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BOUNDARY VALUE PROBLEMS FOR THE STOKES SYSTEM IN 
ARBITRARY LIPSCHITZ DOMAINS 

Marius MITREA & Matthew WRIGHT 

Abstract. — The goal of this work is to treat the main boundary value problems for 
the Stokes system, i.e., 

(i) the Dirichlet problem with Lp-data and nontangential maximal function esti
mates, 

(ii) the Neumann problem with Lp-data and nontangential maximal function esti
mates, 

(iii) the Regularity problem with L^-data and nontangential maximal function esti
mates, 

(iv) the transmission problem with Lp-data and nontangential maximal function 
estimates, 

(v) the Poisson problem with Dirichlet condition in Besov-Triebel-Lizorkin spaces, 
(vi) the Poisson problem with Neumann condition in Besov-Triebel-Lizorkin spaces, 

in Lipschitz domains of arbitrary topology in Rn, for each n > 2. Our approach relies 
on boundary integral methods and yields constructive solutions to the aforementioned 
problems. 

Résumé (Problèmes au bord pour le système de Stokes dans les domaines de Lipschitz quel
conques.) — Le but de ce travail est d'étudier des problèmes au bord pour le système 
de Stokes, i.e., 

(i) le problème de Dirichlet avec des données Lp et des estimations de la fonction 
maximale non tangentielle, 

(ii) le problème de Neumann avec des données Lp et des estimations de la fonction 
maximale non tangentielle, 

(iii) le problème de régularité avec des données L\ et des estimations de la fonction 
maximale non tangentielle, 

(iv) le problème de transmission avec des données Lp et des estimations de la fonction 
maximale non tangentielle, 

(v) le problème de Poisson avec des conditions de Dirichlet au bord dans des espaces 
de Besov-Triebel-Lizorkin, 
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(vi) le problème de Poisson avec des conditions de Neumann au bord dans des espaces 
de Besov-Triebel-Lizorkin, 

dans des domaines lipschitziens de E n pour tout n > 2 de topologie arbitraire. Notre 
approche repose sur des méthodes d'intégrales au bord et fournit des solutions con
st ructives aux problèmes ci-dessus. 
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CHAPTER 1 

INTRODUCTION 

1.1. Description of main well-posedness results 
Informally speaking, the goal of the present work is to prove optimal well-posedness 

results for (homogeneous and inhomogeneous) boundary-value problems for the Stokes 
system in Lipschitz domains with arbitrary topology, in all space dimensions and 
for all major types of boundary conditions (Dirichlet, Neumann, transmission). The 
boundary data is selected from Lebesgue, Sobolev, Hardy, Besov and Triebel-Lizorkin 
spaces and the smoothness of the solutions is measured accordingly. 

At the core of our analysis is the transmission problem for the Stokes system, on 
which we wish to elaborate first. Let Q be a Lipschitz domain in Mn, n > 2, and define 
0+ := Ct and 0_ = En \ Cl. The transmission boundary value problem for the Stokes 
system studied here is of the type 

(i.i) (Tµ) 

Aü± = V7T± in íl±, 
div й± = 0 in Q±, 
u + | an -ü-\dn = ge L\(dVl), 
#(Й+,7Г+) - /Х^(Й_,7Г_) = / € ЩдО), 
M(Vtí±),M(7r±) € £Р(ОП). 

Here, A is the Laplacian, ¡1 G [0,1) is a fixed parameter, and v := z/+ is the outward 
unit normal to 0+. For 1 < p < oo, L\(dCt) is the classical Lp-based Sobolev spaces 
of order one on dCt, M denotes the non-tangential maximal operator (cf. (2.5)), and 

(1.2) d^(u±,7r±) := (S7iï±T + Wû±)v — 7r±i? 

is a family of co-normal derivatives, indexed by a parameter A € M (more detailed 
definitions are given in subsequent chapters). In this way, we can simultaneously 
treat various types of Neumann boundary conditions. For example, when A = 0, (1.2) 
corresponds to the co-normal derivative treated in [32], whereas when A = 1, (1.2) 
corresponds to the "slip condition" considered in [21]. 
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2 CHAPTER 1. INTRODUCTION 

Two closely related boundary value problems are the Neumann problem and the 
Dirichlet problem with (maximally) regular data: 

(1.3) (AT) 

Au = V7r in fl, 
divu = 0 in il, 
#(tl,7r) = / € L*(0n), 
M(Vfl), M(TT) € LP(dn) 

(R) 

Au = V7T in iî, 
divu = 0 in ii, 
u\dQ = g€ L{(dQ), 
M(Vu), М(тг) € LP(ôil). 

Prom this point forth, we will refer to (R) as the Regularity problem. Fabes, Kenig, 
and Verchota proved in [32] that (N) and (R) are well-posed if 2 — e < p < 2+e, where 
e = e(dii) > 0. Building on the work in [19], [69], Z. Shen has established in [77] a 
weak maximum principle for the Dirichlet problem for the Stokes system in Lipschitz 
domains in R3. Interpolating this L°° bound with the Lp-estimates from [32] with p 
near 2 shows that the Dirichlet problem for the Stokes system in three-dimensional 
Lipschitz domains with data in LP is solvable whenever 2 — e < p < oo. However, as 
pointed out by P. Deuring on p. 16 of [28], "this leaves open the question of whether 
these solutions may be constructed by means of the boundary layer method, and how 
to deal with exterior problems and slip boundary conditions" 

With these aims in mind, let us briefly discuss the relevance of the transmission 
problem itself. Prom a physical point of view, the transmission problem 

(1.4) (T) 

fji±Au± = VTT± in Q±, 

divu± = 0 in fi±, 
u+\dn - u-\dn = g, 
axujr — axu- = /, 

where 
(1.5) axu± := /i±(Vw±T + XVu±)P — 7r±v, 
describes the flow of a viscous incompressible fluid within and around a stationary 
particle occupying the domain 0+ which is further embedded into a second porous 
medium O In this context, u+ and 7r+ are the volume-averaged fluid velocity and 
pressure fields of the inner flow, whereas U- and 7r_ have analogous roles for the 
outer flow. In the specific case when A = 1, this is a standard problem that arises 
when studying the low Reynolds number deformation of a viscous drop immersed in 
another fluid (see [73]; [71], Sec. 7.2). Here, /i+ denotes the viscosity of the drop, while 
/i_ denotes the viscosity of the surrounding fluid. The case when g = 0 is often of 
particular interest, since this introduces the physically relevant restriction that the 
velocities u+ and U- must match on the boundary. The reader is referred to M. Kohr 
and I. Pop's monograph [51] for a more detailed discussion in this regard and for 
ample references to the engineering literature dealing with transmission problems for 
the Stokes system. 

If we re-denote the term fi±u± in (1.4) as simply u± and let µ := µ / µ+ denote 
the ratio of the viscosities of the two fluids, we can rewrite the transmission problem 
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1.1. DESCRIPTION OF MAIN WELL-POSEDNESS RESULTS 3 

in the form 

(1-6) (Tp) 

Ай± — V7T± in Í2±, 
div iï± = 0 in Çl±, 

µu + |0n - и-\ дп = g, 
0*(0+,7г+)-3*(в-,7г_) = / . 

Above, we have also re-denoted the term µ-g as simply ¿7, but since we will be 
interested in considering these problems for general values of / and g, this is of little 
consequence. Going one step further, if we replace TT± with JJL±/K± and f with µ+f in 
(1.4), we can write a third form of the transmission problem, 

(i-7) c a 

Aü± = VTT± in iî±, 

áivü± = O in íí±, 

w+|0n - и-\дп = g, 
dì(U+,n+)-iidì(U-,n-) = f. 

Since the viscosities /x+ and µ- are positive numbers, these changes have no effect 
on the solvability of these problems, and so, throughout our work, we will consider the 
form of the transmission problem that is most convenient for the particular goals we 
have in mind. One advantage of these last two descriptions comes from analyzing the 
limiting cases. For example, if we consider the case when /x_ << µ+ studying (X )̂ 
for JJL = 0 yields information about the Regularity problem (R) in fJ_, and studying 
(T%) for fx = 0 yields information about the Neumann problem (N) in O+. Similarly, 
if //+ << //_, analyzing (X )̂ and (T^) will lead to results for the Regularity problem 
(R) in Q+ and for the Neumann problem (N) in O-. Our main results are as follows 
(the reader is referred to the subsequent chapters for the relevant notation employed 
below): 

Theorem 1.1.1. — Assume that ft C Rn, n > 2, is a bounded Lipschitz domain and 
set 0+ := ft, ft- := Rn \ ft. Also, fix /i G (0,1) and A G (-1,1]. Then there exists 
e = e(dft) > 0 such that for each 

(1.8) 2(n-l) 
n+1 

-e <p <2 + e, 

the transmission boundary value problem, concerned with finding two pairs of func
tions (u±,ir±) in ft± satisfying 

(1.9) 

f Au± = V7r±, div u± = 0 in ft±, 

M ( W ± ) , M(TT±) G L*>(dft), 

u + dQ -u - dfl 
= gehp(dft)r 

ay{ d№+,*+) - vdï (a-, n-) = f e hp(dn), 
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4 CHAPTER 1. INTRODUCTION 

and the decay conditions 

(1.10) 

U-(X) = 
0(|#|2 n) as \x\ —> oo, if n > 3, 

-± E(x) (fdn fda) +0(\x\-1) as |x| - oo, if n = 2, 

(1.11) 

a^_(a:) = -^(d^XaOf / f do) + 0(M~n) as |x| -> oo, 1 < j < n, 
M Van y 

(1.12) 

7T-(x) = 
Od^l1"") as |x| -> oo, if n > 3, 

J ( ( V B A ) W , /an fdo> + 0(|x|"2) as |x| -> oo, if n = 2, 

has a unique solution. In addition, there exists C > 0 such that 

(1.13) ||M(V3±)||LP(wi) + |iM(7r±)||LP(aQ) < C\\g\\hm + C\\f\\hP{dQy 

In the previous theorem as well as in the following results, the Hardy space hp(dCl), 
and its regular version /if (90), are as defined in (2.97). 

Theorem 1.1.2. — Assume that O C ln , n > 2, is a bounded Lipschitz domain. Then 

there exists e = e(dft) > 0 such that for each 

(1.14) 2 - £ < p < o o if n = 2,3, 

(1.15) 2 - e <p< 
2(n-l) 
n-3 

+ e if n > 4, 

the interior Dirichlet boundary value problem 

(Lie) 

Au — V7T, div û = 0 in O, 

M(u) £ U>(dQ), 

u 
dQ, 

= f e lt LPv A(dii), 

has a solution, which is unique modulo adding functions which are locally constant 
in fi to the pressure term. In addition, there exists a finite constant C > 0 such that 

(1.17) \\M(u)\\LPm) < C\\f\\LP(dn). 

Similar results are valid for the exterior Dirichlet problem, formulated much as 
(1.16) with the additional decay conditions 

(1.18) u{x) = 
0(|a:|2-n) as |x| -> oo, if n > 3, 

E(x)Â+0(l) as \x\ oo, i fn = 2, 

(1.19) dju{x) = 
Od^l1 n) as \x\ —> oo, if n > 3, 

djE(x)Â4- 0(\x\~2) as |x| oo, if n = 2, 

(1.20) TT(X) = 
OQxl1-71) as |x| -* oo, if n > 3, 

(V£A(zM> +0(|x|~2) as |x| -+ oo, if n = 2, 

ASTÉRISQUE 344 



1.1. DESCRIPTION OF MAIN WELL-POSEDNESS RESULTS 5 

for some a priori given constant A G M2. Also, the standard nontangential maximal 
operator in (1.17) should be replaced by its truncated version. 

Here we wish to mention that, while this work was in its final stages of preparation, 
we have learned that the case of the interior Dirichlet problem in which the Lipschitz 
domain O c t " has a connected boundary and n > 4 has also been treated by J. 
Kilty in [50], using a different approach. The limiting case p = oo has been dealt 
with by Z. Shen in [77] for Lipschitz domains in M3. In [77], Shen also establishes the 
well-posedness of the Dirichlet problem in three-dimensional Lipschitz domains with 
connected boundary for data in the Holder space Ca(dO), with 0 < a < aQ. Here we 
give another proof of this result, via integral operators. In addition, we also treat the 
case of the Dirichlet problem for the Stokes system in the case in which the data is 
from BMO and the solution satisfies Carleson measure estimates. See Theorem 9.2.3 
and Theorem 9.2.4 for details. 

Our next result concerns the so-called Regularity problem, and is a version of 
the Dirichlet problem (1.16) corresponding to the case when the boundary data is 
maximally regular (i.e., belonging to boundary Hardy and Sobolev spaces of order 
one). 

Theorem 1.1.3. — Let 0 C Rn, n > 2, be a bounded Lipschitz domain. Then there 
exists e = e(dQ) > 0 such that for each p as in (1.8), the interior Regularity boundary 
value problem 

(1.21) 
Aw = V7r, divu = 0 in ft, 
M(VtQ, M(TT) € LP(dti), 
z\da = f e hlu + {dSi), 

has a solution which is unique modulo adding functions which are locally constant in 
ft to the pressure. 

In addition, there exists a finite constant C > 0 such that 
(1.22) \\M(Vu)\\LP(m + \\M(ir)\\LP(m < C\\f\\hp{Ba). 

Similar results are valid for the exterior Regularity problem, formulated much as 
(1.21) with the additional decay conditions (1.18)-(1.20). 

Theorem 1.1.4. — Let O C Rn, n > 2, be a bounded Lipschitz domain and fix A G 
(—1,1]. Then there exists e = e(dCt) > 0 such that for each p as in (1.8) the interior 
Neumann boundary value problem 

(1.23) 
Au = V7r, div M = 0 in Q, 
M ( W ) , M(TT) e D>(dn), 
^(«,7r) = / e ^ ( a f i ) , 

has a solution if and only if 

(1.24) / € Im ( - | J + Kl : h^dSl) - /^(f l f i ) ) . 
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6 CHAPTER 1. INTRODUCTION 

Moreover, this solution is unique modulo adding to the velocity field functions from 
\I/A(0). In addition, there exists a finite constant C > 0 such that 

(1.25) ||Af(VtZ)||Lp(ôn) + ||M(7r)||Lp(on) < C\\f\\hPm). 

Finally, a similar result holds for the exterior domain Rn \ Ù after including the 
decay conditions 

(1.26) u(x) = 
0(\x\2-n) as \x\ -> oo, if n > 3, 

E(x)(jdçt fdo)+0(\x\~1) -1 as |x| -+ oo, if n = 2, 

(1.27) dju(x) = (djE)(x)( J fdo) + 0{\x\~n) as |x| -+ oo, 1 < j < n, 
Van ' 

(1.28) TT(X) = 
0(\x\l~n) as |x| -» oo, if n > 3, 

( ( - V £ A ) W , Jan /RF(J) + ° ( M ~ 2 ) AS N - > o o , ifn = 2. 

More precisely, a solution to the exterior problem satisfying the above decay con
ditions exists if and only if 

(1.29) / € Im ( | J + Kl : h%x_ (dfl) ^ h%x_ (an)), 

and solutions are unique modulo adding to the velocity field functions from ^A(Rn\fi). 

Our approach is based on boundary integral methods, and for each of the prob
lems listed in Theorems 1.1.1-1.1.4, we are able to represent the solution in terms 
of hydrostatic layer potentials. In this strategy, one is led to study the invertibility 
properties of certain principal-value singular integral operators on Lipschitz surfaces. 
These operators are of Calderon-Zygmund type, so their boundedness on Lebesgue 
and Hardy type spaces follows from known results. The key ingredient in proving the 
invertibility of these operators is obtaining bounds from below. We accomplish this 
by devising some new Rellich type identities for the Stokes system. 

The most physically relevant Neumann-type boundary condition is the so-called 
:<slip condition," corresponding to (1.2) with A = 1. Interestingly, it is precisely this 
boundary condition which is most challenging from the point of view of our analyti
cal treatment. This is because the usefulness of the Rellich type identities alluded to 
above is substantially diminished when A = 1, due to the fact that the quadratic en
ergy form associated with (1.2) when A = 1 is only semi-positive definite (as opposed 
to being strictly positive definite when |A| < 1). This difficulty was first encountered 
by Dahlberg, Fabes, Kenig and Verchota in their work on the L2 Dirichlet and Neu
mann problems for the Stokes and Lame systems in [21], [32]. As a remedy, these 
authors have developed some auxiliary estimates, which they termed boundary Korn 
inequalities, which were specifically designed to compensate for the lack of coercive-
ness of the Rellich estimates. 

In the case of the transmission boundary value problem for the Stokes system 
considered here, these Korn inequalities fail to be as useful as they have been in 
the aforementioned works. This has to do with the very nature of the transmission 
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1.1. DESCRIPTION OF MAIN WELL-POSEDNESS RESULTS 7 

problem in which two (pairs) of solutions (u_j_, 7r+) and (µ , 7r_)? which interact across 
the Lipschitz interface, are considered simultaneously. In this scenario, deriving Korn 
inequalities for each of them separately is of little value since, in turn, these inequalities 
cannot be further combined algebraically in order to relate them to the transmission 
boundary data, i.e., 

(1.30) u+\dn-u-\dn and d*(u+, TT+) - /x^(w_, TT_). 

The technical innovation we develop in order to address this significant issue is to 
produce some more elaborate Rellich type identities which, by design, have Korn-like 
identities built directly into them. The upshot of this is that working with identities 
in place of estimates is amenable to algebraic manipulations which can then fully take 
advantage of the transmission-like interaction between (i?+,7r+) and (u_,7r_). 

All the above considerations are relevant in the treatment of boundary value prob
lems with L2 data. As already suggested above, the central role in our treatment 
is played by the transmission problem. Subsequently, we explain how the Dirich-
let/Regularity and Neumann problems can be viewed as limiting cases of this. To 
obtain well-posedness results for Lp-data with p # 2following the seminal work of 
Dahlberg-Kenig [18], [19], we rely on atomic estimates in dimensions n = 2,3, and 
on a recent remarkable advance of Z. Shen [78] in dimensions n > 4. Shen's original 
scheme is to start with the L2 theory, then prove Lp results for p > 2 (the critical 
p corresponding to the Sobolev exponent in the embedding L2(dCt) <-» Lp(dfl)) us
ing certain reverse Holder estimates, and finally interpolate. This cannot be directly 
applied in our setting since the natural range of p's for which the Lp-transmission 
problem is solvable is a subset of (1,2]. We overcome this difficulty by introducing 
and solving a suitable dual transmission problem. 

As is well-known, in the case of the Dirichlet boundary value problem for the Stokes 
system, i.e. for 

(1.31) Au = VTT, divtf = 0 in O, u dQ 
= f, 

the boundary datum / satisfies the necessary compatibility condition 

(1.32) 
dN 

(v,f)do~ = 0 

whenever O C Mn is a bounded Lipschitz domain. This creates the following technical 
difficulty when addressing the issue of well-posedness of (1.31) for a bounded Lipschitz 
domain O C Rn when the boundary datum / belongs to the (regular) Hardy space 
Kf(dn), 2=± < p < 1. The latter is the tP -span of certain building blocks (satisfying 
suitable support, size, and smoothness conditions), called regular atoms. Hence, it 
is natural to seek a solution for (1.31) when / = J2j ^jaj with (^j)j £ tp and the 
a/s regular atoms, as u = Y^j ^jfij, where Uj solves (1.31) for the boundary datum 
CLJ. However, even though the original datum / satisfies the necessary compatibility 
condition (1.32), there is no guarantee that each individual atom a,j does. We overcome 
this issue by first addressing the solvability of (1.31) in the case when D c Mn is 
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8 CHAPTER 1. INTRODUCTION 

the unbounded domain lying above the graph of a (real-valued) Lipschitz function. 
In this setting, condition (1.32) no longer plays a role. We then develop appropriate 
localization techniques (carried out at the level of singular integral operators) in order 
to eventually handle the case of bounded Lipschitz domains. This idea influences our 
overall strategy in dealing with all types of boundary conditions for the Stokes system 
treated in our work. 

Having developed a satisfactory theory for the Stokes system with Lp (and atomic) 
data and nontangential maximal function estimates, we next consider the inhomoge-
neous Stokes problem on Besov-Triebel-Lizorkin spaces in Lipschitz domains. The 
key idea is to view the former results as limiting/critical cases of the latter, and use 
interpolation. There are, nonetheless, significant difficulties in carrying out this pro
gram, a fact frequently noted in the literature. For example, discussing the status of 
the Poisson problem for the Stokes system in Lipschitz domains, P. Deuring writes 
on p. 3 of [27]: "We see that for solutions of the Poisson problem [for the Dirichlet 
Laplacian] on Lipschitz domains, a rather complete Lp-theory is available, whereas for 
the Stokes system, only a L2-theory could be developed. This, admittedly, was difficult 
enough, but this still raises the question what to expect if p ^ 2." 

A related open problem, posed on p. 195 of [26], asks whether for an arbitrary 
bounded Lipschitz domain 0 there holds 

(1.33) 
AU-VK = f e L2(Ü) 

div и — 0 in iì 
йе W01,2(iì), тг e L2(iì) 

ueW3/2>2(Q). 

A similar issue is raised in the case of Neumann boundary conditions. In the same 
setting, Deuring also asks if 

(1.34) 
Au = V7r in Q 
div u = 0 in ft 
M(u) e L2(dQ) 

uG W1/2'2(Q). 

Here we provide answers to the above questions and extend previous work in the 
literature by proving Theorem 1.1.5 and Theorem 1.1.6 below. In order to facilitate 
stating them, we introduce some notation. Let Bp,q(Rn) and Fp,q(Rn) denote the 
standard Besov and Triebel-Lizorkin scales of spaces in Rn (cf. § 11.1 for more details). 
Given a Lipschitz domain ( ] c l n and 0 < p, q < oo, a G M, we set 

(1.35) 
B%<t(n) := {u G ®'(ft) : 3v G Bp>q(Rn) with v\Q = u}, 

Kqo(W := {u G Bp>q(Rn) : suppu C fi}, 

with similar definitions for Fp>q(fl) and Fp,q (O). Also, Bp>q(dfy stands for the Besov 
class on the Lipschitz manifold dQ, obtained by transporting (via a partition of unity 
and pull-back) the standard scale Bp,q(Wn~1). (In general, we make no notational 
distinction between these smoothness spaces of scalar-valued functions and their nat
ural counterparts for vector-valued functions.) Finally, for e > 0 and n > 2 let us 
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1.1. DESCRIPTION OF MAIN WELL-POSEDNESS RESULTS 9 

introduce a two dimensional region 9in,e in the (5, l/p)-plane, which depends on the 
dimension as follows: 

1 
p 

slope 1 1 

1+e 
i 
2 

Us, 1 

(1. з 
2 
+ •) 

(l, i-0 
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(i. 2 — e) 
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slope l n-l l 
l 
2 + e 1 

2 
n-3 2(n-l) 

o 
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p 

(1. n + 1 2(n-l) +£ 

(1, 1/2 - e) 

1 S 
slope l 

n-l 

FIGURE 1. $n,e for n = 2 / <$n,e for n = 3 / &n,e for n > 4. 

The theorem below deals with the case of Dirichlet boundary conditions. 

Theorem 1.1.5. — Let ft be a bounded Lipschitz domain in Rn, n > 2, and assume 
that n - 1 < p < oo, 0 < q < oo, (n - 1)(^ - l)+ < 5 < 1. Consider the following 
boundary value problem 

(1.36) 
ДЙ - VTT = fe B™L_2(Ü), diwu = g G Bp,q s + 1 / 2 ^ ( O ) , 

tÏG TO (fi), *GF™(n), ,&tï = ^GB?>''(ôn), h E Bp,q (dO), 

subject to the (necessary) compatibility condition 

(1.37) d9 
(i/, h) da = 

9 
g(x) dx, 

for every component 0 of ft. 

Then there exists e = e(ft) € (0,1] such that (1.36) is well-posed (with uniqueness 
modulo locally constant functions in ft for the pressure), if the pair (s,p) belongs to 
the region «$n>£, depicted above. 

Furthermore, the solution has an integral representation formula in terms of hy
drostatic layer potential operators and satisfies natural estimates. Concretely, there 
exists a finite, positive constant C = C(f£,p, q, s, n) such that 
(1.38) 

\\u\\B™ 
s + 1 

p 
(Q) + M B ™ 

s + 1 
p 

-1 
(«)/RN+ < C\\f\\Bp, 

s + 1 
p 

-2 
(П) + С1ЫЬр'<г 

s + 1 p -1 
(ÎÎ) + 4l̂ lÍBp,9(dft)-

Moreover, analogous well-posedness results hold on the Triebel-Lizorkin scale, i.e., 
for the problem 

(1.39) 
At?- VTT = / G F™ _2(fi), divu = g G ^ ^ ( i l ) , 

tÏG TO (fi), * G F ™ ( n ) , ,&tï = ^GB?>''(ôn), 
P P 
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10 CHAPTER 1. INTRODUCTION 

where the data is, once again, made subject to (1.37). This time, in addition to the 
previous conditions imposed on the indices p, q, it is also assumed that p, q < oo. 

In the class of Lipschitz domains, we conjecture that this result is sharp. When 
dQ G C1, one may take e = 1. This follows by combining the results in [30] with 
those of the current work. Theorem 1.1.5 refines a long list of results in the literature. 
When dQ is sufficiently smooth, various cases (typically corresponding to Sobolev 
spaces with an integer amount of smoothness) have been dealt with by L. Cattabriga 
[12], R. Temam [84], Y. Giga [37], W. Varnhorn [88], R. Dautray and J.-L. Lions 
[23], among others, when dQ is (at least of) class C2. This has been subsequently 
extended by C. Amrouche and V. Girault [4] to the case when dQ G C1,1 and, further, 
by G.P. Galdi, C.G. Simader, and H. Sohr [35] when dQ is Lipschitz with a small 
Lipschitz constant. 

There is also a wealth of results related to Theorem 1.1.5 in the case when Q is 
a polygonal domain in R2, or a polyhedral domain in R3. A extended account of 
this field of research can be found in V.A. Kozlov, V.G. Maz'ya, and J. Rossmann's 
monograph [54], which also contains pertinent references to earlier work. Here we also 
wish to mention the recent work by V. Maz'ya and J. Rossmann [61]. Comparison 
between the regularity results obtained in [54], [61] and our Theorem 1.1.5 shows that 
the latter is optimal, at least if n = 2,3. 

In the case of the inhomogeneous Neumann problem we shall prove the following. 

Theorem LI.6. — Let Q be a bounded Lipschitz domain in Rn, n > 2, with connected 
complement, and fix n-1 < p < oo, 0 < g < oo, and (n — 1)(^ — l)+ < s < 1. Then 
there exists e = e(Q) G (0,1] such that the Poisson problem for the Stokes system 
with Neumann boundary condition 

(1.40) 
Au - VTT = / 

O' 
f G Bp,q 

s + 1 
p -2,0 

(Q), divu — 0 in Q, 

u G B™ 
s + l p 

(O), 7T G Bp>q 
s + 1 

p -1 (n), dyv (u, n)f = h € Bp,qs-1 (dn), 

has a unique solution (modulo adding to the velocity functions from \£A(f2)) if the 
pair s,p belongs to the region 9in,e described before, and the data (f,h) satisfy the 
necessary compatibility condition 

(1.41) 
O 

(/, tp) dx = 
dQ 

(h,il>)da, V^G^A(«). 

In addition, the solution (normalized so that fQ(u(x),il>(x)) dx = 0 for every r/> G 
\£A(fi)) satisfies the estimate 

(1.42) \\U\\B*>>\ (n) + 1Mb™ (n) < C||/]|Bp.« (n) + C'llhH^ (an). S+1 s+l_lv y S+1_2,0V ' S_1V ' P P P 

Moreover, an analogous well-posedness result holds for the problem 

Au - VTT = /] / G Fj;\_20(ft), divu = 0 in O, 

(L43) ^ F ^ ( Q ) , \ G ^ . ' ( 0 ) , dyv (u, n)f = h E Bp,q s-1 (dO), 
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1.2. CONSEQUENCES OF THE SOLVABILITY OF THE INHOMOGENEOUS PROBLEM 11 

assuming that p, q < oo. 
Finally, if the condition that the complement of ft is connected is dropped (i.e., ft C 

Rn is an arbitrary Lipschitz domains), then problems (1.40), (1.43) have solutions for 
data (/, h) belonging to a finite co-dimensional subspace of Bp^x^p_2 0(ft)^Bp^1(dft) 
and Fp^^p_2 Q(ft) 0 Bp'px(dft),. respectively, and uniqueness holds up to a finite di
mensional space. 

Above, dx(u, 7r)^should be thought of as a re-normalization of the conormal derivative 

(1.2) relative to / . See Theorem 10.6.3 and the discussion preceding it for a more 
precise formulation. Here we only wish to point out that when dft E C1 and A = 1, 
corresponding to the so-called slip boundary condition, one can take e = 1. 

Theorems 1.1.5-1.1.6 are proved by interpolating the end-point cases addressed 
in Theorems 1.1.2-1.1.4. This is done at the level of boundary layer potentials and 
solutions for the problems described in Theorems 1.1.5-1.1.6 are produced in a con
structive manner, via integral representation formulas. 

1.2. Consequences of the solvability of the inhomogeneous problem 

Here we record several relevant consequences of the well-posedness results from 
Theorems 1.1.5-1.1.6. 

Denote by Gd the Green operator for the inhomogeneous problem for the incom
pressible Stokes system with Dirichlet boundary conditions. That is, formally, if (u, TT) 
solve 

(1.44) AU-VTT = f in ft, divtT = 0 in ft, Tru = 0 on dft, 

then 

(1.45) GDf := u. 

Corollary 1.2.1. — If ft is a bounded, Lipschitz domain in W1, n > 2, then there exists 
some small number e — e(ft) > 0 such the operators 

(1.46) GD : B™(fi) —• B™2((1), 
(1.47) GD : Fp,q (O) — f™2(fi), 

are well-defined and bounded whenever 0 < q < oo and the point with coordinates 
(a — 1/p + 2,1/p) belongs to the region 9in^ in Fig. 1. 

The two-dimensional region of points with coordinates (a, 1/p) for which (a — l/p+ 
2,1/p) G <$3>E is depicted below: 

Thus, in the setting of a bounded Lipschitz domains (ÎCË3, the operators 

(1.48) V2GD : Bp^{fl) — ££*(n), 

(1.49). V2GD : F*«{£1) — Fp'q{ft), 
are bounded whenever 0 < q < oo and the point with coordinates (a, 1/p) belongs to 
the pentagonal region from Fig. 2. 
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FIGURE 2. 

It is interesting to specialize this result to the Triebel-Lizorkin scale with q = 2 
and a = 0, in which case one obtains that 

For the Laplace operator, similar results (valid in all space dimensions) have been 
established in [59], [60]. This answered in the affirmative a conjecture made by D.-
C. Chang, S. Krantz, and E. Stein (cf. [14], [13]) regarding the regularity of the 
harmonic Green potentials on Hardy spaces in Lipschitz domains. Here we prove the 
analogue of the Chang-Krantz-Stein conjecture for the Stokes system for arbitrary 
Lipschitz domains in the three dimensional setting. Analogous results are valid for 
GJV, the Green operator associated with the inhomogeneous Stokes problem with 
Neumann boundary conditions. 

When specialized to the case a = — 1 and q = 2, the operator (1.47) becomes 

where WS,P(Q) stands for the usual Lp-based Sobolev space of smoothness s in O. 
This follows from a brief inspection of the region in Fig. 1. As a corollary, for every 
bounded Lipschitz domain Q C R3 there exists p — p(Ct) > 3 such that the operator 
in (1.52) is well-defined and bounded. A similar result is valid for GA/. In the case of 
G D , a result of this type has first been obtained by R. Brown and Z. Shen in [9] (at 

V2GD : hp(Q) —• hp(ft) boundedly, 
(1.50) if Q C R3 is a bounded Lipschitz domain 

and 1 — e < p < 1 for some e = e(Q) > 0. 

Corresponding to the two-dimensional case we have 

V2GD : hp(Q) —> hp(fl) boundedly, 
(1.51) if ft C R2 is a bounded Lipschitz domain 

and | — e < p < 1 for some e — e{Q) > 0. 

(1.52) 
GD : W - ^ f i ) —* W^(n) boundedly, 

if ^+1 ~ 6 < P < £ï + 6 for some £ = £(fi) > °> 

ASTÉRISQUE 344 



1.2. CONSEQUENCES OF THE SOLVABILITY OF THE INHOMOGENEOUS PROBLEM 13 

least if dft is connected and for Dirichlet boundary conditions). When ft C R2 is a 
bounded Lipschitz domain, the same type of conclusion holds for some p = p(ft) > 4. 
Let us also single out the following low-dimensional result: 

Corollary 1.2.2. — Assume that ft is either a convex polygon in R2 or a convex poly
hedron in R3. Then 

(1.53) GD : Lp(ft) —> W2>p(ft) boundedly, whenever 1< p < 2. 

Indeed, this follows by interpolating between the case | — e < p < 1, contained in 
(1.51), and the case p = 2, which has been dealt with by R.B. Kellogg and J.E. Os-
born in [49], when 17 C R2 is a convex polygon, and by M. Dauge in [22] and by 
V.A. Kozlov, V.G. Maz'ya, and C. Schwab in [55] when ft C R3 is a convex poly
hedron. Theorem 1.2.2 should be compared with the result implied by the work of 
V. Kozlov and V. Maz'ya in [56], to the effect that 

(1.54) 
VGD:L«(fi)—> L°°(fi) boundedly, V? > 2, 
provided il C K2 is a bounded convex domain. 

This portion of our work can be regarded as the natural analogue of the treatment 
of D. Jerison and C. Kenig of the inhomogeneous Dirichlet problem for the Laplacian 
in Sobolev-Besov spaces in Lipschitz domains from [43]. Here, we are able to extend 
this to the case of the Stokes system in a Lipschitz domain ft, remove the assumption 
that dft is connected, handle boundary conditions of Neumann type, and work of 
more general scales of spaces (including non locally convex Besov and Triebel-Lizorkin 
spaces). 

We continue by recording the following significant consequence of Theorem 1.1.5. 
Related versions for smooth domains have been proved by C. Amrouche and V. Girault 
in [4], [5], and by V. Girault and P.-A. Raviart in [38]. To state it, introduce Fpfz(ft) := 
{u\Q : u e F£q(Rn) suppu Ç ft}, plus a similar definition for B%qz(ft). 

Corollary 1.2.3. — For every bounded, Lipschitz domain ft in Rn, n > 2, there exists 
some small number e = s (ft) > 0 such that 

(1.55) 

F£f(ft;R") = {ve F™(ft;R") : < W = 0} 

0{u G JS;«(fi;R") : Au G V*™(n)} , 

(1.56) 

5p;l(f2;R") = {Ve B™(Sl;Rn) : divtf = 0} 

0{u G BS'«(I2;Rn) : Au G V S ^ f i ) } , 

where the direct sums are topological, whenever the point with coordinates (a — 
1/p + 2,11'p) belongs to the region &n,£ in Fig. 1 and 0 < q < oo. In particular, 
corresponding to the case when a = 1 in (1.55), 

Wo'p(Cl;Rn) = ( w e ^ r ) : divt; = 0} 

(1.57) ®{u G W01,P(Q; R") : Au G V27(fi)}, 

provided 2n 
n+1 - e <p < 2n 

n-l + £. 
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14 CHAPTER 1. INTRODUCTION 

Indeed, if w G F£|(ft; Rn) is arbitrary and the pair (5, TT) G FP,Q A,Z (ft; Rn) x F ^ ( f t ) 
solves (1.39) for f := Aw e F£?2(ft;Rn), <? := 0, and h := 0, then w = u + (w - u) 
is the desired decomposition. That sum in the right-hand side of (1.55) is direct 
is immediate from the uniqueness statement for (1.39). This proves (1.55), and the 
argument for (1.56) is similar. Finally, (1.57) is a direct consequence of (1.55). 

We next discuss the analogue of the off-diagonal estimates for the Green oper
ator associated with the Dirichlet Laplacian in Lipschitz domains, established by 
B.E.J. Dahlberg in [17]. 

Corollary 1.2.4. — Let ft c R3 be a bounded Lipschitz domain. Then there exists 
e = e(ft) > 0 with the property that if 

(1.58) 1<р< 3 
2 + e and l 

q 
= 

1 
V — 

1 
3 

then the operator 
(1.59) V G D : LP(Q) —+ W^(fi) 
is well-defined and bounded. 

A similar result holds in the case when Q is a bounded Lipschitz domain in M2, 
granted that (1.58) is replaced by 1 < p < 4 

3 + e and l 
Q 

= I 
p - I 

2* 
To justify this, consider an arbitrary vector field / G Lp(ft) and, by taking the 

convolution of / (extended by zero to R3) with the fundamental solution for the 
Stokes system in the free space, construct two functions w G W^Q) and p G Wf (ft) 
such that Ait; - Vp = / , div it; = 0 in ft, and ||^||^2P(Q) + IMIwfcn) < C||/l|Lp(n)-
Then GJO/ = w — u, where the pair (u, 7r) solves Au — Vn = 0, divu — 0 in ft, 
and Tru = Trw on 9ft. Note that the compatibility condition (1.37) is automatically 
satisfied in this case. Also, w G W^ft) ^ Wf(ft) if l/g = l/p— 1/3 and, accordingly, 
Trw; G B™l/q{dQ). Then Theorem 1.1.5 implies that ff G W7(fi), TT G L9(ft), granted 
that the point with coordinates (1 — l/q,q) belongs to the pentagonal region $,3i£ 
described in Fig. 1 (central part). A simple analysis shows that this is always the case 
whenever 3  

2+e <q< 3 
l-e ' 

for some e = e (ft) > 0. The bottom line is that 

(1.60) / G Lp(ft) GDf G W7(iî) if 3  
2+e <Q< 3 

l-e ' 
1 
9 = 

1 
P -

1 
3 

Next, (1.47) with a = 0, q = 2, and classical embeddings give 

(1.61) V G D : F0p'2(ft) —+ Ff '2(ft) if 3  
3+e <P< 1, 1 

p* = 1 
P -

1 
3 

Interpolating by the complex method between (1.60) and (1.61) then yields (1.59) 
in full, as long as i 1 

P — 
1 
3 and 1 < q < 3 

l-e , a condition implied by (1.58). Finally, 
the reasoning for the two-dimensional case is similar. 

We conclude with a discussion pertaining to the regularity properties of solutions 
of elliptic systems in domains with conical singularities. Consider the inhomogeneous 
Dirichlet problem 
(1.62) L(D)u = f in ft, with zero boundary conditions, 
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1.2. CONSEQUENCES OF THE SOLVABILITY OF THE INHOMOGENEOUS PROBLEM 15 

where L(D) is a homogeneous, strongly elliptic, constant coefficient, formally self-
adjoint system of order 2m, m G N, and ft C Rn is a domain with a conical point at 
the origin O G Rn. Assume that / vanishes near O and u is the variational solution 
of (1.62). As is well-known, u admits a power-logarithmic asymptotic expansion near 
O. Somewhat more precisely, near the origin u behaves like a linear combination of 
terms of the form 

(1.63) |*|A' 
o<e<ij 

(logM)'i-* 
(ij-ey. wl,j X 

\x\ 

where the exponents Xj G C are the eigenvalues of a certain polynomial operator 
pencil (on a domain that is cut out of the unit sphere by the cone with vertex at 
O which is tangent to the boundary of ft), and the functions W£j are generalized 
eigenvectors corresponding to Xj. The operator pencil arises when taking the Mellin 
transform of L(D) and of the operators intervening in the boundary conditions along 
this tangent cone. 

Specific information about the nature of the eigenvalues Xj yields, in turn, regu
larity properties for the solution u. For example, 

(1.64) p < min n 
k — Re Xj 

u G W% near O. 

In [52], V. Kozlov and V. Maz'ya have shown that, in the above setting, 

(1.65) Re Yj > m - (n - l)/2. 

As a consequence of (1.64)-(1.65), we then have 

(1.66) u G Wy. near 0, whenever p < n 
k-m + (n-l)/2 + e1 

where £ = e(Q) > 0. Moreover, in [53], V. Kozlov and V. Maz'ya have also shown 
that (1.65) and, hence, (1.66), is sharp in the case when 2m > n. 

When m = 1, i.e., when L(D) is a second order operator, the above analysis gives 
that 

(1.67) u G Wf near O, whenever p < 2n 
n - l 

+ e. 

While, strictly speaking, the Stokes system does not fit into this general narrative 
since it is not elliptic in the sense of I.G. Petrovskii, the same circle of ideas can 
be adapted to this somewhat nonstandard case. See, e.g., the work of V.A. Kozlov, 
V.G. Maz'ya, and C. Schwab in [55] as well as the monograph [54] for the lower 
dimensional case (n = 2,3). 

The relevance of the above observation is that 2n 
n-l is also the critical integrability 

exponent we have identified in (1.52). Thus, our results are consistent with the pre
dictions of the regularity theory for domains with conical singularities, and are sharp 
when n = 2,3. While it is not entirely clear whether that is also true when n > 4, we 
conjecture that this is indeed the case. 
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CHAPTER 2 

SMOOTHNESS SPACES AND LIPSCHITZ DOMAINS 

For a brief review of the Besov and Triebel-Lizorkin scales in the entire Euclidean 
space Rn, the reader is referred to § 11.1. 

2.1. Graph Lipschitz domains 

We start with a few basic definitions. A graph Lipschitz domain ft C Rn is simply 
the domain lying above the graph of a real-valued Lipschitz function. That is, 

(2.1) 
ft := [x = (x',xn) G Rn 1 x R : xn > tp(x')}, where x' = (xi, . . . ,a?n_i), 
<p : Rn_1 -> R is Lipschitz, i.e., Vy> exists and belongs to L°°(Rn-1). 

We denote by da the surface measure on 9ft, and by v the outward unit normal 
defined a.e. (with respect to da) on 9ft. Hereafter, we will define ft± by 
(2.2) ft+ := ft and ft_ := Rn \ ft. 

Next, we define the cones 

(2.3) r± := {y = (y',y„) e Rn+ : \y'\ < ±KVN}, 

and for any x G Rn, define 

(2.4) I*(x):=x + Tt 
In order to introduce the classical non-tangential maximal operator M, fix some 

K, = «(9ft) with K-1 > ||V</?||LOO. Then it can be shown that T^(x) C ft± for all 
x G 9ft. When the value of K, is understood, we will often drop it from the notation 
and write T^(x) = r±(x). Now, for an arbitrary u : ft± —> R, we set 

(2.5) M(u)(x) := sup {\u(y)\ : y G ^ ( x ) } , x G 9ft. 

These conical regions also play a fundamental role in defining non-tangential re
strictions to the boundary. Again for u defined in ft±, set 

(2.6) u on 
(x) := lim 

yer±(x) 
u(y), for a.e. x G 9ft. 
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18 CHAPTER 2. SMOOTHNESS SPACES AND LIPSCHITZ DOMAINS 

Similarly, if (•, •) denotes the canonical inner product in Rn (although, later, the 
same symbol is going to be occasionally used for the pairing between a space and its 
dual), we set 

(2.7) dvu(x) := (u(x), lim (Vw)(j/)^, for a.e. x G dQ. 
YER±(X) 

By Lp(dft) we denote the Lebesgue space of measurable, p-th power integrable 
functions on dfi,, with respect to the surface measure da. Next, consider the first-
order tangential derivative operators dTjk, acting on a compactly supported function 
-0 of class C1 in a neighborhood of 00, by 

(2.8) dTjkip := Vj(dkil>)\an -vk(dj^)\an , j,k = l , . . . ,n . 

For every / G L11oc(90), define the functional dTkjf by setting 

(2.9) dTkjf : C^R") 3 ^ ^ /an / (dTikf/>) da. 

Thus, if / G Lloc(dft) has 9TfcJ./ G L11oc(9 )̂, the following integration by parts 
formula holds: 

(2.10) / f{dTjki>)do= fan (dTkJ)i>da, V ^ C j r ) . 

For each p G (1, oo), we can then define the Sobolev type space 

(2.11) L?(3ft) = {/ G Lp(dn) : aTjfc/ G Lp(cM), j,k = l , . . . , n | . 

For each 1 < p < oo, this becomes a Banach space when equipped with the natural 
norm 

n 
(2.12) II/IILJ(M) := ll/IUp(an) + H^fc/IUp(an). 

j,k=i 
If we set 

(2.13) Vtznf ~ UdTkj) , V/eL?(3fi), 
\ /l<j<n 

then for each function / G L^(9fi) 

(2.14) aT,fc/ = I/^Vtan/)* - ^(Vtan/)j, j , * = 1, . . . , n, 
cr-a.e. on dN In particular, 

n n—1 
(2.15) ||Vtan/||LP(afi) « Yl l | f lrIFC/ | |LP(an)«Ell^«/ l l^) ' V/GL?(9fi). 

j,fc=i j=i 
Furthermore, if 1 < p,p' < oo are such that 1/p + 1/p' = 1 then 

(2.16) J (dTjkf)gda = J f(dTkjg)da 
an dQ 
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2.1. GRAPH LIPSCHITZ DOMAINS 19 

for every / G Lp(dQ,), g G Lp (dft). In general, we shall call a first-order differential 
operator tangential if it can be written as a (variable coefficient) linear combination 
of the operators dTjk. 

If ft C Rn is the domain lying above the graph of a Lipschitz function <p : Rn_1 —> R 
then, for each p G (1, oo), 

(2.17) / € LÇ(ÔÎÎ) <=> /(-, ¥>(•)) € LftR""1), 

with equivalence of norms. As a corollary, we obtain from this that for any bounded 
Lipschitz domain ft in Rn, 

(2.18) Lip(dft) <-+ L\(dQ) and C°°(Rn)|an ^ Lp(dQ) densely 

whenever 1 < p < oo. 
For each 1 < p < oo, LÇ(c?ft) is a Banach space, densely embedded into Lp(dQ). 

Furthermore, since the mapping 

(2.19) J : L\(dQ) —> [Lp(dQ)] i+ (n — l)n 2 > Jf := (/>(^Tifc/)l<j,fc<n), 

is bounded both from above and below, its image is closed. Now, Lp(dCt) is isomorphic 
to the latter space and, hence, is reflexive. Thus, if for each 1 < p < oo, we set 

(2.20) UL^dtt) := Lp'1 (AN) 1/p + 1/p' = 1, 

it follows that 

(2.21) (L^idtt))* = Lp'1 (AN) 1/p + 1/p' = 1. 

We can now prove the following result. 

Corollary 2.1.1. — Let Q be a Lipschitz domain in Rn, 1 < p < oo and fix j , k € 
{1 , . . . , n}. Then the operator 

(2.22) dTjk : L^dQ) —+ Lp(d£l) 

extends in a (unique) compatible fashion to a bounded, linear mapping 

(2.23) 8Tjk :L*(dn) — tLl^dO). 

Proof. — For every f G Lp(dCl), set 

(2.24) (drjkf,9) := 
an 

fdTkjgda, \/9eLp(dQ), 

where 1/p + 1/p' = 1. Then the desired conclusion follows from the boundary inte
gration by parts formula (2.16). • 
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Corollary 2.1.2. — Assume that ft is a Lipschitz domain in Rn and that 1 < p < oo. 
Then for every / G I/L^dQ) there exist go, gjk € Lp(dft), 1 < j , k < n (not necessarily 
unique) with the property that 

(2.25) / = 20 + 
n 

j,k=l 
dTjkgjk in L^idQ). 

Furthermore, 

(2-26) ||/||LP i(afi) « inf [||flr0|Up(d«) + 
n 

j, k = 1 
HyjfellLP(an) 

where the infimum is taken over all representations of / as in (2.25). 

Proof. — Let p' G (l,oo) be such that 1/p + 1/p' = 1. If / G L^dQ) is regarded 
as a functional / : L\ (dft) —> R, then f o J~l : Im J —> R is well-defined, linear and 
bounded (where J is as in (2.19) with p' in place of p). At this stage, the Hahn-Banach 
Theorem in conjunction with Riesz's Representation Theorem ensure the existence of 
9o,9jk G Lp(dQ) such that (2.25)-(2.26) hold. • 

Let us also note that, as a simple application of the one of the standard conse
quences of the Hahn-Banach theorem, 

(2.27) Lp(dft) ^ I/L^dtt) densely, for every p e (1, oo). 

For an unbounded Lipschitz domain ft C Rn, the homogeneous Lp-Sobolev space 
of order one is defined as 

(2.28) L?(dft) := {/ G Lfoc(3ft) : dTjkf G If(dSl), 1 < j,k < n}. 

Clearly, for each p G (l,oo), L\(d£l) becomes a Banach space modulo constants 
when equipped with the homogeneous norm ||/||^p(^) := ||Vtan/IUp(an)-

2.2. Hardy spaces on graph Lipschitz surfaces 
Throughout this section, we shall assume that ft is as in (2.1), i.e., the unbounded 

domain in Rn lying above the graph of the Lipschitz function <p : Rn_1 —> R. A surface 
ball Sr(x) is any set of the form Br{x) ft 9ft, with x G 9ft and 0 < r < oo. When the 
center is already specified or of no particular importance, we simplify the notation by 
writing Sr. 

For 77,-1 
n < p < 1, the homogeneous Hardy space is then defined by 

(2.29) Hpat№) ••= f = 
3 

Xjaj : aj (p,pG)-atom, (Xj)j G lp 

where the series converges in Lipc(9ft);, the dual of Lipc(<9ft), and equipped with 
the usual infimum norm. Here, 1 < pQ < oo is a fixed parameter and a measurable 
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function a : dft —> R is called a (p,p0)-atom if there exists a surface ball 5r C 9ft 
such that 

(2.30) suppa C Sr, ||a||Lpo(0n) < r (n ~ 1) i i Po P and 
dQ 

a da = 0. 

Given the atomic characterization of Hardy spaces in the Euclidean setting, we 
have 

(2.31) / € BZidSl) /(-, *>(•))y/1 + |Vy>(-)|2 € fl^R""1). 

In particular, this shows that different choices of the parameter pQ in (2.30) yield 
the same vector space and topology on Hpt(dQ). Let us also recall here the the well-
known fact that 

(2.32) Jf^R""1) = FQ'2(Rn_1) if n-l 
n <p< 1, 

where Ff'9(Rn_1) stands for the homogeneous Triebel-Lizorkin space in Rn_1. See 
the discussion on p. 42 in [34]. For a precise definition, as well as basic properties of 
the latter scale see, e.g., [33], [86]. Here we only wish to point out that, as remarked 
on p. 44 in [34], 

(2.33) lbllJpsp'9(R̂ -1) ~ 
n-l 

j = 1 
\\9J9\\F™ (R(N - 1) 

whenever 0 < p < oo, 0 < g < oo, s G R. 
Recall that, for n-l 

n < p < 1 and e > 0, a (p, e)-molecule adapted to a surface ball 
Sr C 9ft is a function m G L1(9ft) fl L2(dft) satisfying 

(2.34) 

(i) Un TO(X) á<T(x) = °0, 

(ii) (¡ \т(х)\*<Ьт(х)) 1/2 
< r .(n-l) I_ i 

2 p 
(iii) fs2k+lr\S2Jm^)\2da(x) 

1/2 < 2~£k(2kr) 
(n-l) 1 _ 1 

2 p , Vfc>4. 

It is well-known that there exists a finite constant K = K(d£l,p,s) > 0 such that 

(2.35) m is a (p, e)-molecule m e Hpt(dQ) and ||^||Hpt(an) ^ K-

For uniformity of notation, we find it convenient to define 

(2.36) Hp(dn) := flTt(»n) for n-l 
n < P < 1 , 

LP(dü) for p > 1. 

Corresponding to one unit more on the smoothness scale we have the 'regular' 
Hardy space Hlj.p(dQ), defined for n-l 

n < p < 1 as the F-span of 'regular' atoms. 
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More specifically, if [/] denotes the class of / modulo constants, define 

(2.37) Hl?№) : = { [ / ] : / 6 ^ ( 5 0 ) 

and there exist (Xi)i G tv and ai regular (p,p0)-atoms 
OO 

with dTjnf = ] P XidTjnai whenever l < j < n - l j , 
i=i 

where the series converges in Lip (dft)f. Also, set ||/||#i.p(0Q) •= inf [J2 M^]1^? where 
the infimum is taken over all possible representations. Here, if (n — l)/n < p < 1 < 
Po < co> a function a G I/^0(9fi) is called a regular (p,p0)-atom if there exists a surface 
ball Sr so that 

(2.38) suppa C 5r, ||VTANA||LPO(afi) < r (n -1) ( 1 / P o ' - 1 / ' p ) . 

In analogy with (2.31), it can be shown that 

(2.39) [/] e Hl?(dn) <=> [/(•,¥>(•))] e Ff'2(Kn_1). 

Much as before, this shows that different choices of the parameter pQ in (2.38) yield 
the same vector space and topology on HllP(dCt). We also set 

(2.40) Щ(ЭП) := HtfidÜ) for n-l 
n <p< 1, 

Lj(dfi) for p > 1. 

An alternative characterization of the quasi-norm in the space Hp(dQ) is as follows. 

Lemma 2.2.1. — Let ft be as in (2.1) and assume that n - 1/p < p < oo. Then for each 

j,k e { i , . . . ,n} 

(2.41) 8Tjk : iff(5ft) —+ iF(dft) 

is a bounded operator. Furthermore, 

(2.42) Hlf(dil) = { [ / ] : / € L^idSl) and dTjnf € fl* Hpat (an) 1 < j < n - l } , 

and, in fact, 

(2.43) ll[/]||jff(dn) ~ 
n-l 

j = 1 
IÎ Tin/||HP(an)-

Proo/. — The claim about (2.41) follows straight from definitions when 1 < p < oo, 
and by analyzing the action of this operator on atoms when n - 1 < p < 1. This also 
yields the right-pointing inequality in (2.43). Now, the opposite inequality is trivial 
for 1 < p < oo, so there remains to justify it when n - 1 < p < 1. In this scenario, we 
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note that for every j G {1, . . . , n — 1} we have 

(2.44) 

drtJ € Hpat(dn) * y/1 + \Vip{x>mdTjJ){x'Mx')) 6 H?t(Rn-1) 

# dMix'Mx'))] e ^ ( R - 1 ) * dM&M*'))] e J,o'2(Kn-1), 

by (2.32). In concert with (2.33), this ensures that 
(2.45) 

drjnf e Hlt{dSÏ) for every j € {1, . . . , n - 1} = • f(x', <p(x')) € Ff'2(Rn_1). 

If we now recall that, as proved in Proposition 3.4 in [62], 

(2.46) HllP(Rn~1) = Ff'2(Rn-1) for 
n-l 
n <p< 1, 

it follows that 

(2.47) dTjJ e flTt(an) for every j € {1 , . . . , n - 1} / € ^ ( d f i ) . 

This membership statement is accompanied by natural estimates and this finishes 
the proof of (2.43). Now, (2.42) follows from this equivalence. • 

The space Hl^(dQ) in (2.37) is defined modulo constants. A "realization" of this 
as a space of genuine functions is as follows. If n-l 

n < p < 1 and p* 6 (1, oo) is such 
that 

(2.48) _i_ _ l i_ 
p* p n—l 

we set 

(2.49) Hlf(dQ) := {/ € U>'(ÔSI) : / = 
OO 

j = 1 
Xjdj in Lp (9ft), 

(Yj)j E lp, aj regular (p,p0)-atom 

and equip it with the natural infimum quasi-norm. We then have: 

Proposition 2.2.2. — If n-l 
n < p < 1, then the application 

(2.50) Hlf(dil) 9 / ~ [ / ] :=/ + R € Hlf(dQ) 

is an isomorphism. 

Proof. — The mapping (2.50) is clearly one-to-one. The fact that this is also onto 
follows from the lemma below. • 

Lemma 2.2.3. — Let u be a tempered distribution in Rn with the property that djU e 
Hp(Rn), j = l , . . . ,n , for some p G ( f n , n). Then there exists c G R such that 
u - c e Lp* (Rn), where p* := np 

n—p ' 
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Proof. — For each 1 < j < n, consider Tj to be the convolution integral operator in 
Rn with the kernel (djE&)(x), where EA denotes the fundamental solution for the 
Laplacian in Rn. Classical Calderón-Zygmund theory implies that 
(2.51) dkTj = Tjdk : Hp(Rn) iP(Rn), 1 < j , k < n, n 

n + 1 < p < oo, 

are bounded operators. Furthermore, if n 
n+1 < p < oo, we have 

(2.52) djTj = J, the identity operator on Hp(Rn), 
where repeated indices indicate summation, and if 

(2.53) n 
71+ 1 

< p < n, 1 
p* := 

1 
V 

1 
n 

1 < p* < oo, 

then 
(2.54) Tj : Hp(Rn) —> Lp* (Rn) 

boundedly, by the Fractional Integration Theorem. 
Next, let u be a tempered distribution in Rn with the property that there exists 

pe ( n 
n+1 , n) such that djU e Hp(Rn) for each j = 1, . . . , n. Set 

(2.55) fj := djU € Нр(Шп), j = l,...,n, Set 
and note that, in the sense of distributions, 
(2.56) dkfj=djfk, j,k = l , . . . ,n . 

We claim that, in the sense of distributions, 
(2.57) dk(u-Tjfj) = 0, k = l , . . . ,n . 

Once (2.57) has been established, it follows that the tempered distribution u — Tjfj 
must be a constant c which, in turn, implies that 
(2.58) u - c = Tjfj e Lp*(Rn). 
which is what we wanted to prove. Therefore, it remains to justify (2.57). Using 
notational conventions introduced earlier, we can re-write this in the equivalent form 

(2.59) fk = dk(Tjfj), fc = l , . . . ,n . 
To prove (2.59), based on (2.52) and (2.56), for each k we write 

(2.60) dk{Tjfj) = Tjidkfj) = Tjidih) = djpifk) = fk, 
as desired. • 

As a corollary of Proposition 2.2.2, we obtain that the definition of Hlf(dQ) is 
independent of the particular choice of pQ e (l,oo]. Let us also point out here that, 
when used in concert with (2.43), the fact that (2.50) is an isomorphism further entails 
(2.61) 

Wfh^idü) ~ II[/Hincan) ~ 
n-l 

3 = 1 
l|0rin/||H'(«>)> uniformly for / G ^ ( O l ) . 
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A distinctive feature of Hlf(dQ) is that this space is local. This can be justified 
by analyzing the action of multiplication by ip G Lipc (dQ) on regular atoms. To this 
end, it is trivial to check that, if n-l n < p < 1 < p0 < oo, then for each rj > 0 there 
exists C = C(dQ,ip,ViPiPo) > 0 such that 

(2.62) 
A regular (p,p0)-atom supported in a surface ball of radius < 77 

==> C~lfi}) A is a regular (p,p0)-atom on dQ. 

A more refined version of this result, allowing for atoms supported in surface balls 
of arbitrary radii, is as follows. 

Lemma 2.2.4. — Let Q be Lipschitz domain in Rn and assume that n-l 
n < p < 1 and 

p* < Po < Q < 00, where p* is as in (2.48). If I/J G Lipc (dQ) then ip A is, up to a 
fixed multiplicative constant, a regular (p,p0)-atom on dQ whenever A is a regular 
(p, #)-atom on dQ. 

Proof. — To fix ideas, let us assume that supp^ C S1} a surface ball of radius 
1, and that ||̂ ||L~(dQ) + IIVtan l̂U (̂aQ) < 1- Fix a regular (p,g)-atom A on 
dQ, i.e. a function A G L\(dQ) satisfying supp 4̂ C Sr, for some r > 0, and 

||Vtan̂ ||L<?(aQ) < r .(n-l) 1 _ 1 
q p . In particular, Poincaré's inequality gives m||z,<7(dft) < 

Cr\\Vt^A\\LHm <Cr l+(n-l) I _ 1 q p . Next, introduce r := min{r, 1} > 0 and note 
that supp(-0A) C Sf Going further, write VtanW^) = ^ V t a n i + (Vtan^)^ =• 
/ + II, and use Holder's inequality in order to estimate 

||J|Upo(0fl) < ||̂ |U«>(an)||Vtan |̂|LPo(5fi) <Cf (n-l) _i 1 
. Po Q ||Vtan-A||L«(ôfi) 

(2.63) < Cr(n-X) _1 1 
Po Я . 

r(»-i) I _ 1 q v, < Cf("_1) _i 1. 
Po P 

and 

ll^llbP-(en) < II Vtan l̂U«(eO) IHIUPO(S,) <Cf(n~l) _i i 
Po q 

II^IU«(OÎÎ) 

(2.64) < cf(n-1] _i i 
Po q 

rl+(n-l) I _ 1 q p < Cf(n_1) _i i 
Po P 

It is only in the last step above that pQ > p* is needed (when r is large). Altogether, 
the estimates (2.63)-(2.64) give ||VtanW>A)\\LPo(m) < Cf(n-1) _i i 

Po P 
, so C 1ip A is 

a regular (p,p0)-atom. 
We can now formally state the following. 

Lemma 2.2,5. — Let Q be as before, and assume that is a Lipschitz function, com
pactly supported on dQ. Then for every p G ( n-l 

n ,1] 

(2.65) / e #y(0f i ) = • V/ e #aV(dfi), 
plus a naturally accompanying estimate. 

Proof. — This is a direct consequence of Lemma 2.2.4. 
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The spaces Hpt(dQ) and Hl¡p(dfí) have inhomogeneous counterparts, denoted by 
hpt(dü) and hlf(dü), respectively. To be precise, fix a graph Lipschitz domain Q, C 
Rn as in (2.1) and assume that R^ < p < 1 < pQ < oo. Also, fix a threshold rj > 0. 
Call a function a G L11oc(9fi) an inhomogeneous (p,p0)-atom if for some surface ball 
Sr c dQ 

suppa C 5r, ||a||LP0(OM < r (N_1) (^~P) , and 
(2.66) f 

either r = rj, or r < rj and / a da = 0. 

We then define /i£t(9íí) as the £p-span of inhomogeneous (p,p0)-atoms and equip 
it with the natural infimum-type quasi-norm. One can check that this is a "local" 
quasi-Banach space, in the sense that 

(2.67) Kt(dfy is a module over Ca(dil) for any a > (n - 1) (± - l ) . 

Different choices of the parameters pQ, rj lead to equivalent quasi-norms and 

(2.68) (hltidÜ))* = C(n - 1) (1/p-^idíl) . 

It is also useful to note that 

(2.69) Llt(dfl) C hlt(8Q), whenever n-1/p < p < 1, ? > 1. 

Furthermore, for each p G (^^S 1], 

(2.70) / 6 Kt{dSi) ^=> / ( . ^ ( ^ x / l + IV^-)!2 6 hStOR""1) = i?o'2(Rn~1), 

in analogy with the case of homogeneous Hardy spaces. This characterizations shows 
that as far as the space hpt(dfl) is concerned, the particular values of the parameters 
p0 and 77 (used in the normalization and support size of atoms) are immaterial. 

Lemma 2.2.6. — If ft is as in (2.1), then 

(2.71) flat (an) — hat (an, v P E (n-1/n, 1]. 

Proo/. — Of course, in the definitions of the various types of atoms discussed above, 
we could have replaced "surface balls" with "surface cubes" (i.e., subsets of dü which, 
in graph coordinates, project onto genuine (n — l)-dimensional cubes whose sides are 
parallel to the coordinate axes in Rn_1). 

It suffices to show that there exists a finite constant C > 0 with the property that 
each (p, oo)-atom a : dQ —• R supported in a surface cube Q of side-length r > 77 has 
\\a\\hp (dü) < C- To see tnis> Pick N e N such that 7;2iV-1 < r < rj2N and cover Q 
with 2IV(N_1) surface cubes Qj of side-length comparable with 77. Then 

2"<n-1> _n^l N-L 
(2.72) a = ^ Ajfcj, where A, := (^) P and fcj := (^) * a\Qr 

¿=1 
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Then suppfc, C Qj, \\b3;\\Loo{dQ) < n n-l 
p 

, and 
2iV(n-l) 

3 = 1 
|A |p < 2W(n-l)(r^-(n-l) < 2n-l 

The desired conclusion follows. • 

With ft, p, Po as before and rj > 0 arbitrary, we next define 

(2.73) hlf(m) := {/ G Lipc(Sft)' : f = Zj Yjaj, (Yj)j € lp and aj 

regular (p,pG)-atom supported in a surface ball of radius < rj for every j j , 

where the series converges in Lipc(dft)', and equip it with the natural infimum quasi-
norm. Next, if p* is as in (2.48) then, by Poincare's inequality, 

(2.74) a regular (p,p0)-atom ==> \\a\\LP*(dQ) < C(<9ft,p,pG), 

(2.75) 
a regular (p,p0)-atom supported 
in a surface ball of radius < rj 

hhp(dQ) < C(dQ,ri,p,p0). 

Thus, if / = Moo ^jaj is an atomic decomposition of / G hlf(d£l), it follows that 
the series ^2]=i ^jO>j converges both in LP* (9ft) and Lp(9ft). As a consequence, 

(2.76) hlf(8Q) Lp(dn) 0 Lp* (9ft) 
and, hence, 

(2.77) hif(dQ) Hl?№) - IP* (00) 
boundedly, for each p G ( n-l 

n , 1]. In particular, 

(2.78) H/llz^en) < ^11/115^(00)' ^iformly for f e Hl,p (aM). 

Let us also record here the fact that, if n-l n < p < 1, we have 
(2.79) / € hlf(dQ) /(.>v>(.)) € Ff '2^"-1). 

In particular, various choices of the parameters p0, rj in (2.73) yield the same vector 
space and topology on /i*j.p(9ft). The equivalence (2.79) also shows that the space 
/i*iP(9ft), p G (2i^S 1], is local, in the sense that for every function ip G Lipc (9ft), we 
have 

(2.80) / € /.if (an) = • v / e fcip(an), 
plus a natural estimate. 

The fact that F f ' 2 ^ " 1 ) = {/ G Lp(Rn_1) n (/(M"-1) : [/] G F f ' 2^"1 )} for 
n-l n < p < 1 yields another alternative characterization of /iaJ.p(9ft), namely 
(2.81) 

hlf(dQ) = {/ e Lj,c(an) : / e Lp(cK2) and 9Tj.„/ e flS(ai), 1 < j < n - l } , 
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and moreover, 

(2.82) Wfhlfoa) * ll/IMan) + 
n-l 

3 = 1 
ll^n/||frjt(an)-

Let us also note here that if ft is as in (2.1) and n-1 < p < 1, then for each 
j < E { l , . . . , n - l } , 

(2.83) dTjn : hlf(dn) —> #ft(dft) boundedly. 
Indeed, this is implicit in (2.81)-(2.82). 
We conclude this section by recording an elementary yet useful result. 

Lemma 2.2J. — Let E be the graph of a Lipschitz function (p : Rn_1 —» R with 
(p(0) = 0 and fix two functions £ G C£°(£(0,1)), C € C£°(£(0,4)), with C = 1 on 
B(0,2). Also, assume that fe:ExS \ diag —> R is such that 
(2.84) \k(x,y)\ < Klx-yl-^-V, \Vxk(x,y)\ < K\x-y\~n, V(ar,j/) G ExE\diag, 
and set 

(2.85) STf(x) := y (1 - <(*))*(*, y)^(2/)/(y) Ar(i,), x € E. 

Then for every j , A; G {1,..., n}, p G ( n-l 
n , 1] and q G (1, oo), the operator 

(2.86) aTjfĉ  : L«(3fl) —• tfapt(E) 
is well-defined, linear and bounded. 
Proof. — Let V G C§°(£(0,3/2)) be such that 0 < V < 1 and if; = 1 on £(0,1). 
Set ip0(x) := tp(x), ip^x) := ^(x/2) - ip(x) and ^(ar) := ^i(2-i+1a;) for i = 2 ,3 . . . . 
Then V>i is supported in the annulus A< := {# G Rn : 2*"1 < |x| < 2 m } and 
£ilo^0*0 = ip(2~Nx) for AT = 0 ,1 , . . . . In particular, YlZo^i(x) = L Next> 
note that if ||/|U<i(E) < 1 then \&f(x)\ < C2~^n"1) and dTjk\¥f(x)\ < C2~in 
on Ai D £. For i = 0 ,1 , . . . , we now set a. := 2^+1)̂ -<77—1>/̂ a .̂fc[̂ £7*/], A< := 
2-(i+i)[n-(n-i)/P]> Then suppa. c B(o,2i+1)flE, |H|Loo(E) < Cf-2-(i+1)(n-1^ and 
fE aider = 0. Consequently, each a« is a fixed multiple of a (p,oo)-atom on E. Fur
thermore, X^So^f < oo by our assumptions on p. Since #Tj.fc[£7'/] = ^^oA^a^, it 
follows that 0Tifc[ST/] G i7ft(E) and \\dTjk[Srf]\\HPt№) < C. This finishes the proof of 
the lemma. • 

2.3. Bounded Lipschitz domains 

Call an open set ft c Rn a bounded Lipschitz domain if there exist M > 0 and a 
family of hyper-planes 11̂ , i = l , . . . ,m, a choice of the unit normal Ni to 11̂ , and a 
function (fi : Hi —• R with |^(x)—^(y)| < M\x—y\ for all x, y G 11̂ , which also satisfy 
the following additional properties. First, for each z, in the system of coordinates 
induced by (11$, iV*) in Rn, there exists an open, upright, doubly truncated, circular 
cylinder Zi such that {Zi}rl=1 covers dCt. Second, if ft; is the domain lying above the 
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graph of (pi, once again considered in the system of coordinates induced by (Ui,Ni) 
in Rn, and if tZi denotes the concentric dilation of Zi by factor t > 0 then for each i, 

(2.87) ft fl 2(M + l)Zi = ftn 2(M + 1) Zi, 
9ft fi 2(M -f 1)Z< = dfti fi 2(M + l)Zi. 

In the sequel, we shall call (Z^tpi) a coordinate chart for ft and refer to dft* as 
the graph of (pi in the system of coordinates induced by Z{. Also, a constant is said 
to depend on the Lipschitz character of ft if its size is controlled in terms of m, the 
number of cylinders {Z{}i, the size of these cylinders and the constant M. 

Given a bounded Lipschitz domain ft C Rn, set ft+ := ft and ft_ := Rn \ ft. 
The nontangential approach regions T^(x), x G dft, are defined as T^(x) := {y G 
ft± : \x — y\ < (1 + K) dist (y, 9ft)}, where K, > 0 is a fixed parameter, while at 
every boundary point the nontangential maximal function is given by M(u)(x) := 
sup {\u(y)\ : y G T^(x)} (with the choice of sign depending on whether u is defined 
in ft+ or ft_). 

For a bounded Lipschitz domain, the spaces Lp(dfl) and L\ (9ft) when 1 < p < 
oo, as well as H*t(dtt), Hlf(dQ\ Kt(dQ) and hlf(dft) when p G ( n-l 

n ,1], can be 
defined as before. As a consequence, when ft C Rn is a bounded Lipschitz domain 
and n-l 

n < p < 1, we have: 

(2.88) 

hl^dn) = H^dn) + R = H^(d£l) + L<i(dn) for each q > 1, 
/4(<9ft) Z/^dft), where p* is as in (2.48), 
L?(<9ft) /£f (9ft) = Hlf(dQ) ^ Lp*(dn), for each q>l, 
hpt(dQ), hlf(dd) are modules over Lip (5ft). 

Next, we record a couple of technical results which will not enter the discussion 
until later on. 

Lemma 2.3.1. — Assume that n-l 
n < p < 1 and that ft C Rn is a bounded Lipschitz 

domain. Also, fix a coordinate cylinder (Z, (p) and denote by E the graph of <p in the 
coordinate system induced by Z. Finally, let £ G CQ°(Z). Then there exists C > 0 
such that 

(2.89) 

(2-90) 11Ш^(ап)<С|1/11/^(Е), 

(2-91) HÉ7lls¿'(E) < СШ\\н1?ю < C\\f\\hlsr(ga), 

Uf\\ h i.p 
at (dQ) < c\\f\\ 

H 1, p 
at (M)' 

where tilde denotes the extension by zero outside the support (naturally interpreted 
in each case). 

Proof. — Indeed, (2.89) is implied by Lemma 2.2.4, whereas (2.90) is a direct conse
quence of (2.62), and (2.91) follows from (2.77) and (2.62). • 
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h'fm (an) = {/ e V (an): dTjj e tfft(an), 1 < j,k < n} 

(2.92) = {/ e L«(an): aTj.fc/ G /&(an), 1 < j,k < n} , 

and in addition, 
(2.93) 

In turn, the estimates (2.89)-(2.91) permit one to prove that many of the properties 
established for the scale hlf(dQ) when ft is a graph Lipschitz domain have natural 
counterparts in the setting of bounded Lipschitz domains. We continue by recording 
the analogue of (2.81) in the case when ft C Rn is a bounded Lipschitz domain. 

Proposition 2.3.2. — Let ft c Rn be a bounded Lipschitz domain, and assume that 
n-l 
n < p < 1 and p* is as in (2.48). Also, assume that 1 < q < p*. Then 

H/IUa;p(aQ) ~ II/11 LP* (dQ) + 
n 

j,k = 1 
l|drifc/llifpt(dn) ~ ll/IU«(an) + 

n 

j,k = 1 
\\drjkf\\hlt(dQ)' 

Proof. — To get started, we claim that for each j , k G { l , . . . , n} , the tangential 
derivative operator 

(2.94) dTjk: / t f (an) —> flft(an) 

is well-defined, linear, and bounded. To prove this, fix 1 < pQ < oo and observe that 
dTjka is a (p,p0)-atom whenever a is a regular (p,p0)-atom. It is therefore natural to 
try to define the operator (2.94) as 

(2.95) dTjkf := ^2,\idTjkai whenever / = X!Aia* in hl?(dfy-
i i 

Nonetheless, due to the redundancy in the atomic representations of functions in 
hlf(dQ) the above observation alone does not guarantee that this operator is well-
defined. See, e.g., the discussion in [7]. In order to overcome this difficulty, it suffices 
to show that if {Xj}j G £p and a3, j G N are (p,p0)-regular atoms, then 

(2.96) ^2\IAI = 0 in h}*(dtt) ][>c>T.feai = () in h*t(m). 
i i 

This, however, is a consequence of (2.76), the second line in (2.88), and (2.23). 
Hence, the operator (2.94) is well-defined and bounded. 

Turning to (2.92), let us note that, thanks to (2.88) and (2.94), the three spaces 
are listed in increasing order. Hence, it suffices to show that if / G Lq(dtt) has 
dTjkf G h^dQ) for 1 < j , k < n, then / G hlf(dCl). Note that all spaces involved 
are modules over Lip (dQ). Hence, using a smooth partition of unity, matters can 
be reduced to the case when dft is replaced by E C RN, the graph of a real-valued 
Lipschitz function defined in RN-1, and / is compactly supported on E. By further 
flattening E to RN_1 using a bi-Lipschitz change of variables, we arrive at the following 
question. Prove that if / G L^T(RN_1) ^ ( R 7 1 " 1 ) has d3 f G ^T(RN_1) for every 
j = l , . . . , n - 1, then / G Ff'2(RN-1). However, since / 4 (RN_1) = FQ'^R71-1) for 
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n-l 
n < p < 1, this latter claim follows from well-known lifting results for Triebel-

Lizorkin spaces (cf., e.g., Proposition 2 on p. 19 in [74]). Finally, the equivalences in 
(2.93) are implicit in the above reasoning. • 

In keeping with notation introduced in (2.36) and (2.40), if ft C Rn is a bounded 
Lipschitz domain, we set 
(2.97) 

hp(d£l) := Kt(dü) for 
n-l 
n <p< 1, 

L»(dil) for p > 1, 
hp(dSl) := 

hlfidO) for n-l 
n <p< 1, 

L\ (9ft) for p > 1. 

Let us also point out that all these spaces have natural vector-valued versions, 
although we shall make no notational distinction between the scalar and the vector-
valued case; each time, this should be clear from the context. 

2.4. Besov and Triebel-Lizorkin spaces in Lipschitz domains 

Given an arbitrary open subset ft of Rn, we denote by / |Q the restriction of a 
distribution / in Rn to ft. For 0 < p, q < oo and s G R we then set 

(2.98) 
BJ»«(fi) := {/ distribution in ft : 3g e £J'9(Rn) such that g\n = /}, 

l l /b f (n ) := inf {||0b?.«(R») : 9 € B?"(R»), *|n = / } , / € flj*(n). 

A similar definition is given for Ff'9(ft) in the case when p < oo. From the cor
responding density result in Rn, it follows that for any bounded Lipschitz domain ft 
and any 0 < p, q < oo, s G R, 

(2.99) C°°(ft) «- Bp,q (O) H Ff '*(ft) densely. 

The existence of a universal extension operator for Besov and Triebel-Lizorkin 
spaces in an arbitrary Lipschitz domain ft C Rn has been established by V. Rychkov 
in [75]. To state this result, let Rn denote the operator of restriction to ft, which 
maps distributions from Rn into distributions in ft, 

(2.100) £Q(u):=u 
O u distribution in Rn. 

Theorem 2.4.1 ([75]). — Let ft c Rn be either a bounded Lipschitz domain, the exte
rior of a bounded Lipschitz domain, or an unbounded Lipschitz domain. Then there 
exists a linear, continuous operator EQ, mapping distributions in ft into tempered 
distributions in Rn, such that whenever 0 < p, q < -f-oo, s G Rn, 
(2.101) 

EN : A*9(SI) —* A™(Rn) boundedly, satisfying #n(£n/ ) = / , V / G A™(ft), 

for A = B or A = F, in the latter case assuming p < oo. 

This and standard properties of retractions allow one to establish interpolation 
results for Besov and Triebel-Lizorkin spaces in Lipschitz domains. More specifically, 
we have the following analogue of Theorems 11.1.1-11.1.2. 
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Theorem 2.4.2. — Suppose ft is a bounded Lipschitz domain in Rn. Let ao,ai G R, 
otQ ^ ai , 0 < qo,Qi,Q < oo, 0 < 0 < 1, a = (1 — 0)ao + Then 
(2.102) (F^°(n), FPf(n))etg,q = B£.«(fi), 0 < p < oo, 
(2.103) (B™°(fi),B£f (il))aiq = B™(Q), 0 < p < oo. 

Furthermore, if «0,0:1 G R, 0 < po,Pi < 00 and 0 < qo,qi < 00 satisfy 
min{go,^i} < 00, then 

(2.104) [ F po,qo 
«о 

m, F p1, q1 
ai 

(Щв = F PA a 
(O), 

where 0 < 0 < 1, a = (1 - 9)a0 + 0ai, i 
p 

= 1-е 
Po 

+ 
_0_ 
Pi and i 

9 = i-a 
90 

+ 0 
q1 If ao,ai G l , 0 < PoiPiiQOiQi < oo and min{go59i} < oo, then also 

(2.105) [В%*>(П),В?*(П))в = B^(Q), 

where O < 0 < 1 , a = ( l - 6)a0 + 0aly l 
p l-e 

Po 
+ 

в_ 
Pi and 1 i-e 

qo + в 
q1 Finally, the same interpolation results remain valid if the spaces Bp,q(£l), FP,Q(Q) 

are replaced by BP'Q(SI) and i^o (ft), respectively. 

Recall now the standard ZAbased Sobolev spaces in a Lipschitz domain ft: 
(2.106) 

WZ(Q) := { / G LP(Jl); ST*f G Lp(ft), V 7 : |7| < * } , 1< p < 00, k G N0, 

equipped with the norm 

(2.107) ll/llw-(Q) := £ lldVllLp(fi). 
l7l<k 

In view of Theorem 2.4.1, for any Lipschitz domain ft, we have 

(2.108) W£(ft) =Ff2(ft), K p < o o , he N0. 

For 0 < p, q < oo, s G R, we set 

(2.109) <fS(n) •= {/ € Af«(RB) : supp/ C fl}, 
ii/iu-j(n):= 11/11 -̂01»), f E Ap,q s,o (O). 

where, as usual, either A = F and p < oo or A = B. Thus, BP^(Q), Ff Q (ft) are 
closed subspaces of B£$(RN) and Ff'09(Rn), respectively. In the same vein, we also 
define 

(2.110) L^0(ft) := {/ G L£(Rn) : supp / C ft}, 1< p < oo, s G R, 

with the norms inherited from Z^0(Rn). 
For 0 < p, q < oo and 5 G R, we also introduce 

(2.111) Aps'qz№ := {/ distribution in il : 3g e AP,Q(ÌÌ) with g\c¿ = /}, 

l l / lk;'(0) := inf {№IUî-«(R») : 9 & A™ (à), g\a = / } , / 6 AP,Q S,O (O). 
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(where, as before, A = F and p < oo or A = B) and, in keeping with earlier conven
tions, 

(2.112) LPZ(Q) := FJ^2(ft) = {/ distribution in ft : 3g G l£0(fi) with p|n = / } , 

if 1 < p < oo, s € M. For further use, let us also make the simple yet important 
observation that the operator of restriction to ft induced linear, bounded mappings 
in the following settings 

(2.113) &n : A™(Rn) — A™ {SI) and &a : A*$(Rn)—+A™(Q) 

for 0 < p, q < oo, s G R. 
It follows that if ft is a bounded Lipschitz domain in RN and 0 < p, q < oo, s G R, 

then 

(2.114) Cp(ft)-->A^(ft) densely, 

(2.115) C°°(Ti)<-+A*>q(n) densely, 

(2.116) C5°(fi)^i45;2(fi) densely, 

where, as before, tilde denotes the extension by zero outside ft and A stands for either 
B or F. Indeed, the same proof as in the Remark 2.7 on p. 170 of [43] gives (2.114) 
and a minor variation of it justifies (2.114) as well. Finally, (2.116) is a consequence 
of (2.114) and the fact that &Q maps APS'g(fj) continuously onto A™ (SI). 

Proposition 2.4.3 ([87]). — Assume that ft is a bounded Lipschitz domain in RN, and 
suppose that 0 < p, q < oo and 5 > max^l/p — 1, n(l/p— 1)^. Then extension by zero 
defined as 

(2.117) f{x) := 

induces a linear and bounded operator from BPi%(Sl) to BP'Q(Q) and, if p < oo, 
from Fpg(Sl) to -Ff/o9(ft). Furthermore, if max(l/p - l ,n(l/p - 1)) < s < 1/p and 
0 < p,q < oo, this operator also maps Bp,q(ft) to BP'Q(CI) and, if min{p, 1} < q, 
FP«{Sl) to F^(ft) . 

If 1 < p, g < oo and 1/p -f- 1/p' = 1/q + 1/g' = 1, then 

f(x) if a; G ft, 
0 if a: € Rn \ ft, 

(2.118) U™(n)) =4L;*(0) if s >— 1 + l 
p 

(2.119) (A™(n)) = APX(Q) if s < 1 
P 

Furthermore, for each s e R and 1 < p,# < oo, the spaces AP,Q(Q.) and A^o(ft) 
are reflexive. As a consequence of (2.118)-(2.119) let us also note the following useful 
result: 
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Proposition 2.4.4. — Let ft be a bounded Lipschitz domain in Rn, and assume that 
1 < p, q < oo, 1/p + 1/p' = 1/q + 1/q' = 1. Then 

(2.120) (flf«(n)V = Bp', q' -s (ft), (Ff^(ft))* = F^ / ( f t ) , 

provided —1 + 1/p < s < 1/p. 

There is yet another type of smoothness space which will play a significant role for 
us. Specifically, for ficRn Lipschitz domain, we set 

(2.121) A^q(n) := the closure of Cg°(îî) in Aps>q(Q), 0 < p, q < oo, s G l , 

where, as usual, A = F or A = B. For every 0 < p, q < oo and s G M, we then have 

(2.122) Apsiq(Q) <-> Ap>q(n) A™(to), continuously. 

The second inclusion is trivial from (2.121), whereas the first can be justified as 
follows. If / G -A™ (ft), then there exists u G A£g(ft) such that &n(u) = f. By 
(2.114), there exists a sequence Uj G Co°(ft) such that ûj -» u in Af'9(Rn), which 

then implies uj = $Q(%) -> RN (U) = f in Ap,q s (O). This proves that / G A™ (SI) 
and the desired conclusion follows easily from this. 

Going further, Proposition 3.1 in [87] ensures that 

(2.123) A™(n) = A™(fl) = A™(0), Ae{F,B}, 

whenever 0 < p,q < oo, max^l/p— 1,n(l/p— 1)^ < s < 1/p, and min{p, 1} < q < oo 
in the case A = F. Other cases of interest have been considered in [60], from which 
we quote the following result. 

Proposition 2.4.5. — Let ft be a bounded Lipschitz domain in Rn. Then 

(2.124) F°r (ÎÏ) = FJ«(tl) 

provided 

(2.125) 
0 < p < oo, min{l,p} < q < oo, and 

3 k G No so that max ̂  l p - l , n ( l 
p -1)) < s - k < I 

p 

Furthermore, 

(2.126) В™(П) = В™(П) 

whenever 

(2.127) 0 < p, q < oo and 3 A; G N0 so that max ( I 
p - l , n ( 1 

p - 1 ) ) < s-k < l 
p 
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2.5. Smoothness spaces on Lipschitz boundaries 

For a £ R set (a)+ := max{a,0}. Consider three parameters p, q, s subject to 

(2.128) 0 < p,q < oo, (n - 1) ( j - l ) < s < 1, 

and assume that ft C Rn is the upper-graph of a Lipschitz function y?: Rn_1 -» R. We 
then define Bp>q(dQ) as the space of locally integrable functions / on dft for which 
the assignment Rn_1 3 x H-» / (Z , </?(X)) belongs to Bp>q(Rn~1) (cf. § 11.1). We then 
define 

(2.129) l l / l b r ^ o n ) : = l l / ( ^ 0 ) l l * r < R » - i ) -
As far as Besov spaces with a negative amount of smoothness are concerned, in the 

same context as above we set 

(2.130) / e B * y a n ) /(-, y (.)) + I W ) I 2 € B ^ Í R " - 1 ) , 

(2.131) | | /b-(9Í2) := 1 1 / ( ^ ( 0 ) ^ 1 + |V?(0I1B;I«1<R»->)-

As is well-known, the case when p = q = oo corresponds to the usual (non-
homogeneous) Holder spaces Cs(dft), defined by the requirement that 

(2.132) ||/||c-(*i) := ll/IU~(¿wi) + s»P 
x^y x,y£dQ 

\f(x) - f(y)\ 
\x - y\s < +oo. 

All the above definitions then readily extend to the case of (bounded) Lipschitz 
domains in Rn via a standard partition of unity argument. 

We now recall several properties of the Besov scales just introduced above which 
are going to be of importance for us later on. 

Proposition 2.5.1. — For (n - I)In < p < oo and (n - l)(l/p - 1)+ < s < 1, 

(2.133) ||/b?.p(ôn) « ||/||LP(ÔO) + ( 
an eN 

\f(x) - f(y)\ p 
\X - y\n-l+*P da(x) da(y)j 

i/p 

See [60] for a proof of the equivalence (2.133). 

Theorem 2.5.2 ([60]). — Let ft be a Lipschitz domain in Rn and assume that the 
indices p and s satisfy n-l 

n < p < co and (n — 1)( i p — 1)+ < 5 < 1. Then the following 
hold: 

(i) The restriction to the boundary extends to a linear, bounded operator 

(2.134) Tr :B™(ty —• BJ'«(0îî) for 0 < q < oo. 

Moreover, for this range of indices, Tr is onto and has a bounded right inverse 

(2.135) Ex : Bp>q(dQ) —+ B™ s4 1 p 
(O). 

(ii) If p T¿ oo, then similar considerations hold for 

(2.136) Tr : F™ 
s + 

1 p 
(fi) —* Bp'p(dü). 
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In particular, the operator (2.136) has a linear, bounded right inverse 

(2.137) Ex : BJ*(0ft) —• F™ 
s + 

1 p 
(O) 

Theorem 2.5.3. — Let ft be a bounded Lipschitz domain in Rn and assume that n-l 
n < 

p < oo, (n — l)(l/p — 1)+ < 5 < 1 and min{l,p} < q < oo. Then 

(2.138) Fp, q 
s+l/p,z 

(fi) = {f e F p,q 
8+1/p 

(ft): TV/ = 0} 

and 

(2.139) Cc°°(ft)^Fp'9 
S+l/p,2 (ft) densely. 

Furthermore, a similar result is valid for the scale of Besov spaces. More specifically, 
if n-l 

n < p < oo, (n — l)(l/p — 1)+ < s < 1 and 0 < q < oo, then 

(2.140) £ M 
S + l/p,2 

(ft) = {/ € B™ 
s+l/p (fl): I r / = 0} 

and 
(2.141) Cc°°(f2) 5™ 

s + 1/p,z 
(ft) densely. 

Proposition 2.5.4. — Suppose that ft is a bounded Lipschitz domain in Rn. Further
more, assume that 0 < p, qo, Qi < oo and that 

(2.142) 
either (n — 1)^ I 

q 
- l ) < 50 ^ «1 < 1, 

or - l + ( n - l ) ( 1 
p 

- l ) < 50 ^ 5i < 0. 

Then, with 0 < 0 < 1, s = (1 - 0)so + 0*1, 

(2.143) (SJj*(an) ,B^(«n)kg = B*«(dQ). 

Furthermore, if 0 < p%,qi < oo are such that min{#o,tfi} < oo and either one of 
the following two conditions 

(2.144) 
either (n — 1)^ 1 

Pi 
- l ) < * . < ! , ¿ = 0,1, 

or - l + ( n - l ) ( Pi - l j ^ < 5 f < 0 , ¿ = 0,1, 

is satisfied then 

(2.145) № 9 ° ( ^ ) > BPsl'qi (a O)]0 = Bps'q(dQ), 
where 
(2.146) 0 < 0 < 1, 5 := (1 - 0)5O + 05i, l 

p := i-e 
Po 

+ Й 
Pi 

and 1 
я := 1-0 

90 
+ 0 

q1 
Proposition 2.5.5. — Let ft C Rn be a bounded Lipschitz domain and fix (n — l)/n < 
p < oo, 0 < q < oo, and (n - 1)(^ - 1)+ < 5 < 1. Then, for each j , k G {1,..., n}, the 
tangential derivative operator 
(2.147) dTjk : Bt«{dSl) — B™,(flfi) 
is well-defined, linear, and bounded. 
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Next, we discuss an atomic decomposition result for the space B^^dQ.) when 
(n — l)/n < p < oo and (n — 1) (1/p — 1)+ < 5 < 1. For a given, fixed parameter 
rj = v(dn) > 0, call as G Loo (dA) an atom for B^I^dSl) if 

(2.148) (1) 3 5 = Sr, surface ball, such that supp (as) Q S, 

(2.149) (2) \\a8\\L~(aa) < ra~l~ 
n-l 
P 

(2.150) (3) 
an 

as{x) da(x) = 0 when r < n. 

We have: 

Proposition 2,5.6. — For any bounded Lipschitz domain ft C Rn there exists rj — 
r/(dft) > 0 such that the following is true. If (n — l)/n < p < 1 and (n — 1)( l 

p - i ) < 
s < 1 then 

II /II(an) ~ inf{(' 
5 

\*s\p) 1/p: 

(2.151) / = 
s 

^sO'S, as are B^f^dQ) atoms, {Às}s G F j , 

uniformly for / G B ^ d f t ) . 

Lemma 2.5.7. — Let ft C Rn be a bounded Lipschitz domain and assume that k : 
dfi, x 5ft \ diag —> R is such that 
(2.152) 

|fc(x,y)| < ic lx-yr^"1) , \Vyk(x,y)\ < K\x-y\~n, V(x,y) G 9ft x 9ft \ diag. 

For a fixed function £ G Co°(Rn) set k(x,y) := [£(x) — £(y)]k(x,y) and introduce 

(2.153) %f(x) := 
an 

&(#> 2/)/(s/) <M2/) > x edtl. 

Then for every s G (0,1) and # G (1, oo), the operator 

(2.154) g> : Bq_!qs{dCt) —> L*(0fi) 

is well-defined, linear, and bounded. 

Proof. — Consider first the case of (2.154) when q = 1. Our goal is to show that 
there exists C > 0 such that 

(2.155) ||£a||Li(M)<C 

for every Si'*(dft)-atom a. Recall the parameter rj from Proposition 2.5.6 and note 
that if a is an atom supported in a surface ball of radius > rj then ||a||x,i(a«) ^ 
C(?y,9ft) < oo. Thus, (2.155) holds in this case since "6 maps Lx(9ft) boundedly into 
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itself. When a is a B]l\(dft)-atom supported in a surface ball Sr(xQ) with xQ G dft 
and 0 < r < 77, it is elementary to establish that 
(2.156) 

S2r(x0) 
\%a{x)\ da(x) < Cr1-8 < C and 

dn\S2r(x0) 
y&a{x)\da(x) < Cr^'ïar < C 

for some finite C = C(9ft,r/, K) > 0. From this, (2.155) follows. Hence, (2.154) holds 
when q = 1. Since, by Schur's lemma, C maps Lv(dQ) boundedly into itself whenever 
1 < p < oo, the claim about (2.154) follows in its full generality from what we have 
just proved and interpolation. • 

We shall now briefly discuss the Triebel-Lizorkin spaces on the boundary of a 
bounded Lipschitz domain ft C Mn, denoted in the sequel by Fp,q(dQ). Compared 
with the Besov scale, the most important novel aspect here is the possibility of allowing 
the endpoint case s = 1 as part of the general discussion if q = 2. To discuss this in 
more detail, assume that 

(2.157) 
either 0 < p < oo, 0 < q < oo, (n — 1) ^ i 

min {p,q} 
- l ) < 5 < 1 , 

or n-l 
n < p < oo, q — 2 and 5 = 1. 

The starting point in introducing Triebel-Lizorkin spaces on 9ft is the case when 
ft is the domain lying above the graph of a Lipschitz function <p : Mn_1 —• E. In this 
case, if (p,q,s) are as in (2.157), we define Ff'9(9ft) as the collection of all locally 
integrable functions on dft such that 

(2.158) ||/||F?'«(0n) •= \\f(-M')))\\Ff>HRn-i) < +<*), 

and Ffi^dft) is defined as the collection of all functionals / G (Lipc (9ft))' such that 

(2.159) I I / H F ^ M ) := ||/(-, ¥>(•)))V1 + |V^(-)I2IIF^I(R»-I) < +oo. 

When (p, g, s) are as in (2.157), the Triebel-Lizorkin scale in Rn_1 is invariant 
under pointwise multiplication by Lipschitz maps as well as composition by Lipschitz 
diffeomorphisms. In turn, this can be used to define Fg,q(dQ) and Ffi^dft) when ft 
is a bounded Lipschitz domain, via a standard partition of unity argument. 

Some basic properties of the spaces just introduced are as follows. First, 

(2.160) Fg'2(dSl) = /ip(dft), Ff'2(dft) = fcÇ(ôîl), n-l 
n < p < 00, 

where /ip(c?ft), h\(dVi) have been introduced in (2.97). Second, 

Proposition 2.5.8. — Let ft be an arbitrary bounded Lipschitz domain in Rn. Assume 
that the indices s, So, si,p,Po, (7o, (7,Pi, qi, 0 are as in (2.146) and each of the two 
triplets (po><7o>so) and (Pi>(7i>5i) satisfies (2.157). If also min {(70,(71} < 00 then 
(2.161) 

[ppo,go 
so 

(dft),FPl'91 
Si 

(ди)]в = F™ S (0П), [FPo'qo (diî),FPl'91 «i-i (ÔQ)]e = Fp'q s-l (an). 
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Finally, assume that each of the two triplets (p, qo, $o) and (p, gi, si) satisfies (2.157) 
then 
(2.162) 

(Fp,qo (dn), Fp,q1 (dn))e,q = B^(dn\ (F^qMm,F!;q_\(dn))e,q = Bp,q s-1 (dQ) 
if s0 7̂  «1, 0 < 0 < 1, 5 = (1 - 0)so + 6si and 0 < q < oo. 
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CHAPTER 3 

RELLICH IDENTITIES FOR DIVERGENCE FORM, 
SECOND-ORDER SYSTEMS 

3.1. Green formulas 

Let ft be a domain in W1 and denote by C°° (ft) the class of smooth, complex-valued 
functions defined in a neighborhood of ft. Also, for two fixed nonnegative integers 
AT, M, set 6 := [C°°(Sl)]N, 9 := [C°°(ft)]M. In the sequel, we let (u, v) :=MN b-1 upvp 
denote the pointwise inner product in &, £F, etc. Note that this pairing does not involve 
any complex conjugation (i.e., is bilinear). Next let D : S —• 57" be the linear mapping 
given by 

(3.1) Du(x) = ( ] T af{x)d^Uf3(x)^ ,a u e 6, x e ft, 
|7|<m 

i.e. a differential operator of order m in ft, with smooth, complex-valued coefficients 
in ft, acting on vector-valued functions. Its formal transpose is then given by 
(3.2) 
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Dr : 9 —• S, Drv(x) := 

|7|<m 

(-l)h\d^[af(x)va(x)}) 
/3 

, V e £7*, x e ft. 

If the superscript c denotes complex conjugation then D*, the adjoint of .D is 

(3.3) D* : ¿7 —> <£, D*u := [DT(uc)]c . 

In fact, if we set Dcu := (Duc)c (i.e. conjugate the coefficients of D), then 

(3.4) D* = (DT)C = (L>C)T, DT = {D*)c = (Dc)\ 

and adjunction, transposition and conjugation are all involutions. 
Going further, recall that the principal symbol of (3.1) is the mapping 

(3.5) a(D;0«:=(<m £ < r u / j ) a , É € R", u G S, 
\l\=m 



42 

where, throughout this section, i := v^-T. It follows that, for each £ G Rn and each 
differential operator D of order m, 

(3.6) a(Dc; 0 = (-1Г<т(£>; £)c, <r(DT; 0 = (-1)"V(£>; £)T, 
and (r(Z);0*=<r(I?*;0-

CHAPTER 3. RELLICH IDENTITIES FOR DIVERGENCE FORM 

Also, for any two differential operators D\, Д2, 

(3.7) o{DxD2;0 = a(£>i;^(£>2;0, Z & Kn, 
whenever the composition is meaningful. 

Recall next that for a first-order differential operator D : 6 —• £7", the following 
integration by parts formulas are valid: 

(3.8) / (Du,vc)dx= f (u,(D*v)c)dx- f (ia(D;v)u,vc) da, 
Jn Jn Jan 

(3.9) / (Du,v)dx = / (u,DTv)dx- / (ia(D;v)u,v) da, 
Jn Jn JdQ. 

where da is the surface measure on dft (assumed to be reasonably smooth), v is the 
outward unit normal to ft, and the functions и G 6, v G 57", are sufficiently well-
behaved near 9ft. 

We continue to assume that D : S —• ¿7 is a first-order differential operator and 
consider A : ft —> CMxM a smooth, matrix-valued function (also occasionally iden
tified with a zero-order differential operator mapping 57" into £7). With D and A as 
above, introduce the second-order differential operator 

(3.10) L := -D*AD, L:S —• £7", 

and the associated conormal derivative 

(3.11) # := »<т(2Г; v)AD, d? : 6 —> F|dN. 

For further reference, let us note here that 

(3.12) a ( # ; 0 = «r(DV)i4flr(D;0, 
so that in particular, 

(3.13) a(d^is) = -ia(L;v). 

Also, 

(3.14) Л = A* L = L* = > <r(L;£)* = <r(L;£), V£ G Mn. 

It follows from (3.8) that 

/ (Lu, vc) dx = - f (D*ADu, vc) dx 
Jn Jn 

(3.15) = - / (ADu, (Dv)c) dx + / (d*u,vc)da. 
Jn J дП 
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Taking the complex conjugates of both sides and interchanging u and v also yields 

(3.16) / (u, {Lv)c) dx = - / (A*Du, (Dv)c) dx + / (u,(d£v)c) da. 
JQ JQ JdQ 

In particular, 

(3.17) A = A* / (Lti, vc) - {u, (Lv)c) dx = [ (dfu, vc) - <ti, {d£v)c) da, 
JQ JdQ 

i.e. the complex Green formula. Going further, note that replacing v by vc in (3.17) 
yields the real Green formula 

(3.18) / (Lu,v)dx= / (u, Lv) dx + / (d*u,v)da- / (u,d*v)da 
JQ JQ JdQ JdQ 

if Ac = A, Dc = D (i.e., A and D have real coefficients) and A = AT. 

3.2. A general Rellich identity for second order systems 

We continue to employ notation introduced in the previous section. Throughout 
this section, we shall assume that 

(3.19) Du(x) = ( 
n 

¿=1 
af(x)dju(3(x)^ 

l<a<M' 
ue [C°°(Ù)]N, xeù, 

is a first-order differential operator with C1 coefficients and that the matrix A is 
self-adjoint, i.e. 

(3.20) A* = A. 

Then L, defined as in (3.10), becomes a self-adjoint, second-order partial differential 
operator. In order to continue, we need one more piece of notation. Specifically, if 
h = (hj)j : Ù —> Rn is a smooth vector field, we set 

(3.21) Vf« := (VhUj)0 := ( 
n 

j = 1 
hjdjUf^j 

0 
, ue 6, 

with an analogous definition for V)f. In this context, Vh := h- V is the usual directional 
derivative, in the direction of the vector h. It is useful to note that <r(Vf; £) = i(h, E) IE, 
where IE stands for the identity operator on &. Of course, a similar calculation applies 
to Vf. 

The following Leibnitz formula is readily checked: 

(3.22) Vh(u,w) = (V%u,w) + {u,V%w), Vu,w G &. 

Of course, a similar Leibnitz formula holds for functions in £7". 
If we now set [D, Vh] := -DVf — V^D, the symbol calculation 

(3.23) a({D,Vh}]0 = a(D;Oi(h,Oh-i{h,(;)I? (T0(D-,0) = 0, V£eR", 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2012 



44 CHAPTER 3. RELLICH IDENTITIES FOR DIVERGENCE FORM 

shows that [JD,V^] is a first-order differential operator. Integrating by parts then 
yields 

/ (d?u,(V%u)c)da = / (ia(D*;v)ADu,(V%u)c)da 
JdQ JdQ 

= / (Lu, (Vf u)c) dx + / (ADu, (DVf u)c) dx 
JQ JQ 

= f (Lu,(V%u)c)dx + [ (ADu,(V%Du)c)dx 
JQ JQ 

(3.24) + / (ADu,([D,Vh]u)c)dx. 
JQ 

Next, observe that thanks to (3.22) and the fact that h has real-valued components, 
we have the sequence of identities 

{ADu,(VfDu)c) = (ADu,V*{Du)c) 

= Vh (ADu, (Du)c) - (Vf ADu, (Du)c) 

= Vh(ADu, (Du)c) - <[Vf, A]Du, (Duf) 

(3.25) -(AV%Du,(Du)c), 

pointwise in ft. In this connection, we note that 

(3.26) <T{\yZ,A]]t) = i(K,OI(rA-A(i(K,Z)I!?) = 0, V£eR", 

so we may conclude that [V^, A] is a zero-order operator. Moreover, (3.20) allows 
us to re-write the last term in (3.25) as (Vf Du, (ADu)c) = ((ADu,(V%Du)c))c. 
Altogether, (3.25) becomes 

(3.27) 2Re (ADu, (V^Duf) = Vh(ADu,(Du)c) + OQDu\2\[V% ,A}\). 

Returning with this back in (3.24) then yields 

Re / (d?u,(V%u)c)da = \ I Vh(ADu, (Duf) dx + Re / (Lu, (V%u)c) dx 
JdQ 2 JQ JQ 

+ f 0(\Du\2\[V%,A]\)dx 
J Q 

(3.28) + / 0(\A\\Du\\[D,Vh}u\)dx. 
JQ 

This completes the first round of integration by parts. Our approach involves a sec
ond round, based on the scalar Divergence Theorem, JQ Vhf dx = — JQ(div h)f dx + 
fdQ(h,jy)f da. Utilizing this in the context of (3.28), i.e. with / := (ADu, (Du)c), 
gives a first version of a Rellich-type identity. To state this formally, we let C^(ft) 
denote the space of bounded, complex-valued functions of class C1 in a neighborhood 
of ft, with bounded first-order derivatives. 
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Theorem 3.2.1. — Assume that Í] С l n is a Lipschitz domain and let D be a first-
order differential operator as in (3.19) with coefficients in C¿(ft). Also, let the matrix-
valued function A satisfy (3.20) and define L as in (3.10). 

Suppose next that и G C2(ft) is a R^-valued function for which M(Vu) G L2(dft), 
the nontangential boundary trace Vit exists pointwise almost everywhere, and 

\dQ 
Vu and Lu are sufficiently well-behaved in ft (e.g. being square integrable will do). 
Finally, fix an arbitrary vector field h G C£(ft) with real-valued components. Then 
there holds 

2 Re / (d?u,(V%u)c)dcr 
JdQ 
= f (h,v)(ADu,(Du)c)da- [ (div h) (ADu, (Du)c) dx 

JdQ JQ 

+2Re / (Lu, (V%u)c) dx + / 0(\Du\2\[V%, A]\) dx 
JQ JQ 

(3.29) + / 0(\A\\Du\\[D,Vh}u\)dx. 
JQ 

In the second part of this section, we would like to further refine the above identity 
under the additional assumption that 

(3.30) L is strongly elliptic. 

This entails that o~(L; £) is an invertible matrix for any £ ̂  0. Loosely speaking, this 
refinement is carried out by decomposing D into its tangential and normal component 
on dft, analogously to the standard decomposition 

(3.31) V = Vtan + ^ 

of the full gradient operator in En into its tangential and normal components on dft. 
Let us describe a procedure which, given an arbitrary first-order differential oper

ator P, allows one to decompose P as the sum of a tangential differential operator on 
dQ, and a suitable multiple of dAv. The key observation is that the operator 

(3.32) r := P - ia(P; I/)<T(L; v)~ld* 

is tangential on c?ft, in the sense that a(r; v) = 0, which follows readily from (3.13). 
In the case when this procedure is applied to D, the resulting tangential operator 

(3.33) r0 := D - ia(D; u)a(L; v)~ld* 

has the extra property that, on dQ,, 

(3.34) <T(£>*; V)ATQ = -id? - ia(D*; u)Aa(D; v)a(L\ v)~xdt = 0. 
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Now, writing D = ia(D; v)a(L\ v)-1dAv + r0 and expanding (ADu, (Du)c) yields 

(ADu, (Du)c) = (iAa(D; u)a(L; v^d^Au, (Du)c) 

+ {AT0U, (ia(D; v)a(L; v)-1dAu)*) 

+(AT0W,(T0W)C) 

(3.35) =: / + / / + / / / . 

Observe that 

(3.36) I = (<T(L; i / ) " 1 ^ , (-<*(£>*; V)ADU)c) = (a(L; v)~ld*u, {~^u)c) 

and that, by (3.34), 

(3.37) / / = (<r(Zr; u)Ar0u, (ia(L; I / ) " 1 ^ ) * ) = 0. 

Thus, all in all, 

(3.38) (ADu, (Duf) = <<T(-L; i / ) -1^*, (d*u)c) + (Ar0tx, (r0u)c). 

Similarly, we decompose 

(3.39) Vf = (K,I/><T(-L;I/)-1^ + TI, 

where 

(3.40) n := Vf - (h, u)a(-L; v)~ld^ 

is tangential, by our previous discussion. Thus, 

Re {d?u, (Vfu)c) = Re (d¿u, (TiU)c) + {d?u, (<r(-L; u)-ld^u)c){h, v) 

(3.41) = Re (d?u, (TiU)c) + (<r(-L; v^d^u, (d^u)c){h, u). 

Returning with (3.35)-(3.41) in (3.29) finally proves the following general Rellich-
type identity. 

Theorem 3.2.2. — Let fi C En be a Lipschitz domain, and let D be a first-order 
differential operator as in (3.19), with coefficients in C£(fi). Let the matrix-valued 
function A satisfy (3.20) and assume that the second-order operator L introduced in 
(3.10) is strongly elliptic. Next, assume that u G C2(Q) is a Revalued function such 
that M(Vi¿) G L2(dVt), the nontangential boundary trace Vu dN exists pointwise 
almost everywhere, and for which Vu and Lu are sufficiently well-behaved in Í2 (e.g. 
being square integrable will do). Finally, fix an arbitrary vector field h G C¿(fi) with 
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real-valued components. Then there holds 

— 
an 

(v(—L;v)-1dAu? (dAuv)c) h,y) d0 

= -/ (AT0u,(T0u)c){h,v) da+ 2Re f {d^u^nuf)c da 
JdQ JdQ 

-2Re / {Lu, (V%u)c) dx + / 0(\Du\2\[V%, A]\) dx 
JQ JQ 

(3.42) + / 0{\A\\Du\\[D,Vh]u\)dx, 
JQ 

where all 0's involve only dimensional constants. 
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CHAPTER 4 

THE STOKES SYSTEM AND HYDROSTATIC POTENTIALS 

4.1. Bilinear forms and conormal derivatives 

For A e R fixed, let 

(4.1) a"kW '•= SjkSap + ^SjpSka, 1 < j,k,a,(3 < n, 
and, adopting the summation convention over repeated indices, consider the differen
tial operator L\ given by 

(4.2) (Lxu)a := dj(a^(X)dkul3) = Aua + \da(divu), 1 < a < n. 

The connection with the material in § 3.1 is as follows. Let N := n, M := n2, 
and consider the first-order differential operator Du := (dkup)i<kip<n along with 
Av := (a?^(A)vfc/3)i<j><n. Then D*v = -{dkvkp)i<(3<n and, consequently, 

(4.3) Lxu := -D*ADu = (dj(a^(X)dkuf3)) /l<a<n 

Thus, all the results from § 3 apply to the operator (4.2). There is, however, one 
important nuance on which we would like to elaborate. Concretely, as a whole, the 
Stokes system does not fit into the general framework considered in § 3 because of the 
divergence-free condition imposed on u and because it involves a pressure function IT 
which plays a different role than (the components of) u. One of the aspects which is 
directly affected by this issue is the way we shall define the conormal derivative for 
the Stokes system. More specifically, various considerations dictate that the definition 
(3.11) should, in the case of the Stokes system, be altered to 

d£(u,TT) := [v^l(X)dkup - vair) 
\ J /l<a<n 

(4.4) = [(W)T + A(V£)]*/-7n/ on dSl, 

where Vu = (djUk)i<j}k<n denotes the Jacobian matrix of the vector-valued function 
u, and T stands for transposition of matrices. 

To illustrate the fact that this definition is natural, consider the issue of Green's 
formulas, as discussed in § 3.1. Then, introducing the bilinear form 

(4.5) Ax{t, C) := ajf(A)^Cf, V ^ n x n matrices, 
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we have the following useful integration by parts formulas: 

(4.6) 
d+ 

(L\U — V7r,w) = ± 
an 

(di{u,ir),w)-
a+ 

A\(Vu, Vw) — 7r(divw), 

and 
(4.7) 

ai 

(L\u - V7r, w) - (L\w - V/9, u) = ± 

an 

(d*(u,7r),w)-(d*(w,Plu} + 

a+ 

7r(divtU) - p(divw), 

which should be compared with (3.15) and (3.18) respectively. Above, it is implicitly 
assumed that the functions involved are reasonably behaved near the boundary and 
at infinity (if the domain of integration is unbounded). Such considerations are going 
to be paid appropriate attention to in each specific application of these integration 
by parts formulas. 

We next consider the issue of the (semi-) positiveness of the the bilinear form (4.5). 
As a preamble, we shall prove the following lemma. 

Lemma 4.1.1. — For £ an n x n matrix, n > 2, and a, 6, c G M, let 

(4.8) Q(0 = QOi6,c(0 := a|£|2 + b|§(£ + £T)|2 + c|Tr(£)|2, 

where TV stands for the usual matrix-trace operator, T denotes transposition, and 
|f| := [lV(^T)]1/2-Then 

(i) Q(£) > 0 f°r every n x n matrix £ 
a > 0, 
a + b > 0, 
a + b + cn > 0, 

(ii) 3 K > 0 with Q(£) > K |£|2 V£ 
a > 0, 
a + b > 0, 
a + b + cn > 0, 

(4.9) (iii) 3K > 0 with <?(£)> «!!(£ + £ )|2 v£ 

a > 0, 
a + 6 > 0, 
a 4- b + cn > 0, 

(iv) 3 * >0withQ(£)>/c|Tr(£)|2 V£ 
a > 0, 
a + 6> 0, 
a + 6 4- cn > 0, 

(v) 3K>0withQ (£)>K| | (£-£T) |2 V£ 
a > 0, 
a 4-6 > 0, 
a + 6 -f cn > 0. 
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Proof. — Assume Q{£) > 0 for every n x n matrix £ and define £ \ £ 2 , £ 3 by 
(4.10) 

E1 jk i 
V2 (djiòfc2-oJ-2dfci), Ç2jk := 1_ 

V2 
(Sji$k2+fij2Ski), and f 3 

jk 
:= l 

v2 Sjk-

Then 

(4.11) Q(^) = a > 0, Q(£2) = a + 6 > 0, and Q(£3) = a + 6 + c n > 0. 

Conversely, assume a > 0, a + b>0 and a -f 6 + cn > 0. Since 

(4.12) № C | 2 < I § « + CT)|2<KI2, 
for every matrix £ we may write 

Q(0 > a\tf + bm + f)\2-(a + b)MTrt\2 

= a(iei2 - i | i rei2) +6 ( i | (e+eT) i2 - ^ i 2 ) 

> (a + &)(|±(£ + £T)|2-i |Tr£|2) 

> o. (4.13) 

Then (ii) follows from (i) once we notice that 

(4.14) Q„,6,c(0 > K|£|2 V£ Qa-K.,b,c{Ç) > 0 Ve 

a > K, 

a + b > k? 

a 4- 6 + cn > K. 

Then (iii) and (iv) follow by similar arguments, and (v) also follows easily after 
noticing that 

(4.15) KI2 = lè(£ + £T)l2 + lè(£-£T)l2. 
This finishes the proof of the lemma. • 

Recall now the bilinear form (4.5). 

Proposition 4.1.2. — For every À G (—1,1] there exists K,\ > 0 such that for every 
n x n-matrix £ 

(4.16) Aa(£,0>«A|£|2 for | A | < 1 and A^Ç) > KX \£ + £T|2. 

Also, for |A| < 1, the Cauchy-Schwarz type inequality 

(4.17) Ax(Z,02 < Ax{t,C)A\{C,0 

holds for every n x n-matrices £, (. Finally, for every A > — 1 there exists K\ > 0 such 
that 

(4.18) AA(C C) > ^A|C|2 f°r every matrix £ with entries of the form Qk = €jVk-

Proof. — Since V4A(£,£) = QI-A,2A,O(£)5 Lemma 4.1.1 readily gives (4.16). The same 
lemma also shows that, for |A| < 1, the bilinear form (4.5) is nonnegative, hence the 
usual proof of the Cauchy-Schwarz inequality gives (4.17). As for (4.18), it suffices to 
notice that, if C = (£jTfo)i<j,fe<n, then AA(CC) = l£|2M2 + A|(£,n)|2. • 
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4.2. Hydrostatic layer potential operators 

We continue to review background material by recalling the definitions and some 
basic properties of the layer potentials for the Stokes system in a Lipschitz domain 
fi C IRn,n > 2. Let uJn-i denote the surface measure of Sn 1, the unit sphere in Mn, 
and let E{x) = (Ejk(x))i<j^k<n be the Kelvin matrix of fundamental solutions for 
the Stokes system, where 

(4.19) Ejk(x) := - 1 
2Wn - 1 

1 
n - 2 

Sjk 
\x\n~2 

+ X j xk 
\x\n 

, x 6 f \ {0}, n > 3, 

and corresponding to n = 2, 

(4.20) Ejk(x) := -
1 

47T 
(sjk log \x\ 4 XjXk 

\x\* 
; x = E R2 \ {0}. 

Let us also introduce a pressure vector q(x) given by 

(4.21) q{x) = (qjix)) 1<j<n := - 1 
Wn - 1 

X 
\x\n 

xeRn\ {0}. 

Then we have 

(4.22) dkEjk(x) = 0 for 1 < j < n and djEjk(x) = 0 for 1 < k < n, 

(4.23) ABifc(i) = AEkj(x) = dkqj(x) = djqk(x) for 1 < j , fe < n. 

Now, fix — 1 < A < 1, and define the single and double layer potential operators <̂f 
and ®A by 

(4.24) 0f(x) := j E(x-y)f(y)dv(y), x i dfi, 

an 

(4.25) g>xf{x) := J[d*{y){E,q}(y-x)]Tf(y)dcT(y), x £ dtt, 

an 
where d^y^{E, q} is defined to be the matrix obtained by applying dYv(y) to each pair 
consisting of the j-th column in E and the j-th component of q. More concretely, 

(4.26) d(ff%(y){E,q}(y-x))jk := va(y)daEkj {y-x) + \isa(y)dkEaj(y - x)-qj(y-x)vk(y). 

Let us also define corresponding potentials for the pressure by 

(4.27) Qf(x) := J (q(x - y),f(y)) da(y) x $ dfi, 
an 

(4.28) ?J(x) ~ (1 + A) f VjiyWdjfiiy - x), f(y)) da(y), x $ M. 

dQ 
Then 

(4.29) A ^ / - V S / = 0 and div<^/=0 in Rn\dfi, 
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and for each AGM, 

(4.30) A 2 > A / - V 0 A / = O and div 0A/ = 0 in Rn \ 90. 

Let us also consider the fundamental solution for the Laplacian, 

(4.31) EA(x) := – l 
(n-2)u)n-i\x\n-* 

if n > 3, 
l 

2TT log \x\ if n = 2, 

and the corresponding single and double harmonic layer potentials 

(4.32) <JAf(x) := J EA(x - y)f(y) Aj(y), * g 90, 

an 

(4.33) 2>A/(*) := y dHy)EA{x - y)f{y) da(y), x £ 90. 
an 

Then 

(4.34) q = -VEA in Rn \ {0}, 

and so 

(4.35) 
n 

Qf = - E W A / * ) = - < W A / , 
k=l 

(4.36) 0 A / = (1 + A)div 2>A/. 

Let us now record a basic result from the theory of singular integral operators of 
Calderon-Zygmund type on Lipschitz domains. To state it, recall that ¿7 denotes the 
Fourier transform in Rn. 

Proposition 4.2.1. — There exists a positive integer N = N(n) with the following 
significance. Let Q be as in (2.1), fix some function 
(4.37) 

k G CN(Rn \ {0}) with k(-x) = -k(x) and k(Xx) = X~^n~^k(x) VA > 0, 

and define the singular integral operator 

(4.38) STf(x):= i k(x-y)f(y) da(y), x € Rn \ dSl. 
Jdii 

Then for each p G ( n-l 
n 

, oo) there exists a finite constant C = C(p, n, dfl) > 0 such 
that 

(4.39) l|M(<7/)||iP(an) < C\\k\Sn-x\\cs||/||№(an). 
Furthermore, for each p G (l,oo), / G Lp(dCL), the limit 

(4.40) Tf(x) := p.v. / k(x - y)f(y) da{y) := lim 
Jan ^+ 

J k(x- y)f{y) da(y) 
у€дП 

\x-y\>£ 
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exists for a.e. x G 90, and the jump-formula 

(4.41) J f 
dO 

(x) := lim 
z—• X 

zer±(*) 

STf(z) = ± 1 
2V-1 

&(k)(V(x))f{x) + Tf(x) 

is valid at a.e. x G 90. 

Let us now specialize (4.41) to the case of hydrostatic layer potentials. 

Proposition 4.2.2. — Let 0 C Rn, n > 2, be a graph Lipschitz domain and assume 
that 1 < p < co. Then for each A € R, / G Lp(90), and a.e. x G 90, 

(4.42) Qf (x) = ±§<i/(*),/(aO> + p.v. / (ftx - y), /(y)) Mv), 
dn± Jan 

(4.43) 2>A/|aü±(aO = ( ± | / + Хл)/(х), 

where J denotes the identity operator and 

(4.44) Kxf(x) := p.v. J[^(y){E, q}(y - x))T f(y) da{y), x € 90. 
an 

Furthermore, if K* is the formal adjoint of K\, then 

(4.45) diyv (sf,Qf) 
dN+ 

(x)= (?±I + Ki)f(x). 

Finally, 

(4.46) Vtan^/| 
an+ 

= Vtan^/ 
an-

in Lp(dQ), 

hence 
(4.47) Sf := M 

an+ 
= sf av-

in i f (an). 

In fact, analogous formulas hold in the case when 0 C Rn is a bounded Lipschitz 
domain. 

Proof. — Recall that if m is an integer and Pj is a harmonic, homogeneous polynomial 
of degree j > 0 in Rn then, as is well-known (cf., e.g., p. 73 in [82]), 

(4.48) m o w = 
Pj (x) 

|x| j + n - m 
where, with T denoting the standard Gamma function, 

(4.49) Qi(x) := (-1)^,™ 
PAx) 
\x\i+m and 7jiJn :=(-!> li/a*-*-™ r ( | + f ) 

r(§ + f - f ) 
provided either 0 < m < n, or m G {0,n} and j > 1. Based on this and (4.41), a 
straightforward calculation gives the following trace formulas 

(4.50) d ifapg) 
\dn± 

(x) = +\pj{x){öaß - va(x)vß(x))g(x) + djSaßg(x) 
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valid at a.e. x G 90, for every g G Lp(90), 1 < p < oo, where for each a,/3,j G 
{1 , . . . , n}, we have used the abbreviations 

(4.51) фао д{х) := / Eaß(x - у)д(у) da(y), xeRn\ ÔÎÎ, 
Jan 

(4.52) djSa ßg{x):=v.v. I 
Jan 

(djEaß)(x - y)g(y) da (y), x e díl. 

In particular, for j G {1 , . . . , n}, we have 

(4.53) drff (х) = Т&(х)f tan (х) + р.у. [ (djE){x - y)f(y)da(y), 
дп± Jan 

at almost every x G dQ, where /tan •= / — v(v,f) is the tangential component of / . 
In a similar fashion, 

(4.54) dj9tAg\ an+ (x) = 1/2T^j(x) g(x) + p.y. [(djEA)(x - y)g(y)d*(y), 
dQ 

for a.e. x G dQ. Now, all the trace formulas in the statement of the proposition are 
direct corollaries of (4.53) and (4.54). • 

With the help of Proposition 4.2.1, we can now establish the following. 

Proposition 4.2.3. — Let Q, C Rn, n > 2, be a graph Lipschitz domain. Then for 
n-l 
n < p < oo, there exists C = C(du,p) such that for any / = (/i , . . . , /n) in 

НР(дП), 
IIM(V^/)I | lp(^) + iiM(e/)iiLP(ôn) 

n 
(4.55) + £ l |M(V^A A)llLP(an) < C\\f\\Hr(oa). 

fc=i 
Moreover, for A G R and 1 < p < oo, there exists C = C(dfl,p) such that for any 

/ G Lp (dO). 
(4.56) ||M(0A/)||iP(afi) < C\\f\\LP(dQ). 

Similar results are also valid when Q C Rn is a bounded Lipschitz domain, with 
Hp(dQ) replaced by hp(dft), its local version. 

This result leads to the following corollary. 

Corollary 4.2.4. — Let fi C Rn, n > 2, be a bounded Lipschitz domain, and fix A G R. 
Then the operators 

(4.57) Kx, K*x :Lp(dQ) —• Lp(dQ), 

(4.58) S : Lp(dn) —» L?(0fi), 

are well-defined, linear, and bounded whenever 1 < p < oo. A similar result holds 
when ft is a graph Lipschitz domain, except in this case the Sobolev space L\{dft) is 
replaced by its homogeneous version L\(dft). 
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We now turn to the action of layer potential operators on Sobolev spaces of neg
ative smoothness. If ft C Mn is a bounded Lipschitz domain, p G (l,co), and / = 
(/lj.-.j/n) is a vector whose components are functional in LtxidQ) = \ L{'(dSl)) , 
1/p + l/p' = 1, we set 

(4.59) jf{x) := ( 
n 

k=l 
Ejk (X — .) 

an 
, Fk > ) 

l<j<n' 
x £ RN \ 90, 

where in this context, (•, •) is the duality bracket between Lp_1(dQ) and [L\ (90)) . It 
is then clear that this operator is compatible with (4.24), when the latter is considered 
acting on Lp(dQ) L^1(90). This justifies our retaining the same piece of notation 
for the single layer in (4.59). Similar considerations apply to the pressure potential 

(4.60) 
n 

и/От) := E <qj (x -.-)|an , / j ) , a: € R» \ Ш. 
j = 1 

Proposition 4.2.5. — Let Q be a bounded Lipschitz domain in Rn. Then the following 
hold for each p G (1, oo): 

(i) For each / G L^.1(90), the pair (<^/, Qf) is a solution of the Stokes system in 
W1 \ dft (i.e. the formulas in (4.29) continue to hold). 

(ii) There exists C = C(Q,,p) > 0 such that 

(4.61) \\M(^f)\\LP(dn) < C\\f\\L*_iieay 

(iii) The boundary single layer operator 

(4.62) Sf := 0f 
dN+ 

= sf 
an 

is well-defined as a function in Lp{dQ) for each / G L^.1(90). Moreover, 

(4.63) S : Lp-1l^dSl) —+ Lf(dSl) 

is a bounded operator, which is compatible with (4.58). 
(iv) If 1/p + 1/p' = 1, then the adjoint of (4.63) is 

(4.64) S : Lp' (dSl) —- Lp'1 (<9Q). 

Proo/. — The claim in (i) is clear from (4.29) and (2.27). Next, if / G Z ^ d f i ) , 
Corollary 2.1.2 gives that, for every k = l ,2 , . . . ,n , there exist functions g%, #£s, 
1 < r, s < n, such that 

(4.65) fk=g% + 
n 

r,s=l 
drrs9ls, \\9khHdn) + 

n 

r,s=l 
\\9k8\\LP(an) < 2ll/fc||LP1(an)̂  
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Based on this, the j-th component of <^f can be expressed as 
n p 

( ¿ / 0 ) ) . = E / Ejk(x-y)g°k(y)da(y) 
3 fc = i Jsn 

n 71 * 
(4.66) - E E / ^ dTra [Ejk (x- vM'iv) M d0(v), 

k=l r,s=l JdQ 
for each xGMn\ dtt. This and Calderon-Zygmund theory then give 

n n 
(4.6pf(^/)||Lp(an) < C7E(llfl2llLP(en)+ E hk'Wwen)) < C||/l|Lp_i(dn), 

fe=l r,s = l 
justifying (4.61). 

Formula (4.66) and Calderon-Zygmund theory also give that the pointwise nontan-
gential traces in (4.62) exist. In fact, since 

(4.68) - isr(x)(dsEjk)(v(x)) + vs(x)(drEjk)(v{x)) = 0, 

it follows from (4.66) that there are no jump-terms when taking the boundary traces 
of 9J7 on dti±. In particular, yff\dn+ = 9^/|an_ and, in addition, the j-th component 
of 5 / is 

(Sf (x))j = E / Ejk(x-y)g0k(y)d<T(y) 
fc=i •'en 

(4.69) -
n 

j = 1 

n 

r,s=l 
p.v. i 

Jan 

dTra[Ejk(x-y)]gls(y)da(y), 

for a.e. x G dft. This also shows that the operator (4.63) is well-defined, bounded, 
and compatible with (4.58). Finally, the claim in (iv) is easily justified based on the 
fact that S is self-adjoint as an operator on L2(dft) plus a density argument. • 

In the study of the action of the hydrostatic layer potentials on Hardy-type spaces, 
the following standard result is going to be useful. 

Lemma 4.2.6. — Let ft be a graph Lipschitz domain in En, n > 2, and consider a 
bounded, linear operator 

(4.70) T : L2(dft) —> L2(dft) 

such that there exists a locally bounded function k : {(x, y) : x, y G 90, x ^ y} —> IR 
with the following properties. 

(i) For each f e L2 (90), 

(4.71) Tf(x) = f 
Jan 

4x>y)f(y) da(y), x e diì \ supp/. 
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(ii) There exist Co, Ci > 0 such that 

(4.72) \k(x, y)\<C0\x- y\~(n"1} if rr,y G an, x ^ y, 

(4.73) |fc(x,2/)-fc(x,2/0)| <C0 li/-yol 
V - ?/o|n' if |J/-J/O | <Ci |x -2 /0 | . 

Then there exists e > 0 small and K > 0 large such that if a is as in (2.30) then 

(4.74) m := Ta ==> K~xm satisfies the last two conditions in (2.34). 

If, in addition to (i) and (ii) above, the operator T also satisfies T*(l) = 0, in the 
sense that 

(4.75) / G L2(dft) with compact support, /an f da = 0 = » /an Tfda = Q, 

then m is a fixed multiple of a (p, e)-molecule. Hence, in this latter case, T extends 
as a bounded operator 

(4.76) T : Hpt(dQ) —. Hpat(dQ) 

for every n-1 < p < 1. 

We can now establish the boundedness of the operator Kx on atomic Hardy spaces. 

Proposition 4.2.7. — Let ft C Rn, n > 2, be a graph Lipschitz domain and n-1 < 
p < 1. Then 

(4.77) K*x : fl*(«l) — Hp at (dN+ 

is a bounded operator for each A G R. Moreover, a similar result holds when ft C Rn 
is a bounded Lipschitz domain, provided H^Jdft) is replaced by its local version, 
hlt(dit). 

Proof. — This is a consequence of Lemma 4.2.6 once we check (4.75). To this end, 
assume that / G L2(dft) has compact support and satisfies Jan f da = 0. Next, set 
u := <Jf and ir := Qf in fi, so that from (4.45), 

(4.78) K*xf = d*W, Qf) 
da 

+ 1/2 f 

Thus, we need to establish that 

(4.79) / #(Й,1г)Ат = 0. 
Jan 

Note that the vanishing moment condition for / ensures that the above integral is 
absolutely convergent and that 

(4.80) |Vu(x)| + \TT(X)\ = 0{\x\~n) at infinity. 
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To prove (4.79), fix a function ip e C£°(£(0,2)) with tp = 1 on J3(0,1), and for each 
R > 0 set IPR(X) := ip(x/R). Then for each constant c G l n , using the integration by-
parts formula (4.6) with w := I/JRC gives 

l < / 9Q 
(й, 7г) da, с) = lim 

R-+00 / dO 
(д£(щ тг),^яс) da 

= lim / \ A\(Vu, V(ipRc)) - 7rdiv(^Rc) \ dx\ 

= lim / (|Vw(a?)| + \n(x)\)\VipR(x)\dx 
R->°° Jxeü: R<\x\<2R 4 J 

< С lim Ä-1 = 0, 
R-+OC 

(4.81) 

by (4.80) and the fact that |V^R(:E)| < C/R. Since c was arbitrary, this gives (4.79), 
thus finishing the proof of the proposition. • 

Next, we wish to discuss the action of these various operators on Sobolev-Hardy 
spaces. To set the stage, we first note that, from (4.25)-(4.26), for each A G R, j G 
{1 , . . . , n}, and / G Lp{dti), 1< p < oo, 

(S)A/) (X) = [ (va(y)(daEjk)(y-x) + \va(y)(djEak)(y-X^ 
V Y 3 JdQK 

(4.82) -Mv)Qk(y - x))fk(y) da(y)7 xeRn\ dSl. 

Then for each / e Hp(90), n-l 
n < p < oo, r, j G {1, . . . , n}, and x G l n \ 90, we 

may write 
(4.83) 
дг(Фх/),(х) = -J 

an 
\va(y)(drdaEjk)(y -x) + \va(v)(drdjEak)(y - x) 

- Vj(v)(.drQk)(y - x)j fk(y) dcr(y) 

= - j [drar(y){daEjk){y - x) + XdTar{y){djEak)(y -x)- dTjr{y)qk(y - x)] fk(y) da(y) 
dû 

- j Ыу)Щк(у - x) + Xur(y)(dadjEak)(y - x) - »г{уЩяк){у - x)] fk(y) da{y). 
an 

Prom (4.22)-(4.23), it follows that the integrand in the last line of (4.83) vanishes. 
By further integrating by parts (cf. (2.9)) the tangential derivatives in (4.83) we arrive 
at the identity 

dr(v>xf) ,{x) = j [(daEjk)(y - x)(dTarfk)(y) + A(ô,£?afc)(y - x)(dTarfk)(y) 

an 

-Qk{y-x){dTjrfk)(y) da(y), 
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or equivalently, 

(4.84) drWxf), = -da^jk(dTarfk) - \drfak{dT„fk) - dK9SA(dTjrfk) in RN \ an. 

The same type of reasoning applies to (4.28). Specifically, we have for each x G 
En \ 90, 

&xf{x) = (1 + \) vr( y)J My№rqk)(y-x)fk(y)dv(y) 
an 

= - (1 + A) J Vr(y) (drdkEA) (y - x) fk(y)da(y) 
an 

= - (1 + A) J(dTrkdrEA)(y - x)fk(y) da(y) 
an 

= (1 + A) y (drEA)(y - x)(dTrkfk)(y) da(y) 
an 

(4.85) = (l + A)9r^A(9Trfc/fc)(x), 

whenever / G Hp (90), n-1 < p < oo. With these identities in mind, we can prove 
the following results. 

Proposition 4.2.8. — Fix A G E. Then for each graph Lipschitz domain 0 C En, 
n > 2, and I ^ < p < oo, there exists a finite constant C = C(90,p) > 0 such that 

(4.86) ||M(V0A/)||LP(0n) + \\M(Pxf)\\LHda) < C\\f\\Hp(ga), V/ € flf(an). 
Furthermore, an analogous estimate holds in the case when 0 C En is a bounded 
Lipschitz domain, whenever / G ̂ (90 ) . 

Proof. — This is a direct consequence of Proposition 4.2.1, (4.84), (4.85) and 
Lemma 2.2.1. • 

Proposition 4.2.9. — Let 0 c En, n > 2, be a graph Lipschitz domain. Then for every 
AGE and / G Li(90), 1 < p < 00, there holds 

(4.87) 9,A(0A/, Pxj) = 9^(2)A/, ff>xf) in 2/(90). 
an.). an_ 

A similar identity is also valid when 0 C En is a bounded Lipschitz domain, 
whenever / G 2^(90). 

Proof. — This follows from (4.84), (4.85), (4.50), and (4.54). • 

Proposition 4.2.10. — Let 0 c En, n > 2, be a graph Lipschitz domain. Then for 
each A G E, 

(4.88) Kx : H{(90) —• H[(90) 
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is a well-defined, bounded operator for every p G C22 ,̂ oo). Moreover, a similar result 
holds in the case when 0 C Mn is a bounded Lipschitz domain, provided Hp(dQ) is 
replaced by h\ (90). 

Proof. — Assume first that I ^ < p < 1. In this case, fix pQ G (1, oo), e > 0 suffi
ciently small, as well as r, s G {1 , . . . , n} arbitrary. Also, let / be a regular (p,pG)-atom. 
By (2.47) and Lemma 4.2.6, it suffices to show that dTr3K\f is a (p, £)-molecule. Since 
this issue is dilation invariant, there is no loss of generality in assuming that 0 G 90, 

(4.89) supp/ C Si(0) and ||Vtan/||Lpo(^) < 1. 

Going further, we note that for each j G {1, . . . , n}, 

dTrs{KxMx) = dT„(lf+Kxf)j{x) - 1/2\dTr.fj(x) 

(4.90) = vr{d.9xfij (x) - v,{dr9xf)j\ (x) -1/2 \dTrMx), 
oil Wil 

at almost every x G 90. Now, if djSA stands for the principal-value integral operator 
on 90 with kernel (djEA)(x — y), then at almost every point on 90, we have from 
(4.84) and (4.50) 

da{®\f)j _ = l"a(Sjk ~ VjVk)dTQSfk - daSjk(dTasfk) 
oil 

+A\vj(8ak - vaVk)dTasfk ~ XdjSak(dTotsfk) 
(4.91) -\vkdTBifk + dkSA(dTsjfk), 

with a similar formula for 9r(0A/) . Note that 
dsi 

Va($jk ~ VjVk)9Tasfk = VA(SJK - ;l/k)(l/a(Vtan/fc)s ~ ^(Vtan/fc)a) 
(4.92) = (Vtan/j)s - ^ f̂c(Vtan/fc)5, 

and similarly, 

(4.93) Vj(5ak-VaVk)dTasfk = -^5(Vtan/fc)fc, 

(4.94) VkdTsjfk = f̂c (̂Vtan/fc)i - ^j(Vtan/fcV 

Thus, the jump-terms in Vrds(@\f)j\ -v8dr(@\f)j\ amount to \ Ji + f J2~\Jz 
I d£l I dCl 

where 
Jl := I/r(Vtan/j)* _ ^(Vtan/j)r - r̂̂ f̂c(Vtan/fc)S + ^^^(Vtan/fc)r 

(4.95) = dTra/j - v3vkdTrJk, 

(4.96) J2 := -^^^r(Vtan/fc)fc + ^^(Vtan/fc)* = 0, 

and 

J3 := I/r^^(Vtan/fc)j ~ ^r^^(Vtan/fc)s - VsVkVriVtanfk)j + VsVkVj (Vtan/fc)r 
(4.97)= -VjVkdrrJk. 
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Thus, ! + § J ^ - = \dTrsfj, which cancels the last term in (4.90). In summary, 
all the jump-terms cancel out, and we arrive at the identity 

dTrs(Kxf)j = vsdc*Sjk(dToirfk) + \vsdjSak(dTarfk) - vsdkSA(dTrjfk) 
(4.98) -vrdaSjk(dTo(Sfk) - \vrdjSak(dTasfk) + vrdkSA(drsjfk), 

valid at almost every boundary point. Since dTa(3fk is a (p,pG)-atom supported in 
Si(0), Lemma 4.2.6 ensures that, up to a fixed multiple, each term in the right hand-
side of (4.98) satisfies the last two conditions in (2.34). There remains to show that 
m := dTrsK\f integrates to zero on dft. 

To justify this, fix a function i\) G Cg°(B(0,2)) such that v = 1 on 5(0,1), and 
for each k G N set ifjk(x) := ip(2~kx). Note that dTsripk is supported in the annulus 
Ak := S2k+i\S2k and satisfies \\dTsr<ipk\\Loo < C2~k. Also, \Kxf(x)\ < C2~k(<n-^ for 
x G Ak. We can then use (2.16) in order to estimate 

(4.99) / i/jk(x)dTrsKxf(x)dv(x) = / dTMx)Kxf(x)da(x)\ <C2~k. 
Jan Jan 1 

Thus, 

(4.100) / dTrsKxf(x)da(x)= lim / ^ ( i ^ r i ^ / ( i ) d i 7 ( i ) = 0) 
Jan k-*°° Jan 

as wanted. This finishes the proof of the proposition in the case when n-l n <p < 1. 
Finally, when 1 < p < oo, the desired conclusion follows from (4.90) and Proposi
tion 4.2.8. • 

4.3. Traces of hydrostatic layer potentials in Hardy spaces 
Consider the following general trace result. 

Theorem 4.3.1. — Let ft C Rn, n > 2, be the domain lying above the graph of a 
Lipschitz function and assume that n-l n < p < oo, A G R. Then there exists a finite 
constant C = C(dft,p, A) > 0 with the following property. Whenever w, n satisfy 

(4.101) 
Au = V7r, div u = 0 in ft, 
M(Vfi), M(TT) G LP(«n), 

then 

(4.102) и €Щ(дП), di(Û,n) € Нр(дП), 
dQ 

where the traces are taken in the sense described in § 11.6. Furthermore, 

(4.103) \\u\9n\\Hf(dn) + 11^(5,*)||ffp(8n) < C\\M(Vu)\\LP{9€1) + C\\M(n)\\LP{9n). 
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Finally, similar results are valid in the case when CI is a bounded Lipschitz domain 
in Mn. In this case, (4.101) imply 

(4.104) 
й 

дп 
еЛ?(0П), d£(û,ir) € h*>(dïl), and 

Nanllfcf(en) + \\д£(й,тг)\\ьг{дп) < C||M(Vu)||LP(9n) + C||M(7r)||Lp(ön). 

Proof. — The well-posedness of the Dirichlet problem for the Stokes system in Lip
schitz domains with data in L2(dft), established in [32], and arguments which are 
well-understood by now (cf.the proof of Proposition 3.1 in [66] for details in similar 
circumstances) imply the following Fatou-type result: 

(4.105) (5,7r) as in (4.101) and M(u) < oo a.e. on 90 => u exists a.e. on 90. 
an 

Moreover, since (4.101) imply that An = div Vn = div Au — A(divtf) = 0, we can 
utilize the following result established by B. Dahlberg in [16], 

(4.106) An = 0 in O and M(n) < oo a.e. on 90 n exists a.e. on 90. 
an 

Then the theorem follows from (4.105) and (4.106) whenever 1 < p < oo. There 
remains to consider the case when n-1 < p < 1. In this scenario, we introduce the 
vector fields 

(4.107) FJk := (dkur)ej - (djUr)ek in O, j , fc, r <E {1 , . . . , n}, 

where {ê }i<^<n is the standard orthonormal basis in Rn. Note that, for each j , fc,r, 

M(FJk) e Lp(90), FJk has biharmonic components, 
(4.108) div Ffk = djdkur - dkdjur = 0 in O, 

(FJk, v) = Vjdkur - ukdjUr = dTjkur on 90. 

Then (2.43) and Corollary 11.6.3 give that 
n 

(4.109) \\u\m\\H?(dQ) ~ £ \\drjku\\Hp(dn) < C\\M(Vu)\\LP{dQ). 
j,k=i 

This proves the first membership in (4.102) and part of the estimate (4.103). 
To bring in the conormal derivative, define 

(4.110) Fj := VUJ + XdjU-nej, j e { l , . . . , n} . 

Then 

M(Fj) e Lp(90), Fj has biharmonic components, 
(4.111) div Fj = (Lxu)j - djTr = 0 in O, 

(Fj,v) = (d№,7r)). on 90. 

Then Corollary 11.6.3 gives 9*(£,TT) e #p(90) and 

(4.112) ||#(a,ir)||HP(«!) < C\\M{Vu)\\LPm) + C\\M(n)\\ Lp (dn). 
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The argument for the case when 0 is a bounded Lipschitz domain is similar, and 
this finishes the proof of the theorem. • 

We can now state the following result regarding the traces of hydrostatic layer 
potentials. 

Corollary 4.3.2. — Let Obea graph Lipschitz domain in Rn, and assume that n-l 
n < 

p < oo, A e R. Then 

(4.113) dìWf, Qfì яо = ( q : | j + ^ ) / in нр(дП), 4 f e Hp(dQ), 

(4.114) 2>А/ = 
dfl± 

= ( ± ì j + * A ) / in Щ(дП), A // е Щ(дП), 

(4.115) dT¡h<¿f\ 
an+ 

= dTjk Sf rn Нр(дП), A /f e Hp(dfl), 
an-

for every j , к G { 1 , . . . , n}. In particular, 

(4.116) SF 
aN 

= SF AN-
in Щ(дП). 

Moreover, 

(4.117) # ( 2 > A / > A / } dN+ 
= #(2>A/>A/~) ЯП 

Oil-
in Hp(dsi), у / е я [ ( Ш ) . 

Finally, analogous results hold in the case when O C Rn is a bounded Lipschitz 
domain, provided the Hardy spaces i7p(9Q) and Hp (dd) are replaced by their local 
versions. 

Proof. — Consider formula (4.113). This is going to be a consequence of the fact that 
Kx is bounded on Hp(dQ) the observation that, by Theorem 4.3.1, the assignments 

(4.118) H"(dft) B f~ %Wf, Qf) 
dN+ 

e Hp(dn) 

are bounded, plus the fact that (4.113) holds when / is an atom for Hp(d£}), thanks 
to Proposition 4.2.2. All the other identities can be proved in a similar manner. • 

4.4. Integral representation formulas 

We begin this section with the following useful representation formulas for solutions 
of the Stokes system. 

Proposition 4.4.1 (Green's Representation Formulas). — Let ft Ç Rn, n > 2, be either 
a bounded Lipschitz domain, or a graph Lipschitz domain. For 1 < p < oo fixed, 
assume that the functions (ü, n) satisfy 

(4.119) A £ - V T T = 0 in ft, div£ = 0 in ft, and M(yiï),M(n) G Lp(dft). 
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Then u and TT also satisfy the following integral representation formulas (modulo 
constants): 

(4.120) u(x) = ®A(S |dN )(x) - ^(^(ff,7r))(a?), xGll , 

(4.121) TT(X) = ^ A ( « | D N ) (x) - e(^(tr,7r))(x), x e f i . 

Proof. — The identity (4.120) can be established, at least at the formal level, by 
specializing Green's formula (4.7) to the case when w := (Ekj(x — -))i<fc<n> P •= 
Qj(x ~ *)> wnere x G O is fixed and j G {1, . . . ,n} is arbitrary. If O is a bounded 
Lipschitz domain, (4.120) can be justified by writing (4.120) for a sequence of sub-
domains Qj approximating the original Q, in the fashion described in Theorem 1.12 
on p. 581 in [90], and then letting j —> oo. Here, (4.105) and (4.106) are also used. 

On the other hand, we also wish to establish (4.120) in the case when O is the 
upper-graph of a Lipschitz function ip : Rn-1 —» R. In this case, we will show that 

(4.122) dju(x) = 9jDx(u\dn) (x) - dj^(di(u,n)Yx), x e O, 1 < j < n, 

which is enough to prove (4.120) modulo constants. 
Fix x G 1], 1 < j < n, and for each r, s > 0, consider the bounded Lipschitz domain 

(4.123) Dr,s := {y = (y;, yn) G Rn_1 x R : \y'\ < r, 0 < yn - <p(yf) < s}. 

Assume r and 5 are large enough so that x G Dr,s and dist(x, dDr,s) = dist(x, dQ). 
In particular, (4.122) holds for the domain Dr,s. Dividing the boundary of Drs into 
its bottom, top, and vertical portions, we can write 

(4.124) dDr,s = Br,s U Tr,s U Vrts, 

where 

Brts := dDTts n dSl, 

Tr,s ••= {y = (y', Vu) G Kn_1 X R : W\ <r, yn = ip(x') + s}, 
(4.125) Vr,. := {y = (y', »„) G R"-1 x E : (y) = r, 0 < yn - <p(y') < s}. 

Consider the version of (4.122) written for the domain -Dr>s, and let us break the 
right hand side into three separate terms corresponding to integrals over the bottom, 
top, and vertical portions of 9Z)r,s? In particular, 

(4.126) dju(x) = IrìS + IIriS + III, 
r,S 5 

where the terms Jrj8,IJr}5, and IIIr,s correspond to integrals over Br^s,Trs, and Vr)S 
respectively. Next, we will monitor what happens to these terms as the parameters 
r, 5 approach infinity (in a suitable fashion). 

We first claim that 

(4.127) dj <j(fxsr(o))(x) —+ dj <jf(x) as r - oo for any / G If(dSl),p > 1. 
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Since x G Q. is fixed, for y G dQ, 

(4.128) \VE(x-y)\ < C 
(i + M)"-1 

G Lq(dCl) for every 1 < q < oo, 

and so (4.127) follows by the Lebesgue Dominated Convergence Theorem. Note that 
(4.127) also holds if we replace <̂  with <̂fA. Now according to (4.84), we can rewrite 
derivatives on 0\f as a sum of derivatives on <fi and <̂A applied to tangential deriva
tives of / . Then since M(Vu),M(?r) G Lp(dQ), it follows from (4.127) that the term 
Ir^s converges to the right side of (4.122) as r —> oo. By rewriting derivatives on the 
double layer as combinations of derivatives on single layers as before, we can also show 
that 

(4.129) |//r,s| < J (\VE(x-y)\ + \VEA(x-y)\)(\Vu(y)\ + \n(y)\)day, 
Tr S 

(4.130) \IIIr,a\ < j (\VE(x - y)\ + \VEA(x - í,)|)(|Vtí(i/)| + \n{y)\) day. 
vr,s 

Estimating as in (4.128), for q > 1, we can write 

J \VE(x-z)\qdaz<Cj 

Tr S Tr S 

1 
(1 + \z\)(n-Vo 

daz < С 
I 

dDrìSndn 

1 
(l + lsz + senl)^-1)* 

day 

< с S 
1 

(S + \у'\)(п-1)я 
dy' < Cs("-1)(1-9) 

/ 
Kn-1 

1 
(1 -h H)(n~1)<? 

dw 

(4.131) < Cs(n-1)(1-?). 
In particular, repeating the same argument also for E&, 

(4.132) \\VE (x – •) + VEA(x ~ -)II^(T.,S) < Cs(n – 1) 1/q -1), for any 1< q < oo, 
where the L°° estimate follows from (4.128). Then using (4.129), we can estimate 
Hr,s by 
(4.133) 

|//r,s|<Cs-("-1)p(||M(Vu)||Lp(an) + | |MW|UP(afi))^0 as s ^ o o . 

Let us also note that if z € dQ is far away from x € O, then for any w € T(z), 
|x — iu| ~ \x — z\, and so in fact 

(4.134) M(VE(x - •))(«) < C 
(i + N)"-1 

Then for r large, 

J \M(VE (x--))(z)\q daz < C J 
B2r,s\Br,s &2r,s\Br,s 

(4.135) < Cr{n-1)(l-q\ 

1 
(l + \z\)(n-1>i 

daz 
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and so after repeating the argument for EA it follows that 
(4.136) 
||M(VE(x-))+M(V£7A(a:-))IU«(BAR,.\BR,.) < Cr(n-1)(i-1}, for any 1< q < oo. 

Then using (4.130), we can show that for R large, 
(4.137) 

1 
R 

2R 

R 
\IIIr,s\dr < Cs 

R1 + (n-1) 1/p 
(||M(Vu)||Lp(an) + \\M(w)\\LP(9Cl)) —> 0 as R oo oo. 

Finally, (4.122) can be established by averaging (4.126) over r e [R,2R] and then 
taking the limit as R and s approach infinity. 

To establish (4.121), let {ê }i<^<n be the standard orthonormal basis in Rn and 
for x e ft, write 

-Q(dyv, *))(*)= / 
4 ' Jan 

((УЯд)(х - у), дЦй,п){х)) da{y) 

=di и 
dQ 

(^ЕА(х-у)е£, d£(u,ir)(x)}da(y) 

= de \J Ax ((VtZ)(î,), Vy(EA(x - y)ee)) dy\ - de [jf n(y)(deEA)(x - y) dy 

= -де J ((д^е)(уЩЕА){х - у) + Х(деик)(у)(дкЕА)(х - у)) dy +ж(х) 

= — lim 
£-•0 б 

yen 
\x-y\>£ 

^щ)(у)(де^ЕА)(х -у) + Х(деик)(у)(дедкЕА){х - у)) dy 

+ 7r(x) 
(4.138) 

= - ( l + A)lim J (djuk)(y)(djdkEA) (x - y) dy + 7r{x). 
yen 

|X-Y|>£ 
Above, (4.27) and (4.34) have been used in the first equality, (4.6) with w := 

EA(x — -)ee in the third, AE& = S and the identity 

Ax(Vu,Vy(EA(x - -)e/) = (SjkSap + XSj(35kc^(dju<*)(dkEA)(x -.)dBl 

(4.139) = -(djU^djE^ix - •) - X(d£uk)(dkEA)(x - •) 

in the fourth and, in the fifth, a well-know differentiation formula for singular integrals 
plus the fact that 

(4.140) / 
JSn-l 

{d3dkEA){uj) <kj = 0, Vi, k e {1,. . . , n}. 
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On the other hand, since ü is divergence-free, we have dTjkUk = —Vk(djUk)\dn, so 
(4.85) gives 

&Jû\an )(x) = (i + x)d^A(dTjkuk)(x) = -(i + x)dj9sAU(djUk)\ )(*) 

= -(1 + A)d, [ / EA(x - y)My)(djUk)(y) d<r(y) 

= (1 + X)dj [JjßkEA)(x - y)(djUk)(y) dy 

(4.141) = (1 + A)lim J {д0дкЕА)(х-у){д0ик)(у)ау, 
yen 

\x-y\>£ 
where we have integrated by parts and used diviï = 0 in the third equality and 
differentiated under the integral sign in the last step (here (4.140) was also used). Now, 
(4.121) follows from (4.138) and (4.141). Once this is established for nice domains, we 
can use the same approximation arguments from the proof of (4.120) to prove (4.121) 
for bounded Lipschitz domains and then also for graph Lipschitz domains. • 

The previous representation formulas allow us to prove the following useful identi
ties. 

Proposition 4.4.2. — Let O c Mn, n > 2, be a either a bounded Lipschitz domain or 
the upper graph of a Lipschitz function. Then for any n-l 

n < p < OO, 

(4.142) S(a£(2>A/, &xf)) = (|/ + KX)(-\I + tfA)/, V/ G /if(aft). 

Proof. — This follows by applying Green's formula (4.120) to the functions u = ^D\f 
and 7r = @xf and then taking boundary traces. • 

Proposition 4.4.3. — Let ft± C Rn, n > 2, be the domains lying above and below the 
graph of a Lipschitz function. Assume that the pairs (u±, n±) solve the Stokes system 
in ft±, respectively, and that M(Vu±), M(7r±) G Lp(dil) for some p G [l,oo). Then 
the following boundary identities hold: 

(4.143) fcU + Kx) (u±\dn) = 5(^(a±,7r±)) in Hp1 (aft), 

and 

(4.144) (±y + Kl)(di(u±,ir±)) = d^(0(u±\dci),^(u±\da)) in H*>(dCl). 

Proof — Since V- = —V, applying (4.120) and (4.121) to (U±,TT±) gives 

(4.145) й±(х) = ±Ф\(й± I 
dn 

)(ír)T¿(#(ff±,ír±))(aO, xefl±; 

(4.146) тг±(х) = ±0>\(й± 
dn 

)(х)те(о^(Й±,7г±))(ж), i 6 Q ± . 
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Applying these identities in the definition of the conormal derivative, we can write 

dt(H±,v±) = ±^(©A(tr±|an),^A(tr±|an)) 

(4.147) =F &t (M(u±, TT±)), Q($(U±, TT±)) . 

The jump relation (4.45) then gives 

(4.148) ^(£±,7r±)= ±d^0x(u±\dn)^x(u± \dn)) T ( t | / + ^A) (^(S± ,7T±) ) , 

which is enough to establish (4.144). Similarly, taking boundary traces in (4.145) and 
using the jump relation (4.43) leads to 

(4.149) S ± U = ± ( ± | / + ^A)№±U)^5(^(i?±,7r±)), 

from which (4.143) follows. • 

4.5. Boundary integral operators and the transmission problem 
In this section we assume that ft is a graph Lipschitz domain in MN, n > 2. As 

usual, set ft+ := ft, ft_ := RN \ ft. We begin with the following uniqueness result. 

Proposition 4.5.1. — Assume that (u±,7r±) are solutions to the Stokes system 

(4.150) Au± = VTT±, divu± = 0 in ft±, and M(VW±),M(TT±) G Lp(dQ), 

for some n-l 
n < p < oo, and that, in addition, they satisfy 

(4.151) u+\dn = u-\dn and d*(t?+,7r+) = #*({?_,TT_). 

Then u± and 7r± are constant. 

Proof. — Consider the functions 

(4.152) u:= 
u+ in ft+, 
u_ in ft_, and 7T := 

7T+ in ft+, 
7T_ in ft_. 

Then (u, 7r) solves the Stokes system in RN. Let M(Vu) := max{M(ViT_|-), 
M(V#_)}. Then for every fixed x 6 l n and R much larger than dist (x, 5ft), interior 
estimates give 

(4.153) |Vtï(aO| < 
BR(X) 

|Vff|*) 
1/p 

<CR~ n-l 
p 

ll^(va)||Lp(0n). 

After taking the limit as i2 —• oo in (4.153), it follows that Vu = 0 in RN, and 
hence, u is a constant vector. Then since Vn — Au = 0 in MN, we know that 7r must 
also be constant. • 
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Suppose that 

(4.154) /G#p(dft) , geHp(dQ) 

are arbitrary, and for each ¡1 G [0,1), consider the following transmission problems: 

(4.155) 

u±,ir± as in (4.150), 
и+\дп - и-\дп = g, 
вл(гГ+,7г+)-^(й_,тг_) j = / , 

(T'Y 
и±,тг± as in (4.150), 
и+\дп - и-\дп = 9, 
^(Ä+,7T+) - д*(Й_,7Г_) J = / , 

(4.156) 

(T'Y) 
гГ±,7г± as in (4.150), 
ü+\dn - ßü-\an = g, 

dì(u+ìir+)- ^(Й_,тг_) j = f, 
(17) 

и±,тг± as m (4.150), 
/ш+|дГ2 - u-\dQ = g, 
д*(гГ+,тг+) -а*(й_,тг_) j= / . 

Let us remark that, given that ft is a graph Lipschitz domain, a convenient inter
pretation of the boundary condition u+\dn — U-\dn = # in (T^)* is dTjku+—dTjkU- = 
dTjkg on <?ft, for every j , k G {1 , . . . ,n}. Similar considerations apply to (T^). 

For any of the problems above and any n - 1 < p < oo fixed, we will say that 
problem is well-posed if for any data as in (4.154), there exists a solution (U±,TT±) 
to the problem that must be unique (modulo constants) and which also satisfies the 
estimate 

(4.157) ||M(W±)||LP(an) + ||M(7r±)||Lp(on) < C (\\f\\Hp{dn) + №\H*(an)) • 

Notice that when \i — 1, all of the above problems are identical and can be solved 
by the functions 

Furthermore, from Proposition 4.5.1, the solution is unique modulo constants. Now 
the following claims are obviously true: 

(4.158) u± := 0A<7 - <flf in ft± and n± := @\g- Qf in ft±. 

(4.159) 
(T+)* is we l l -posed(T~)* , written with ft+ and ft_ interchanged, is well-posed, 
(4.160) 
(T+) is well-posed 4=> (T^ ) , written with ft+ and ft_ interchanged, is well-posed. 

да* 
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For /i > 0 fixed, the following also hold: 

(£fc+,7r+) and (tT_, TT_) solve (T+)* for (f,g) 

(4.161) (#-}_,7r+) and (/xu_,/47r_) solve (T~) for (/,/x#), 

(£+,7r+) and (£_,7r_) solve (T~)* for (/,#) 

(4.162) 4=> (//{?+,/i7r+) and (iL.,7r_) solve (T+) for (/,/x#), 

(£+,7r+) and (w_,7T_) solve (T+)* for (/,£) 

(4.163) (/x#+,̂ 7T+) and (/x#_,/x7r_) solve (T^ )* for (/,/x#), 

(tf+,7r+) and (U_,TT_) solve (T+) for (/,<?) 

(4.164) 4=> (/xu+,/i7r+) and (/xit_,/X7r_) solve ( T ^ ) for (¿¿/,¿7). 

Prom (4.163), we see that analyzing (T+)* in the case /i > 1 is equivalent to 
analyzing (T~)* in the case when // < 1 and vice versa. Of course, from (4.164), there 
is also a similar connection between (T+) and (T~). With this in mind, in the sequel 
we will only deal with the case when /z < 1. Further interconnections between the 
well-posedness of the four transmission boundary value problems in (4.155)-(4.156) 
are discussed below. 

Proposition 4.5.2. — Assume that ft c Mn, n > 2, is a graph Lipschitz domain and 
that n - 1 < p < oo, — 1 < A < 1. Then, for each (consistent) choice of the sign ± in 
the statements below, the following two claims are equivalent: 

(i) the transmission problem (T^)* is well-posed for every JJL G [0,1), 
(ii) the operator 

(4.165) ± 1/2 µ+1/µ-1 + K*x : Hp(dn) —+ Hp(dQ) 

is an isomorphism for every /i G [0,1). 

Moreover, for each (consistent) choice of the sign ± in the statements below, the 
following two claims are also equivalent: 

(iii) the transmission problem (T^) is well-posed for every /z G [0,1), 
(iv) the operator 

(4.166) ± I l±£ j + /RA : TFF(DFT) —> Hp(dn) 

is an isomorphism for every \i G [0,1). 

Proof. — By (4.159)-(4.160), it suffices to prove all the desired implications for just 
one fixed choice of the sign, since interchanging ft+ with ft_ means that K\ becomes 
—K\. In order to fix ideas, we shall carry out the proof for the choice 'plus' of the 
sign, with this convention being tacitly used throughout the proof. 
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As far as the implication (ii) (i) is concerned, if the operator (4.165) is an 
isomorphism for every ¡1 G [0,1), set 

(4.167) fx := /- dî(®t$, Via) + µ dYv (D-Y g, PYg) E Hp (dn), 

(4.168) h ••= ( | ^ Î / + ^ ) _ 1 / I e HP(dQ), 

where the superscripts ± indicate that the layer potentials in questions are considered 
as mappings functions defined on dQ, into functions defined in Q±. Then 

(4.169) u± := i 
1 - µ 

S+ f2 + D+Y g, 

(4.170) тг± := 1 
1-М 

Q+ f2 + D+Y g, 

solve (T+)* and obey natural estimates, i.e. 

(4.171) \\M(Vu±)\\LP{dQ) + HM(7r±)||Lp(an) < c(\\f\\LP(dn) + \\g\\Hm). 

Let us now consider the issue of uniqueness for (T+)* under the assumption that 
(4.165) is an invertible operator. To this end, assume that (u±,ir±) solve the homo
geneous version of (T+)*. Subtracting the two versions of the identity (4.144) and 
keeping in mind that c^(w+,7r+) = \xd£(u-,7r_) and u+\dn = U-\QQ allows us to 
conclude that ( i 2 

¿£±I 
д-1 J + /q)(0*(5_,7r_)) = 0. Thus, <9*(iï_,7T_) = 0 and, further, 

d£(u+,7r+) = 0. With this in hand, the desired conclusion follows from Proposi
tion 4.5.1. This concludes the proof of (ii) = > (i). 

In the opposite direction, the a priori estimate associated with the version of (T+)* 
when g = 0 reads 

||#(ff+,7T+) ~ pdt(U-,<K-)\\HP{DQ) « ||M(Va+)||Lp(№) + ||M(7T+)||Lp(on) 
(4.172) +||M(W_)||LP(^) + ||M(7r_)||Lp(ôn), 

for any pair of functions (U±1TT±) which solve the Stokes system in Q± and satisfy 
U,\0Q = uldQ, M(Vu±), M(TT±) £ Lp(dft). Specializing this estimate to the case 
when u± = rfh, 7T± := Qh in fi±, with h € Hp{dCl), then yields 

l|£||№>(an) = ll^(«_,7r_) -d*(u+,ir+)\\LP(dQ) 
< C [||M(Vt/+)||Lp(en) + \\M(7:+)\\LP{du) + \\M(Vu-)\\LHdn) 

+ ||M(7r_)|U,(8n)] 
< c\\d*(a+iir+) -/i#(tf-,ir_)llL»(8n) 

(4.173) = C | | ( i ^ / + ^)K||№(an), 

where C = C(Q,pyfi) > 0 is a finite constant. Thus, 1 /x+l 
2 u-1 

I+ K*Y 
0<u<l 

is a contin
uously parametrized family of one-to-one operators with closed range (in particular, 
semi-Predholm) on i/p(c?£î), which are invertible (via a Neumann series) when fi is 
sufficiently close to 1. The homotopic invariance of the index then gives that all the 
operators in question are invertible on Hp(dQ.). 
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Consider next the equivalence (iii) (iv). First, when the operator (4.166) is an 
isomorphism for each p G [0,1), a solution to (T+) which satisfies (4.171) is given by 

(4.174) u± := ^ [ ( l ^ l + JjrA)_1(1/1-µ g + s / ) ] - ^ / i n fi±> 

(4.175) *± := ff>t[(^I + K x y \ T ( 1 / 1 - µ g + Sf)]-Q ± f in Q±. 

Second, the a priori estimate associated with the problem (T+) implies that, for 
each p G [0,1), 

|an - pu-\dn\\H*(dn) ~ \\M(Vu+)\\LP{dQ) + \\M(7r+)\\LP{dQ) 
(4.176) +||M(VtT_)||Lp(an) + ||M(7r_)||Lp(OT), 

for any pair of functions (u±,n±) which solve the Stokes system in fl± and satisfy 
#*(£+,7T+) = ^(5_,TT_), as well as M(Vu±), M(TT±) G Lp(dQ). Specializing (4.176) 
to the case when u± = 0\h, 7r± = fl\h in £2±, with h G Hp(dft), yields 

l|h||ifp(0n) = \\u+\en -u-\dn\\H?(dri) 
< \\M(Vu+)\\LP{dQ) + \\M(Vu-)\\LP{dn) 

(4.177) < C\\u+\dn -»ti-\dn\\Hm = C\\(^I + Kx)h\\H>(d<i), 

where C = C(f2,p, p) > 0 is a finite constant. With this in hand and arguing as before, 
we then conclude that the operator (4.166) is an isomorphism for every p G [0,1). 

There remains the issue of proving uniqueness for (T+) when the operator (4.166) 
is an isomorphism for each p G [0,1). Once again, assume (U±,TT±) is a solution of 
the homogeneous version of (T+). Then since #+|an = pu-\dn and d*(tt+,7r+) = 
d^(iL.,7r_), subtracting the two versions of (4.143) yields after some simple algebra, 
(ilT^J^ + (u-\dn) ~ ®' ^ re , we have also made use of the fact that the single 
layer does not jump across dft. Hence, u~\dn = 0, and so u+\dn = 0 as well. Then 
once again Proposition 4.5.1 may be invoked in order to conclude. • 

An immediate corollary of the result above is the following. 

Proposition 4.5.3. — Retain the same assumptions as in the statement of Proposi
tion 4.5.2. Then, for each (consistent) choice of the sign, the operator 

(4.178) ± §±±£1 + K*x : Hp(dfy —• Hp(dQ) 

is an isomorphism for each p G (0,1) if and only if the operator 

(4.179) ± |±±£ J + Kx : Hp{dn) —> tff (dft) 

is an isomorphism for each p G (0,1). 

Proof. — This is a consequence of the proof of Proposition 4.5.2 and (4.161)-(4.162). 
• 

||«+|an - Aiu-Ienllfff(öii) « l|M(Vu+)||Lp(an) + ||M(7r+)||LP(en) 
(4.176) +||M(Vtî_)||Lp(en) + ||М(1г_)||ьр(вп), 
for any pair of functions (u±,n±) which solve the Stokes system in ii± and satisfy 

7T+) = ^(5_,TT_), as well as M(V5±), M(TT±) G Lp(dQ). Specializing (4.176) 
to the case when u± = 0\h, 7r± = fl\h in £2±, with h G Hp(dft), yields 

l|ft||Hp(an) = \\u+\en -u-\dn\\H?(dri) 
< \\M(Vu+)\\LP{dQ) + \\M(Vu-)\\LP{dn) 

(4.177) < C\\u+\dn -»ti-\dn\\Hm = C\\µ(^I + Kx)h\\H>(d<i), 

where C = C(f2,p, LI) > 0 is a finite constant. With this in hand and arguing as before, 
we then conclude that the operator (4.166) is an isomorphism for every /x G [0,1). 

There remains the issue of proving uniqueness for (T+) when the operator (4.166) 
is an isomorphism for each ¡1 G [0,1). Once again, assume (U±,TT±) is a solution of 
the homogeneous version of (T+). Then since #+|an = /JLU-\0Q and d^(tt+,7r+) = 
d^(iL.,7r_), subtracting the two versions of (4.143) yields after some simple algebra, 
(ilT^J^ + Ky (u-\dn) ~ ®' ^ re , we have also made use of the fact that the single 
layer does not jump across dft. Hence, U-\an = 0, and so u+\dn = 0 as well. Then 
once again Proposition 4.5.1 may be invoked in order to conclude. • 

An immediate corollary of the result above is the following. 

Proposition 4.5.3. — Retain the same assumptions as in the statement of Proposi
tion 4.5.2. Then, for each (consistent) choice of the sign, the operator 

(4.178) ± §±±£1 + K*x : Hp(dfy —• Hp(dQ) 

is an isomorphism for each p G (0,1) if and only if the operator 

(4.179) ± |±±£ J + Kx : Hp{dn) —> tff (dft) 

is an isomorphism for each \i G (0,1). 

Proof. — This is a consequence of the proof of Proposition 4.5.2 and (4.161)-(4.162). 
• 
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The above proposition does not cover the case when \x = 0, which corresponds 
precisely to the operators which solve the Neumann problem (N) and the Regularity 
problem (R) in (1.3). This particular aspect is dealt with in in the next chapter, in 
Theorem 5.2.3. In order to better explain how the Neumann and Regularity problems 
are related to the transmission problems, we first need to introduce the following 
definition. 

With n - 1 < p < oo fixed, we will say that (T+) is semi-well-posed if for any 
/ G Hp(dfl) and g G iJf(9ft), there exists a solution (u±,7r±) of (T+) such that the 
functions u+ and 7r+ must be unique (modulo constants) and also satisfy the estimate 

(4.180) ||M(W+)||LP(^) + ||M(7r+)||Lp(an) < C (\\f\\Hp(an) + llfllnf (an)) • 

Similarly, we will say that (T~) is semi-well-posed if there exists a solution (u±, TT±) 
such that U- and 7r_ must be unique (modulo constants) and satisfy 

(4.181) \\M(Vu-)\\LP(dn) + ||M(7r-)||Lp(an) < C (\\f\\Hp(en) + llfllnf (an)) • 

With these definitions in mind, we can state and prove the following proposition 
that details the relationship between the transmission problems and the Neumann 
and Regularity problems. 

Proposition 4.5.4. — Let Sl± C Mn, n > 2, be a graph Lipschitz domains as before. 
Recall (1.3). For n - 1 < p < oo fixed, the following statements are equivalent: 

(1) (T+) and (T~y are both semi-well-posed, 
(2) (R) is well-posed in fi+ and (N) is well-posed in O–, 
(3) (T+) and (T~)* are both well-posed. 

Moreover, a similar result holds in the case when the roles of + and — are reversed. 

Proof. — First, we will show (1) (2). Assume (T+) and (T~)* are both semi-well-
posed. For any g G Hp(dfl), if (u±,n±) solves (T+) with data (0,#), then (tT+,7r+) 
will solve (R) in O+ and also satisfy the appropriate estimate. For any / G Hp(dft), 
if (T6±,7r±) solves (T~) with data (/,0), then ({L.,7r_) will solve (N) in Q_ and also 
satisfy the appropriate estimate. 

To establish uniqueness for (R), assume (u+, 7r+) solves the homogeneous version 
of (R) in £2+. Let (u_,7r_) be a solution to the Neumann problem (N) in O– such 
that df}(u-,7T-) = 9^(u+,7r+). Then (U±,TT±) will solve the homogeneous version of 
(T+), which implies that u+ and 7r+ must be constant. To establish uniqueness for 
(iV), assume (w_,7r_) solves the homogeneous version of (AT) in £2_, and let (t?+,7r+) 
be a solution to the Regularity problem (R) in fi+ such that 5+|an = #-|an- Then 
(ix±,7r±) will solve the homogeneous version of (Tj~)*, and so u- and 7r_ must be 
constant. 

Next, we will prove (2) (3). Assume (R) is well-posed in fi+ and (TV) is well-
posed in ft-. For any / G Hp(dQ) and g e Hp(dfi), let (i?+, 7r+) be the solution to (i?) 
such that tq-lan = # and let (u_,7r_) be the solution to (N) such that d£(u-,7T-) = 
d*(u+,7r+) — / . Then (t?±,7T±) will solve (T+) and satisfy the appropriate estimates. 
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To establish uniqueness, assume (u±,ir±) satisfies the homeogenous version of (T+). 
Then from the uniqueness for (R), u+ and 7r+ must be constant. In particular, since 
M(7r+) G Lp(dft), it follows that 7r+ = 0. Then (w_,7r_) solves the homogeneous 
version of (N) in ft_, which means u- and 7r_ must also be constant. 

Similarly, if ({?_, 7r_) is the solution to (N) such that dYv (µ-, n-) = f and (u+, 7r+) 
is the solution to (R) that satisfies #+|an = u-\an + 9, then (#±,7r±) will solve (T~)* 
and also satisfy the appropriate estimates. To establish uniqueness, assume (u±,n±) 
satisfies the homeogenous version of (T~)*. Then t?_ and 7r_ must be constant due 
to the uniqueness of solutions to (N). Then it follows that u+\an = 0 in Hp(dCt), and 
so from the uniqueness for (i?), u+ and 7r+ must also be constant. Since it is clear 
that (3) => (1), this finishes the proof of the equivalence of the statements (1) — (3), 
and same result with the roles of + and — reversed follows similarly. • 
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CHAPTER 5 

THE Lp TRANSMISSION PROBLEM WITH p NEAR 2 

5.1. Rellich identities and related estimates 
Let fi C Rn, n > 2, be either a graph Lipschitz domain or a bounded Lipschitz 

domain, and fix a vector field h G C£ (Rn) with real-valued components. 

Proposition 5.7.7. — Assume that u± = (uk)i<k<n are real-valued vector fields and 
7r± are real-valued scalar functions such that 

(5.1) Lxu± = VTT±, divu± =0 in fi±, M ( W ± ) , M(TT±) G L2{dQ). 
Then for every A G R, 

y j4A(Vff±, Vw±)(ft, u)da = 2 J(d£{ü±,Tr±),Vhü±) da ± J(dwh)Ax(Vü±,Vü±)dx 
an an n± 

±2 y [̂ (öiiî Cöfcfci) - (diuftidjuji + XdkufKdjhi)] dx 
n± 

(5.2) =2 J(dî{u±,n±),VhU±)da+ j ®±dx, 

and 

y 0r±)2(fe,i/) d<r = -2 y <a~Hff±,tf±),(Vir±)ft) *7± y (div/I)(7r±)2dx 
an an n± 

± 2 y [ (a^f)(^^)№< - afcuf) - (djhi^djuf)^] dx 
n± 

(5.3) =-2 j{d;\u±,n±),{Vu±)h)da+ J 0±dx, 
an n± 

where 0^ denotes any function in il± such that, for some finite, purely dimensional 
constant C > 0, 
(5.4) 0^<C(|Vt?±|2 + |7r±|2)|vK|. 
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Proof. — As far as (5.2) is concerned, the idea is to start with (3.41) written for L\, 
fi± and u± in place of L, ft and u, respectively. Also, D and A are as discussed at 
the beginning of § 4.1. 

Note that the second solid integral in the right hand-side of (3.42) contains Lu 
which, in our case, corresponds to L\u± = Vtr±. We now further integrate by parts 
this gradient operator and use the divergence-free condition on u±. The key aspect of 
this calculation is that the resulting boundary term combines well with the first inte
gral in (3.41), in the sense that it "completes" d^u to the correct conormal derivative 
d£(u±,7r±) for the Stokes system. 

This accounts for the form of the integrand in the first integral in the right hand-side 
of (5.2). The first integral on the second line in (5.2) is a byproduct of the integration 
by parts just described. Finally, all the other integrals in (5.2) can be easily traced 
back to (3.41), finishing the proof of (5.2). 

The identity (5.3) is a rewriting of formula (1.5) on p. 775 of [32], in the termi
nology of conormal derivatives utilized in this work. This concludes the proof of the 
proposition. • 

The Rellich identities (5.2) and (5.3) will play a vital role throughout. Our first 
application is the following estimate for the pressure term. 

Proposition 5.1.2. — Assume that 

(5.5) A5± = VTT±, div5± = 0 in ft±, M(Vu±), M(n±) £ L2{dtt). 

Then there exists C > 0 such that for any e > 0, 

J |TT±|2(K, V) daKCs'1 J \Vul- Vu±\2\h\da + e J \n±\2\h\da 
dn dQ dQ. 

(5.6) +C j(|W±|2 + |7r±|2)|Vfc|<fe. 

Proof. — Combining (5.3) and (5.2) in the case A = — 1 gives 

J \<K±\2(h,v)da = -2 j (d;\u±,it±),(Vu±)h)da + J (ft da 
an an il± 

= 2 j {d-l{u±,it±),(Vul-Vu±)h)da - j A-i(Vff±, Vtl±)(fc,i/) + J (ft da 
an on n± 

= 2 Í<(V5± - Vü±)u - 7г±г/, (Vu± - Viï±)h) da 

(5.7) - У A_i(Ve±,Va±)(fc,i/> + У б^Ат. 
an 

an Sii 
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Then since A-i(Vu±, Vu±) = f |ViT± —Vu±\2, the result follows by using Cauchy's 
inequality with epsilon in (5.7). • 

Proposition 5 A3. — For A G [—1,1], assume that 

(5.8) Lxu± = VTT±, divu± = 0 in fi±, M(Vu±), M(TT±) G L2(dfl). 
Then there exists C > 0 such that for any e > 0 and any /i G [0,1), 

y [i4A (Vu+, V£+) + MA (V5_, V€L)] (ft, v) da 
an 

^F(i^F / [l^(^+^+)-M^№-^-)|2 + M|Vtan'S+-Vtan5-|2] Al
an 

(5.9) +e J [|V5+|2 + |7r+|2 + /i|Vir_|2 + /x|7r_|2] \h\da 
an 

+ 1%/(|W+|2 + |7r+|2)|Vfc|dz+ ^ y (|Vtr_|2 + |W_|2)|V |̂dx. 
n+ n_ 

Proof. — First, we point out that if divw-t = 0 in il±, then for every j G {1,... ,n}, 
(5.10) {(^u±)u}j = VkdjU± = dTkju^ 
and also 
(5.11) (<M±, v) = vk Vj djU^ = I/J <9Tfc. u±. 

Combining the Rellich identities in (5.2) for u+ and u- gives 
j (AA(W+, Vu+) + MA(Vi?_, Vt?_)) (ft, i/) da 
an 

= 2 ^ ((^(w+,7r+),V/lix+)+/i(^(ix_,7r_),V^_))da 
an 

+ J 9tdx + ia J 91 dx 
n+ n_ 

= 2p / (^(^+,7r+)-^(u_,7r_),v^+ + v ^ _ ) d a 
an 

+ 2p y (^(^+»7r+) - pd*(u-,n-)yVhu+ +pVhU-^da 
an 

(5.12) + y 9tdx + p J 91 dx. 
an- an 
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Using Cauchy's inequality with epsilon, the last two lines of (5.12) can be bounded 
by the right hand side of (5.9). From the definition of the conormal derivative, the 
third line in (5.12) can be written as 

-
2/x  

1-М / 
an 

<#(й+, 7Г+) - dYv (u–, тг_), Vhu+ + Vhu_) da 

= – 1-М / 
дП 

A((VÄ+)I/ - (VS-)i/, Улй+ + V^_) der 

– 1-й 
an 

«d°(u+,7r+), VfcS+> - <o»(S_,7r_),VfcÄ_»d(j 

(5.13) – 
2/i  
1-Д 

an 
(<9°(й_,тг_) + д°(гц_,тг+),V„u_ - Vhu+)da. 

Prom (5.10), the second line of (5.13) can be bounded by the right side of (5.9). 
Applying the Rellich identity (5.2) in the case À = 0 to the third line of (5.13) gives 

I-M / 
an 

(<#(tr+,7T+), Vhu+) - <#(tT_,jr_), Vf,tï_)) da 

2fj, 
1 - µ I 

an 

(|Vtf+|2HV£-|2)(M) ¿7 + _i£_ 
1-M / 

n+ 

QÌ dx + -IL-
1-M / 

O+ 

9h dx 

2/i 
1-a I 

dQ 

(lVtan̂ +12 - |Vtan£-|2)(M> da + _J£_ 
1 - u 

/ 
0+ 

9t + I-M J 
o+ 

0h dx. 

(5.14) 

2/Lt 
1-u an 

( | ^ U + | 2 - | ^ _ | 2 ) ( K , I / ) (¿(7. 

Since |VtanS+| -|Vtan5-| = (Vtan̂ + -Vtan#-, Vtan#+ + Vtan5-), the third line 
of (5.14) can also be bounded by the right side of (5.9). This leaves the last term of 
(5.14), which we will deal with in a moment. Splitting h into its normal and tangential 
components gives Vh = Vntan + (fe, v) dv. Using this along with the definition of the 
conormal derivative in the last line of (5.13) gives 

– 
2/A 
1-/X / 

an 

^(M+,TT+) + d°(u_,7r_), Vhu- - Vfctf+) da 

– 2/x 
1 - µ / 

an 

/d°(tf+,7r+) + d°(£_,7r_), Vht&nu- - Vht&nû+ + (dvu. - dvu+^v)}da 
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= - Ä / (^(^,7r+) + ^№_,7r_),V^TAN^_-V^tanir+)^ 
an 

~ T^Ji J(n++n-)(vidvü-—dvu+)(Ji,v) da 
dQ 

(5.15) 

– Je. 
I-M J (|d„u_|2 - |^Й+|2)(Я,1/)аа. 

dQ 
Notice that the last term in formula (5.15) cancels the last term in formula (5.14). 

Using (5.11) and Cauchy's inequality with epsilon, it follows that the third and fourth 
lines of (5.15) can be bounded by the right side of (5.9). So combining (5.12), (5.13), 
(5.14), and (5.15) finishes the proof of Proposition 5.1.3. • 

The previous estimate gives us a good upper bound for terms involving the 
quadratic form A\(Vu±, Vu±). Our next result, which is specific to the case A = 1, 
seeks to bound terms involving the full gradient, Vt?±, by terms involving the 
symmetric part of the gradient, Vu± + Vu±, plus other terms similar to those in the 
right hand side of (5.9). 

Proposition 5.1.4. — Assume that ft C Mn, n > 2, is a Lipschitz domain and that 

(5.16) Au± = VTT±, divu± = 0 in «±, M(V#±), M(TT±) G L2(dft). 

Then there exists C > 0 such that for any e > 0 and any [i G [0,1), 

/ 
an 

[|W+|2 + /x|W_|2 + 2(1-M)2 |7r+ — 7r_|2] (h, v) do 

< c 
e(l-M)2 I 

an 

[\Vul 4- W+|2 + // |Wl + W_|2] \h\ da 

+ c 
e(l-M)2 / 

[\dl(u+,W+) - M (̂W_,7T_)|2 + /x|Vtan«+ - VtanU_|2] \h\do 

+e J [|Vu+|2 + |7r+|2 + /i|V5_|2 + //|7r_|2]|Ä|d(7 
дП 

(5.17) + с 
i-м 

J 

O+ 
(|W+|2 + |7r+|2)|Vft|dx + 1-М J 

O-
(|VÄ_|2 + |7r_|2)|v£|dx. 

Proof. — Consider the following algebraic identity for a, b e R, 

(5.18) 1 1-м 
( a -6 )2 = 1 

1-M 
(a - /x6)2 - a2 + fib2. 
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Writing (5.18) with a = 7r+ and 6 = 7r_ and applying the Rellich identity (5.3) 
gives 

T^¡ J k+ -тг_|2(Я,1/)сга 
an 

= ïh /(""+ -ß^-)2{h,v)da- J(w+)2(h,u)da + n J(ir-)2(h,v) da 
an an an 

= ï=S J(N+ – un-)2{h^)da + 2 f (dZ\u+,K+),{4U+)h) da 
dQ dQ 

-2/i J (o-1(ö-,7r-.),(VtI-)Ä) da+ j Qtdx + n j 91 dx. 
dQ Q+ f2_ 

= ïh f(n+ – tW-)2(h,v) da + 2 J (dZ\u+,*+\(VU+ + Vu\)fy da 
dQ dQ 

-2ß J (ö-1(va_,7r_),(va_ + val)ft) da 
dQ 

-2 j (д~г(й+,1г+) - tid-1(Viï-,7r-),Vhiï+^ da 
dQ (5.19) +2/z j (d-1 (w_,7T_), Vhu- - Vfci+^ da 4- У 9hdx + ß J 9h dx. 

dQ Q+ Q_ 

Using the Rellich identity (5.2) in the case A = 0 along with the definition of the 
conormal derivative, we can write 

J [ | W + | 2 + / Í | W _ | 2 ] (h, и) da 
an 

= J [2(Ö°(U+,7r+))V/lu+) + 2M(a°(w_,7r_),V/lw_>] da + J &t dx + p j Q~h dx 
an n+ n_ 

= j [2(dl(U+,n+),VhU+) + 2n(dl(U-,Tr-),VhÜ-)] da+ j g£ dx + p j ÇThdx 
an n+ fi_ 

+ Й /[(K4t+,*+) - /^(Ä-,*-) , VfcÖ+> - (dl(u+,ir+)-ßdl(U-,^),VhU+)} de 
an 

(5.20) 

+ 2/XУ [((Ve_)i/,VfcU+- V/lu_) + î ^ ( ( W + - VÜ_)i/,Vfca+>] der. 
an 
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If we multiply (5.19) by 1+M 
2(1-/*) and add it to (5.20) and also apply the Rellich 

identity (5.2) in the case A = 1 to the first term in the third line of (5.20), we have 

/ 
dïl 

|Vä+|2 + /i|Wu_|2 + M(I+M) 
2(l-/i)2 

2 
7T+ — 7T_ (h, v) da 

= j [i4i(VS+, Vu+) + ^i4i(VÄ-, ViZ_)] (h, и) da 
dO 
+ 1 

1-м / Г2+ 

0£dx + M 
l-M / O-

Oh dx 

– 1+M 
1-м дп 

(dl , тг+ ) - ß dl (й- ,ir-),Vhu+)d(j 

+ 2ц j [<(VS_)i/, VhÜ+ - Уды-) + j^¡((VÜ+ - VÛ-)v, Vhu+)] da 

dO 

+ 1+м 
2(1-/х)2 / 

an 

(7Г+ — /Х7Г_)2(/г, Z/) d<7 -f 1-М 
1 - µ 

/ 
an 

<Ö-1(S+, 7Г+), (W+ + ViT^Ä) da 

– A*(I+M) 
1-/Ì 

an 
(d-^tî-.îr-), (v"- + Vul)/i> da 

(5.21) 

+ M(I+AO 
1 - µ / 

an 

(d *(й_,тг_), Vfcu- -Vhü+)da. 

Notice also that 

7r+ —/x7r_| an = (1 -/x)^(Vw^ + Vu+)vyv^ + ii(dvu+ -d„u-,v^ 

(5.22) +/i((Vw+ - Vu->,i/> - (c£(u+,7r+) -pdl(S-,n-),v). 

Then using (5.10), (5.11), and (5.22), we can bound the first term of the fifth line 
of (5.21) as follows, 

2(l-/x)2 / 
an 

(7г+ — /i7T_)2(/i, и) da < С 7 
да 

\Vu\ + VÛ+\2\h\da 

(5.23) + с 
(1-/1)2 / 

OSI 

|d¿(u+,7r+) - /х (̂гг_,тг_)|2 -h /¿|Vtanu+ - Vtanu-|2 \h\da. 

The next step is to observe that 
(5.24) 
VhÜ± = Vhtanu±+(a„u±)(ft) v) = VfetanÄ±+ [(Vt£+W±)i/] (h, v)-[(VÖ±)i/] (A, v), 
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and therefore from (5.10), 
(5.25) 

X?hiï+ - Vhiï- < W + T + W + |ft| + W _ T + Vu- \h\ + 2 Vtana+ - Vtana_ |ft|. 

Then the proposition follows by repeatedly applying Cauchy's inequality with ep
silon in (5.21) while using (5.25) for the first term in the fourth line and the last term. 
Here, we also use the fact that AiÇVu±1 Viï±) = ||V{T±T + Vu±\2. • 

Using the previous two propositions, we can now prove our main estimates. 

Corollary 5.1.5. — Let Çl C Mn, n > 2, be a Lipschitz domain. For À G (—1,1], assume 
that 

(5.26) Lxu± = VTT±, divu± = 0 in îî±, M(Vtï±), M(TT±) G L2(dQ). 

Finally, let h G C°°(Rn) and CQ > 0 be such that 

(5.27) 1 < (h(x), v{x)) < C0, \fx G dQ. 

Then there exists C > 0 such that for fi G [0,1), 

(5.28) J [|V£+|2 + M|VIL_|2] da 

dQ 
< (Ï^I)6 y [|^(a+,7T+)-/ia^(a_,7r_)|2+/i|Vtana+- Vtan^-I2] da 

dQ 

+ (T^ / ( |V«+ |2 + |7r+|2)|Vft|dx+rî^F J(\Vu-\2 + \n-\2)\Vh\dx. 
Q+ Q-

Proof. — Choosing e small enough in Proposition 5.1.2, we can show that 

(5.29) y \n±\2da<Cy \VÛ±\2da + C J(\Vu±\2 + \>ir±\2)\Vh\dx. 
dQ dQ Q± 

In the case À = 1, since Ai(Viï±,Viï±) = ^\Vu±T + Vw±|2, combining Proposi
tion 5.1.4, Proposition 5.1.3, and (5.29) gives 

y [|VU+|2+AX|W_|2] da < Cl(1̂ )2 y [|Vu+T + W+|2+/i|W_T + V^_|2] da 

dQ dQ 

+ ^(1-^)2 y [|̂ (W+,7T+) -/i^(S_,7r_)|2-hM|Vtan^+ - VtanW_|2] da 
an 

+ £iC y [|V£+|2 + //|W_|2 da, 

an 
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+ î % / ( ^ + | 2 + |тг+|2)|УЯ|^+^ J(\VU^ + \^\2)\Vh\dx 
n+ n_ 

< eaei(?-„)4 y [|a¿(u+,7r+)-Ma¿(«_,7r_)|2 + /x|Vta„u+-Vtanu_|2]d<T 
an 

+ (ei + ï i l f ^ F ) ^ / [|W+|2 + M|W_|2] da 
an 

+ гг#д* [(\чй+\2 + \п+\*)\чК\<ь 
a+ 

(5.30) 

+ aC 
e1 (1 - µ) / 

il-

(|V«_|2 + |7T_|2)|VK|dx. 

Then the corollary follows by letting £2 = s\(1 - /JL)2 and choosing e\ small enough. 
If |A| < 1, there exists C\ > 0 such that |V#±|2 < C\A\(Vu±, Vu±), and so in this 
case, the corollary can be proved more directly using Proposition 5.1.3 and (5.29). • 

Corollary 5.1.6. — Let Q C Mn, n > 2, be a Lipschitz domain and assume that, for 
some À G (—1,1], 

(5.31) Lxu± = VTT±, divu± = 0 in îî±, M ( W ± ) , M(TT±) G L2(dtt). 

Let h G C°°(IRN) and CG > 0 be such that 

(5.32) 1 < (h(x), v{x)) < C0, Vx G dQ. 

Then there exists C > 0 such that for ¡1 G [0,1), 

y [|W+|2+M|VM_|2] da 

an 

^ (Î^F / Ы9^(й+'П+) - ^(«-'7Г-)|2 + |Vtan«+ - juVtanM-l2] da 
díl 

(5.33) + с (1-м)3 / 
O+ 

(|W+|2 + |7T+|2)|Vft|<fc + uC (1-й)3 / 
O 

Proof. — For µ G (0,1), the corollary follows by applying Corollary 5.1.5 to the 
functions 

(5.34) v+:=fj,U-, u– := u+, p+ := /X7r_, p_ := 7r+, 

and then dividing by /x. For ¡1 = 0, this follows by simply taking the limit as ¡1 —> 
0+. • 

(|Vu_|2 + |7T_|2)|V/i|da;. 
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5.2. The case of a graph Lipschitz domain 

In this section, we seek to establish the well-posedness of each of the various bound
ary value problems stated in § 1 in graph Lipschitz domains. 

Lemma 5.2.1. — Let Q c W1, n > 2, be a graph Lipschitz domain as defined earlier. 
Then there exists e = e(dQ) > 0 such that whenever 2 — e < p < 2 + e and ¡1 G [0,1), 
the following hold: 

(i) The operators ± 1 l+u 
2 1-fi 

I + K* are invertible on Lp(dQ), 

(ii) The operators ± 2 l-Li -I + K\ are invertible on Lp(dQ), on L\(dQ), and on 
L?(an). 

Proof. — It is enough to prove the lemma in the case p = 2, since the extension to 
p € (2 — e, 2 + e) is then a consequence of abstract stability results. For / G L2(dQ) 
fixed, let u± :— <^f and 7r± := Qf in fi±. Then (U±,TT±) will satisfy 

(5.35) 

Au± = VTT±, divu± = 0 in Q±, 
u+\dn = U-\on, 
di{u+,TT+) - /x^(a_,TT_) = (-1/2 (1 + M)J + (1 - v)K$ f on 8Q, 
M(W±),M(TT±) G L2(an). 

Since Q± are graph Lipschitz domains, it is possible to select a constant vector field 
h that satisfies the hypothesis of Corollary 5.1.5. Applying Corollary 5.1.5 then gives 

(5.36) J[\Vu+\2 + »\Vu-\2}da<C j |(-
dQ dQ 

1 1+/J 
2 1 - µ I + K*x)f\2 da. 

Also, if we apply Corollary 5.1.6 in the case /x = 0 with the roles of u+ and u-
reversed, we get 

(5.37) j\Vu-\2 da < C J |Vtana_|2d0- = C f |Vtana+|2 da < C f \Vu+\2 da. 

dQ dQ dQ dQ 
Then combining (5.36) and (5.37), and using (4.45) gives 

H/lU=»(en) = ||^(u_,7r_) -^(u+,7r+)||L2(AN) 
< C||Vff_|U2(an) +C||Vtr+||La(8n) 

(5.38) < C||W+||LW < C\\(- 1/2 1+µ/ 1- µ^I + K*x)f\\LHm). 

From (5.38), it follows that - 1 1+ µ 
2 1-u 

I+K? is one-to-one and semi-Fredholm for every 
a G [0,1). Also, if /x is sufficiently close to 1, we have that — 1 l+M 

2 1-u 
I + K* is invertible 

on L2(df£) via a Neumann series. It follows from the homotopic invariance of the 
index that — 1 l+M 

2 1-u 
I + KX is actually Fredholm with index zero for each // G [0,1), and 

therefore — 2 1-u J + K% is invertible on L2(dft). If we exchange the roles of (u+,7r+) 
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and (zt_, 7r_) in the above argument, we can also show that ^jz^I + Kx is invertible 
on L2{dft). By duality, the operators ±\ j^I-\- K\ must also be invertible on L2(dQ). 

Now, for g G L\(dQ), let u± = 0\g and 7r± = flxg in O+. Then (u±,n±) will 
satisfy 

(5.39) 

Au± = V7r±, div u± = 0 in Q±, 
tT+lan -nu-\dn = 1/2 (1 + µ) I + (1 - l*)K\)g on dQ, 
d*(u+,ir+) = <9*(£_,7r_), 
M(VU±),M(<K±) e L2(dQ). 

Applying Corollary 5.1.6 gives 

(5.40) J[\Vu+\2 + »\Vu-\2]da<C J |Vtan[(§i±£/ + Kx)g\\2 da. 

an an 
Also, if we apply Corollary 5.1.5 in the case /i = 0 with the roles of u+ and u-

reversed, we get 
(5.41) 

J\Vu-\2da < C J |^(w_,7r_)|2da = C J |^(U+,TT+)|2 da < C J \Vu+\2da. 
an an an an 
Then combining (5.40) and (5.41), and using (4.43) gives 

Hslli?(0fi) = 11«+ -«-lli?(an) 
< C\\Vu+\\L2{DN) + C\\Vu-\\L2{AQ) 

(5-42) < C\\Vu+\\L2{DN) < C\\{\^I + Kx)g\\tl(dn). 

Prom (5.42), it follows that ^jz^I + K\ is one-to-one and semi-Predholm for every 
/x G [0,1), and repeating the same arguments as above leads to the conclusion that 
the operators ± | jzr^I + K\ are in fact invertible on L2(dQ). Since these operators 
are invertible on L2(dQ) and L2(dQ), we can establish 

(5-43) \\9\\Li(an) < C\\{±\^I + Kx)§\\Ll(an), 

for any g G L\(dQ), which, after arguing as above, eventually allows us to conclude 
that the operators ± | TZ^/ + if A are also invertible on L2(dfì). • 

The invertibility of these operators allows us to prove the well-posedness of the 
associated boundary value problems, as in the following theorem. 

Theorem 5.2.2. — Let Q, C Mn, n > 2, be a graph Lipschitz domain, and set 0,+ := fi, 
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O– := Rn \ fi. Then there exists e = e(dSl) > 0 such that for any p G (2 - e, 2 + e), 
the transmission problems (T^) and (Tjf)* (cf. (4.155)-(4.156)) are well-posed for any 
\i G [0,1). Moreover, the Neumann problem (N) and the Regularity problem (R) (cf. 
(1.3)) are also well-posed in fl+ and 0_ for any p G (2 — £, 2 + e). 
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Proof. — The well-posedness of (T^) and (Tj^)* for any /x G [0,1) follows directly 
from Lemma 5.2.1 and Proposition 4.5.2. Then Proposition 4.5.4 implies that (N) 
and (R) are also well-posed. • 

With these results in mind, we can prove the following theorem. 

Theorem 5.2.3. — Let Q C Rn, n > 2, be a graph Lipschitz domain and let n-1 < 
p0 < 2 < pi < oo. Then for À G (—1,1], the following are equivalent: 

(1) the operators 

(5.44) 2 1-u I + K*x and -2 1-/2 J + iq are invertible on Hp(dQ) 
for all ¡1 G [0,1) and for all p G (p0>Pi)> 

(2) the operators 

(5.45) 
1 l+M 
2 1-/X 

r + Kx and - 1 l+M 
2 1-u 

/ + K\ are invertible on Hp(dQ) 
for all /i G [0,1) and for all p G (p0,Pi)-

Proof. — First, assume the operators ± 1 l+u 
2 1-u 

I + K*x are invertible on Hp(dQ) for 
all \i G [0,1) and for all p G (p0>JPi)- To prove the invertibility of 1 l+M 

2 1-u 
/ + Kx and 

1 i+/i 
2 1-u 

I -h Kx on JEZ?(ÔH), from Proposition 4.5.2, it is enough to show that the 
transmission problems (T+) and \T~) are well-posed. In fact, given that (5.44) and 
(5.45) are invariant under changing the roles of fi+ and O- we may further conclude 
from (4.159)-(4.160) that it suffices to establish that just one of the problems (T^), 
(T~) is well-posed. 

To prove the well-posedness of (T ~̂), we can actually reduce matters to the case 
when / = 0. To see this, let (v±,p±) solve the reduced transmission problem with 
datum g + (1 — y)Sf. Then u± = v± — < /̂, TT± = p± — Qf will solve (T+) and also 
satisfy the appropriate non-tangential maximal function estimates. For the rest of the 
proof, we will deal with the case when / = 0. 

Fix p G (p0,Pi). First we claim that for g G Hp(dQ), 

(5.46) ^ [F+1/2 J + KD^dtWxfr 0x9)] = ®X9 in fi±. 

To prove this identity, it is enough to consider the case when g is in a dense subclass 
of H{\dil). Assume g G H{{dQ) D L\(dQ). Using the jump formula (4.45), it can be 
shown that the left and right sides of (5.46) yield the same conormal derivative. Since 
the conormal derivatives of each side will be functions in Hp(dVt) flL2(90), it follows 
from the uniqueness for the L2 Neumann problem that the left and right sides of 
(5.46) differ only by a constant. Finally, since each expression decays at infinity, the 
identity must hold. Moving to the boundary in (5.46) gives the useful identity 

(5.47) S [(=1/2F|I + K^dii^xg, #>xgj\ = (±1/2\l + #A)£ on dQ. 
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Next, we claim that the functions 
(5.48) u± := 1 

1-u 
S [(T±i + K*x)-\ 1 l+u 

2 1-u 
I + Ki)-ldt{®x9,#>x9)\, 

(5.49) TT± := l 
1-u 

Q [ ( T | / + ^ ) " 1 ( 1 l+u 
2 1-u 

I + K*Y)-1y^iQxg^xg)], 

satisfy the transmission problem (T+). The jump formula (4.45) gives 
dYV (u+, n+) = 1 

1-M 
(F1/2 + K* Y) (F1/2I + K*Y) -1 1 1+м 

2 1-/Х 
7 + ^)-1a,A(2)A^A5) 

(5.50) = I 
1-µ 

1 1+ju 
2 I + K*y)-1 dy WVxg^xg), 

and so ^(w+,7r+) = d„(u-,7T-). For a bounded, linear operator T, assume rjl + T 
and 7/ + T are invertible operators for 77,7 E IL The for ¡1 e R, the resolvent identity 

(5.51) (T?/ + T)-1 - ^(7/ + T)-1 = (nl + T)-1 ((7/ + T) - n(r,I + T)) (7/ + T)-1 

holds. By applying (5.51) twice and also using the boundary identity (5.47), we can 
write 

u+ |an — µu–|an 

= lhS [ ( H J + *"AT 1 - № + Kl)'1) 1(1/2 1 +µ /1 + KiT'd№x9, Pxfl] 
= s [ ( - ¿ 7 + Ki)-\\^i 1(1/2 1 +µ /1 + K{){\I + K i r - 1 (1/2 1- µ + K*Y)-1 dyvrl(d№x9, P^9)} 
= S [(-II + Kl)-\\I + KiTxdt{Px& &x9)] 
= S [ ( ( - § / + Kl)-' - (IJ + KV-AdtWxg,0x9)] 

(5.52) = (li + Kx)3- (- 1/2 I + KX)3 = §. 
To prove uniqueness for (T+), we will first prove uniqueness for the Hp Neumann 

problem (N). 
Assume ({T+,7r_|_) satisfies the homogeneous version of the Hp Neumann problem 

in O+ . Define 
(5.53) 

Д_ := 4 VX-\Ï + Kl)'1 - (\l + К^-Лд^Ф^й+Ш, PxiU+lan))] in iï_, 

and 
(5.54) 

TT_ := Q [((-§/ + Kl)-1 - (1/ + K*x)-1)d!;(®x(u'+\en), 0x(u+\dn))] in n_. 

Arguing as above using (5.47), it follows that u-\an = u+ | an.Since u-\an = u+ | an 
and 9 (̂i?+,7r+) = 0, from (4.144) we have 

(5.55) (-±I + Kt) (dyv(u–, n)) = (±1 + K*x) (dt(u+,n+)) = 0. 

Since — \l + K* is invertible on Hp(dU), it follows that 

(5-56) c£(u_,7r_)=0 = ^(u+,7r+). 
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Then from Proposition 4.5.1, u+ and 7r+ are constant. With a similar argument, 
we can also prove uniqueness for the Hp Neumann problem in 0_. 

Let us return to the issue of uniqueness for the transmission problem (T~). Assume 
(u±,n±) solves the homogenous version of (T+). Multiplying the version of (4.144) 
corresponding to the sign minus by ¡1 and subtracting it from the version of (4.144) 
corresponding to the sign plus and making use of the transmission conditions gives 

(5.57) (l-/x)( 2 1-u T + K*x) (#((.+ ,*+)) =0. 

Since the operator 1 l+u 
2 1-u 

I + Kx is invertible, it follows that d*(u+,7r+) = 0 = 
^(5_,7T_). Now it follows from the uniqueness of the Hp Neumann problem that u± 
and 7r± are constant. This finishes the proof of (1) (2). 

To prove (2) ==> (1), assume the operators ± .1 l+u 
"2 1-u I + K\ are invertible on Hp(dQ.) 

for all /2 € [0,1) and for all p G (p0,Pi)- To prove the operators ± . 1 l+u 
2 1-u I + K{ are 

invertible on Hp(dfl) for all fi G [0,1) and for all p G (p0,Pi), it is enough to prove 
that (T^)* are well-posed for all // G [0,1) and for all p G (p0,Pi), and using a similar 
argument as before, this time we can reduce matters to the case when g = 0. We will 
focus on (T^)*, as the result for (T~)* follows similarly. 

Fix p G (PoiPi)> First, we claim that for / G Hp(dQ), 

(5.58) 2)A (±|J + iYA)-15/] =Jf inn±. 

To prove this identity, it is enough to consider the case when / £ Hp(d£l) D 
L2(dQ,). Using the jump formula (4.43), it can be shown that the left and right sides 
of (5.46) are equivalent on the boundary. Since the boundary version of each side is 
a function in Hp(dQ) fl L2(dQ), it follows from the uniqueness for the L\ Regularity 
problem that the left and right sides of (5.58) differ only by a constant. Then since 
each expression decays at infinity, the identity must hold. Computing the appropriate 
conormal derivative for each side in (5.46) gives the useful boundary identity 

(5.59) 

^{^x((± 1/2 U + Kx)-1Sf\^x((±1/2hi + Kx)-lsm = (T^i + Ki)f ondQ. 

Next, we claim that the functions 

(5.60) u± := i 
1-u 

®x [{±\I + Kx)~l{-1 l+u 
2 1-u 

\I + Kx)-lSf\, 

(5.61) TT± := l 
1-u 

g>x \{±\i + K)-1 xy\- 1 l+u 
2 1-u 

\I + Kx)-lSf\, 

will satisfy (T+)* (with g = 0, as agreed). On the boundary, we have 

U±\dQ = 1 
1-u 

(±\I + Kx)(±\l + Kx)"1{-1 l+u 
2 1-u 

t-I + Kx)-lSf = 1 
1-u 

(- 1 l+u 
2 1-u 

I + Kx^Sf, 
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and so u+\dn = U-\dQ. Also, using (5.51) twice gives 
1 

1-u 
((1/2Ij + /fA)-i-M(-1/2| I + /rA)-i) (- 1 l+u 

2 1-u 
I + Kx^Sf 

= ai + Kx)-1(- 1 l+u 
2 1-u 

•1 + Кх)(-и + Кх)-Ч-1 1+jU 
2 1-/* 

I + Kx)~lSf 
= (y + Kx)-1(-±i + Kx)-lSf 

(5.62) = ( ( - 1 / + J^)"1 - (I j + Kxr^Sf. 

Using (5.62) as well as the boundary identity (5.59), allows us to write 

dt(u+,n+) -^(U+,TT+) = ^ ( 0 A ( ( - i / + ̂ A)-15/))^A((-|J + irA)-15/)) 

-dt (®A ((IJ + iiTA)-1 5/) , £>A ((IJ + Kx)~l Sf)) 

(5.63) = (¿1 + J ^ ) / - ( -§ / + K*x)f = /. 

This proves the existence of a solution to the transmission problem (T+)*. To 
prove uniqueness, we will first establish uniqueness for the Hp Regularity problem 
(R). Assume (i?+,7r+) solves the homogeneous version of the Hp Regularity problem 
and define 

5_ := 2>A [ ( ( - i / +J^)-1 - (il + Kx)-1)s(dt(u+,7r+))] in n_, 

and 

TT_ := g>x [((-§/ + Kx)~l - (ll + Kx)-1)s(dt(u+,7r+))] in n_. 

Arguing as above using the boundary identity (5.59), it follows that d*(u-,7r-) = 
d£(M+,7r+). 
Then since d*(iï-,7T-) = <9*(u+,7r+) and u+\dn = 0, using (4.143) gives 

(5.64) (§/ + tfA)(tï-|ôn) = (-±1 + Kx)(S+\an) = 0. 
Since 17-f Kx is invertible on H{(dQ), we have that u-\dn — 0 = w+l^, and then 

it follows from Proposition 4.5.1 that u+ and 7r+ must be constant. 
Returning to the issue of uniqueness for (T+)*, assume (u±,n±) solves the homo

geneous version of (T+)*. Multiplying the version of (4.143) corresponding to the sign 
minus by /i and subtracting it from the version corresponding to the sign plus, and 
also making use of the transmission conditions, gives 

(5.65) (i-**)(- 1 1+M 
2 1-u 

I + Kx)(u+\dQ) = 0. 

Since — 1 l+u 
2 1-u 

I + Kx is invertible on i J f w e have that u+\dn = 0 = u~\dn> 
Then from the uniqueness of the iff Regularity problem, u± and n± must be constant. 
This finishes the proof of the theorem. • 

We conclude this section with the following results. 
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Lemma 5.2.4. — Let ft C Rn, n > 2, be a graph Lipschitz domain. Then there exists 
e > 0 such that for p G (2 — £, 2 + e), the operator 

(5.66) S : Lp(dft) —• L?(0fi), 

is an isomorphism. 

Proo/. — For A G (-1,1] fixed, define the operator S"1 : L?(<9ft) —• L2(dft) by 

(5.67) 5 - 1 / := ( - | / + XI)"1 (#(2>A[(|/ + If A)"1/], 0>A[(§ J + * A)"1/])) • 

Using (5.47) and (5.59), it can be shown that (5.67) is in fact the inverse of (5.66). 
• 

Lemma 5.2.5. — Let ft C Rn, n > 2, be a graph Lipschitz domain. If u and n satisfy 

(5.68) Au = VTT, div u = 0 in ft, M(ViZ), M(TT) G L2(dft), 

then there exists / G L2(c?ft) and c G Rn such that # = <̂f/ + c in ft and n = Qf in 
ft. 

Proof. — This follows from Lemma 5.2.4 and the uniqueness (modulo constants) of 
the Regularity problem. In particular, u = <^(S~1(u\en)) + c and TT = Q(S~1(u\dct)). 

• 

5.3. Inverting the double layer on LP for p near 2 on bounded Lipschitz domains 
We debut with a few preliminaries. Given a bounded Lipschitz domain HcR" , 

n > 2, for each k £ N we set 

(5.69) 
RQQ± := Î ^CjXEj • Cj € RK and Yij connected component of dQ j , 

7 
(5.70) 

RQQ± := |̂ CjXag>j : cj ^ Rk and Oj bounded connected component of fi± j , 
7 

(5.71) 

R*± := |^CjX0j : ci £ RK and 0? bounded connected component of îî± j , 
i 

with the convention that, when fc = 1, we agree to drop it as a superscript. In 
particular, we have 

(5-72) RKDN± = (R&J 
Oft 

and 

(5.73) Ron=R§n+©Ron_ 
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where the sum is direct but not orthogonal. For instance, we have 

(5.74) [Rôn+]± H Rdn_ = {0} and [R^_]± n Rdn+ = {0}, 

where the orthogonal complements are taken in L2{dft). Let us also point out here 
that 

(5.75) 
dimR^+ = dimM|Q+ = A; • ò0> dimRQ_ = dimR|f2_ = к • 6п-ъ 

dimR|n = fc- (Ьо + Ьп-i), 
where the Betti numbers bo, bn-\ represent the number of bounded connected com
ponents of £2+ and £)_, respectively. Therefore, the intuitive interpretation of 6n_i is 
the number of n-dimensional "holes" of £}+. 

Lemma 5.3.1. — Let ft be as above and fix A £ R. Then the following identities hold: 

(5.76) <J(VI/J) = 0 in fi±, V^GRan, 
(5.77) S{vrl)) = 0 on dft, Vty € Ran, 
(5.78) K*X(V^) = T1/2VQ on <9Q, V^£R^±. 

Proof. — Let D be any bounded component of £2+. For For every x G Rn \d£2 and 
1 < J < ft, an integration by parts based on (4.29) gives 

(5.79) (<J(vxdD))j(x) = [ Ejk(x - y)vk(y) da(y) = - [ (dkEjk)(x -y)dy = 0. 
J 3D J D 

Thus, from (5.79) and (5.73), 

(5.80) <J(vXdD) = 0 in O±, 
which readily yields (5.76). This identity further yields (5.77) by taking boundary 
traces. Next, for any D, bounded, connected component of either ££+ or ft-, 
(5.81) 
Q{yXdD)(x) = [ (du(y)EA){y-x)da(y) = ±xd(X), VX € Rn\dft, if D C £2±. 

In particular, 

(5.82) 
Ф e ШДЩ = • Q{ur¡>) 

ап± 
= ф and Q{vijj) 

дО — 
= 0, 

Ф € Ran. =>• й ( ^ ) 
ап± 

= O and Q{yi¡) 
ап 

= —v. 

Consequently, 

(5.83) (T1/2%I + KZ)(vM) = dty(stfW)\n±,Q№)\n±)= Tvq VV e Ran±, 

which further entails (5.78). 
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We continue to introduce notation which will be useful hereafter. Let # be the 
n(n + l)/2-dimensional linear space of Rn-valued functions tj) = (^j)i<j<n defined in 
Rn and satisfying 
(5.84) djifik + dkipj = 0, 1 < j , fc < n, 
and note that 
(5.85) W = jV^r) = Ax -fa: A, n x n antisymmetric matrix, and a G Mn|. 

Now let 
(5.86) *(fl±) := (^tyjlo^XOj : vj E W, Oj bounded component of J2±}. 

i 
Then for A G (—1,1], we can define 

(5.87) WA(Q±) := RB±5 |A|<1, 
Ф(П±), A = l, 

and 
(5.88) *A(Sn±):=*A(Q±)|ao±, 
so that 
(5.89) 

dim#A(<9fi+) = n • b0 if |A| < 1, 
n(n+l) 

2 60 if A = 1, 
dim*A(aO_) = n • bn-i if |A| < 1, 

n(n+l) 
2 

6n_i if A = 1. 
Finally, set 

^(dn) := {EWib^XEj : ^ € ¥, Ej component of 50} 
3 (5.90) 

and Vx(dn) := R%n if |A| < 1, 

which implies 

(5.91) dim#A(<9Q) = n- (6o + &n-i) if |A| < 1, 
n(n+l) 

2 •(6o + 6n_i)if A = l. 

Lemma 5.3.2. — If 0 is as before, an alternate characterization of these spaces is 

(5.92) u G WA(fi±) 4=> u G C2(0±) and Ax(Vu, V5) = 0 in fi±. 

Furthermore, 

(5.93) u± e^x(tt±) => Au± = 0 and divu± = 0 in 0±. 

In particular, for every G \£A(Q±), 

(5.94) (̂ >0) solves the Stokes system in il± and satisfies dx(ip,0) = 0. 

Conversely, if u± and n± satisfy the Stokes system in Q± and u± G \I>A(fi±), then 

(5.95) 7T± G RO+ and dA(u±, TT±) G z/Rao± • 
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Finally, 
(5.96) 2>AW>±|WI) = ±V>± in Ob, W>± € *A(ft±), 
and 
(5.97) (=F|J + IfA№± = 0, W>± G *A(an±). 

Proof. — To see this, first assume ip± e ^x(dft±). Then (^±,0) satisfies the Stokes 
system in fl±, where ty± denotes the natural extension of ip± to ft±. Then (5.96) 
follows by invoking (4.120), (5.95) and (5.76). Finally, (5.97) is a direct consequence 
of (5.96) and the trace formula (4.43). • 

Given a bounded Lipschitz domain DcMn and p e C1^, oo), set 

(5.98) hpn(dtl) := {/G W(3fi) : (/,V) = 0, € ¥A(tti±)}, 

(5.99) h%x{dtt) := {/e h*>№) : </>> = 0, G #A(0O)}. 

When 1 < p < oo, we shall write L̂ A (AO) and L^A(dQ) in place of h^x (dQ) 
and hyX(dQ,), respectively. For further use, we record here the following elementary 
lemma. 

Lemma 5.3.3. — Let Q, C Rn, n > 2, be a bounded Lipschitz domain. Then 
(5.100) vx(dn) = Vx(dn+) 0 Vx(dtl-) 
where the sum is direct. In addition, 

(5.101) i/Ran <-+ [V(dS7)]\-1. 

where the orthogonal complement is taken in L2(dQ). Also, for every p e (1, oo), 

(5.102) Llx(dn)^Lp0(dn):={feL*>(dn): f fda = o\, 
± 1 JdQ. J 

(5.103) [Rgn]± - [R^Y <-> LQ(8Q), 
and 
(5.104) vRdn^ L%(dn). 
Proof. — Consider the identity (5.100). In one direction, the right-to-left inclusion is a 
consequence of (5.73), (5.86), and (5.90). Since, by (5.89) and (5.91), the spaces whose 
equality we are trying to establish have the same (finite) dimension, there remains 
to show that the sum is direct. To this end, assume that ip £ \I>A(dft+) fl tyx(dQ,-) 
is arbitrary, and denote by ip± e \£A(fi±) the natural extension of ip in Q,±. Now, if 
we set ip := I/J± in ft±, the fact that il>+\dn = i>-\dQ, ensures that (5.84) is satisfied 
by this function in Rn, in the sense of distributions. Hence,v G V and since it has 
compact support, ip must vanish in Rn. This forces i/> = 0 on dQ, finishing the proof 
of (5.100). 
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All the other formulas in the statement of the lemma follow more or less directly 
from definitions. The proof of the lemma is therefore complete. • 

Moving on, for each / G L2(dO), the functions 

(5.105) u±(x) := 0f(x), TT±(X) := Qf(x), x G Q±, 
solve the Stokes system 
(5.106) Au± - VTT± = 0, divtZ* = 0 in fi±, 
and satisfy 

(5.107) \\M(Wu±)\\L2{DQ) + ||M(7r±)||Lp(an) < C(0fi,p)||/]|La(an), 
(5.108) \u-(x)\ + \x\(\Vu-(x)\ + |TT_(X)|) = 0(\x\2-n) as \x\ -> oo, if n > 3. 

Moreover, if Jm f da = 0, then for any n > 2 the decay condition (5.108) improves 
to 

(5.109) |tL.(x)| + \x\(\Vu-(x)\ + |7r_(rc)|) = OGxl1-") as |z| oo. 

Consequently, Green's formula (4.6) gives 

(5.110) / (AxVu+,VÜ+)dx= f (Sf , (-1/2 ±I + Kl)f)da, 
JÍI+ Jan x 4 ' ' 

and if either n > 3 or Fan / da = 0, 

(5.111) / H A W _ , VU,} dx = - [ (Sf, (\I + K*x)f) da. 
Ja- Jan N v ' 1 

For each p G ( n-l n , oo), set 

(5.112) ft?„Jöß):={/eftC(öfi): / (V7? f) da = 0, \/ф € vШеп± }? 
1 ôfì J 

and 

(5.113) ft?,„ (0fi) := {/ e h{(8Q) : j 
A0 

<^,/)dor = 0, V^GZ/RSQ}, 

with the convention that, when 1 < p < oo, we shall write L\ì1/±(dVL) in place of 
fti v± (dfì). For 1 < p < oo, let us also define 

(5.114) LIAOQ) := {/€ Lp(dft) : / <V>,/}^ = 0, V</> G i/Ran±j, 
1 ./an ' 

(5.115) Lp(dÜ):=\feLp(dÜ): {ф, f) da = О, Vф G иШэЛ. 
1 Jan ' 

We can also prove the following. 
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Lemma 5.3.4. — For any A G (—1,1] and p G (1, oo), 

(5.116) Vx{dn+) 0 A(dO_) = Vx(dn) <-+ Lplv{dQ) ^ L\v± (dSl). 

Also, if 1 < p,p' < oo satisfy 1/p -f 1/p' = 1, then 

(5.117) [Ll^(dQ)/uRdQ±y = L^(afi)/*A(anT). 

Proof. — This can then be easily checked from definitions with the help of the general 
formula 

(5.118) ( Vi 
Y2 

) = Vi 
Y2 

whenever X is a Banach space, 0 <-> Y2 ^ Yi <—> X are closed subspaces, and we 
have set Y± := {A £ X* : A(y) = 0, Vy G Yj}, j = 1,2. • 

Finally, we are ready to state our next result. Before doing so, denote by Ker (T : 
A —> B) the null-space of a linear operator T from A into B. 

Proposition 5.3.5. — Let 17 be a bounded Lipschitz domain in Rn, n > 2. Then for 
each 7 G R \ [— \, |] and A G (-1,1], the operators 

(5.119) *yl + Kx : L2{dn) —• L2(<9ft), 

and 

(5.120) lI + Kx: L\{Xl) — L21 (dO), 

are injective. Moreover, if — 1 < A < 1, the operators 

(5.121) ± \I + K*Y : Z£x (dQ)/i/Ra«± —+ L2VF (dQ)/uRdQ±, 

as well as 

(5.122) ±1J + KA : Ll±(3f2)/tf A(dftT) — L2v+ (0fi)/tf A(0fiT), 

(5.123) ± i / + /fA : L\tV±(dn)/*x(dnT) — if>I/±(d«)/*A(cMT), 

are well-defined and injective. In addition, 

(5.124) Ker (±|1/2 I + K\ : L ? j V ± - L ? , „ ± = *A(£MT), 
(5.125) Ker (±1/2 1/ + K\ : L * ± £ 2 ± = ^(aOp), 

(5.126) Ker (±|1/2 J + 1^ : L%x (9SI) - L2 («1)) = i/Kan±. 
=F =F 

Finally, 

(5.127) Ker (5 : L2(dft) -> L?(0fi)) = J'Raft if n > 3, 
z/Rao 0 V i f n = 2, 

where, for n = 2, 

(5.128) V := {/G L2_ (flfi) : Sf = 0 on 012, and fi/= 0 in 0+} 
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also satisfies 

(5.129) dim V < 2. 

Proof. — Fix 7 G R, |7| > | , —1 < A < 1, and assume that / G L2(dQ) is such 
that (7/ + Kx)f = 0. Also, let (u±, TT±) be as in (5.105) and define u, w in Rn as in 
(4.152). Since u+\an = u-\an, it follows that 

(5.130) ueW^iW1). 

Next, based on Green's formula (4.6), for each c G Rn we may write 

( 7 + | ) ( / fd*,s) = ( 7 + | ) / (f^da = -[ /(-1/2 li + K*x)f,e)d* 
xJan ' Jan Jan x 1 

= - / (dì W,Qf),c) dcj 
Jan x 1 

= - / (Дй-У7г,с)- / Ад (Vu, Ve)- / 7rdivc 
Л} «/Q 

(5.131) = О, 
which shows that / G Ll(dÇl). In particular, the improved decay condition (5.109) 
holds which allow us to write 

О = / (frI + KZ)f,Sfìda 
Jan 

= í U-i + \){-\i + Ki)f + b + \)(\i + Ki)f,sf)d* 
Jan x 1 

(5.132) = ( - 7 + | ) / 

O+ 
Ax{Vu,Vu)dx + ( - 7 - \) 

I O-
AA(Vu, Vu)dx. 

Consequently, 

(5.133) 
/ 'Un 

Ал (Vu, Vu) dx = 0, 

since —7 — I and — 7 -f \ have the same sign and the integrands in the last line of 
(5.132) are nonnegative. Next, pick a function tp G Co°(Rn) which is identically one 
in a neighborhood of the origin and set tpj(x) := ip(x/j), j G N. We have 

lim 
j—юо / Rn 

AA(V(^ä),V(^tQ)dx = lim 
j—>oo / Rn 

ф2Ах(уй, Vü)dx 

+ lim 
j—юо 

o(№l|vv>jlM|vä| + |v^|2N2) dx 

(5.134) = 0, 
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thanks to (5.133) and the improved decay of u at infinity. Since, by (5.130), ipjU G 
W1,2(Rn), Plancherel's formula (used twice) along with (4.18) then give 

0 = lim 
Rn 

A\(V($jiï),V(^jiï))dx > K lim 
7—KX) Rn 

\V{^ju)\2dx 

(5.135) = K 
R" 

|Vw|2 dx. 

Thus, wis a constant in Mn and decays at infinity, hence ultimately u = 0 in W1. 
In turn, this forces n± G IKn±, prompting the conclusion that 

(5.136) / = 0a(U_,TT_) - DYV (U + N+) = v(ir+ - 7T_) G vi/Roi. 

Now, from (5.136), (5.78) and assumptions, we get 
(5.137) 
0 = (7I + K*x)f = (7I + K*X)(VTT+) - (yI + Kt)(v*-) = ( 7 - §)("*+) - (7+ D ( I T - ) . 

Thus, 7r+ is a multiple of 7r_, and so (5.136) implies / G vRdn+ H Ron. Then 
/ = 0, as wanted. This finishes the proof of the fact that the operator (5.119) is 
injective. 

To see that the operator (5.120) is also injective, assume / G L\(dQ) is such that 
(7/ + K\)f = 0. Let u± = ®A/ in fl± and TT± = £Pxf in Ct±. In particular, 

(5.138) \u-(x)\ = OQxl1-") and |VtT_(a:)| + |TT_(X)| = 0(\x\-n), as |x| 00, 

which ensures that the integration by parts formula (4.6) works in Q,± to yield 

0 = 
H 
aO 

((7/ + Kx)f, #(0A/, 9>xf)) da 

= I 
an 

((7 + 1/2) (1/2 + Kx)f + (-7 + 1/2) J + KA)) / , # v (DYA F, PYF)) do-

(5.139) = (7+1) 
0 
O-

Ax(VÛ+,Vu+)dx + (j- |1/2) 
/ 

O+ 

AA(VU_, VuL)cte. 

Since 7+1 and 7— | have the same sign, it follows from (5.92) that u± G ^A(fî±) 
and therefore u±\an = V>± for some %l)± G Vx(dn±). Then applying (5.97) gives 

(5.140) 0 = (7/ + Kx)f= (7/ + Kx)i/>+ - (7/ + Kx)1>. = (7 + |)V>+ " (7 -

This implies that -0+ is a multiple of and hence /G #A(dft+)n#A(dfî_) = {0}. 
Turning our attention to the operators in (5.121), we note that these are well-

defined since 

(5.141) ( ± i / + l ^ W ± ) = 0, W>±GKan±, 
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and, as a simple application of Green's formula (applied in the bounded components 
of ft±) shows, 

(5.142) (±±I + Kl)L2(dn) C L^(an). 

Consider next / G L2V+ (dQ) such that (- 1/2 I+ K\)f = v<P, for some cp G Maf2_-
Our goal is to show that / G "Ran-. To get started, we note that / G LQ(90), thanks 
to (5.104). In turn, the fact that / has vanishing moment ensures that if u±, n± are 
as in (5.105) then (5.109) -and, hence, (5.111)- holds. Then 

(5.143) / Ax(Vu+,Vu+)dx = / (Sf,(-±I + K*x)f)da = f (Sf,v<p)da = 0. 
JQ,+ Jan Jan 

Thus from (5.92), u+ G ^A(«+). This implies Sf = u+\ G #A(dft+) hence, from 
orthogonality considerations, 

(5.144) 0= / (f,Sf)dv= f ({\l + K*x)f,Sf)dcj= [ AA(W_,W_)dz. 
Jan Jan Jn_ 

Prom (5.92), u- G \£A(fJ_), and in particular, this implies that U- is harmonic in 
f2_. Thus 7T_ must be locally constant in ̂ _ and vanish in the unbounded component 
of Q,-. In other words, 7r_ G MQ_ and, as a result, we have 
(5.145) 
/= (\I + K{)f- (-1J + K*x)f= dA(£_,7T_) - VV = -I/[(7r_|M) + <p]evi 

We also need to show that if / G L^x (917) is such that ( | / + K\)f = ViP f°r some 
(p G RAN+ then necessarily / G V RAN, To this end, observe that / = ftp — (— 1/2 I + 
Kx) f € Lo(dfy BY (5.142) and (5.104). With this in hand, the proof is carried out 
much as before. 

Next, the operators in (5.123) are well-defined due to (5.97) and the fact that (as 
it can be checked using Green's formula in the bounded components of Q,±) , 
(5.146) {±\I + Kx)L\{dQ) C Llu±(dSl). 

To see that these operators are injective, we will first show that 
(5.147) / G Ll„_(dQ) and (- 1/2 I + Kx)f £ Vx(dn+) / G tfA(dft+). 

To see this, let ip := ( - | J + Kx)f G #A(dft+) and let u± = <$xf in fi± and 
?r± = &\f in ft±. Then (5.138) holds and (4.6) gives 

J A\(Vu-,Vu-) dx = - j{ф,д1(й-,-к-))аа 

fi an 
(5.148) = - y ^ ^ + ^ + ) > * 7 = - J(u+,dZ$,0))da = 0, 

an an 
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where ip denotes the extension of tp G tyx(dQ,+) into 0,+ . It follows that u_ G \j/A(0_), 
and therefore, dA(u+,7r+) = dA({j_,7r_) = —vit- G ^Maft_- Then 

(5.149) y iA(Vw+,V5+)(iai = - J (u+, dx(u+, TT+)> da = f (i/> + f,vir-) da = 0, 
n+ on en 

since 7r_ € Mafi_ and ^, / G L?fl/_ (dfi). Thus w+ G \I>A(ft+), and so / = #+|an - V> G 
#A(dn+). 

In a similar fashion, we can also show that 

(5.150) / G L?>I/+(0fi) and ( | / + K\)f£ #A(dft_) / G #A(dft_). 

Here we only wish to remark that in place of (5.148) we write 

JAx(Vu+,Vu+)dx = j {i),dx(u+,n+))da 
O+ Km 

(5.151) = J(iP,dx(u-,7r-))da = j(u. ,dxv ($,0)) da = 0, 
an an 

where ijj G \I>A(f&_) is such that ^|an = ip := ( § / + ^A)/- The fact that there are no 
decay problems when using (4.7) in the next-to-last equality above is ensured by the 
fact that V> has, as any field in \I>A(̂ _), compact support. This finishes the proof of 
the claim made about the operators in (5.123). 

Consider next (5.124). For this, the right-to-left inclusion has been already estab
lished in (5.97) (here (5.116) is also used), whereas the the opposite inclusion can be 
read off (5.147) and (5.150). Once (5.124) has been established, (5.125) follows from 
Lemma 11.9.21 in the Appendix, granted that 

(5.152) ±\l + KX are Fredholm with index zero on L2{dQ) and L\{dQ). 

However, this is proved in (5.165) and (5.167) below, independently of the current 
considerations. This finishes the proof of (5.125). As for (5.126), the right-to-left 
inclusion is a consequence of (5.78), while the left-to-right inclusion is implicit in the 
arguments just below (5.142) and (5.145). 

Finally, to prove (5.127), consider first the case when n > 3. Then the right-to-
left inclusion is contained in (5.77). To justify the remaining inclusion, assume that 
/ G L2(dQ.) is such that Sf = 0. Consider the functions u± := SF in fi± and 
TT± := Qf in fi±. Then from (4.6), 

(5.153) J Ax(Vu±,Vu±)dx = ± j(Sf,dx(u±,ir±))da = 0. 

O+ ao 
Then u± G ^A(fi±), which implies that Au± = 0 in fi±, and so n± must be locally 

constant. Furthermore, we have 

(5.154) / = dA(£_,7r_) - dA(£+,7r+) = I/(TT+ ~ G i/Ran, 
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which proves (5.127) when n > 3. 
There remains to consider the case when n = 2, in which situation it may happen 

that there exist vector fields in L2(dQ) which do not belong to vRan, and yet are 
sent to zero by 5. For example, if Q = В(0,л/ё) in E2, then Sej = 0 for j = 1,2; 
see, e.g. [58], p. 98. Nonetheless, any nonzero vector field / G °W necessarily satisfies 
Jdn f da ф 0, otherwise the argument in the previous paragraph (in which we take 
into account that 7r+ = Qf = 0 in fi+) places it in vRdn thus forcing / = 0, from 
orthogonality considerations. This argument shows that the linear mapping ^ Э ^ и 
fdQijjda G M2 is injective. Hence, dim °W < 2, proving (5.129). 

As for (5.127) when n = 2, the right-to-left inclusion is clear from (5.128) and 
(5.77). To prove the opposite inclusion, assume that / G L2{dQ) is such that Sf = 0 on 
dtt, and set й := < /̂, 7г := Qf in f£+. Then JQ A\(Vu, Vu) dx = Jdn(dx(u, 7г), й) da = 
0, since Щеп = 0. Consequently, й G ФЛ(П+) hence, IT G RQ+ by Lemma 5.3.2. This 
shows that for every connected component Qj of O+ there exists a constant Cj G R 
with the property that Qf\gj = Cj. If we now set 

(5.155) 
Ьо 

9'-= (22чХд9,У e vRdn+ — Ker(5 : L2(ÖQ) - ¿2(¿>Q)), 
¿=1 

then, by (5.81), 

(5.156) Qg = Y,cjX9j = Qf in ÎÎ+. 
j 

As a consequence, if h G ^Ran_ denotes the projection of / — g onto ^Ran+ 5 we 
may write / = (/ - g - h) + (g + h), with g + h e ^Ran+ 0 ^Ran_ = Ran and 
f - g - h e W, by (5.156), (5.81) and (5.77). We are therefore left with showing 
that V n ẑ Ran = 0. Indeed, if ip± G RaQ± are such that Q(vip+ + vy*-) = 0 in f2+, 
then (5.81) shows that y+ = 0. Thus, if vy+ + vip- G V ^ L2_ (90) to begin with, 
then necessarily <p- = 0, and the desired conclusion follows. This last step finishes 
the proof of (5.127), and concludes the proof of the proposition. • 

We continue the discussion of the operators in question with the following results. 

Theorem 5.3.6. — Let Ct c Rn, n > 2, be a bounded Lipschitz domain. Then there 
exists s = e(dil) > 0 with the property that for each p G (2 — e, 2 + e) the following 
statements are true. First, the operators 

(5.157) YI+ Kx, lI + K*x: Lp(dn) —• Lp(dQ), 
(5.158) *yl + K\ : L{(dil) —• Lp1 (dO°. 

are invertible whenever A G (—1,1] and 7 G R \ [— | , | ] . Second, the operators 

(5.159) ± | J + ^ : LpvF (0n)/i/Ran± — LPVy F (dQ)/uRdn±, 
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along with 

(5.160) ±\I + KX : Llv±{dSi)/Vx{dn^) — Lphl/±(dn)/*\d^), 
(5.161) ±\I + KX: LI± №)/*x(dnT) —> LVp+ (9n)/*A(anT) 

are also invertible whenever A € (—1,1]. 

Proof. — From known stability results, it suffices to deal with the case p = 2 only. In 
this scenario, pick a vector field h G Co°(Rn) with suppft C D such that ( h v ) K 
a.e. on dQ,, for some K = K(80) > 0. Fix / G L2(80) and consider u± = <fif, n± = Qf 
in 0±. Switching the roles of u+ and U- in Corollary 5.1.6 and choosing fi = 0 gives 

l|Vtr_||L2(AN) < C||Vtan3-||L2(an) + C||V^/]|L2(N_ND) + \\Qf\\mn-nD) 

(5.162) = C||Vtan^+||L2(aQ) + C||V^/l|L2(N_ND) +C||e/]|L2(N_ND). 

Combining (5.162) and Corollary 5.1.5 then gives 

ll/IU^dn) = ||^(w_,7T_) -dv(u+,n+)\\L2M) 
< c||va+||L2(en) + c||Vtî_ lidien) 
< C||Vtí+||La(en) + C\\V<ßf\\LHil_nD) + C||ß/ll^(fi_nD) 
< C\\{-\1/u ̂ I + K*x)f\\L49Si) + C||V^/i|La(n+nD) + C\\Qf\\L4n+nD) 

(5.163) +C\\V<¿f\\L4n_nD) + C\\Qf\\L4a_nD) 

Since (5.163) holds for each // G [0,1) and the operators 

(5.164) V*J, Q : L2(dQ) —• L2(ft± n D) 

are compact, the homotopic invariance of the index then proves 

(5.165) 7/ + iq : Lp(dCl) —• Lp(dQ) is Fredholm with index zero 
whenever 2 — e < p < 2 4- e, \j\ > | , and AG (—1,1], 

first when p = 2 and then when |p — 2| < £ via perturbation results. 
In a similar manner, if we consider u± = ($\f,7r± = (P\f in il± for / G L2(5Q), 

we can also show via Corollary 5.1.5 and Corollary 5.1.6 that given 7, A as before, 
there exists C = C(9fl,7, A) > 0 such that 

(5.166) \\f\\L2(DQ) < C\\(7I + Kx)f\\L2{DN) + residual terms, V/G L2(cM), 

where the residual terms yield compact operators from L\(d£l) into suitably chosen 
Banach spaces. Again using the homotopic invariance of the index and also perturba
tion results, it follows that 

(5 167) 7/ 4- K\ : L\{dQ) —• L\(dQ) is Fredholm with index zero 
whenever 2 - e < p < 2 4- e, M > | , and AG (-1,1]. 
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Then the invertibility claims made in the statement of (5.157) and (5.158) follow 
from (5.165), (5.167), Proposition 5.3.5 and simple functional analysis. To also con
clude that the operators in (5.159) and (5.160) are invertible, it is enough to establish 
that they are Fredholm operators of index zero. 

First, let Ti denote the operator \l + K*x acting from Lp(dti) to Lp(dQ) and let T2 
denote the same operator acting instead from L̂ A (dQ)/uRdQ+ to L^x (dQ)/uRdQ+. 
Also, let 

(5.168) i: L\x {dO) —• Lp(dn) 

denote the natural inclusion operator, and let 

(5.169) pr : Lp(dQ) —> LPV- (dQ) 

be the projection operator given by 

(5.170) P r / : = / - E ( £ 
i ad 

(f,il>i)d(Ail)i 

where the ^ ' s form an orthonormal basis of ^x(dO-). Also, let 

(5-171) pf : L> (Oil) —> L* (dQ)/vRan+ 

denote the natural projection operator with regards to these spaces. Then using pre
vious arguments, we can show that the following diagram commutes: 

(5.172) 

LPvy (dü) pr L^(ôn)/i/Ran+ т2 L%x (дП)/иЖдС1+ 

R pr 
LP(dü) Ti LP (oil) pr LPVY (dü) 

The estimate (5.163) shows that T\ is a Fredholm operator of index zero. Since 
6, pr, and pr are also clearly Fredholm, it follows from (5.172) that T2 must also be 
Fredholm. Furthermore, since the Fredholm index of i is the opposite of the Fredholm 
index of pr, it also follows from (5.172) that the index of T2 must be zero. The rest of 
the cases in (5.159) and (5.160) follow similarly. Finally, that the operator in (5.161) 
is an isomorphism is a consequence of the corresponding statement for (5.159) and 
duality (cf. (5.117)). • 

5.4. Inverting the single layer on IP for p near 2 on bounded Lipschitz domains 

The goal of this first part of this section is to prove the following theorem. 

Theorem 5.4.1. — For each bounded Lipschitz domain Q C Rn with n > 3 there 
exists e = e(d£l) > 0 with the property that 

(5.173) S : Lp(dQ)/vRdn —• L{t„{dSl) 
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is an isomorphism for each p G (2 — £, 2 + e). 

Proof. — For starters, note that since S(vRdn) = 0 and since for every bounded 
connected component D of fi±, 

(5.174) / (Sf,u)da= j div^/dz = 0, V/€ Lp(dü), К p < oo, 
JdD JD 

the operator (5.173) is well-defined. Also, from known perturbation results, to prove 
the theorem, it suffices to consider the case when p = 2. To this end, recall the identity 
(4.142). From previous arguments, we know that ±.\l + K\ are Fredholm operators, 
and so from (4.142), the operator 
(5.175) S : L2(dfy —+ L\{dtt) 
must have a finite co-dimensional range, which further implies that its range is closed. 
Combining this with (5.127) confirms that the operator in (5.175) is Fredholm. To 
finish the proof, it is enough to establish that the Fredholm index of (5.175) is zero, 
since a similar argument as in the last paragraph of § 5.3 will then imply that (5.173) 
is also a Fredholm operator with index zero. Since, by (5.127), the operator (5.173) 
is injective, this would be enough to prove the theorem. 

To show that (5.175) has index zero, consider the corresponding operator for the 
Lame system 
(5.176) 5M,A : L2(dn) —+ L21 (dO) 
defined in a similar manner as (5.175), except that the fundamental solution matrix 
E — (Ejk)j,k is replaced by the fundamental solution J5M,A = (Ej^)j^ for the Lame 
system of elastostatics, given by L^^u = fi,Au+ (A + /x)Vdiv#, where 
(5.177) 
Fu,y j,k (x) := 

1 
2o;n_i 

3/x + A 1 Sjk 
/i(2/x + A) n - 2 \x\n~2 + 

fi + A XjXk 
IA(2H + \) \x\n 

xeRn\ {0}. 

Comparing (5.177) with (4.19) , it is clear that E)£{X) -> Ejik(x) and VE]£(x) -+ 
VEj^{x) as A —• oo, uniformly for x in compact sets, and so 

(5.178) lim Si,A = 5, 
A—+oo 

in the strong operator norm sense (as operators mapping L2{dVt) into L\(dQ)). Since 
it is known that (5.176) is Fredholm with index zero when \i > 0, A > — ̂  (cf., e.g., 
[31]), it follows from (5.178) that (5.175) has index zero as well. • 

Corollary 5.4.2. — For each bounded Lipschitz domain fi C Rn with n > 3, there 
exists e > 0 such that 

(5.179) S : Lp_1(dQ)/vRdQ —> Ll(dQ) 

is an isomorphism for each p £ (2 — £,2 + £). 

Proof. — Since (5.173) is a self-adjoint operator, Corollary 5.4.2 follows directly from 
Theorem 5.4.1 and duality. • 
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In the second part of this section we treat the case n = 2. The main novelty is 
that, for two dimensional bounded Lipschitz domains, the structure of the null-space 
of the boundary single layer changes, compared to the higher dimensional case. Cf. 
(5.127)-(5.129). 

Theorem 5.4.3. — Assume that Q c R2 is a bounded Lipschitz domain. Then there 
exists e > 0 with the following properties. First, the space 

(5.180) {/G Lvv_ (dQ) : Sf = 0 on dfl, and Qf = 0 in 

is independent of p G (2 — £, 2 + e). In particular, it agrees with the space defined in 
(5.128) and we shall keep denoting this by V. Second, for any p G (2 — £, 2 + s), the 
operator 
(5.181) 

S : Lp(dQ)/uRdQ © V —• Ll^(dO) := {/ G L21,v (dO) : JdQ(f^) da = 0 V</> G V} 

is an isomorphism. 

Proof. — Let £ > 0 be such that 
(5.182) S : Lp(dQ) —> Lf(afi) 
is Fredholm with index zero whenever p G (2 — e, 2 + £). This can be arranged as 
before. Then, it follows from Lemma 11.9.21 that that the null-space of S in (5.182) 
is independent of p G (2 — e, 2 + e). As a consequence, 

(5.183) Ker (S : Lp(dfl) —+ Lp(dft)) = uRdQ 0 V, Vp G (2 - e, 2 + e), 
where °W is as in (5.128). Thus, if we temporarily denote the space (5.180) by Wp, 
(5.183) implies Vp C W2 for any p G (2 — e, 2 + e). On the other hand, the same 
type of argument which led to (5.127) gives the opposite inclusion so that, altogether, 
Vp = V 2 for each p G (2 — e, 2 + e). This proves the first claim in the statement of 
the theorem. 

Going further, the fact that 

(5.184) / 
J do, 

{Sf,r/>)da = 
/ ad 

(f,Si/>)da = 0, V^G V, 

proves that the operator (5.181) is well-defined. Given that S in (5.182) is Fredholm 
with index zero if p G (2—e, 2+e) and that V is finite dimensional, it follows (similarly 
to what we have done in the proof of Theorem 5.4.1) that the operator (5.181) also 
has index zero. Since, as seen from (5.183), this is one-to-one, it ultimately follows 
that the operator in question is an isomorphism. • 

We conclude this section with another important result involving the single layer 
in two dimensions. 

Theorem 5.4.4. — Let C R2 be a bounded Lipschitz domain, and define the oper
ator 

(5.185) S : (Lp(dft)/i/Rao) 0 R2 —• L?fl/(3fi) 0 M2 
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by setting 

(5.186) S([g\,c) := (sg + c, -fan gda) . 

Then there exists e = e(dQ) > 0 such that S is an isomorphism for each p € 
(2-e,2 + e). 

Proo/. — Prom stability results (cf. Theorem 11.9.24), it is enough to treat the case 
when p = 2. Consider the decomposition S = SQ + S\ where 

(5.187) So([g\,c):=(Sg,0) and Si([0],g) := U an/ £<fo) . 

Note that Si is an operator of finite rank and is therefore compact. Then since 
S0 = S is Fredholm with index zero when p = 2, it follows that S = SQ + Si is also 
Fredholm with index zero when p = 2. Now to show that S is an isomorphism, it is 
enough to show that S is injective. Assume there exists g £ L2(dCl) and c E R2 such 
that Fad gda = 0 and S# = —c. Set 

(5.188) u± = ^ in fi±, 7r± = £?<7 in fi±. 

Using (5.110) and (5.111), for any A E (-1,1] 

(5.189) 

J Ax(Vu+,Vu+)dx+ J Ax(Vu-,Vu-)dx 

S2+ O 

= / (Sg,{-\I + K*x)g-{\I + K*x)g)d<j = - f(Sg,$da= f (c,5) da = 0. 

dO aD dO 
Then from (5.92), we know that u± G \I>A(f2±) which further implies that TT± G 

Rdn± and d${u±,n±) G ^Mdn±. Then g = #*(#_, 7r_) - #*(#+, 7r+) G i/Ran and so 
c = — Sg = 0. This shows that ([g\,c) = 0 as desired, which establishes that S is an 
isomorphism when p = 2. • 

5.5. LP -boundary value problems on bounded Lipschitz domains for p near 2 

In this section we will focus on establishing well-posedness results for bounded 
Lipschitz domains. Our first result in this regard is the following. 

Theorem 5.5.1. — Assume that Q, c Rn, n > 2, is a bounded Lipschitz domain and, 
as usual, set ft+ := ft, := Rn \ Cl. Also, fix p £ (0,1) and A £ (-1,1]. Then there 
exists e = e(dQ.) > 0 such that for p £ (2 — e, 2 + e), the transmission boundary value 
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problem, concerned with finding two pairs of functions (U±,TT±) in f2± satisfying 

(5.190) 

Au± = V7r±, divu± = 0 in fî±, 
M ( W ± ) , M(TT±) € LP(ôfi), 

+u1 an —u an = g E 1V (an); 
C£(£+,TT+) - /ic£(u_,7r_) = / G LP(ÔÎÏ), 

and the decay conditions 

(5.191) 

u-(x) = 
0(|x|2-") as |x| oo, if n > 3, 
-^ 1/µ E i x i ^ f d ^ ) + O(Qxl-1) as |ar|-oo, if n = 2, 

(5.192) 

dju– (x) = — 1/u (aj E) (x) ( J 
J an 

fdoj + 0(\x\-n) as \x\ oo, 1 < j < n, 

(5.193) 

7T_(x) = 
Oflzl1-"") as \x\ -> oo, if n > 3, 
i((VEA)(x), /„„ /d<r\ + 0(|x|-2) as \x\ ^ oo, if n = 2, 

has a unique solution. In addition, there exists C > 0 such that 

(5.194) ||M(Vff±)||L,(8n) + ||M(7r±)||Lp(afJ) < C\\g\\Llm) + C\\f\\LP{da). 

Furthermore, a similar result holds if (5.190) -(5.193) are replaced by 

(5.195) 

Aû± = V7r±, divu± = 0 in fî±, 
M ( W ± ) , M(TT±) G LP(ôfi), 
u+ 

dO 
—/JLU-

dQ 
= geLp1(dii), 

dì(u+,n+) - г£(й_,тг_) = fe L*(0íi), 

and the decay conditions 

(5.196) 

U-(X) = 
0(|x|2~n) as \x\ -* oo, if n > 3, 
-£(x) (/ôn / der) + 0(\x\~l) as |x| oo, if n = 2, 

(5.197) 

0,-tL.(s) = -(0,-£O(aO( / 
Jan 

fda) + 0(|x|-n) as |x| -» oo, 1 < j < n, 

(5.198) 

7T_(x) = 
OO*!1-") as |x| oo, if n > 3, 
((VEA)(x), Jan fda)+0(\x\-2) as |a:|-> oo, Un = 2. 
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Proof. — Let e > 0 be as in the statement of Theorem 5.3.6. Then for p G (2—£, 2+e), 
we know the operators 

(5.199) - 1 1+/A 
2 

/ + Kl : Lp{dQ) —• Lp(dn), 1 l+/x  2 I + Kx: Ц(дП) —* LpJdÜ) 

are isomorphisms. Now, set 
(5.200) h ••= f- d№tg, #>tg) + / ^ ( « ^Âs) e D>№), 
(5.201) F2 = ( 1 M+l 

2 n-1 
I + Kì) h f1 e L^dü), 

where the superscripts ± indicate that the layer potentials in question are considered 
as mappings from functions defined on dQ, into functions defined in Q±. Then 

(5.202) u± := 1/1-µ ̂ ¿ ± /2 + 0*$ 

(5.203) TT± := 1/1-µ T^Q±f2 + g>^, 

solve (9.32) and obey natural estimates, i.e. 

(5.204) \\M(Vu±)\\LH9il) + ||M(7r±)||iP(afi) < c(\\§\\Lp(ea) + ||/]|t»(0n))-

Let us now check the decay conditions (5.191)-(5.193). Clearly, (5.191) is a simple 
consequence of (5.202) if n > 3. Going further, we note that 

f fida = f fda- f di(®tg,&îg)da + ii [ d^^g,9>xg)da 
Jan Jon Jan Jan 

= 
au 

/der-(1-м) 
act 

aYv (D+,g, P+yg) do 

(5.205) / / AT, 
Jan 

since 

(5.206) d№t9,Plg) = d№;g,<?;g), VgeL^dQ). 
On the other hand, 

/ ad 
fida = 

dQ 
( 1 µ + 1 

2 u-1 
I + K*x)f2da 

= 
P do 

(-ÍI + K*x)f2da + _Ë_ м-1 / дП 
f2da 

(5.207) = м-1 dO 
/2 der, 

so that 

(5.208) / fda =µ1/µ f f fda = µ1/µ f fda. 
JdQ JdSl JdQ. 
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Consequently, when n = 2, 

U-(x) = l *Г/2(аО + Ф1д(х) 

= 1 
1-М 

S— (f2 — / an 
f2da){x) + l E{x)[ 

'an 
/2d<7 +0(|X|-1) 

(5.209) = - 1/µ E (x) ( 
Aa 

F DO/) AT J + 0(|x|_1) as |x| -*oo, 

in agreement with the case n — 2 of (5.191). Finally, that (5.202)-(5.203) satisfy the 
conditions (5.192)-(5.193) can be verified in a similar fashion. 

Let us now consider the issue of uniqueness for (5.190)-(5.191). To this end, assume 
that (U±,TT±) solves the homogeneous version of (5.190)-(5.193). The fact that / = 0 
implies that u– 7r_ decay fast enough at infinity for the Green's formulas 

(5.210) u± = ±®x(û±\an ) TM(u±,7r±)) in 0±, 

to be valid. Based on (5.210), we may then write 

#(t*±,*±)+(*±l V = ±$(®\(*±\ )^x(u±\ ))±(px(*±\ ) ) | v v Ian/ v v Ian/ v Ian// V \ Ian//Ian 
T ^ ( ^ ( 5 ± , T T ± ) ) , e(^(5±,7r±))) 

(5.211) T ^ t e b , * * ) ) ) ^ " , ad v, 

hence, invoking (4.121) and the jump-relations of hydrostatic layer potentials, 

(5.212) T ( T ^ + ^AJ(^(U±,7r±)j. 

9¿(S±,7T±) = + dyV (Dy (u+ 
an 

) Py (U+| 
an ,)) 

Adding the two versions of the identity (5.212) and keeping in mind that 
9*(u+,7r+) = /jbd^(u-,7T-), u+\dn = u-|an and that (5.206) holds allows us to 
conclude that (f^zj/ + KZ)(d*(u~,ir-)) = 0. Since ^1 + K{) is an invertible 
operator, dYv (u-, 7r_) = 0, and further, #*({?+, 7r+) = 0. Moving to the boundary in 
each version of (5.210) then gives 

(5.213) & + Kx)(u±\dn) = u±\dn = -(-±I + Kx)(u±\dQ), 

from which it can be determined that u±\on = 0. Finally, it follows from returning 
to (5.210) again that u± = 0 in fl±. This forces ir± to be locally constant, but since 
7r+ = ¡17r_ on dQ, and 7r_ decays at infinity, we must have 7r± = 0 in £l± as well. 

The result for (5.195)-(5.198) follows in a similar manner. More precisely, if 

(5.214) 
Й1 := g+(l-ß)Sf€Lp(dSl), 
92 •= 1+µUj^I + Кх)-1 &€L?(Ôfi), 
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then 
(5.215) Û± := 1/1 - µ ̂ 2 ) ^ - ^ / in fi±, 

(5.216) TT± := 1/1-U Thj1^Î92-Q±f in fi±, 

will satisfy (5.195)-(5.198) and also (5.194). As for uniqueness, it can be shown using 
(5.210) as above that solutions of the homogeneous version of (5.195)-(5.198) satisfy 

(5-217) (_Ii±*j + tfA)(u_|an) = 0. 

It follows that U-\OQ = 0 and therefore u+\dn = 0 as well. With this in mind, it 
can also be shown using (5.212) and the transmission conditions that dx(u±, n±) = 0, 
and then uniqueness follows much as above. • 

Theorem 5.5.2. — Assume that £1 C Rn, n > 2, is a bounded Lipschitz domain. Then 
for À € (—1,1], there exists e = e(dQ) > 0 such that for p € (2—£, 2-he), the Neumann 
boundary value problem, concerned with finding functions (u, 7r) in 1) satisfying 

(5.218) 
Au = VÎT, div û = 0 in П, 
M (Vu), M (ж) € LP (ОП), 
dì(u,ir) = f e ЩдП), 

has a solution if and only if / satisfies bn-\{Q) linearly independent constraints. More 
specifically, (5.218) has a solution if and only if 

(5.219) / S Im (-1/2 J + Kl : L%% (Ml) - LPv+ , (5ft)). 
Whenever a solution of (5.218) exists, it is unique modulo adding to the velocity 

field functions from ^A(0). In addition, there exists C > 0 such that 

(5.220) \\M(Vu)\\LPidn) + ||Af(7r)||Lp(OT) < C| | /Wn), 
for any solution (u, n) of (5.218). 

Finally, a similar result holds for the exterior domain Rn \ £l after including the 
decay conditions 
(5.221) 

ü(x) = 
0{\x\2-n) as |ж| -> oo, if n > 3, 
адГ/яо/^+ЭД"1) +O(x)-1 M W - o o , ifn = 2, 

(5.222) 
д0ч{х) = {д0Е){х)(1 

an 
fda)+0(\x\-n) as |ж| -* oo, 1 < j < n, 

(5.223) 

7r(x) = 
Od̂ l1"71) as |x| oo, if n > 3, 
((-VEA)(x), Jôn / Ar) + 0(|x|"2) as |x| ^ oo, if n = 2. 
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In particular, a solution to the exterior problem exists if and only if 

(5.224) / € Im (I J + K*x : L%t (dQ) - L%x_ (dSlj), 
and solutions are unique modulo adding to the velocity field functions from \£A(Rn\f2). 

Proof. — Let e > 0 be as in the statement of Theorem 5.3.6. Then for p G (2—e, 2-he), 
we know that the operator 

(5.225) - \I + Kl : L%x {dU)/uRdn_ — Lpy * (dil)/uR9n_ 

is an isomorphism. Consider the claim that a solution for (5.218) exists if and only if 
(5.219) holds. 

To justify the right-to-left implication, if (5.219) holds, say / = (— \l + K\)g for 
some g G Lpx (dft), then 

+ 
(5.226) u := $g and TT := Qg 
will satisfy (5.218) and (5.220). 

In the opposite direction, assume that / G Lp(dQ) is such that (5.218) has a 
solution (u, 7r). Then, if ^ G \I>A(dfi+), say ^ = V>|an for some ^ G \PA(fJ+), we may 
write 
(5.227) / &J)da= [ 5A(u, TT)) da = [ (8$$, 0), u) da = 0. 

./an -'an «/an 
Hence, necessarily, / G If x (dfi). 
Having established this, we now use the fact that (5.225) is an isomorphism in 

order to find g G L^x (dQ) such that (—1/2 I+ K*y)g -~ f = ulPi ôr some y € ^an_-
If we now set w := <$g and p := Qg in f2, then the pair (w — u, p — n) solves the 
interior Neumann problem with datum vip. We will now make a claim which implies 
that, necessarily, <p = 0. This, of course, entails / = (— \l -f K^)g, proving (5.219). 
The claim just alluded to above is the following: 
(5.228) if (u, TT) solve (5.218) for f = i/(p with cp G Rdn_, then <p = 0. 

To justify this claim, write (4.120) and recall (5.77) to conclude that u = *3)\(u\dn) 
in SI. Going to the boundary then yields 

(5.229) u\ 
an 

G Ker ( - § / + KX : L%+{dSl) - ^ ( 0 0 ) ) = *A(«1+), 

by (5.124). Utilizing this back into (4.120) and relying on (5.96) further gives u G 
\PA(Q+). Hence, i/(p = <9A(2,7r) G vRdn+ by (5.95) and, ultimately, (p = 0 given that 
the sum in (5.73) is direct. This concludes the proof of (5.228). 

To establish uniqueness, if the functions u and ir satisfy the homogeneous version 
of problem (5.218), then u = ^)\(u\dn) in SI, by (4.120). Going non-tangentially to 
the boundary then yields {—^I + K\)(u\dn) = 0 on dSl which shows that u\dQ G 
Ker ( - | / + lirA : LP1,v+-> ^+(dSl)) = *A(3«+), by (5.124), since u\dQ G 
L\jU (dil) to begin with. Hence, u\dn = iA|an for some function ^ G \£A(0+). It 
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remains to invoke (4.120) once again in order to conclude that, by virtue of (5.96), 
u = ij) in fi. This establishes the claim made about uniqueness for (5.218). 

In the case of the exterior domain, a similar argument can be used to establish 
the existence of a solution. The key observation is that the decay conditions (5.221)-
(5.223) are strong enough to guarantee that integral representation formulas analogous 
to (4.120)-(4.121) hold in Rn \ Ù. More specifically, we have 

(5.230) u{x) = - 0 A ( # | 
do. 

)(x) + <<t(dì(u,ir))(x), хешп\й, 

(5.231) n(x) = -^A(^| 
Ad 

)(x) + Q(fi(€9*))(x), x e Rn\Ù. 

These are proved starting with (4.120)-(4.121) written in BR \ Q, where BR is a 
ball of radius R, large enough so that Cl C BR, then passing to the limit as R —> co. 
The decay conditions (5.221)-(5.223) are then used to show that the contributions 
from 8BR tend to zero. With (5.230)-(5.231) in place, the proof of the uniqueness 
then proceeds as for the case of bounded domains. • 

We can also state a similar result for the Regularity problem. 

Theorem 5.5.5. — Assume that Q, C Rn, n > 2, is a bounded Lipschitz domain. Then 
there exists e = e(dQ) > 0 such that for p € (2 — £, 2 + e), the Regularity boundary 
value problem, concerned with finding functions (u, TT) in SI satisfying 

(5.232) 
Au = W, div u = 0 in fi, 
M {Vu), M(TT) G Lp{dQ), 
u = feL\{dtl), 

has a solution if and only if 

(5.233) f&Ll„+(dn). 

In addition, the solution is unique modulo adding locally constant functions to the 
pressure, and there exists C = C(Q,p) > 0 such that 

(5.234) ||M(V€0|U,(an) + ||M(7r)||LP(afi) < C\\f\\Lp1 m . 

Furthermore, a similar result holds for the exterior domain Rn \ Q, after including 
the decay conditions 

(5.235) u(x) = 
0(|x|2-") as |x| —• oo, if n > 3, 
E(x)Â+ 0(1) as |x| —> co, ifn = 2, 

(5.236) dju(x) = 
Odxl1'71) as \x\ -> oo, if n > 3, 
djE{x)A + 0(\x\-2) as \x\ oo, if n = 2, 

(5.237) TT(X) = 
Odxl1'71) as \x\ -•oo, if n > 3, 
(V.EAOE), -4) -f 0(\x\~2) as |x| -> oo, if n = 2, 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2012 



114 CHAPTER 5. THE Lp TRANSMISSION PROBLEM WITH p NEAR 2 

where A € Mr is an arbitrary vector, specified a priori. In particular, a solution exists 
if and only if 
(5.238) /6l?,„.(9fi), 
and solutions are unique modulo adding locally constant functions to the pressure. 

Proof. — Let e > 0 be as in the statement of Theorem 5.3.6. Then for p £ (2—e, 2+e), 
we know that for each A £ (—1,1], the operator 
(5.239) \I + KX : L\^{dQ)/^x_{dQ) —• £?|l/+(0n)/tf_(0O) is an isomorphism. 

We now claim that, if n > 3, 

(5.240) 
Г : L*„+(0il) вЩЭП) —> LïiV+(ôn), 
Г(Л »52) := (U + ^A)5I + 5о2 is onto. 

To see that this is indeed the case, consider an arbitrary / G Lpu+(80). It follows 
then from (5.239) that there exists g\ G L\ (d£l) with the property that ip := 
/ - (|J 4- ifA)#i G v (an). Using (5.116) and Theorem 5.4.1, we can then find 
g2 £ Lp(80) with the property that Sg2 = ip. Thus, T(gi,g2) = / , proving the claim. 
In turn, (5.240) and (11.123) in the Appendix show that there exists C = C(0,p) > 0 
with the following property: 

(5.241) 
V/GL?|I/+(0fl) 3(^1,^) €L?|I/+(ail) 0LP(5fi) with 
T(gi,g2) = / and ||̂ i||Lf(an) + II&IILPOO) < C||/]|LP 

Next, to show that (5.245) has a solution when n > 3 for every given / G L\^u+ (80,), 
it suffices to observe that, if (gi,g2) G Lp1,v (an) 0 Lp(80) are as in the second line 
of (5.241), then 

(5.242) u := 2>Aft + <^2 and TT := #>A£i + Qfc 

will satisfy (5.232) and (5.234). To establish uniqueness, again, when n > 3, as
sume that u and 7r satisfy the homogeneous version of (5.232). Then (4.120) implies 
S(8*(u,7r)) = 0 on 90. Hence, 8x(U,TT) G i/Ran, by (5.127). Utilizing this back in 
(4.120) and invoking (5.76), we finally arrive at the conclusion that u — 0 in O. 

Turning our attention to the case when n = 2, consider in place of (5.240) the 
following claim: 

(5.243) T : Lp1,v+ (an) e Lp(do) 0R2 —• Lp1,v+ (an), 
r(ft,& ,c) := (—1/2|J + Kx)gi +Sg2 + c is onto. 

The first step in justifying this claim is as before. Namely, given / G Lp„+(dO), 
we can find some gx G Lplu+(dO) for which $0 := / - (±J + tfA)<7i G vy (an). 

Since *A (an) <-* Lplv(dO), it follows from Theorem 5.4.4 that there exists g2 G 
Lp(dO) and c G R2 such that S<?2 + c = tfQ, and so the operator f in (5.243) is onto, 
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as claimed. With this in hand, the proof of the existence of a solution for (5.232), 
which satisfies natural estimates, proceeds as in the case n > 3, treated before. 

To prove uniqueness for (5.232) when n = 2, we note that the same argument as 
in the case n > 3 shows that, if u and ir satisfy the homogeneous version of (5.232), 
then 

(5.244) <9A(?Z, ir) = i/(p + ip, for some ip e Ran and ^ e V. 

Plugging this back in (4.120) and keeping in mind (5.76) and (5.183), we may 
conclude that u = SV and TT — Q(y<p) in ft. In turn, this allows justifying the 
integration by parts formula F0 A\(Vu, Vu) dx = fdQ(dx(u, ir),v) da. Since U\QQ = 0, 
we finally conclude that u = 0 in ft, by invoking (5.92). 

The exterior problem can be solved in much the same way. In this case, the decay 
conditions (5.235)-(5.237) with A = 0 are crucial for justifying (5.230)-(5.231) for 
solutions of the homogeneous problem. Granted these identities, we once again arrive 
at (5.244), after which the solution proceeds much as before. • 

We conclude this section with a similar result for the Dirichlet problem. 

Theorem 5.5.4. — Assume that ft C Mn, n > 2, is a bounded Lipschitz domain. Then 
there exists e = e(dto) > 0 such that for p £ (2 — e, 2 + e), the Dirichlet boundary 
value problem, concerned with finding functions (u, n) in ft satisfying 

(5.245) 
Au = V7T, div u — 0 in ft, 
M(u) G LP(öfi), 
йa = f e ltr asi), 

has a solution which is unique modulo adding locally constant functions to the pres
sure. In addition, there exists C > 0 such that 
(5.246) l|M(S)||Lp(ôn) <C||/l|Lp(ôn). 

Furthermore, a similar result holds for the exterior domain Rn \ ft after including 
the decay conditions 

(5.247) û(x) -
0(|x|2"n) as \x\ oo, if n > 3, 
E(x)Â+0(l) as \x\ -+ oo, ifn = 2, 

(5.248) djü{x) = 
0{\x\l~n) as |x| oo, if n > 3, 
djE(x)Â+0(\x\-2) as |x| oo, if n = 2, 

(5.249) 7T{X) 
Oflxl1-71) as \x\ -> oo, if n > 3, 
(VEA(x),i) + 0(|x|~2) as \x\ oo, if n = 2, 

where A e M2 is an arbitrary vector, specified a priori. In particular, a solution to 
the exterior problem exists if / G LPV_ (9ft) and the solution is unique modulo adding 
locally constant functions to the pressure. 
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Proof. — Let e > 0 be as in the statement of Theorem 5.3.6, and fix p G (2 — e, 2 + e). 
Let us now assume that n > 3. Using (5.161) and (5.125), it can be checked (much as 
in the proof of Theorem 5.5.3), that 

(5.250) 
T : LP+(dQ) © LP(dn) —> Ll+(dti), 
T{gu<h) := (hi + Kx)gi + Sg2 is onto, 

and 
(5 251) V/̂ G L-+(9? 3 tiufr) € Ll+(dQ) 0 L^dSl) with 

T(91,92) = f and ll̂ ilUp(dn) + Hflf2lUp(an) < C||/IUp(an)-
Now, given an arbitrary / € L£+(<90), let (gi,g2) e Lp+(dCl) 0 Lp(dft) be as in 

the second line of (5.251). Then 
(5.252) u := <DX9i + ^2 and TT := 0Aft + Qg2 
will satisfy (5.245) and (5.246). 

To establish uniqueness, assume u and n satisfy the homogeneous version of (5.245). 
With xQ £ O fixed, let Q,a be a sequence of sub-domains of O containing xG that 
converge to fi, in the sense described in Lemma 11.12.2 in the Appendix. Define 
Ej(x) := {Ejk(x)}k where Ejk is as in (4.20), and let qj denote the jth component 
of q as defined in (4.21). Then for each 1 < j < n and each Oa, from Theorem 5.5.3, 
there exists v and qf such that 

(5.253) 
Av = Vqf, divv = 0 in O, 
M(Vv),M(tf) €&>'(№), 
v\dna = Ej(x0 - -)|ana. 

Then for each 1 < j < n and each Oa, let 
(5.254) Gj := 4" - v, gj := Qj ~ q' in Sla 

Then Gj and gj will satisfy 

(5.255) divG? = 0intta, G? 
dOa 

= o, 

and 
(5.256) 

OA 

(AG* -Vg?,u)dx = uj(x0). 

We now make the important claim that there exists a constant G > 0 independent 
of a such that 
(5.257) l|M(VGp||iP,(ano) + ||Af(#)||LP,(8nB) < C\\^\\L?(0Qy 

This is a consequence of the specific way in which the solution of the Regularity 
problem has been constructed in the proof of Theorem 5.5.3, Lemma 11.9.13 in the 
Appendix, in which we take Ta to be the operator (5.240) constructed for d^ta in place 
of dQ, and the fact that the Ta's, after being appropriately identified with operators 
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acting on functions defined on 00, converge to T in the operator norm. See (11.206) 
and Lemma 11.12.2 in the Appendix for a proof of this latter claim. 

Combining (5.256) with (4.7) and (5.255) then gives 

(5.258) uj(x0)= J (dx(G°,g^u)dcr. 

dOa 
Then since M(u) G LP(0O) and u\m = 0, we can show via (5.258), (5.257), 

and the Lebesgue Dominated Convergence Theorem that Uj(xQ) = 0 (for this step, 
Lemma 11.12.2 is once again used to first replace the integral on 0Oa with one on 
00; cf. (11.191)-(11.193)). Since xQ was an arbitrary point in O, it follows that u = 0 
in O, as desired. 

When n = 2, the same line of reasoning applies provided that, in place of (5.250), 
this time we use 

(5.259) T : Lp+ (00) 0 Lp(dtl) 0 R2 —• Lp+ (00), 
f(3u42, cS := (hi + Kx)Si + S3* + c. 

The existence of a solution to the exterior Dirichlet problem can be established in 
much the same way. To prove uniqueness, assume u and n satisfy the homogeneous 
version of (5.245) in the exterior domain Rn \ O and also satisfy (5.247)-(5.249). Fix 
R > 0 large enough that O C BR, where BR := {x G Rn : \x\ < R}. Let D be the 
bounded Lipschitz domain given by D := BR \ O. Since u and 7r satisfy the Stokes 
system in the exterior of O, it follows that u\dBR £ LI(9BR), and furthermore since 
u\on = 0, we can conclude that U\QD £ L\^(dD). Theorem 5.5.3 applied for the 
domain D then guarantees that there exists a solution to (5.232) with data / = U\QD. 
Due to the uniqueness portion of Theorem 5.5.4, the only possible solution is u and 
7r, and therefore 
(5.260) MD(VS), MD(TT) G Lp(dD), 
where MD denotes the non-tangential maximal function associated with the domain 
D. This implies that 

(5.261) M(VtZ), M(TT) G Lp(0O), 

and then the uniqueness portion of Theorem 5.5.3 applied to the exterior domain 
forces u = 0, as desired. • 
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CHAPTER 6 

LOCAL L2 ESTIMATES 

For the duration of this chapter we assume that O is a graph Lipschitz domain in 
Rn, n > 2, and set 0+ :=0, 0_:=Rn\fi . Here, we will prove estimates of a local 
nature which will be useful throughout. For some fixed xQ £ 00, let 

(6.1) SR := SR{x0) = BR(x0) H 00. 

Also, define 

(6.2) DR := DR(x0) = {x + ten: xe SR, \t\ < KR}, 

where K, = K,(dQ,) > 0 is a fixed constant, and let 

(6.3) D%:=DRr\Çl+ and DR := DR n 0_. 
If SR := SR(X0), for each c > 0 we also set SCR := SCR(X0), with a similar 

convention for DCR. 

6.1. Pressure, Caccioppoli, and local boundary estimates 
For the duration of this section, assume (u±,n±) satisfy 

Au± = VTT± in 0±, 

(6.4) < divu± =0 in 0±, 
^ M ( W ± ) , M(TT±) G L2(0O). 

Our first local result is the following estimate for the pressure. 

Lemma 6.1.1. — For any q > 1, there exists C > 0 such that 

(6.5) 
1 
2 

DR 
\ir±\2 dx <C 

( / DR 
\Vû±\2dx 

i 
2 + 

С 
R SR 

M(u±)qda 
i 
я 

Proof. — Parametrize DR+ by SR X (0, KR) 3 (y, t) — y ± ten G DR and fix two balls 
B± c Z)̂  of radii comparable to R and such that dist (B±, dD^) « R. For each 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2012 



120 CHAPTER 6. LOCAL L2 ESTIMATES 

y G SR and t G (0, K,R) with y ± ten G using the fact that the pressure decays at 
infinity, the Fundamental Theorem of Calculus, and interior estimates, we may write 

poo poo 
\v±{y±ten)\ < / \(Vir±)(y±sen)\ds < / \(Au±)(y ± sen)\ds 

Jt JciR 
< 

oo 

c; R 

c 
s2 B(y±seN,C2S) 

\u±(z) \ dz^j ds 

(6.6) < CR^M{u±){y). 

Hence, 

(6.7) j 
B+ 

|T±|dx < 
C 
R ^SR 

M(û±) da < 
C 
R ( / SR 

M{u±)qd(T 
) 

i 
2 

According to the work of Bogovskii [6], it is possible to construct two vector fields 
w± in Dft with the following properties: 

(6.8) 

(i) div W± = 7T± — 1 
|B+| D1/R 

тг±)хв± in DRì 

(ii) w± 
9D± 

= 0, 

(iii) HVtfiH^i) < C\\K±\\L2{D±y 
Then integrating by parts, we have 

(6.9) J 7r±(diviu±) dx = J A\{Vu±,Vw±)dxT J (d£(u±,n±),w±} da, 

DR+ DR+ DR+ 

and so using (6.8) and (6.7), 

J |7r±|2ote= J A\(Viï±,Vw±)dx + I J n± dx J ( j - n±dx j 

Dì Pi Pi Dì 
1 
2 

<C I \Vu±\\Vw±\dx + CR^ Í / \n±\2dx ) í f \ir±\dx\ 

DR+ Dì Bk 

<CÍ J\VÜ±\2dx 

DR+ 

i 
2 

j \Vw±\2dx 

DR+ 

1 2 

+ CR% f \*±?dx 

DR+ 

1 
2 

R-1 J-M(Û±)qd<j 

SR 

1 я 
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< c J \Vu±\2dx 

DÌ 

1 2 

j W±\2dx 

Dì 

1 
2 

(6.10) + CRÏ-1 J \n±\2dx 

DR 

1 
2 

j-M{u±)qda 

SR 

1 
g 

which is enough to prove the lemma. 

Our next local result is the following Caccioppoli type estimate. 

Lemma 6.1.2. — Let fi G [0,1), q > 1, and 1 < s < t < 2. Then there exists C > 0 
such that 

J \Vu+\2dx + u J |W_ Ydx 

DÎR d7R 

< C 
R2(t - s) 

j \u+\2dx + , j \u–|2 dx 

tot* D~ÏR 

+CRn~2 (^j M(u+)Oda) 
StR 

2 Q 
+ µ ^ j M(Û-)qda^j 

StR 

2 Q 

(6.11) + C J |(ô^(ix+,7r+),S+) -/x(ô^(ix_,7r_),îZ_) da. 

StR 
Proof. — Let T] G Co°(Rn) be such that rj > 0 and suppr? C D2R. Since Au± = V7r± 
and divix± = 0 in Cl±i using the integration by parts formula (4.6), we have that 
(6.12) 

J AX(VÛ±, W{r,2u±))dx = ± 

DÎR 

j {di(u±,-K±),ri2u±)da + 

S2R 

J n± div (î]2iï±) dx. 

DfR 
Multiplying the minus version of (6.12) by fj, and adding it the plus version gives 

/ Ax(Vu+,V{ri2u+))dx + ii 

DÎR 

J Ax{Vû-,V(r)2u-))dx 

D2R 

(6.13) = J 7r_|_div (r]2u+) dx + /i 

D2R 

J 7r_div (rj2U-) dx 

D2R 

+ V2 ((0*(¿x+,7r+),S+) -/х(0*(й_,тг_),гГ_)) da. 
S2R 
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Expanding the terms V(T;2U±) and div(r?2u±) in (6.13) and using Cauchy's in
equality with epsilon leads to the following estimate, 

J r?2AA(Vu+,Vu+)da; + /i J r)2A\(Vu-,Vu-)dx 
DZR D2R 

<Ce J \Vr]\2\u+\2 dx + fx J |Vr7|2|w_|2cte 
PtR D2R 

+e j r?2(|W+|2 + |7r+|2)dx + M j »?2(|Vu_|2 + |7r_|2)dx 

PtR D2R 

(6.14) + J 7?2|(^(u+,7r+),u+)-M(^(u_,7r_),tr_)| da. 
S2R 

Now for any 1 < s < £ < 2, let 77 have the following properties 

(6.15) 

rj = 1 on DsR 
supp 77 С £>*я 
0 < V < 1 
I|VT7||L~ < 

Using (6.15) and Lemma 6.1.1 in (6.14) then gives 

J j4A(Vu+,Vu+)dx + M J A\(Vu-,Vu-)dx 
KR d7R 

с 
R{t-s) ' 

< Ce J \u+\2dx + (j, J \u~\2dx 

PtR d7R 
R2(t-s)2 

+eC j \Vû+\2dx + fj, J |V«_|2dx 

PÍR DÏR 

+eCRn-2 ^ j M(Ü+)qdc^j 
StR 

2 Я 
+ µ í^j M(Ü-)qda^j 

2 Я 

StR 

(6.16) + j |(0¿(S+, *+),«+)-,|(#(в_,тг_),Й_)| da. 
StR 
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Next, we claim that (6.16) can be improved to 

J \Vu+\2dx + fi J |Vu_|2cte 
DtR d7R 

< a 
R2(t - s)2 

J \u+\2dx + n J \u-\2dx 
DiR D;R 

+ eC J \Vu+\2dx + fj, J |W_|2da; 
PtR D7R 

+ eCRn~2 ^ j M{u+)q<fo^ 
StR 

2 Я 
+ µ ^ j M{u-)qd^j 

StR 

2 Я 

(6.17) + J |(^(Й+,7г+),Й+)-м(^(Й_,7г_),й_)| da. 
StR 

For |A| < 1, this follows by (4.16). For A = 1, (6.17) can be justified using the 
following version of Korn's inequality which we will prove in § 11.4. 

Lemma 6.1.3 (Korn's inequality). — Let D c Mn, n > 2, be a bounded Lipschitz do
main of diameter R and assume that 1 < p < oo. Then there exists a finite, positive 
constant C which depends on p and the Lipschitz character of D but not on JR, such 
that 

(6.18) \\VU\\LP(D) < c{\\Vu + VuT\\LP(D) +ir1|HUp(z>)}, 

uniformly for u G L\{D). 

Next, we state another useful result. 

Lemma 6.1.4 (Hole Filling Lemma). — For any O < 0 < l, a > O, and any non-
decreasing functions A and JB, if / is locally bounded and 

(6.19) f(s) <(t- s)-aA(t) + B(t) + 9f(t) whenever r0<s<t<ru 
then 

(6.20) f(s) < c[(t - s)~aA{t) + B(t)] whenever r0 < s < t < rx. 

For a proof of the Hole Filling Lemma, see the Appendix. Now Lemma 6.1.2 follows 
by choosing e small enough in (6.17) and applying the Hole Filling Lemma. • 

Our next result is a local estimate for Wu± on the boundary. 
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Lemma 6.7.5. — Let // G [0,1). Then there exists C > 0 such tha t 

J (\Vu+\2 + / i | V u _ | 2 ) dor 

SR 

< c 
(I-M)6 

y (/i|VtanU+- Vtan^-|2 + |^(5+,7r+)-/i^(w_,7r_)|2) da 
&2R 

(6.21) + с 
Ä(l-Ai)3 

[ J (|V^|2 + |7T+|2)^ + /X j (|V^_|2 + |7T_|2)^]. 

Dtn D2R 

Proof. — For any 1 < s < t < 2, there exists a smooth vector field h\ such that 

(6.22) < £ » > 1 on SsR> \hl\<C(dn), supp^C DtR, |v£*| < C 
R(t - s) 

Then by applying Proposition 5.1.2 with h — hi and e chosen small enough, we 
can show that 
(6.23) 

j br±|2d < 7 <C /R-t – s) j [|Vn±|2 + |7r±|2] dx + C j \Vu±\2da+\ J \w±\2da. 
SSR DfR stR StR 

Then from the Hole Filling Lemma, it follows that for any 1 < s < t < 2, 

(6.24) J \n±\2da < C /R-t – s) J [\Vu±\2 + \n±\2]dx + C J \Vu±\2 da. 
SSR DfR stR 

Applying Proposition 5.1.3 with h = hi also gives 

J [AA(VS+,Vu+) + /iAA(V£_, W_)] da 
SSR 

< с 
£(1-м)2 

J [|d*(u+,7T+) - /X^(£_,7T_)|2 + /i|Vtan£+ - Vtan^-|2] dff 
StR 

+ e J |VS+|2-|-|7r+|2 + /i|Vi?_|2 + /i|7r_|2 da 
StR 

(6.25) + c 1 
(l-/x) R(t-s) 

[ j (|W+|2 + |7r+|2) dx + » 

KR 

J (|W_|2 + |7T_|2) dx], 

which holds for any 1 < s < t < 2. Consider the case A = 1. Now, fix 1 < s < t < 2, 
and let t' := \{s + t) and s' = |(s + t'). Then 1 < s < s' < t' < t < 2, and also 
s' — s ~ t' — s' ~ t-tf ~ t-s. Then since Ai(Vu±,Vu±) = §|V#± + W±|2, applying 
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Proposition 5.1.4 with h = h*' gives 

J [|Vw+|2 + /z|V«_|2] da< 
SSR 

e(l-M)2 j [i4i(Vff+, Vu+) + /xAi(Vff_, Vw_)2] d<r 

S'R 
+ с 

г(1-м)2 
y [|^(i7+,7r+)-/ia^(iZ_,7r_)|2+/x|Vtanu+- Vtanu_|2]da 

Ss'R 
+ e J [\Vu+\2 + \*+\2 + riVti-\2 + »\*-\2]d<T 

Ss'R 
(6.26) + С 1 (1-/Х) R(s'-s) [ I (|VU+|2 + |7r+|2)dx + M 

DR 

j ( |W_|2 + |TT_|2) dx]. 

D;>R 

Combining (6.26) with (6.25) where s and t are replaced by s' and t' and e is 
replaced by £2(1 — /J,)2 and also invoking (6.24) with s replaced by t' gives 

J [|VU+|2 + M|VU_|2] da 
SSR 

< c 
£3(l-/i)6 

У [|0¿(a+,ír+) - M#(U-,7T_)|2 + At|Vtanit+ - Vtanw-|2] da 

StR 

+ eC ' J [|Vu+|2 + |7r+|2+M|V«_|2+HT_|2]d<T 

St'R 

+ C 1 
e(l-fx)3 R(t'-s) 

[ У (|Vn+|2 + |7T+|2) ¿C + M 

t'R 

J (|V«_|2 + |7T_|2) dx] 

D7>R 

< c 
e3(l-M)6 

J [|a;(S+,jr+) - доЗ(«_,7г_)|2 +/x|VtanW+ - Vta„w-|2] da 

StR 
+ eC У [|V«+|2 + ¿Í|W_|2] do-

StR 
(6.27) + c 1 

e(l-/i)3 R(t-s) [ j (\Vu+\2 + \n+\2)dx + » 

KR 

j (|W_|2 + |7T_|2) dx]. 

D7R 

Since (6.27) holds for every 1 < s < t < 2, after choosing e small enough, applying 
the Hole Filling Lemma gives 

j [|Vt?+|2 + M|W_|2] 
SSR 
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which holds for any 1 < s < t < 2. This is enough to prove the lemma in the case 
A = 1. For |A| < 1, there exists C\ > 0 such that |Vu±|2 < C\A\(S7u±, Vu±). In this 
case, (6.28) is not needed, and the lemma follows more directly by combining (6.25) 
and (6.24) and using the Hole Filling Lemma as above. • 

The previous lemma also implies the following. 

Lemma 6.1.6. — Let /x G [0,1). Then there exists C > 0 such that 

J (|V£+|2 + /x|Vu_|2) da 
SR 

< c 
(I-M)6 

J jjd*(u+,7r+) -/i^(iT_,7r_)|2 + /i|Vtan^+ - Vtan^-|2] da 
StR 

(6.28) + с 
(l-/x)3Ä(t-s) 

-[ j (\VU+\2 + \K+\2)dx + n 

D+R 

j (|VÄ_|2 + |7T_|2)dx], 

d7R 

< с 
(1 - µ)6 j (|Vtanu+ - /iVtan«_|2 + n\di(a+,ir+) - ^(«_,7r_)|2) da 

S2R 

(6.29) + c 
fl(l-A*)3 

j (|VÄ+|2 + |7T+|2)(ix + M 

\PÎR 

J (|V£_|2 + |7r_|2)<to 

»2~R 

Proof. — For /x G (0,1), this lemma follows by reversing the roles of fi+ and f2_, 
applying Lemma 6.1.5 to the functions 

(6.30) V+ = flU-, p+ = /X7T_, V- = t?+, P- = 7T+, 

and then dividing by /x. For /x = 0, the lemma follows by simply taking the limit as 
/x->0+. • 

6.2. Reverse Holder estimates 
This section will be devoted to proving the following result. 

Lemma 6.2.1 (Reverse Holder Inequality). — Let a G (1,2] and let Ds C Rn, n > 2, be 

a family of Lipschitz domains such that 

(6.31) diam(Ds) ~ s ~ \Ds\n and Ds C Dt for s < t. 

Ifue C^R71) satisfies 

(6.32) / I Vu\2 dx < C f \u\2 dx for every r < s < t <ar, 
JDS \T-S) JDT 
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then for any p > 0 and there exists C = C(p, a) > 0 such that 

(6.33) (/ \u\2dx) 
Dr 

1 2 <c(j \u\pdx) 
Dar 

1 
p 

Proof. — For p > 2, the lemma follows from Holder's inequality. Assume 0 < p < 2. 
By dilation, it is enough to consider the case when 

(6.34) j 
Dr 

\u\pdx = 1, 

and to show that there exists a constant C > 0 such that 

(6.35) / 
J D1/A 

\u\2 dx < С. 

Assume 

(6.36) / 
JD1/A 

\u\2dx > 1. 

Fix 2n n+2 < q < 2. By the Gagliardo-Nirenberg-Sobolev inequality, there exists a 
finite, positive constant C = C(n, q) such that 

(6.37) (f 
Dy 

\u\ n — q dx} n-q 
jk <Aif Ds 

\Vu\q dx} l 9 + (f 
Dr 

|«|« dx) 
1 9 

After dilation, we are in the case when r = 1/a and so after applying Holder's 
inequality and (6.32) in (6.37), we have for l 

a 
< S < t < 1, 

( / . Dr 
M 

nq n-q dx 
n — q nq < C [ • ( / o8 

|Vu|2dx) 
1 
2 + (f 

Dr 
|iz|2 dx 2 

(6.38) < C s2 1 1 
(£-s)2 Dr 

\u\2dx + l_ 
Sn DT 

\u\2 dx l 2 

Using the fact that l 
a 

< s < 1 in (6.38) then gives 

(f 

Dr 
\u\ 

nq n — q dx} 
n — q nq 

< Ca 
n-2  2 1 

(Í-S)2 + 
1_ 
s2 

1 
2 

Dr 
|i¿|2 dx 

i 
2 

< Ca 
n-2  

2 1 
(1 - S)2 

1 
2 

2 Ì 
2 (f 

Dr 
\u\2 dx 

i 
2 

(6.39) < 
Ca n 2 

(1 – S) ( / Dt 
\u\2 dx i 2 
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Define I(s) := ( JDs \u\2 dx} 2, and choose a e (o, 2(n-q)/nq such that nq a+p (1 -
a) = 2. Then by Holder's inequality, 

I(s)2 = f \u\2dx= [ \u\^a\u\p^-aUx 
JDS JDS 

(6.40) 

By a change of variables, we can write 

< 
Ds 

\u\ nq n-q dx I D8 
\u\pdx l-Q <_c( 

DS 
\u\ n-q dx a 

and so by (6.39), 

(6.41) 1(8) 2(n-q) nqa < C 
D, 

\U\ 
nq n — q dx 

n — q nq 
< c 

t-s 
( / \u\2dx) 

DT 

l 
2 

C 
t-s I(t). 

Prom (6.41), it follows that 
(6.42) In I(s) <C0 + 0 \nl(t) - 0 ln(t - s). 
where 0 := nqa 2(n-q) G (0,1). In particular, if we let t = s7 for some 0 < 7 < 1, then 
(6.43) In J(s) < C0 + 0 In J(s7) - 0 ln(s7 - s). 

Integrating (6.43) over s G [̂ ,1] against ds/s gives 

(6.44) 
А/а 

.1 ln/(s) ̂ ds 
s 

<C0 + 0 1 
l/a 

lnJ(s7) ds 
s -0 

1 

l/a 
ln(87 - S) ds 

s 

(6.45) 0 i* I n — = 7 " ^ C lnl(s)— < 7~10 f In J(a) —, 
•/l/a S J(l/a)i S Jl/a s 

after which (6.44) becomes 

(6.46) (1 - 7-10) / lnl(«) — < C(0,7). 
A/a 5 

Since /(5) is non-decreasing, 
(6.47) ( i _ 7 - ^ ) ( i - I ) l n / ( I ) < ( i _ 7 - ^ ) / In /W-<C(ff ,7), 

^1/0 5 
which implies that 

C(g,7,q) 
(6.48) I{\) < ED-^-1^) = C(0ii,p,a). 

Thus, the lemma holds. • 
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CHAPTER 7 

THE TRANSMISSION PROBLEM 
IN TWO AND THREE DIMENSIONS 

The goal of this chapter is to establish the atomic theory for the transmission 
problems (4.155), (4.156) in the case when ft is a graph Lipschitz domain in R2 or 
R3. In practice, proving that (T+) is well-posed for arbitrary graph Lipschitz domains 
automatically implies that (T~) is well-posed for arbitrary graph Lipschitz domains 
because of the symmetry of the geometry. With this in mind, in subsequent work we 
will often drop the sign and just refer to the transmission problems as (TM) := (T+) 
and (T„)* := (T+)\ 

Assume O C Rn is a graph Lipschitz domain, and set ft+ := ft, ft- := Rn \ ft. We 
will prove that there exists e = e(dft) > 0 such that (T )̂ and (TM)* are well-posed 
for every p G [0,1) and for 

(7.1) § - e <p <2 + £, n = 2, 
(7.2) l - £ < p < 2 + e, n = 3. 

With the case when p is near 2 well understood, we will first establish well-posedness 
for p < 1, and then use interpolation to handle the case 1 < p < 2. 

7.1. Uniqueness 
Recall (4.155), (4.156). In this section, we will prove a few uniqueness results. 

Theorem 7.1.1. — Let £1 be as above, n > 3, fi G [0,1), and fix 1^ < p < n — 1. 
Assume that there exists 1 < q < n — 1 with the following properties: 

(7.3) 
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(i) n 
n-1 

< 1 
p + 

1 
Q < 

n+ 1 
n - 1 

(7.4) 
(ii) for any / G Lq(dQ),geL\{dSl), a solution of (TM)* with data (/,#) exists. 
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Then if (u±,7r±) solves the homogeneous version of (X )̂*, the functions u+ 7r+, 
liu-, and /i7r_ must be constant. Moreover, the same result holds if we replace (TM)* 
with (TM). 

First, we record an auxiliary result, whose proof is given in the appendix. 

Lemma 7.1.2 (Hardy's estimate). — Let ft C RN, n > 2, be the domain lying above the 
graph of a Lipschitz function tp. Assume w is biharmonic in O and M(Vttf) G Lp(d£l) 
for some p < n — 1. Then there exist constants c = c(w) G M and C = C(dQ.) > 0 
such that 

(7.5) \\M(w - c)||LP.(an) < C||M(V«;)||Lp(an) where 
1_ 
P* = 

1 
P = 

1 
n - 1 

Proof of Theorem 7.1.1. — Assume (U±,TT±) satisfy 

(7.6) Au± = VTT±, divi?± = 0 in fi±, M(V£±) , M(TT±) G Lp(dQ), 

along with 

(7.7) u1 an 
= U-

an 
9̂ ({?+,7r+) = pd„(iï-,n-) on dft. 

Applying Lemma 7.1.2 to u±i there exists c± G Mn such that M(u±—c±) G Lp* (90) 
where p* = l 

p 
- l 

n-1 
. Using the first transmission boundary condition in (7.7), 

(7.8) c_ - c+ = (u+ - c+) - (u_-c_) GLP (ôfi), 
dft an 

and so c+ = c_ =: c. Let us re-denote ü± — c by iT± and then we will show that 
u+=0 and µu = 0. Fix x0 G RN \ dft and 6 G RN. Also, let 

(7.9) v := E(- — x0)b and q ' = q(- ~ x0) • 6, 

where E and <f are as before. Then (#, satisfies 

(7.10) 
A ¿7- Vq = 0 in Mn\{x0}, 
diviT= 0 in Mn. 

We also have that d${v, q) G Q Lr(dfJ) and so by (7.4), we can find (w±,p±) that 
r>l 

solves 

(7.11) 

Aw± = Vp± in fi±, 
divi?± = 0 in ft±, 

u1 
an 

— W-
an 

di(w+,p+) - MflA(«f_,p_) = (1 - µ) dyv (v, q) G Lq(0Î1), 
M(V«;±), M(/9±) € L«(flïî). 

Notice also that, by subtracting an appropriate constant as before, we can even 
choose w± so that M(w±) G Lq* (dCt). Then the functions 

(7.12) G± :=w±-v and g± := p± - q, 
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must satisfy 

(7.13) 

AG± = V0± in «±\{x0}, 
div G± = 0 in Q,± 
G+\ = G _ 

an an 
d*(G+ìg+) = iMdi(G-ìg-)ì 
M(VG±), M(^±) G L«(«l). 

Fix R > 0, and let ip € C°° be such that 

(7.14) 

SUppV> C J?2ii(̂ o), 
ip = 1 on BR(x0), 
liv^iu- < ç 

R I|V2VIU~ < с 
R2 

Applying the integration by parts formula (4.7) to (G±,g±) and (ipu±,ilj7r±) gives 

J (LXG± - Vg± , \l)u±) dx 

O+ 
= ± y [(^(G±,g±),V«±) - <#(^r±>^r±),&fc>] do-

+an 
+ J(Lx(il>u±)-V(V>7r±),G±)dx 

O+ 
+ J |#± div (фй±) — 7Tt/;(div G)J 

f2± 
= ±j[(dì(G±,g±),rPU±) - ((д„ф)й±+фд£(й±,ж±),0±) 

an 
+ J(LxÛ-V7r±^G±)] da 

O+ 
+ J (2(Vû±)TVip + (Аф)и± + Л (divu±)VV> + VÄ±V^ -h (V2V>)#± , G±^ dx 
O+ 

(7.15) 
+ y{-(TT±V^,G±)+0± ^(div5±) + (5±,V^>]-7r±^(divG±)}dx. 

O+ 
Let us set i? := t?± in îî±, 7r := 7r± in fî±, with similar conventions for G, # and -LtT, 

p. If we now multiply the minus version of (7.15) by /x and add it to the plus version, 
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and then use (7.7) and (7.13), we obtain 

J {LXG+ - Vg+ , i>u+) dx + p, 
O+ 

J (Lx6--Vg-,il>it-)dx 

17_ 
< J \{(d„ip)Ü,G)\da+ j |̂ 2(Уг?)тУ^ + ЙД̂  + А[(Ук)У^ + (У2^)и],с)|£га; 

an R"\an 
(7.16) 

+ j [\(7rVi>,G)\ + \g\\(UW)\]dx. 
Rn\dO 

Define AR := B2R(x0) \ BR(xQ) and SR := AR D d£l. Then using (7.14), 

J {LXG+ - Vg+ , ipu+) dx + fj, 

O+ 

J {LxG--Vg-,ipu-)dx 

n_ 
< 

C 
R / HG\ + 

SR 

C 
R / |VÄ||G| + 

AR 

C 
R J M\G\ + 

AR 

C 
R J \m + 

AR 
R? 

j \u\\G\ 
AR 

(7.17) = : / + / / + / / / + IV + V. 

It also follows by direct calculation that 

(7.18) |S| < с 
Rn~2 

and |5| < C 
Rn~l on AR. 

We will also need the following lemma which is proved in [29]. 

Lemma 7.1.3. — For every Lipschitz domain Q C Rn, n > 2 (assumed to be either 
bounded or of graph type) and any number p > 0, there exists a finite constant 
C = C(Q,,p) > 0 such that the estimate 

(7.19) IMIw(»-D(ft) < C\\M(u)\\LP{dn), 

holds for every continuous function u in ft. 

Applying Lemma 7.1.3 to the functions u, Vt?, 7r, W, VW, and p allows us to conclude 
that 
(7.20) 

Vu, 7r G Pn- (S2±), Vw, p G Lqn-n-1 (fi±), u G Lp n (ft±), and w e Lqn (fi±). 
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Combining (7.18) and (7.20), we see that there exists C > 0 independent of R such 
that for R > 1, the following estimates hold: 

(7.21) 

||G|| 
L £5 (AR) 

< Nil 
L n-1 (AR) 

+ WW q* n n-1 (AR) 

<c + 
c 

Rn-2 (RN) 
n-1 q*n <C(1 + R (n - 1) (1/v -1) ) < c, 

(7.22) 

\\G\\LI*{SR) < \\M{w)\\Lq*(SR) + ||t7||L,.(Sjl) 

<C + C 
RN-2 

(i?n-1) l 
9* 

<C(1 + R (n-D(J-i) ) < C, 

(7.23) 

N1 
L 7^ (AR) 

< \\P\\ 
2 

9N n-1 (>1R) + ||q|| qn n-1 (AR) 

<c + c 
RN~L (RN) 

n-1 qn < C(l + i?(n-1} (¿-1) ) < c. 

It follows from (7.3) that 

(7.24) 1 
P* + 

1 
2 = 

1 
P + 

1 
0* 

< n 
n - 1 

and _1_ 
p* + 1 

q* 
< 1, 

and so we can define /3 > 0 by 

(7.25) p := 1 
P + 

1 
3 = 

71 
n - 1 = 

1 
P* 

+ 1 
9 

- 1 = 
1 
P + 

1^ 
q* – 1 = 

1 
P* -

1 
q* 

n – 2 
n – 1 

Returning to (7.17), by (7.20)-(7.23) and Holder's inequality, we have that as 
R —* oo, 

J < C 
R ( / Sr 

WW |P' 
1 
p* 

SR 
|G|Q-* 

1 
g* (Rn - 1) 1-l 

P* 
-4 l 

q* 
< CB"̂ (n_1) — 0, 

II < C 
R AR 

Vfi 
n-1 p n 

Ar 
|G| n-1 

n-1 
q*n (Яп)1-

n-1 p n n-1 q* n < CJT^"-1' - 0, 

III < c 
R ( Í M** 

AR 

n-1 p n 
(Í \Ö\& 

AR 

n-1  q* n 
(Rn) 1 – 

n-1 pn rt-1 q*n < CR-K"-1) 0, 

7V< C 
R AR 

|u| 
n-1 p*n 

AR 
|g| 

n-1 qn 
(Rn)1 – n-1 p* n n-1 qn < CR-^N~L) -» 0, and 

(7.26) 

V < с 
R2 / \ ф 

AR 

n-1 p * n 

AR 
ICI n-1 

n-1 q* n 
(iT)1-

n-1 p*n n-1 q* n < czr^"-1* - 0. 

Hence, from (7.16), 

(7.27) / (LXG+ - Vg+ , фи+) dx + ß 
O+ 

j (LAG_ - Vg- , vu– ) dx = 0. 
d+ 
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As a direct consequence of the particular construction of the functions (G, g) as a 
fundamental solution for the Stokes system, it follows that 

(7.28) J (L\G - Vg, UI/J) dx = (u(x0), b). 
Rn\dQ 

If x0 GO+ then L\G- - Vg- = 0 in O- and so from (7.27) and (7.28), (u+(x0),b) = 
0. Then since this holds for every xQ G fi+ and b G Rn, we must have -u+ = 0. 
Similarly, if we instead consider the case when xQ G 0_, it follows that pu- = 0. 

If we instead assume that (u±,ir±) solves the homogeneous version of (TM), then 
(7.7) will be replaced by 

(7.29) u+ an = и ti en 
фYv(г+,7г+) = #(й_,*г_) on an. 

Proceeding in a similar fashion as before, this time we can use the hypothesis to 
construct functions (G±,g±) that satisfy 

(7.30) 

AG± = Vg± in íl± \ {x0}, 
divG± =0 in il± 
G+ =/iG_ , an an 
dì(G+,g+) = dì(G-ìg-)ì 

{ M(VG±), M(g±) G L«(ôfi), 

along with (7.28). The rest of the proof follows similarly to the previous argument, 
except this time we use (7.29) and (7.30) in place of (7.7) and (7.13). This concludes 
the proof. • 

Although the previous theorem is stated for n > 3, it will be most useful when 
n = 3, since in this case, if 2/3 < p < 1, we can always find q close enough to 2 that 
satisfies (7.3)-(7.4). Since we are also concerned with the two dimensional case, we 
will need the following result (the reader is advised to revisit the conventions made 
at the beginning of § 7): 

Lemma 7.1.4. — Let fi C t2 be a graph Lipschitz domain and set f2+ := fi, ft- := 
3Rn\f2. For p G [0,1) and 1/2 < p < 1 fixed, assume that (i?±, ir±) solve the homogeneous 
version of either (TM) or (TM)*. Then the functions tT+, 7r+, /itt_, and /i7r_ are constant. 

Proof. — Since M(Vu±) G Lp(dii), after subtracting a suitable constant from u±, 
we can conclude from Lemma 7.1.2 that M(u±) G Lp* (dQ) where 1/p* = 1/p — 1. Then 
by Lemma 7.1.3, the locally integrable function u := u± in Í2± satisfies u G Lq(R2), 
where 1/q = l/(2p) — 1/2. Note that | < p < 1 forces <j G (2, oo). In the same context 
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as that of (6.6), we now have 

\n±(y± ten)\ < •OO 
cR 

c_ 
s2 B(y±sen,c2s) 

\u±(z)\qdz 1/9 ds 

(7.31) < C||tr||L,(R2) -OO 
cR 

ds 
s2+2/g 

= CR-1-2'11, 

(where C depends on u), leading to 

(7.32) / ^dxKCR-1-21*, 
J B± 

in place of (6.7) and, further, to 

(7.33) \J B(0,A)nQ± 
|7г±|2 dx 

1 
2 < c 

B(0,Ä) 
I W|2 dx 

1 2 
+ CR~1-2,q, 

in place of (6.5). With this in hand and by proceeding as in the proof of Lemma 6.1.2 
we obtain that, whenever /i G [0,1), 
(7.34) 

«/B(0,fi)nft+ |V#+|2cte + /x 
В(0,Я)ПГ2_ 

|Vu_|2dx < с 
R? I 

'B(0,2R) 
\Ü\2dx + CR~4/q, 

which should be compared to (6.11). Using the fact that u G Lq(R2) for some q > 2, 
allows us to estimate 

(7.35) C_ 
R2 I 

'Б(0,2Я) 
\u\2dx<CR~4/q, 

hence altogether 

(7.36) 
'B(0,R)(l£l+ 

\Vü+\2dx + jjL 
/ß(o,Ä)nn_ 

\Vu-\2dx<CR~4/q, 

by (7.34)-(7.35), where C is independent of R. Letting R —• oo then proves that u+ 
is a constant in O+ and that fiU- is a constant in f£_. • 

7.2. Atomic estimates 
This section will be devoted to proving the following two results. Recall the con

ventions made at the beginning of § 7. 

Proposition 7.2.1. — Assume Q C Mn, n > 2, is a graph Lipschitz domain and fix 
À G (-1,1] and [i G [0,1). As usual, set fi+ := fi, := Rn \ Ù. Assume there exists 
1 < q < n-1 

n-2 j such that the operators ± 1 l+M 
2 1-u 

/ +JRTA are invertible on L9(dfi) and the 
L9 Dirichlet problem is well-posed. Then for (n-l)g 

n-l+g 
< p < 1, there exists C > 0 such 
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that for any /G Hpt(dQ) and g € HllP(dQ): there exist functions (U±1TT±) that solve 
(Tp)* (cf. (4.155) and the discussion in the beginning of § 7) and satisfy 

||M(Vff+)||Lp(ôn) + ||Af(7r+)||Lp(ôn) 

(7.37) + |̂|M(Vtï_)||Lp(ôn) + H|M(7r-)||Lp(an) < C (\\9\\H^(dn) + ll/1kt(ôn)) • 

Proposition 7.2.2. — Let Q, C Rn, n > 2, be a graph Lipschitz domain in Rn, n > 2, 
and set ft+ := ft, := En \ Û. Also, fix À G (-1,1] and \i G [0,1). Assume there 
exists 1 < q < n-1 

n-2 such that the operators ± 1 1 + u 
2 1-u 

•I + K\ are invertible on Lf (9Î2). 

Then for (n-l)q 
n-l+g 

< p < 1, there exists C > 0 such that for any / G Hpt(dCt) and 
¿7 G HalP(dQ.), there exist functions (t?±,7r±) that solve (TM) and satisfy 

HM(Vtt+)||Lp(an) + ||Af (7r+)||Lp(0n) 

(7.38) +/x||M(Vi?_)||Lp(aQ) 4- /i||M(7r_)||Lp(TO) < C (\\g\\H^m) + ||/1lfr;t(an)) • 

Arguing as in the proof of Theorem 5.2.3, to prove Proposition 7.2.1, we can reduce 
matters to considering the case when g = 0. We will first consider the case when / 
is a (p, oo)-atom as defined in (2.30). Fix p such that 

(n-l)q 
n-l+g < p < 1, and let a be a 

(p, oo)-atom. Since a G L2(dQ), from Lemma 5.2.1, we can define 

(7.39) 
U ± := l 

i-/i 
9* (" 1 l+/x 

2 l-/x 
i + KD-Ч in fi-fc, 

7T± := l 
l-M 

Q (( — 1 l+M 
2 l-/i 

i + KD-Ч in iî±. 
By Proposition 4.2.3, (4.29), (4.47), and (4.45), the functions (U±,TT±) will satisfy 

(7.40) 

Au± = VTT± in ft±, 
divu± = 0 in ft±, 
iT+1 = it _ , Ian Ian 
d$(u+, 7T+) - p, (w_, TT_) = a on 9ft, 
||M(W±)||L2(an) + ||Af (7r±)||L2(DN) < C\\d\\L2{dQ). 

Our goal is to show there exists C = C(<9ft) > 0 such that 
(7.41) 
||M(VtI+)||Lp(an) + \\M(<ir+)\\LPm) + »\\M(Vu-)\\LP{dQ) +/x||M(7r_)||LP(aQ) < C. 

By dilation, it is enough to consider the case when a satisfies 
(7.42) suppa C 5i(0), ||3||i,°°(0n) < 1, and 

an 
a da = 0. 

To begin, we will need the following auxiliary result. 

Lemma 7.2.3. — Assume ft is a graph Lipschitz domain in En, n > 2, and let a be 
as in (7.42). Then for 1 < p < oo, there exists C = C(dft,p) such that 
(7.43) \\M{0a)\\LP{dn)<C. 
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Proof. — First, notice that there exists Co(dQ, K) > 0 such that 
(7.44) \x - y\ < C0\z - yl Vx,yedQ, z e T(x). 

Fix x = (x',xn) e dfl and z 6 T(x). Then from (7.42), we can write 

(7.45) №*) = j E{z - y)a{y) da(y) = 
Si(0) 

(E(z - y) - E(z)) a(y) da(y). 

Then 
(7.46) \E(z -y)- E{z)\ < C\y\\(VE)(z - 0y)\ < C \v\ 

\z - 6y\n~l 
for some 0 < 6 < 1. In particular, if y G -Si(O) and x G dfl \ 52c0(0)> tnen 

(7.47) \z - 6y\ > \z\ - e\y\ > 

ad 

1 
Co 

-\x\-e\y\> l 
2CQ 

|x|', 

and so from (7.45) and (7.46), 

(7.48) 1*ВД1 < C 
|x/|n-l Vxedn\S2Co(0). 

Thus 

(7.49) 
dQ\S2Co(0) 

\M(<^a)\pda < C 
Rn-̂ BiCO) 

Co 
b'|("-i)p 

dx' < C. 

Also if n > 3, from (7.44), 

(7.50) \M{^a){x)\ < С 
suo) 

Co 
\x-y\n~2 

\d(y)\d(T. 

A similar estimate holds in the case n = 2 when the term \x — y\ ^n ' is replaced 
by 1 + | log \x — y\\. In either case, it follows by Schur's Lemma that 

(7.51) 
S2c0(0) 

\M{<Jo)\pd<j<C 
S2C0(0) 

\a\pda < C, 

which, combined with (7.49), finishes the proof. • 
The previous lemma allows us to prove the following useful estimate. 

Lemma 7.2.4. — Retain the same setting as in Proposition 7.2.1. Let the function a 
be as in (7.42) and (U±,TT±) be as in (7.39). Assume that there exists some q > 1 
with the property that the operator — 1 1 +U 

2 1-u 
I + K\ is invertible on Lq(d£l) and the 

Lq Dirichlet problem is well-posed. Then there exists C = C(q, dQ.) > 0 such that 
(7.52) \\M(u±)\\Lq{m)<C. 

Proof. — First, since |Sa(#)| < M{c$a){x) for every x G 9ft, using the previous 
lemma we have 

(7.53) \\SS\\LPm) <C(dn,p) for K p < o o . 
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Since u+\dn = S-ldn? multiplying the minus version of (4.143) by /x and adding it 
to the plus version gives 
(7.54) (1 – µ) 11+E 2 T + Kx) (ffilsn) = 5(ô^(tî+,7r+) - M^(tr-,7r-)) = S3. 

Since — 2 1-/LI / + K\ is an invertible operator on Lq(dQ), from (7.54) we have 

(7.55) u± 
ad 

= 1 
1-М 

(-
1 l+M  2 1 - u т + кЛ -1 (53). 

Then from the well-posedness of the Dirichlet problem, we have 
||Af(tZ±)||£«,(an) < C||w±|an||L,(an) 

(7.56) < C| | ( - 1 1+M 
2 1-u 

J + ^A) 1||j?(L«(ôn)) * ||̂ «||x,«(dn) < C» 
where, for a linear, bounded operator T mapping a quasi-Banach space X into itself, 
11̂11 l(x) denotes the operator norm. This finishes the proof of the lemma. • 

Next, define the boundary annulus 

(7.57) AR := {{x',<p{x')) : x' G Rn_1, JR < \x'\ < 2R} C 00. 

For u defined in 0±, let 

(7.58) M°R(u){x) := sup{|u(i/)| : y G r±(x), [x - y| < R} x G 00, 
Mg(u)(x) :=sup{|ti(y)| : y G r±(x), |x - y| > R}x G 00. 

For any real homogenous constant coefficient elliptic operator L and a function u 
satisfying Lu = 0 in a domain 2) C Mn, we have the well-known interior estimate 
(7.59) \Dau(x)\ < CS~W(x) max \u(z)\, 

\z-x\<-2 

where S(x) = dist(x,02>) and a is any multi-index (cf. [70]). Now there exists con
stants rj > 0 and «* > 0, depending on 9ft and ft such that for any x G 00 and 
y G T±(x) \ BR(x), it holds that BvR(y) C r± (x) C 0±. Fix x G 00 and let 
2/ G r±(x) \ BR{x). Specializing (7.59) to the case when the domain 2) = BnR(y) 
gives 

(7.60) |VfT±(y)| < 
C 

nK 
max tt±(2) , 

\*-y\< 2 

and then since BriR{y) C rj*(x), it follows that 

(7.61) |W±(y)| < C 
nR 

M*(£±)(x), 

where M* is the non-tangential maximal function associated with the cones TK*(x). 
Taking the supremum over both sides for y G T(x)\BR(x), we see that for any x G 00, 

(7.62) M^(W±)(x) < C 
rjR 

M*(u±)(x). 

Next, we need a similar estimate for the function n. Fix an x G 00 and y G 
T±{x)\BR(x). Let u; = y—s 

\y~x\ 
, and then for any £, |y + to; — x\ = \y — x\ +1 . Since we 
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know the pressure decays at infinity, the Fundamental Theorem of Calculus gives us 
that 

roo poo 
(7.63) kfc(y)|< / |(W±)(|, + MI<ft-= / \(Au±)(y + tu;)\dt. 

Jo Jo 
Now since y + tu G r±(x) \ Bt+R(x), for the same n and AS* as before, we have 

B>n(t+R)(y -r- &<;) C T^*(x) and using a similar estimate as before gives 

(7.64) \(Au±)(y + tu;)\ < C 
W + R))2 

M*(u±)(x). 

Then for any y e T±(x) \ BR(x), 

(7.65) |7r±(y)| < C 
r,2 M*(u±)(x) 'OO 

0 
1 

(t + R)2 
dt < с 

R M*(u±){x). 

Taking the supremum of both sides then gives 

(7.66) Mg(*±)(x) < 
C 
R M*(S±)(x). 

Since (n-l)g n-l+g < p < 1, we have that q < 
(n-l)p 
n—l—p < n-1 n-2 . Define 

(7.67) 7 := (n - l)p 
q 

- (n - 1 - p) > 0. 

Then using (7.62), (7.66), Holder's inequality, and Lemma 7.2.4, we can conclude 
that 
(7.68) 

AH 
M%(Vu±)p + M%(n±r < 

c 
ftp Of M*(u±)qda) 

u an ' 

1 
Q • (iT-1) Ì p 1 

Q 
p 

< CR-**. 

We need to prove a similar estimate for M£(VS±) and M£(7r±). The first step will 
be to establish the following estimate. 

Lemma 7.2.5. — Let a be as in (7.42) and (u±i TT±) be as in (7.39). If S2RC[S1(0) = 0, 
then 

(7.69) J [|W+|2 + |TT+|2] dx + ii j [|V x̂_|2 -h |TT_|2] ^ < C^-2~f (ri-1). 

D+R DR 

Proof. — Combining Lemma 6.1.1 and Lemma 7.2.4 gives 

(7.70) J K±|2dx < С 
Dt 

j IVÜ^dx + CR"-2-^-1), 

DtR 
and so to prove the lemma, it is enough to show that 

(7.71) j |Vu+|2dx + n j |V«_|2dx < CRn-2^(n-1). 
D+H D-
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From (7.40), it is clear that 

(7.72) (^(u+,7r+),u+)-/x(a^(u_,7r_),u_) = (a,u+)=0 on S2R, 

and so combining Lemma 6.1.2 and Lemma 7.2.4 leads to the estimate 
(7.73) 
/ |V£+|2 + p 

DaR 
/ |V«-|2< 

d7R 

с 
R*(t - sf [ J \u+\2dx + fj, 

DtR 

j \u_\2dx] +CiT-2-?(n-1) 

DtR 
for every 1 < s < t < 2. Note that we can assume that 
(7.74) 
Rn-2-Z(n-l) < 1 

R2(t-s)2 
^ J \u+\2dx+ii 

DtR 

J \u-\2dx\ 

DtR 
whenever 1 < 5 < t < 2, 

otherwise we can prove (7.71) directly by using (7.73). Now, using (7.74) along with 
Lemma 7.73, we have 

(7.75) J \Vu+\2dx+p 
DtR 

J \Vu-\2dx< 

d7R 

2C 
R2(t-s)2 [ J \u+\2dx+p 

D+R 

J \u.\2dx} 

D-R 
Define 

(7.76) u := u+ in ft-f, 
U- in ft_. 

Then if fi € (0,1), we can rewrite (7.75) as 

(7.77) j \Vu\2dx< 
DTR 

2C 
pR2{t-s)2 J \u\2 dx, 

DTR 

and so applying Lemma 6.2.1 and using Lemma 7.2.4, we can conclude that 

(7.78) \u\2dx) 
DR 

1 
2 <C \u\qdx^j 

DaR 

ì 
< С (У М(и)9 dx) 

SaR 

1 Я < CR~^{n-l). 

Combining (7.77) and (7.78) finally gives 

(7.79) j \Vu±\2dx < 

D+R 

с 
в? 

j \u\2dx<CRn-2-^n-x\ 

D3/2R 

as desired. The analogous result follows similarly when \i — 0, although in this case, 
we can apply Lemma 6.2.1 more directly using (7.75). This finishes the proof of the 
lemma. • 
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Now assume S6R D Si(0) = 0. Then <?*(#+, 7r+) - fi df)(u-, 7r_) = 0 on S^. Using 
the well-posedness of the L2 Regularity problem, we have for each s G [1, §], 

y[M^(Vu+)2 + /iM^(Vw_)2]da<c[ y MD+R(V£+)2d(7 + // y MD-̂ (V#_)2dcrJ 

sR dD+sR °d7R 

<C[ j |VtanW+|2(f<T + M f IVtanU-l2^] 

9KR 9d7R 

<C J [|Vu+|2 + /z|Vu_|2]d<7 
SSR 

(7.80) + C[ J \Vu+\2da + n J |Vu_|2dcr]. 

BD+R\an 9D;R\an 

Integrating (7.80) over s G [1, §] and applying Lemma 6.1.5 and Lemma 7.2.5 then 
gives 

J M%(Vü+f + fj,MR(Viï-.)2 da 
SR 

< 
C 
R 

[ J (|V£+|2 + |7T+|2)d<7 + /i y (|V3_|2 + |7T_|2)dx 

Dtn D3R 

(7.81) < c,#(n~3)~i(n~1). 

After covering A# with a finite number of appropriate surface balls, we can then 
conclude that 

J {M°R(Vu+r + »M°R(Vu-r}d* 

AR 

<Ci?(n-i)(1-f)^ J M°(W+)2 da)* + /x( j MR{Vu^)2day] 

AR AH 

(7.82) < c/2(n"1-p)"?(n-1) = CR"1. 

Analogous estimates for M#(TT±) follow via a similar argument. These estimates 
along with (7.68) then guarantee that 

(7.83) j [M(VU+)P + M(TT+)p + /xM(Vu_)p + /iM(7r_)p] da < CR~J. 
AR 
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Finally, using (7.83) along with the L2 theory leads to the estimate, 

J [M(V£+)P + M(TT+)P + fiM(Vu-)p + /XM(TT_)P da 
an 

< J [M(VU+)P + M(TT+)P '+ fiM(Vu-)p + //M(TT_)p] da 
58(0) 

OO « 
+12 / [M(V"+)P + M(TT+)P + A*M(VU_)P + MM(TT_)P] da 

3=3 A . 

< c [ ( y M(W+)2da) 
an 

E 2 
+ (j M{*+fda) 

on 

£ 2 

+ßC '[(y M (Vu-)2 da) 
OSI 

£ 
L 2 

+ ( У M(7T_)2(ía)f] + C 
an 

OO 

i=3 
(У) "7 

(7.84) < c ( Y |a|2c/cr) 
ao 

£ 2 
+ c 

OO 

J=3 
2~^ < С, 

which proves (7.41). With this in mind, we can finish the 

Proof of Proposition 7.2.1. — For any / G Hpt(dQ,), we can write / = Yl%=i^j^j 
such that each dj is a p-atom and (£^=i |>\?|p)p < 2||/||HPT(^). For each dj we can 
find u± and TT3± that solve (7.40) with datum dj and also satisfy (7.41). Then the 
functions u± := X^Li yj u± and 7r± := X^Li ̂ ,7l± w^ satisfy 

(7.85) 

Au± = V7T± in Q±, 
div u± = 0 in 0±, 
U+ = U- , 

an an 
^(u+,7r+)-/i^(ix-,7r_) = / on 00, 
||M (Vtr+)||Lp(an) + l|M(7r+)||Lp(an) 

+/x||M(Vu_)||Lp(0n) +Ai||M(7r-)||Lp(an) < CH/llifPfan). 

Since we have reduced matters to the case when g = 0, Proposition 7.2.1 follows. 
• 

Next, Proposition 7.2.2 can be established in a similar fashion. Here, we can reduce 
matters to considering the case when / = 0 and g = a where a is a regular (p, oo)-atom 
satisfying 

(7.86) suppa Ç Si(0), 5(0) = 0, ||Vtana||Loo(aQ) < 1. 

ASTÉRISQUE 344 



7.3. INTERPOLATION ARGUMENTS 143 

We need to prove that there exists a solution that satisfies (7.41). Now since a G 
L\{dQ), we can define 

(7.87) 
u± := l 

1-/X 
2>A ( ( -1 1+M 

2 I-// 
J + i^A)-1^) m fi±, 

7T± := l 
1- u 

í M ( - 1 1+M 
2 1-M 

J/ + î A)"1^) in ft±. 

By Proposition 4.2.3, (4.29), (4.47) and (4.45), the functions u±, 7r± will satisfy 

(7.88) 

Au± — V7r± in ft±, 
div #± = 0 in ft±, 
u> —u U- = a, 

an an 
c£(u+,7T+) = Ô (̂ti_,7r_) on 0ft, 
||M(Vt2±)||L2(AQ) + ||M(7r±)||L2(an) < C\\3\\T2{9ny 

Since we also have a G L9(0ft), it follows from Proposition 4.2.3 that 

(7.89) \\M(u)\\Lq(dQ) < l|5||L,(an) < C 

which we will use in place of Lemma 7.2.4. We can also replace (7.72) with 

(7.90) <#(M+,7T+),tr+) - M(^(^-,7T_),U_) = (0 (̂̂ +,7r+),a) =0 on S2R. 

The rest of the proof of (7.41) follows as before except this time, we use Lemma 6.1.6 
in place of Lemma 6.1.5 to establish (7.81) from (7.80). This is enough to establish 
Proposition 7.2.2. We can now prove the following result regarding p < 1. Before 
stating it, recall (1.3), (4.155), (4.156) and the conventions made at the beginning of 
§7. 

Lemma 7.2.6. — Let n = 2 or 3, and let Q C Mn be a graph Lipschitz domain. Also, 
set ft+ := ft, ft_ := Rn \ ft and fix A G (-1,1] along with // € [0,1). Then there 
exists e > 0 such that the boundary value problems (TM), (T )̂*, (AT), and (R) are 
well-posed for every 2(n-l) 

n+1 - e < v < 1. 

Proof. — For fi G (0,1), the well-posedness of (TM) and (TM)* follows by choosing q 
sufficiently close to 2 and applying either Proposition 7.2.1 or Proposition 7.2.2 fol
lowed by either Theorem 7.1.1 or Lemma 7.1.4. In the case /x = 0, the same argument 
proves that (TG) and (T0)* are semi-well-posed, and since this will also hold when the 
roles of ft+ and ft_ are reversed, we can conclude from Proposition 4.5.4 that (TG), 
(T0)*, (AT), and (R) are also well-posed. • 

7.3. Interpolation arguments 

Throughout this section, assume that ft C Rn, n = 2,3, is a graph Lipschitz 
domain, and set ft+ := ft, ft_ := Rn \ ft. Recall from Lemma 5.2.1 that the operators 

(7.91) ( + 1 M-l 
2 ,¿-1 

I + K*x -i : Lp(dn) —• Lp(dtl) 
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are well-defined, linear, and bounded for each ^ G [0,1), whenever 2 — e <p <2 + e. 
Let us denote by T± the version of (7.91) corresponding to p = 2. We aim to show 
that whenever 2(n-l) 

n+1 — e < p < 1, there exists C = C(ft, /x,p) > 0 such that 

(7.92) l|T±2||H;t(0n) < C Va H*t(m) - atom. 

Consider the case of T+ (the claim about T_ is handled similarly) and fix an 
Hpt(dft)-atom a. Prom the arguments in § 7.2, we know the functions 
(7.93) u± := ^^ (T+a) in ft± and TT± := j^QiT+a) in fi± 

solve (T )̂* with data (0,a) and satisfy the estimate 
(7.94) 
||M(W+)||LP(AN) + ||M(V7r+)| )||¿P(en) + Ml|M(VA-)||b,(en)+/*l|M(Vír_)||Lp(en) < С, 
where C is independent of a. From the well-posedness of the Regularity problem, we 
also have 

(7.95) 
||M(Vtr_)||Lp(8n) + ||M(V7r_)||Lp(an) 

< C||ti-||ffi.p(fln) = C||u+||Hi,P(an) < C||M(Vu+)||Lp(an), 

and so (7.94) can be improved to 
(7.96) 
||M(Vw+)||Lp(an) + ||M(V7r+)||Lp(9fi) + ||M(V«_)||£p(an) + ||M(V7r_)||Lp(8n) < C 

Thus, 

(7.97) 

\\T+ä\\HPt{9n) = \\д£(й+,п+) -дС(й-,тг-)\\НРЛДС1) 
< \\M(VÛ+)\\LP(m) + ||M(V7r+)||Lp(afì) 

+\\M{VÛ_)\\LP{dii) + ||M (V7r_)||Lp(en) 
< с, 

by jump-relations, Theorem 4.3.1, and (7.96). 
Our next claim is that if / G H*t(dSl) n L2(dQ) then T±f G L2(dQ) satisfies 

(7.98) l l T i / I I ^ ^ ^ C H / l l ^ ^ ) , 

where C > 0 is independent of / . To see this, we shall invoke an observation made in 
(6.5) on p. 948 of [68], which we state here in a slightly more general form than we 
need in the current context. Specifically, if n-1 < p < 1 and / G Hpt(dQ) D L2(<9ft), 
there exist a sequence of coefficients (Yj)j G i1 and a sequence of iJft(9ft)-atoms â , 
such that 

(7.99) / = E £ i XJ SJ in H*t№), £ £ i |A;| < CU/HHP (an), and 
fN := X)̂ = Yj aj converges to / in L2(dQ) as N —> oo. 

Now if we consider such a decomposition of / , on the one hand, T±/N 
is Cauchy in Hpt(dQ,), hence convergent in H%t(dQ) to some <?± for which 
H£fclltfZt(dn) < C|l/llifapt(^)' thanks t0 (7-92)- 0n the other hand> T±/^ ~» r± / in 
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L2(dCt). Consequently, for any vector-valued function if) G Lip (dQ.) with compact 
support, 

(7.100) / t£-T±fd(T = 
Jan 

lim 
N-+OC 

/ Ф'T±fNda = {ф,д±), 
Jan 

where (-,•) stands for the distributional paring on dQ, (i.e., the pairing between 
Lipat(dft) and its topological dual). This proves that T±f = g±, from which the 
estimate (7.98) follows. This establishes that 

(7.101) ( + 1 M+l 
2 LL-l 

I + Kl) -1 :fl*(0fi)—fl*(an) 
are well-defined, linear, and bounded whenever 2(n-l) 

n+1 — e < p < 1, and further, by 
interpolating (7.101) with (7.91), that 
(7.102) ± 1 AH-l 

2 /2-1 
i + Kl) -1 : Нр(дП) —> Нр(дП) 

are well-defined, linear, and bounded whenever 2(n-l) 
n-|-l - £ <p <2 + £. 

In summary, the above reasoning shows that for /x € [0,1), 
(7.103) 

± 1 /x+l 
2 u-1 

/ + KX : iJp(9ft) —> Hp(dÇt) isomorphically, for 2(n-l) 
n+1 -£ <p<2 + £. 

With (7.103) in hand, we can prove the following theorem. 

Theorem 7.3.1. — Let n = 2 or 3 and C ln be a graph Lipschitz domain. As usual, 
set ft+ := ft, := Mn\ft. Then there exists £ = e(dSl) > 0 such that for A G (-1, H, 
[i e [0,1), and 2(n-l) 

n+l — £ < p < 2 - h £ , the boundary value problems (T^), (T )̂* in 
(4.155)-(4.156) as well as (N) and (R) in (1.3) are well-posed. 
Proof. — The well-posedness of (TM) and (TM)* follows from (7.103), Theorem 5.2.3, 
and Theorem 4.5.2. Since this result will also hold if the roles of O+ and Q- are 
reversed, the well-posedness of (N) and (R) follow from Proposition 4.5.4. • 
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CHAPTER 8 

HIGHER DIMENSIONS 

In this chapter, we adapt the arguments of Z. Shen from [78] and [79] in order 
to extend our results to the case when n > 4. Specifically, our goal is to prove the 
following theorem. 

Theorem 8.0.2. — Assume that ft Ç Mn, n > 4, is a graph Lipschitz domain and set 
ft+ := ft, ft_ := En \ ft. Then there exists e = e(9ft) > 0 such that the transmission 
problems (T^) and (T f̂)* from (4.155)-(4.156) are well-posed for any ¡1 6 [0,1) and 
any 2(n-l) 

n+1 — e < p < 2 + s. Moreover, the Neumann problem (N) and the Regularity 
problem (R) in (1.3) are well-posed for 2(n-l) 

n+1 -e <p<2 + e. 

To accomplish this, we will consider the following auxiliary problem, 

(8.1) (T*) 

Ай± = V7T± in iî±, 
div й± = 0 in Í2±, 

U+ an 
—¡lu

án 
= деЬ*>(дП), 

diЫ+,тг+ )=dï гГ_,тг_ , 
М(и±) € LP(dü). 

Above, the equality d*(u+,7r+) = d£(u-,7T-) has to be (suitably) understood in 
L .̂1(9ft), when p is near 2. Since the operator 1 1+µ 

2 1-u 
/ + ÜTA is invertible on Lp(dft) 

for p near 2, we can show that the functions 
(8.2) 

u± := 2>A 1 1 + /X 
2 1-a 

I + Kx)-Xg and ir± := !P\ 1 1+µ 
2 1-µ 

r-f^)-1^) inft± 

solve (8.1) and also satisfy the estimate 

(8.3) ||M(tI±)||Lp(ön) <C||^||Lp(ön), 

as long as p is near 2. In this chapter, we will extend this result to include 2 — e < 
p< 2("-l) 

n-3 •4- e. A key step is to prove the following Reverse Holder estimate for the 
non-tangential maximal operator. 
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Lemma 8.0.3 (Reverse Holder estimates). — Let Q, Ç Rn, n > 4, be a graph Lips-
chitz domain. As usual, set O+ := Q, and Q,- := Mn \ Û. Assume Au± = V7r±, 
divu± = 0 in îî±, and define M(u) := max{M(u_j_),M(u_)} and pn := 2̂ !T31̂ • If 
M(Vu±),M(ir±) e L2(dQ) and u+ - /xu- = 0 on S12SR for /x G [0,1), then 

^ j M(iï)Pn do^j 
SR 

1 
Pn < с ^ ^ M{u)2 do^j 

S256R 

1 2 

(8.4) +CR ( / \dì(u+,K+)-dì;{u-,ir-)\2da) 
\ J S256R / 

1 2 

The Proof of Lemma 8.0.3 is going to be presented in the next section. 

8.1. Preliminary estimates 

Recall the definitions of SR and D+R from (6.1)-(6.3). We will start with the fol
lowing result. 

Lemma 8.1.1. — If Au± = VTT±, divu± = 0 in Q± and M ( W ± ) , M(TT±) G L2(dQ), 
then 

J \Vu+\2dx + fj, J \Vu-\2dx 

DÌ D-

< с 
R 

J [M(u+)2 + (J,M{u-)2] da + CR 
S2R 

j /i|^(ix+,7r+)-^(ir_,7r_)|2^ 
S2R 

(8.5) +C j \d*(u+,ir+)\\u+-fiu-\da. 
S2R 

Proof. — From Cauchy's inequality, we have that 

S2R 
(<9*(й+,7г+),г?+) -/х(д*(й_,тг_),й_) da 

(8.6) 

= J |(a^(«+,7r+),«+-/i«_)+/i(ô*(u+,7r+)-a^(u_,7r_),«_) da 
S2R 

< J (\dì(s+,ir+)\\s+-nu-\ + pR\dì{a+,ir+) 
S2R 

-о,Л(Й_,тг_)|24 JL 
AR M (и-)2) da. 

Utilizing (8.6) in Lemma 6.1.2 along with the estimate 

(8.7) J \Û±\2dx<CR j M(u±)2da 
D% sR 
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is enough to verify (8.5). 

Let MD± denote the non-tangential maximal functions associated with the bounded 
domains D^. Consider the following lemma. 

Lemma8.1.2. — Assume Au± = VTT±, divu± = 0 in Q±. If M(u±), M(Vu±) G 
L2(dQ) and u+ — fiil- = 0 on SgR, then 

(8.8) 

/(MD+(W+)2 + MD+(w+)2)da + n f(MD-(Vu-)2 + MD-(7r_)2)da 
J R R J R R 

SR SR 
<C J ridZ(H+,«+) -^(w_,7r_)|2 da + 

S8R 

C_ 
R2 

J (M(u+)2 + fiM(u-)2) da. 
S8R 

Proof. — Using the well-posedness of the L2 Regularity problem on bounded do
mains, it follows that for s > 1, 
(8.9) 

j (MD±(Vu±)2 + MD±(7r±)2)da<C j \Vtanu±\2da + C j |Vtan^±|2^. 
SR SSR dDfRnn± 

Integrating (8.9) over s € [1,2] gives 

(8.10) J(MD±(Vu±)2 + MD±(n±)2)da<C J \Vu±\2da+^ J |Vu±|2 da. 
SR S2R 

2R 

Applying Lemma 6.1.6 and Lemma 6.1.1 and using the assumption that U+—/JLU- = 
0 on SgR leads to the estimate 

/ (MD+ (V£+)2 + MD+ (7r+)2) da + ¡1 f (MD- (W_)2 + MD- (TT_)2) da 
J R R J R R 

SR SR 

< C 
R 

/ |W+|2<¿<7 + // 

D+R 

. J |Vu_|2d(T 

D4R 

+ C(x j \di(u+,n+) - ¿£(«_,TT_)|2da 

S4R 

(8.11) 

+ 
C_ 
R2 

J (M(u+)2 + (xM(u-)2) da. 
S*R 
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Then applying Lemma 8.1.1 and using the fact that u+ — /JLU- = 0 on SSR gives 
(8.12) 

J (MD+(W+)2 + MD+(7T+)2)AT + M j (MD-(Vu-)2 + MD-(n-)2)da 
SR SR 

<Cß i |d¿(w+,7r+)-d¿(u_,7r_)|2da + 

S8R 

c_ 
R? 

J (M{Ü+)2 + цМ{и-)2) da, 
SRR 

which finishes the proof. • 
At this point, we can proceed with the 

Proof of Lemma 8.0.3. — Let x e SR and y € T±(x) be such that \y — x\ > cR. Then 
interior estimates yield 

(8.13) \u±(y)\<Cf \u±\dz<Cf M{u±)da. 
J BcR(y) J S2R 

From (8.13), it follows that for any p > 0, 

M%>(u±yda) 
SR 

1 V 
< sup Mg(Û±)(x) 

X€SR 

(8.14) < С Í M(iï±)da<C 
J S2R 

( j M(u±fdaj 
S2R 

1 
2 

Then to prove the lemma, it is enough to show that 

Q MR{u±y-da^j 
SR 

1 
Pn < CR( l \д*(е+,*+)-д*(и-,*-)\*<Ьт) 

V J Si28R / 

1 2 

(8.15) +c( I M(u)2da\ 
\ J S128R / 

1 2 

Next, we claim that for x e SR, 

(8.16) MR(u±){x) < C 
S2R 

MD}R(VÜ±)(Z) 

\x - z\n~2 da(z) + C-f 
J S2R 

M(u±)da. 

Let y e T+(x) such that \y - x\ < cR. Let w := y -x/y-x and yr = y + cRu. Then 
y' G T+(x) and cR < \y' - x\ < 2cR, and 

(8.17) \u+(y') - u+(y)\ = cR 

0 
d 
dt [u+(y + tw)]dt < 

cR 

0 
\Vu+(y + tu;)\dt. 

From interior estimates, for 0 < t < cR, 
;8.i8) 
\Vti+(y + tu>)\ < cl \Vu+{z)\dz < Cf MD+ (Vu+)(z)da(z). 

JBct{y+tuj) Jsct{x) 2R 
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Then combining (8.17) and (8.18), and using Fubini's theorem yields 

\Ü+(y')-u+(y)\ < C 
>cR 

0 Sct(x) 

¿-(n-i)M (yu+)(z)da(z)dt 
2R 

< c 

S2R(x) 

oo 

c\x—z\ 
t-(n-i)MD+R(Vu+)(z) dtda(z) 

(8.19) < C 
S2R(X) 

MD}R(VU+)(Z) 

\x - z\n~2 
da(z). 

Then using (8.19) and (8.13) for y' gives 

\u+(y)\ < \u+(y')-u+(y)\ + \Ü+(y')\ 

(8.20) < C 

S2R 

MDt(Vu+){z) 
\x - z\n~2 

da(z) + C 
S2R 

M(u+)da. 

Taking the supremum over y proves the plus version of (8.16). The minus version 
follows similarly. Multiplying the minus version of (8.16) by /x1/2 and adding it to the 
plus version gives 

MR(u+)(x) + ^2M°R(u-)(x)<C 

S2R 

MD}(VÜ+)(z) + MV2M (V{r_)(z) 
\x - z\n~2 do~(z) 

(8.21) + C 

S2R 

(M(U+)+H^2M(U-)) da. 

Then by the Fractional Integration Theorem, it follows that 

SR 
(M°R(u+)+^MR(u-))Pn da^j 

1 
Pn 

< CR 
S2R 

(MD+ (VU+) + M1/2Md- (Vu_)) da 
^ 2R 2R ' 

1 2 

+C 
S2R 

(M(W+)+ /л1/2M(Ú-.)) da 

< CR 
( / . 02R 

(MD+Ä(VU+)2 + »MD-R(VU-)2) da 

1 2 

(8.22) +C 
( / . $2R 

(M(U+)2 + ßM(u-)2) da 
1 2 
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Applying Lemma 8.1.2 gives 

SR 
(MR(H+)+H1/2MR(u-))Pn do 

1 
Pn 

< C 
Sl6R 

(M(u+)2 + /xM(u_)2) da 

1 2 

(8.23) +CR 
u S16R 

n\d${u+,Tr+) - dl{u_^_)\2da 

1 2 

For JJL e (0,1), this is enough to establish (8.15) and prove the lemma. In the case 
¡1 = 0, the estimate (8.23) gives that 

(8.24) 
SR 

M°R(u+y» da 
1 

Pn <C 
Sl6R 

M{u+)2 da 
1 2 

Therefore to finish the proof, we still need to show that if t?+ = 0 on S128R, then 

SR 
M£(U_)P" da 

1 
Pn < CR 

Sl28R 
\dt(u+,?r+)-d*(u-,Tr-)\2da 

1 2 

(8.25) +C 
Sl28R 

M(u)2 da 
1 2 

Since w+ = 0 on S128R, we can apply Lemma 8.1.2 with /z = 0 and get 
(8.26) 

J \dl{u+,v+)\2da<C J (MDtjVu+)2 + MDtj7r+)2)da < 
S16R SISR 

c_ 
R2 

J M(u+)2da. 
S\28R 

Arguing as before using fractional integration estimates, we have 
(8.27) 

a SR 
MR(u-)p" da 

1 
Pn <CR 

S2R 
MD-JVu_fda 

1 2 
+ C 

S2R 
M{u-fda 

1 2 

Now, applying Lemma 6.1.5 with /i = 0 and ix+ exchanged with u- leads to the 
estimate 

(8.28) J\Vu-\2da < C J |^(n_,7T_)|2da + 
SR S2R 

c 
R 

J (|W_|2 + |7r_|2)dz. 

D2R 
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Similarly, using Lemma 6.1.1 and apply Lemma 8.1.1 with /x = 0 and u+ exchanged 
with U- gives 

y"(|W_|2 + |7r_|2)<te< 
D~R 

c 
R 

J M(u-)2da + C 
S2R 

J \d*(H-,«-)\\U-\da 
S2R 

(8.29) < C 
R 

J M(u-)2da + CR 
S2R 

J \dZ(u-,ir-)\2d<r. 
S2R 

Combining (8.10) with (8.28) and then using (8.29) yields 

(8.30) / Mn- (Vu-)2da< J 2R 
S2R 

c_ 
R2 

J M(u-fda + C 
Sl6R 

J |#(tf_,7r_)|2d<7. 
Sl6R 

Then using (8.30) in (8.27) gives 

(I M°R(u-)Pn da] 
SR 

I 
Pn < CR ( î \di(ü-,K-)\2da 

Sl6R 

1 2 
+ C ( í M (й-)2 da 

S16R 

1 2 

(8.31) < CR ( / \dì (u+,n+) -dì(u-,n-)\2da) 
Sl6R 

1 2 

+ C { i M(u-)2da 
Si6R 

1 2 
+ CR ( / |^(«+,7T+)|2 

Sl6R 

1 2 

Combining (8.26) with (8.31) is enough to establish (8.25) and finish the proof. • 

We will also need the following technical lemma which is proved by Z. Shen in [79]. 

Lemma 8.1.3. — Assume 0 < /3 < 1 < a and 1 < q < p. Also, let Q0 be a cube in 
Rn and F e L1(2Q0), / € Lq(2Q0). Suppose that there exist Ci,C2 > 0 with the 
property that for each dyadic sub-cube Q of Qo with \Q\ < f3\Qo\, there exist two 
integrable functions FQ and RQ on 2Q such that |F| < \FQ \ + \RQ\ on 2Q, and 

(8.32) ( / \RQ\pdx 
2Q 

i v 
< Ci / \F\dx+-f \f\dx 

I cQ J Q 

(8.33) / \FQ\dx < сЛ \j\dx. 
J IQ J Q 

Then 

(8.34) l i \F\qdx) 
Qo 

i 
< C / \F\ dx + C 

J 2Qo 
(/ \f\gdx 

2Qo 

1 Q 

where C = C(p, q, Ci, C2, a,/3, n) > 0. 

The following version of Gehring's Lemma is also necessary. 
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Lemma 8.1.4 (Gehring's Lemma). — Fix p > 1, and let 1 < q < p. Assume there exists 
functions g, h G Lp(dQ.) and K > 0 such that for any surface ball SR, 

(8.35) -f \g\pdx 
SR 

1 p 
< K i \9\qda 

&2R 

1 

+ i \h\pda 
&2R 

1 
V 

Then there exist eQ > 0 and C > 0, depending only on K, p and such that if 
0 < e < eQ, then 

(8.36) J \g\p+€da<C J \h\p+£ da. 

an an 

For a proof of this lemma, see the Appendix. Our next lemma will show that that 
the estimate (8.3) for solutions of (8.1) continues to hold for larger values of p. 

Lemma 8.1.5. — Let fi c Mn, n > 4, be a Lipschitz domain, and set pn := 2^Z^ • 
Then there exists e = e(Q) > 0 such that for any g £ L\{dSÏ) LPn(dQ) then the 
L2-solution (u±,7r±) of (8.1) satisfies the estimate 

(8.37) J M(Û)pda <C{Ü,p) 
да í 

act 

\g\p da for every p e (2,pn + e), 

where, as before, M{u) := max{M(t¿+), M(t¿_)}. 

Proof. — First, let (u±,7r±) be as in (8.2). Since g G Lf(dQ), we have M(u±), 
M(Vu±), M(7r±) G L2{d£l). Applying Lemma 7.1.2 then gives that M(u±) G 
LPn (dSl). We need to show that u± satisfies (8.37). Fix SR C dQ. Choose 6 G C?°(Rn) 
such that ф = 1 on S^SR, Ф = 0 on dSl \ агббд» \ф\ < 1 and |V</>| < ^. Define 
u- := 2>A (( 1 l+M 

2 l-/x 
/ + ^A)"1(^)) in fi± and set ^ := £>A ((• 1 l+Ai 

2 l-LL 
I + Kx)-\<j>g)) 

in fi±. Set M(t;) := max{M(v+),M(u_)}. Using the L2 well-posedness estimate for 
v±, we have 

(8.38) j M{v)2da<C J \g\2da. 
dQ S256R 

Let w± := u± — v± and p± := 7r± — TJ±. Then we have w+ — fiw- = g — 0# = 0 
on S128R and d*(w+,p+) = <9*(w_,p_) on <9Q. Set M(w) := max{M(w+), M(w_)}. 
Applying Lemma 8.0.3 we then obtain 

(8.39) -f M(w)Pnda 
SR 

1 
Pn <c ( / M(wJ)2da 

S'l28R 

1 
2 
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Combining (8.39) and (8.38) then gives 

+ M(w)Pn da 
SR 

l 
Pn < C f (M(u)2 + M(v)2) da 

Sl28R 

1 2 

(8.40) < C 
S256R 

(M(u)2 + \g\2) da 
1 2 

Then applying Lemma 8.1.3 with 
(8.41) 
F:=M(u)2, FSR:=M(V)2, RSR:=M{W)2, f~\g\2, and q e (l,Pn/2), 

we obtain, with p := 2q € (2,pn), 

(8.42) 
SR 

M(u)pda 

1 P 
< C 

S2R 
M(u)2 da 

1 2 
+ C 

S2R 
Wda 

1/p 

Since this holds for every 2 < p < pn and M(u), g £ Lq(dQ) for every 2 < q < pn, 
it follows from Lemma 8.1.4 that there exists e > 0 such that 

(8.43) J M(u)p da <CP J \g\p da whenever 2 < p < pn + e. 
dQ dQ 

This finishes the proof. • 

The previous estimate allows us to establish the invertibility of the boundary inte
gral operators in the following theorem. 

Theorem 8.1.6. — Let £2 C Rn, n > 4, be a graph Lipschitz domain and fix /i G [0,1). 
There exists e > 0 such that for 2 — e < p < 2(n-l) 

n—3 + £, the operators ± Ii±M 
2 l-u 

I + Kx 
are invertible on Lp(dQ). 

Proof. — This has already been established in the case when p is near 2. Let e > 0 
be as in Lemma 8.1.5 and fix 2 < p < 2(n-l) 

n-3 + £. Let g G Lp(d£2). Then there exists 
gj G Lp(<9ft) O L\(dQ) (j G N) such that <jj converges to g in Lp{dti), as j -> 00. 
Since 1/2 1+µ + Ky is an invertible operator on L2(dn), for each j G N, there exists 
/* G L21 (ad) such that 

(8.44) 1 l+M 
2 1 + ^)%=%. 

For j fixed, let i?± = ®A/J in Q± and 7r± = Pyfj in f2±. Then (w±,7r±) solves 
(8.1) with datum gj. Then by Lemma 8.1.5, 

(8.45) J \fj\pda = J \u+-u-\pda<2p j M(u)pda<C j \gj\pda, 
an an an an 

which proves that /,- G Lp{dQ). Repeating the above argument with the functions 
fj — fk and g~j — g"k, j , k € N, we can conclude that 
(8.46) ||/;- - fk\\LP{dQ) < CUj - gkhp{dn) V/, k e N. 
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Since {gj}j is a Cauchy sequence in Lp(dft), it follows that {fj}j is a Cauchy 
sequence in Lp(dft), and so there exists / G Lp(dft) such that fj converges to / in 
Lp(dft). Then, for every j G N, formula (8.44) gives 

(8-47) \\(l]±*I + Kx)f-g\\LPm) < ||(Il±ttJ + ifA)(/_/-)||LP(an) + ||^-^|Ll>(fln), 

so letting j —> oo yields that (^jz^I + K\)f — 9- Thus, the operator \ jz^I + if A 
maps onto Lp(dfi), and is therefore semi-Predholm on Lp(dft) for every p G [0,1). 
For p close enough to 1, the operator | j^jj/ + K\ is invertible on Lp(dft) via a 
Neumann series, so it has index zero. Then ^jz^I + K\ has index zero on Lp(dft) 
for all p G [0,1), so it is, in fact, invertible on Lp(dft) for all p G [0,1). If we reverse 
the roles of u+ and u- and repeat the argument, we can show that the operator 
— \ jzf^I + K\ is also invertible on Lp{dft). This completes the proof. • 

We conclude this section with 

Proof of Theorem 8.0.2. — Since the operators ± | ~ ^ I -I- K\ are invertible on 
Lp(dft) for p G [0,1) and 2 - e < p < 2{^Z^ + e, by duality, the operators 
±\\z^I + K*x are invertible on Lp(dft) for p G [0,1) and 2(n-1) - £ < p < 2 + £. 
Then the theorem follows from Proposition 4.5.2 and Theorem 5.2.3. • 

8.2. The Dirichlet problem 
This section will be devoted to proving the following result. 

Theorem 8.2.1. — Let ft C Rn, n > 2, be a graph Lipschitz domain. Then there exists 
e = e{dft) > 0 such that for each 

(8.48) 2 — £ < p < CO, if n = 2,3, 
2 - £ < p < 2(n-l) 

n-3 + £, if n > 4, 

the Dirichlet problem 

(8.49) 

A{?=V7r, div u = 0 in fi, 
M(u) G 1^(00), 
a = / G LP(an), 

an 
has a solution, which is unique modulo adding functions which are constant in Q, to 
the pressure term. In addition, there exists a finite constant C > 0 such that 

(8.50) ||M(tZ)||Lp(dn) < C\\f\\Lp(dQ). 

Proof. — Let A G (-1,1]. From Theorem 8.1.6, (7.103), and duality it follows that 
the operator 

(8.51) \I + KX: Lp(dty Lp{d£l) 
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is an isomorphism for each p as in (8.48). Then the functions 

(8.52) u = 0A((| J + Kx)-1/) and TT = 0>A((§I + Kx)'1/) 

will solve (8.49) and satisfy (8.50). 
Turning our attention to the issue of uniqueness, let (u, n) solve the homogeneous 

version of (8.50) for some p G (2 — e, 2^Z^ + £)• To fix ideas, assume that is the 
upper-graph of a Lipschitz function ip : Rn_1 —> R satisfying ip(0) = 0, and for each 
R > 0, consider the bounded Lipschitz domain 

(8.53) DR := {x = (x',a;n) G Rn_1 x R : \x'\ <2R, 0 < xn - y(x') < 2R}. 

As it will be shown in § 9.2, via arguments which are independent of the present 
considerations, there exists some finite constant C > 0 which depends only on p and 
the Lipschitz character of 0, such that 

(8.54) / MDR(U)pda<C [ \u\pda, 
JdDR JdDR 

where MDR stands for the nontangential maximal operator associated with the domain 
DR. In order to continue, set SR := B(0, R) fl dQ and denote by VR := 8DR \ (SR U 
(SR + i?en)^ the lateral side of the boundary of the domain DR. Then, with M0R as 
in (7.58), we may write 

/ M°R{u)pda < f MDR(Û)pda<C í \й\рda 
JSR JdDR JÔDR 

= CÍ \Û\pda + C f \й(-+ Ren)\P da + С f \ü\p da 
JVR JSR JSR 

< С f \Û\Pda + C f \u{- + Ren)\pda 
JVR Jan 

=: IR + IIR, (8.55) 

since u vanishes on dQ. Next, observe that if rj > 0 is a sufficiently small constant 
depending only on dQ, then for each x G dQ, interior estimates and Lemma 7.1.3 give 

\u(x + Ren)\ < C 
B(x+Ren,r)R) 

\u\ 
pn 

n-1 
n-1 pn 

(8.56) < CR-
n-1 P \\u\\Lpn/(n-l)(Q) < CR n-1 

p 
\\M(u)\LP(9Q). 

In particular, 

(8.57) 
lim#->oo \u(x + i?en)| = 0 for each x € dQ, 
and |tt(- + i?en)| < M(u) for each R > 0, 

so that, 

(8.58) lim IIR = 0, 
R-+oc 
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by Lebesgue's Dominated Convergence Theorem. Let us now replace R by TR in 
(8.55) and then integrate the resulting inequality for r £ [1,3/2]. If we consider the 
pipe-like region 
(8.59) PR := {x = (x',xn) £ Rn_1 x R : R/2 < \x'\ < 4R, 0 < xn - y>(x') < 4R}, 

then, on account of (8.58), we obtain 

/ M°R(ûrda 
JSR 

< C 
3/2 

1 
ItR dr + C 

.3/2 

1 
I ITR dr 

(8.60) < CR-1 
PR 

\u\pdx + o(l) < C 
S4R\SR/2 

M(u)p da + o(l) 

as R —> 00. However, since M(u) £ Lp(dQ,), we also have JS/LR\Sr 2 M(u)pda = o(l) 
as R —> 00. Hence, by Lebesgue's Monotone Convergence Theorem, 

(8.61) / M(u)p da = 
JdU 

lim 
R-+00 

From this we may, of course, conclude that u vanishes in Q. 

f M%{u)pda = 0. 
JsR 
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CHAPTER 9 

BOUNDARY VALUE PROBLEMS 
IN BOUNDED LIPSCHITZ DOMAINS 

9.1. Localization arguments 
Let fì be a bounded Lipschitz domain in Rn and consider an open, finite cover of 

90 with coordinate charts (Z*,̂ *), i = 1,... ,m. Also, for each i, denote by £$ the 
graph of (fi in the system of coordinates induced by Z*. 

For fixed /2 G [0,1), -1 < A < 1, denote by T the operator ± 1 1+µ I + Kx on 90, 
where K\ is as in (4.44), and let Ti stands for ± | y ^ J + K\ on E*, where K\ is as 
in (4.44) but with dQ replaced by E*. In particular, for each p G (̂ ^p, 1] (which we 
shall henceforth assume) there exists C = C(A,/x,p) > 0 such that 

(9-1) H/ll5^(Si) - C||Ti/ll5^(Sj)' V/€ fl^Ei), !<<<"». 
Next, let {£i}i<i<m be a family of smooth functions with compact support in 

Zi which form a partition of unity in a neighborhood of dQ. Also, for each i, let 
Ci G CQ°(ZÌ) be such that Ci = 1 m a neighborhood of supp^. Then, with A and p as 
above, for any / G hlf(dQ), we may write 

WfWhif(dsì) ^ c 
m 

i=l 
UifWhlf(dQ) ^ C 

m 

i=l 
Mi/hi*™ * c 

m 

г=1 
I № / ) | | H¿;»(E4) 

(9.2) < c 
m 

i=l 
ll<iTifè/)||Sx,(Ej) + C 

m 

i=l 
||(i-Ci№fò/)HSi.,(El) 

<c 
m n—1 

¿=1 7 = 1 
||a.jCiT«(&/)]||H*(Sl) + c 

m n—1 

¿=1 ¿=1 
II^Ki-Cimfò/)]!!^^). 

Above, the first inequality uses the fact that / = £^I=i df on 90, the second 
one follows from Lemma 2.3.1 (here, tilde denotes the extension by zero outside the 
support to a function defined on £$), the third is based on (9.1), while the fourth 
one is implied by Lemma 2.2.5. Finally, the fifth inequality is a consequence of (2.61) 
(here, the tangential derivative operator dT% is defined as before, but relative to the 
system of coordinates induced by Z{ in Rn). 
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We adopt the following terminology. Call an expression of the form ||«$/||# residual 
if 01 maps hlf(dQ) compactly into the quasi-Banach space %. Recall the index p* 
from (2.48) and observe that for each q e (l,p*), the operator of multiplication by & 
is compact from hlf(dQ) into Lq(Ei). This and Lemma 2.2.7 show that the terms in 
the last double sum in (9.2) are residual. In order to continue, note that there exists 
a family of 'nice' singular integral operators {Rk}i<k<n on dQ, such that 

(9.3) dTiT = ± 1 1+u 
2 1 - µ Drjn + 

n 

fe = l 
RkdTjk. 

In fact, from the identity (4.98), the R^s can be taken to be principal-value singular 
integral operators on dQ whose kernels are of the form dkE(x — y) or dkE&(x — y), 
1 < k < n. Furthermore, we also have 

(9.4) dTi Ti = ± 1 l+M 
2 I-Li 

dri + 
jn 

n 

k=l 
RkdT 1 < i < ra, .г 

Эк 
where R\ is the version of Rk written for Mi in place of 90. Consider now a typical 
term in the next-to-the-last double sum in (9.2), and for a fixed q G (l,p*), note that 

(9.5) 

R . [№М)]\\н 'ъ)HP (Mi) < 
« IICiri(6/)||L.(8n) + ll»r;JC<3i(6/)]||fcpt(an) 
= ||CiT(6/)IU«(8n) + ll̂ B[Cir(6/)]||fcpt(en), 

thanks to (2.83), (2.91), (2.93), and the fact that the integral operators and T have 
the same kernel. Since 

(9.6) dG(l,p*) =» /^(90) «-> Lq(dQ) compactly, 

and since CiT£i maps L9(90) boundedly into itself, we may conclude that the first 
term in the bottom line of (9.5) is residual. Regarding the second term, using (9.4) 
we may write 

от! 
n 

k=l 
CiRk((dTi &)/)± 1 1+M 2 (D+jn 1 Ei) f 

(9.7) ± 1 l+M 
2 1-u 

íiflr! / + 
n 

k=l 
tiRk(Zi(dTi f)). 

Again, granted (9.6) and the fact that the operators (9T. G)^&, dRk(dTi &) map 
L9 (90) boundedly into itself, we may further deduce that the first three terms in the 
right hand-side of (9.7) give rise to residual expressions. There remains to consider 
the terms in the last line in (9.7) which, with the help of (9.3), we further transform 
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as 

(9.8) ± 1/2 1+µ Il±£6ôT.n/ + 
n 

k=l 
ÇiRk(ti(dTif)) = 

1 к 

n 

k=l 
CiÄk,6 aTÍ/)± 1 1+М 

2 1-й 
Ei dt 

jk 
f 

+ 
n 

fe=l 
tiRk(dTi f) 

jk 

(9.9) = 
П 

k = l 
Ci[Rk,Zi\(dT '3* f) + Ei Dt 

jn 
(Tf). 

Since for every p G i12^, 1] there exist q > 1 and s G (0,1) such that hpt(dQ) <-+ 
13^(00,) compactly and since Lq(dQ) <—• hp(dQ), Lemma 2.5.7 shows that each 
[Rk,€i]dTi gives rise to a residual expression. If we also note that 

(9.10) UidrU(Tf)\\Kt{dQ) < c||aT.n(T/)|U:T(EN) < c||T/||fcilp(en)> 

then the above reasoning proves that, whenever TL̂ - < p < 1, /i G [0,1) and — 1 < 
A < 1, there exists a constant C > 0 such that 

^•11) II/IUY(dn) ^ C I K ^ è î ^ 7 + K*)f\\h\>(dn) + residual expressions, 

for every / G hlf(dQ). 
The estimate (9.11) leads to the following results. 

Proposition 9.1.1. — For n = 2,3, let 0 C Mn be a bounded Lipschitz domain and 
assume that /JL G [0,1) and — 1 < A < 1. Then there exists s > 0 such that 

(9.12) ± \ j±£l + KX : hl?(dtî) — hat l?№) 

are Fredholm operators of index zero for e a c h ^ 3 Ü - £ : < p < l . 

Proof. — The estimate (9.11) shows that the operators ± 1/2 1+* I + K\ are bounded 
from below modulo compact operators on hlf(dQ) for each \x G [0,1). In particular, 
(9.12) are semi-Fredholm operators. Since they are invertible when \i is sufficiently 
close to 1, the homotopic invariance of the index may be invoked in order to conclude 
that this one-parameter family of operators (indexed by \i) consists of Fredholm op
erators with index zero. • 

Corollary 9.1.2. — Let Q C Mn, n > 2, be a bounded Lipschitz domain and assume 
that [i G [0,1) and -1 < A < 1. Then there exists e > 0 such that for p G (2 (N-1)/N+1 -
e,2 + e), 

(9.13) ± §±±£ J + K\ : hp(dQ) —• h{(dQ) 

are Fredholm operators of index zero. 
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Proof. — The case p < 1 is covered by the previous proposition. When p > 1, we can 
derive an estimate corresponding to (9.11) in a similar fashion as before, although in 
this case, since we are dealing with classic Sobolev spaces L\(dQ), the argument is a 
little more straightforward. Again, this type of estimate is enough to prove that the 
operators in question are Fredholm with index zero. • 

As a result of the previous theorem when p = 0, it can also be shown that the 
operators 
(9.14) ± \I + KX : h%± (Щ -> ft?|V± (XI) 
are Fredholm with index zero. In particular, using Lemma 11.9.21 and (5.124) then 
gives 

(9.15) Ker ( ± \I + Kx : h%± (Щ - h%± (dSlj) = ФЛ(ШТ), 
for each p G (2^+i^ — £, 2 + e). We can now prove the following theorem. 
Theorem 9.1.3. — Let Q, С Rn, n > 2, be a bounded Lipschitz domain and assume 
—1 < A < 1. Then there exists e > 0 such that for p G C^n+i^ ~£?2+e), the operators 
(9.16) ± |i±£ / + Kx : hp(dft) —> Л?(вП) 
are isomorphisms for all p G (0,1). Moreover, corresponding to the case p = 0, the 
operators 
(9.17) ± \I + Kx : hphv±(9^)/Фл(аПт) —, h%±(дП)/У\дПт) 
are also isomorphisms. 
Proof. — From Theorem 5.3.6, we know the above operators are isomorphisms when 
p is near 2. Then since L\{d£l) is dense in hp(dQ,), the operators in (9.16) must have 
dense range. From Corollary 9.1.2, the range is also closed, and so the operators 
are surjective. Since they are also Fredholm with index zero, this implies that the 
operators in (9.16) are in fact isomorphisms. 

Arguing as in the last paragraph of § 5.3, it follows from Corollary 9.1.2 that 
the operators in (9.17) are Fredholm with index zero. Since we know that (9.17) are 
isomorphisms when p is near 2 and L\v±(d£t) is dense in h\v±(d£L), these operators 
must have dense range for each p in the desired range. Since the range is also closed, 
the operators in (9.17) must be onto, and therefore they are in fact isomorphisms. • 

At this point, we are ready to prove the following result with regards to the invert-
ibility of the single layer. 
Theorem 9.1.4. — For each bounded Lipschitz domain О С Mn with n > 3, there 
exists e = е(дП) > 0 with the property that 

(9.18) S : hp(dQ)/isRdQ —+ h%(dtt) 

is an isomorphism for each p G (~̂ pf̂  — e, 2 + e). 
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Proof. — First, note that the operator (9.18) is well-defined due to (5.77) and (5,174). 
We will show that 
(9.19) Ker(s : hp{dti) -> A?(0n)) = ^Ran-

Assume /G hp(dft) is such that Sf = 0. Then u± := <jf in ft± and TT± :== Qf in 
fi± satisfy 

(9.20) 

Au± = Vn± in fi±, 
div tz± = 0 in fi±, 
#±|aQ = 0, 
M(va±),.M(^±) € if(dsi). 

Since M(W±) G Lp(d£l), by Lemma 11.5.1, it follows that M(u) G Lp*(dft) 
where ^ — \ ~ ^rj • Then since p* > 2 — £, uniqueness for the L2 Dirichlet problem 
guarantees that u± are locally constant. Then n± are also locally constant, and so it 
follows that 

(9.21) / = #*(£_, 7T_) - (̂ff+>7T+) = I/(TT+ - 7T_) G z/R^n, 

which proves (9.19). From (4.142), we know that 

(9.22) S o (#(2>A(.), ^A(-))) = (1/2 I + *A) O (-1/2 I + KX), 
as operators on hp(dQ,). Although the identity (4.142) was originally proven for p > 1, 
by a density argument, it must also hold for n-1 < p < 1. Now from Corollary 9.1.2, 
we know that the operators ±\l -f K\ are Fredholm for p G (2^+^ — e,2 + e), and 
hence from (4.142), we can conclude that the operator 

(9.23) S : hp(dn) -+ hp(dn) 
has a finite codimensional range, which in turn implies that its range is closed. Now 
since the operator in (9.23) has closed range and (9.19) holds for all 2(n-1)-e < p < 
2 + £, it follows that (9.18) is injective and has closed range for all values of p in this 
range. Furthermore, from Theorem 5.4.1, the operator in (9.18) is an isomorphism 
when p is near 2, and so applying Theorem 11.9.27 from the Appendix, it must be an 
isomorphism for all 2^+i^ ~ £ < P < 2 + e. • 

Since (9.18) is a self-adjoint operator, the following corollary follows immediately 
by duality. 

Corollary 9.1.5. — For each bounded Lipschitz domain Q, C Rn with n > 3 there 
exists e = £(dfi) > 0 with the property that for each 

(9.24) 2 - £ < p < o o ifn = 3, 

(9.25) 2 - e < p < 2(n-1) /n-3 + e if n > 4, 

the operator 

(9.26) S : Ll^dSt)/vRdQ—+ Lp(dQ) 
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is an isomorphism. 
We also have the following results for n = 2. 

Theorem 9.1.6. — For each bounded Lipschitz domain ft C R2 there exists e = 
e(dQ.) > 0 with the property that the operator 

(9.27) S : (/ip(dft)/i/Ran) 0 R2 —• h%{JKl) 0 R2, 
given by 

(9.28) S([g\,c):= (s£+c, j 
ad 

gdo^j , 

is an isomorphism for each p G ( | — £, 2 + £). 
Proof. — Arguing as in the proof of Theorem 9.1.4, we can establish that (9.23) is a 
Fredholm operator for each p G (§ — e,2 + e). Recall the decomposition S = SQ + Si 
as defined in (5.187). Since we know SQ = S is Fredholm, and Si is compact (being an 
operator of finite rank), it follows that 5 is also Fredholm, and therefore has closed 
range for all p G ( | — £, 2 + e). Since S is an isomorphism for p = (2 — e, 2 + e) 
according to Theorem 5.4.4, it has dense range for all p G ( | — £, 2 + £), and therefore 
it is onto for all p in this range. Applying Theorem 11.9.27 from the Appendix, we 
can conclude that S is an isomorphism for each p in the desired range. • 

It can also be shown that (9.27) is a self-adjoint operator, and so the following 
corollary follows immediately by duality. 
Corollary 9.1.7. — For each bounded Lipschitz domain ft C R2 there exists e = 
e(dQ) > 0 with the property that the operator 

(9.29) S : (L^!(an)/i/»an) 0 R 2 —> I£(3fi) 0 R2 
as in (9.28) is an isomorphism for each 2 — e < p < oo. 

Next, we state another result involving the single layer in two dimensions. 
Theorem 9.1.8. — For each bounded Lipschitz domain ft C R2 there exists e = 
e(d£l) > 0 with the property that 
(9.30) 
5 : h?{dtt) ZvRdneW — hp1,v,w(dft) := | / G h% : / </>v>) Ar = о e v | 

Jan -1 
is an isomorphism for each p G ( | — e, 2 + e), where V is as in (5.128). 
Proof. — From Theorem 9.1.6, we know S is an isomorphism for eachp G (§ — e, 2+e). 
In particular, S has index zero, and so since S = S — S\ where Si as in (5.187) is 
compact, it follows that S must have index zero for each p G ( | — e,2 + e). Using 
(5.183) and applying Theorem 11.9.21 then gives 
(9.31) Ker (5 : hp{dQ) —> hp1 (dO) = vRdn © V, Vp € (§ - e, 2 + e), 
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and therefore (9.30) is indeed an isomorphism for each p in the desired range. • 

Consider now the following transmission boundary value problem for the Stokes 
system: 

(9.32) 

Au± — V7r± = 0 in ft±, 
M(Viï±),M(7T±) e L*>(diï), 
u+\ -uJ =f€hp(dSl), 

Ian Ian 
#(t?+,7r+) - Ai#(tT_,w_) = gehp(dQ), 

along with the decay conditions 

(9.33) 

U-(X) = 
0(|x|2-n) as |x|-.oo, if n > 3 , 
- 1/4 lEi(x)^'-f^gdo^ + OQ(|x]-1) as |x| -> oo, if n = 2, 

(9.34) 
dju^x) = - 1/4 i(djE)(x)(j 

ab 
g da) +0(\x\~n) as |x| -> oo, 1 < j < n, 

(9.35) 

тг_(ж) = 0(\x\l-n) as |ж| -+ oo, if n > 3, 
1/µ (У^Eл)(о:),fan gdo} + О(|х|-2) as |a?| - oo, if n = 2. 

Above, ft C Rn is a bounded Lipschitz domain, p G (0,1) is the transmission 
parameter and we have set ft+ := ft, ft_ := Rn \ ft. Also, when n-1 < p < 1, the 
integral Jdn g da should be interpreted as (^{ge, Xon) ee^j 1<l<n ? with (•, •) denoting the 
duality pairing between hp(dQ) and C^-WVp-i^afi). 

We can now prove the following result. 

Theorem 9.1.9. — Assume that ft c Mn, n > 2, is a bounded Lipschitz domain and 
that n^ < p < oo, — 1 < A < 1. Then the following claims are equivalent: 

(i) the problem (9.32)-(9.35) is well-posed for every ¡1 G (0,1); 
(ii) the operator 

(9.36) 1 ¿6+1 
2 /x-1 

I + Kl :hp(dCt) —+hp(dn) 

is an isomorphism for every /i G (0,1); 
(hi) the operator 

(9.37) |£±iJ + Kx : h{(dSl) —+ h{(dQ) 

is an isomorphism for every ji G (0,1). 

Proof. — The proof of the implication (ii) => (i) follows exactly as in the proof 
of the first part of Theorem 5.5.1. In the opposite direction, the a priori estimate 
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uously parametrized family of one-to-one operators with closed range (in particular, 
semi-Fredholm) on hp(dQ), which are invertible (via a Neumann series) when \i is 
sufficiently close to 1. The homotopic invariance of the index then gives that all the 
operators in question are invertible on hp(dQ,). 

Consider next the equivalence (i) <==> (hi). First, when the operator (9.37) is an 
isomorphism for each /i € (0,1), a solution to (9.32)-(9.35) which satisfies (5.204) is 
given by 

associated with the version of (9.32) when / = 0 reads 
||d*(£+,7r+) -fid^(u-,7r.)\\hPm) « ||M(Vtx+)||Lp(an) + ||M(7r+)||Lp(an) 

(9.38) +||M(Vtr-)||Lp(an) + ||M(7r_)||LP(^) 
for any pair of functions (U±,TT±) which solve the Stokes system in £2± and satisfy 
w+ an = w_ an, M(Vu±), M(TT±) e Lp(dCt). Specializing this estimate to the case 
when u± = (/5h, n± := Qh in fi±, with h E /ip(9£2), and arguing as in (4.173) then 
yields 
(9-39) l|£||fcp(*» < C\\a>^I + K*x)h\\hPm), 

where C = C(fi,p,/x) > 0 is a finite constant. Thus, 1 M+l 
2 /x-1 

I + K*y 
0</x<l 

is a contin-

(9.40) u+ := -<Jg+®x к 
1 /i+i 
2 fi-1 

I + Ky ) 
-1 Sg + _Jf_ 

/х-1 
0] in íi+, 

(9.41) 7Г+ := -Qg + Px i м+1 
2 

I + Ky ) -1 Sg + Jf_ 
/х-1 

f in Í2+, 

(9.42) u- := -
1 
µ sg + 

1 
µ 

»A 1 M-l 
2 /z-1 

/ + #A 
-1 Sg + µ 

u-1 f 
in f2_, 

(9.43) TT_ := - 1 
µ 

2£+ l 
µ 

Py 1 M+l 
2 ¿1-1 

f + #A -1 
Sg + /x-1 f in £2_. 

Second, if the problem (9.32) is well-posed for each /i € (0,1), then 

(9.44) 
Hjuw+lan - 5-|an|Uj(an) ~ ll̂ (Vff+)||LP(an) + ll̂ (*+)lli>(0O) 

+\\M(Vu-)\\LP{dn) + ||M(7r_)||LP(ao), 

for any pair of functions (U±,TT±) which solve the Stokes system in Q,± and satisfy 
d£(w+,7r+) = ^(5_,TT_), as well as Af(Vw±), M(TT±) € Lp(dQ). Indeed, this is the 
apriori estimate associated with the version of (9.32) in which we multiply by \i the 
first boundary condition, re-denote jiti- by u-, and take g = 0. Now, specializing 
(9.44) to the case when u± = ^D\h, TT± = $\h in ft±, with h € /if(9Q), yields 

l|ft|Uj(an) = IK+lan -S_|an|Uj(an) 
< (|M(Va+)||Lp(an) + ||M(7r+)||Lp(an) + ||M(VtZ_)||Lp(an) + ||M(7r_)||Lp(an) 

(9.45) < CH/iu+lan - S-|an|U?(an) = ^ll( |^f J + K\)h\\h*(en), 
where C — C(fi,p, fi) > 0 is a finite constant. With this in hand and arguing as before, 
we then conclude that the operator (9.37) is an isomorphism for every \i e (0,1). 
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There remains the issue of proving uniqueness for (9.32) when, say, the operator 
(9.37) is an isomorphism for each /x G (0,1). Once again, if (u±,n±) is a solution of 
the homogeneous version of (9.32)-(9.35), Green's formulas (5.210) hold. Multiplying 
the version of (5.210) corresponding to the sign minus by /x, then adding it to the the 
version of (5.210) corresponding to the sign plus yields, after taking boundary traces 

(9.46) u+ +uv =(\1 + Кх)(й+ \ - ц(-\1 + кЛ(и-\ ) , an an \¿ /V an/ V г /V Ian/ 
since the single layer does not jump across dfi, and c^(il+,7r+) = \xd£(u-,7r_). 
Thus, keeping in mind that u+\dn = #-|an yields, after some algebra, (1/2 µ+1 I + 

Kx)(u+\ 
0ft 

) = 0- Hence, u+\dQ = 0, and so u~\dQ = 0 as well. If in place of (4.152), 
we now set 
(9.47) u := 

u+ in £2+, 
pu- in £)_, and 7r := 

7r+ in £2+, 
put- in £2_, 

then the pair (u,7r) solves the Stokes system in En and decay at infinity. Interior 
estimates then force that u = 0 from which the desired conclusion follows. • 

Running the same type of argument as above, but for the transmission problem 

(9.48) 

Au± — VTT± =0 in £2±, 
M(W±),M(TT±) GLp(d£2), 
u+ —LLU- = o 6 hp(dQ). 

0O dQ 
c£(£+,7T+) -0*(tl-,7r_) = /G №(0fj), 

with decay conditions 

(9.49) u-(x) = 0(|x|2"n) as |x| -> oo, if n > 3, 
E(x)(jdQfda)-r-0{\x\-1) as | x | o o , if n = 2, 

(9.50) dju-(x) = (djE)(x)^j fda) + 0(|x|~n) as \x\ oo, 1 < j < n, 

(9.51) 7r_(z) = 
Oflxl1-71) as |x| -+ oo, if n > 3, 
( V B A ) W , /ÔN /AT ) -f 0 (M-2 ) as |z| -* oo, if n = 2. 

in place of (9.32)-(9.35), yields the following result. 

Theorem 9.1.10. — Let ft C Mn, n > 2, be a bounded Lipschitz domain and assume 
that n-1 < p < oo, —1 < À < 1. Then the fact that the transmission problem (9.48)-
(9.51) is well-posed for each p G (0,1) is equivalent with each of the following two 
conditions: 

(9.52) - | jjzK + K\ • hp(dQ) —+ hp{dQ) isomorphically, Vjx G (0,1), 

(9.53) - | f£rJ + K\ ' K{dQ) —» hp(dQ) isomorphically, V/x G (0,1). 
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We can now also prove the following theorem. 

Theorem 9A.11. — Let Q C Rn, n > 2, be a bounded Lipschitz domain and assume 
that -1 < A < 1. Then there exists e > 0 such that for p e C^n+P ~ e>2 + £)' 

(9.54) ± \ i±g J + Kl : hp(dQ) —> /ip(dO) 

are isomorphisms for all // G (0,1). Furthermore, corresponding to the case p = 0, the 
operators 

(9.55) ± \I + ^ : fe* x (dQ)/uRdQ± — ft£A (0n)/i/Ran± 

are also isomorphisms. 

Proo/. — Let p e (2(n - 1) - e,2 + e). If /x € (0,1), it follows from Theorem 9.1.3, 
Theorem 9.1.9, and Theorem 9.1.10 that the operators in (9.54) are isomorphisms. If 
we can show that the operators in (9.55) are Fredholm with index zero, then we can 
finish the proof by arguing as in the proof of Theorem 9.1.3. 

From Theorem 9.1.4, we know that (9.23) is a Fredholm operator of index zero. 
Now, returning to the identity (9.22) and using Corollary 9.1.2, we can conclude that 

(9.56) #(2>A(-), ^A(-)) : K№) —> hp(dQ) 
is also a Fredholm operator of index zero. 

For f e ftp(9Q), let u± := <^f in Q,± and TT± := Qf in Q±. Applying (4.144) to 
these functions leads to the identity 
(9.57) d№x(Sf), Px (Sf)) = (±I + K*x)(-±I + K*x)f, yf€hP(dn). 

Although (4.144) only holds as stated for p > 1, the identity (9.57) still holds for 
Ik^L < p < 1 by virtue of a density argument. Now, since the operators (9.56) and 
(9.23) in the left hand side of (9.57) are Fredholm and the operators in the right side 
commute, it follows that the operators 

(9.58) ± \I + Kl : hp(dQ) —• hp(dn) 
both have a closed, finite co-dimensional range as well as a finite dimensional kernel. 
Hence, they are both Fredholm. Now that we know the operators 

(9.59) ± | i±£l + Kl : hp(dQ) —> hp(dtt) 

are Fredholm for all p € [0,1), it follows that the Fredholm index must be constant 
for all p in this range. Thus the operators in (9.58), which correspond to the case 
p = 0, are Fredholm with index zero. Finally, arguing in a similar fashion as in the 
last paragraph of § 5.3, we can show that the operators in (9.55) are also Fredholm 
with index zero, as desired. • 

We conclude this section with two corollaries. 
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Corollary 9.1.12. — Let Q c Mn, n > 2, be a bounded Lipschitz domain and assume 
that — 1 < A < 1. Then there exists e > 0 such that for each 

(9.60) 2 - e < p < o o if n = 2,3, 
2 - e < p < 2(n+1) +£ if n > 4, 

and each /x G (0,1), the operators 
(9.61) ± 1/2 1+µ I+ Kx : Lp(dQ) —+ Lp(dQ) 

are isomorphisms for all \i G (0,1). Moreover, corresponding to the case /i = 0, the 
operators 

(9.62) ±\I + KX: L*±(dn)/Vx(dnT) — ^ ( c M ) / * * ^ ) 

are also isomorphisms. 

Proof. — This follows from Theorem 9.1.11 and duality. • 

To state our second corollary, we need some preparations. Recall the duality result 
from (2.68). The dual of hlt(dQ) involves the local BMO space, which we briefly 
review. For some fixed 0 < rQ < diam (dQ), the space bmo (dQ) is then introduced as 

(9.63) / G bmo (dQ) 4=4- / G L2(dQ) and sup 
Ar surface ball 
with r < rQ Ar 

\f - fAr\da < 00 

(with /Ar := -fA f da, where the barred integral indicates averaging), and is equipped 
with the natural norm. Then (cf. [15]) 

(9.64) (/iat(dft))* = bmo (dQ) and hlt(dQ) = (vmo (d«))*, 

where 
(9.65) 

/ G vmo (dQ) def f G bmo (dQ) and lim 
R— 

sup Ar surface ball 
with r < R Ar 

\f-fAr\do = 0 

is Sarason's space of functions of vanishing mean oscillation. Define the spaces 
hmou±(dQ), vmov±(dQ) and C£±(dQ) in an analogous fashion to (5.114). 

Corollary 9.1.13. — Suppose that Q C Rn, n G {2,3}, is a bounded Lipschitz domain 
and assume that — 1 < A < 1. Then, for each \i G (0,1), the operators 

(9.66) ±ii±iij + Kx : bmo(dfi) —> bmo(dft), 

(9.67) ±f I=£J + Kx : vmo (dQ) —> vmo (dQ), 

are isomorphisms. In addition, corresponding to the case JJL = 0, the operators 

(9.68) ±\I + KX : bmojy±(dQ)/^x(dQT) —+ bmo,± (dQ)/Vx(dQT), 
(9.69) ±\I + *TA : vmo,± (dft)/tf A(dftT) —• vmo,± (dfi)/#A(dQT), 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2012 



170 CHAPTER 9. BOUNDARY VALUE PROBLEMS IN BOUNDED LIPSCHITZ DOMAINS 

are isomorphisms. Finally, there exists e > 0 such that 

(9.70) 
0 < Qi < § H- e ifn = 2, 
0 < a < £ if n = 3, 

the operators 
(9.71) ± 1/2 1+µ^I + Kx:Ca(dQ) — Ca(dn), MG(0,1), 

(9.72) ± 1/2 I + KX : C2±(dQ)/*x(dnT) —. csjdsi)/9x(dsi^) 
are also isomorphisms. 

Proof. — This follows from Theorem 9.1.11, the above discussion and duality. • 

9.2. Main well-posedness results with nontangential maximal function estimates 
We can now state some of our main results. The first involves the transmission 

problem. 

Theorem 9.2.1. — Assume that ft C Rn, n > 2, is a bounded Lipschitz domain and 
set ft+ := ft, ft_ := W1 \ ft. Also, fix p G (0,1) and A G (-1,1]. Then there exists 
e = e(dft) > 0 such that for each 

(9.73) 2(n-l) 
n+1 -e <p < 2.-he 

the transmission boundary value problem, concerned with finding two pairs of func
tions (u±,7r±) in ft± satisfying 

(9.74) 

Au± = V7r±, div u± = 0 in Q±, 
Af(VtT±), M(TT±) € LP(«Ï), 
t?+ —w_ = o G hp(dQ), 

Ian an 
#(5+,*+) -/i^(t?_,7T_) = / € ftP(Ôfî), 

and the decav conditions 

(9.75) 

u-(x) = 
0(|x|2-n) as |x|->oo, if n > 3 , 
- 1/2 E(x) ( ^ ( / ô n / ^ + O d x l - 1 ) as |*|->oo, if n = 2, 

(9.76) 

д;й-(х) = -№Е){х)( 
an 

f da) + 0(\х\-п) as |x|->oo, 1 < j < n, 

(9.77) 

7T_(x) = Od^l1-") as \x\ -too, if n > 3, 
1(У£д)(х)-(/ап/а(г)+0(И-2) a 8 | * | - o o , ifn = 2, 
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has a unique solution. In addition, there exists C > 0 such that 

(9.78) ||M(Vtr±)||Lp(an) + \\M(7r±)\\LP(dn) < C\\g\\hP{m) + C\\f\\hP(dn). 

Proof. — This follows directly from Theorem 9.1.3 and Theorem 9.1.9. • 

This leads us to our next result for the Dirichlet problem. 

Theorem 9.2.2. — Assume that Cl c Rn, n > 2, is a bounded Lipschitz domain. Then 
there exists e = e(dQ) > 0 such that for each 

(9.79) 2 - e < p < oo if n = 2,3, 
(9.80) 2 - e < p < l&Ei1 +e if n > 4, 

the interior Dirichlet boundary value problem 

(9.81) 
Aü = V7T, div ü = 0 in O, 
М(й) e 1^(00), 
и 

dQ 
-/€LS+(en), 

has a solution, which is unique modulo adding functions which are locally constant 
in to the pressure term. In addition, there exists a finite constant C > 0 such that 
(9.82) \\M(u)\\LP{dn) < C\\f\\LP(an). 

Similar results are valid for the exterior Dirichlet problem, formulated much as 
(9.81) with the additional decay conditions 

(9.83) u(x) = 0(|x|2-n) as \x\ -> oo, if n > 3, 
E(x)A+V{l) as \x\ oo, if n = 2, 

(9.84) dju(x) = 0{\x\l~n) as \x\ -»00, if n > 3, 
djE(x)A + 0(|x|-2) as \x\ oo, if n = 2, 

(9.85) TT{X) = Odx]1'71) as |x| oo, if n > 3, 
(VEA(x), A) + 0(\x\-2) as \x\ oo, if n = 2, 

for some a priori given constant A G M2. Also, the standard nontangential maximal 
operator in (9.82) should be replaced by its truncated version. 

Proof. — Fix A G (-1,1]. From Corollary 9.1.12, for any /G Lg+(0fi), there exists 
£i G Ll+(dQ) and xf0 G Vx(dQ-) such that {\I+Kx)gi+$0 = f. Since <$0 G LJ(3fi), 
according to Corollary 9.1.5, when n > 3 there exists g<i G L .̂1(dfi) such that Sfo = 
$Q. Then 

(9.86) ii := 0xSi + <J$2 and TT := 0A& + Qg2 
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will satisfy (9.81) and (9.82). The case n = 2 can be treated in a similar manner. In 
this case, using Corollary 9.1.7, we can instead find g2 G L .̂1(90) and c G R2 such 
that Sg2 + c = ipQ. Then 
(9.87) u := <Dx9i + Jfa + c and TT := Pxgi + g& 
will satisfy (9.81) and (9.82). Existence of solutions for the exterior Dirichlet prob
lem can be established in a similar fashion. This time, when n = 2, we can invoke 
Theorem 9.1.6 in order to be able to choose g2 such that 

(9.88) 
an 

92 da = A, 
which, in turn, will guarantee that the solution just constructed has the appropriate 
decay, as prescribed in (9.83)-(9.85). Finally, uniqueness in the case p > 2 follows from 
uniqueness for the case when p is near 2, which is guaranteed by Theorem 5.5.4. • 

Theorem 9.2.3. — Assume that ii c Rn, n G {2,3}, is a bounded Lipschitz domain. 
Then there exists e = e(dQ.) > 0 such that if (9.70) holds then the interior Dirichlet 
boundary value problem 

(9.89) 
Au = V7T, div и = 0 in il, 
йеСа(й), 
й 

dO. 
= feC« (Ol), 

has a solution, which is unique modulo adding functions which are locally constant 
in Q to the pressure term. In addition, there exists a finite constant C > 0 such that 
(9.90) ||£||ca(n) + sup 

x E R 
[dtet(x,dn)1-a\vii(x)\] < c||/l|c«(en). 

Similar results are valid for the exterior Dirichlet problem with the additional decay 
conditions (9.83) imposed. 

Proof. — This is proved much as Theorem 9.2.2, with the help of Corollary 9.1.13. • 

We next discuss the case of the Dirichlet problem with data from BMO and VMO 
spaces. A few preliminaries are necessary. Given a Lipschitz domain fid", define 
the set of Carleson measures, Car(Q), as the subclass of Borelian measures /i on tl 
satisfying 

(9.91) ||/¿|| Car (Q) := sup li(B(x,r) nil) 
rn—l 

: x G dQ, 0 < r < diam (dQ) \ < oo. 

We shall also make use of a distinguished subclass, Car*(Q), of the space of Car
leson measures in Q, defined by 

(9.92) /xG Car*{Q) def a G Car (Q) and lim sup 
0<r<6 

р(В(х,г)ПП) 
грП— 1 

= 0. 
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Theorem 9.2.4. — Assume that ft c M.n, n G {2,3}, is a bounded Lipschitz domain. 
Then the interior Dirichlet boundary value problem 

(9.93) 
Au = V7T, div û — 0 in ft, 
|VtT|2dist (., aft) dx G Car (ft), 
u = f G bmo ,̂ (9ft), 

dQ has a solution, which is unique modulo adding functions which are locally constant 
in ft to the pressure term. In addition, there exists a finite constant C > 0 such that 

(9.94) ||\Vu\2dist(;dQ)dx\\Carm < C||/||bmo(afi). 

and 
(9.95) |W|2dist (',dU)dx G Car*(ft) <=> f G vmo (0ft). 

Similar results are valid for the exterior Dirichlet problem with the additional decay 
conditions (9.83) imposed. 

Proof. — The invertibility of the relevant boundary integral operators has been es
tablished in Corollary 9.1.13. With this in hand, the we proceed largely as in the proof 
of Theorem 9.2.2. The only novel aspect is that, in the current context, we need to 
know that the double layer operator 0\ maps functions from BMO on the boundary 
into densities of Carleson measures. This, however, is covered by the following general 
result. Let k G C°°(Rn \ {0}) be an odd function which is homogeneous of degree 
—(n — 1). Also, fix some b G L°°(dft) and assume that the operator 

(9.96) ¥f(x) := 
dO 

k(x - y)b(y)f(y) da(x), x G ft, 

satisfies 
(9.97) £71 EE const in ft. 

Then 
(9.98) || (?f)\en\\bmo(dQ) + || |V^/|2dist(,aft)^||Car(n) < C\\f\\hmo{dQ). 

See [65] for a proof of this claim. The proof of the theorem is therefore finished. • 

We now turn to the following result for the Regularity problem. 

Theorem 9.2.5. — Let ft C Mn, n > 2, be a bounded Lipschitz domain. Then there 
exists e = e(<9ft) > 0 such that for each p as in (9.73), the interior Regularity boundary 
value problem 

(9.99) 
Aü — V7T, div û = 0 in iî, 
M(Vfl), М(тг) G LP(ôiî), 
U dO 

= /еЛС>1/+(01), 
has a solution, which is unique modulo adding functions which are locally constant 
in ft to the pressure. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2012 



174 C H A P T E R 9. B O U N D A R Y V A L U E PROBLEMS IN B O U N D E D LIPSCHITZ DOMAINS 

In addition, there exists a finite constant C > 0 such that 

(9.100) l | M ( W ) | | L P ( ^ ) + | |M (7r ) | |LP(aQ) < C\\f\\hPAm. 

Similar results are valid for the exterior Regularity problem, formulated much as 

(9.99) with the additional decay conditions (9.83)-(9.85). 

Proof. — Since the operator 

(9.101) 1/2I • f Kl : hP1, v+ / wl (aO_) —> hp1,v1 / wl (aO_) 

is an isomorphism for each p as in (9.73), we can find gi G h\v+{dQ) and ipQ G 

# A ( d f t _ ) such that ( | J + Kx)gi + tfa = / • Since ip0 e h\v, if n > 3, it follows from 

Theorem 9.1.4 that there exists ¿72 6 hp(dQ) such that Sg2 = V>o- Then 

(9.102) S : = ® A < 7 i 4- <#?2 and TT : = #>A<7i + Qg2 

will satisfy (9.99) and (9.100). When n = 2, it follows from Theorem 9.1.6 that there 

exists (¡2 € hv{d££) and c G R 2 such that Sfo + c = il>0. In this case, 

(9.103) u: = Dlg1 + Sg2 + c and II + Qg2 

will satisfy (9.99) and (9.100). Existence of solutions for the exterior regularity prob

lem can be established in a similar fashion. Much as in the case of the Dirichlet 

problem, when n = 2, it is possible to choose g% such that (9.88) holds. This guaran

tees that our solution has the appropriate decay, as prescribed in (9.83)-(9.85). As for 

uniqueness, an inspection of the corresponding argument in the proof of Theorem 5.5.3 

shows that the same technique can be used in the current context as well. • 

We finish this section with the following result for the Neumann problem. 

Theorem 9.2.6. — Let Q, c Mn, n > 2, be a bounded Lipschitz domain and fix A € 

(—1,1]. Then there exists e = e(dfl) > 0 such that for each p as in (9.73), the interior 

Neumann boundary value problem 

(9.104) 

Au = V7T, d i v u = 0 in fì, 

M (Vu), Min) € L * ( « î ) , 

Axu (u, II) = / € W ( 3 f i ) , 

has a solution if and only if 

(9.105) felm 4' +kl hpwl+ [dQ) hpwl (aO)) 

Moreover, this solution is unique modulo adding to the velocity field functions from 

\£A(H). In addition, there exists a finite constant C > 0 such that 

(9.106) l|Af(VtZ)||Lp(ôn) + \\M(TT)\\LP{dQ) C\\f\\hP(dn)-

A S T É R I S Q U E 3 4 4 
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Finally, a similar result holds for the exterior domain Mn \ Q if we include the decay 
conditions 
(9.107) 

u(x) = 
0(|x|2"n) as |x| -> oo, if n > 3, 
E(x) (fdn fdo^j +0(\x\~1) as \x\ oo, if n = 2, 

(9.108) 

djû(x) = (djE)(x)( i fdo) +0(\x\-n) as \x\ -> oo, 1 < j < n, 
Van 7 

(9.109) 

•к(х) = 
Odxl1-") as |ж| -»oo, if n > 3, 
((-VEA)(x), fm fde) + 0(\x\-2) as |*| - oo, if n = 2. 

More precisely, a solution to the exterior problem satisfying the above decay con
ditions exists if and only if 
(9.110) / € Im ( i j + Kl : L%x_ (0fi) - L%x_ (Щ), 

and solutions are unique modulo adding to the velocity field functions from Фл(Мп\0). 
Proof. — Since we have established in Theorem 9.1.11 that the operators (9.55) are 
isomorphisms and also that (9.15) holds for each p in the desired range, the proof that 
a solution exists if and only if / is as in (9.105) follows exactly as in the proof of Theo
rem 5.5.2. The claim for the exterior Neumann problem, along with the corresponding 
uniqueness statement, follows similarly. • 
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CHAPTER 10 

THE POISSON PROBLEM FOR THE STOKES SYSTEM 

10.1. Stokes-Besov and Stokes-Triebel-Lizorkin spaces 
Here we shall adapt the standard Triebel-Lizorkin and Besov scales to the Stokes 

system. Concretely, for a bounded Lipschitz domain ft in Rn, n > 2, and 0 < p, q < oo, 
a 6 1, we set 
(10.1) 

SBP'q{Q) := {(W.TT) € BP'q(Q) 0 B^l^Q) : Au - VTT = 0, divu = 0 in ft}, 
(10.2) 

SF™(tl) := {(U,TT) € F£'Q(Q) ©F^ , (FI ) : Au- VTT = 0, divw = 0 in ft}, 

(with the convention that p < oo in the latter case) equipped with the norms || • 
lls*2-«(n). II-IISBS-(O), naturally induced by ^ ( f t ) © ! ? ^ ^ ) and Fpqa Fg«(0) Fp,q (0), 
respectively. In particular, 
(10.3) SF*>*(Q) = SB%p(fy for every a 6 R, 0 < p < oo. 

Our next few results focus on some of the properties of these spaces. 

Theorem 10.1.1. — Let Q c Rn, n > 2, be a bounded Lipschitz domain. Then for 
every a G R, 0 < p < oo, 
(10.4) SF™(ft) is independent of g G (0, oo). 

Furthermore, for any p G (I1^, 2], g G (0, oo) there exists C = C(fi,p, q) > 0 such 
that 

(10.5) \\M(Vu)\\LP(m) + ||M(7r)||Lp(9fi) < c\\(a,n)\\SF*«i/p(a). 

Proof. — If qi,q2 € (0,oo), we have 

(10.6) SFP'QL (ft) c [F™1 (ft) n Ker A2] © [Fp,q1 (ft) n Ker A] 

= [F™2 (ft) n Ker A2] © [Fp,q2 (fl) n Ker A] , 
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by Theorem 11.7.1. Thus, SFP^(Q) C F™* (ft) 0 F™\ (fl) and, hence, SF*>*{Sl) C 
SF^2(f2). Similarly, SF™2(ft) C SF™1^), so ultimately, SF£«*(il) = SF£>*2(ft), 
proving (10.4). Finally, (10.5) is a consequence of (10.6) and Theorem 11.7.2. • 

Corollary 10.1.2. — Let Q C Rn, n > 2, be a bounded Lipschitz domain. Then for 
each A G R, the conormal derivative assignment (w,7r) I-» d$(u,7r) induces a bounded 
operator 

(10.7) &i: SF™/p(fi) —. fc*(an) 
whenever ZLẑ  < p < 2 and 0 < 0 < oo. 

Proof. — This follows directly from (10.5) and Theorem 4.3.1. • 

Recall that (-,-)0)P and [-,-]$ stand, respectively, for the real and the complex 
method of interpolation. 

Theorem 10.1.3. — Let Q, C Rn, n > 2, be a bounded Lipschitz domain and assume 
that 0 < qo,qi,q < oo, ao, OL\ G R, ao ^ ai, 0 < 0 < 1. Also, set a = (1 — 0)ao + 0ai. 
Then, if 0 < p < oo, 

(10.8) (s*2T(n), SF*f* (O)) - SflS'fl(fl), 

and if 0 < p < oo, 

(10.9) (SB™° (O), S££f («)) = S2*S'*(ft). 

Let 0 < po,Pi < oo, 0 < qo,qi < oo with min{go5<?i} < oo, ao,ai G R, 0 < 0 < 1 
and set a = (1 - 0)ao + 0alf \ = 1 - 0 + £ , and \. = ^ + £ . Then 

(10.10) [S i^ '* («). SFp1,q, a1 (»)]# = SBp,q a («)-

Finally, if OJO,OJI G R, 0 < Po»Pij9o>9i < 00 with min {g0, < oo, then 

(10.11) [SBZ'qo № , SB%» (ft)] = 55S'«((l), 

where 0 < 0 < 1, a = (1 - 0)a„ + 9alt I = 1-0 + £ , and ± == 1- 0 + £ . 

Proo/. — Fix an open cube Q CM71 containing fi, and for and i = 0,1, set 

(10.12) Xt := i ^ ( O ) 0 Fpi, qi {0), Zi := ^^,0(Q) Ф *£l%(Q), 
Yi := iM .0(Q \ «) ® Fpi, qi 10 (Q\ O) ̂  Z«. 

As discussed in [45], the spaces X0-I-Xi and.Yo+Yi are analytically convex (cf. the 
discussion preceding (11.143) for a definition). Let EQ denote Rychkov's extension 
operator truncated near ft so that it maps the distributions from the Triebel-Lizorkin 
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scale in ft to distributions supported in the cube Q, with preservation of smoothness. 
Also, set L(u, 7r) := (Au — V7r, div u) and 

(10.13) Uu(x) := J 
Rn 

E(x-y)u(y)dy, x e l n , 

(10.14) Gu(x) := J 
Rn 

{q{x-y),u{y))dy, xeRn, 

(10.15) nA/(x) := J 
Rn 

EA(x-y)f(y)dy, x G Mn. 

In particular, 
(10.16) An - V6 = J, div n = 0, AnA = /, 

where / stands for the identity operator. The intention is to use Lemma 11.9.23 with 
D:=Lo E® and 

(10.17) G(wJ) := (#n(lltif+ VnA/) , $n(e™ + / ) ) , 

where R0 is the operator of restriction to ft. Note that, in the notation of 
Lemma 11.9.23, X^D) = SF^qi{Sl) for i = 0,1. There remains to check that 
K := D o G — J, asa bounded linear operator from Z{ into itself, actually maps Zi 
into Yu i = 0,1. To this end, for every pair of test functions ($, ip) G C^(ft)©C£°(ft), 
and every (w, f) € Zi, we compute 

{(DoG-I)(w,f ),($,!>)) 

= ( (A [UW + vnA/] | - v [e«f + /] I , div [n«r+vnA/] | ) , ($, V)} 

(10.18) -((«f,/) ,(^V))=0. 

Hence, K(w,f) = 0 in ft which proves that K maps Zi into Ŷ . Then (10.8) and 
(10.10) follow from Lemma 11.9.23. A similar argument works for the Besov scale and 
this finishes the proof of the theorem. • 

10.2. Conormal derivatives on Stokes-Besov and Stokes-Triebel-Lizorkin scales 
Let X be a Banach space with dual X*. For every nxn matrix F = (Fj*)a,j with 

entries from X, and every nxn matrix G = (G%B,K with entries from X*, and each 
A G R, we set 

(10.19) Ax{F,G):=a!g{\)(F?,Gpk), 

where (•, •) is the duality pairing between X and X*, and Ajk (A) are as in (4.1). While 
our notation does not emphasize the dependence of (•, •) and A\ on X, the particular 
nature of X should be clear from the context in each case. 

The main results of this section are as follows. 
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Proposition 10.2.1. — Let ft c Rn, n > 2, be a bounded Lipschitz domain and assume 
that 0 < s < 1, 1 < p, q < oo, A G R. Then 
(10.20) a£ : SB™1/p((l) —, B™(«1) 

given by 

(10.21) (fi(it,ir), ^) := AA(w, VEx($) - (7r,divEx($), A V G £ f ^ > (dft), 

is a well-defined, bounded operator, where Ex is the extension operator introduced in 
Theorem 2.5.2 and 1/p + 1/p' = 1, 1/q + l/qf = 1. 

Furthermore, for every (S,7r) G S B ^ ^ f t ) and w G S^+1^p/(ft), the following 
integration by parts formula holds: 

(10.22) AA(w, Vw) = ^7r,div^ + (d£(ff,7r), T r ^ . 

Proo/. — Assume that (€T,TT) G SB™lf (ft). Then ff G B j^ f t ) , TT G B™A (ft) 

and we have At? — V7r = 0, divi? = 0 in ft. Also, ip G i3f_Î  (9ft) forces 
Ex(^) G jE _̂̂ +:lyp/(ft). Consequently, thanks to Proposition 2.4.4, the matrix 

VEx(V0 G B»'j£_1/p(Sl) = ( ^ / p . ^ f t ) ) * pairs well with Vu G Bp',q' (O). In a 

similar fashion, divEx(^) G (£*+i/p_i(ft))* Pairs well with TT G ^ ^ ( f t ) . This 

shows that d*(u,7r) G (B^*'(0ft)) * = Bj^dft) and 

(10.23) 11^(3,7r)||BRI(an> < C||tr||BP.« (n) +C||7T||BP.« (N). 

This finishes the proof of the well-posedness and boundedness of the operator 
(10.20)-(10.21). 

Going further, what we have proved up to this point yields 

(10.24) <̂9A(w,7r), Trw^ = AA(w, VEx(Trw)) - T̂T, divEx(Tr) w) 

so (10.22) follows as soon as we establish that 

(10.25) Ax(vu,Vw) - (ir,divw) =0, Vt? G Bj^+1/p,(ft) with Trw = 0. 

Since, by Theorem 2.5.3, C£°(ft) is dense in {w G B^+1/p,(ft) : Trw = 0}, it 
suffices to prove (10.25) when w G C£°(ft). However, in this scenario, the identity in 
(10.25) follows from the fact that Au — Vn = 0 in the sense of distributions in ft. • 

Proposition 10.2.2. — Assume that ft c Rn, n > 2, is a bounded Lipschitz domain 
and that 0 < s < 1, 1 < p, q < oo, A G R. Then 

(10.26) aA : SFs%p(ft) —> « ( 0 f t ) 

given by 

(10.27) (^(U,TT) , rf) := AA(V«, VEx($) - (*,divEbc($), A V € Bf^'(«2), 
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is a well-defined, bounded operator, where Ex is the extension operator introduced in 
Theorem 2.5.2 and 1/p + 1/p' = 1, 1/q + 1/q' = 1. 

In addition, the following identity holds for any (u,7r) € SF™, (ft), w e 

F p', q' 
1 - s+1 / p 

(ft): 

(10.28) AA(W,VwJ = (n,divw} + ^(£,7r), Trw}. 

Proof. — This closely parallels that of Proposition 10.2.1. • 

Note that the definitions (10.21)-(10.27) correspond to a formal application of 
Green's formula (4.6). The applicability of this point of view is limited to the range 
1 < p, q < oo, as Bp,q (5ft) fails to be a dual space if min{p, q} < 1. We nonetheless 
have: 

Theorem 10.2.3. — Let ft be a bounded Lipschitz domain in Rn, n > 2. Also, assume 
that À G R. Then the conormal operator from Proposition 10.2.1 extends to a bounded 
mapping 

(10.29) 
% : SB™yp(n) ^ B^dQ), whenever 
a=± <p<oo, 0<<z<oo, ( n - l ) ( i - l ) <s<l 

Analogously, the conormal operator from Proposition 10.2.2 extends to a bounded 
mapping 

(10.30) 
dî •• SF™i/№) — B^idSl), whenever 
^n-1 <p<œ, 0<q<cx>, ( n - l ) ( ì - l ) < s < l . 

Proof — Call a point in M6 with coordinates (s, 1/p, 1/q) "good" if 

(10.31) dC : SF™, (SI) —• Fp,q (dtt) is well-defined and bounded. 

Furthermore, call a region E C K3 "good" if all points in E are good. Then by-
Propositions 10.2.1-10.2.2 and Corollary 10.1.2, the following set is good: 

(10.32) {( s, I I 
p' p ) : K p < oo, 0 < s < l } and {[ 1, 1/2 ; 1/2) : n - 1 < p < 2}. 

Also, by Theorem 10.1.3 and Proposition 2.5.8, 
(10.33) E good => the convex hull of E is good. 

Finally, if for any E C M3 we denote by Pr^E" the projection of E onto the 
(horizontal) xy-plane, we note that 

(10.34) E good open set in R3 d$ : SF™1/p(Q) —> B^dSl) is bounded 
whenever (5,1/p) e PixyE and 0 < q < 00. 

Indeed, this is a consequence of (10.8) and (2.162) (with p = q), plus (10.4) and 
the fact that diagonal Besov and Triebel-Lizorkin spaces coincide. 
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With this information available, the end-game in the proof of the theorem is as 
follows. First, by (10.32)-(10.33), the interior of the parallelogram with vertices at 

(10.35) 0(0,0,0), ¿(1,0,0), -8(1,1,1), C(0,1,1) 

is a good set, and so is the segment with end-points 

(10.36) ^(1, 1 1 
2' 2 

), Q(i, n 
r>-1 

1 
2 
). 

See picture below: 

I 
q 

1 

o 
1 

n n-1 
1 
V 

S 1 

FIGURE 3. 

By (10.33), it follows that the pyramid with vertex at Q (given in (10.36)) and 
whose base is the parallelogram with vertices as in (10.35) is good. Since the projection 
of this pyramid on the (s, l/p)-plane is the region described by 

(10.37) {( s, 1 
p ) : 0<p<oo, ( n - l ) ( i - l ) < * < l } , 

it follows that the conormal derivative operator is bounded under the conditions 
specified in (10.30). 

Finally, the corresponding claim about (10.29) is a consequence of what we have 
just proved, (10.8) and (2.162). This finishes the proof of the theorem. • 

10.3. The conormal derivative of the Stokes-Newtonian potentials 
Let fi C ln, n > 2, be a bounded Lipschitz domain and assume that n - 1 < p < 1, 

(n - 1) (1/p - 1) < s < 1. Call ms e L°°(dft) a B ^ d f t ) molecule if there exist 
M > n - 1 and a surface ball 5 centered at xs € dft and having radius r £ (0, diam ft) 
such that 

(10.38) (1) \ms(x)\ <rs -1-V ( l + r-1|x-x5|)"M+s"1 for xG 9ft, 

(10.39) (2) / 
Jan 

ms(x) dcrx = 0 if r < г]. 
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The molecular theory developed by M. Frazier and B. Jawerth in the Euclidean 
setting can be adapted to the case of Lipschitz surfaces. In particular, we have (see 
[60] for a proof): 

Proposition 10.3.1. — Let (n — l)/n < p < 1 and (n — 1)(^ — 1) < s < 1. Then, given 
an arbitrary bounded Lipschitz domain ft C Mn, n > 2, there exists rj = 7](dft) > 0 
such that 

II/IIB-(3Q) * inf{(^|AS|P)1/P: 
s 

(10.40) f = Yl Xsms, rns's are B^dft) molecules, {Xs}s € F } , 
s 

uniformly for / e Bps^{dQ). 
Conversely, there exists C = C(dQ,,s,p,M,n) > 0 such that for any countable 

family {ms}s of B^-iidti) molecules and any numerical sequence {As}s £ £p, 

(10.41) | X > m * _F ^ < C\\{\s}s\UP. 

Assume that s € R, 0 < p < l , p<g<oo , and p <p\ < +oo, define J := ^, and 
fix an integer L > max{[J — n — s], — 1}. Let ft be a bounded Lipschitz domain in Rn, 
n > 2, /3 G N0 and p > 1 are constants depending on ft. Under these circumstances, 
call a function AQ a rough atom for '09(ft) if 
(10.42) (1) 3Q e Rn such that supp.A C Q c ft and pQ C ft, 
(10.43) (2) \\A\\FFL,IRN) < IQI1/^-1^, 

(10.44) (3) 
Rn 

x^A(x)dx = 0 if M < L and l(Q) < 2~P. 

The following result has been proved in [60]. 

Theorem 10.3.2. — Let ft be a bounded Lipschitz domain in Rn, n > 2, and assume 
that p, q, s, p1, J, L are as above. Then there exist /3 € NG and p > 1 such that any 
/ € Fso№) can ^e expanded in a series 

(10.45) / = VAfc4 with convergence in S"(Rn), 
kez 

where the atoms Ak satisfy (10.42)-(10.44) and {\k}kez € £p. Furthermore, 

(10.46) II/IIJ^O) « inf{||{Afc}fc||№; / = M X^Ak}, 

where the infimum is taken over all possible representations of / in a series of atoms 
satisfying (10.42)-(10.44). 

We are now in a position to discuss the main result of this section. 
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Theorem 10.3.3. — Consider a bounded Lipschitz domain ft c Rn, n > 2, and sup
posed p, q, s are fixed such that n - 1 < p < oo, (n — l)(l/p — 1)+ < s < 1 and 
0 < q < oo. Then, for each A G R, 
(10.47) ¿£(11, 0) : B^1/p.2f0(n) — Bp,q (9ft), 

(10.48) ^(H,6) : F71/p_2,0(ft) — ^ i ( ^ ) , if p * oo, 

are well-defined, linear, and bounded operators. 

Proof. — We start with implication (10.48) for n - 1 < p < 1, (n- l)(l/p-1) < s < 1 
and p < q < oo. By Proposition 10.3.1 and Theorem 10.3.2, it is enough to show that 
9* (II, ©) maps rough i?f+91/p_2 0(ft)-atoms to Bp,p± (9ft)-molecules. 

Note that current restrictions on indices imply that rough f̂̂ 1/p_2 0(ft)-atoms 
satisfy (10.42)-(10.44) with L > 0. Consider first such a rough atom A supported in 
a Whitney cube Q C ft, with center XQ G Q and pick xs G 9ft such that \XQ — xs\ = 
dist (XQ, 9ft). Then set m := d*(U(A), Q(A)) on 9ft which, so we claim, is a molecule 
for Bp'px(9ft) concentrated about the surface ball S :— B(xs,l{Q)) fl 9ft. 

The claim will be justified by checking (10.38)-(10.39). Take the vanishing moment 
condition, required when l(Q) is small. Assuming that this is the case, A has one 
vanishing moment and, for every c G Rn, 

J mda , c) = 
on 

I (m, c) da — 
Jan 

/ (d^{UA,eA),c)da 
Jan 

= / {AUA - VGA, с) dx = 
Ja. 

j (A,c)dx 
O 

(10.49) = ^ J Adx, с} = О, 
Rn 

by Green's formula (4.6), written with u = IL4, n = ©̂ 4, w = c, p = 0, the first 
identity in (10.16) and the support condition on A. Thus, fdflmda = 0, as desired. 

Turning to size estimates, we observe that m can be expressed in the form (recall 
that XQ is the center of Q), 

(10.50) m(x) = J (d\x){E,cfi{y - x) - d*(x){E,fi{xQ - x))t(y)A(y) dy, 
Q 

for some £ G C™(Q.) such that £ = 1 on Q, £ vanishes outside some small neighborhood 
cQ, c = c(fi) > 1, 0 < £ < 1, and |V£| < C/CQ)"1. 

For the range of indices we are currently working with, 
(10.51) F^/p_2(R")^L^(R"), if a + I - 2 - £ = - l - £ , 

where pi > 1 is the index appearing in (10.43), chosen sufficiently close to 1, and 
p2 > pi. Also, (Z^R"))* = L^(R"), so that (10.50) together with (10.51) and 
(10.43) imply 

(10.52) \m(x)\ < CUFx Lv' (Rn) |A|Ln2 -1 (Rn) < C\ Q\ 1/P1-'\\FX\\L(RN), 
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where 
(10.53) Fx{y) := (d\x){E,q\{y - x) - d\x){E,q\{xQ - x))t(y), y 6 R». 

We can see that 
NFx(y)\ < C Ш 1 

\x - y\n 
+C (dï(x){E, ft(y -x)- dî{x){E, q]{xQ - x)) 11 V«y)| 

(10.54) =: / + / / . 

By the Mean Value Theorem, 

II < C\y-XQ\ sup 
ze[y,xQ] 

Vz{d\x){E,q}(z-x)]T |Vf(y)| 

(10.55) < Cl(Q) sup 
z€[y,xQ] 

1 
\x - z\n 

my)i 

so that 

(10.56) II <C sup 
ze[y,xQ] 

1 
\x - z\n' 

since |V£| < y^y. Using the property that Q is a Whitney cube for ft and keeping 
in mind that y G cQ, x G 9ft, z G [y,XQ], some elementary geometry leads to the 
conclusion that \x — XQ\ < C\x — z\. Consequently, 

(10.57) II < Cl(Q)-n (l + \X-XQ\ 

KQ) 

—n 

The same reasoning shows that a similar estimate holds for /, so that altogether, 

10.58) IIVFX|| LP2 (R»>) < Cl(Q)-Z ( l + \X-XQ\ 

KQ) 
—n 

Similarly, 
10.59) 

ll̂ xll LP2 (R»>) < CliQ)1' 
n 
P2 1 + 

\X~XQ\ 

KQ) 
—n 

< Cl(Q)~ 
n 
P2 1 + \x-xQ\ 

KQ) 

—n 

where the last inequality rests on the observation that l(Q) is bounded by the diameter 
of the domain fi. Then by (10.52), (10.58), and (10.59), 

(10.60) \m(x)\ < CliQ)*-1-
n-1 P 1 + 

\X~XQ\ 

KQ) 
—n 

Now, by definition, \XQ-XS\ = dist (#Q, 9ft), so that |a;—ffs| < \X-XQ\+\XQ-XS\ < 
2\x - XQ\ for every x e 9ft. If we now set r := /(Q), then 

(10.61) 1 + \X~XQ\ 
r > 1 + 

1 
2 

\x-xs\ 
r > 

1 
2 1 + 

\x - xs\ 
r 
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which entails 

(10.62) \m(x)\ < Crs_1-V 1 + \x - xs\ 
r 

—n 

This proves (10.38) with M := n + s — 1 > n- 1 and justifies the claim that m is a 
molecule for B^^dSl) concentrated about the surface ball S — Sr(xs)- At this stage, 
Proposition 10.3.1 applies and yields that, for n - 1 < p < 1 and (n — l)(l/p — 1) < 
s < 1, the operator (10.48) is well-defined and bounded, first for p < q < oo, and then 
for the complementary range, 0 < q < p, by embeddings. 

To further expand this range, we shall rely on the observation that 

(10.63) / (d^(m,eu),f) da = 
Jan 

j (u,<Dxf)dx, 
O 

i.e., the conormal derivative of Newtonian potential can be viewed as the adjoint of 
the double layer. Then, Proposition 10.5.1, the duality results in (2.118)-(2.119) and 
interpolation with what we have just proved allows us to cover the range of indices 
described in the statement of the theorem. 

Finally, the claim made about the operator (10.47) is a consequence of the bounded-
ness of (10.48), the duality reasoning described in the paragraph above (in particular, 
contributing to the case p = oo) and interpolation. • 

10.4. The conormal on Besov and Triebel-Lizorkin spaces: the general case 
Let Q, C Rn, n > 2, be a bounded Lipschitz domain and assume that 1 < p, q < oo, 

0 < s < 1. If u e #^¿(0), 7T G B^i^iSl) (O) and / G £^_9i_20(ft) are such that 

Au — V7T = f\n in O then as suggested by (4.7), it is natural to define d^(u,7r)^ G 

Bp,q s - 1 (aO) = (Bp,q s'(dfi))\ 1/p + 1/p' = 1, 1/q + 1/q' = 1, A G R, by setting 
(10.64) 
(dZ@,*)f,j) := (/,Ex($) + AA(W, VEx(VO) - (^divEx^) , Vt? G Bp',q' 1 - s (Ao), 

where Ex is the extension operator introduced in Theorem 2.5.2. The conditions on 
the indices p, q, s ensure that all duality pairings in the right-hand side of (10.64) are 
well-defined. Similar considerations apply to the case of Triebel-Lizorkin spaces. As 
before, this duality-based approach is restricted to the case when 1 < p, q < oo, as 
B^^dQ) fails to be a dual space if min{p, q} < 1. We nonetheless have: 

Theorem 10.4.1. — Let O be a bounded Lipschitz domain in Rn, n > 2, and assume 
that n - 1 < p < oo and (n - l)(l/p - 1)+ < s < 1, 0 < # < o o . Also, assume that 
A G R. Then one can define a concept of conormal derivative, i.e. a bounded, linear 
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application 

(10.65) 

(w, 7T, / ) «-+ d^u^)^ mapping ^'9(0) onto B^^dSl), where 
#"(n) := {(*,», f) e B™, (ti) e B'f^iti) (O) © BP,Q S+ _2I0(«) (O) : 

Au — V7T = /|n and div u — 0 in ftl, 

which is compatible with (10.64) when 1 < p, q < oo. Furthermore, there exists a 
linear, bounded, right-inverse of (10.65). 

Similar conclusions are valid in the context of Triebel-Lizorkin spaces, i.e. for the 
application 

(10.66) 
(й, 7г, /) к-» д£(и,7г)? mapping £7̂ ,(ï(i)) onto B^(9ft), where 

£7™(П) := (u, n, f) E Fp, q S + 
1 P 
(O) O F p, q 

s + 1 
P 

-1 i m e F 
S4-1 P -2,01 (O) : 

Au — V7r = f\ci and div u = 0 in ft 

assuming that p ^ oo. 

Proo/. — Set 

(io.67) ^(tî, TT)/ := dy (*- [n/~] I , 7T - [e/~] I ) + # ( n / , e / ) , 

where, in the right-hand side of the above equality, the first conormal derivative is 
taken in the sense of (10.29) in Theorem 10.2.3, while the second one is taken in the 
sense of (10.47) in Theorem 10.3.3. The properties of this conormal derivative claimed 
in the statement of the theorem then follows from this. • 

Remark. In what follows, we agree to simplify the notation by writing d*(u,7r) in 
place of d*(u, 7r)̂ , whenever Au — Vn = 0 in O. 

10.5. Layer potentials on Besov and Triebel-Lizorkin spaces 
In this section we establish mapping properties for the hydrostatic layer potentials 

on Besov and Triebel-Lizorkin spaces in Lipschitz domains. 

Proposition 10.5.1. — Let ft be a bounded Lipschitz domain in Rn, n > 2, and assume 
that A e R, ^ < p < oo, (n - 1)(^ - 1)+ < s < 1, and 0 < q < oo. Then 

(10.68) 2>A : BJrf(an) — B™L(Q), 

(10.69) ^ : BP^(dQ) —> £™/(ft), 

(10.70) Px : BM(«l) — B™L_, (ft), 

(10.71) Q : BjiyOl) — 5 ^ ( 0 ) , 
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are well-defined, bounded operators. Furthermore, 
(10.72) g>A : B**(dSl) —+ Fp|\ (SI), 
(10.73) ^ : Bp,q s - 1 (Ml) — Ff;yfl), 
(10.74) <?A : BJ*(an) — Fp,q s+ _x(fi), 
(10.75) Q : B'f^dil) — Fp,q s+ 1/2 (O) 

P 
are also well-defined and bounded provided s,p, g are as before and p ^ co. 

Proo/. — From Theorem 11.8.1 and Theorem 11.7.1 it follows that 

(10.76) 0A : Bp8>p(dQ) —+ Mp ! (fi; A2) = Fp,q s+ 1/p (II) n Ker A2 
5+P S+P 

is well-defined and bounded whenever 0 < p, q < oo, (n —1)(̂  —1) + < s < 1, provided 
q = oo if p = oo. This and real interpolation (cf. Proposition 2.5.4 and Theorem 2.4.2) 
then justify (10.68) and (10.72) (in the latter case, we also use monotonicity of the 
Triebel-Lizorkin scale to cover the case q = oo). That the operators in (10.70)-(10.71) 
and (10.74)-(10.75) are also well-defined and bounded is a consequence of (4.35)-(4.36) 
and the mapping properties of the harmonic layer potentials on the Besov-Triebel-
Lizorkin scale proved in [60]. 

As regards 9̂ , Theorem 11.8.2 and Theorem 11.7.1 give that 

(10.77) j : Bp,q (aO) — Hp s+ 2/p -1 (O; A2) = Fp,q (O) n Ker A2 
V V 

is well-defined and bounded for 0 < p, q < co, (n — 1)Q — l)+ < s < 1, granted that 
q = oo if p = co. Then, much as before, the operators (10.69), (10.73) are seen to be 
well-defined and bounded. • 

Recall next the boundary layer potential operators K\ defined in (4.44), its formal 
adjoint K%, and S introduced in (4.47). 

Proposition 10.5.2. — Let 17 be a bounded Lipschitz domain in Rn, n > 2. If 
(n - l)/n < p < co and (n - 1)(^ - 1)+ < s < 1, 0 < q < co, A G R, then the 
operators 

(10.78) Kx : BM(«l) — B™(dSl), 
(10.79) K{ : ^ ( d Q ) —• Bps'\(dil), 
(10.80) S : B™(dfi) —• Bl'q(dSl), 

are well-defined, linear, and bounded. 

Proof. — Since 
(10.81) Tro0A = \l + Kx, Tro^ = 5, 
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the claims about (10.78) and (10.80) are consequences of Proposition 10.5.1 and The
orem 2.5.2. Finally, using the fact that 
(10.82) # o ( ^ , e ) = - | J + *A, 
together with Theorem 10.2.3 and Proposition 10.5.1, the claim about the operator 
(10.79) follows as well. • 

For a given bounded Lipschitz domain fi in Rn, n > 2, the range of indices for 
which the boundary layer potentials for the Stokes system are invertible on the Besov 
scale considered on dQ depends on the dimension n of the ambient space and the 
Lipschitz character of Q. The latter is manifested by a parameter e G (0,1] which 
can be thought of as measuring the degree of roughness of fi (thus, the larger e the 
milder the Lipschitz nature of O, and the smaller e, the more acute Lipschitz nature 
of Q). To best describe these regions, for each n > 2 and e > 0 we let $,nyS denote 
the following sets. For n = 2, &2ie is the collection of all pairs of numbers s,p with 
the property that either one of the following two conditions below is satisfied: 

(h) : 0 < I < s + 1 + s/2 and 0 < s < ±±£, 
(10.83) P 

(II2): - i ± £ < I _ s < i ± £ and ±±*<*<1. 

Corresponding to n = 3, R3,E is the collection of all pairs s,p with the property 
that either of the following two conditions holds: 

(h) •• 0 < I < § + 1+ e/2 and 0 < s < e, 
(10.84) P 

(J/3): - f < I _ f < ± ± £ and e < s < l. 
Finally, corresponding to n > 4, we let &n,€ denote the collection of all pairs s,p 

with the property that 
(10.85) (In): n-3/2(n-1) - e < 1/p ~ n/n - 1i < 1/2 + e and 0 < s < 1, 1< p < oo. 

To proceed, we shall now introduce some versions of the boundary Besov spaces 
which are well-suited for the formulation and treatment of boundary value problems 
for the Stokes system in Lipschitz domains. Concretely, if O is a bounded Lipschitz 
domain in Rn, n > 2, and (n — l)/n < p < oo, (n — 1)(^ — 1)+ < s < 1, 0 < # < oo, 
we set: 

(10.86) Bl:l± (ОП) := {/G В™(дП) : / (ф, f) da = 0, Vtf € i/R«,* }, 
*• Jan J 

(10.87) Bliíidü) := {/€ B™(oíl) : / (ф, f) da = 0, Vф e ^Жап|, 
Jan -1 

(10.88) В™ фЛ (3Í2) := {/€ В»УдП) : / (ф,?)с1а = 0, Чф e ФА(0П±)}, 
' т Jan ' 

(10.89) ВЦ „(öfi) := { / e В™(Щ : / (ф,/) d«r = 0, \/ф € w\ if n = 2. 
Jan 
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On these spaces, below we show that the boundary hydrostatic layer potentials are 
invertible for suitable indices p,q,s. We have: 

Theorem 10.5.3. — Assume that ft is a bounded Lipschitz domain in ln, n > 2. 
Then there exists e = e(ft) G (0,1] with the following property. If (n — l)/n < p < oo, 
(n — 1)(^ — 1)+ < s < 1, 0 < g < oo, and A G (—1,1], then the operators 

(10.90) ±\I + KX : B™±(dn)/*x(dn±) —> B>«±(dft)/*A(9ft±), 
(10.91) ±\I + Kl : ^ № ) / v R d n ± —> Bp,q s- 1 (O№)/vRdn±, 
(10.92) S : Bps^{dfl)/vRdn B™(dQ) if n > 3, 
(10.93) s: Bjiyanyi/Ran e V - > B^fV(afi) if n = 2, 

(10.94) 5 : (^^(OlJ/i/Ran) 0 R2 —> B™(dQ) 0 R2 if n = 2, 

are invertible whenever the pair (s,j?) belongs to the region 9tnye, described in (10.83)-
(10.85). 

Proof. — This follows from the invertibility results on Hardy spaces from § 9.1 and 
repeated applications of the complex and real method of interpolation. • 

10.6. The Poisson problem with Dirichlet and Neumann boundary conditions 
Here our goal is to describe the ranges of indices for which the Poisson problem for 

the Stokes system equipped with Dirichlet or Neumann boundary conditions is well-
posed for data in Besov and Triebel-Lizorkin spaces in bounded Lipschitz domains. 
As a preamble, we record some useful integral representation formulas. 

Proposition 10.6.1. — Assume that ft is a bounded Lipschitz domain in Rn, n > 2, 
n-l 
n. 

< p < oo, (n — 1) (1/p — 1)+ < s < 1, and 0 < q < oo. Then for every number 
X eR and every pair (i/,7r) € SBp^k(Çt) there holds 

(10.95) 
u= ®x(Tru)-<J(dC(u,Tv)) in ft, 
n = Px(TrÛ)-Q(dï(iï,n)) in ft. 

Similar integral representation formulas are valid in the context of Triebel-Lizorkin 
spaces, i.e. when (u, n) € S'F ĵ9i(ft), granted that p ^ oo. 

Proof. — These formulas follow from (4.120)-(4.121), a density argument, and the 
mapping properties of the operators involved (established earlier). • 

We are now ready to state and prove the first main result of this section, deal
ing with the inhomogeneous problem for the Stokes system with Dirichlet boundary 
condition. 
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Theorem 10.6.2. — Let ft be a bounded Lipschitz domain in W1, n > 2, and for 
r^ < p < oo, 0 < q < oo, (n — 1)Q — l)+ < s < 1, consider the following boundary-
value problem, 

Au - VTT = / € Bp'\ (II), divu = g e Bp'\ _x(n), 
(10.96) p - +p 

ueB™^), (O) 7T € Bp,q s+ (Q), Tru = heB™{dSl), 

subject to the (necessary) compatibility condition 

(10.97) / (v, h) da = / g(x) dx, for every component Q of ft. 
Jdo Jo 

Then there exists e = e(ft) € (0,1] such that (10.96) is well-posed (with uniqueness 
modulo locally constant functions in ft for the pressure), if the pair (s,p) belongs to 
the region &n,£, described in (10.83)-(10.85). 

Furthermore, the solution has an integral representation formula in terms of hy
drostatic layer potential operators and satisfies natural estimates. Concretely, there 
exists a finite, positive constant C = C(ft,p, s,n) such that 
(10.98) 
Mls^^n) + ll7rlb̂ i_i(Q)/RJ7+ < C'll/lb^i_2(Q) +C||̂ llB^i_i(f2) +C\\h\\B*;>q(dn)' 

Moreover, analogous well-posedness results hold on the Triebel-Lizorkin scale, i.e. 
for the problem 

Au - VTT = / € Fp,q s+ (ty, divul =g e Fp,q s+" (V), 
(10.99) + p +p 

ueF^\(n), TT € i ^ ^ f i ) , Tru = geB™(dQ), 

where the data is, once again, made subject to (10.97). This time, in addition to the 
previous conditions imposed on the indices p, q, it is also assumed that p, q < oo. 

Proof. — Let v be such that 

(10.100) veB™, J SI), divtf=#inft. 

For example, we may take 

(10.101) v:= VUAg 

where IIA : ̂ ^i_1(ft) —» BP+±+1 is the harmonic Newtonian potential in ft (i.e., 
the operator of convolution with from (4.31)). Next, consider w, p for which 

(10.102) Kp)€JB^i(ft)0JB^1_1(ft), Aw - Vp = f - Av and divw = 0 in ft. 

For this, we may take w := U(f - Av) and p := ©(/ - Av), where II, 6 are as in 
(10.13)-(10.14). We now claim that 

(10.103) Trv + Trw-h e Bp,q + (<9ft). 
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To see this, we first observe that Trv + Trw — h G Bp'q(dQ,). To check the or
thogonality condition on ^Man+j by virtue of (5.72) it suffices to note that for every 
ijj G RQ+ we have 

/ ((Trtf-h Tr w), v) ip da = / ijj div (v + w) dx 
J act J Q 

(10.104) = gipdx = / (v, h)il> da, 
JQ J an 

by (10.97). This proves the claim made in (10.103). 
Next, we make the claim that if n > 3, then 

(10.105) T : в™+(дП) e в^мщ —> в™+(Ш), 
T(9i, 92) := (è 1 + Kx)g! + Sg2 is onto. 

To justify this claim, consider an arbitrary / G Bpfi+(dQ,). Then (10.90) gives that 
there exists gx G B™+(dSl) such that rj> := / - +Ky î A)̂ i G #*(<9ft). This, (5.116), 
and (10.92) then guarantee the existence of some §2 G B^^dft) with the property 
that Sg2 = i/). Consequently, T((7i, ¿72) = f, proving the claim. 

Having established (10.103) and (10.105), we can now produce a solution for (10.96) 
in the form 

(10.106) u := v + w + <Z>xgi + 9#2, 7T := p + 0>x9i + S^2, 

where 

(10.107) {gug2) e B^idVt^Bl^dSl)(O) are such that T(g1J2) = h-Trv-Trw. 

Furthermore, it is implicit in the above construction that (10.98) holds. The case 
n = 2 is handled analogously, so we omit the details. 

To prove uniqueness, assume that u, n solve the homogeneous version of (10.96). 
We may then conclude that (tt,7r) G SBp£k(Qi) and Proposition 10.6.1 gives 

(10.108) u = -<J{di(u,<K)) in ft. 

Taking boundary traces of both sides then yields 

(10.109) 5(^(i?,7r)) = 0 in £™(dft), 

so that d*(u,n) G i/Ran- Returning with this in (10.108) and invoking (5.76), (5.82), 
then gives u = 0 in ft and n G R^+, as desired. 

For the Triebel-Lizorkin scale a very similar approach works as well. Thus, the 
proof of the theorem is complete at this point. • 

Our second main result in this section pertains to the Poisson problem for the 
Stokes system with Neumann boundary conditions. 
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Theorem 10.6.3. — Let Cl be a bounded Lipschitz domain in 1", n > 2, and for 
n—1  n < p < oo, 0 < g < oo, and (n — 1)(^ — l) + < s < 1, consider the following 
boundary value problem: 

[10.110) 
AU-Vir = f\, /eB^_2]0(!l) , divu = Oinfi, 
a € B*« (n), TT E Bp,q s+ (n), d])(u, TT) - = h G Bfiyan), 

p p 
where the data are assumed to satisfy the necessary compatibility condition 
(10.111) # ( П / , 9 / ) - h € Im ( - I J + K{ : Вp,q s-1 v+ (aO) — Вp,q s-1 (dO)). 

Then there exists £ = e(iî) G (0,1] such that (10.110) has a unique solution (mod
ulo adding to the velocity functions from Фл(0)) if the pair s,p belongs to the re
gion 9ln,£ described in (10.83)-(10.85). In addition, the solution (normalized so that 
fQ(u(x),ip(x)) dx = 0 for every ф G ФЛ(П)) satisfies the estimate 
(10.112) Ы\ВР« (n) 4 IHb™ (n) < C\\f\\BP« (n) 4- C\\h\\BP«idÇl). 

V V V 
An analogous well-posedness result holds for the problem 

(10.113) 
Au - VTT = / |N, / € J7;'i_2i0(n), divw = 0 in 0, 
й G Fp,q s+ (il), тг € í ^ . ^ í l ) , dì{a,*)f= h e Bp,q s-1 (dü), 

тр ^ p assuming that p, g < oo, and 
(10.114) # (n/, 6 / ) - ft G Im (-1J + ^ : B™^ (XI) - B ™ ^ (00)). 

Proof. — The fact that (10.111) is a necessary condition for the solvability of (10.110) 
can be proved following the same set of ideas as in the case of (9.105), after observing 
that 
(10.115) w:=u-Uf, p:=7T -Of 
solve 

(10.116) 
АгЯ — Vp = 0 in ft, div w = 0 in ft, 
юеВ™,(П), р е ВЦ^П), 
dt(w,P) = h-ctf (П/,e/) G Bfiyen). 

In turn, granted (10.111), existence is seen by taking 
(10.117) u := Tlf - M(- 1/2 l + Ki*) -1\8)${nf,S?)-h), 
(10.118) TT := Qf - Q(-\1/2 l + K*xr) -1\d$(Jlf,Qfi-h). 

Given our earlier results on the mapping properties of the hydrostatic layer po
tentials plus the current assumptions on the indices s,p,q, this is easily seen to solve 
(10.110). 

To establish uniqueness, if the functions u and n satisfy the homogeneous version 
of problem (10.110), then u = 0\(Tru) in ft, by (10.95). Taking boundary traces 
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(in the sense of Besov spaces) then yields (— | J 4- K\)(Tru) = 0 on 90. This shows 
that TrwG \£A(90_|_), by a variant of (5.124). Hence, Tru = ifr\dQ for some function 
ip € \£A(0+). It remains to invoke (10.95) once again in order to conclude that, by 
virtue of (5.96), u = ip in O. This establishes the claim made about uniqueness for 
(10.110). 

The treatment of (10.113) is analogous, and this finishes the proof of the theorem. 
• 

A less precise formulation of Theorem 10.6.3 is that problems (10.110), (10.113) 
have solutions for data (f,h) belonging to a finite co-dimensional subspace of 
Br+i/p-2,o(Q) 0 Bs-i(dn) and F!+i/P-2,o(Q) 0 £ ^ ( 9 0 ) , respectively, and unique
ness holds up to a finite dimensional space. 

To see this, let us rephrase condition (10.111) as 

(10.119) (f,h) 6 fl^Im (-f 1 + Kl : Bp,q s-1 (dO) - B™ (Mlj), 

where $ is the bounded, linear application given by 

(10.120) * : B™/p_20(O) 0 B™(90) 3 (/, h) ~ 9A (n/, 9 / ) - g e B™(90). 

Since Ker(-|J + iq : B™ Â (dO) -> B™^A (dfl)) is, thanks to (10.91), a 
space of finite codimension in B^l5i(90), the desired conclusion now follows from 
Lemma 11.9.22 in the Appendix. 

In the case when Rn \ O is connected, we can further rephrase Theorem 10.6.3 in 
the following fashion. 

Theorem 10.6.4. — Assume that O be a bounded Lipschitz domain in ]Rn, n > 2, with 
connected complement and that n - 1 <p<oo , 0 < # < o o , and (n — 1)(^ — l)+ < 
s < 1. Then there exists e — e{Q) G (0,1] such that the Poisson problem for the 
Stokes system with Neumann boundary condition 

(10.121) 
Au- VTT = / 

O 
/ e B£«A_2i0(n), divw = 0infi, 

û € B*;yn), TT e B ^ ^ f i ) , dt(u,ir)f= h e B^(an), 

has a unique solution (modulo adding to the velocity functions from \£A(0)) if the 
pair s,p belongs to the region fftn^£ described in (10.83)-(10.85) and the data (f,h) 
satisfy the necessary compatibility condition 

[10.122) J (f^)dx = 
O 

f (h,tl>)da, VV>e#A(0). 
JdQ 

In addition, the solution (normalized so that f^u • tp = 0 for every tp € \I>A(0)) 
satisfies the estimate 

(10.123) \\Ü OP,* 
s + 1/2 

(Q) + \M\Bp'q 
s + 1/2 

(n) < C||/llBp'g1 
s+i-2,0 

(fi) + c IMI В™ (Я")* 
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Moreover, an analogous well-posedness result holds for the problem 
Aw-V7r = /1 , f E Fp,q s+ 1/2 ao(fi), divw = Oinfi, 

(10.124) ln a+p 2,0 
fl e Fp,q s+ 1/2(fi), TreF n E (fi), ^ ( « » r f t e B j f , ( 8 n ) , 

p p 
assuming that p,q < oo. 
Proof. — Given that we are assuming that Q- is connected, it follows that Ran_ = 0. 
Thus, in the current context, (10.91) becomes 

(10.125) -\I + K*X: B™ltK—* Bp,q s-1 v (dO) isomorphically, 

if s, p, q are as in the statement of Theorem 10.5.3. As a consequence, the image of 
the operator —\l + Kx acting on Bp^ ^x (dQ) is the entire space Bp^ ^x (dfl). In 
turn, this implies that the compatibility condition (10.111) takes the form 

(10.126) % (n/,ef) - h € Bp,q s-1 (dn). 

In other words, 

(10.127) / (e¡(NF, o f ) , Ф ) da = f (К,Ф)da, УфеФ^(ап). 
Jan х 4 ' 1 Jan 

At this point, there remains to observe that 

(10.128) / (n/, Of) ,Ada= f (f{x), i>(x)) dx, V V 6 *A(fi), 
Jan x v 7 7 •/n 

as is clear from (4.7) and (5.94). This proves that, in the current context, (10.111) 
reduces precisely to (10.122), finishing the proof of the theorem. • 
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CHAPTER 11 

APPENDIX 

11.1. Smoothness spaces in the Euclidean setting 
Here we briefly review Besov and Triebel-Lizorkin scales in Mn. One convenient 

point of view is offered by the classical Littlewood-Paley theory (cf., e.g., [74], [86]). 
More specifically, let S be the collection of all systems {£j}£L0 OI* Schwartz functions 
with the following properties: 

(i) there exist positive constants A, B, C such that 

(n.i) supp(Co) C {x : \x\ < A}; 
supp (0) C {x : BV'1 < \x\ < C2̂ +1} if j € N; 

(ii) for every multi-index a there exists a positive, finite constant Ca such that 

(11.2) sup sup 
x E Rn j E N 

^N1^(1 )1 < Ca; 

(iii) 

(11.3) 
OO 

^2 Q(X) =1 f°r everyx £En-
3=0 

Let s € K and 0 < q < oo and fix some family {Cj}jL0 e s- Also>let & and <S"(R") 
denote, respectively, the Fourier transform and the class of tempered distributions in 
Rn. Then Triebel-Lizorkin space Ff'9(Rn) is defined for each 0 < p < oo as 
(11.4) 

F H r ) : = { / € 5 ' ( r ) : II/IIF-(R") := 
OO 

j=0 
\v*^\(C№ F)\q) V<7 

LP(RN) < 00 

If 0 < p < oo then the Besov space BP>q(Rn) can be defined as 
(11.5) 

Bp'9(Rn) := {/ e S'(Rn) : H/bj.^,) := 
OO 

3=0 
|| 2yj F-1 5 (Cj F f) || q Lp (Rn) 1/q 

< 00 
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A different choice of the system {(j}£l0 € S yields the same spaces (11.4)-(11.5), 
albeit equipped with equivalent norms. Furthermore, the class of Schwartz functions 
in Rn is dense in both Bp>q(Rn) and Fp>q(Rn) provided s G R and 0 < p, q < oo. 

As far as the real method of interpolation is concerned, we note the following 
classical result. 

Theorem 11.1.1. — (cf. [86]) Let a0,ai G R, a0 ^ «i, 0 < qo,qi,q < oo, 0 < 6 < 1, 
a = (1 - O)ao + 0ai. Then 

(11.6) (Fp£°(Rn),Fp[qi (RN))0)9 = B™(Rn), 0<p<oo, 
(11.7) (BSf(»n),BSf (Rn))*,g = B™(Rn), 0<p<oo. 

Turning to the complex method of interpolation, we have: 

Theorem 11.1.2. — Let oj0,ai G R, 0 < po,Pi < oo, and 0 < qo,qi < oo with the 
property that either max{pu?<7o} < oo, or max{pi,#i} < oo. Then 

(11.8) [F^q°(Rn),FPl^(Rn)]e = F™(Rn), 

where 0 < 0 < 1, a = (1 - 0)ao + 0ai, \ = ±=* + £ , and I = ^ + £ . 

Furthermore, if ao,ai € R, 0 < po>Pii9o>4i < oo and min{go,9i} < oo, then also 

(11.9) [B^°(Rn),BPt\><>H®n)}0 = B™(Rn), 

where 0 < 6 < 1, a = (1 - 0)ao + 0a1, ± = ^ + £ , and i = ^ + £ . 

When p,q>l, this is well-known; cf. [33], [85]. For the entire scale p, > 0, the result 
has been established in [62], [45]. 

11.2. Gehring's lemma 
Let us first recall the definition of a space of homogeneous type, as introduced 

by R. Coifman and G. Weiss in [15]. Assume that E is a set equipped with a quasi-
distance, i.e. a function d : E x E —• [0, oo) satisfying d(x, y) = 0 O x = y, d(xy y) = 
d(y,x) and such that there exists K > 1, called concavity constant, for which 

(11.10) d(x,y) < K,{d(x,z)+d(z,y)), Vx,y,z G E. 

In turn, a choice of a quasi-distance naturally induces a topology on E for which 
the balls B(x, r) := {y G E : d(x, y) < r} (which, unlike the case of a metric space, are 
not necessarily open when K > 1) form a base. A well-known theorem of Macias and 
Segovia ([57]) asserts that the original quasi-distance function on E can be replaced 
by an equivalent one which has the additional property that the associated balls are 
open. It is also well-known that E is compact if and only if /x(E) < -foo. 

A space of homogeneous type is a structure (E,d,/x), where d is a quasi-distance 
on the set E and p is a measure defined on the minimal sigma-algebra containing all 
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Borel sets and all balls, and which is doubling, i.e., there exists a A > 1, called the 
doubling constant, such that 

(11.11) 0 < /x(B(x,2r)) < Afi(B(x,r)) < oo, VxEE, Vr > 0. 

In the sequel, if A > 0 and B = B(x, r), we shall use the notation XB := B(x, Ar). 
Also, the symbol -f indicates integral average, and £p(E,d¿¿) stands for the Lebesgue 
space of //-measurable, p-th. power integrable functions on E. The following Calderón-
Zygmund decomposition result and Vitali covering lemma are well known. See, e.g., 
[2], [15]. 

Lemma 11.2.1. — Given a space of homogeneous type (E, d,/¿), there exists c > 1 de
pending only the concavity constant K such that the following holds. If 25 = {Ba}ae& 
is a family of balls and E := \Ja Ba is /x-measurable and JJL(E) < oo, then there exists 
a sequence of mutually disjoint balls {Bj}jGf$ C $ such that any B e $ is contained 
in some cBj. In particular, E C \Jj cBj. 

Lemma 11.2.2. — For every space of homogeneous type (E,d,/z) with the property 
that the balls are open sets there exists a finite constant c > 1, depending only on 
the concavity constant K (in fact, the same constant as in Lemma 11.2.1) with the 
following significance. Assume that / G L1(E,d/x) is a nonnegative function and that 
A > -f^fdfjb. Then there exists a sequence of mutually disjoint balls B3 = B(xj,rj), 
j e N, such that 

(11.12) / / d / x < A < / fdfi Vj€N, 
J cBj J Bj 

(11.13) / < A pointwise ¿¿-a.e. on E \ ĵ J cB3. 
jEN 

We are now ready to state the main result in this section which is a version of the 
celebrated Gehring's lemma [36], proved here via an approach more akin to the work 
in [41]. 

Proposition 11.2.3. — Assume that (E, d, p) is a non-compact space of homogeneous 
type and that 1 < q < p. Also, suppose g, h are two non-negative functions, g G 
L^E, d/x), and there exist K > 0 and rj > 1 such that 

(11.14) 
if. B 

9pdß 
1 P 

< K 
rjB 

gqdfji 
l 

nB 
hpdfi 

1 
P 

for every ball 5 c E . 

Then there exists eQ > 0, depending only on p, q, K, 77 and rc, A (the concavity and 
doubling constants for (E,d,//), respectively), such that whenever 0 < e < eQ1 

(11.15) / gp+£ dß < C í hp+edu, 
C M 

where C > 0 depends only on p, K, 77, ft, A and e. 
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Proof. — From an earlier discussion, by eventually replacing the original quasi-
distance on E, there is no loss of generality in assuming that the balls in E are open 
sets. Assume that this is the case, and for each r > 0, set 
(11.16) Gr := {x G E : g(x) > r} and Hr := {x G E : h(x) > r}. 

For each fixed t > 0 w e now perform a Calderon-Zygmund decomposition for the 
function gp at level (\t)p, with A > 1 to be specified later. This gives a sequence of 
mutually disjoint balls {Bj}je^ and a constant c > 1 such that 

(11.17) 
cBj 

9P < (At)p < 
Bj 

gp and gp < (Xt)p /x-a.e. on E \ 
jEN 

cBj. 

Cf. Lemma 11.2.2 above. In particular, G\t C |J. cBj so by (11.17) we have 

(11.18) 
text 9pdfi< 

3 
/ 
JcBj 

gpdfjL<(Xt)p 
3 

µ (cBj). 

Next, 1 
µ (nBj) fr)B \Gt 9q ^l1 — T9 so we may write 

r)Bj 
9я dß 

1 Я 
= 

1 
µ (nBj) rjBjílGt 

9q + 1 
µ (nBj) vBj\Gt 

9qdi¿ 

1 Я 

< 1 
li{r¡B3) r\ Вj DGt 

9qdp 
i 

+ t 

(11.19) < 2t + 1 
tq-l 

1 
µ (nBj) rfBjDGt 

9qdp, 

where, in the second and third inequalities, use has been made of the elementary 
estimates (a + 6)«<a«+6« valid for any a, b > 0 and M« < t + ^=T valid for any 
M > 0, t > 0 (here g > 1 is used). Going further, a similar argument gives 

(11.20) 
nB 

hp dp 
i p 

< 
riBjHHt 

hp dp 
i p 
+£ < 2£+ 

1 
tP-i 

1 
µ (nBj) r]BjC\Ht 

hp dp. 

A combination of (11.14), (11.17), (11.19) and (11.20), now gives 

Xt < 
Bj 

9pdp 
i p 

< [2K + 2)t + 
K 

tq-l 
1 

p(vBj) rjBjDGt 
9qdp 

(11.21) + 
1 

tP-i 
1 

p{r}B3) riBjHHt 
hpdp 

Hence, 

(11.22) (X-2K - 2)p{riBj) < 
K 
tq rjBjHGt 

9qdp + 1 
tP rjBjOHt 

hpda. 

At this stage, we fix À > 2K + 2 (so that A > 1) for the remainder of the proof. 
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Next, Lemma 11.2.1 and the doubling property (11.11) ensure that there exists a 
set N'CN such that 

the balls {nBj'}j'ew are mutually disjoint, 

(n-23) and ,i((J VBj) < C" £ M " ) -

jEN j'ew 
where C depends only on A and K. In concert with (11.11), (11.22) and the fact that 
the balls in the family {Bj}je^ are mutually disjoint, this estimate allows us to write, 
for some C" depending only on A and K, 

jGN j£N ¿GN j(zN J GM 
5>(c2?i) < C"Y,№i) = C"M(U BÒ ^ C'JìJrjBA < ce" J2 м№<) 

< с 
Х-2К-2 j' En 

K 
TQ 

r]Bji C\Gt 
gqdp + 1 

tP 'r)BjfnHt 
hpdp 

(11.24) < C 
X - 2K - 2 

K 
TQ 

Gt 
gqdp + 1_ 

tP Ht 
hpda 

where C := CC" depends only on A and K. Note that the last step above uses the 
first condition in (11.23). From this and (11.18) we then obtain 

(11.25) 
Gxt 

gpdp< 
CXP 

X - 2K - 2 
K 

tQ~P Gt 
9q dfi + 

Ht 
hpdp 

Recall that À > 1 and p — q > 0, so that G\t C Gt, and further, 

(11.26) 
Gt\Gxt 

9pdp = 
Gt\Gxt 

gqgp-qdp<Xp-qtp-q 
Gt 

gqdp. 

By adding (11.25) and (11.26) we arrive at 
(11.27) 

Gt 
gpdfi< CKXP 

X - 2K - 2 ±xp-q tP-q 
Gt 

gqdp + CXP 
X - 2K - 2 Ht 

h? dp. 

Multiplying both sides of this last inequality by tay for some a G R to be chosen 
momentarily, and then integrating with respect to t in the interval (0, T), with T > 0 
an arbitrary, fixed number, yields an estimate of the form 

T 

0 Gt 
tagpdfji dt < C0 

T 

0 Gt 
tp-q+agqdfjL dt 

(11.28) + C1 
'OO 

0 H 
tahpdu dt, 

where 

(11.29) Co := \p-q + CK\r 
X - 2K - 2' Ci := CAP 

X - 2K - 2' 
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Let us now fix a > —1 and use Fubini's theorem to compute 
(11.30) 

0 Gt 
tagpdp dt = 

E 
T 

S 
taXGt dt 9Pdp 

E 0 

min {g(x),T} 
tadt g(x)p dp(x) = 1 

a + l E 
9P mm{9iT} 1+a dµ 

since XGt(x) = 1 if and only if g(x) > t. Similarly, 

(11.31) •oo 
0 Ht 

tahpdp dt = 1 
oTT E 

hp+a^ dp. 

Finally, a > — 1 and p > q force p — q + a> — 1 and the same type of argument as 
before gives 

T 

0 Gt 
tp~q+agqdp dt = 1 

p-q + a + 1 E 
9q min{5,T} p—q+a+1 

dµ 

(11.32) < 1 
p - g + a + 1 E 

gp min{<7,T} a+l 
d/i. 

Altogether, for each T > 0 we obtain 

E 
<7P minb.T} 

a+l 
dp < Co(a +1) 

p — q + a + 1 E 
gt min{p,T} a-f 1 dp 

(11.33) + C1 
E 

hP+a+1 d/i, 

with Co, Ci as in (11.29). Note that the integral in the left-hand side matches the first 
integral in the right-hand side and is finite for each T > 0 since 

(11.34) 
E 

9P min {g,T} a+l dp < Ta+1 
E 

gp dp < -foo, 

given that the function g belongs to Lp(Y,,dp). Consequently, in order to absorb 
the first term from the right-hand side into the left-hand side we need to choose 
a > — 1 such that p — q + a + 1 > (a-f- l)Co. If Co > 1, this requirement becomes 
0 < a -f 1 < c~\. However, if A > max{21iT + 2,1} then Co > 1, as is visible from 
(11.29). We obtain 

(11.35) 
5 

gt min{p,T} a+l dp < C2 
E 

hp+a+1 dp, 

where C2 is independent of T. By letting T —• 00 and invoking Lebesgue's Monotone 
Convergence Theorem, we may now conclude that (11.15) holds whenever 0 < e < 
en := p—о Г, г,-Л' 
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Finally, the case e = 0 follows directly from (11.14) by writing 
(11.36) 

BR 
9pdp 

i p 
< K 

I*(BR) I/P 

PÌVBR) 1 Q VBR 
gqdti 

1 
Q + 

P{BR) 

v(r}BR)< 

I/P 

riBR 
hPdp 

i p 

where R > 0 is arbitrary and BR := B(x0,R) for some fixed point xQ G S, and 
then letting R approach infinity. Since q < p, the coefficient of the first integral in 
the right-hand side goes to zero, whereas the the coefficient of the second one stays 
bounded. This finishes the proof of the proposition. • 

11.3. Hole-filling lemma 

Lemma 11.3.1. — Let / be an arbitrary locally bounded function on R with the prop
erty that there exist real numbers 0$, 0\, nondecreasing functions A and B, a > 0, 
and 0 G (0,1) such that 

(11.37) f(s) < [A{t)(t - s)~a + B{t)] + 0f(t) for all 0O < s < t < 0X. 

Then there exists C > 0 such that 

(11.38) f(r) < C[A(R)(R - r)~a + B(R)] for all 0o < r < R< 9X. 

Proof. — Fix o G (0,1) arbitrary and let t0 = r, U+i = U + (1 — o)(R — r)cr\ for 
each i > 0. Then too = R, and 

(11.39) tn-r = tn-t0 = 
n-l 

i=0 
(ti+1-ti) = (l - o){R - r) 

n-l 

i=0 
j = (R-r)(l-On)-

Thus, for each i, 

(11.40) f{U) < [A(*i+1)( l -*) -«(#-r )"^^ + B(i + 1)] + 0 f (ti + 1) 
< [A(R)(1 - o)-a{R - r)-ao~ia + B(R)} + OfiU+x). 

Multiplying (11.40) by 0l we obtain that 

(11.41) FfiU) < I(0o-aY + 0{B(R) + 0i+1f(ti+l), 

where / := A(i?)(l — o)~a(R — r)~a. Summing up (11.41) over i, we obtain 

(11.42) n 

¿=0 
e'Hu) < i 

n 

i=0 
(0o-ay + B(R) 

n 

i=0 
0l + 

n+1 

i=l 
*7(*i). 

Hence, after subtracting n 

i=l 
eifiU) from (11.42), we see that 

(11.43) f(r) < I 
n 

i=0 
(0o-aY + B(R) 

n 

i=0 
F + en+1f(tn+1). 
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Now we select a G (0,1) so that 9a a < 1. Then, after letting n -» oo in (11.43), 
since f{tn+\) stays bounded, we get that 

(11.44) f(r)<I- 1 
1 - 0a~<* + 1 

1-0 
B(R). 

If now C := max { l 
l-0cr-« > 

1 
1-6» 

}, we have that 
/(r) < C(7 + #(#)) = C[A(fl)(l - a)-a(R - r)~a + £(i*)] 

<C[i4(B)(i2-r)-a + B(il)]. 

11.4. Korn's inequality 
The goal of this section is to prove Lemma 6.1.3. For a Lipschitz domain D in En 

and 1 < p < oo, we set L\{D) to be the ZAbased Sobolev space of order one in D, 
let L{tQ(D) denote the closure of C™(D) in L\(D), and let I/L^D) be the dual of 
I%[0(D), where 1/p + 1/^ = 1. 

We start with a result of independent interest. 
Lemma 11.4.1. — Let D с Mn, n > 2, be a bounded Lipschitz domain and suppose 
that 1 < p < oo. Then there exists a finite constant С > 0 depending only on n, 
p, the diameter of D, and the Lipschitz character of D such that every distribution 
и G Ьр__х{р) with Vu G L^D) has the property that и G LP(D) and 
(11.45) HLP(D) < C||VU||LPI(D) +CN|LPI(D) 

holds. 
Proof. — The problem is local in character, and hence, there is no loss of generality 
assuming that D c B(0,1) is a Lipschitz domain which is starlike with respect to 
some ball B C D, of radius comparable to the diameter of D via constants which, in 
turn, depend only on the diameter and the Lipschitz character of D. Assuming that 
this is the case, fix a function 6 G C%°(B) with f 6 = 1. In this context, Bogovskii 
has constructed a linear operator ¿1 with the following properties. First, for each 
1 < q < oo, 

(11.46) ¿1: Lq(D) —> L\0(D) 

is bounded, and if R := diam (D), then 

(11.47) the operator norm of ̂  in (11.46) is < C(dD, q, R). 

Second, 

(11.48) J<peC?(D) whenever (p G C °̂(JD), 

and third, 

(11.49) div/y? = <p-o(J (p(x) dx^j for any (p G C™{D). 
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Then, for any <p € C%°(D), we may write 

(11.50) 

|<«LV»>|<K«,div^)H-|<tt,e>||(V,l>| 

<I<VU,</WI + I<M>IIMILP'(D) 

< I|VW||̂ _I(D)II^IILP'O(D) + KM)IIMILP'(D) 

<c(||v«||LPI(I» + |<«Je>|)|MILp'(i». 

Since C™(D) is dense in Lp (£>), we see that u G ( l / (£>) J = LP(D). Finally, since 
|(u,0}| < \\U\\LIi{D)\\0\\lP'Q{D) < C(fl)||ti||LPi(D), we also see that (11.45) holds. • 

Next, the goal is to prove the following Korn type estimate. 

Proposition 11.4.2. — Let D be a Lipschitz domain of diameter R and assume that 
1 < p < oo. Then there exists a finite constant C > 0 which depends only on p and 
the Lipschitz character of D such that 

(11.51) \\u\\Lp{D) < C{| |W+ VuT\\LP(D) + CR-l\\u\\LP{D)\, 

uniformly for u G L\(D). 

Proof. — Given how the estimate (11.45) dilates with respect to R, matters can be 
readily reduced to the case when R — 1. Next, for each j , k G {1,. . . , n}, we set 

(11.52) £jk(u) := \{djUk + dkUj). 

so that (Vu + VuT)jk = 2ejk(u). A direct calculation then shows that 

(11.53) didjUk = di£jk(u) + djSikiu) - dken(u), Vi,j,k. 

In particular, by Lemma 11.4.1 and the fact that V : LP(D) —> LP_1(D) is bounded, 

3,k 
\\djUk\\LP{D) < C 

j,k i 
\\дгд,ик\\Ьр_1(п)+С 

3,k 
\\djUk\\Lp_iiD) 

<C 
i, j kl 

\\diejk(u)\\Lp {D)+C 
k 

\\uk\\LP(D) 

<c 
3,k 

\\£jk{u)\\Lp{D) + C\\u\\LP{D) 

(11.54) < C\\Vu + VtT \\LP(D) + C\\u\\LP{D). 

Now (11.51) readily follows from this. 
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11.5. Hardy's estimate 
Let L be a homogeneous, constant coefficient, elliptic operator. The aim of this 

section is to present a result which can, in essence, be attributed to Hardy. 
Lemma 11.5.1 (Hardy's estimate). — Let Q C Rn, n > 3, be the domain lying above 
the graph of a Lipschitz function <p : Rn_1 —• R. Assume w is a null-solution of L 
in Q and that M(Vw) G Lp{dQ) for some p < n — 1. Then there exist constants 
c = c(w) G R and C = C(dft) > 0 such that 

(11.55) \\M(w - c)||LP-(an) < C\\M(Vw)\\LP{dQ) where 1 
p* = 1 

P -
1 

n - l ' 
Prior to presenting the proof of this proposition we isolate one technical aspect. 

Lemma 11.5.2. — Assume that Q, is a graph Lipschitz domain in Rn, n > 2, and that 
u G C1(fi), C > 0 and a > 1 are such that 
(11.56) |Vu(x)| < Cdist(x,dfi)-a, Vz G ft. 

Then for each x G il, the limit 
(11.57) с := lim 

t—>-oo 
i6(x + ten) 

exists, is independent of x, and, moreover 
(11.58) \u(x) -c\ < Cdist(x1dQ)1-a, Var G ft. 
Proof. — For every x G ft and t > 0 set 
(11.59) c(x, t) := u(x + ten) + 'OO 

t 
(dnu)(x + sen)ds. 

By (11.56), the integral in (11.59) is absolutely convergent, and, obviously, the 
expression in the right hand-side is independent of t > 0. We may thus abbreviate 
c(x) := c(x,t). Hence, the limit 
(11.60) lim u(x + ten) = lim c(x) — c(x) exists for every x € O. 

t—*oo t—+oo To prove that this limit is actually independent of x, observe that if x,y € ft are 
arbitrary, fixed, and £ > 0 is sufficiently large, then every z G [x + £en, y 4- ten] belongs 
to ft and dist (z,dQ.) > Ct. Therefore, by (11.56) and the Mean Value Theorem, 

(11.61) \u(x + ten) -u(y + ten)\ < C(dn,x,y,u)t~a -> 0 as t -> oo, 

which shows that c(x) = c(y), for every x, y G ft. If we now let c G M be c(z), z G ft, 
then 

\u(x) — c\ < 
oo 

0 
\(dnu){x + sen)\ds 

(11.62) < C 
'OO 

0 
dist (x, 9ft) -I- s —a ds = c dist (x, an)1-", 

proving (11.58). 
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In applications, we typically start with a null-solution u of an elliptic operator in 
ft which satisfies M(Vu) G Lp(9ft) for some 0 < p < n — 1. Fix x G ft and set 
R := dist (ar, 9ft). Then by interior estimates and (11.64) below, 

(11.63) |Vti(x)| < C 
B(x,R/2) 

\Vu\p 1/p < CR~ n-l 
p 

||M(V«)||LP(an). 

Note that 0 < p < n — 1 implies a := (n — l)/p > 1, so the previous discussion 
about the decay of u applies. 

Lemma 11.5.3. — For every Lipschitz domain ft (bounded, or of graph type) in Rn, 
n > 2, there exists a finite constant C = C(ft) > 0 with the following property. For 
every measurable set E C ft and every measurable function u : ft —> R, one has 

(11.64) / \u(x)\dx < C[dist (£,dft) + diam (E)] [ M(u) da, 
JE J ME) 

where 
(11.65) V(E) := {x G 9ft : T+(x) n E ^ 0}. 

Proof. — For every S > 0, set 0s '•= {% G ft : dist (x, 9ft) < 5}. As shown in [40], for 
a class of domains containing those which are Lipschitz, there exists C = C(ft) > 0 
such that, for every measurable function v : ft —> R, 

(11.66) J \v{x)\dx<C8J M(v) do, 
di dQ 

uniformly in 5 > 0. Let us specialize this to the case when 6 := dist (E, 9ft) +diam (E) 
and v := UXE- Since, in this scenario, E C 0<$, we may write 
(11.67) 

/ \u(x)\ dx = f \{UXE)(X)\ dx<C8 f M(UXE) da < CS f M(u) da, 
JE J 9S JdQ J 11(E) 

as desired. 

We are now ready to discuss the 

Proof of Lemma 11.5.1. — The argument below is due to Russell Brown [8] and we 
are most grateful to him for allowing us to include it here. According to [25], for any 
a > 0, we have interior estimates of the form 

(11.68) \w(x)\a < C 
B(x,S(x)/2) 

|w|x, 

where 5(x) := dist(#,dft). Let x = (x',xn) and x = (x\<p(x')). Then since by 
Lemma 11.5.3 

(11.69) 
B(x,R) 

\w\adx < C 
SCR(X) 

\M(w)\ado, if R*s8(x), 
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we have that 

(11.70) \w(x)\ < C 
Sc6(x)(x) 

\M(w)\ado 
1_ a 

hence, further, 
(11.71) \w{x)\ < C6(x)~ 

n-l a \\M(w)\\La{da). 
Now since the components of Vu> are also null-solutions of L in Q, we can conclude 

that 
(11.72) \Vw(x)\ < C8(x)~ n-l P \\M(Vw)\\LP{dn). 

In particular, by Lemma 11.5.2, we can choose c G R such that u := w — c vanishes 
at infinity (in the quantitative sense described there). Fix x G dQ and let y = {yr,yn) € 
Y(x). Then 

(11.73) \u{y)\ = oo 

Vn 
dnu(y',t)dt < 

oo 

Vn 
\Vu(y\t)\dt = 

• oo 

Vn 
\Vw{y',t)\dt. 

Choose a so that n-l < a <min{l,p}. Now applying (11.70) with Vw in place of 
w gives 

(11.74) l«(y)l < C OO 

Уп Sct(x) 
\M(Vw)\ada 

x 
a dt. 

Let M denote the Hardy-Littlewood maximal function on dQ. Then by definition, 

(11.75) 
Sct(x) 

|M(Vw)|a da < M(M(Vw)a){x), 

and so from (11.74), 
(11.76) \u(y)\ < C^(M(Vw)a)»-1(x) OO 

Уп Sct(x) 

1 
tn-l M(Vw)a(z) da(z)dt. 

Notice that if z G Sct(x), then \x-z\ < ct. So by switching the order of integration, 
we get 

My) | < CM{M{Vw)a)«-l{x) 
dQ 

M(Vw)a(z) oo 
1 

c\x — z\ 

1 
tn-l dt do\z) 

< CMiMiVw)")*-1^) 
an 

M(Vw)a(z) 
\x - z\n~2 do(z) 

(11.77) < CM{M{Vw)a)"1{x)h{M{Vw)(X){x), 
where, for 0 < 6 < n — 1, IQ denotes the fractional integration operator given by 

(11.78) hKx) := 
an 

h(z) 
\x - z\n - 1~e do(z), x G dQ. 
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Taking the supremum over all y € T{x) in (11.77), we have 

(11.79) M(u)(x) < CM{M{Vw)a)^{x)h{M{Vw)a){x), 
and so 

(11.80) JM(u)"' da<C J (M(M(Vw)a)f^-1) (/i(M(Vw)a))p* da. 
an dQ 

Choose r > 1 so that 
(11.81) (1 - a)r = 1 - P 

n-l = P 
p* 

Then by Holder's inequality, 
(11.82) 

J M[uf da<C 
dQ 

J (M(M(Vw)a)f(1^)r da 
dQ 

1 
r j (I1(M(Vw)a)fr' da 

dQ 

г' 

Let q := p 
a 

so that 1 < q < n — 1, and pick q* such that 1 
q* 

l 
q = 1 

n-l 
. Then from 

our choice of r in (11.81), we have the following: 

(a)p* I - a 
a r = p* 

a 
P 

a = P 
a = q, 

(11.83) 
(b) 1 

p*r' = l_ 
p* 1 - 1 

r = 1 
p* -

1 
p*r = 1 

p -
1 

n - l -
1 -g 
P = Oí 

p -
1 

n - l = 
1 
q* 

(c) 1 
r 4 q* 

qr' = P* ( l - o ) 
p 

4 n*p' 
qrf = P*q-^) 

p + p* 
q 

= P*(l-ft) 
P + ар 

P = P* 
p 

Applying the identities to (11.80) gives 
(11.84) 

J M(u)p* da<C 
an 

f (M(M(Vw)oc))q da 
an 

i 
r J (h(M(Vw)a)f da 

an 

_JL_ r' 

It is well known that for 1 < q < n — 1, M is a bounded operator from Lq(dQ) to 
Lq{dQ), and h is bounded from Lq(dQ) to Lq*(dQ). Then since M(Vw)a e Lq(dQ), 
it follows that 

J M(u)p* da < C 
dQ 

j (M(Vw)a)qda 
dQ 

i 
r j (M(Vw)a)qda 

dQ 

si 1 

(11.85) = C j M(Vw)pda 
an 

I 
r 
+ _2_L 

qr' = c j M(Vw)pda 
an 

P 
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and so finally we can conclude 

(11-86) HM(u)||LP.(8n) < C||M(V«;)||Lp(fln), 

finishing the proof of the lemma. • 

11.6. Traces in Hardy spaces 
Here we record some useful trace theorems in Hardy spaces for functions in Lips-

chit z domains, which have been recently proved in [42]. The first such result reads as 
follows. 

Theorem 11.6.1. — Let ft be a graph Lipschitz domain in ]Rn, n > 2, with outward 
unit normal v, and fix 

(11.87) 0 < p,q < oo, -—- < r < 1 such that — + — = —. 
n p q r 

Consider also D : C1(ft,CiV) —• C°(ft,CM) a homogeneous, first-order differential 
operator with constant, complex coefficients (i.e., as in (3.1) for m = 1), and denote 
by D* its (formal) adjoint and by <T(D;£) G CMxN, £ G Rn, its symbol (cf. (3.5)). 

Assume that F G Cl(Q,CN) and G G C ^ f t , ^ ) are two functions which satisfy 

(11.88) DF = 0 and D*G = 0 in ft, 
(11.89) M(F) G Lp(dQ), M(G) G Lq{dQ), 

and which are null-solutions of certain strongly elliptic, self-adjoint, second-order, 
homogeneous, (real) constant coefficient, differential operators. Let (•,•) denote the 
canonical inner product in CM, and for every e > 0, define 

(11.90) Fe{x) := F(x + een), G£(x) := G(x + een), x G ft, 

where en = (0,... ,0,1) G Mn. 
Then (a(D; v)F£, Ge) G Hlt{dti) for each e > 0, the limit 

(11.91) (a(D; v)F, G) := lim (a(D; i/)Fe, G£) 
£—•0+ 

exists in if^t(aft), and there exists a finite constant C = C(9ft,n,p, q) > 0 such that 

(11.92) \\(<,(D;v)F,G)\\HU8a) < C\\M(F)\\LHdQ)\\M(G)\\L,m). 

Furthermore, when r = 1, one can define the trace (a(D;u)F,G) G i/*t(dft) C 
Ll(dQ) in a non-tangential pointwise sense, as 

(11.93) (a(D',v(x))F(x),G(x)) = lim (a(D;v(x))F(y),G(y)), at a.e. # G 9ft. 
•!/€r(x) 

Finally, in the case when G (F, respectively) is a constant function, one can allow 
the index q (p, respectively) in (11.87) to take the value co as well. 
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A suitable version of the above theorem holds for bounded Lipschitz domains, in 
which scenario it is natural to employ the local Hardy spaces h^dfl), introduced in 
§ 2.3. Concretely, we have the following. 

Theorem 11.6.2. — Let ft be a bounded Lipschitz domain in Mn, n > 2, and fix 0 < 
p, q < oo and n-1 < r < 1 such that 1/p + 1/q = 1/r. Consider also a homogeneous, 
first-order differential operator D with constant coefficients and two functions 

(11.94) F e C^f t , ^ ) , G e (^ ( f t ,^ ) , 

which are null-solutions of certain strongly elliptic, self-adjoint, second-order, homo
geneous, (real) constant coefficient, differential operators in ft, and such that 

(11.95) DF = 0 and D*G = 0 in ft, 
(11.96) M(F) e Lp(dft), M(G) e Lq(dQ). 

Then there exists a finite constant C = C(9ft, n,p, q) > 0 and a function in /i£t(#ft), 
denoted by (o(D; v)F, G), for which 

(11.97) \\{a{D;v)F,G)\\hlt(m) < C\\M{F)\\LHdÇl)\\M{G)\\L,m) 

and such that the following holds. Let Z be a coordinate cylinder for 9ft, with axis 
in the direction of a unit vector (pointing into ft) denoted by en, and pick a function 
C e <7£°(Rn) with suppC C Z. Then 

(11.98) 

lim 
0 — 0-Zndíl 

(<T(D; U(X))F(X + ee„), G(x + een)) Ç(x) da(x) 

= í (<T(D;v)F,G)Cda, 
Jan 

where the last integral above stands for the paring between Ai£t(aft) and Lip (ail). 
Finally, in the case when G (F, respectively) is a constant function, one can allow 

the index q (p, respectively) to take the value oo. 

The case when F is the gradient of a harmonic function u with M(Vu) G Lp(dft), 
G = 1, and D — div has been proved by B. Dahlberg and C. Kenig in [18], based 
on duality and a refinement of an extension theorem due to N. Varopoulos [89]. The 
approach in [42] is more akin to the work of M. Wilson [91]. In applications to the 
Stokes system in Lipschitz domains, the following particular case of Theorem 11.6.1, 
Theorem 11.6.2 is going to be of particular importance. 

Corollary 11.6.3. — Let ft C Rn, n > 2, be a graph Lipschitz domain, with outward 
unit normal z/, and assume that n-l 

n < r < 1. Then there exists a finite constant 
C — C(9ft,r) > 0 such that for any divergence-free vector field F : ft —• Rn with 
biharmonic components for which M(F) G Lp(dCl) there holds 

(11.99) {u,F)eH:t(dQ) and \\(u,F)\\Hlt{da) < C\\M(F)\\LHan). 
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Above, (v,F) on dQ is considered in the sense of Theorem 11.6.1. Furthermore, a 
similar result is valid in the case of a bounded Lipschitz domain Q C Mn, n > 2, in 
which case (11.99) reads 

(11.100) <i/,F> E hr at (ad) and H ^ ^ I I ^ ^ ^ C I I M ^ I U P ^ ) , 

with (z/, F) on dQ defined in the sense of Theorem 11.6.2. 

Proof. — Consider F as above, (7=1, q = oo, p = r and D := div (so that D* = 
-V). In particular, DF = 0, D*G = 0, M(F) e Lp(dQ), M(G) £ L°°(dQ) and 
(e(D',v)F,G) =i(v,F). Then (11.99), (11.100) follow directly from Theorem 11.6.1 
and Theorem 11.6.2, respectively. • 

11.7. Spaces of null-solutions of elliptic operators 
Let L = ]C|7|=mA7^7 be a constant coefficient, elliptic differential operator of 

order m G 2N in Rn. For a fixed, bounded Lipschitz domain ¡1 c ln, n > 2, denote 
by KerL the space of functions satisfying Lu = 0 in ft. Then, for 0 < p < oo and 
a G R, introduce H£(ft; L) the space of functions u G KerL subject to the condition 

(11.101) IMIesofcL) := ¥{a)-a\^{a)u\\\Lnn) + 
(a) - l 

j = 0 
IIVJti||Lp(n) < +oo. 

Above, V-7 stands for vector of all mixed-order partial derivatives of order j and (a) 
is the smallest nonnegative integer greater than or equal to a, i.e., 

(11.102) (a) := 
a, if a: is a nonnegative integer, 
[a] + 1, if a > 0, a £ N, 
0, if a < 0, 

where [•] is the integer-part function. Parenthetically, let us point out that an equiv
alent quasi-norm on H^(ft;L) is given by 

(11.103) II^^IV^tiUlLP^) + sup KaOl, 
x E 0 

where 9 denotes some fixed compact subset of ft. The following result has essentially 
been established in [60]; see also [45], [64]. It extends results from [43], where the 
authors have dealt with the case 1 < p, q < oo, s > 0, L = A, and [1] where the case 
1 < p, q < oo, s > 0, L = A2 is treated. 

Theorem 11.7.1. — Assume that L is a homogeneous, constant coefficient, elliptic 
differential operator and that ft C Rn, n > 2, is a bounded Lipschitz domain. Then 

(11.104) H£(ft;L) = Fp,q(Q) D KerL 

for every a G R , 0 < p < o o , and 0 < q < oo. In particular, for each fixed a G R and 
0 < p < oo, the space Fp,q(ft) fl KerL is independent of q G (0, oo). 
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Furthermore, corresponding to p = oo, there holds 

(11.105) H?+.(«;£) = B&fW nKeri 

for each k G N0 and 5 G (0,1). 

Our next result is as follows. 

Theorem 11.7.2. — Let H be a bounded Lipschitz domain in Rn, n > 2, and assume 
that L is a homogeneous, constant (real) coefficient, symmetric, strongly elliptic differ
ential operator of order 2m, m G N. Then if u G Fm-i+i/pfà) ^or some n-1 < P — ^> 
0 < q < oo, and Lu = 0 in ft, it follows that M(Vm-1ii) G Lp(dft) and a natural 
estimate holds. 

In the proof of this theorem, the following result from [60] is going to be useful. 

Lemma 11.7.3. — Assume that ft is a bounded Lipschitz domain in Mn, n > 2, and 
that L is as above. Also, fix&GNo,0<p<oo, and 5 G M with sp > —1. Then there 
exists a relatively compact subset 0 of ft and C > 0 such that 
(11.106) 

ft 
(6(x)s\u{x)\fdx 1/p 

<C 
O 

(6{x)s+k\Vku(x)\)p dx 1/p 
+ sup \u(x)\ 

x Ed , 

uniformly for u G Ker L. 

We now present the 

Proof of Theorem 11.7.2. — Recall the area function 

(11.107) Щи)(х) := 
T(x) 

6(y)2-n\Vu(y)\2 dy l 2 , x G 9ft. 

As proved by Dahlberg-Kenig-Pipher-Verchota in [20], for every 0 < p < oo, there 
exists C > 0 such that 

(11.108) ||M(V— M l U w < C||8(Vm-4IILP(C*2) + C 
m—1 

j = 0 
l|Vti||Li(n). 

If {Qj}j is a Whitney decomposition of ft into Euclidean cubes Qj of side-length 
l(Qj), we may then estimate 
(11.109) 

ad 
(U{Vm-lu){xj) dox = 

дП Q 
ô(y)2-n\Vmu(y)\2X{y€r{x)}dy 

E 2 
dox 

= 
on j Qi 

ó(y)2-n\V™u(y)\2X{yer(x)}dy p 
2 dox =: I. 

If y G Qj and x G 9ft such that y G r(#), then x G Aj, where Aj is the "cone 
shadow" of Qj on 9ft, i.e., Aj := {x G 9ft : r(z) n Qj ^ 0}. In particular, o(Aj) « 
/(Qj)n_1, uniformly in j . 
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Assume that 0 < p < 2. Then 

I < 
an j Qf 

S(yy-n\V™u(y)\*X{yer{x)}dy 
E 2 
dax 

< 
j Aj 

KQj) 
Qj 

\Vmu\2 l 2 

P 

da 

< C 
j 

l(Qj)n~1+p 
Oj 

|Vmu|p < C 
O 

[<s1-p|vmu|]p 

(11.110) < C||u||pF 
m-l + l/p 

< C\\u\\F 
m-l + l/p (O), 

provided l 
V 

> n( 
1 
p — 1) (or, equivalently, p > 

n-l 
n ). For the second inequality in 

(11.110), we have used the fact that the function Vmu G KerL satisfies the reverse 
Holder inequality 

(li .iu) 
Qj 

|Vmu|2 
1 2 

< C 
Q'j 

\Vmu\p 
1 
P 

where Q*j is concentric double of Qj. Let us also point out that the next-to-last esti
mate in (11.110) follows straight from definitions when 1 < p < 2 and is a consequence 
of Lemma 11.7.3 when n-l 

n < p < 1. Finally, the last estimate in (11.110) is implied 
by Theorem 11.7.1. 

The above argument shows that ||<&(Vrn~1u)\\zJpmn) < C\\U\\FP^ 1+1/P m\. Since we 
also have F^q(ft) ^ Lnp/(n~1>(Q), the desired conclusion now follows from (11.108). 

11.8. Singular integral operators on Sobolev-Besov spaces 

We start with a result describing mapping properties on Besov spaces of integral 
operator modeled upon the hydrostatic double layer. 

Theorem 11.8.1. — Let ft be a (bounded or graph) Lipschitz domain in Rn, n > 2. 
Consider the integral operator 

(11.112) Tflx) = / k(xìy)f{y)d<jy, xGÍl, 
Jan 

satisfying the following conditions: 
(11.113) (1) Tl = const, 
(11.114) (2) \Vkxk{x,y)\<C\x-y\-n + k - 1\ k = 1,. . . , N, 

for some positive integer N. Then, with 5 := dist (,9f2), 

(11.115) ll^-^-|vfeT/||UP(n) + 
fc-1 

j=0 
||V^T/||L,(n)<C||/||Bj.p(fln)l 
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granted that k € {1,... , AT}, n-l 
n < p < oo, and (n — 1)( l 

p - 1)+ < s < 1. 

For a proof of Theorem 11.8.1 see [60]. The next result gives an analogue of Theo
rem 11.8.1 for single layer-like integral operators. 

Theorem 11.8.2. — Let fibea bounded Lipschitz domain in Mn, n > 2, and consider 
the integral operator 

(11.116) Rf(x) = 
act 

Hx,y)f(y)doryi xeCl, 

whose kernel satisfies the conditions 
(11.117) |V*VJ*(x, y) < C\x - j/|-("-2+fc+^, j = 0, l, 

for k = 1,2,..., JV, where TV" is some positive integer. Then 
(11.118) 

k-i 
\\6k-ï-s\VkRf\\\LP(n) + J2 II V'/l/||LP(n) < C\\f\\Bp.pi(M), k = 1,2,..., iV, 

i=o 
granted that n-l 

n < p < oo and (n — 1)( l 
p - ! ) + < « < ! . 

Once again, see [60] for a proof. 

11.9. Functional analysis on quasi-Banach spaces 

In the first part of this section we discuss a number of results related to Fredholm 
theory on quasi-Banach spaces. Since such a topic has intrinsic interest, we adopt 
a slightly more general point of view and record a body of results which is richer 
than the one strictly required by the applications to the kind of partial differential 
equations pursued in this work. 

The following useful results appear in [76]. 

Theorem 11.9.1 (Finite Dimensional Extension Theorem). — Assume that Y is a closed 
subspace of a Hausdorff linear topological space X, and that M is a finite dimensional 
subspace of X. Then Y + M is closed in X. 

Theorem 11.9.2 (Finite Codimension Theorem). — If Y is a closed subspace, of finite 
codimension in a Hausdorff linear topological space X, and M is any algebraic com
plement of y, then I = 7 0 M . 

Proposition 11.9.3. — Assume that X is a closed subspace of a Hausdorff linear topo
logical space. If Y and Z are two linear subspaces of X which complement each other 
(i.e., Y 0 Z = X) then Y and Z are closed in X. 

Theorem 11.9.4. — Assume that X is a closed subspace of a Hausdorff linear topo
logical space. Then X is finite dimensional if and only if X is locally compact. 
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Proposition 11.9.5. — If S : Y —• Z and T : X -+Y are linear transformations acting 
on vector spaces, both of which have finite dimensional kernels, then the composition 
ST : X —• Z also has finite dimensional kernel and, moreover, 

dimKer (ST : X Z) = dimKer (T : X —>Y) 

(11.119) + dim [Ker (S : Y -> Z) fl Im (T : X — F)]. 

To be precise, this is stated and proved in § 8 of [76] in the case when X = Y = Z, 
but the same elementary reasoning applies in the slightly more generality above. 

Definition 11.9.6. — Let X be a vector space. A quasi-norm is a nonnegative real-
valued function || • || on X such that 

(11.120) ||x|| = 0 x = 0, | M | = |a|||x||, ||x + y | |<«( |N + ||i,||), 

where x, y G X, a is any scalar, and K > 1 is independent of x and y. 
Call X a quasi-Banach space if there exists a quasi-norm for which this X complete. 

Theorem 11.9.7(Aoki-Rolewicz Theorem). — Let X be a quasi-Banach space. Then 
there exists 0 < p < 1 and an equivalent quasi-norm || • || on X such that 

(11.121) lk + y||p<||rrr + ||y||p, Vx,yeX. 

Definition 11.9.8. — If X and Y are quasi-Banach spaces, denote by £(X, Y) the 
space of linear, continuous operators from X to Y. An operator T G £(X, Y) is 
said to be compact if the image under T of any bounded subset of X is a relatively 
compact subset of Y. Finally, denote by CK{X, Y) the space of compact operators 
from X into Y. 

We equip £(X,Y) with the natural quasi-norm ||T||^(xy) := sup{||Tx||y : x G 
X, \\x\\x < 1}. 

Suppose that X is a quasi-Banach space and T G £(X, X). We claim that the 
operator XI + T is invertible (with J denoting the identity) on X for any A G R with 
|A| large enough. Indeed, the inverse can be given in the form of a Neumann series 

oo 
(11.122) (XI + T)-1 = J^(-l) 'A-'-1!1', 

3=0 
which converges in the operator norm if |A| is large enough. To see this, by 
the Aoki-Rolewicz Theorem, there is no loss of generality in assuming that X 
is a p-Banach space, for some p G (0,1]. Then || 2J=M(~"1)j^~j~lT3 \\P£(X,x) — 
Ef=M W - ' - iT ' l l^ ,* ) < IAI-1 Ef=M(\M-1/p\\T\\£(x,x))jp which is a piece of a 
convergent geometric series if ||T||^(x,x) < 1̂1-

Theorem 11.9.9. — Let X and Y be quasi-Banach spaces. Then £(X, Y) is a quasi-
Banach space and 3i(X, Y) is a closed, two-sided ideal in £(Xy Y). 
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When X = Y, this follows from the discussion in § 3 (p. 3.1) in [76]; see also Propo
sition 9.5 on p. 9.3 in [76]. Once again, having X = Y is inessential for the current 
purposes. 

Next, we record a result proved in [48]; cf. Proposition 7.8 on p. 132, and Proposi
tion 7.9 on p. 134. To state it, given two quasi-Banach spaces, we let G\(X, Y) denote 
the set of isomorphic embeddings of X into Y, and G2{X, Y) the set of open mappings 
of X into Y. 

Proposition 11.9.10. — For any two quasi-Banach spaces X and Y, the set Gj(X,Y) 
is open in £(X,Y), j = 1,2, and Gi(X, Y) D G2(X,Y) is both closed and open in 
either of G1 (X, Y), G2(X, Y). 

The result below is contained in Lemma 4.11 on p. 74 of [48]. 

Proposition 11.9.11. — Suppose that X, Y are two quasi-Banach spaces. Then A + K 
has closed range for any A £ G\{X, Y) and K e $C(X, Y). 

Consider next two quasi-Banach spaces (X, || • ||x), (Y, || • ||y) and let T : X —> Y 
be a linear, bounded operator. Define K(T; X, Y) to be the smallest constant so that 
if y e Y then there exists x e X so that Tx — y and ||x||x < K(T; X, Y)\\y\\Y. 
Note that, by the Open Mapping Theorem (which remains valid in the context of 
quasi-Banach spaces; cf. Theorem 1.4 in [48]), 

(11.123) «(T; X, Y) is finite if and only if T maps X onto Y. 

We also let rj(T; X,Y) be the largest constant so that r/(T; X, Y)||x||x < \\Tx\\Y 
for each x G X. Once again by virtue of the Open mapping Theorem, 

(11.124) ry(T; X,Y) > 0 if and only if T is injective with closed range. 

The result below has been proved in [46]. 

Lemma 11.9.12. — Suppose that (X, || • ||x), (Y, || • ||y) are two quasi-normed spaces 
such that X is complete. Also, suppose that T : X —• Y is a linear, bounded operator 
for which the following property is true: there exist 0 < Co < +oo and 0 < a < 1 
such that for each y in the unit sphere of Y one can find x € X with \\x\\x < Co and 
\\y-Tx\\Y < a. 

Then T is onto and K(T\ X, Y) < C\ for some C\ depending exclusively on Co, the 
quasi-norm constant of X and a. 

We shall also need a variant of Lemma 11.9.12 for sequences of operators. 

Lemma 11.9.13. — Assume that X, Y are Banach spaces and that (Ta)ae^ is a se
quence of bounded, linear operators, mapping X into Y, converging to some T : X —> 
Y in the operator norm. If T is onto, then there exists C > 0 and OJO such that 

(11.125) Va > a0, V?/ E Y => 3x e X so that Tax = y, \\x\\x < C\\y\\Y. 
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Proof. — This is a consequence of Lemma 11.9.12. Specifically, there exists Co such 
that if y G Y has ||y||y = 1 then there exists x G X with ||x||x < Co and Tx = y. Then 
we may write ||Ta#—y\\y — \Tax—Tx\\y < \\x\\x\\Ta—T\\^x,Y) <C0\\Ta-T\\ £(X,Y) 
which shows that, for sufficiently large a, we always have "good" approximate solutions 
to Tax = y and this, by Lemma 11.9.12, gives an actual solution with the desired 
control of the quasi-norm. • 

Definition 11.9.14. — Let X and Y be quasi-Banach spaces. Call T G £(X, Y) Fred
holm if: 

(1) T has a closed range, 
(2) T has finite codimensional range, 
(3) KerT is finite dimensional and topologically complemented in X. 

Set 0(X, Y) := {T G £(X, Y) : T Fredholm} and define the index function 
(11.126) ind : 9(X,Y) —• Z, indT := dim (KerT) - codim(ImT). 

Occasionally, if we wish to stress the spaces on which the operator T is considered, 
we may write index (T : X -> Y), Ker(T : X Y), etc. When X = Y, the above 
definition becomes a particular case of that in § 6 in [76]. Again, X = Y has been 
assumed there merely for convenience, and that removing this assumption does not 
affect the subsequent analysis. 

As pointed out in § 6 of [76], it is not always the case that a finite dimensional 
subspace E of a Hausdorff, linear topological space X is necessarily topologically 
complemented. However, this does happen whenever X* separates X. 

Definition 11.9.15. — If X and Y are two quasi-Banach spaces, set 

$+(X,Y) := {T G £(X,Y) : T has closed range and a finite dimensional 
(11.127) kernel, which is topologically complemented in X}, 

and 
(11.128) 
3>_(X, Y) := {T G £(X,Y) : T has closed range and finite dimensional cokernel}. 

The set of semi-Fredholm operators is then defined as 3>_(X, Y) U0+ (X, Y). The 
index function (11.126) can then be extended to the set of all semi-Fredholm operators 
by setting 

(11.129) 
index : O (X, Y) U O+ (X, Y) —• ZU {±oo}, 
indexT := dim (KerT) - dim (cokerT) 

Clearly, 

(11.130) *(X,Y) = 3>_(X, Y) n $+(X, Y). 

As shown below, the demand of "having closed range" is superfluous (and, hence, 
it may be omitted) in the above definitions of semi-Fredholmness and Fredholmness. 
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Lemma 11.9.16. — Let X, Y be two quasi-Banach spaces and assume that T G 
£(X, Y) is such that TX has finite codimension in Y (i.e. there exists M, finite 
dimensional subspace of Y such that M + TX = Y). Then TX is closed in Y. 

Before presenting the proof, let us note that if X, Y are quasi-Banach then for any 
Te£(X,Y), 

(11.131) TX has finite codimension in Y dim ^ y 
TX 

j < +oo. 

Furthermore, the codimension of TX in Y is equal to the dimension of the space 
Y/TX. 
Proof of Lemma 11.9.16. — Let M be a finite dimensional subspace of Y such that 
M + TX = Y. By further refining it (e.g., replacing it by a complement of M fl TX 
in M), it can be also assumed that M fl TX = {0}. Being finite dimensional, M is 
closed. Consider then Ti : X x M —> Y, defined by T\(x,y) := Tx + y, which is 
linear, continuous, and onto. Since KerTi = KerT x {0} X x {0}, it follows that 
TX = Ti(X x {0}) is closed in Y, by invoking the next lemma. • 

Here is the result alluded to above: 

Lemma 11.9.17. — Let X, Y be two quasi-Banach spaces and assume that T G 
£(X, Y) is such that TX is closed. If XQ is a closed subspace of X with the property 
that KerT c X0, then TXQ is closed in Y. 

Proof. — Since X0 is closed in X, then X0/KeiT is closed in X/KerT. However, 
T : X/KerT —* TX is an algebraical and topological isomorphism, and TXQ can 
be identified with the image of this latter operator of the closed subspace X0/KerT. 
Thus, TX0 is closed in TX and, further, in Y. • 

The following lemmas further summarize various properties of Fredholm and semi-
Fredholm operators which we will find useful later on. 

Theorem 11.9.18. — Let X and Y be Banach spaces and let T G £(X,Y). Then the 
following assertions hold. 

(1) If T G $±(X, Y) and S G *±(y, Z) then ST G *±(Jf, Z) and 

(11.132) index (ST) = index (S) + index (T). 
(2) If X and y have reasonable dual spaces, then T G $±(X,y) if and only if 

T* G $T(y*,X*). Moreover, index(T) = -index(T*). 
(3) T G 3>+ (X, y) if and only if T is bounded from below modulo compact operators. 

That is, there exist a quasi-Banach space Z, a compact operator K : X Z, 
and a nositive constant C such that 

(11.133) ||x|U < C\\Tx\\Y + \\Kx\\z for any x e X 

In particular, $+(X, Y) is open in £(X,Y) and $+(X, Y) is stable under 
addition of compact operators. 
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(4) The set $_(X, Y) is open in £(X, Y) and $_(X, Y) is stable under addition of 
compact operators. 

(5) If X0 is a closed subspace of X and T G $+(X,X) with TX0 C X0, then 
r|x0G*+(Xo,X0). 

(6) r G $(X, Y) if and only if there exist Si,S2 G £(Y, X) and K1 G di(Y, Y) and 
K2 G $C{X,X), such that 

(11.134) T5i = Iy + ifi, S2T = Jx + K2. 

In fact, we may take Si = S2 G $(X, Y) (i.e., T is Predholm if and only if it 
is invertible modulo compact operators). 

(7) The index function (11.129) is continuous. 

Proof. — The claims in (1) and (6) appear in § 6 and § 8 of [76], at least when X = Y, 
and an inspection of the proof shows that this restriction can be easily removed. 

Let us consider (3). In one direction, if T is bounded from below, modulo compact 
operators, introduce A = (T,K) : X —• Y 0 Z (with the latter space equipped 
with the natural quasi-norm ||(y, 2)||ye£ := ||y||y + ||^||z)- Then (11.133) amounts to 
rj(A] X, Y 0 Z ) > 0, i.e. A G Gi(X, Y 0 Z ) (in the terminology of Proposition 11.9.10) . 
Since (0, -K) G tK{X, Y 0 Z ) , Proposition 11.9.11 then gives that (T, 0) = A+(0, -K) 
has closed range. Thus, T has closed range, as desired. To show that N := KerT, 
which is a closed subspace of X, is finite dimensional, it suffices to check that its unit 
ball is sequentially relatively compact (here, Theorem 11.9.4 is used). To this end, fix 
an arbitrary sequence {XJ}J of vectors in X with ||XJ||X < 1 and Tx3 = 0. Without 
loss of generality, it can be assumed that {KXJ}J converges in Z. Writing (11.133) 
for X — X j X , then proves that {XJ}J is Cauchy, hence, convergent in X. This 
concludes the proof of the fact that, for an operator in £(X, Y), being bounded from 
below modulo compact operators entails membership to 3>+(X, Y). 

Conversely, if T G $+(X, Y) and Z is a topological complement of KerT (which, 
by Proposition 11.9.3, means that Z is closed in X), define K : X — KerT 0 Z —> Z 
by K(x,y) := x. Since K has finite rank, K G &(X,Z). Then, since T : Z -> ImT 
is an isomorphism, for each x G X with x = xQ + y, xQ G Z, y G KerT, we may 
write ||x||x < n(\\x0\\x + \\v\\x) < <\\Tx0\\Y + \\Kz\\z) = <\\Tx\\y + \\Kz\\z). Thus, 
(11.133) follows. 

Next we consider (4). Let T G $_(X,Y). Then there exists M C Y such that 
Y = TX © M and dim M < +oo. Define f : X 0 M -* Y by f(x,m) := Tx + m. 
Then f is onto, and hence from (11.123), CQ := K(T;I® M, Y) < +oo. Let i? G 
£(X, Y) be such that p||^(x,y) < afe. Define £ : X 0 M -> Y by £(a?,y) = 
ita, and so ||jR||̂ (xeAf,y) < afe- Tnen fr°m tne definition of «(T;X 0 M, Y), for 
any 2/ G Y, ||y||y < 1, there exists (x, m) G I ® M such that T(x,m) = y and 
||(x,m)||xeM < Cc. Then 

(11.135) \\y- (f + £)(*,m)||y < ||Ab(xeM,y)ll(^m)||xeM < | , 
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and so it follows from Lemma 11.9.12 that T + R is onto. Then 

(11.136) Y = Im (f + R) = {Tx + m + Rx : x G X, m € M} = (T + #)X + Af, 

and so the range of T + i? has finite codimension in Y. From Lemma 11.9.16, T + R 
has closed range, and so T + i2 G $-(X, Y). Therefore $_(X, Y) is open in £(X, Y). 

To see that 3>-(X, Y) is stable under addition of compact operators, let T G 
$_(X,Y) and X G &{X,Y\ and we will show that T -V K G $_(X, Y). First 
we will treat the case when T is onto. Using (11.123), define C\ := «(T;X, Y). 
Since K G <#(X, Y), there exists an operator ifi G <#(X, Y) of finite rank such that 
\\K - TFI||*>(X,Y) < 1/2c Define Tx := T + (K - TFI), and let 2 / 6 7 , ||y||y < 1. From 
the definition of AS(T;X,Y), there exists x G X such that y = Tx and ||x||x < Ci. 
Then 

(11.137) ||2/ - TlX\\Y = \\y -Tx-(K- KJxW < \\K - K^x^WxWx < |, 

and so Lemma 11.9.12 implies that Ti is onto. Then since T + K = 7\ + K\ and 
K\ has finite rank, it follows that T + K has finite codimensional range, and then 
Lemma 11.9.16 implies that the range of T+K is closed. This establishes that T+K G 
$_(X, Y) under the assumption that T is onto. 

Next, we consider the general case. Let M C Y be such that Y = TX 0 M and 
dim M < +oo. Define f, K : X 0 M —> Y by 

(11.138) T(x, 2/) := Tx + y and Jf(x, 2/) := Kx. 

Since T is onto and K is compact, using the previous case, we know that T + K 
has closed range of finite codimension in Y. Then since 

(11.139) Im (f + K) = {Tx + 2/ + Kx : x £ X, y e M} = Im (T + if) + M, 

it follows that the range of T + K has finite codimension in Im (T + K). Then the 
range of T + if also has finite codimension in Y. Lemma 11.9.16 then implies that 
the range of T -f K is also closed, and hence T + K e $-(X, Y). This finishes the 
proof of (4). For the remaining items, the interested reader is referred to [47]. • 

As a consequence of (6) above, we have the following. Consider u a topological 
space and let *ll 3 X T\ G $+(X, Y) U 3>-(X, Y) be a continuous mapping. Then 
the function ?/9 A H dim (Ker T\) — dim (cokerT\) G Z U {±00} is locally constant. 
In particular, A 1-* index (T\) is constant on each connected component of 2/. 

In the next corollary we single out a consequence of the last point in the above 
theorem which is particularly relevant for us in applications. 

Corollary 11.9.19. — If T G £(X, X) is such that A/ + T is a semi-Fredholm operator 
for any A G R, |A| > | , then AI + T is actually a Fredholm operator with index zero 
for any A in the indicated range. 

Proof. — Recalling that for |A| large enough the operator XI + T is invertible (see 
the discussion preceding Theorem 11.9.9), the point (6) in Theorem 11.9.18 gives that 
index(XI+ T) = 0 for any A G R with |A| > | . Hence, the conclusion follows. • 
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The following is also a consequence of Theorem 11.9.18. We leave the proof to the 
interested reader. 
Lemma 11.9.20. — Let X, У, Z, °W be quasi-Banach spaces and consider the com
mutative diagram 

%—>y 
(И.140) 

Z—-> V 
where all arrows are linear and bounded. If three of the four arrows are Fredholm 
operators then so is the fourth one. 

The following result is going to be of importance for us. 

Lemma 11.9.21. — Let Xj, Yj, j = 1,2, be two quasi-Banach spaces such that the 
inclusions Xi <-+ X2, Y\ <-» Y2 are continuous, and the second one has dense range. 
If T G Ф(Хи Yi) П Ф(Х2, Y2) is such that index (Г : Хг -> Yi) = index (T : X2 -> Y2) 
then Ker (T : Хг -> Yx) = Ker (T : X2 -> У2). 

Proof. — Since TXi has finite codimension in Yi, there exists a finite dimensional 
subspace M of У1 such that TX\ 0 M = Yi (direct, non-orthogonal sum). We claim 
that TX2 + M = Y2. To prove the claim, observe that Yi = TXi + M С TX2 4- M. 
Hence, since Yi is densely embedded into Y2, so is TX2 + M. Moreover, because 
TX2 is closed and M is finite dimensional, Theorem 11.9.1 implies that TX2 + M is 
closed in Y2. Combining these results, the claim follows. Going further, by using the 
claim we obtain that dim^^-^ = dimM > dim ( 7 ^ ) which, in turn, implies that 
dimcoker(T : X\ -> Yi) > dimcoker(T : X2 —> Y2). The latter inequality together 
with the fact that the index of T is the same when acting from Xj onto Yj for j = 1 
and j = 2 give that dim Ker (T : Xx -> Yi) > dim Ker (T : X2 Y2). The reversed 
inequality is obvious, thus the conclusion follows. • 

Lemma 11.9.22. — Let X,Y be quasi-Banach spaces and assume that T e £(X,Y). 
If Z Y is a closed subspace of finite codimension, then T~lZ is a closed subspace 
of finite codimension in X. 

Proo/. — Since T is continuous and Z is closed, it follows that T~1Z is closed as 
well. Next, consider the linear operator 

(11.141) f : Х/T 'Z — Y/Z, f[x] := [Tx], 

where for each x G X, [x] stands for the class of x in X/T_1Z, and [Tx] stands for 
the class of Tx in Y/Z. Clearly, T is one-to-one which then entails 

(11.142) dim (X/T"XZ ) < dim ( Y / < +00. 

Thus, T~lZ is a space of finite codimension in X. • 

ASTÉRISQUE 344 



11.9. FUNCTIONAL ANALYSIS ON QUASI-BANACH SPACES 223 

We conclude this section with several stability results proved in [46], [45]. First, 
we need to recall some definitions. A quasi-Banach space X is called analytically 
convex if there is a constant C such that for every polynomial P : C —• X we have 
||^(0)||x < Cmax|z|=1 ||P(z)||x. It is shown in [44] that if X is analytically convex it 
has an equivalent quasi-norm which is plurisubharmonic (i.e. we can insist that the 
constant C above can be taken to be 1). Let us also point out that being analytically 
convex is equivalent to the condition that 
(11.143) max \\f(z)\\x < C max \\f(z)\\x, 

0<Rez<l die 2=0,1 
for any analytic function / : {z G C : 0 <Uez <1} —> X which is continuous on the 
closed strip {z G C : 0 < diez < 1}. 

Clearly, any Banach space is analytically convex. Other useful criteria for analytic 
convexity can be found in [44], [24], [45]. The relevance of this concept stems from the 
fact that Calderon's complex method of interpolation, originally devised for Banach 
spaces, can be most naturally adapted to analytically convex quasi-Banach spaces. A 
more thorough discussion in this regard can be found in [45]. Here, we only wish to 
quote a result which has been proved in [45]. 
Lemma 11.9.23. — Let X*, Yi, Zi, i = 0,1, be quasi-Banach spaces such that X0OXi 
is dense in both Xo and Xi, and similarly for Zq, Z\. Suppose that Yi ̂  Zi, i = 0,1 
and there exists a linear operator D such that D : Xi —> Zi boundedly for i — 0,1. 
Define the spaces 
(11.144) Xi(D) := {u G Xi : Du G YJ, i = 0,1, 
equipped with the graph norm, i.e. IMIX^D) *= IMIxi + P^lta? i = 0,1. Finally, 
suppose that there exist continuous linear mappings G : Zi —• Xi and K : Zi —> Yi 
with the property DoG = I+K on the spaces Zi for i = 0,1. Then, for each 0 < 8 < 1 
and 0 < q < oo, 
(11.145) (XQ{D)MD))9tq = {ue (Xo,Xx)^ : Du G (YcHkg}. 

Furthermore, if the spaces Xo + X\ and Yo + Yi are analytically convex, then 
(11.146) [Xo(D),Xi(D)]o = {ue [X0,X1]e : Du G [Y0, Y^}, 0 G (0,1). 

We continue with a very useful result which essentially asserts that, on a complex 
interpolation scales of quasi-Banach spaces, the property of being invertible is stable 
and the inverses are compatible. The Banach space version can be found in [11], [81], 
[3], [80], [83]. The theorem below was proved in [45], following earlier work in [46]. 

Theorem 11.9.24. — Let Xo, Xi and Yb, Y\ be two compatible couples of quasi-Banach 
spaces and assume that X0 + X\ and Y0 + Y\ are analytically convex. Also, consider a 
bounded, linear operator T : X3; —> Yj, j = 0,1. If Xq := [X0, Xi]# and Yq := [Y0, Yi]#, 
then for each 6 G (0,1), then T induces a bounded linear operator 
(11.147) Tq : Xq —> Ye, 0G(O,1), 
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in a natural fashion. Moreover, 
(11.148) mWx^Y. < \\T\\£'Xo\\T\\9Xl^Xl, 6 G (0,1). 

Assume next that there exists 0O G (0,1) such that TQO is an isomorphism. Then 
there exists e > 0 such that TQ continues to be isomorphism whenever \6 — 0O\ < s. 

Furthermore, if I is any open subinterval of (0,1) with the property that TQ1 exists 
for every 6 G /, then TQ1 agrees with TQ,1 on YQ fl YQ> for any 0,6' G I. 

Theorem 11.9.25. — Under the hypotheses of Theorem 11.9.24, if TQO is surjective and 
has finite-dimensional kernel then there exists e > 0 so that dim ker TQ is constant for 
\0 - 0O\ < e. 

Theorem 11.9.26. — Retain the same hypotheses as in Theorem 11.9.24 and assume 
that YQ n Y\ is dense in each YQ for 0 < 0 < 1 (which is automatic for the case of 
inner complex interpolation). Then if TQO is Fredholm, there exists e > 0 so that TQ 
is Fredholm for \6 — 6Q\ < e and the index is constant. 

Our last result in this section is a global stability theorem from [46]. 

Theorem 11.9.27. — Retain the same hypotheses as in Theorem 11.9.24 and, in ad
dition, assume that there exists 0O £ I such that TQO : XQO —• YQO is an isomorphism. 
Then, if r)(TE) > 0 for all 0 e I or if K(T0) < oo for all 9 G I, it follows that 
TQ : XQ —• YQ is an isomorphism for all 6 G /. 

11.10. Surface to surface change of variables 

The following result, of general nature, from [39] is going to be useful for us. 

Proposition 11.10.1. — Let O C Mn be a bounded Lipschitz domain, Q an open neigh
borhood of fJ, and let F : 0 —• Rn be an orientation preserving C°°-diffeomorphism. 
Then Q, := F(Cl) is a Lipschitz domain and if u, v and a, a are, respectively, the 
outward unit normals and surface measures on dtt and #0, then 

(11.149) v = 
(J>F-1)T(i/oF-1) 
KDF-^íi/oF-1)! ' 

(11.150) 5 = \(DF y (y o F )| (I det DF\ о F ) F.CT, 

where (DF X)T denotes the transposed of the Jacobian matrix of F x, and F*cr is 
the push-forward of the measure a. 
Below, we study how tangential derivatives transform under changing variables in the 
ambient Euclidean space. 

Proposition 11.10.2. — In the context of Proposition 11.10.1, and assuming 1 < p < 
oo, one has 
(11.151) II/HL,^) « WfoF-1^^,an ||/||L?(en) « 11 /oF"1! !^ , 
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Furthermore, for every j , k G {1,.. . , n}, 

(11.152) %tjh(foF-1) = 
f(£>F-1)T [(Vtan/ ® «/ - V ® Vtan/) o F - 1 ] (DF-1)] 

|(DF_1)T(J/ o F_1)| ' 

Proof. — The first equivalence in (11.151) is a direct consequence of Proposi
tion 11.10.1, whereas the second follows from (11.152) and Proposition 11.10.1. 

Consider now the identity (11.152). For each j , k G {1,. . . , n}, denote by d~ the 
tangential derivative on dQ, given by Vjdk — Vkdj. We then have 

(11.153) 

d^JfoF-1) = v ïjdk(if o F-1) -ïkdjifoF-1) 

= ïj((dif) o F-^dkFf1 - Vk((drf) o F-^djF-1. 

Employing Proposition 11.10.1 we further write 

ûMdtiïoF-^dkFï1 = 
((DF~')T(y o F-1)) .(V/ o F~1)((DF~1)ek 

KUF-iJT^oF"1)! 

(11.154) 
[(£>F~1)T((V/ o F-1) g> (1/ o F~1))(DF~1)]fcj. 

|(DF_1)T(i/oF_1)| 

where for two vectors a,b e W1 with a = (ai,..., an) and b = (61,..., 6n), we have 
set a 0 6 to stand for the n x n matrix whose ij entry is given by 

(11.155) (a®b)ij := a»6j, i,j € {l,. . . ,n}. 

Thus, based on (11.153) and (11.154), 

&~ ( / o r 1 ) = 
[(DF-^T ((V/ о F"1) ® {y о F - 1 ) ) ^ - 1 ) ] , . 

|(DF_1)T(i/oF_1)| 

(11.156) 
[(PF-1)T((V/oF-1)0(i/oF-1))(DF-1)].fc 

|(£>F_1)T(i/oF_1)| 

This further gives, 

(11.157) d~ (foF~1) = 
[(£)F_1)T (a ® 6 - 6 <g> a) (DF-1)] 

|(Z?F_1)T(i/ o F_1)| ~ ' 

where 

(11.158) a ^ V / o F ' 1 and b :=voF~l. 

Since, generally speaking, a <g> 6 — b® a = a,b®b — b®a\, where at := a — (a • b)b, 
we may finally conclude that, for every j,k, (11.152) holds. • 
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11.11. Truncating singular integrals 
Recall that a function cp : U —> R, U open subset of Rn is called Lipschitz provided 

that there exists M > 0 such that \<p(x) — <p(y)\ < M\x — y\ for all x,y eU. The best 
constant in the above inequality is called the Lipschitz constant of (p. 

The following is an old result of Rademacher (cf.[72]). 

Lemma 11.11.1. — Let (p be a real-valued, Lipschitz function defined in an open set 
U of Rn. Then for each 1 < j < n, dip 

dxj exists at almost every point x in U and 
dip 
dxj € L°°(U,M). In fact, ||VV?||L~ is the Lipschitz constant of cp and for almost every 
x € Rn there exists a vector Vip(x) such that 

(11.159) lim 
\y\lo 

\<p(x + y) - <p{x) - {V<p(x),y) 1 
\y\ 

= 0. 

If U Ç Rn, call $ : E7 -+ Rm bi-Lipschitz if there exist 0 < Mi < M2 < oo such 
that 

(11.160) M^x - yl < \${x)-$(y)\ <M2\x-y\, Vx,yeU. 

When U is an open set, it is known (cf. [72]) that necessarily m > n, $ is an open 
mapping, the Jacobian matrix D$ = (dj$k)i<j<n,i<k<m exists a.e. in U and 

(11.161) rank£>$(x) = n for a.e. z € 17. 

Our goal here is to establish the following. 

Proposition 11.11.2. — Let A : Rn —» Rm be a Lipschitz function with Lipschitz con
stant M, and assume that F : Rm -+ R, F e CN(Rm), for some sufficiently large N e 
N, F is odd function. For x, y G Rn with x^ywe set iîT(x, y) := î 

|x-y|n 
F A(x)-A(y) 

\x-y\ 
and for e > 0, define the truncated operator 

(11.162) T£f(x) := 
|x-y|>e 

K(x,y)f(y)dy, xeK". 

As is well-known (cf., e.g., [63]), if 1 < p < oo and / G Lp(Rn) then the limit 
lime_>o Tef(x) exists for almost every x G Rn and the operator 

(11.163) Tf(x) := lim Tef(x), x G Rn, 
e—0 

is bounded on Lp(Rn). 

Assume that B : Rn —> Rm , m! > n, is a functions satisfying 

(11.164) M -^x -yl < |B(x)-B(y)| <M |x -y | , Vx,y G Rn, 

for some M > 1. Then if 1< p < oo and / G LP(Rn), the limit 
(11.165 lim / K(x,y)f(y)dy, 

£->°J\B(x)-B(y)\>e 
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exists and is equal to Tf(x) (as defined in (11.163)) for almost every x G Rn. In other 
words, for any function B as in (11.164), one has the representation 

(11.166) Tf(x) = lim / K{x, y)f(y) dy, 
£-+°J\B(x)-B(y)\>e 

for almost every x G Rn. 

To prove it, we isolate the key technical step in the form of a lemma, stated below. 

Lemma 11.11.3. — Let A : W1 -> Rm and B : Rn Rm', m' > n, be functions 
satisfying 

(11.167) \A(x) - A(y)\ < M\x - y| and 
(11.168) M'1\x - y\ < \B(x)-B(y)\ <M\x - y\, Va:,2/GEn, 

for some constant M > 1. Also let F : Rm x l -^Mbea C1, odd function. Fix x G Rn 
and for each e > 0 consider 

(11.169) U{e) := {y G Rn : 1 > \x - y\ > e}, 
(11.170) V(e) := {y G Rn : |(2?J3)(x)(x - y)| >e,\x-y\< 1}, 
(11.171) flr(e) := {y G Rn : |B(x) - B(y)| > e, |x - y\ < 1}. 

Then 

lim 
e|0 U(s) 

1 
|x - y\n 

F A(x) - A(y) 
\x~y\ 

) dy = lim 
/ e|0 V(c) 

1 
\x — y\n 

F ( 
A(x) - A(y) 

\x-y\ 
)dy 

(11.172) = lim 
£|0 W(e) 

1 
\x-y\n 

5 ( 
A(x)-A(y) 

\x - y\ 
) dy, 

provided the Jacobian matrices (DA)(x) and (DB)(x) exist, rank (DB)(x) = n, and 
one of the above three limits exists and is finite. 

Proof. — Without loss of generality we can take x = 0, A(0) = 0, B(0) = 0. By 
Lemma 11.11.1 there exist nonnegative functions rjA(t) and tjb(t) defined for t > 0, 
so that rjA(t) I 0, 7jB(t) I 0 as t [ 0 and 

(11.173) |A(y) - (27A)(0)y| < |y|I|A(|v|), 
(11.174) \B(y) - (DB)(0)y\ < \y\r,B(\y\), 

for y G Rn. If, for each e > 0, we now introduce A(e) := {y G Rn : e > \y\ > 
e||(DjB)(0)||-1} then V(e) \ U(e) C A(e). Employing the properties of F, the fact 
that ^(e) \ 17(e) is symmetric with respect to the origin and the estimate (11.173), 
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the absolute value of the difference of the first two limits in (11.172) is estimated by 

lim 
£¿0 V(e)\U(e) 

1 
w 

F A(y)  
Ы 

dy 

= lim 
e|0 

1 
2 W W 

1 
W [ F ( 

МУ)  
\y\ 

)+F( M-y) 
\v\ 

)}dy 

= lim 
eiO 

1 
2 V(e)\U(e) 

1 
W 

[ F ( A(y) 
M ) — F ( — 

A(-y) 
\У\ 

)]dy 

< [ sup 
\Î\<M 

\(DF№\] lim 
Д(е) 

М\У\)\УГп dy 

(11.175) < Climr)A(e) = 0, 
e|0 

which proves the first equality in (11.172). 
In order to prove the second equality in (11.172), observe that for each point 

y G V(e)\W(e) we have M~x\y\ < \B(y)\ < e, so that \y\ < eM. That is, 

(11.176) y G V(e)\W(e) => \y\ < eM and \B(y)\ < e. 
Based on this, we may conclude that 

(11.177) 
y e V(e)\W(e) \(DB)(0)y\ < \(DB)(0)y - B(y)\ + \B(y)\ < eMrjB(eM) + e 

and, further, 
(11.178) y e V(e)\W(e) e < \(DB)(0)y\ < eMrjB(eM)+e. 

Prom (11.176) and (11.178) we may therefore conclude that 
(11.179) V(s)\W(e) C Z(e;MriB(eM); (DB)(0)) 
where we have set 

(11.180) Z{e\ a; U) := {y € RN : e < \Ry\ <ea + e}, 
if e > 0, a > 0, and R is a m' x n matrix of rank n. 

Let ${kN be the fc-dimensional Hausdorff measure in R .̂ To estimate the size of 
Z(e; a; i?), we first note that 
(11.181) Z(e;a;R) = eZ(l;a;R), Ve > 0. 

On the other hand, if we set Hn := {Ry : y G Rn} then, since R is a rank n matrix, 
Hn is an n-dimensional plane in Rm and R : Rn —• Hn is a linear isomorphism. Hence, 

Wi(z{l;a;RJ) = Ml({y € Rn : 1< \Ry\ < a + 1}) 

(11.182) < C^Hhm' (jY e Hn: K | r | < a + 1}). 
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Simple geometric considerations show that the 

(11.183) lim 3em, ({Y € Hn : 1< \Y\ < a + 1}) = 0. 
a—>0 \ / 

From this, (11.181), (11.179) and the fact that rjB(eM) -> 0 as e -> 0, we finally 
deduce that 

(11.184) lim 
£-•0 

K{v(e)\W(e)) 

En = 0. 

Since the expression l 
\x-y\n 

5 A(x)-A(y) 
\x-y\ 

restricted to V(e)\W(e) (itself, a subset 
of {y e Rn : eM > \y\ > e||(jDjB)(0)||~1}) is pointwise of the order e~n, we conclude 
that the integral of this function over the set V(e)\W(e) converges to zero as e —» 0. 

Moving on, an argument analogous to (11.178) gives that 

(11.185) e - eMr)B(eM) < \(DB)(0)y\ < e, 

uniformly for y € W(e)\V(e). Thus, for reasons similar to those discussed above, 

the integral of l 
\x-y\n 

F A{x)-A{y) 
\x-y\ over W(e)\V(e) also vanishes as e j 0, which 

completes the proof of the second equality in the conclusion of the lemma. • 

After this preamble, it is straightforward to carry out the 

Proof of Proposition 11.11.2. — The claim in (11.166) is an immediate corollary of 
Lemma 11.11.3 and (11.161). • 

11.12. Approximating Lipschitz domains 
For various purposes, it convenient to approximate, in a suitable sense, a given 

Lipschitz domain with a sequence of sub-domains. Several variants can be found in 
the literature. See, for example, [67] and [90] for such approximating schemes involving 
C°°-smooth sub-domains. For us here, however, the following approximation result, 
proved by A.P. Calderon in [10], is particularly useful. 

Lemma 11.12A. — Consider a bounded Lipschitz domain Q in Rn, n > 2, with surface 
measure a and outward unit normal v, along with a Lipschitz vector field h on dfl, 
satisfying 

(11.186) \h(x)\ = 1 and (h(x), i/(a?)) > K for a.e. x e dft, 

where K £ (0,1) is a fixed constant. Let Clt be the subset of Q defined by 

(11.187) Qt:=n\{x- sh(x) : x € dfi, 0 < s < t}. 

Then there exists a small positive number £0, depending only on the Lipschitz 
character of ft, the Lipschitz constant of h, n, and k, such that the following hold, 

(i) Whenever 0 < t < tQ, Ctt is a Lipschitz domain and 

(11.188) dtlt = {x- th{x) : x e dQ}. 
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(ii) There exists a covering of dQ with finitely many coordinate cylinders which also 
form a family of coordinate cylinders for dVtf, for each t G (0,to). Moreover, for 
each such cylinder C(r, ft), if <p and (pt are the corresponding Lipschitz functions 
whose graphs describe the boundaries of O and Ctt respectively in C(r, ft), then 
HV t̂lU00 < HV̂ HL00 and V(ft —* V<̂  pointwise a.e. as t —> 0+. 

(iii) Consider the mapping Ft : Rn -* Rn defined by Ft(x) := x - th(x). Then Ft is 
bi-Lipschitz, uniformly in t G (0, tQ). As a consequence, 

(11.189) At:dft—>dflu At(x) := x - tft(x), x G dfl, 

is a bi-Lipschitz function for each t G (0, t0) and the Lipschitz constants of At 
and At_1 are uniformly bounded in t. 

(iv) For every t G (0, £G) and every x G aO, there holds At(x) G T(x) and 

(11.190) sup \x - At(x)| < C*, 

for some finite, positive constant C = C(f£, ft). 
(v) For each t G (0, £G), there exist positive functions ut : dfi —> R+, bounded away 

from zero and infinity uniformly in t, such that, for any measurable set F C d£l, 

(11.191) J utda= [ &ou 
JF J At{F) 

where dat denotes the surface measure on dAt. In addition, 
(11.192) sup \l-u>t(x)\ < Ct, Wt G (0,to), 

xedn 
where C is as before. 

(vi) If vt is the outward unit normal vector to df2*, then, with C as above, 
(11.193) sup \v{x) - vt{ht(x))\ < Ct, Vt G (0,to). 

xedQ 
We wish to complement this lemma with several related results (working in the 

same context as above). First, consider a function 

(11.194) k G CN(Rn \ {0}), k(-x) = -fc(x), k(Xx) = A1_nfc(a:) if A > 0, 

where N = N(n) is a sufficiently large integer. To this, we associate the singular 
integral operator 

(11.195) Tf(x) := lim / k(x - y)f(y) da{y), x G dft. 
£-•0+ J 

\x-y\>£ 
Furthermore, let Tt, t G (0,to), denote the version of the integral operator (11.195) 

written for dftt in place of dQ. 
We claim that for each p G (1, oo), there exists C(fi, ft, k,p) > 0 with the property 

that 

(11.196) ||[Tt(/oAt-1)]oAt-r/||LP(afi) <Ct\\f\\LP{m), Vte(0,t„). 
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To prove this claim, for x G dQ, and t G (0, tQ) we write 

IK/oA^XA^x)) = lim / K{Kt{x)-y')F(KT\y'))D<Tt(y') 
\AT(X)-Y'\>E 

y'edQt 
= lim / k(At(x) - At(y))f(y)ut(y) DA(y) 

£-•0+ J 
|At(as)-At(y)|>e 

= lim / k(Ft(x) - FT(Y))F(Y)uT(Y) da(y) 
£^>0+ J 

\FT(X)-FT(Y)\>£ 
yedQ 

(11.197) = lim / k(At(x) - AT(Y))F(Y)LJT(Y) DA(Y). 
€—>0+ J \X — Y\>E 

yedQ 
Above, the first equality follows from (11.195), the second from (11.191), the third 

uses the definition of Ft introduced in (iii) in Lemma 11.12.1, and the fourth is a 
consequence of results in § 11.11. Consequently, 

(11.198) Tt(f o At-1)(At(a:)) - Tf(x) = R]f{x) + R2tf(x), 

where, for x G diï and t G (0, tQ), we have set 

(11.199) Rlf(x) := lim / k(At(x) - At(y))f(y){ut(y) - 1] do{y), 
\x-y\>e 
yean 

(11.200) R2tf(x) := lim / [k(At(x) - At(y)) - k(x - y)]f(y) da(y). 
\x — y\>£ 
yedci 

The operator R] is amenable to Calderon-Zygmund theory (either directly, or after 
changing variables back to dQt) and, by (11.192), we thus obtain 

(11.201) \\Rlfhp(aa) < C | |k - 1]/IUP<*J) < Ct\\f\\LP(dn), 

uniformly for t G (0, tQ). As for the contribution from R2f, first note that, by the 
Mean Value Theorem, 
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R2J(x) = lim / 
£-•0+ J 

\x-y\>e 
уедп 

[k(At(x) - AtM) - k(x - y)]f(y)da(y) 

(11.202) = t f R2t,0 f {x) d0, 
Jo 
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where, for x G 50, t G (0,£0) and 6 G [0,1], we have set 

(11.203) Rlef(x) := lim / (Vk) (x-y-9t(h(x)-h(y)))(h(x)-h(y))f(y)da(y). 
£—0+ J 

|x-y(>e 
yedn 

By Calderon-Zygmund theory, we have 

(H-204) \\Rl,9f\\L*m) < C\\f\\LHen), 

uniformly for t G (0,to) and 6 G [0,1]. Prom this and (11.202), we then obtain 
(11.205) \\R2tf\\Lp(dn) < Ct\\f\\LP{dn)j 

uniformly for t G (0,£o). In concert, (11.201), (11.205) and (11.198) prove (11.196). 
Next, we claim that if 1 < j , k < n and 1 < p < oo, then there exists C > 0 such 

that 

(11.206) \\dTjkf - [dTtk(f o A,"1)] o At\\LHm) < Ct||Vtan/|U p(dQ)j Vt G (0,to), 

where dTjk is the tangential derivative operator on 50 introduced in (2.14), and dr±k 
is its version relative to $Ot. Of course, it suffices to prove the pointwise inequality 

(11.207) \dTjkf - [dT* (fo A-1)] o At| < C*|Vtan/| on 50, Vt G (0,to), 

where Vtan is the tangential gradient on d£l. To see this, bring in (11.152) written for 
the change of variable mapping Ft(x) = x — th(x). Using the fact that 

(11.208) DFt = I + 0{t), DFf1 = 1 + 0{t), (DFf1)T = 1 + 0(t), t € (0,to), 

and recalling (11.193), we obtain from (11.152) and (11.149) that 

dTtJfoA~1) = 
[(Vtan/) o Ft_1 ® {DF^Yiu o Ff1)] ^ 

KDF^r^oF,-1)! 

= 
[(DF-^iuoFf1) ® (Vtan/) oFr1]]^ 

UDF^VivoFr^l 
+ 0(*|(Vtan/)oJF-1|) 

- (Vta„/) o At 1 ® vt 
L Jfej 

- ^^(Vtan^oA^1] + 0(i|(Vtan/)oA-1|) 

= (Oj(Vtan/)* o A71 - (i/t)fc(Vtan/)j o A,"1 + 0(i|(Vtan/) o A,"1]) 
= (u o At-1)j(Vtan/)fc o A,"1 - (u o A^MVtan/fc ° A,"1 + 0(t|(Vtan/) o A,-1)) 
= (3T, J ) o Ar1 + 0(i|(Vtan/) o At_1|). (11.209) 

This clearly implies (11.207). 

Lemma 11.12.2. — In the context of Lemma 11.12.1, let K\ be the double layer po
tential operator for the Stokes system on dQ, and denote by K\ the corresponding 
operator considered on dilt- Then for each p£ (1, oo), 

(11.210) \\Kxf- [KKfoA-1)} o AT||LP(AN) < Ct||/||L?(8n), Vt € (0,to). 
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where C > 0 depends only on ft and p. 

Proof. — Fix / G L?(c?il) with ||/||jrp(an) = 1. Also, recall from (4.98) that there 
exist Calderón-Zygmund type operators Tjkrs on dil, along with their counterparts 
Tjkra on 90t, for which the following commutation identities hold: 

(11.211) dTjkKx = TjkrsdTrs, dTjkK\ = T¡krsdTtrs, V¿,*€{l,. . . ,n}. 

Turning to (11.210) in the earnest, we first note that 

(11.212) \\Kxf - [K{(f o A"1)] o At\\LP{dQ) <Ct, Vi G (0, t0), 

by (11.196) (and (11.193)). Fix now j , k G {1,. . . , n} and consider 

(11.213) \\drih(Kf) - dTjk{[K\f o AT1)] o At)|U,(en). 
Given the goal we have in mind, it is permissible to replace terms in (11.213) with 

other expressions that differ from these by residues whose Lp norm on d£l is 0(t). 
With this convention in mind, dTjk([Kt(f o A^1)] o At) can then be replaced, thanks 
to (11.206) and (11.211), by 

(11.214) [dT}hK*(f o A-1)} o At = [T*krs{dr*s (/ o A,"1))] o At. 

Going further, recall that dTjkKf = Tjkrs(dTrsf) and note that this last term can 
be replaced by [í1J*fcra((9Tra/)oA¿"1)]oAt, by (11.196). This matches the last expression 
in (11.214), up to an error that can be estimated as follows: 

\\(dTjkf) o AT1 - drik(f o AT ÎlLPíano « \\dTjkf - (dTtjk(/ o A,"1)) o At\\LP(dQ) 

(11.215) = O(t), 
by (11.191) and (11.206). Thus, all errors have been shown to have proper control, 
and the estimate (11.210) is proved. • 
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