@incollection{AST_2012__348__1_0, author = {Glass, Olivier}, title = {La m\'ethode du retour en contr\^olabilit\'e et ses applications en m\'ecanique des fluides [d'apr\`es {Coron} et al.]}, booktitle = {S\'eminaire Bourbaki Volume 2010/2011 Expos\'es 1027-1042. Avec table par noms d'auteurs de 1948/49 \`a 2009/10.}, author = {Collectif}, series = {Ast\'erisque}, note = {talk:1027}, publisher = {Soci\'et\'e math\'ematique de France}, number = {348}, year = {2012}, zbl = {1302.93045}, mrnumber = {3050710}, language = {fr}, url = {http://www.numdam.org/item/AST_2012__348__1_0/} }
TY - CHAP AU - Glass, Olivier TI - La méthode du retour en contrôlabilité et ses applications en mécanique des fluides [d'après Coron et al.] BT - Séminaire Bourbaki Volume 2010/2011 Exposés 1027-1042. Avec table par noms d'auteurs de 1948/49 à 2009/10. AU - Collectif T3 - Astérisque N1 - talk:1027 PY - 2012 DA - 2012/// IS - 348 PB - Société mathématique de France UR - http://www.numdam.org/item/AST_2012__348__1_0/ UR - https://zbmath.org/?q=an%3A1302.93045 UR - https://www.ams.org/mathscinet-getitem?mr=3050710 LA - fr ID - AST_2012__348__1_0 ER -
Glass, Olivier. La méthode du retour en contrôlabilité et ses applications en mécanique des fluides [d'après Coron et al.], dans Séminaire Bourbaki Volume 2010/2011 Exposés 1027-1042. Avec table par noms d'auteurs de 1948/49 à 2009/10., Astérisque, no. 348 (2012), Exposé no. 1027, 16 p. http://www.numdam.org/item/AST_2012__348__1_0/
[1] Asymptotic stability and feedback stabilization, in Differential geometric control theory (Houghton, Mich., 1982), Progr. Math., vol. 27, Birkhäuser, 1983, p. 181-191. | MR 708502 | Zbl 0528.93051
-[2] Global asymptotic stabilization for controllable systems without drift, Math. Control Signals Systems 5 (1992), p. 295-312. | Article | MR 1164379 | Zbl 0760.93067
-[3] Contrôlabilité exacte frontière de l'équation d'Euler des fluides parfaits incompressibles bidimensionnels, C. R. Acad. Sci. Paris Sér. I Math.317 (1993), p. 271-276. | MR 1233425 | Zbl 0781.76013
,[4] On the controllability of the 2-D incompressible Navier-Stokes equations with the Navier slip boundary conditions, ESAIM Contrôle Optim. Cale. Var.1 (1995/96), p. 35-75. | Article | EuDML 90500 | Numdam | MR 1393067 | Zbl 0872.93040
,[5] On the controllability of 2-D incompressible perfect fluids, J. Math. Pures Appl. 75 (1996), p. 155-188. | MR 1380673 | Zbl 0848.76013
,[6] Control and nonlinearity, Mathematical Surveys and Monographs, vol. 136, Amer. Math. Soc., 2007. | MR 2302744 | Zbl 1140.93002
,[7] Local null controllability of the two-dimensional Navier-Stokes system in the torus with a control force having a vanishing component, J. Math. Pures Appl.92 (2009), p. 528-545. | Article | MR 2558423 | Zbl 1179.35209
& -[8] Controllability of evolution equations, Lecture Notes Series, vol. 34, Seoul National University Research Institute of Mathematics Global Analysis Research Center, 1996. | MR 1406566 | Zbl 0862.49004
& -[9] Partial differential relations, Ergebnisse Math. Grenzg. (3), vol. 9, Springer, 1986. | MR 864505 | Zbl 0651.53001
-[10] Contrôlabilité exacte, stabilisation et perturbations de systèmes distribués, tomes 1 & 2, RMA8 & 9, Masson, 1988. | MR 953547 | Zbl 0653.93003
-[11] Are there connections between turbulence and controllability ?, in Analysis and optimization of systems (A. Bensoussan & J.-L. Lions, éds.). | MR 956255
,Are there connections between turbulence and controllability ?, Lecture Notes Control and Inform. Sci., vol. 144, 1990.
,[12] Controllability and stabilizability theory for linear partial differential equations : recent progress and open questions, SIAM Rev.20 (1978), p. 639-739. | Article | MR 508380 | Zbl 0397.93001
-[13] The flow of a perfect, incompressible liquid through a given region, Soviet Physics Dokl7 (1962), p. 789-791. | MR 163529 | Zbl 0139.20502
-