - 1 , . . . , - 1 ) . See e.g. [4, Exp. VIII] for the proof of the following. 

PROPOSITION 3.1. — There exist diffeomorphisms 

D := DA := {x G P(A 0 C) | q(x) = 0 and q(x, x) > 0 } . 

D ^ Gr p o (2 , A ® R) = Gr p o (2 , R 6 ) ^ 0(3, b - 3)/(SO(2) x 0 ( 1 , 6 - 3 ) ) . 

In particular, D is connected with TTI(D) = { 1 } . • 
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The first isomorphism is given by mapping x G D to the plane P(x) C A 0 R 

spanned by the real and imaginary part of x. For the converse, choose an orthonormal 

positive oriented basis a,b G P of a given plane P G G r p o ( A 0 R) and map P to 

a + ib E D. For the last two diffeomorphisms choose an isometry A 0 R = R 6 . In the 

following, we shall often tacitly pass from one description to the other and will not 

distinguish between the point x G D and its associated plane P(x) G G r p o ( 2 , A 0 R ) . 

Remark 3.2. — For any 0 ^ a G A one can consider the intersection D f l a 1 , where 

a1- is the hyperplane {x G P(A 0 C) | <?(z, a) = 0 } . Thus D f l a 1 c D i s non-empty 

of complex codimension one. 

Moreover, for any open subset U C D the set £A(Jo^c*eA a ± * s dense m ^ - Indeed, 

pick a generic one-dimensional disk A through a given point x G U. Then each a ± 

intersects A in finitely many points and since A is countable, the intersection A D | J a1-
is at most countable. But the complement of any countable set inside A is dense in A . 

3.2. Twist or lines 

A subspace W C A 0 R of dimension three such that q\w is positive definite is 

called a positive three-space. 

D E F I N I T I O N 3.3. — For any positive three-space W one defines the associated twistor 

line Tw as the intersection 

Tw : = L > n P ( W 0 C ) . 

For W a positive three-space, P ( W 0 C) is a plane in P(A 0 C) and Tw is a smooth 

quadric in F(W 0 C) = P 2 . Thus, as a complex manifold Tw is simply P 1 . 

Two distinct points x,y G D are contained in one twistor line if and only 

if their associated positive planes P{x) and P{y) span a positive three-space 

(P(x),P(y)) C A 0 R. 

D E F I N I T I O N 3.4. — A twistor line Tw is called generic ifW1- n A = 0. 

Remark 3.5. — One easily checks that Tw is generic if and only if there exists a 

vector w G W with w1- f l A = 0, which is also equivalent to the existence of a point 

x G Tw such that x1- f l A = 0. In fact, if W is generic, then for all except a countable 

number of points x G Tw one has x1- f l A = 0 (cf. Remark 3.2). 

D E F I N I T I O N 3.6. — Two points x,y G D are called equivalent (resp. strongly equiva

lent) if there exists a chain of twistor lines (resp. generic twistor line) T ^ , . . . ,Twk 

and points x = xi,..., Xk+i = y with X{,Xi+i G Tw{ • 

The following is well-known, see [4]. 

P R O P O S I T I O N 3.7. — Any two points x,y G D are (strongly) equivalent. 
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Proof. — Since D is connected, it suffices to show that each equivalence class is open. 
Let us deal with the weak version first. 

x = (a, b) 

x2 = {a, c) 

(a',b>) 

x3 = (b', c) 

T 3 

Î 2 

Consider x G D and choose a basis for the corresponding positive plane 
P(x) = (a, b). Here and in the sequel, the order of the basis vector is meant to 
fix the orientation of the plane. Pick c such that (a, 6, c) is a positive three-space. 
Then for (a*\b') in an open neighbourhood of (a,b) the spaces (a,b',c) and (a',b',c) 
are still positive three-spaces. Let T i ,T2 , and T3 be the twistor lines associated to 
(a,b,c), (a,6' ,c), resp. {a',b',c). Then P(x) = (a,6),(a,c) G Ti, (a,c),(6' ,c) € T 2 , 
and (&',c), (af,bf) G T3. Thus, x and (af,bf) are connected via the chain of the three 
twistor lines Ti, T2 , and T 3 . 

For the strong equivalence, choose in the above argument c such that cr1 Pi A = 0. 
Then the twistor lines associated to the positive three-spaces (a, 6, c), (a, 6 ; ,c) , and 
(a'jb'jc) are all generic (see Remark 3.5). • 

This easy observation is crucial for the global surjectivity of the period map (see 
Section 5.2). In order to prove that the period map is a covering map, one also needs a 
local version of the surjectivity (cf. Section 5.4) which in turn relies on a local version 
of Proposition 3.7. This shall be explained next. 

C O N V E N T I O N 3.8. — In the following, we consider balls in D and write B c B c D 
when B is a closed ball in a differentiable chart in D. In particular, B will be the open 
set of interior points in B. 

DEFINITION 3.9. — Two points x,y G B c B c D are called equivalent (resp. 
strongly equivalent) as points in B if there exist a chain of (generic) twistor lines 
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,. • •, Twk and points x = xi,..., Xk+i = y £ B such that Xi,Xi+i are contained 

in the same connected component ofTwi H B. 

Note that a priori two points x,y G B could be (strongly) equivalent as points in 

D without being (strongly) equivalent as points in B. In the local case, only strong 

equivalence will be used. 

The local version of Proposition 3.7 is the following. 

PROPOSITION 3.10. — For a given ball B c B c D any two points x,y G B are 

strongly equivalent as points in B. 

Proof. — One again shows that each equivalence class is open which together with 

the connectedness of the ball B proves the result. The proof is a modification of the 

argument for Proposition 3.7 and we shall use the same notation. The main difference 

is that a given positive plane (a, b) is connected to any nearby point by a chain of 

four generic twistor lines instead of just three. As the proof given here deviates from 

the original more technical one in [24], we shall spell out all the (mostly elementary) 

details. 

Let x € B and let a, b be an oriented basis of the associated plane P(x). The open 

sets U£ := {(a ' , b') \ \\a — a'\\ < £, \\b — b'\\ < e} form a basis of open neighbourhoods 

of x G D. Here || || is an arbitrary fixed norm on the real vector space A ® M. Strictly 

speaking, U£ is an open set of planes, but when we write (af

yb
f) G U£ we implicitly 

mean that the vectors a', b' satisfy the two inequalities defining U£. 

Fix 0 < £ < 1 small enough such that x G U£ C B. Then there exist (d,c) G U£ 

such that (a, b, c), (a, 6, d) are positive three-spaces. Indeed, if an isometry A 0 l = i f c 

is chosen such that (a, b) = (ei, e<i), then take c = e2 + (e/2)es and d = e\ + {e/2)e^. 

Here ei , . . . ,e& is the standard basis of Rb endowed with the quadratic form 

diag(l, 1,1,—1,...,—1). Moreover, after adding small generic vectors, we can assume 

that c i n A = 0 = rf1nA. 

To be a positive three-space is an open condition. Thus there exists 0 < S < e such 

that for all (af,b') G Us C U£ c B the spaces (af,bf,c) and (af,b\d) are still positive 

three-spaces. 
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For any given (a', b') G Us, let T i , . . . , T 4 be the generic (!) twistor lines associated 

to the four positive three-spaces (a, 6, c), (a,6',c), {a,b',d), resp. (a',b',d). (Use that 

indeed (a, 6), (a, 6'), (a', &') G I/*.) 

Let xi := x = (a, 6), # 2 := (a,c), a?3 := (a, b'), # 4 := (d,&'), and a?5 := (a',b'). 

Then Xi,Xi+i eTiC\B. This would show that # and (a',6') are strongly equivalent as 

points in B if indeed and Xi+i are contained in the same connected component of 

1̂  fl B (in fact, as we will see, of Ti fl C/e). The verification of this is straightforward. 

E.g. x2 = (a, c) and #3 = (a, 6') can be connected via (a, c + — c)) with £ G [0,1]. 

This path is contained in T 2 fl 5 as ||c + *(6' - c) - 6|| = ||(1 - t)(c - b) +¿(6 ' - < 

(1 - t)e + t6 <e. • 

A much easier related observation is the following: 

LEMMA 3.11. — Consider a ball B c B c D and let x G B\B. Then there exists a 

generic twistor line Tw C D such that x G dB fl Tw is in the boundary of BC\ Tw. ^ 

ot/ier words, the boundary of B can be connected to its interior by means of generic 

twistor lines. 

Proof. — Consider the tangent space TxdB of the boundary dB in the point x G dB. 

Then TxdB is a subspace of real dimension 2b — 5 of the tangent space TXD which 

is of real dimension 26 — 4. Describing D as the Grassmannian of oriented positive 

planes, yields a natural identification of TXD with Hom(P(a:), A 0 R/P(x)). 

Under this identification, the tangent space of a twistor line Tw through x 

corresponds to the two-dimensional real subspace Hom(P(x),Ma), where we write 

W = P(x) 0 Ra for some positive a G P{x)± and identify A 0 R/P(x) with P(x)±. 

Conversely, the choice of a defines a twistor line through x and if a is chosen 

generically then a1- fl A = 0 and Hom(P(#), Ra) (jL TxdB, i.e. the corresponding Tw 

is a generic twistor line through x with Tw H B ^ 0 . • 

4. PERIOD M A P 

4.1. Local Torelli theorem 

For any compact complex manifold X there exists a versal deformation 

%—>Def(X). As usual, Def(X) is understood as a germ of a complex space 

which can be chosen arbitrarily small. Since H°(X,!7x) = 0 for I a compact 

hyperkahler manifold, the deformation is in this case in fact universal. More

over, since any small deformation of X is again compact hyperkahler, one has 

hx(%uV%t) = h}(%u^%t) = h1'1^) = const and hence % -* Def(X) is universal 
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for any of its fibers 9Ct. For a survey of Kuranishi's results on deformation theory see 
e.g. [11]. 

Although H2(X,!7x) need not be trivial for a compact hyperkahler manifold, 
the base Def(X) is smooth of dimension b2(X) -2 = hl(X, U'x)- This is a result 
of Bogomolov [5], which can also be seen as a special case of the Tian-Todorov 
unobstructedness result for Kahler manifolds with trivial canonical bundle. 

Classical Hodge theory provides us with a holomorphic map 

g>: Def(X) - P ( i J 2 (X ,Z) ) , t H- [ t f 2 ' ° (%)] 

for which one uses the canonical identification H2(X,Z) = H2(%t,Z) via par
allel transport which respects the Beauville-Bogomolov forms qx, resp. q%t. As 
Qx(<r%t) = q%M%t) = 0 and qx(?%t,o<xt) = Q(xM%t^%t) > 0, the period map takes 
values in the period domain 

Dx := DHW)CP(H2(X,C)). 

The following result was proved in [3]. 

THEOREM 4.1 (Local Torelli theorem). — The period map 

0 : Def(X) -+ Dx C F(H2(X,C)) 

is biholomorphic onto an open subset of the period domain Dx • • 

4.2. Moduli space of marked hyperkahler manifolds 

For any given non-degenerate lattice A of signature (3,6 — 3) one defines the moduli 
space of K-marked hyperkahler manifolds as 

OTA : = { ( X , 0 ) } / C * . 

Here, X is a compact hyperkahler manifold and (j) : H2(X,Z) = A is an isome-
try between H2(X,Z) endowed with the Beauville-Bogomolov pairing and the lat
tice A. Two A-marked hyperkahler manifolds (X, and ( X ' , 0 ' ) are isomorphic, 
(X, (j)) ~ (X 7 , <//), if there exists a biholomorphic map g : X ^> X' such that 4>og* = ft. 

Remark 4-2. — For most lattices A one expects 9JIA = 0; at least very few lattices 
are known that are realized. On the other hand, in all known examples the lattice A 
determines the diffeomorphism type of X. The latter suggests to actually fix the 
underlying real manifold M, to put A = f f 2 ( M , Z) , and to consider 

MM := { ( X , 0 ) | X ~ d i f f M } / ^ C MA 

as the space of marked hyperkahler manifolds X diffeomorphic to M (but without 
fixing the diffeomorphism). As we shall eventually restrict to a connected component 
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of the moduli space and SPTM is a union of connected components of 9PTA, one can 
work with either of the two moduli spaces, DJIM or dJl\. 

The following is a well-known generalization of a construction used for K 3 surfaces 
(see [4] or [16, Prop. 7.7]). 

PROPOSITION 4 . 3 . — The moduli space of K-marked hyperkahler manifolds 9Jl\ has 
the structure of a complex manifold of dimension 6 — 2. For any (X, G 9JIA, there 
is a natural holomorphic map Def(X) ^ identifying Def(X) with an open neigh
bourhood of (X, <f>) in DJl\ . 

Proof. — The base of the universal deformation % —> Def(X) of a compact hyper
kahler manifold X parametrized by %Jl\ can be thought of as a small disk of dimension 
b — 2. A marking 4> of X naturally induces markings </>t of all the fibers % t and by the 
Local Torelli Theorem 4.1 the period map <P : Def (X) -+ D C P(A 0 C) defined by </> 
is a local isomorphism. Hence, for to ^ t\ G Def(X) the fibers (Xto and % t l with the 
markings 4>t0 and 0^ , respectively, are non-isomorphic as marked manifolds. 

Thus, the base space Def (X) can be regarded as a subset of SDTA containing (X, 0). 
For (X, 0), (X', <j>') G 97tA consider the intersection Def(X) DDef(X') , which might of 
course be empty. Since % —» Def(X) is a universal deformation for each of its fibers % t 

(and similarly for % -> Def(X')) , this is an open subset of Def(X) and Def(X') on 
which the two induced complex structures coincide. Therefore, the complex structures 
of the deformation spaces Def(X) for all X parametrized by 9#A glue to a complex 
structure on 9JIA- Since Def(X) is smooth, also 9Jl\ is smooth. • 

Remark 4-4- — Two words of warning are in order at this point. Firstly, DJIA is a 
complex manifold but in general it is not Hausdorff. Second, the universal fami
lies % —> Def(X) and %' —> Def(X') do not necessarily glue over the intersection 
Def(X) fl Def(X') in 9JIA- This is due to the possible existence of automorphisms 
acting trivially on the second cohomology. See [1] for explicit examples. 

By the very construction of the complex structure on 9JIA, the local period maps 
0 : Def(X) ^ Dx C P 2 ( i f 2 ( X , C ) ) glue to the global period map 

#>:9J t A ^P(A(g)C) . 

The global period map takes values in the period domain D C P(A 0 C) (see Section 
3 . 1 ) and the Local Torelli Theorem 4.1 immediately gives 

COROLLARY 4 . 5 . — The period map $ : Wl\ —> D is locally biholomorphic. • 
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4.3. The moduli space is made Hausdorff 

As alluded to before, the moduli space of marked hyperkahler manifolds WIA need 

not be Hausdorff. This phenomenon is well-known for K3 surfaces and it cannot be 

avoided in higher dimensions either. 

Recall that a topological space A is Hausdorff if for any two points x ^ y G A 

there exist disjoint open sets x G Ux C A and y G Uy C A. If Ux D Uy ^ 0 for all 

open neighbourhoods x G Ux and y G Uy, then x and y are called inseparable and we 

write x ~ y. Clearly, # ~ x for all £ and x ~ y it and only if y ~ x, i.e. ~ is reflexive 

and symmetric. But in general x ~ y ~ z does not imply x ~ 2, i.e. ~ may fail to be 

transitive, in which case it is not an equivalence relation. 

Restricting to our situation at hand, we shall define an a priori stronger relation 

as follows. 

DEFINITION 4.6. — For x,y e 9JIA with @{x) = fl(y) G D we say x « y if there 

exist an open neighbourhood U of 0 := £P(x) = £P(y) G D and holomorphic sections 

sx,sy of $ : fl~1(U) —> U such that: 

i) sx = sy on a dense open subset U$ C U and 

ii) sx(0) = x and sy(0) = y. 

In order to show that ~ and « actually coincide, we need to recall the following 

result from [17]. 

PROPOSITION 4.7. — Suppose (X,(j)) and (Y,(/>f) correspond to inseparable distinct 

points x,y G SJIA- Then X and Y are bimeromorphic and £P(x) = ${y) is contained 

in D f l a 1 for some 

Proof — The first part is [17, Thm. 4.3]. The bimeromorphic correspondence is con

structed roughly as follows. If x ~ then there exists a sequence U G 9JIA converging 

simultaneously to x and y. For the universal families % and 2/ of X , resp. V, this corre

sponds to isomorphisms gi : . —> 2/T compatible with the markings of % t i and 2/T . 

Then the graphs T9i are shown to converge to a cycle T = Z + C I x 7 of which 

the component Z defines a bimeromorphic correspondence and the components Yk do 

not dominate neither of the two factors. 

If Z is not the graph of an isomorphism, then the image in X of curves contracted 

by Z -> Y describes curves in X. Thus H2n-^2n~x { X ^ 0 and by duality also 

HX^{X,Z) ± 0. Hence there exists a class 0 ^ a e A with ^(a) G fl"1'1^) and, 

therefore, 0>(x) G D f l a 1 . 

Suppose Z is the graph of an isomorphism. Consider the action of [Z]* + 

on A (via the given markings 0 and </>'). If the image of some Yk in X and Y is of 

codimension > 2, then [Yk]* acts trivially on A. If this is the case for all [Yk], then 

[Z]* = [r]* = [I^J* on A and, since the gi are compatible with the markings, the 
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latter is in fact the identity. But then Z is the graph of an isomorphism X = Y that 

is compatible with the markings <j>, <J)' and, therefore, x = y. Contradiction. 

If one of the maps onto a divisor in X or 7 , then H1'1 (X, Z) ^ 0 or, equivalently, 

Hltl(Y,Z) ^ 0. So again in this case <P(x) = 0>(y) G D n a 1 for some 0 ^ a G A. • 

Remark — If one tries to apply the same argument to the Teichmiiller space 

Teich(M), then one needs to show the following: If Z defines an isomorphism and the 

Yi have images of codimension > 2, then the isomorphism defined by Z is in fact given 

by a diffeomorphism in the identity component Diff(M)o. This issue was addressed 

in a more recent version of [24]. 

Note that for K3 surfaces Z always defines an isomorphism and that, a priori, in 

higher dimensions Z could define an isomorphism without any of the components Yi 

mapping onto a divisor. 

PROPOSITION 4.9. — i) & is an open equivalence relation. 

ii) x « y if and only if x ~ y. 

iii) ~ is an open equivalence relation. 

Proof. — i) Again, « is reflexive and symmetric by definition. Let us show that 

it is also transitive. Assume x « y « z and choose for x « y a neighbourhood 

0 := ${x) = @(y) G U C D and sections sx,sy as in Definition 4.6. Similarly for 

y « z, choose a neighbourhood 0 = @(y) = (P(z) G U' C D and sections ty,tz. 

Replacing U and Uf by their intersection, we may in fact assume U = U'. 

Then sy(U) and ty(U) are both open neighbourhoods of y and hence sy(U)nty(U) 

is. Since $ is a local homeomorphism, this also shows that sy and ty coincide on the 

open neighbourhood U := £P(sy(U) D ty(U)) C U of 0. Since sx and sy coincide on a 

dense open subset of 17, they also coincide on a dense open subset of U. Similarly for 

ty and t z . Together with sy\jj = ty\fy this shows x w z. 

Recall that an equivalence relation « on a topological space A is open if the pro

jection A —• A/^ is open. Equivalently, an equivalence relation w is open if for all 

x « y and any open neighbourhood x eVx C A, there exists an open neighbourhood 

y G Vy C A such that for any y' G Vy one finds an x' G Vx with x' & y'. In our case, 

let := 5^(^(14) fl £/). Indeed, the dense open subset UQ on which sx = sy (see 

Definition 4.6, ii)) intersects the image of fl(Vy) in a dense open subset and hence 

« , W ) ) » * » ( W ) for all y' G V v. 

ii) As x « y clearly implies a; ~ y, we only need to show the converse. So let 

x ~ y. Then 0 := = ^ ( y ) . Pick an open neighbourhood 0 G U C D of 0 and 

holomorphic sections : U —> 9Jl\ with 5^(0) = x and 5^(0) = y. Since x ~ y, 

the intersection V" := sx(U) D sy(U) cannot be empty. 
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In order to show that x « y, it suffices to show that the open subset UQ : = fP(V) 
is dense in U. If for x' G sx(U) and y' G sy(U) one has t := # V ) = ffl(y') G d*70 (the 
boundary of UQ in 17), then x' ~ 2/ and x' ^ y'. 

By Proposition 4.7 this implies that t is contained in D f l a 1 for some class 
0 / a G A. Hence 8U0 C Uo^aeA^ - 1 - This * s e n o u g h to conclude that UQ is dense 
in J7. Indeed, suppose U \ UQ ^ 0 . Then connect a generic point in UQ via a one-
dimensional disk A C U with a generic point in the open subset U \UQ. Then 
A fl dUo C A n Uo/aGA a ± * s countable and can therefore not separate the two dis
joint open sets A n UQ and A fl (U \ UQ). Contradiction. (Compare the arguments 
with Remark 3.2.) 

Obviously, iii) follows from i) and ii). • 

COROLLARY 4.10. — The period map 0 : MA —> D c P(A 0 C) factorizes over 
the 'Hausdorff reduction^ MA of MA- More precisely, there exist a complex Hausdorff 
manifold MA and locally biholomorphic maps factorizing the period map: 

$ : MA -» MA —> D, 

such that x = (X,<f>),y = (Y,<f>f) G MA map to the same point in MA if and only if 
they are inseparable points of MA, i-e. x ~ y. 

Proof. — Consider the closure R := A of the diagonal A C 371A X MA- Clearly, R is 
the set of all tuples (#, y) with x ~ y and thus by Proposition 4.9, iii) the graph of 
an equivalence relation. 

It is known that for an open equivalence relation ~ on a topological space A the 
quotient A/„ is Hausdorff if and only if its graph R c A x A is closed (see [6, §8 
№3. Prop. 8]). Since ~ is an open equivalence relation due to Proposition 4.9, iii) 
and R = A, this shows that indeed MA/~ is Hausdorff. 

The period map @ : MA —> D is a local homeomorphism and factorizes via 
WIA —> 9#A/~ —> D. Hence also WIA —• MA/ ~ is a local homeomorphism which allows 
one to endow MA/ ~ with the structure of a complex manifold. 

So, MA -= 3PTA/~ (together with the natural maps) has the required properties. • 

Remark J^.ll. — The same arguments apply to any connected component M\ of MA-
Thus by identifying inseparable points, one again obtains a Hausdorff space M°A. Since 
points in distinct connected components of MA can always be separated, S0TA is in 
fact a connected component of 371A-
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4.4. Twistor deformation and lifts of twistor lines 

We briefly recall the construction of the twistor space. For more details, see e.g. 
[13, 14]. 

Any Kahler class a G ^^(X^R) on a hyperkahler manifold X = ( M , / ) is 
uniquely represented by a Kahler form UJ = UJI = g(I( ) , ) of a hyperkahler 
metric g. The hyperkahler metric g comes with a sphere of complex structures 
{A = al + bJ + cK \a2 + b2 + c2 = 1}, where K = I o J = -J o I. Each (Af, A) 
is again a complex manifold of hyperkahler type with a distinguished Kahler form 
uj\ := g(X( ) , ) and a holomorphic two-form a\ G H°((M, A), Q2

M A ^ ) . E.g. for A = J 
the latter can be explicitly given as oj = LJK + iwi- In general, the forms LU\, Re(o~\), 
and Im(crA) are contained in the three-dimensional space spanned by ui, Re(07), and 
Im(aj). 

The twistor space associated to a is the complex manifold % described by the com
plex structure I G End(T m M © TaP 1 ) , (V,W) *-+ (A(v), ipi (w)) on the differentiable 
manifold M x P 1 . Here, fyi is the standard complex structure on P 1 . The integrabil-
ity of I follows from the Newlander-Nirenberg theorem, see [15]. In particular, the 
projection defines a holomorphic map 

% - ^ P 1 

whose fiber over A = / is just X = ( M , / ) . If one wants to stress the dependence on 
the Kahler class a, one also writes %{a) —> T(a) = P 1 . 

By construction, the twistor space is a family of complex structures on a fixed mani
fold M . Thus, if we take A = i J 2 (M, Z ) endowed with the Beauville-Bogomolov pair
ing, then the period map yields a holomorphic map !P : P 1 = T(a) —> D C P(A 0 C ) . 

In fact, the period map identifies P 1 = T(a) with the twistor line Twa C D associ
ated to the positive three-space Wa := ([a;/], [Re(a/)], [Im(<7/)]) = 
R a 0 ( i J 2 ' ° ( X ) © ^ ° ' 2 ( X ) ) R , i.e. 

9 : P 1 = T(a) ^ TWa C D. 

Remark — Twistor spaces are central for the theory of K3 surfaces and higher-
dimensional hyperkahler manifolds. In contrast to usual deformation theory, which 
only provides deformations of a hyperkahler manifold X over some small disk, twistor 
spaces are global deformations. 
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5. GLOBAL A N D LOCAL SUBJECTIVITY OF THE PERIOD M A P 

5.1. The Kahler cone of a generic hyperkahler manifold 

Global and local surjectivity of the period map both rely on the following result 

proved in [17]. 

THEOREM 5.1 (Kahler cone). — Let X be a compact hyperkahler manifold with 

Pic(X) = 0. Then the Kahler cone ?Kx of X is maximal, i.e. tfcx — 

Here, ffx is the positive cone, i.e. the connected component of the open cone 

{a G HX,1(X, R) | q(a) > 0} that contains a Kahler class. 

Remark 5.2. — For arbitrary compact hyperkahler manifolds the Kahler cone can be 

described as the open set of classes in *@x that are positive on all rational curves (see 

e.g. [13, Prop. 28.5]), but this stronger version will not be needed. 

Theorem 5.1 relies on the projectivity criterion for compact hyperkahler manifolds 

that shows that X is projective if and only if ffx H H2(X,Z) ^ 0. The original 

proof in [17] was incorrect. The corrected proof given in the Erratum to [17] uses the 

Demailly-Paun description [10] of the Kahler cone of an arbitrary compact Kahler 

manifold (see also [9]). 

COROLLARY 5.3. — / / (X,</>) G Wt\, then Pic(X) = 0 if and only if 

(P(X, (j)) IJo^aGA a ± - ^n this case, the Kahler cone of X is maximal, i.e. CKx — 

Proof. — The first part follows from the observation that 0 _ 1 ( a ) € H2(X,Z) is of 

type (1,1) if and only if it is orthogonal to the holomorphic two-form ax- This in 

turn is equivalent to fl(X, <fi) G a1-. • 

PROPOSITION 5.4. — Consider a marked hyperkahler manifold (X,(j)) G 9JIA and 

assume that its period £P(X,(j)) is contained in a generic twistor line Tw C D. Then 

there exists a unique lift of Tw to a curve in VJIA through (X, (j)), i.e. there exists a 

commutative diagram 

cp 

Tw 

with (X,(/>) in the image of i. 
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Proof. — Since !P : 9JlA —» D is locally biholomorphic, the inclusion i : A C Tw ^ D 

of a small open one-dimensional disk containing 0 = <^(X, 0) G A can be lifted to 

i : A ^ 9JtA, t i-> {Xu(j)t) with ¿(0) = (X,(f)). By Corollary 4.10 the space MA is 

Hausdorff and hence i : A is unique. (The uniqueness is a general fact from 

topology which works for any local homeomorphism between Hausdorff spaces, see 

e.g. [7, Lem. 1].) 

As Tw is a generic twistor line, the set Tw D |Jo#aeA a ± * s countable and thus for 

generic t G A one has Pic(X t) = 0 (see Remark 3.5 and Corollary 5.3). Let us fix such 

a generic t. 

By construction, (/)t(o~t) G W<g>C and, therefore, there exists a class at G H2(Xt, M) 

such that (j>t(ctt) G W is orthogonal to </>t(Re(<7t), Im(<Tt)) C W. Hence, at is of type 

(1,1) on Xt and ±at G "6xt-> as W is a positive three-space. Due to Corollary 5.3 and 

using Pic(Xt) = 0 for our fixed generic £, this implies ±at G rfCxt-

Now consider the twistor space 9C(at) —> T(at) for Xt endowed with the Kahler 

class ±aj£. Since (/>t(cet,Re(crt),Im(o~t)) = W, the period map yields an identification 

$:T{at)^Tw. 

Both, T(at) and i(A), contain the point t and map locally isomorphically to Tw-

Again by the uniqueness of lifts for a local homeomorphism between Hausdorff spaces, 

this proves 0 G T(at) which yields the assertion. • 

5.2. Global surjectivity 

The surjectivity of the period map proved in [17] is a direct consequence of the 

description of the Kahler cone of a generic hyperkahler manifold. 

THEOREM 5.5 (Surjectivity of the period map). — Let 9Jt̂  be a connected compo

nent of the moduli space 9JlA of marked hyperkahler manifolds. Then the restriction 

of the period map 

0 : dJt°A -» D C P(A 0 C) 

is surjective. 

Proof. — Since by Proposition 3.7 any two points x,y G D are strongly equivalent, 

it is enough to show that x G fl(9RA) if and only if y G ^(SPTA) f ° r a n y t w o P o m t s 

x,y G Tw C D contained in a generic twistor line Tw- This is an immediate conse

quence of Proposition 5.4 which shows that the generic twistor line Tw can be lifted 

through any given preimage (X, (j>) of x. Indeed, then y will also be contained in the 

image of the lift of Tw- D 
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5.3. Covering spaces 

This section contains a criterion that decides when a local homeomorphism is a 

covering space. Recall that a continuous map TT : A —> D between Hausdorff spaces is 

a covering space if every point in D admits an open neighbourhood U C D such that 

-K~1{U) is the disjoint union ]\Ui of open subsets Ui C A such that the projections 

yields homeomorphisms TT : Ui ^ U. 

The reader may want to compare Proposition 5.6 below with a classical result of 

Browder [7, Thm. 5] which says that a local homeomorphism TT : A —• D between 

topological Hausdorff manifolds is a covering space if every point in D has a neigh

bourhood U such that TT is a closed map on each connected component of 7r - 1 (£7). 

PROPOSITION 5.6. — A local homeomorphism TT : A —• D between topological Haus

dorff manifolds is a covering space if for any ball B C B C D (see 3.8) and any 

connected component C of the closed subset TT~1(B) one has TT(C) = B. 

Proof — We shall follow the alternative arguments of Markman given in the ap

pendix to [24]. The techniques are again elementary, but need to be applied with 

care. 

The proof can be immediately reduced to the case that D = R n and A is connected. 

Then TT : A —> D = R n is a covering space, i.e. TT : A ^ R n , if and only if TT admits a 

section 7 : R n —> A. 

Pick a point x e A with TT(X) = 0 G R n (the origin) and consider balls 

B£ C BE C R n of radius e centered in 0 G R n . By the lifting property of local home

omorphisms (see e.g. [7, Lem. 1]) any section 7 : B£ —> A is uniquely determined by 

7(0). 

For small 0 < s there exists a section of TT over the closed ball 7 : B£ —» A with 

7(0) = x (use that n is a local homeomorphism in x). Let I C R be the set of all 0 < e 

for which such a section exists. Then / is a connected interval in R>o containing 0. 

It suffices to show that I is open and closed, which would imply I = [0, 00) and thus 

prove the existence of a section 7 : R n —> A of TT. 

Claim: I is open. Consider e € I and the corresponding section 7 : B£ —> A with 

7(0) = x. Then choose for each point t G B£ \ B£ a small ball B£t(t) of radius et 

centered in t over which TT admits a section j t

 : BSt(i) —> A with jt(t) = 7 (£) . Note 

that then 7 = 7* on the intersection B£ fl B£T (t). 

Since B£ \ B£ is compact, there exist finitely many points ¿1, . . . G B£\B£ 

such that B £ \ B£ c |J-B£ t. ( ^ ) . Moreover, there also exists e < S such that 

B$ C B£U \JB£ti(ti). Then, 7 and the j t . glue to a section 7 : B$ A. Indeed, 7 

and 7$. coincide on f? £ n B£ (ti). In order to show that 7 ^ and 7^. glue over the 

intersection B£T fl B£T (if not empty), one uses that this (connected) intersection 



396 D. HUYBRECHTS 

also meets B£ on which j t . and /ytj both coincide with 7 and hence with each other. 

(Draw a picture!) Hence 8 e I and thus [0, 6) C / is an open subset of / containing e. 

Claim: I is closed. In this step one uses the assumption n(C) = B. Consider 

6 G R>o in the closure of / . Then for all e < 5 there is a section 7 : B£ —• A with 

7(0) = x. Therefore, there exists a section over the open ball 7 : B$ —• A. 

Let Co be the closure j(B$) C A and let us show that then 7r : Co 7r(Co) and 

that Co coincides with the connected component C of 7r_1(5<5) containing x. 

To do this, choose balls B£t (t) as in the previous step for all points t G Bs \ Bs 

that are also contained in 7r(Co). We cannot apply a compactness argument, because 

a priori not every t in the boundary of Bs might be in the image of Co- Nevertheless, 

the sections 7* and 7 glue to a section Bs U UtE7r(c0) Be±(t) ~~̂  ̂  a n d we denote the 

image of this section by V C A. 

Thus, V is an open subset of A homeomorphic to its image under TT (which is 

Bs U UtGTr(Co) ^et(O)- Btrt then Co = V fl TT~1(BS) which in particular shows that 

Co is open in 7r~1(Bs). By definition, Co is also closed and certainly contained in C. 

Hence Co coincides with the connected component C and as Co C V = 7r(V), also 

Co ^ 7T(C0). 

Since by assumption TT(C) = B$ and, as just proved, C = Co, one finds that a 

section over Bs exists. This yields S G I. Hence, / is closed. • 

5.4. Local surjectivity and proof of Verbitsky's theorem 

In this section we conclude the proof of Verbitsky's Theorem 1.3. The first step is a 

verification of the assumption of Proposition 5.6, which can be seen as a local version 

of the surjectivity of the period map (see Theorem 5.5). 

PROPOSITION 5.7. — Consider the period map (P : Wl°A —> D from a connected com

ponent yjl°A of9JlA. If B C B C D is a ball (see 3.8), then for any connected component 

C ofP~\B) one has 0{C) = B. 

Proof. — We first adapt the arguments of Theorem 5.5 to show B C 0(C). 

Clearly, (P(C) contains at least one point of B, because 0 is a local homeomor-

phism. Due to Proposition 3.10, any two points x,y G B are strongly equivalent as 

points in B. Thus it suffices to show that x G 0(C) if and only if y G 0(C) for any 

two points x,y G B contained in the same connected component of the intersection 

Tw n B with Tw a generic twistor line. If x = 0(X, 0) with (X, </>) G C, choose a local 

lift of the inclusion x G A C Tw and then argue literally as in the proof of Theo

rem 5.5. The assumption that x, y are contained in the same connected component of 

Tw H B ensures that the twistor deformation T(at) constructed there connects (X, </>) 

to a point over y that is indeed again contained in C. 
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It remains to prove that also the boundary B \ B is contained in (P{C). For this 
apply Lemma 3.11 to any point x e B\B and lift the generic twistor line connecting x 
with a point in B to a twistor deformation as before. • 

Then Proposition 5.6 immediately yields: 

COROLLARY 5.8. — If9R°A is a connected component of$flA, then @ : 9Jl°A —• D is a 
covering space. • 

Since D is simply connected (see Proposition 3.1), this can equivalently be ex
pressed as 

COROLLARY 5.9. — If%R°A is a connected component of%RA, then $ : 9Jl°A —> D is 
an isomorphism. • 

The proof of Theorem 1.3 can now be completed as follows: 

Consider a connected component 9JtA of WtA. Then 9JlA gives rise to a connected 
component %R°A of 9JtA. By Corollary 5.9 the period map P:dJl°A^D is an isomor

phism and in particular all its fibers consist of exactly one point. 

Thus it suffices to show that the generic fiber of the natural quotient 

TT : m°A - m°A 

consists of just one point (see Remark 1.1 for the meaning of generic). The fibers 
of 7r are the equivalence classes of the equivalence relation ~ or, equivalently, « 
(see Corollary 4.10). By Proposition 4.7, points with periods in the complement of 
D n IJo^aGA a ± c a n ^ e separated from any other point. Thus, the fibers of %JlA —> D 
over all points in the complement of D f i IJo^aeA a ± consist of just one point. • 

6. FURTHER R E M A R K S 

This concluding section explains some consequences of Verbitsky's Global Torelli 
theorem. Unfortunately, due to time and space restrictions, I cannot enter a discussion 
of the polarized case which for an algebraic geometer is of course the most interesting 
one. For the latter and in particular for results on the number of components of moduli 
spaces of polarized varieties of fixed degree we refer to the relevant sections in [12] 
and [20]. 
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6.1. Bimeromorphic Global Torelli theorem 

For clarity sake, let us briefly explain again why the generic injectivity of the 

period map (P : 9JtA —> D C P(A ® C) implies that points in arbitrary fibres are at 

least birational and how this compares to the Weyl group action for K3 surfaces. This 

was alluded to in Remark 1.2 and corresponds to Proposition 4.7. 

To illustrate this, let us first go back to the case of K3 surfaces. The moduli space 

of marked K3 surfaces 9Jt consists of two connected components interchanged by the 

involution (5, ft) i—• (5, —ft). In particular, for a generic point x G D , the fibre ff)~1(x) 

consists of exactly two points. Recall that the set of generic points x G D is the 

complement of a countable union of hyperplane sections. 

The fibre of @ : 9JI —• D over an arbitrary period point x G D admits a transi

tive action of the group of all ip G 0 (A) fixing x. This group is isomorphic to the 

group Oudg(H
2(S, Z)) of all Hodge isometries of H2(S,Z) of any marked K3 surface 

(5,0) G ff>~1(x). The group Oudg(H
2(S,Z)) contains the Weyl group Ws generated 

by all reflections ss associated to (-2)-classes S G Pic(S) = HX^(S)n#2(S, Z) . Using 

the fact that the Kahler cone $Cs of a K3 surface S is cut out from the positive cone 

"6s by the hyperplanes 5^, one finds that $~ (x) for an arbitrary x G D admits a 

simply transitive action of Ws x { ± 1 } (see e.g. [4, Exp. VII]). Again, (S,ft) is an 

arbitrary point in ff>~1(x). 

In particular, the K3 surfaces S and S' underlying two points (5,ft), (S", ft) in 

the same fibre of $ are abstractly isomorphic. However, the natural correspondence 

relating S and Sf is not the graph Tg of any isomorphism g : S = S' but a cycle 

of the form T := Tg + J ] Ck x C'k, where Ck C S and C£ C S' are smooth rational 

curves. Indeed, if (S, (j>), (S", ft) are considered as limits of sequences of generic (5^,0^), 

resp. (S'ufti), with !P(Si,(j)i) = <$̂ (.Ŝ , </>£), then the graphs T9i of the isomorphisms 

gi : Si ^> S[ deduced from the generic injectivity of (P (up to sign) will in general not 

specialize to the graph of an isomorphism but to a cycle of the form T. 

In higher dimensions the situation is similar. Consider two marked compact hyper-

kahler manifolds (X, ft), (X', ft) which are contained in the same connected compo

nent SDt̂ . Suppose that their periods coincide {P(X,ft) — (P(X',ft). If the period 

is generic in D, then Theorem 1.3 proves that (X^ft — (Xf,ft) as points in 9JtA 

and thus X = X'. However, if the period is not generic, then X and X' might be 

non-isomorphic. But in this case, they can at least be viewed as specializations of 

two sequences (X^, </>;), resp. ( X z

7 , ^ ) , with generic periods fP{Xi,fti) = @{X[,ft?) 

as above. Applying Theorem 1.3 to (Xi,fti), (Xf

i,fti)1 shows the existence of isomor

phisms gi : Xi ^ X[ inducing (Xi, ft) = {X[, ft^ as points in 97tA. 

Again the graphs T9i of the isomorphisms gi will converge to a cycle V C XxX', but 

r is more difficult to control. In any case, one can show that T splits into V = Z+^Yk 
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where X <— Z —> X' defines a bimeromorphic map and none of the projections 

Yk —> X and Y£ —• X' are dominant (see the proof of Proposition 4.7). This is 

Theorem 4.3 in [17] which expresses the fact by saying that non-separated points in 

9JIA are bimeromorphic. 

As a consequence of Theorem 1.3, one can thus state the following 

COROLLARY 6.1. — Let (X, <p),(X',</>) be marked hyperkahler manifolds contained 

in the same connected component 9Jt .̂ If ${X, <j>) = fl(X',(j)f), then X and X' are 

bimeromorphic. • 

6.2. Standard Global Torelli 

Ideally of course, one would like to have a result that deduces from the exis

tence of a Hodge isometry H2(X,Z) = H2(Xf,Z) between two compact hyperkah

ler manifolds X and X' information on the relation between the geometry of the 

two manifolds. Unfortunately, Theorem 1.3 fails to produce or to predict such a re

sult. As discussed in the introduction, the generic injectivity of the period map on 

each connected component 9Jt̂  C 9#A, as shown by Verbitsky's Theorem 1.3, proves 

'one half of the standard Global Torelli theorem. The 'other half, the condition 

0(H2(X, Z)) /Mon(X) = { ± 1 } on the monodromy action on H2(X, Z) , does not hold 

in general. Recall that Mon(X) is the subgroup of 0(H2(X, Z)) generated by the 

image of all monodromy representations 7Ti (£?,£) —> 0(H2(X,Z)) induced by smooth 

proper holomorphic families % —• B with %t = X. Here, the base B can be arbitrarily 

singular. 

Thus, in full generality Theorem 1.3 only yields the following weak form of the 

standard Global Torelli theorem in which the condition on the monodromy action is 

not always satisfied and in any case hard to verify. 

COROLLARY 6.2. — Two compact hyperkahler manifolds X and X' are bimeromor

phic if and only if there exists a Hodge isometry H2(X,Z) = H2(X',Z) that can 

be written as a composition of maps induced by isomorphisms and parallel transport 

along paths of complex structures. • 

COROLLARY 6.3. — In particular, if 0 ( i J 2 ( X , Z ) ) / M o n ( X ) = { ± 1 } , then the 

bimeromorphic type of X (and for generic X even the isomorphism type) is de

termined by its period among compact hyperkahler manifolds that are deformation 

equivalent to X. • 

The monodromy group Mon(X) has been computed by Markman for X = Hilbn(S') 

and arbitrary n (see [18, 19]). In particular, his results tell us exactly when the mono

dromy condition, and thus the standard Global Torelli theorem for deformations of 

Hilb n (5), do hold. 
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THEOREM 6.4 (Markman). — Let X be deformation equivalent to the Hilbert scheme 
Hilb n (5) of a K3 surface S. Then 0(H2{X,Z))/Mon(X) = { ± 1 } if and only if 

COROLLARY 6.5. — Suppose X and X' are deformation equivalent to the Hilbert 
scheme Hilb n (5) of a K3 surface S such that n = pk + 1 for some prime number p. 
Then there exists a Hodge isometry H2(X,Z) = H2{Xf ,Z) if and only if X and X' 

Remark 6.6. — Note that for all other values of n the standard Global Torelli the
orem fails, i.e. there exist Hodge isometric deformations of Hilb n (5) that are not 
bimeromorphic. A conjectural explicit description for the monodromy group of the 
generalized Kummer varieties Kn(S) can be found in [20]. 

Remark 6.7. — Clearly, Mon(X) is contained in the image of Diff(X) -> 0(H2(X, Z)). 
However, it is not known whether the two groups always coincide. For a K3 surface 
S the computation of the monodromy group Mon(S) is not too difficult. It coincides 
with the index two subgroup 0+( i7 2 (S , Z)) C 0(H2(S,Z)) of all orthogonal trans
formations preserving the orientation of a positive three-space. That in this case 
Mon(5) indeed coincides with the action of the full diffeomorphism group Diff(5), 
which is equivalent to the assertion that —id is not induced by any diffeomorphism, 
is a theorem of Donaldson. 

6.3. Global Torelli theorem for K3 surface revisited 

As it turns out, Verbitsky's result provides a new approach towards the Global 
Torelli theorem for K3 surfaces. Apparently, the potential usefulness of twistor spaces 
not only for the surjectivity of the period map but also for its injectivity was discussed 
among specialists thirty years ago but details have never been worked out. 

We shall briefly explain the situation of K3 surfaces and what precisely is used to 
prove Theorem 1.3. 

i) The existence of hyperkahler metrics in each Kahler class. This is a highly non-
trivial statement and uses Yau's solution of the Calabi conjecture. The existence is 
crucial for Verbitsky's approach as it ensures the existence of twistor spaces upon 
which everything else hinges. The theory as represented in [4], which in turn relies 
on work of Looijenga and Peters and many others, also uses Yau's result, but the 
original proof for algebraic or Kahler K3 surfaces due to Pjateckii-Sapiro, Safarevic, 
resp. Burns, Rapoport of course did not. 

ii) The description of the Kahler cone. More precisely, the proof uses the fact that 
a K3 surface S with trivial Picard group has maximal Kahler cone, i.e. $is — "6s 
(cf. Theorem 5.1). The description of jis for an arbitrary K3 surface S is much more 

n = pk + 1 for some prime number p or n = 1. • 

are bimeromorphic. • 
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precise as the statement in higher dimensions (see Remark 5.2): CKs is cut out of 
by hyperplanes orthogonal to smooth (!) rational curves. (Note that in [4] one first 
proves the surjectivity of the period map which is then used to prove this more precise 
version.) 

So far, the general line of arguments were simply applied to the two-dimensional 
case. It would be interesting to see whether the proofs of i) and ii) can be simplified 
for K3 surfaces in an essential way. In any case, the arguments to prove Theorem 1.3 
(in arbitrary dimensions) yield that for any connected component 9Jt° of the moduli 
space of marked K3 surfaces 9Jt the period map 0 : %Jl° - > D c P(A ® C) is surjective 
and generically injective. Moreover, if (5 ,0) , (S"',<j>') G 9Jt° are contained in the same 
fibre of 0, then 5 and S' are isomorphic. 

In order to prove the Global Torelli theorem for K3 surfaces in its original form, 
one last step is needed (see Corollary 6.3 and page 378). (One also needs Kodaira's 
result that any two K3 surfaces are deformation equivalent. For a rather easy proof, 
see e.g. [4, Exp. VI].) 

Hi) For a K3 surface S one has 0(H2(S, Z)) /Mon(5) = { ± 1 } . Of course, this can 
be deduced a posteriori from the Global Torelli theorem for K3 surfaces. But in fact 
much easier, more direct arguments exist using classical results on the orthogonal 
group of unimodular lattices like 2(—Es) 0 2U due to Wall, Ebeling, and Kneser. 

To conclude, the Global Torelli theorem for K3 surfaces could have been proved 
along the lines presented here some thirty years ago. The key step, the properness of 
the period map 971A —• D, relies on techniques that are very similar to those used for 
the surjectivity of the period map by Todorov, Looijenga, and Siu. 

The main difference of this approach towards the Global Torelli theorem compared 
to the classical one is that one does not need to first prove the result for a distinguished 
class of K3 surfaces, like Kummer surfaces, and then use the density of those to extend 
it to arbitrary K3 surfaces. Since in higher dimensions no dense distinguished class 
of hyperkahler manifolds that could play the role of Kummer surfaces is known, this 
new approach seems the only feasible one. 
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