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Séminaire BOURBAKI 
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Juin 2011 

INVARIANT PERCOLATION A N D MEASURED THEORY 

OF N O N A M E N A B L E GROUPS 

[after Gaboriau-Lyons, Ioana, Epstein] 

by Cyril HOUDAYER 

1. INTRODUCTION 

The notion of amenability was introduced in 1929 by J. von Neumann [48] in order 

to explain the Banach-Tarski paradox. A countable discrete group T is amenable if 

there exists a left-invariant mean (p : £°°(T) —• C. The class of amenable groups 

is stable under subgroups, direct limits, quotients and the free group F2 on two 

generators is not amenable. Knowing whether or not the class of amenable groups 

coincides with the class of groups without a nonabelian free subgroup became known 

as von Neumann's problem. It was solved in the negative by Ol'shanskii [50]. Adyan [1] 

proved that the free Burnside groups B(m,n) with m generators, of exponent n (n > 

665 and odd) are nonamenable. Ol'shanskii and Sapir [51] also constructed examples 

of finitely presented nonamenable groups without a nonabelian free subgroup. 

Two free ergodic probability measure-preserving (pmp) actions T rx (X,fi) and 

A rx (Y, v) of countable discrete groups on nonatomic standard probability spaces are 

orbit equivalent (OE) if they induce the same orbit equivalence relation, that is, if 

there exists a pmp Borel isomorphism A : (X, ¡1) —> (Y, u) such that A(Tx) = AA(x), 

for //-almost every x E X. Despite the fact that the group Z admits uncountably many 

non-conjugate free ergodic pmp actions, Dye [13, 14] proved the surprising result that 

any two free ergodic pmp actions of Z are orbit equivalent. Moreover, Ornstein and 

Weiss [52] (see also [11]) proved that any free ergodic pmp action V rx (X,fjb) of any 

infinite amenable group is always orbit equivalent to a free ergodic pmp Z-action on 

(X, / 1 ) . On the other hand, results of [62, 12, 26] imply that any nonamenable group 

has at least two non-OE free ergodic pmp actions. These results lead to a satisfying 

(*> Research partially supported by ANR grant AGORA NT09-461407. 
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340 C. HOUDAYER 

characterization of amenability: an infinite countable discrete group T is amenable if 

and only if T admits exactly one free ergodic pmp action up to OE. 

Measurable-group-theoretic solution to von Neumann's problem 

The first result we discuss in this paper is a positive answer to von Neumann's 

problem in the framework of measured group theory, due to Gaboriau and Lyons 

[22]. Measured group theory is the study of countable discrete groups V through their 

pmp actions T rx (X, fi). We refer to [21] for a recent survey on this topic. 

To any free pmp action T rx (X, / / ) , one can associate the orbit equivalence relation 

n(T rx X ) C X x X defined by 

(x,y) en(TrxX)^3geT,y = gx. 

For countable discrete groups T and A, we say that A is a measurable subgroup of T and 

set A < M E r if there exist two free ergodic pmp actions T rx (X, /x) and A rx (X, ¡1) 

such that 7t(A rx X) C 1Z{T rx X). Denote by Leb the Lebesgue measure on the 

interval [0,1] and let V rx ([0, l ] ,Leb) r be the Bernoulli shift. Gaboriau and Lyons 

[22] obtained the following remarkable result. 

T H E O R E M . — Let V be any nonamenable countable discrete group. Then there exists 

a free ergodic pmp action F2 rx ([0, l ] ,Leb) r such that 

U(F2 rx [0, l ] r ) C 1Z(T rx [0, l ] r ) . 

In particular, we get that F2 < M E r. This theorem has important consequences in 

the theory of group von Neumann algebras. 

C O R O L L A R Y . — Let T, H be countable discrete groups such that T is nonamenable 

and H is infinite. Then the von Neumann algebra L(H I T) of the wreath product 

group HlT := ( 0 r H) xi V contains a copy of the von Neumann algebra L{F2) of the 

free group. 

The proof of Gaboriau and Lyons' result goes in two steps that we explain below. 

We refer to Section 2 for background material on pmp equivalence relations. 

The first step consists in finding a subequivalence relation 71 C TZ(Y rx [0, l ] r ) 

such that 1Z is ergodic treeable and non-hyperfinite. This is a difficult problem in 

general. By Zimmer's result [68, Proposition 9.3.2], it is known that 1Z(T rx [0, l ] r ) 

contains an ergodic hyperfinite subequivalence relation. When T is finitely generated, 

another way to obtain subequivalence relations of TZ(T rx [0, l ] r ) is by considering 

invariant percolation processes on the Cayley graphs of T (see Section 3). This beau­

tiful idea is due to Gaboriau [20]. Gaboriau and Lyons exploit this idea and give two 

different proofs of the first step, one using random forests, the other using Bernoulli 
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percolation. They also suggest at the end of their article that the free minimal span­
ning forest [41] could serve as the desired treeable non-hyperfinite subequivalence 
relation 71. It is this approach that we will present in this paper. Sections 2 through 
7 are entirely devoted to giving a self-contained proof of this first step. The proof is a 
combination of ideas and techniques involving probability, ergodic theory, geometric 
group theory and von Neumann algebras theory. 

In the second step, one uses Gaboriau's theory of cost [18] (see also [35]). An 
ergodic treeable non-hyperfinite equivalence relation has cost greater than 1 by [18, 
Theoreme IV. 1]. From the first step, one can then construct an ergodic treeable sube­
quivalence relation 1Z C 1Z(T rx [0, l ] r ) with cost > 2. Finally, one applies Hjorth's 
result [27] in order to get a subequivalence relation of 7^(T rx [0, l ] r ) induced by a 
free ergodic pmp action of F2. 

Orbit equivalence theory of nonamenable groups 

As mentioned before, any nonamenable group admits at least two non-OE free er­
godic pmp actions [12, 26, 62]. Over the last few years, the following classes of non-
amenable groups have been shown to admit uncountably many non-OE free ergodic 
pmp actions: property (T) groups (Hjorth [26]); nonabelian free groups (Gaboriau 
and Popa [23]); weakly rigid groups ( 1 ) (Popa [56]); nonamenable products of infinite 
groups (Popa [60], see also [45, 28]); mapping class groups (Kida [37]). We refer to 
[5, 24, 68] for earlier results on this topic. 

In his breakthrough paper [30], Ioana proved that every nonamenable group T 
that contains F2 as a subgroup admits uncountably many non-OE free ergodic pmp 
actions. As we will see in Section 9, Ioana's proof goes in two steps that we outline. 
Regard F2 < SL2(Z) as a finite index subgroup and let F 2 act on Z 2 by matrix 
multiplication. By results of Kazhdan-Margulis [33, 43], the pair (Z 2 x F 2 , Z 2 ) has 
the relative property (T). Write a : F 2 rx (T 2 , A 2 ) for the corresponding pmp action. 
The first step (see Theorem 9.1) shows that in every uncountable set of mutually OE 
actions of T whose restrictions to F 2 admit a as a quotient, we can find two actions 
whose restrictions to F 2 are conjugate. The proof is based on a separability argument 
which uses in a crucial way the fact that the action a : F 2 rx T 2 is rigid in the sense 
of Popa [55]. Note that the action a was already successfully used by Gaboriau and 
Popa [23] in order to show that the free groups F n have a continuum of non-OE 
actions. The second step consists in using the co-induction technique (see Section 8) 
in order to construct uncountably many actions of T whose restrictions to F 2 are 
non-conjugate. Altogether, one obtains uncountably many non-OE actions of T. 

t1) A countable T is weakly rigid in the sense of Popa if it admits an infinite normal subgroup A < T 
such that the pair (T, A) has the relative property (T). 
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342 C. HOUDAYER 

Gaboriau and Lyons' result opened up the possibility that the condition'T contains 

F 2" in Ioana's theorem could be replaced by the natural condition'T is nonamenable". 

In order to do so, one had to generalize the second step of Ioana's proof, that is, one 

needed a more general co-induction technology for group/measurable subgroup rather 

than group/subgroup. Epstein [15] obtained such a construction (see Section 8). Since 

the first step of Ioana's proof remains unchanged for Y containing F 2 as a measurable 

subgroup, Epstein [15] obtained the following result. 

T H E O R E M . — Every nonamenable group Y admits uncountably many non-OE free 

ergodic pmp actions. 

Since then, this result has been generalized in two ways. First, recall that any free 

ergodic pmp action Y rx (X, ¡1) gives rise to a finite von Neumann algebra L°°(X) XJ Y 

via the group measure space construction of Murray and von Neumann (see Section 6). 

Two free ergodic pmp actions Y rx (X, ¡1) and A rx (Y,v) are W*-equivalent if the 

von Neumann algebras L°°(X) x Y and L°°(Y) x A are *-isomorphic. Since the group 

measure space construction only depends on the orbit structure of the action [63] 

(see also [17]), it follows that orbit equivalence implies W*-equivalence. Using Popa's 

concept of rigid inclusion of von Neumann algebras [55], Ioana [30] strengthened 

the previous result by showing that any nonamenable group Y admits a continuum 

of W*-inequivalent free ergodic pmp actions. Next, given any nonamenable group T, 

denote by Ao(Y,X, ¡1) the standard Borel space of all free mixing pmp actions of Y 

on (X, //) (see [34]). On the space Ao(Y, X, / / ) , consider the Borel equivalence relation 

OE defined by (a, b) E OE if and only if the actions a and b are orbit equivalent. 

Epstein, Ioana, Kechris and Tsankov [31] proved that OE on the space AQ(Y,X, ¡1) 

cannot be classified by countable structures. 

We point out that both Ioana's theorem and Epstein's theorem rely on a separa­

bility argument and therefore only provide the existence of a continuum of non-OE 

actions for T. What about concrete examples of a continuum of non-OE actions for 

a given nonamenable group T? Important progress has been made over the recent 

years. The classes of nonamenable groups for which a concrete uncountable family 

of non-OE actions is known are the following: non-abelian free groups (Ioana [29]); 

weakly rigid groups (Popa [56]); nonamenable products of infinite groups (Popa [60]); 

mapping class groups (Kida [37]). We also refer to Popa and Vaes [61] for further 

results regarding this question. 
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2. MEASURE-PRESERVING EQUIVALENCE RELATIONS 

Let (X, /x) be a nonatomic standard Borei probability space. A countable Borei 

equivalence relation 71 is an equivalence relation defined on the space X x X which 

satisfies: 

1. ^ C I x I is a Borei subset. 

2. For any x G X , the class or orbit of x denoted by [x]n •= {y £ X : y) G 11} 

is countable. 

We denote by [R] the full group of the equivalence relation 1Z, that is, [1Z] consists in 

all Borei isomorphisms </> : X —• X such that graph(</>) C 1Z. If T is a countable group 

and x) —• gx is a Borei action of T on X , then the ortò equivalence relation given 

by 

(x,y) e1Z(TrxX)^3geT,y = gx 

is a countable Borei equivalence relation on X . By results of Feldman and Moore [16], 

any countable Borei equivalence relation arises this way. The measure /JL is 1Z-invariant 

if = /x, for all 4> G [R], If this is the case, 1Z is called a probability measure-

preserving (pmp) equivalence relation on (X, / / ) . If T rx (X, ¡1) is a pmp action, then 

7£(r rv X ) is a pmp equivalence relation. From now on, we will always assume that 1Z 

is a pmp equivalence relation. Let S be a pmp equivalence relation on the nonatomic 

standard Borei probability space (Y,i/). We say that 1Z and S are orbit equivalent if 

there exists a pmp Borei isomorphism A : (X, ¡1) —> (Y, v) such that 

( i , l , ) e R ^ ( A ( i ) , A ( y ) ) € S . 

For any non-null Borei subset A C X , define HA(B) = fi(B)//1(A), for all Borei 

subsets J5 C i . Then (A,/x^) is a standard Borei probability space. The restricted 

equivalence relation 1Z fi (A x A) is simply denoted by 7£| A It is a pmp equivalence 

relation on (A, HA)> The infinite locus of 7£ is the Borei subset 

UQO := {x e X : [X]TZ is infinite}. 

The restricted equivalence relation 1Z\Uoo is of type Hi or aperiodic. ( 2 ) Let T rx (X, //) 

be a free pmp action of a countable infinite discrete group. Then the orbit equivalence 

relation 1Z(T rx X ) induced by the action T rx X is of type Hi. 

( 2 ) A pmp equivalence relation 71 is of type Hi if almost every 7£-class is infinite. 
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For any Borel subset 5 c X , define the 1Z-saturation of B by 

[B]n = IJ = ^ € * : 3x G B, G ft}. 

We have B C [ S ] ^ and [B]n is a measurable subset of X . We say that B C X is 

IZ-invariant if [JB]^ = B. The equivalence relation 1Z is ergodic if any 7^-invariant 

measurable subset £? C X is null or co-null. Equivalently, 1Z is ergodic if and only if 

any [72]-invariant measurable subset A C X is null or co-null. 

An equivalence relation 1Z is hyperfinite if 1Z = \Jn lZn, where lZn is an increasing 

sequence of finite subequivalence relations, that is, every orbit of 1Zn is finite. If 1Z 

is hyperfinite, then 1Z\A is still hyperfinite for every non-null Borel subset A C X. 

Dye [13, 14] proved there is a unique ergodic hyperfinite Hi equivalence relation up 

to orbit equivalence. It is induced by any ergodic action of Z on (X, ¡1). Ornstein 

and Weiss [52] (see also [11]) proved that every ergodic pmp action of any infinite 

amenable group induces the unique ergodic hyperfinite II1 equivalence relation. 

An ergodic type Hi equivalence relation 71 is strongly ergodic if for every sequence 

of Borel measurable subsets i n C I , we have the following implication: if for all 

g G [R], we have that lim n n(AnAgAn) = 0, then lim n fi(An)(l — fi(An)) = 0. A 

hyperfinite equivalence relation is never strongly ergodic. Let T rx I be any countable 

infinite group T acting on a countable set / with infinite orbits and such that for all 

g 7^ l r , there are infinitely many i G / such that g • i / i. Let (Y, v) be any non-

trivial probability space and let (X, ¡1) = (Y.v)1 be the product probability space. 

The generalized Bernoulli shift T rx (Y, v)1 is defined by g-(yi)iei — {yg-
1i)iei- ft is a 

free ergodic pmp action. Moreover, when T is nonamenable and the action T rx I has 

amenable stabilizers, the orbit equivalence relation 1Z(T rxY1) is strongly ergodic. 

We will use the following characterization of strong ergodicity due to Gaboriau [21, 

Proposition 5.2]. 

P R O P O S I T I O N 2.1. — Let 1Z be an ergodic type Hi equivalence relation on (X, /i). 

Then 1Z is strongly ergodic if and only if for every increasing sequence 1Zn of sub-

equivalence relations such that 1Z = ( J n 7£ n , there exist n G N and a non-null Borel 

subset A C X such that 1Zn\A is ergodic. 

A pmp graphing on (X, / / ) is a countable family $ = (ipi)iei of measure-preserving 

Borel partial isomorphisms ipi : A{ —> B{. We denote by 1Z& the smallest equiva­

lence relation containing {(x,ifi(x)) : x G A^i G / } . Then 1Z<& is a countable pmp 

equivalence relation. We say that $ generates the equivalence relation 1Z<$>. The pmp 

graphing $ provides a natural connected graph structure on each class of 1Z, called 

the Cayley graph [18]. The vertices are the elements of the 72-class and an oriented 

edge joins two vertices x and y if x G Ai and y = (fi(x). We denote by $(x) the 
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Cay ley graph of [x]n- A treeing $ is a graphing such that //-a.s. 3>(x) is a tree. An 

equivalence relation 1Z is treeable if there exists a treeing $ for which 1Z = 1Z$. Any 

hyperfinite equivalence relation is treeable. 

The notion of cost was introduced by Levitt [38]. The cost of a pmp graphing 

$ = (<Pi)iei is defined as cost($,//) = X^e /M^)- The cost of a pmp equivalence 

relation 1Z is then defined by 

cost(7£, ji) = inf {cost ($ , / / ) : $ graphing such that 1Z = 11$}. 

Any Hi equivalence relation 1Z satisfies cost(11, fi) > 1 by [38]. Gaboriau proved [18, 

Theoreme IV.1] that when 1Z is treeable, cost(7£,/i) = cost($,//), for every treeing $ 

of 1Z. In particular when 1Z is treeable, cost(7£, /i) = 1 if and only if 1Z is hyperfinite. 

3. INVARIANT BOND PERCOLATION 

This section is devoted to reviewing a few concepts involving invariant bond perco­

lation on infinite graphs. Further information on this topic may be found in the book 

[40] by Lyons and Peres. 

3.1. Graph-theoretic terminology 

Let Q = (V, E) be an infinite graph with vertex set V and (symmetric) edge set E. 

We allow multiple edges and loops. When there is at least one edge joining vertices 

u and v, we say that u and v are adjacent and write u ~ v. The degree degv of a 

vertex v is the number of edges incident with it. A graph is locally finite if degv < oo, 

for all v E V; uniformly bounded if s u p v e V d e g v < oo; and d-regular if degv = d, 

for all v E V. A connected component of Q is called a cluster. A forest is a graph 

whose clusters are trees. We will always assume that the graph Q is locally finite. 

The automorphism group Aut(^) endowed with the pointwise convergence is locally 

compact. The graph Q is transitive if Aut(£7) acts transitively on V and unimodular 

if Aut(£) is unimodular. 

A finite or infinite path V = ( e n ) n >i of edges e n = [v n , v n +i ] in Q is self-

avoiding if the map n i—• vn is one-to-one. A simple cycle is a finite self-avoiding 

path V — ( e i , . . . ,e n ) which is a cycle as well. An infinite simple cycle is a bi-infinite 

self-avoiding path V = (e n ) n G z-

Let T be a finitely generated group and S = ( s i , . . . , Sd) a finite generating family ( 3 ) 

for T. Then the (right) Cayley graph Q := Cay(r, S) is the graph with vertices V := T 

and edges E := T x { 1 , . . . , d}. The non-oriented edge corresponding to (v,i) will be 

( 3 ) It means that we allow S to contain several copies of the same generator. 
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simply denoted by [v, vsi]. The group T acts on its Cayley graph by left multiplication. 

Note that Cay(T, S) is a d-regular transitive unimodular connected graph. 

An infinite set of vertices V is end-convergent if for every finite subset K C Q, 

there is a connected component of Q \ K that contains all but finitely many vertices 

of V. Two end-convergent sets V and W are equivalent if V U W is end-convergent. 

An end of Q is an equivalence class of end-convergent sets. 

3.2. Bernoulli bond percolation 

In this subsection, we fix an infinite locally finite graph Q = (V, E) with T < Aut(<?) 

a countable discrete subgroup which acts transitively on V. When Q = Cay(T, S) is 

the Cayley graph of a finitely generated group T, we regard Y as a discrete subgroup 

of Aut(£). 

We denote by { 0 , 1 } E the standard Borel space of all subsets of E, where we identify 

a subset A C E with its characteristic function 1^- We will regard { 0 , 1 } E as the 

Borel space of all subgraphs of Q with the same set of vertices V. Observe that Y 

acts in a Borel way on { 0 , 1 } E by (g • u;)(e) = uj(g~1e), for all e G E. Following 

[3, 4, 40], a T-invariant bond percolation P on Q is a T-invariant probability measure 

on { 0 , 1 } E . The percolation P is ergodic if the pmp action Y rx ( { 0 , 1 } E , P ) is ergodic. 

We sometimes regard a; as a {0, l} E-valued random variable whose law is given by P . 

It is customary to denote by C(UJ;V) the cluster of UJ containing the vertex v. 

For any measurable subset A C { 0 , 1 } E and any edge e G E, denote by 

n e v 4 c { 0 , 1 } E the measurable subset {u U {e} : u G A}. Likewise denote by 

rU e.4 C { 0 , 1 } E the measurable subset {UJ — {e} : u G A}. The percolation P is 

insertion tolerant (resp. deletion tolerant) if for all measurable subset A C { 0 , 1 } E 

such that ¥[A] > 0 and all e G E, we have P[ne.A] > 0 f-esp. P[m e>A] > 0). 

For p G [0,1], Bernoulli(p) bond percolation is the product probability measure 

P P on { 0 , 1 } E that satisfies Pp[u> : e G u] = p. In other words, each edge of Q 

is independently kept (or open) with probability p and removed (or closed) with 

probability 1 — p. The percolation P p is clearly invariant. If the action Y rx E has 

infinite orbits, then P p is ergodic. In particular, when Q is a Cayley graph of an 

infinite group, P p is ergodic. It is easy to check that P p is both insertion and deletion 

tolerant for p ^ 0 and 1. 

Let P = Leb E be the product probability measure on [0,1] E where Leb denotes 

the uniform (Lebesgue) measure on [0,1]. An element of [0,1] E gives a colored graph, 

with [0,1] as set of colors. For each p G [0,1], let 7TP : [0,1] E —• { 0 , 1 } E be the 

Aut(£)-equivariant map sending [0, l]-colored graphs to {0, l}-colored ones by only 
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keeping the edges colored in [0,p), that is, for every x G [0,1] E 

•p(x)(e) = 
1 if x(e) < p 

0 if x(e) > p. 

The standard coupling is the family (7rP)PG[o,i]- We have that (7r p)*P = P p , for all 

p G [0,1]. The event that there exists an infinite cluster in irp(x) is a tail event. 

Hence, by Kolmogorov's 0,1-law, P[3 an infinite cluster in TTP(X)] = 0 or 1. Moreover, 

for p < q, the event that 7rp(x) has an infinite cluster is contained in the event that 

7rq(x) has an infinite cluster. This allows us to define the critical value pc(G) £ [0,1] 

by 

i>ra • fl - + w • ( M / 0 iiP<Pc($) P[d an infinite cluster in 7rp{x)\ = < 
1 \ip>vc(g). 

One checks that for all p > pc(G), P-a.s. pc(7rp(x)) = pc(G)/p-

Prom now on, assume that the action T rv E has infinite orbits, so that the percola­

tion P p is ergodic. Denote by N(u;) the number of infinite clusters of u; G { 0 , 1 } E . Since 

N(o;) is invariant, it follows that N(u;) is a Pp-a.s. constant function, by ergodicity of 

Pp. We denote by Np G NU{oo} its value. Let us prove now that Np G {0 ,1 , oo} (see 

[49]). Assume that this is not the case, that is, Np G N \ { 0 , 1 } . Then there exists a 

finite path V = (ei, . . . , e n ) in Q such that 

PP[V connects two distinct infinite clusters of u] > 0. 

Denote by A this last event and let B = UGl o • • • o n E N (*4). Since Pp is insertion 

tolerant, PP[JB] > 0. Yet, N P takes a strictly smaller value on B than on A, which 

contradicts the fact that N P is a P p-a.s. constant function. 

When Q = (V, E) is a connected locally finite unimodular transitive graph, 

Haggstrom and Peres [25] showed there is monotonicity of uniqueness: for all 

0<pi <p2 < 1, 

if P[3 a unique infinite cluster in TCPI(X)] = 1 

then P[3 a unique infinite cluster in nP2(x)] = 1. 

This explains why the uniqueness phase is an interval and allows us to define 

Pu(G) = inf{p G [0,1] : there is a unique infinite cluster for P p } . 

We have pc(G) < pu{G)> Stronger still, Haggstrom and Peres [25] proved that after 

pc(G), there is no spontaneous generation of infinite clusters, "all infinite clusters are 

born simultaneously": 
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T H E O R E M 3 . 1 . — Let Q = (V, E) be a connected locally finite unimodular transitive 
graph. The number Hp of infinite clusters in TTP(X) is a P-a.s. constant function and 
we have 

Nf 

0 for p e [ o , p C ( 0 ) ) 

oo for pe(pC(G),Pu(G)) 

1 for pe(pu(Q),l]. 
— Moreover, for allp\ < p2, when P-a.s. TTPI(X) produces at least one infinite clus­

ter, P-a.s. every infinite cluster of nP2(x) contains at least one infinite cluster 
ofnPl (x). 

— If P-a.s. TTP(X) produces infinitely many infinite clusters, then P-a.s. all infinite 
clusters of TTP(X) have uncountably many ends. 

— When p < 1, if P-a.s. 7rp(x) produces only one infinite cluster, then P-a.s. the 
unique infinite cluster of 7rp(x) has only one end. 

Lyons and Schramm [42] showed that when Bernoulli(p) bond percolation produces 
a.s. at least one infinite cluster, then its infinite clusters are indistinguishable in the 
following sense. Consider the Borel subset 

£oo = { ( ^ , C) G 2 E x 2 V : C is an infinite cluster of u} . 

Observe that <£oo is invariant under the diagonal action of T. A T-invariant bond 
percolation P on Q has indistinguishable infinite clusters if for every IMnvariant Borel 
subset A C <£oo, P-a.s. either for all infinite clusters C of u, we have (a;, C) G A, or for 
all infinite clusters C of a;, we have (a;, C) G <£oo \ * 4 . Observe that when P is moreover 
ergodic, we can permute "P-a.s." with "or". The following result is [42, Theorem 3.3]. 

T H E O R E M 3 . 2 (Clusters indistinguishability). — Let Q = (V, E) be a unimodu­
lar transitive graph. Any T-invariant insertion-tolerant bond percolation on Q has 
indistinguishable infinite clusters. 

3.3. From percolation to equivalence relations 

Let T be a finitely generated infinite group and S = ( s i , . . . , Sd) a finite generating 
family for T. Set Q = Cay(I\ S) that we also denote Q = (V, E). Let T rx (X, /i) be a 
free ergodic pmp action and denote by S := 1Z(T rx X) the induced orbit equivalence 
relation. Let 7r : X —* { 0 , 1 } E be a T-equivariant Borel map. Then the push-forward 
measure 7r*/x is a T-invariant bond percolation on Q. The following definition is due 
to Gaboriau [20] . 

D E F I N I T I O N 3 . 3 . — The cluster subequivalence relation c S is defined by 

(я, у) к 1 -
there exists g G T,y = g xx 

l r and g are in the same cluster o/7r(x). 
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Denote by the edge [lr>s*]- Define the Borel set X\ = {x G X : 7r(x)(e^) = 1} 

and partial Borel isomorphisms (fi — s~x : Xi —» s^1(Xi). Then the family 

$ = ((fi,..., ifd) is a pmp graphing which generates 71^ and $(x) ~ C{ir{x)\ l r ) , for 

//-almost every x G X. Denote by the infinite locus of T^ 1, that is, 

U^ = {xeX : C(ir(x), l r ) is infinite}. 

Assume now that /i-a.s. 7r(x) produces at least one infinite cluster. Then //(£/£>) > 0 

and IZflUSo is a type Hi equivalence relation. Moreover, on each <S-class splits into 

7^^-classes which are in one-to-one correspondence with the infinite clusters of n(x). 

It follows in particular that when /i-a.s. ir(x) produces exactly one infinite cluster, 

the orbit and the cluster equivalence relations do coincide on the infinite locus, that 

is, IZ^lU^ = < S | T h e following observation is due to Gaboriau and Lyons [22]. 

P R O P O S I T I O N 3.4 (Indistinguishability vs. ergodicity). — The percolation 7r*/x has 

indistinguishable infinite clusters if and only if the equivalence relation TZ^U^ is 

ergodic. 

Consider now Bernoulli(p) bond percolation through the standard coupling 

(7rp)pG[o,i]« Observe that since the action r rx E is free, the free pmp action 

T rx ([0,1]E,P) is conjugate to the plain Bernoulli shift T rx ([0, l ] ,Leb) r . Let <S be 

the corresponding orbit equivalence relation. Simply denote by 1ZP the cluster equiv­

alence relation 7?,^. The family (7£p)Pe[o,i] is increasing. Moreover lZq = \Jp<q^P 

and 1Zi = S. 

— For p < pC(G), P-almost every orbit of 1ZP is finite, that is, 1ZP is a type I 

equivalence relation. It follows in particular that 7£P c(£) is hyperfinite. 

— For p > pC(G), denote by the (non-null) infinite locus of 1ZP. If P-a.s. irp(x) 

produces infinitely many infinite clusters, IZ^U^ has infinite index in S|C/£>. 

It is straightforward to see that clusters indistinguishability implies simultaneous 

uniqueness. Indeed, simultaneous uniqueness amounts to saying that for all p\ < P2 

such that P[U£] > 0, the 1ZP2 \U^-saturation of UQ is equal to U^. This is clear 

since 7£P21 Ug* is ergodic by clusters indistinguishability. 

4. THE NON-UNIQUENESS PHASE IN BERNOULLI 

PERCOLATION 

A famous conjecture by Benjamini and Schramm [4, Conjecture 6] is that if a 

transitive graph Q with finite degree is nonamenable, then pC(G) < Pu(G)- This section 

is devoted to presenting a partial answer to this question, due to Pak and Smirnova-

Nagnibeda [54]: for any nonamenable finitely-generated group T, there exists a finite 
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generating family 5 such that the Cayley graph Q := Cay(r, S) has a non-uniqueness 

phase, that is, for which pC(G) <Pu{G)> 

Let Q = Cay(r, S) be a Cayley graph of an infinite finitely generated group V with 

respect to a finite generating family S = . . . , Sd)> Recall that the vertex set V is 

T and the edge set E is {[g,gsi] : g € T,l < i < d}. For a non-empty finite subset 

F C V, let 8EF be the set of edges which have exactly one endpoint in F. Define the 

edge-isoperimetric constant of Q by 

*E (0) inf 
dEF 

W 
1 / F c V finite subset 

A graph Q is edge-amenable if LE(G) = 0. A finitely generated group T is amenable if for 

some (or equivalently for every) finite generating family 5, the Cayley graph Cay(r, S) 

is edge-amenable. The first result of this section is due to Benjamini and Schramm 

[4, Theorem 2]. 

T H E O R E M 4.1 (Upper bound for pc). — Let Q = Cay(r ,5). Then 

Pc(G) 
1 

I E ( 0 ) + 1' 

Proof. — Fix p > t E ( g ) + 1 and let P p be the corresponding Bernoulli(p) percolation 

on Q. Fix v G V. Let (e^>i be an ordering of E so that ei is incident with v. Let 

u G { 0 , 1 } E be a configuration. We explore the open cluster C(u>; v) by looking at the 

following inductive procedure. 

Let Ei = {ei}, V\ = {v} and X\(UJ) = a;(ei). Assume and Vk have been 

defined. Denote by Vk+i the set {v} U {endpoints of open edges in Ek}. Let n^+i be 

the least integer n such that the edge e n G E \ Ek has exactly one endpoint in 14+1, 

if any. 

(a) If there are none, then stop. Denote by k := n(oj) the stopping time. In that case, 

the open cluster C(u\ v) containing v is finite. Then set £k = sup{nj : 1 < j < k} 

and Xk+i(u) = u(eek+i), for all i > 1. 

(b) Otherwise, let Ek+1 = Ek U { e n f c + 1 } and Xk+i(u) = w (e n f c + 1 ) . 

If the procedure never ends, then the open cluster C(u\v) is infinite. 

C L A I M . — (Xn)n>i is an infinite sequence ofi.i.d. {0,1}-valued Bernoulli(p) random 

variables. 

It suffices to show that for all k > 1 and all £ i , . . . , ek G { 0 , 1 } , we have 

( l ) PplXk+i = l\Xi = ei i...,Xk = sk]=p. 

Denote by A = {u : X^u) = e u . . . , Xk{u) = ek}, Ai = ACi{u> : n(u>) = î}, 

for l < i < f c , and Ak+i=An{u>:n(Lj)>k + l}. For i < fc, there are k + 1 

fixed distinct edges fx = e n i , . . . , f» = e n., f<+i = e*.+i,..., ffc+i = e^.+fc+i-*, with 
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£i = sup{nj : 1 < j < i}, such that A% = {w : w(fi) = £ i , . . . , w(fk) = We 
moreover have Pp[Xk+i = l\Ai] = Pp[u;(ffc+i) = l\Ai\. Since the edges fi, . . . ,ffc+i 
are distinct, the random variables u;(fi),... ,a;(ffc+i) are independent. It follows that 
Pp[o;(ffe+i) = l\Ai] = p. Likewise, for i = k + 1, there are k + 1 fixed distinct edges 
e n i , . . . , e n f c + 1 such that Ak+i = {u <^(e n i) = e i , . . . ,u;(e n f c) = e*} . We moreover 
have Pp[Xk+1 = l | A + i ] = Pp[cj(enk+1) = l\Ak+i]. Since the edges e n i , . . . , e n f e + 1 

are distinct, the random variables o ; ( e n i ) , . . . , o ; ( e n f c + 1 ) are independent. It follows 
that P p [ o ; ( e n f c + 1 ) = l|*4fc+i] = p. Since the event A is equal to the disjoint union of 
the events Ai,... ,Ak+i, we get Equation (1), which finishes the proof of the claim. 

By the strong law of large numbers, we get 

Pp 
. к=1 tE(Ö) + l ' 

Í > 1 > 0. 

We denote by A this last event. We show that C(u;v) must be infinite on the event A. 

Assume that C(u;v) is finite. Simply denote n = n(u) and let En be the last set of 

selected edges according to (a). Let m = \C{UJ; V)\. We have that En contains 8EC(UJ; V) 

(for which all edges are closed) and a spanning tree of C(uj] v) with m — 1 open edges. 

Thus we have n > \8EC(UJ; v)\ + m — l and J2k=i Xk(w) = ra — 1, so that 

k=l 

m — 1 

n 

m — 1 

|0ÈC(U;;I;)| + m - 1 

1 
|a E C(a,;^)| ' 

|C( W ; t ; ) | + 1 

1 

¿ E ( £ ) + I * 

It follows that C{u\v) is infinite on the event A and thus 

Pp[C(w,v) is infinite] > 0. 

Therefore p > pc(G), which finishes the proof. • 

Let g = Cay(r ,S), where S = ( s i , . . . , s d ) . Let P : ^ 2 (T) -> ^ 2 (T) be the corre­

sponding simple random walk operator: for all / G £2(T). 

(Pf)(g) 
1 D 

l—l 
[g SÌ) 

It is easy to see that as a bounded operator on £2(T), we have P = P* and ||P | |oo < 1 

(where || - ||oo is the operator norm). Fix an orientation of the edges. Define the dif­

ferential operator d : £2(T) —> £2(E) by (df)(e) = / ( e + ) - / ( e _ ) . The combinatorial 

Laplacian is then defined as the positive self-adjoint operator A = d*d. A straightfor­

ward computation gives A = d(l — P). The spectral radius of the graph Q is defined 

as p(G) := HPIU. 

P R O P O S I T I O N 4.2 ([44]). — LetQ = Cay(r,S), where S = (sx,... ,sd). Then 

* E ( 0 ) > d ( l - p{G)). 
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Proof. — Let F C V be a nonempty finite subset. Let f = 1F. We have 

\deF\ = ( A / , / ) = d((l - P)f, f) > d(l - p(G))\\f\\2 = d ( l - p(G))\F\, 

and the proposition follows. • 

Choose a vertex v e V (e.g. v = l r ) and denote by an(Q) the number of simple 

cycles of length n in Q that contain v. Let 

7 ( £ ) : = l i m s u p a n ( G ) 1 / n . 

n 

Denote by ((Xn),Pv) the simple random walk on Q starting at v. Recall that 

p(G) = l imsup n (P i ; [X r i = v])1/71. Any simple cycle of length n that contains v defines 

a way for the simple random walk starting at v to return to v at time n. That 

event has probability l/dn. Therefore Pv[Xn = v] > an(G)/dn, which shows that 

l(G) ^ dp(Q). The next theorem, due to Schramm, is an improvement of an earlier 

result of Benjamini and Schramm [4, Theorem 4]. The proof we give here is borrowed 

from Lyons [39, Theorem 3.9]. 

T H E O R E M 4.3 (Lower bound for pu). — Let Q = Cay(r ,5). Then 

W)-PuiG)-
Proof. — Let 1 > p > pu(G) > Pc(G)- Since p > pu(G), we know that P p-a.s. the 

open subgraph u contains a unique infinite cluster C(UJ) which has only one end. We 

start by p r o v i n g the following. 

C L A I M ([41]). — Let G be a graph of bounded degree that does not contain an infinite 

simple cycle. Then pc(G) = 1. 

By repeated applications of Menger's Theorem ( 4 ) we see that if v is a vertex in G, 

then there are infinitely many vertices vn such that v is in a finite cluster of G\ {vn}. 

Since G has bounded degree, it follows that pc(G) = 1, which finishes the proof of the 

claim. 

We get that P p-a.s. UJ contains an infinite simple cycle. Otherwise, the claim would 

imply that with Pp-positive probability, pc{w) = 1. This contradicts the fact that 

Pp-a.s. pc(u) = pc(G)/p < 1. 

Denote by A C { 0 , 1 } E the event that there is an infinite simple cycle in the p-open 

cluster C(UJ) containing v. We may regard such an infinite simple cycle as the union of 

two disjoint infinite simple rays starting at v. We have proven that PP[*A] > 0. Since 

C(u) has only one end, these two paths may be connected by paths in UJ that stay 

(4) For any vertex v in an infinite graph Q, the maximum number of paths from v to oo that are 
pairwise disjoint (except at v) is equal to the minimum cardinality of a set W of vertices such that 
W is disjoint from v, but every path from v to oo passes through W. 
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outside arbitrarily large balls. In particular, there are an infinite number of simple 

cycles in u G A through the vertex v. The expected number of such simple cycles 

must be infinite, whence we obtain in particular J2n an{Q)pn = oo. Thus p > 7 ( £ ) - 1 , 

which finishes the proof. • 

C O R O L L A R Y 4.4. — Letg = Cay(r ,5). Assume that p(g) < 1/2. Thenpc(g) < pu(G). 

Proof. — Using Proposition 4.2, Theorems 4.1 and 4.3, we have 

M y ) - ^iGHi < ¡ ¡ ( 0 ) S W=m sMg)sW)- Pu{yh 

We finally state and prove the result of Pak and Smirnova-Nagnibeda [54]. 

C O R O L L A R Y 4.5. — Let Y be a finitely generated nonamenable group. Then there 

exists a generating family SofT such that p c(Cay(r, S)) < p u(Cay(r, S)). 

Proof. — Let 5 be a finite generating family for T such that l r G S and let 

g = Cay(I\ S). For k > 1, define the jfe-fold family S ^ . The group r may be regarded 

as generated by 5 ^ . Let gW = Cay(T, 5 ^ ) . If P denotes the random walk operator 

on the graph <?, then Pk is the random walk operator of g№. Thus 

p(Q[k]) = \\Pk\\oo<\\P\t=P(G)k. 

Since T is nonamenable, p(<?) < 1 by Kesten's result [36]. Let be a large enough 
integer so that p{g)k < 1/2. We finally get p ( £ ^ ) < 1/2. By Corollary 4.4, the finite 

generating family does the job. • 

5. MINIMAL SPANNING FORESTS A N D APPLICATIONS 

5.1. Minimal spanning forests 

We first review results due to Lyons, Peres and Schramm [41] regarding minimal 

spanning forests on infinite connected graphs and their relation to Bernoulli percola­

tion. 

Let G = Cay(r, 5) be a Cayley graph of an infinite finitely generated group T with 

respect to a finite generating family S. As usual, denote by V the vertex set and by 

E the edge set. Denote by Forest(G) C { 0 , 1 } E the Borel subset of all forests of G> A 

random forest is an invariant bond percolation supported on Forest (£7). We endow the 

Borel space [0,1] E with the product probability measure P = Leb E . Given x G [0,1] E 

an injective labeling of the edges, let FMSF(#) be the set of edges e G E such that 

in every simple cycle in G containing e, there exists at least one edge ef ^ e with 

x(e') > x(e). The Aut(£)-equivariant map FMSF : [0,1] E —> { 0 , 1 } E (or simply its 
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law) is called the free minimal spanning forest on Q. Observe that if Q is a tree, then 

P-a.s. FMSF(x) = G. 

An extended simple cycle in Q is either a simple cycle in Q or an infinite simple 

cycle in Q. Given x G [0,1]E an injective labeling of the edges, let WMSF(;r) be the 

set of edges e G E such that in every extended simple cycle in Q containing e, there 

exists at least one edge e' ^ e with x(ef) > x(e). Equivalently, WMSF(x) consists of 

those edges e such that there is a finite set W C V where e is the least edge joining 

W to V \ W. The Aut(£)-equivariant map WMSF : [0,1]E -> {0 ,1} E (or simply its 

law) is called the wired minimal spanning forest on Q. Observe that if Q is a tree with 

one end, then P-a.s. WMSF(z) = Q. 

It is clear that WMSF(a:) C FMSF(x). Moreover, WMSF(x) and FMSF(rr) are indeed 

forests since in every simple cycle in Q, the edge e with maximum label x(e) is 

contained neither in WMSF(^) nor in FMSF(#). Moreover, all the clusters of WMSF(#) 

and FMSF(x) are infinite since the least edge joining every finite vertex set to its 

complement belongs to both forests. 

Define 

f(x,e) := inf max{x(e /) : e ' G P , e ' ^ e}, 

where the infimum is over simple cycles V that contain the edge e. If there are none, 

the infimum is defined to be oo. It follows that FMSF(x) = {e G E : x(e) < f(x,e)}. 

Likewise, define 

w(x,e) := inf sup{x(e /) : e' G V,ef ^ e}, 

where the infimum is over extended simple cycles V in Q that contain the 

edge e. If there are none, the infimum is defined to be oo. It follows that 

{e G E : x(e) < w(x,e)} C WMSF(a:) C {e G E : x(e) < w(x,e)}. Since x(e) and 

w(x,e) are independent random variables and x(e) is uniformly distributed, we get 

P-a.s. 

WMSF(x) = {e G E : x(e) < w(x,e)} = {e G E : x(e) < w(x,e)}. 

It is clear that w(x,e) < / (x , e ) , for all e G E. The following is [41, Proposition 6]. 

P R O P O S I T I O N 5.1. — Let Q = Cay(r,5). Then WMSF ^ FMSF if and only if 

Pc(G)<Pu(G). 

Proof — We will use the standard coupling TTP : ([0,1] E,P) —• ( { 0 , 1 } E , P P ) as 

defined previously. Since WMSF(x) C FMSF(x) and E is countable, it follows that 

WMSF ̂  FMSF if and only if there exists e G E such that P[w(x, e) < x(e) < f(x, e)] > 0. 

Recall that x(e) is independent from the random variables w(x,e) and / (x , e ) , and 

x(e) is uniformly distributed. Therefore WMSF ^ FMSF if and only if there exist 

e G E and pi < P2 such that P[w(x, e) < pi < P2 < f{x, e)] > 0. 
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Assume that pc(G) < Pu(G)- Let pc(G) < P i < P2 < Pu(G)- Using Theorem 3 .1 , 
we know that P -a.s. 7Tp2 

(x) has at least two distinct infinite clusters and each of 
these clusters contains an infinite cluster of nPl(x). Therefore there exists a simple 
path V = ( e i , . . . , e n ) of minimal length n in G, where = [VI, VI+I], such that with 
P-positive probability the following hold: 

1. V connects two distinct infinite clusters of 7rP l(a;). 
2. The clusters C(7r P 2 (x) ; V\) and C(TTP2(X)] VN+I) are infinite and distinct. 

Using the standard coupling and since PPl and PP2 are both insertion and deletion 
tolerant, the minimal length of V has to be 1. In other words, there exists an edge 
e G E such that with P-positive probability, the two endpoints of e are in distinct 
infinite clusters of irPi(x), for i = 1 ,2. We get P[w(x,e) < pi < P2 < f(x,e)] > 0, 
whence WMSF ^ FMSF. 

Conversely, assume that WMSF ^ FMSF. In particular, there exist e G E and p such 
that P[iu(x,e) < p < f(x,e)] > 0. Then P[w(x,e) < p < f(x,e) and p < x(e)] > 0. 
It follows that with P-positive probability, 7tp(x) has at least two distinct infinite 
clusters, whence pc(G) < Pu(G)- • 

5.2. Cluster equivalence relations of MSF 

We denote by T^WMSF and T̂ FMSF the cluster equivalence relations associated to 
both minimal spanning forests on G = Cay(T ,5) . Both of them are of type Hi and 
the treeing of T^WMSF is a subtreeing of T^FMSF, that is, T^WMSF C T^FMSF- Lyons, Peres 
and Schramm proved that P-a.s. every tree of WMSF(x) has exactly one end (see [41, 
Theorem 3.12]). In other words, T^WMSF is treeable and P-almost every orbit is a tree 
with one end. It follows that T^WMSF is hyperfinite. We prove the following elementary 
fact (see [41, Proposition 3.5]). 

PROPOSITION 5 .2 . — LetG = Cay(r ,S). Assume that WMSF ^ FMSF. Then T F̂MSF 

is not hyperfinite. 

Proof. — Assume that T F̂MSF is hyperfinite. Using [18, Proposition III.3], we get 
1 < cost(T^wMSF) < cost(T^FMSF) = 1 so that T^WMSF = T̂ -FMSF- For UJ = WMSF(x) or 

FMSF(x), denote by T(o;; g) the tree (cluster) containing the vertex g G T. Therefore, 
P-a.s. T(WMSF(x); l r ) = T(FMSF(a:); l r ) . By T-invariance, we get that P-a.s. for all 
g G T, T(WMSF(z); g) = T(FMSF(x);g) and thus WMSF = FMSF. • 

Timar [65] proved that if WMSF ^ FMSF, then T F̂MSF is in fact nowhere hy­
perfinite, that is, the restriction of T̂ FMSF to any non-null measurable subset is not 
hyperfinite. We now present the proof of the result of Gaboriau and Lyons [22]. We 
will use a result of Chifan and Ioana [8, Theorem 1], the proof of which is postponed 
until Section 7. 
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T H E O R E M 5 .3 (Measurable subgroup). — For any nonamenable group T there exists 

a free ergodic pmp action F 2 rx ([0, l ] r , L e b r ) such that 

1Z(F2 rx [0, l ] r ) C 1Z{Y rx [0, l ] r ) . 

Proof — Let r be a nonamenable group. Since the union of an increasing sequence 

of amenable groups is still amenable, Y contains a nonamenable finitely generated 

subgroup. Thus, up to taking such a subgroup, we may assume that V is finitely 

generated. The proof is in two steps. 

Step 1. There exists a subequivalence relation 1Z C 1Z(T rx [0, l ] r ) which is ergodic 

treeable and non-hyperfinite. 

Let S be a finite generating family such that the Cayley graph Q = Cay(r, S) 

satisfies pc(G) < Pu(G) (see Corollary 4 .5) . As usual, denote the graph Q = (V, E). 

Recall that the pmp actions T rx [0, l ] r and T rx [ 0 , 1 ] E are conjugate. By Proposi­

tions 5.1 and 5.2, we know that T F̂MSF is not hyperfinite. Apply now Theorem 7.1 

to T F̂MSF that we regard as a subequivalence relation of 1Z(T rx [0, l ] r ) . Then there 

exists a non-null measurable subset X C [0, l ] r such that T^FMSFI^ is ergodic treeable 

and non-hyperfinite. In order to extend T^FMSFI^ to [0, l ] r , choose an enumeration 

{gi : i G N} of T. For every x G [0, l ] r \ X , let nx be the least integer j G N such 

that gjX G X. Let 1Z be the smallest equivalence relation containing T^FMSFI^ and 

(x,gnxx), for x G [0, l ] r \ X. We get that 1Z is ergodic treeable and non-hyperfinite. 

Step 2. There exists a subequivalence relation S C 7£(r rx [0, l ] r ) which is induced 

by a free ergodic pmp action F 2 rx [0, l ] r . 

By [18, Theoreme IV. 1], we have that 1Z has cost greater than 1. Next, we need 

the following result due to Hjorth [27] (see also the proof of [35, Theorem 28.3]). 

L E M M A 5 .4 . — Any ergodic treeable pmp equivalence relation 1Z such that 

cost (1Z) > 2 contains a subequivalence relation induced by a free pmp action of 

F 2 = (a, b) such that the generator a acts ergodically. 

Using the induction formula [18, Proposition II.6], let U C [0, l ] r be a Borel 

measurable subset such that cost(1Z\U) > 2. By Lemma 5.4, 1Z\U contains a sube­

quivalence relation T = 7£(F2 rx U) induced by a free pmp action of F 2 = (a, b) such 

that the generator a acts ergodically. By considering a subgroup of F 2 of the form 

(bkabk : 1 < k < n), for some large n G N, one gets an ergodic treeable subequivalence 

relation of 1Z\U with large cost so that when extended to the whole space (by using 

partial Borel isomorphisms of 1Z), it gets cost > 2 by [18, Proposition 11.6]. Another 

application of Lemma 5.4 finishes the proof of Step 2. • 
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6. FINITE V O N N E U M A N N ALGEBRAS 

We review a few concepts involving finite von Neumann algebras. Further informa­
tion on this topic may be found in the book [6] by Brown and Ozawa. 

A von Neumann algebra M is a unital *-subalgebra of B(^2) which is closed for the 
strong operator topology. We only deal with tracial or finite von Neumann algebras, 
that is, M is always assumed to carry a faithful normal state r : M —> C which 
moreover satisfies the trace identity: r(xy) = r(yx), for all x,y £ M. We denote by 
\\xII2 = r(x*x)1^2 the corresponding Hilbert norm and L2(M) the L2-completion of 
M with respect to || • ||2- The uniform norm is denoted by || - ||oo - We regard x £ M both 
as an element of L2(M) and as a bounded (left multiplication) operator on L2(M). 
We will often use the following inequality: 

IHYH < \\x\U\Y\\oo№H,Vx,y G M,V£ G L 2 (M). 

The group of unitaries of M is denoted by U{M), the center M' fl M is Z(M) and 

the unit ball with respect to the uniform norm is (M)i . An infinite dimensional finite 

von Neumann algebra with trivial center is called a Hi factor. 

The main class of examples of finite von Neumann algebras arises from the group 

measure space construction of Murray and von Neumann [47]. Let T rx (X, /i) be 

a free pmp action of a countable infinite group T on a nonatomic standard proba­

bility space. We regard F G L°°(X) as a bounded operator on £2(T) 0 L2(X) by 

identifying F with 1 0 F G B(^2(r) 0 L2(X)). The action T rx X induces a unitary 

representation a : T -+ U(L2(X)) defined by <rg{g){x) = ^{g~lx), for all f G L2(X). 

Let A : T —• ZY(^2(r)) be the left regular representation. The unitaries ug = \ g 0 crp 

satisfy the following covariance relation: ug£u* = crg(£), for all £ G L 2 ( X ) , # G T. By 

Fell's absorption principle, the unitary representation (ug)ger is unitarily equivalent 

to a multiple of (A p )^ 6 r - The crossed product von Neumann algebra L°°(X) xi T is 

defined by 

L°°(X) » r := | £ £ 9 % : £ 9 € j C B ( f 2 ( r ) ® L 2 (X)) . 

V finite ) 

The von Neumann algebra M := L°°{X) x V contains a copy of L°°(X) as well as a 

copy of the group von Neumann algebra L(T). Moreover M is endowed with a trace r 

given by r(a) = (a(Se 0 lx ) , Se 0 l*)- The subalgebra A := L°°(X) c M is called a 

Cartan subalgebra.^ The von Neumann algebra M is a Hi factor if and only if the 

action r rx X is ergodic. More generally, one can define the von Neumann algebra 

L(R) of a pmp equivalence relation 71 on (X, /x) (see [17]). Note that L°°(X) C L(1Z) 

( 5 ) A Cartan subalgebra A C M is a maximal abelian *-subalgebra whose normalizer MM {A) = 
{U e U(M) : ixAii* = A} generates M as a von Neumann algebra. 
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is still a Cartan subalgebra. When 1Z is a type Hi equivalence relation, 1Z is ergodic if 
and only if L(1Z) is a Hi factor. For a free pmp action Y rx (X, fi), the von Neumann 
algebras L°°(X) x T and L(1Z(T rx X)) are *-isomorphic. 

Given finite von Neumann algebras M and TV, an M-N-bimodule M*HN is a Hilbert 
space endowed with two commuting normal ^representations TTM : M —• B(7Y) and 
7TJVOP : №p —• B(H). We simply denote x£y = nM{x)n№p(y)€, f ° r all x G M, y € iV, 
( G H . The bimodule ML2{M)M is the trivial bimodule and M ® I ^ 2 ( ^ M ) I ^ M is 
the coarse bimodule. Given two M-iV-bimodules W and /C, we say that is weakly 
contained in /C and write H Cw eak /C, if for all £, 7 7 G W and all finite subsets F c M , 

G C N, there exist two sequences £ N , 7 7 N in finite direct sums of /C such that 

(z£y,v) = l i m ( z£ n 2 / , 7 7 N ) , V x e F,Vy e G. 
n 

Given an inclusion S c M o f finite von Neumann algebras, denote by EB : M —> B 

the unique trace-preserving normal conditional expectation. If we moreover denote by 

es : L2(M) —> L2(B) the orthogonal projection, we have esxes = EB{X)ZB, for all 

x G M. The basic construction (M, e#) is the von Neumann subalgebra of B ( L 2 ( M ) ) 

generated by M and • It is endowed with a faithful normal semifinite trace TV given 

by Tr(xesy) = r(xy), for all x,y G M. The M-M-bimodule L 2 ( ( M , e # ) ) is mixing 

relative to B in the following sense: whenever un G U{M) is a sequence of unitaries 

such that lim n \\EB(x*uny)\\2 = 0 , for all x,y G M, then for every £ , 7 7 G L 2 ( ( M , e#)), 

we have 

lim sup |(w n£y,77)| = lim sup |(x£u n,rj)\ = 0 . 
N I /€(M)I 71 XE(M)1 

Recall that M is hyperfinite if there exists an increasing sequence of unital finite 

dimensional *-subalgebras Qn C M such that M is the weak closure of (J n Qn- When 

1Z is a pmp equivalence relation, 1Z is hyperfinite if and only if L(1Z) is hyperfinite 

[11]. In their seminal work [46], Murray and von Neumann showed the uniqueness of 

the hyperfinite Hi factor. We say that M is amenable if 

ML
2(M)M CWeak M ® L £ 2 ( A f 0 A f ) I 0 M . 

Any hyperfinite von Neumann algebra is amenable. By Connes' groundbreaking work 

[9], any amenable von Neumann algebra is hyperfinite. Therefore, there is a unique 

amenable II1 factor. 

Recall at last Popa's intertwining-by-bimodules technique. Popa discovered [57, 

55] a very powerful technique to unitarily conjugate subalgebras in an ambient von 

Neumann algebra. Let A,BcMbe subalgebras of a finite von Neumann algebra. 

The following are equivalent (see [57, Theorem 2.1], [55, Theorem A.l] and also [66, 

Theorem C.3]). 
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— There exist projections p G A, q G B, a nonzero partial isometry v G pMq and 

a *-homomorphism ip : £>.Ap —> such that rev = for all a: G p^4p. 

— There is no sequence of unitaries un G U(A) such that 

l im | |£ j j (a™ n 2/) | | 2 = 0,Vx,y G M. 

n 

If one of the two conditions holds, we say that A embeds into B inside M and write 

A -<M B. By definition, A is diffuse if-A C , that is, if A has no nonzero minimal 

projection. 

7. S U B E Q U I V A L E N C E R E L A T I O N S O F B E R N O U L L I A C T I O N S 

As we have seen before, given a Cayley graph Q = Cay(r, 5), a T-equivariant map 

7r : [0,1]E —» {0 ,1} E gives rise to a percolation 7r*P on Q and hence to a subequivalence 

relation TZf of the equivalence relation TZ(T rx [0,1]E) induced by the Bernoulli action. 

The aim of this section is to present a global dichotomy result for subequivalence 

relations of 1Z(T rx [0,1]E), obtained by Chifan and Ioana [8, Theorem 1]. 

T H E O R E M 7.1 (Dichotomy for subequivalence relations). — Let T be any infinite 

countable discrete group. Let 1Z C 1Z(Y rx [0, l ] r ) be any subequivalence relation of 

the pmp equivalence relation induced by the Bernoulli action. Then there exists a 

measurable partition {XN : n G N } of [0, l ] r into IZ-invariant subsets such that 

— 1Z\XQ is hyper finite. 

— fZ\XN is strongly ergodic, for all n> 1. 

We give a self-contained proof of this result. We first start by recalling the con­

struction of the support length deformation for Bernoulli actions due to Ioana [29]. 
We will be using the following notation throughout this section. 

— Let (Ao, r) be an abelian von Neumann algebra, A = AQ the infinite tensor prod­

uct indexed by T and r rx A the corresponding Bernoulli shift. Set M = A >o T. 

— Likewise, let B0 = AQ * L(Z) be the free product with respect to the natu­

ral traces, B = BQ and a : T rx B the corresponding Bernoulli shift. Set 

M = BxT. 

Observe that M C M and denote by EM • M —• M the unique trace-preserving 

normal conditional expectation. Following [29], denote by v G L(Z) the canonical 

generating Haar unitary and take the selfadjoint element h G L(Z) with spectrum 

[—7r, 7r] such that v = exp(ih). Denote by 0% G Aut(i?o) the inner automorphism given 

by 0° = Ad(exp(ith)) and let 0t = <8>ger0t € Aut(jB). Since (0t) commutes with the 

Bernoulli action, we can extend (0t) to M by letting 0*(%) = ug. We get that (0t)ten 

is a one-parameter group of automorphisms of M such that lim^_,0 ||# — 0*(#)||2 = 0, 
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for all x G M. Denote by f30 G Au t (5 0 ) the automorphism given by /30(a) = a, for all 

a e A0 and /?o(v) = v*. Define ¡3 = QgerPo and extend ¡3 to M by acting trivially on 

L{Y). By construction, /?|M = I d M , /? 2 = I d - and /? o 0 t = 0_ t o /?, for all * G R. 

For 0 < p < 1, define the support length deformation mp : M —* M by 

mp(owp) = pnau9,\/g G T,Va G (A 0 0 C 1 ) J , J C I\ |J| = n. 

Let p t = I sin(7r£)| 2/|7r£| 2. One checks that (EM ° 0t)(x) = mPt(x), for all x G M . 

In particular, (m^) is a family of trace-preserving unital completely positive maps 

for which 6t : M —• M is a dilation. In this respect, the support length deformation 

(m p ) is a variant of the malleable deformation discovered by Popa in [57]. Popa used 

his malleable deformation together with his intertwining techniques to prove various 

striking rigidity results for Bernoulli actions (see for instance [60, 57] and Vaes' 

Bourbaki seminar [66] on this topic.) 

Spectral gap rigidity was discovered by Popa [60, 59]. It was a completely new 

type of rigidity where the usual (relative) property (T) assumption in many (orbit 

and W*)-rigidity results could be dropped. Using this technique, Popa [60] proved, 

among other results, that for any nonamenable product of infinite groups T = Ti x T2, 

the plain Bernoulli action V rx [0, l ] r is ZYnn-cocycle superrigid.(6) 

The following variant of spectral gap property is due to Chifan and Ioana (see [8, 

Lemma 5]). 

P R O P O S I T I O N 7.2 (Spectral gap). — As M-M-bimodules, we have 

(2) M(L2(M) 0 L2{M))M C W e a k M®\L2{M®M)L($M• 

Proof. — We start by proving the following. 

C L A I M . — There is a countable set {(r^A^) : i G T}, where Yi < Y is a finite 

subgroup and A$ C Y is a non-empty set which is invariant under left multiplication 

by Yi such that with A\ = A^Ai XI Yi, we have an isomorphism of M-M-bimodules 

(3) L 2 ( M ) 0 L 2 ( M ) - 0 L 2 « M , e A i ) ) . 

To prove the claim, let AQ C A0 0 C be an orthonormal basis of L2(A0) 0 C and 

denote by v the Haar unitary generating L(Z). Recall that B0 = A0 * L(Z). Define 

the subset B0 := {vniai • • • vnkakv
nk+1 : k > 0, n u ..., n^+i G Z - {0},a* G A ) } - By 

construction, we have a decomposition 

L2(B0)eL2(A0)= 0 I M 
beB0 

(6) Ufin is the class of groups which embed into the unitary group of a || • ̂ -separable Hi factor. 
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into pairwise orthogonal Ao-A0-subbimodules. Define the countable set 

X = \bT = ^)bg : 0 ^ T C T finite subset, bg G BQ for all g G T > . I 9& J 
We have a decomposition 

(4) L2 (M) 0 L2 (M) = 0 MbM 

bex 

into pairwise orthogonal M-M-subbimodules. For b G X, define the finite subgroup 

Fb = G T : ̂  = ,F and o~g(b) = b}. Let = X IV One checks that the map 

xeAby defines an M-M-bimodule isomorphism 
(5) L2((M,eAb))^MbM. 

The claim follows now from (4) and (5) . Finally, since A* is amenable, the isomorphism 

(3) together with [2, Lemma 1.7] yield (3) • 

If P C M has no amenable direct summand, then for every e > 0, there exist 5 > 0 

and V C U(P) finite subset such that for every x G (M)i , 

(6) (||ua; - xw||2 <5,VueV)=> \\x - EM(x)\\2 < e. 

Indeed, assume that (6) does not hold. Then one can find a uniformly bounded 

sequence xn G M, such that xn G L 2 (M) 0 L 2 (M), ||xn||2 = 1 and limn \\yxn — xny\\2 = 0, 

for all y G P. Up to passing to a subsequence we may assume that bn = xnx*n con­

verges weakly to b G P' f l M. Observe that r(b) = 1. Let c G Z{P)+ so that 

p = EpipY^c G ^ ( P ) is a nonzero projection. From (2) , we get that, as Pp-Pp-bi-

modules, 

(7) PP(L
2(M) 0 L 2 ( M ) ) P p c W eak PP®IL2{Pp®Pp)mPp. 

Define £ n := cxn. For all y G P, we have lim n ||t/£n — £ny||2 = 0 and 

lim(2 /f n , f n ) = lim r(ycxnx^c) = lim r(ycbc) = r(yp), 

n n n 

whence 

(8) PPL2(Pp)Pp C W e a k P p ( ^ ( M ) O £ 2 ( A f ) ) P p . 

Together with (7) and (8) , we finally obtain that Pp is amenable. 

The next result due to Chifan and Ioana (see [8, Theorem 2]) is the key to proving 

the global dichotomy result for subequivalence relations. 

T H E O R E M 7 .3 . — Let Q c A be a diffuse von Neumann subalgebra. Then Qf D M is 

amenable. 
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We point out that this result was earlier obtained by Ozawa [53, Theorem 4.7] for 
all exact groups T using C*-algebraic techniques. Chifan and Ioana's proof that we 
present here relies on a theory developed by Popa over the last decade known today 
as deformation vs. rigidity. We refer to [58, 67] for further information on this topic. 

Proof of Theorem 7.3. — The proof is reminiscent of the one of [57, Theorem 4.1] 
(see also [66, Lemma 6.1]). We prove the result by contradiction following the lines 
of the proof of [32, Theorem 4.2]. We may assume that Q C A is diffuse and Q' f l M 
has no amenable direct summand. We will be using the following terminology. Given 
subalgebras Qi,Q2 C M, an element x G M is said to be Qi-Q2-fimte inside M if 
there exist elements . . . , xm, yi,..., yn G M such that 

m n 

(9) xQ2 c ^2 Qix* a n d Qix c ^2 yjQ2' 
i=l 3=1 

S T E P 1. — There exist t = l / 2 n and a nonzero element v G M which is 
Q-Ot(Q)-finite. 

Let e = 1/2. Proposition 7.2 yields S > 0 and a finite subset V C U(Qf f l M) for 
which (6) holds. Let s small enough so that ||6 - 0a(&)||2 < 6/2, for all b G V. For all 
ueU(Q), 

\\bes(u) - os(u)b\\2 = \\(b-os(b))6s(u)-es(u)(b-es(b))\\2 

< 2\\es(u)\\00\\b-es(b)\\2<6. 

Using Proposition 7.2, we get \\0s(u) - EM(0s(u))\\2 < 1/2, for all u G U(Q). Let 
p = p2

s, so that mp = m 2^. For all u G U(Q), we have 

1 - r(u*mp(u)) = 1 - | | m p » | | | = \\0s(u) - EM(Os(u))\\2

2 < 1/4. 

Then T(U*08(U)) = r(n*m p(w)) > 3/4, for all u G U(Q). Since t i-> T(u*0t(u)) is 
decreasing, we can take t = l / 2 n such that r(u*9t(u)) > 3/4, for all u G U(Q). Let v 
be the unique element of minimal || • ||2-norm in the weak closure of the convex hull 
of {u*6t(u) : u G U(Q)}. We ge^r^) > 3/4 and uv = vOt(u), for all u G U(Q) (by 
uniqueness). In particular, v G M is a nonzero Q-0t(Q)-fiiiite element. 

S T E P 2. — There exists a nonzero element a G M which is Q-8\{Q)-finite. 

To prove Step 2, it suffices to show the following statement: if there exists a nonzero 
element v which is Q-6t(Q)-fimte, then there exists a nonzero element w which is 
<Q-02t(Q)-finite. Indeed, since t = l / 2 n , we can then go until t = 1. Denote by 
Q N M ( Q ) the set of all Q-Q-finite elements inside M ( Q N M ( Q ) is also called the 
quasi-normalizer of Q inside M [55]). Let P := Q N M ( Q ) " C M . Observe that for all 

A S T É R I S Q U E 348 



(1039) INVARIANT PERCOLATION AND MEASURED THEORY 363 

d e Q N M ( Q ) , the element 0t(0(v*)dv) is Q-02t(Q)-finite. Indeed, let d G Q N M ( Q ) 

which satisfies (9) for Qi = Q2 = Q. Then we get 

Ot{P(v*)dv)02t{Q) = Ot(P{v*)dQv) <z^Ot{P(v*)Qxiv) = 
i i 

Qet(P(v*)dv) = et(fi{v*)Qdv) C OtWv*)yjQv) = J2 0t(P(v*)yjv)e2t(Q). 

3 3 

Hence we have to prove that there exists d G Q N M ( Q ) such that (3(v*)dv ̂  0. By 

contradiction, assume that this is not the case. Denote by g G M the projection 

onto the closed linear span of {range(cfo) : d G Q N M ( Q ) } . We have (3(v*)q = 0 and 

q G P' H M. 

We use now again the M-M-bimodule isomorphism (3). Since Q'nM c P, it follows 

that P has no amenable direct summand and thus P Ai, for all i G X. Therefore 

there exists a sequence of unitaries un G U{P) such that lim n (x*uny)\\2 = 0, for 

all x, y G M, i G I. Let x G Pf D M. Set 77 : = x - EM(x). Observe that 77 G D M 

and 77 _L L 2 (M) . Write 77 = © Ï G X ^ , with 77* G L 2 ( (M, e ^ ) ) . Since the M-M-bimodule 

L 2 ( (M,e^.) ) is mixing relative to Ai, we have limN(7J n77^*,77^) = 0, for all i G J 

and so limn(7xn77'u*,77) = 0. Since 77 G P ' fl M, we have H77H2 = lim n (7^777/*,77) = 0. 

Therefore P ' n M = P ' n M . In particular, we get q G M, so that = = 0. 

Hence v = 0, which is a contradiction. 

Observe that Ma0\(Q) is a nonzero M-0\(Q)-subbimodule of L 2 (M) which is 

finitely generated as left M-module, whence we get 0\{Q) <~ M. We use the follow­

ing notation: for every nonempty finite subset f c T, let Stab(^-*) = {g G T : gT = J7} 

and M (J7) : = x Stab(^). By convention, set M (0 ) : = L(T). 

S T E P 3. — T/iere exists a finite subset f c T such that Q -<M M (J7). 

We prove Step 3 by contradiction and assume that for all finite subset J7 <ZT, 

we have Q M (J7). Let vn G U(Q) be a sequence of unitaries such that 

lim n H ^ J V ^ c ^ " ) ( ^ * ^ n 2 / ) H 2 — 0> for all x,y G M, T C T. We upgrade this by showing the 

following: 

(10) lim \\EM(x*0i(vn)y)h = 0,Vs,y G M. 
n 

This clearly contradicts Step 2. Let T, G C T be finite (possibly empty) sub­

sets. Define x = <8gej7Xg 0 <g>ger\T 1 and y = ®heÇyh ® ® h e r \ e w h e r e 

xg,yh £ BoQ 0\{AQ)AQ. Observe that it suffices to prove (10) for such x and y since 

the linear span of all 0\{A)yM for y of the above form is a || • ||2-dense subspace of M. 

Write vn = J2ger(vn)9Ug for the Fourier expansion of vn in M, where (vn)
9 G A. 

We have £ M (x*0iK)</) = £ p € r ^ (x*01((vny)ag(y)) ug. If ^ T, then 
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EA (x*91((vny)ag(y)) = 0. If gG = T, then 

EA (x*e1((vny)ag(y)) = EA (x*61 ( £ 7 ^ ( ( « „ ) » ) ) ag{y)) • 

Take now finitely many g\,...,gk £ T such that giQ = T and such that 

{g G T : gQ = T} is the disjoint union of (S tab .? 7 )^ , . . . , (Stab.?7)*^. Set 
WN = YLI=IEM(F)(VNU*GI)UGI. We have proven EM(x*01{Vn)y) = EM(x*0i(wn)y). 

Since by assumption lim n ||wn||2 = 0, we get (10). 

S T E P 4 . — We derive a contradiction. 

Prom Step 3, there exists a finite subset T C T such that Q -<M M(T). 

Yi T = 0 , then Q -<M L(T). Since M = A xi T, this clearly contradicts the 

fact that 0 C 4 is diffuse. Hence T ^ 0 and since Stab(^") is finite, we get 

Q ^(f- There exist projections q G Q , r G Aq 7 , a nonzero partial isometry 

v G gMr and a *-homomorphism CP : qQq —> rA^r such that xv = VTP(x), for 

all x G gQtf. Hence <P(qQq) C rA^r is a diffuse subalgebra. A straightforward 

computation shows that (P(qQq)'C\ rMr C r($2geg Aug)r, where Q = TT~X. 

Since v*(Q' fl M ) i ; C (f(qQq)f fl rMr, we get ft M ) i ; C r(J2geg Aug)r. Thus 

Q ' f l M 4̂ > which contradicts the fact that Qf
 D M has no amenable direct 

summand. The proof is complete. • 

Proof of Theorem 7.1. — Let 1Z C 1Z(T rx [0, l ] r ) be any pmp subequivalence rela­

tion. Write N = L(1Z) for the von Neumann algebra of 11. Denote by ZQ G Z(N) the 

maximal central projection for which Nzo is amenable. We claim that Z(N)(1 — zo) 

is purely atomic. Assume that this is not the case. Let q G Z(N)(1 — z$) be a nonzero 

projection such that Z(N)q is diffuse. Set Q := A(l — q) 0 Z(N)q C A, which is a 

diffuse von Neumann subalgebra of A. Theorem 7.3 implies that Q' fl M is amenable 

and thus Nq is amenable, which contradicts the maximality of z$. 

Write Z(N)(1 - z0) = 0 n > i C z n . Denote by XN c [0, l ] r the measurable 

7^-invariant subset corresponding to the central projection z n , that is, lxn = zn 

and L(1Z\XN) = Nzn. We get that 1Z\XQ is hyperfinite and 1Z\XN is ergodic and 

non-hyperfinite, for all n > 1. In particular, it follows that any subequivalence 

T C 1Z(T rx [0, l ] r ) which has a diffuse ergodic decomposition must be hyperfinite. 

Furthermore, we deduce that 1Z\XN cannot be written as an increasing union of sube­

quivalence relations with a diffuse ergodic decomposition (otherwise 1Z\XN would be 

hyperfinite). Using Proposition 2 .1, we finally obtain that 1Z\XN is strongly ergodic, 

for all n > 1. • 
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8. CO-INDUCED ACTIONS 

Ioana [30] used the co-induction technique [19] together with a separability argu­

ment (see Theorem 9.1) to prove that any nonamenable group T that contains F2 

has uncountably many non-orbit equivalent actions. First recall the co-induction con­

struction for a subgroup A < T. Let a : A rx (Y,u) be any free pmp action on the 

nonatomic standard probability space. Fix a section s : T/A —> T such that s(A) = lr-

Define the 1-cocycle u : T x T/A —> A by uj(g, t) = s(gt)~1gs(t). The co-induced action 

a = colnd^(a) : T rx ( y r / A , z / r / A ) is then defined by (a9(y))t = a(u>{g,g-H))(yg-it), 

for all g G T, t G T/A. In order to prove that any nonamenable group has uncountably 

many non-orbit equivalent actions, we review now Epstein's construction [15] of the 

co-induced action for a measurable subgroup A < M E F. 

Let a : A rx (X,[i) and 6 : T rx (X,(jl) be free ergodic pmp actions of infi­

nite countable discrete groups A and T on the nonatomic standard probability space 

(X, fjb) such that 72(a, A) C 72.(6, T). We will assume that 72(a, A) has infinite index in 

72(6, T), that is, /i-almost every 72(6, r)-class contains infinitely many 72(a, A)-classes. 

Fix choice functions (Cn : X —• X ) N G N so that every Cn : X —> X is Borel; Co = Idx; 

given x G X , {Cn(x) : n G N} enumerates a tranversal for the 72(a, A)-classes in the 

72(6, r)-class of x; and for all m ^ n and x G X, we have Cm(x) ^ Cn(x). Observe 

that since a is ergodic, we may assume that the choice functions Cn are one-to-one. 

Denote by the full permutation group of N. Let i : V x X —• 5 ^ be the index 

cocycle given by the formula 

l(g,x)(k) = n [Ck(x)]n(a,A) = [Cn(^)]^( a > A). 

Since the action a : A rx X is assumed to be free, we can then define the Borel map 

i : T x X A N by the formula 

e(g,x)n • Ci(giX)-i(n)(x) = Cn(gx). 

Observe that 5 ^ acts on A N by Bernoulli shift: for all 7r G 5qo and ( A N ) N G N € A N , we 

have (IT • A ) n = A 7 r - i ( n ) . Denote by Soo x A N the corresponding semi-direct product 

group. We finally define the Borel cocycle 0, :T x X ^ x A N by the formula 

fl(g,x) = (i(g,x),£(g,x)). 

One checks that Q satisfies the 1-cocycle relation: for //-almost every x G X , for all 

g,h G T, we have Q(gh,x) = Q(g,hx)Q(h,x). 

Let now a : A rx (Y, v) be any free pmp action on the nonatomic standard 

probability space. Using the Borel cocycle fi, we can define the pmp skew-product 
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action a : T rx (X x Y N , ¡1 x z/ N ) by the formula 

(11) g* • (x, (yn)nen) = (g-x,n{g,x)aN '{yn)neN) 

= (0 • a, (n H-> (£(g,x)n)
a
 • 2 / i ( 0 > a . ) - i ( n ) ) ) • 

One checks that this action is independent of the choice of ( C n ) n G N > up to conjugation. 

D E F I N I T I O N 8 .1 (Co-induced action). — Under the previous assumptions, we say 

that a is the co-induced action of a modulo (a, b) and write 

a = coInd(a, b)r

A(a) : T rx (X x Y N , p x i / N ) . 

We can view coInd(a, b)\ as an operation from the space A(A, Y, v) of pmp actions 

of A on (Y, v) to the space A(T,Xx Y N , p x i / N ) (see [34]). Observe that when regard­

ing Q, : 1Z(T rx X) —• Sqo x A N as a cocycle for the equivalence relation and taking the 

restriction Cl\lZ(A rx X), the formula (11) also allows to define a skew-product action 

p : A rx (X x Y N , p x z/ N ) that we will denote by p = coInd(a, b)^(a). The action p 

generates a subequivalence relation of the one generated by a = coInd(a, b)T

K(oj), that 

is, 1l(p, A) C ft(<r,r). Note that 

— b is a quotient of cr with quotient map (x, ( 2 / n ) n e N ) »—• 

— a is a quotient of p with quotient map p p : (x, ( 2 / n ) n e N ) •—• 2/o-

In particular, p and cr are free pmp actions. It turns out that proving ergodicity 

for the co-induced action a = coInd(a, b)^(a) is more technical and delicate than 

in the case of a genuine subgroup A < T. Epstein finds an ergodic measure for the 

co-induced action a by analyzing the ergodic decomposition of X with respect to 

the action b : T rx X (see [15, Lemma 2.6]). In [31], Ioana, Kechris and Tsankov 

circumvent this difficulty by finding necessary and sufficient conditions on the inclu­

sion 7£(a, A) C 7£(6, T) which ensure that the co-induced action a is mixing, and so 

ergodic. More precisely, they obtained the following result (see [31, Theorem 3.3]). 

T H E O R E M 8 .2 (Mixing co-induced actions). — Let a : A rx ( X , p) and b : T rx 

( X , p) be free pmp actions such that b is mixing and 7£(a,A) C TZ(b,T). Let 

N = L°°(X) x a A and M = L°°(X) X& T be the corresponding group measure space 

von Neumann algebras so that N C M. Write (ug)ger for the unitaries in M 

implementing the action b. Denote by EN • M —> N the trace-preserving normal 

conditional expectation. The following are equivalent: 

— l i m ^ o o \\EN{ug)\\2 = 0. 

— For every free pmp action a : A rx (Y, v), the co-induced action coInd(a, b)^(a) 

is mixing. 

Let p = coInd(a, 6)^(a) , a = coInd(a, b)\(a) and assume that a is ergodic. The 

following properties hold true (see [15]). 
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(*) For any quotient map q : Y —> Z from a : A rx Y to a free pmp action A rx Z, 

we have that 

{(a, O N ) N E N ) : q O pp(g
a • (a, (yN)NEN)) = Q° PP((x, (yn)nef*))} 

is a p x z/N-null measurable subset, for all g G T \ { l r } -

(**) For any p(A)-invariant Borel subset U C X x y N of // x z/N-positive measure, 

the Borel map p p | l7 : i7 —> Y witnesses that a is a quotient of p\U. 

Gaboriau and Lyons proved that given any nonamenable group T, there exist free 

pmp actions a : F 2 rx (X, p) and b : T rx (X, p) such that a is ergodic, b is mixing and 

7£(a, F2) C 7^(6, r) (see Theorem 5.3). Epstein, Ioana, Kechris and Tsankov proved 

[31, Theorem 3.11] that the inclusion 7£(a, F2) C 7^(6, Y) can be chosen to satisfy the 

assumptions of Theorem 8.2. 

T H E O R E M 8 .3 . — LetT be any nonamenable group. Then there exist free pmp actions 

a : F2 rx (X,p) and b : T rx (X,p) such that a is ergodic, b is mixing, 1Z(a, F2) C 

K(b,T) and hmg^oo \\ELoo{x)><F2(ug)\\2 = 0. 

9. UNCOUNTABLY M A N Y NON-OE ACTIONS 

9.1. Separability vs. relative property (T) 

Recall that for an inclusion A < T of countable discrete groups, the pair (r, A) has 

the relative property (T) if for all e > 0, there exist S > 0 and a finite subset F cT 

such that if 7R: F —> U(H) is a unitary representation and £ G H is a unit vector which 

satisfies | | 7 R ( # ) ( £ ) — £ | | < 8, for all g G F, then there exists a 7r(A)-invariant vector 

j] G H such that H 7 7 - f|| < e. The pair (Z 2 x SL 2 (Z) ,Z 2 ) has the relative property 

(T) [33, 43]. More generally, for any nonamenable subgroup Y < SL2(Z), the pair 

(Z 2 x T, Z 2 ) has the relative property (T) [7]. 

Consider the action SL 2(Z) rx (T 2 , A 2 ) defined by 

5- (z i , -z 2 ) = (9 *) 
zi 

ig e SL 2(Z). 

One checks that it is a free weakly mixing pmp action. Realize F 2 < SL 2(Z) as a 

finite index subgroup, so that the pair (Z 2 x F 2 , Z 2 ) has the relative property (T). 

Write a : F 2 rx (T 2 , A 2 ) for the restriction. 

The following result is due to Ioana [30, Theorem 1.3]. It relies on a separability 

vs. (relative) property (T) argument, an idea that goes back to Connes [10] and 

successfully used later on by Popa [55] and Gaboriau and Popa in [23]. 
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T H E O R E M 9.1. — Let T be any nonamenable group. Let T(Y) be the class of free 

ergodic pmp actions a :T rx (X, p) such that there exists a free pmp action p : F 2 rx 

(X, p) for which the following hold: 

1. 72(p ,F 2 )c72(a ,r) . 

2. The action a : F 2 rx T 2 is a quotient of the action p : F 2 rx X with quotient 

map pp : X —> T 2 . 

3. For all g G T \ { l r } , ^ e Borel set {x G X : pp(a(g)(x)) = pp(x)} is null. 

Let {AI : i G X} C ^(r) be an uncountable set of mutually orbit equivalent ac­

tions. Then there exist an uncountable set J C X and PJ -invariant measurable subsets 

Xj CX of positive measure such that the actions {pj\Xj : j G J} are mutually 

conjugate. 

Proof. — By assumption, denote by 72 the unique pmp equivalence relation on (X, P) 

(up to orbit equivalence) such that 72 = 1Z(<JI, T), for all i G l Note that for all i G l , 

1Z(PI,F2) C 72. Following [16], define a Borel measure V on 72 by 

(W)= / \{y:(x,v)eW}\dn(x), 

for every Borel subset W C 72. 

For all i G X, denote by PI : X —» T 2 the quotient map which witnesses that a : 

F 2 rx T 2 is a quotient of PI : F 2 rx X . Regarding a G Z 2 as a character of T 2 , define 

fai = a OPT G L°° (X) . One checks that for all (a,g) G Z 2 xi F 2 and i G I , fg(a),i = 

f A , I ° P i (# - 1 ) - Then for all i,j G X, the map 7r^ : Z 2 x F 2 —> U(L2(7Z, v)) defined by 

*i,J(a,g)(€)(x,y) = fa4x)faJ(y)^(Pi(g-1)(X),Pj(g-1)(y)), for all (a,g) G Z 2 x F 2 , 

£ G I/ 2 (72, i/), (#,y) G 72, is a unitary representation. 

Denote by A = { ( x , x ) : a; G X } C 72 the diagonal. Note that 1 A G I/2(72, V) and 

| | 1 A | | 2 = 1. One checks that for all (a,g) G Z 2 x F 2 , i, j G X, 

I K M ^ ^ X I A ) - LALLI ^ 2 l l 1 graph(p i (p- 1 )) - 1graph(p J-(p- 1))||2 + 2 | | / a > t l A ~ faj^h-

Since the pair (Z 2 x F 2 , Z
2 ) has the relative property (T), with e = 1/2, there exist 

S > 0, finite subsets A c Z 2 , F c F 2 such that if 7R : Z 2 x F 2 U(H) is a unitary 

representation and ^ € W is a unit vector which satisfies ||7R(a, </)(£) — £|| < S, for 

all a G A and g £ F, then there exists a 7R(Z2)-invariant vector rj £ H such that 

I I 7 ? — £ 1 1 < e - Since X is uncountable and L 2(72, z/) is || • |^-separable, there exists an 

uncountable subset J c l , such that for all i,j £ J, 

H / a , a A - / a , i l A | | 2 < « 2 / 4 , V a € i 4 

lllgrapho^o?-1)) ~ I g r a p M p ^ - 1 ) ) ^ < S2/4,Vg £ F. 

Fix now i,j £ J. Since | | 7 r ^ ( a , # ) ( l A ) - 1AII2 < 5, for all (a,g) £ A x F, the 

relative property (T) gives a 7R^(Z2)-invariant vector rj £ L2{JZ,v) such that 
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| | ? 7 - I A I U < I / 2 - Hence, z/-a.s. 7 7 ( 2 , ? / ) = fa,i{x)fa^{y)rj{x,y), for all a G Z 2 . Since 
?7 0, the measurable subset W = { ( # , 2 / ) G 1Z : fa,i(x) = fa,j(y)i Va G Z 2 } satisfies 
z/(W) > 0. Next we claim that for p-almost every x G X , there exists at most one 
y G X such that (#,?/) G W. Assume this is not the case. Since 71 = 7^(cr J 5T), 
one can find a measurable subset Y C X of //-positive measure and 5 ^ t G T, 
such that ( x , ^ ( s ) ( # ) ) and (x,o~j(t)(x)) G W, for all x G Y. In particular, we get 
a(pj(o-j(s)(x))) = a for all a G Z 2 , X G F . Since characters separate 
points, it follows that pj(o-j(s)(x)) = pj((jj(t)(x)), for all x G Y. This clearly 
contradicts item (3) in the statement of the theorem. 

Define the measurable subset X* = {x G X : 3\y G X , y) G W } . Since z/(W) > 0, 
the above claim yields p(Xi) > 0. If (x,y) G W, then fa,i(x) = faj(y), for all a G Z 2 

and hence fg(a),i(x) = fg(a)j(y), for all a G Z 2 , g G F 2 . Since / p ( a ) j i = / a > i o p^g'1), 
we get 

(12) (Pi(</)(a),Pi(ff)(tf)) G W , V 5 € F 2 ,V(x ,y) € W. 

In particular, Xi is a pi(F2)-invariant measurable subset. Likewise, define 
Xj = {yeX:3xeXi, (x,y) G W } . Then X j is a pj(F2)-invariant measurable 
subset. Define <j> : X* —• X3- by y = </>(#) if and only if y) G W. One checks that <f> 
is a pmp Borel isomorphism. Finally, (12) shows that </> is a conjugacy between pi\Xi 
and PjlX^-, that is, </>(pi(g)(x)) = pj(g)((/)(x)), for all x G X^, # G F 2 . • 

9.2. A continuum of actions 

Let T be any nonamenable group. Choose a : F 2 rx (X , / / ) and b : T rx (X,/x) 
according to Theorem 8.3. Let TT : F 2 —* Ui^H^) be a unitary representation. Denote 
by :F2 rx №^,7)^) the corresponding pmp Gaussian action (see [34, Appendix E] 
for more details). 

— If 7Ti and 7r 2 are unitarily equivalent, then 7 ^ and 7 ^ are conjugate. 
- If we denote by «(7^) : F 2 -> U(L2(Zn,r]7r) 0 CI) the associated Koopman 

representation, we have 7r C «(7^) . 

Let an = a x 7^ : F 2 rx (T 2 x Zn, A2 x 77 )̂ be the diagonal action. Observe that 
an is a free pmp action and a is a quotient of an via the quotient map (y, z) 1—> y. 
Define the actions := coInd(a,b)p 2(a n) and pn := coInd(a ,6 )^ (0^) . Recall from 
Section 8 that an is mixing (see Theorem 8.2) and the following hold true: 

1. ft(pw,F2) Cft(<7 f f ,r). 
2. a is a quotient of pn with quotient map 

pn : X x (T 2 x Z^) 1 * 3 (x, (y n,*n)n€N) ^ 2/o € T 2 . 
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3. For all g G T \ { l r } , the Borel set 

{(x, ( 2 / N , z n ) n G N ) : P t t ^ • (z, (j/n, 2 ; n ) n G N ) ) = ^ ( ( x , (yn, z n ) n e N ) ) } 

is /i x (A2 x ?77r)N-null (by Condition (*) from Section 8). 

The last result of this text is [31, Theorem 5]. We point out that it was first obtained 
by Ioana [30, Section 3] when F 2 < T and then extended by Epstein [15] when 
F 2 < M E r but without the mixing property. 

T H E O R E M 9.2. — Let T be any nonamenable group. Then T admits uncountably 
many non-orbit equivalent free mixing pmp actions. 

Proof. — Let To be an uncountable set of pairwise non-isomorphic irreducible rep­
resentations of F 2 (see [64]). Denote by (W,r) the standard Borel probability space 
(X x (T 2 x Z)N,p x (A2 x r?) N ) . By contradiction, assume that there exist an un­
countable subset {an : TT G 1} C ^"(T) of mutually orbit equivalent actions. By 
Theorem 9.1, there exist an uncountable subset J c l and p^-invariant Borel subsets 

C U of r-positive measure such that the actions {p^U^ : 7r G J} are mutually 
conjugate. By Condition (**) from Section 8, we know that a x 7 ^ is a quotient of 
p^\U^. Fix now 7TO G J. For all n G J, we have 

TT C « ( 7 ^ ) C K(OL X 7 W ) C K(P7t|Z4) = ^ ( P t t o I ^ t t o ) C K ( P t t o ) -

Then the separable unitary representation ^(p^) contains uncountably many pairwise 
non-isomorphic irreducible subrepresentations TT e J , which is a contradiction. • 
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