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A QUASI-LINEAR BIRKHOFF
NORMAL FORMS METHOD.

APPLICATION TO THE QUASI-LINEAR
KLEIN-GORDON EQUATION ON §!

J.-M. DELORT

Abstract. — Consider a nonlinear Klein-Gordon equation on the unit circle, with
smooth data of size ¢ — 0. A solution u which, for any « € N, may be extended
as a smooth solution on a time-interval | — c.e™"*, ce™*[ for some ¢, > 0 and for
0 < € < €, is called an almost global solution. It is known that when the nonlin-
earity is a polynomial depending only on u, and vanishing at order at least 2 at the
origin, any smooth small Cauchy data generate, as soon as the mass parameter in
the equation stays outside a subset of zero measure of R’ , an almost global solution,
whose Sobolev norms of higher order stay uniformly bounded. The goal of this paper
is to extend this result to general Hamiltonian quasi-linear nonlinearities. These are
the only Hamiltonian non linearities that depend not only on u, but also on its space
derivative. To prove the main theorem, we develop a Birkhoff normal form method
for quasi-linear equations.

Résumé (Une méthode de formes normales de Birkhoff quasi-linéaire. Application a
Péquation quasi-linéaire de Klein-Gordon sur S'). — Considérons une équation de
Klein-Gordon non-linéaire sur le cercle unité, & données réguliéres de taille ¢ — 0.
Appelons solution presque globale toute solution u, qui se prolonge pour tout k € N
sur un intervalle de temps | — c¢.e ™", c.e™ [, pour un certain ¢, > 0 et 0 < € < ¢,. Il
est connu que de telles solutions existent, et restent uniformément bornées dans des
espaces de Sobolev d’ordre élevé, lorsque la non-linéarité de I’équation est un poly-
ndéme en u nul a l'ordre 2 & l'origine, et lorsque le paramétre de masse de I’équation
reste en dehors d’un sous-ensemble de mesure nulle de R’} . Le but de cet article est
d’étendre ce résultat & des non-linéarités quasi-linéaires Hamiltoniennes générales.
Il s’agit en effet des seules non-linéarités Hamiltoniennes qui puissent dépendre non
seulement de w, mais aussi de sa dérivée en espace. Nous devons, pour obtenir le
théoréme principal, développer une méthode de formes normales de Birkhoff pour
des équations quasi-linéaires.

(© Astérisque 341, SMF 2012






CONTENTS

0. Introduction .......... .o i 1
1. Almost global existence ..................oooiiiiiiiiin i, 13
1.1. Statement of the main theorem ................ ...t 13
1.2. Hamiltonian formulation ................coiiiiiiiii i, 14
2. Symbolic calculus ... 17
2.1. Multilinear para-differential symbols and operators ................. 17
2.2. Substitution in symbols ............o i 30
2.3. Composition and transpose of operators .......................... .. 41
2.4. Analytic functions of zero order symbols ..........................L 48
3. Composition and Poisson brackets ........................ ... 51
3.1. External composition with a remainder map ........................ 51
3.2, SUBSEIEULION .« .ottt e e 53
3.3. Poisson brackets of functions .................coiiiiiiiiiiinat, 58
3.4. Division of symbols ..........coiiiiiiiii 67
3.5. Structure of the Hamiltonian ..................cciiiiiiiiiiae, 74
4. Symplectic reductions ........... ... o i 79
4.1. Symplectic diagonalization of principal symbol ...................... 79
4.2. Symplectic change of coordinates ................. ...l 84
5. Proof of almost global existence ......................... ...l 89
5.1. Composition with symplectic transformations ....................... 89
5.2. First reduction: elimination of low degree non diagonal terms ....... 94
5.3. Second reduction: elimination of higher order non diagonal part .... 101
5.4. Third reduction: elimination of low degree diagonal terms .......... 103
Bibliography ..........c.oiiiiiii 111

IdeX oo e 113






CHAPTER 0

INTRODUCTION

The main objective of this paper is the construction of a Birkhoff normal forms
method, applying to quasi-linear Hamiltonian equations. We use this method to obtain
almost global solutions for quasi-linear Hamiltonian Klein-Gordon equations, with
small Cauchy data, on the circle S*.

Let us first present the general framework we are interested in. Let A be the
Laplace-Beltrami operator on R? or on a compact manifold, and consider the evolution

equation

(02 — A +m?)v = F(v, 04, 0,v,0:0,v,02v)
(1) V|t=0 = €vo

at’U|t=0 = €,

where vg, v; are real valued smooth functions, € > 0 is small, F' is a polynomial non-
linearity with affine dependence in (8;0,v,82v), so that the equation is quasi-linear.
We are interested in finding a solution defined on the largest possible time-interval
when € — 0+. If F' vanishes at order o+ 1 at the origin, local existence theory implies
that the solution exists at least over an interval | —ce ™%, ce~ %[, if vg € H**1, v, € H*®
with s large enough, and that |[v(¢,-)||gs+1 + ||O:v(t, )| g stays bounded on such
an interval. The problem we are interested in is the construction of almost global
solutions, i.e. solutions defined on | — c.e™", c.e™"[ for any k.

This problem is well understood when one can make use of dispersion, e.g. when one
studies (1) on R%, with vp,v; smooth and quickly decaying at infinity (for instance
vo,v1 € C°(RY)). When dimension d is larger or equal to three, Klainerman [16]
and Shatah [20] proved independently global existence for small enough € > 0. Their
methods were quite different: the main ingredient of Klainerman’s proof was the use of
vector fields commuting to the linear part of the equation. On the other hand, Shatah
introduced in the subject normal form methods, which are classical tools in ordinary
differential equations. Both approaches have been combined by Ozawa, Tsutaya and
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2 CHAPTER 0. INTRODUCTION

Tsutsumi [19] to prove global existence for the same equation in two space dimensions.
We also refer to [10] and references therein for the case of dimension 1.

A second line of investigation concerns equation (1) on a compact manifold (with
a nonlinearity that may then depend also on z, even if we ignore this possible depen-
dence in this introduction, for the sake of simplicity). In this case, no dispersion is
available. Nevertheless, two trails may be used to obtain solutions, defined on time-
intervals larger than the one given by local existence theory, and whose higher order
Sobolev norms are uniformly bounded. The first one is to construct periodic or quasi-
periodic (hence global) solutions. A lot of work has been devoted to these questions
in dimension one, i.e. for z € S!, when the non-linearity in (1) depends only on v. We
refer to the work of Kuksin [17, 18], Craig and Wayne [8], Wayne [21], and for a state
of the art around 2000, to the book of Craig [7] and references therein. More recent
results may be found in the book of Bourgain [6]. Of course, this approach does not
provide solutions to the Cauchy problem, as the traces at t = 0 of such quasi-periodic
solutions do not exhaust the whole Sobolev space.

The second approach concerns the construction of almost global H*-small solutions
for the Cauchy problem (1) on S!, when the non-linearity depends only on v. In this
case, small H! Cauchy data give rise to global solutions, and the question is to keep
uniform control of the H*-norm of the solution, over time-intervals of length ¢~*, for
any k and large enough s. This has been initiated by Bourgain [5], who stated a result
of almost global existence and uniform control for (82 — 8% +m?)v = F(v) on S!, when
m stays outside a subset of zero measure, and the Cauchy data are small and smooth
enough. A complete proof has been given by Bambusi [1], Bambusi-Grébert [3] (see
also Grébert [15]). It relies on the use of a Birkhoff normal form method, exploiting
the fact that when the non-linearity depends only on v, the equation may be written
as a Hamiltonian system.

Let us mention that some of the results we described so far admit extensions to
higher dimensions. Actually, constructions of periodic or quasi-periodic solutions for
equations of type (i0; — A+ M)v = F(v) (where M is a convenient Fourier multiplier)
or (02 — A + m?)v = F(v) have been performed by Eliasson-Kuksin [14] and Bour-
gain [6] on higher dimensional tori. Almost global solutions for the Cauchy problem
on spheres and Zoll manifolds have been obtained by Bambusi, Delort, Grébert and
Szeftel [2] for almost all values of m.

We are interested here in the Cauchy problem when the non-linearity is a function
not only of v, but also of derivatives of v. Recall that a non-linear wave equation is
called semi-linear (resp. quasi-linear) if the non-linearity depends on derivatives up
to order one (resp. up to order two and is linear in second order derivatives) of the
unknown. Some results have been proved by Delort and Szeftel [12, 13] for semi-linear
non-linearities of the form F(v,d;v,8,v) on S¢ or on Zoll manifolds. For instance, it
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CHAPTER 0. INTRODUCTION 3

has been proved that if F' is homogeneous of even order o + 1, then the solution
exists over an interval of length e~2%, when the mass m stays outside a subset of zero
measure. Similar statements have been obtained in one space dimension for quasi-
linear equations in [11]. Nevertheless, no result of almost global existence was known
up to now, for non-linearities depending on the derivatives. The difficulty, for general
semi-linear equations, in contrast with the case of non-linearities of type F(v), is not
the presence of first order derivatives in the non-linearity, since the inverse of the
d’Alembertian is smoothing of order one, but the fact that a non-linearity F(v, 9,v)
that depends effectively on O,v is never Hamiltonian. Actually, it turns out that
one may construct examples of non-linearities depending on derivatives for which
solutions do not exist over a time interval larger than the one given by local existence
theory (see [9]). This is due to the presence of non-trivial resonances in the non-linear
terms. In cases when such resonances are not present, one may use a Poincaré normal
forms method to pass from a time existence of magnitude e~* (corresponding to local
existence theory) to a better lifetime for the solution (say e~2), but the new equation
brought by the Poincaré reduction may contain itself resonances that do not allow a
new iteration.

On the other hand, for non-linearities like F'(v), the equation may be written
as a Hamiltonian system, and a Birkhoff normal forms method may be applied to
successively reduce the non-linear terms to contributions vanishing at higher and
higher order, up to quantities depending only on the actions, which do not make
grow Sobolev norms. To try to obtain almost global existence for equations involving
derivatives in their right hand side, it is thus natural to limit oneself to systems
of the form of (1) for which the non-linearity is Hamiltonian. This obliges one to
consider quasi-linear equations, as the only semi-linear non-linearities enjoying the
Hamiltonian structure of theorem 1.1.1 below are those depending only on v.

The main result of this paper asserts that the quasi-linear Klein-Gordon equa-
tion on S!, with Hamiltonian non-linearity, admits almost global solutions for small
enough, smooth enough Cauchy data, when the mass is outside a subset of zero
measure (see section 1.1 for a more precise statement). The main novelty in this pa-
per, compared with the semi-linear setting, is the introduction of a Birkhoff method
adapted to quasi-linear equations. We shall describe below the idea of the method on
a model case, which can be used as a road-map for the more technical approach that
will be followed in the bulk of the paper. Roughly speaking, the idea is to combine
the usual Birkhoff normal forms method with the strategy used to obtain quasi-linear
energy inequalities (namely (para)diagonalization of the nonlinear principal symbol of
the operator). The latter was used in [11] in the non-Hamiltonian framework. Here, as
we need to preserve the Hamiltonian structure of our problem, such a diagonalization
will have to be performed respecting the underlying symplectic form.
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4 CHAPTER 0. INTRODUCTION

Let us describe the organization of the paper and the idea of the proof on a model
problem. Chapter one is devoted to the statement of the main theorem and to the
introduction of the symplectic framework. In this presentation, let us consider the
symplectic form on the Sobolev space H*(S'; C) (s > 0)

wole,d) =2Im [ c(z)c (x)dz.
Sl
If F,G are two C! functions defined on an open subset of H*(S!;C), whose gradients
belong to L?, we define the Poisson bracket

{F,G} = i(0,F V3G — 8,GVaF).

For a given C'! Hamiltonian G on H*(S';C), the associated evolution equation defined
by its symplectic gradient is

(2) u=1VzG(u,u).
Let us study as a model the case when

3) G(u,u) = /Sl (Apu)adz + Re /S1 (a(u, @)Apu)tdz + Re /sl (b(u, W) Apmu)udz,

where a, b are polynomials in (u, @) and A, = /—02 + m2. The associated evolution
equation is

ou i _ - T
Frie iApu+ E[GA’" + Analu+ §[bAm + Anbla
i (0a _i(0a _
(4) +2(52) Amw)a+ 3 (52 ) Ama)u
i (0b i (Ob L
+5(52) Amwyu+ £ (52 ) And)a.
This equation is, if a(0) = b(0) = 0 and if u is small enough, a small perturbation of

the linear hyperbolic equation g—'t‘ = {A,u. Moreover, since the non-linearity involves

first order derivatives, this is a quasi-linear equation.

To prove that (4), with a Cauchy data u|i—g = eup with ug € H*(S!;C), has a
solution defined on an interval | — ce ™, ce™"[ for any given k € N, it is enough to
prove an a priori bound ©%(u(t,-)) < Ce? when |t| < ce™*, where

) O0() = 5 (Agyu, Adyu)

is equivalent to the square of the Sobolev norm of u. Let us recall how such a uniform
control may be obtained in the case of semi-linear equations (i.e. when the last two
terms in (3) are replaced by Re [, a(u, @)utidz + Re [g, b(u, @)uudz). One introduces
an auxiliary C'-function F' and solves the Hamiltonian equation

(6) i)(tv u) = XF(q)(t7 u)), @(O,U) =1y,
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CHAPTER 0. INTRODUCTION 5

where X is the Hamiltonian vector field associated to F. Then xr(u) = ®(1,u)
is a canonical transformation, defined on a neighborhood of zero in H*(S!,C), with
x(0) = 0, and one wants to choose F' so that O4(u) = ©% o xr(u) satisfies, for a given
arbitrary k,

d K
7 0s(u(t, ) = O(llu(t, ) I5-*)
195 (u) — €3 ()| = O(l[u(t, )ll3)-
These two equalities imply that, for small enough Cauchy data, ||u(t,-)||q- stays

bounded by Ce over an interval of time of length ce™*. One wants to apply a Birkhoff
method. Since by (2) & = Xg(u(t,-)), one has

®  S6toxrult) = {620 xr, CHult, ) = (6% o xi Hxr(u(t, ),

and one would like to choose F so that {69, G o x'}(u) vanishes at order £+ 2 when
u — 0. If F' satisfies convenient smoothness assumptions, one may deduce from Taylor

(7)

expansion that

. & AdF 1 ! 1A R
(9) Goxz (u) = o 'G(“)er/o (1—-7)""Y(Ad"F - G)(®(-T,u))dr,

k=0

where AdF - G = {F,G}. When considering semi-linear equations, one looks for
F = Z?;ll Fy(u,u), with F, homogeneous of degree £ + 2, such that

(10) {€2, S52s AL G(u) b= O(llut, )[I552), u — 0.

Decomposing the second argument of the above Poisson bracket in terms of increasing
degree of homogeneity, one gets

Go+ Y _({Fe,Go} + He),

£>1
where Go(u fSl mu)udz and where H, is homogeneous of degree £ + 2, and
depends on the homogeneous component G of degree k of G, for k= 1,...,¢ and on
Fy,...,F;_;. In that way, (10) can be reduced to
(11) {8°% {Fy,Go} + H;} =0, £=1,...,k—1.

This homological equation can easily be solved in the semi-linear case, as soon as the
parameter m in A, = \/W is taken outside a subset of zero measure, to avoid
resonances. More precisely, at each step, the H, contribution may be written as the
sum of scalar valued multilinear expressions of the form M;(u,...,u,q,..., @), where
j arguments are equal to u and £ + 2 — j ones equal to @. One looks for F; as a sum
of similar expressions Mj (u,...,u,4,...,). To try to solve equation (11), one looks
first for F satisfying {F;, Go}(u, @) + He(u,%) = 0. Replacing in this equality each
u argument by its decomposition v = Y, II,u, where II, is the spectral projector
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6 CHAPTER 0. INTRODUCTION

associated to the eigenvalue n? of —d?/dx? on S!, one gets from the definition of Gy
a family of equations

(12)
j o+1 )
(Z \m?+n2 — Z Vm? +n2) MMy, ... Iy, @) = Mj(Hgu,. .., Oy, @).
p=0 p=i+1

The left hand side vanishes identically if j + 1 = £+ 2 — j and if {n},...,n3} =
{n? +1+++>Mg41}- But it turns out that in this case, the corresponding contributions to
{F;,Go}+ H, lie in the kernel of {©Y, -}, so that (11) is always satisfied. Consequently,
(12) has to be solved only when {n2,..., n?} # {n?,1,...,nj,,}. In this case, if m is
taken outside a subset of zero measure, one may always ensure that

J 241
(13) ‘Z\/mz—kng— Z \/m2+n12,|Zcu(no,...,ng+1)_N°

p=0 p=j+1

for some ¢ > 0, some Ny € N, where u(ng,...,ne+1) is the third largest among
Ng,...,Ne+1. In that way, the division of the right hand side of (12) by (13) allows
one to determine Mj without loosing derivatives: the only losses come from a power
No
I

of the solutions.

, i.e. a power of small frequencies, which is recovered because of the smoothness

Let us describe the new difficulties one has to cope with for a quasi-linear equation,
like (4). In this case, one has still to solve an equation of form (12), except that in the
right hand side, M; involves a loss of one derivative with respect to large frequencies
(one should think of M; as being given for instance in terms of the integral of the
product of the right hand side of (4) with @). Consequently, Mj, that may be still
defined using (13), will also involve a loss of one derivative i.e. a loss of one power
of max(ng,...,netr1). In (11) at rank £ + 1, the given quantity, Hy;1, that may be
computed from the M ; determined at rank ¢, will then display a loss of two derivatives
relatively to large frequencies. If one iterates, it becomes clear that one would lose
one more derivative at each step.

Nevertheless, remark that estimate (13) is not always optimal. Actually, if the
largest two among all frequencies are np, and n,,, with either 0 < p; < py < jor
j+1<p <p2 <{£+1, then the left hand side of (13) is bounded from below by
cmax(ny,...,ne+1). Consequently, when solving (12), one actually gains one deriva-
tive on M. ; versus Mj, so that the Fj expression in (11) does not involve derivative
losses. The first idea we shall use to get normal forms for quasi-linear equations will
be to exploit this, in order to get rid in (11) of those contributions to H, that may
be written as the right hand side of (12), with the largest two frequencies being both
either on u or .

ASTERISQUE 341



CHAPTER 0. INTRODUCTION 7

After such a step, one is morally reduced to equations of form (11), where H,
is given in terms of ), ... M;(Il,u,...,II,, @), where the sum is reduced to
indices for which the largest two are n,, and ny,, for some p; < j and some p; > j.
Moreover, because of the quasi-linear character of the equation, M; involves a loss
of one power of the large frequencies. To eliminate these terms in (11) through a
convenient choice of Fy, we still have to solve (12). The point is that the only estimate
we may use is (13), so that the ]\ij we shall construct will involve a loss of one
derivative, as M;. The property that will save us is that, because of the special
structure of the terms we have reduced ourselves to after step one, the contributions
coming from these M; to the data Hyy; of equation (11) at rank £ + 1, will lose
only one derivative, instead of two. Actually, Hy; will be computed from Poisson
brackets of expressions of type Mj: if these multilinear expressions are written in
terms of the action of operators on w or @, this Poisson brackets structure, together
with the special form of the quantities at hand, shows that H,4; may be written from
the commutator of two first order operators instead of their composition. We explain
this more precisely below, returning to the expression (3) of the Hamiltonian. At this
point, we just note that the splitting between the case when the largest frequencies are
both on two u or % terms, and the case when one is on a u and one on a % term cannot
be easily exploited if one uses general expressions as (12). To be able to give the ideas
outlined above a precise meaning, we need to write the multilinear expressions in a
way that makes clearly appear the places over which are located large frequencies.
Actually, the main contributions to the Fy, H, in (11) will be written

(14) Re [ (A(w,@)u)udz +Re | (B(u,a)u)udz,

st st
where A(u, @), B(u,u) are para-differential operators whose coefficients depend on
u, . This means in particular that, when A(u, @) acts on a spectrally localized func-
tion, like II,v, then A(u,@)IL,v will be also spectrally localized around frequency n,
while only those components of (u, @) of frequency much smaller that n will have to be
taken into account. In other words, a quantity like [g, (A(Tln, w, I, @)I,,v) (In, w) dz
will be non zero only if n; + ny <K ng ~ ng3. It is to get such a property, which im-
plies that in an expression [(A(u,%)v)wdz the large frequencies are always those
falling on v and w, that we shall write all expressions in (11) using operators A, B
which are para-differential quantization of symbols. Of course, one has to introduce
also some corrections, given by multilinear expressions of type (12), where the third
largest frequency is of the same magnitude as the largest one. But for such expres-
sions, derivative losses coming from the quasi-linear character of the non-linearity
are automatically compensated, so that such terms are treated in the normal forms
process as semi-linear ones.
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8 CHAPTER 0. INTRODUCTION

Let us now explain with more technical details the preceding ideas. We consider a
Hamiltonian G given by (3), corresponding to a quasi-linear problem. Equation (11)
for £ = 1 may be written

(15) {62,{F1,G0}+G1} =07

where

(16) G (u, @) = Re [ / (a1 (u, B) Au)adz + / (b1 (u, ﬂ)Amu)uda:],
st st

with a1, b, homogeneous of degree 1 in u, 4. Let us look for F) given by
(17) Re / (A;(u, @)u)tdz + Re / (B (u, @)u)udz,

st st
where A;, B; are operators depending on u, @ to be determined. We have

{fSl (Al (U, ﬁ)u)ﬁdm, G0}= 'l,‘/Sl ([1‘11 (u, ﬁ)Am - Amxil (u, ﬂ)]u)ﬁdx

(18)
+i/ ([Bufil (u, @) - Ay — Bz Ay (u, @) - A u)dds
Sl
and
{fS, (Bi (u, @)u)udz, Go}= z/ ([Bl(u,ﬁ)Am + AmB) (u, @)|v)udz
(19) ¢

+z'/ ([8u]§’1 (u, @) - Apu — 3B (u, a) - ApTlu)udz.
Sl

Let us try to solve (15) finding F; such that {F},Go} + G1 = 0. It would be enough
to determine A;, B; such that, according to (16), (18), (19),

i[A1, A + 10, A1 (u, @) - (Ammu) — 105 Ay (4, @) - (Am@) = —ay (u, @) Am
i[B1Am + A B1] + 30y By (u, @) - (Apu) — 105 By (u, @) - (Am@) = —by (4, @) Ap.

Note that if A; (resp. B;) is an operator of order « (resp. 8), then 8, A; (u, @) - (Anu),
8ﬁA1(u, @) - (Am@) (resp. duBy (u,@) - (Apu), ;B (u,@) - (A,)) is also of order «
(resp. B), since the loss of one derivative coming from A,, affects the smoothness of
the coefficients, and not the order of the operator. On the other hand [A;, A,,] (resp.
[BiAm + A, By)) is of order « (resp. 8+ 1). Since the right hand sides on (20) are
operators of order 1, we may expect, if we can solve (20), to find A, of order 1 and
B; of order zero. This would give F; by expression (17). Let us switch to (11) for
¢ = 2. Then H, will contain, because of (10), a contribution of form {F;,G1}. Denote
to simplify notations

A = %(al(u, W Am + Amai (u, @), By (u, @) = by (u, @)Ap.
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CHAPTER 0. INTRODUCTION 9

Let us compute the Poisson brackets (18), (19) with Gy replaced by G;:

(21)
{fs: (As(u, B)w)ada, [, (Ar(u, B)w)ade +§ fo (Br (u, @)u)udz + § f5, (Br (v, B)a)adz }

=i / ([A1, A1) (u, @)u)adz + % / (A1(B1 + 'B1)(u, @)a)adz
Sl Sl
-% /1 ((By +tB1)A; (u,@)u)udz + other terms
s

and
(22)
{f81 (B (u, @)u)udz, Js1 (A1 (u, w)u)adz + %fgl (B (u, @)u)udr + %fsl (B1(u, w)u)udz}

=i / ([(B1A; + tA1 By)(u, @)u)udz + % / ((By +tB1)(*By + By)(u, @)u)udz
St St
+ other terms.

Note that since A; and B are of order 1, the right hand side of (21) has a structure
similar to G, except that the expressions which are bilinear in » or in 4 are now
of order 2. In other words, if we solve (15) for a quasi-linear Hamiltonian, we get
in (11) with ¢ = 2 a contribution to H; which loses two derivatives, instead of just
one. Obviously, if we repeat the process, we shall lose one new derivative at each
step, which apparently ruins the method. Observe nevertheless that we can avoid
such losses if, in a first attempt, we choose Fy in order to eliminate in (10) only those
terms homogeneous of degree 1,2,...,x — 1 coming from the second contribution on
the right hand side of (16). In other words, we look for Fy given by (17) with A; =0,
and want to solve only the second equation in (20). As already noticed, we shall find
an operator 1;’1 of order zero. If we look at the contribution induced by this l-:)’l at
the following step, we have to consider (22), whose right hand side may be written
essentially

/ (Az(U,ﬂ)u)ﬁdw+/ (Ba(u, @)u)udz + other terms
St st

where Ay = (By+'B1)(!By + B;) and By = By A; +tA, B, are of order 1. We obtain
again an expression of type (17), without any loss of derivatives, and a gain on the
degree of homogeneity. Of course, we have completed only part of our objective, since
the by contribution to (16) has been removed, but not the a; one. In other words, the
best we may expect is to choose F' in such a way that in (10)

"l AdEF
k!

(23) Gy = 3 Gyw) + Ralu),
k=0

k=0
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10 CHAPTER 0. INTRODUCTION

with Gj = Go and G)(u) = Re fsl (A} (u,u)u)adz, with A) operator of order 1,
homogeneous of degree k in (u,@). The remainder R, will be of type

(24) Re /Sl (AL (u,w)u)udz + Re /Sl (B (u, w)u)udz,

with A’ Bl of order 1, homogeneous of degree k. The reduction to such a form, for
the true problem we study, will be performed in section 5.2 of the paper.

The next step is to eliminate in (24) the B’ contribution. We cannot repeat the pre-
ceding method, as it would induce another remainder of the same type, with an higher
degree of homogeneity. Instead, we shall use a diagonalization process. When one
wants to obtain an energy inequality for an equation of type (4), the b-contributions
of the right hand side already cause trouble. Actually, if one multiplies (4) by A2%%,
integrates on S! and takes the real part, the contributions coming from the a-term
is controlled by some power of ||u|| g, since it may be written in terms of the com-
mutator [a + @, An,]. On the other hand, the contribution coming from b cannot be
expressed in such a way, and loses one derivative. The way to avoid such a difficulty is
well-known: one writes the system in (u, %) corresponding to equation (4), diagonalizes
the principal symbol of the right hand side, and performs the energy method on the
diagonalized system. We adapt here a similar strategy to the Hamiltonian framework:
We look for a change of variable close to zero in H®, (v,7) — (u = ¥(v),@ = ¥(v)),
to transform (24) into

(25) Re /Sl (Al (v, D)v)vdz,

where A is an operator of order 1. This is done looking for ¥(v) = (Id + R(v,7))wv,
where R is some operator, determined by a symbol diagonalizing the principal sym-
bol of the Hamiltonian equation associated to (23). Since we need to preserve the
Hamiltonian structure, i.e. to construct ¢ as an (almost) canonical transformation,
this diagonalization has to be performed in an (almost) symplectic way. The argument
is given in section 5.3, using the results obtained in chapter 4 concerning symplectic
reductions. To exploit this, we shall consider instead of ©s(u) = 0% o xr(u) in (7),
(8) a quantity ©4(u) = O 0 9p~! o xr(u), for some O that will be chosen later on.
Then (10) has to be replaced by

(26) {O1 09!, rTg ALE . G} = O(|lul3:?).

Because of (23), this is equivalent to
{8} 09", 32425 Gh(w) + Re(w) }= O(llull52),
and since 1) is canonical, this is also equivalent to

(27) {61,750 GL(¥()) + v))}= O(llvll?).
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CHAPTER 0. INTRODUCTION 11

The remainder R, (v(v)) is given by (25). Since ©! will be constructed under the form
[ (9(v, )v)vdz, where 2 is a self-adjoint operator of order 2s, {©;, R,(1(v))} will be
seen to be controlled by the right hand side of (27) (again, the structure of ©! and
of (25) allows one to express the Poisson bracket from a commutator [Q2, AY] of order
2s, vanishing at order x at v = 0). Similar statements hold for G} (¥(v)) — G}.(v), so
that (27) is equivalent to

(28) {85, X520 GLw)}= O(llell ).

We are reduced to finding ©1(v), equivalent to ||v||%. for small v’s, such that (28)

holds when all G}, are of type Re [, (A (v, 7)v)vdx. If we look for ©F = © o xx, for

some auxiliary function H, we get formally by (9), (10), that (28) is equivalent to
K= k K

(29) {89, TS0 24 G’ )= O(llvlI5)-

with G = Y525 G4 (v). As in (11), (15), this equality may be reduced to a family of

homological equations, the first one being

(30) {65, {H1,Go} + Gy} = 0.

The gain in comparison to (15), (16), is that G} is given by Re [ (4} (v, d)v)ddz,
i.e. does not contain any component in [, (B (v, 7)v)vdz. If one looks for some H; of
type Re [ (A} (v, 7)v)odzx, with A} of order 1, all Poisson brackets involved in (30)
may be expressed from commutators, so that the overall order never increases. In

particular, the second homological equation may be written
{92, {H27 Gf)} + élz} =0,

where C:"z is given in terms of G4 and of the Poisson brackets of Hq, Gy, and so is still
of the form Re [, (A5(v,¥)v)odz with A} of order 1. In other words, the reduction
performed in the first two steps of the proof made disappear the terms of higher order
in (21). In that way, one determines recursively Hip, Hs,..., all of these functions
being expressed from quantities Re fsl (A; (v, 0)v)vdz with A;- of order 1. There is
nevertheless a technical difficulty in the implementation of this strategy: it turns out
that one cannot define the canonical transformation x gz from some Hamiltonian H, as
the value at time 1 of the solution of (6) (with F' replaced by H). Actually, since H is
given in terms of quantities [, (A'(v,%)v)vde, with A’ an operator of order 1, X (v)
is given by an operator of order 1 acting on v, so that ®(¢,v) = X (®(t,v)) is no
longer an ordinary differential equation. We get around this difficulty in section 5.3,
defining a substitute to x g in terms of expressions involving finitely many Poisson
brackets, which allows us to proceed as described above, without constructing the
flow of X .

Let us conclude this introduction with some more technical details. As explained
above, our quasi-linear Birkhoff normal forms method uses Hamiltonians given by
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12 CHAPTER 0. INTRODUCTION

expressions of form [g, (A(u, @)u)udz, [ (B(u,%)u)udz, where A, B are operators
depending on u,@. Chapters 2 and 3 are devoted to the construction of the classes of
operators that we need. These are para-differential operators on S!, whose symbols
depend multilinearly on u, . Such classes have been already introduced in [11] (see
also [12]). We have to modify here their definition for the following technical reason.
When one uses a Birkhoff normal form method in the semi-linear case, one does not
need to know much about the structure of the remainder given by the integral in (9).
On the other hand, for quasi-linear problems, we need to be able to write for the
remainder a quite explicit expression, of the form of (24). It is not clear how to do
so from the integral expression in (9), as it involves the flow ® of Xr. To overcome
this difficulty, we use instead of (9) a full Taylor expansion of G o x;l. The remainder

is then S 1 A‘}CI;F - G(u), and we need estimates to make converge the series. Since
F, G are expressed in terms of para-differential operators, we have to introduce classes
of symbols ai(u, @; z,n), which vanish at order k¥ at v = 0, and are controlled by
C*k!||ull%;.. Each ay is itself an infinite sum of the type 35, al (u, @; z,n), where

aj, is homogeneous of degree j in (u, %) and satisfies bounds of the form B7k! (For

technical reasons, the actual (j, k)-dependence of our bounds will be more involved
than that). The construction of these classes of symbols, the study of their symbolic
calculus and of the Poisson brackets of functions defined in terms of the associated
operators, occupies chapters 2 and 3 of this paper.

Finally, let us mention that an index of notations is provided at the end of the
paper.
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CHAPTER 1

ALMOST GLOBAL EXISTENCE

1.1. Statement of the main theorem

Let H(z,X,Y) be a polynomial in (X,Y") with real coefficients which are smooth
functions of z € S!. Assume that (X,Y) — H(z,X,Y) vanishes at least at order 3
at zero. Let m €]0, +o0]. For s a large enough real number, (vg,v1) an element of the
unit ball of H*+2(SY;R) x H*~2 (S'; R), € €]0, 1], consider the solution (t,z) — v(t,z)
defined on [T, T] x S for some T > 0 of the equation

0 [0H O0H
2 g2 2y, _ _ 97
(05 — 07 +m*)v % [8Y (z,v,axv)] X (z,v,0,v)
(11.1) U|t=0 — e’UO

6tv|t=0 = €V1.

The right hand side of the first equation in (1.1.1) is a quasi-linear non-linearity. Its
special form will allow us to write (1.1.1) as a Hamiltonian equation in section 1.2
below. Note that the only semi-linear non-linearities of the form of the right hand
side of (1.1.1) are those depending only on v. Our main result is:

Theorem 1.1.1. — There is a subset A" C]0, +oo| of zero measure and, for any H as
in (1.1.1), for any m €]0, +oo[—A, for any k € N, there is so € N such that for any
integer s > sg, there are €y €]0,1[, ¢ > 0, satisfying the following:

For any € €]0,e0[, for any pair (vo,v1) in the unit ball of Hs+%(SI;R) X
H*~3(SY;R), equation (1.1.1) has a unique solution v, defined on | — T., T.[xS! with
T. > ce™ ", and belonging to the space

CY(| - T., T.[, H** 3 (S4,R)) x C}(| - T., T.[, H*"#(S%; R))

(where C’g (] = T, T[,E) denotes the space of C? functions on the interval | — T., T
with values in the space E, whose derivatives up to order j are bounded in E uniformly
on ] —Te,Te).
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14 CHAPTER 1. ALMOST GLOBAL EXISTENCE

Remarks. — As pointed out in the introduction, when % = 0 theorem 1.1.1 is
well-known. It is stated in Bourgain [5] and a complete proof has been given by
Bambusi [1], Bambusi-Grébert [3] (see also the lectures of Grébert [15]).

— Results involving a semi-linear non-linearity depending also on first order deriva-
tives (i.e. equation (1.1.1) in which the right hand side is replaced by f(v,8v,8,v))
have been obtained by Delort and Szeftel [12, 18], included for equations on S¢, (d >
1) instead of S!. One obtains then a lower bound for the existence time in terms of
some non-negative power of € — better (when convenient assumptions are satisfied)
than the one given by local existence theory — depending on the order of vanishing of
the non-linearity at zero. In particular, one does not get almost global solutions for
such non-linearities. For some examples of polynomial non-linearities depending on v
and its first order derivatives, the lower bound of the existence time given by local
existence theory (namely T, > ce~® when v vanishes at order a + 1 at zero) is even
optimal.

— In the same way, for more general quasi-linear equations than (1.1.1), it is shown

in [11] that the existence time is bounded from below by ce~2¢

when the non-linearity
vanishes at some even order a + 1 at zero.

— The proofs of the almost global existence results of Bambusi, Bambusi-Grébert
refered to above rely in an essential way on the fact that the equation under consid-
eration may be written as a Hamiltonian system. This is also the key to extend these
lower bounds on the time of existence of solutions to the case of equations on S¢, as
in Bambusi, Delort, Grébert and Szeftel [2]. In our problem (1.1.1), we shall use the

special form of the non-linearity to write the equation as a Hamiltonian system.

1.2. Hamiltonian formulation

We shall describe here the Hamiltonian formulation of our problem. Let us intro-
duce some notation. Set

(1.2.1) J= lo _1] :
1 0

and if Z, Z' are two L%-functions on S with values in R?, define
(1.2.2) wo(Z,2') = (172,2') = (2,02

where (-, ) stands for the L%(S'; R?) scalar product. Let s > 0, U be an open subset of
H*(S';R?) and F : U — R be a C! map. Assume that for any u € U, dF (u) extends
as a bounded linear map on L%(S!; R?). We define then X (u) as the unique element
of L?(S'; R?) such that for any Z € L%(S!; R?)

(1.2.3) wo(Xr(w), Z) = dF (u) - Z.
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1.2. HAMILTONIAN FORMULATION 15

In an equivalent way

(1.2.4) Xr(u) = JVF(u).

If G: U — R is another function of the same type, we set
(1.2.5) {F,G} = dF(u) - Xg(u) = dF(u)JVG(u).
Let us rewrite equation (1.1.1) as a Hamiltonian system. Set
(1.2.6) Apm =+vV—A+m?on S

If v solves (1.1.1), define
A Pow] [t
(1.2.7) u(t,z) = l A7, = 2|

For u € H*(S'; R?) with s > 1 set

1.2.8 G(u) = L Anpu,u) + H(z,A7?u? 0,A7?u?)dz.
2 m m
Sl
By (1.2.7), (1.2.8), equation (1.1.1) is equivalent to
Btu = XG(U)
(1.2.9)

uli=o = €ug

A 20,

where ug(t,z) = l A2 } is in H*(S'; R?). To prove theorem 1.1.1, it is enough to
m Vo

get a priori uniform bounds for the Sobolev norm ||u(¢,-)|| g when s is large enough.
We shall do that designing a Birkhoff normal forms method adapted to quasi-linear
Hamiltonian equations.

Let us end this section writing equation (1.2.9) in complex coordinates. We identify
H*(S';R?) to H*(S';C) through the map

ul

(1.2.10) u= Lﬂ] —w= g[ul + iu?].

More precisely, we identify H*(S!;R?) to the submanifold {w; = w,} inside the
product H*(S!;C) x H*(S';C) through

ul w= L[u! + iu?]
(1.2.11) u= [Uz] - [w — %{ul - iuz]] '

If we set for a real C' function F defined on an open subset U of H*(S'; R?)

duF = Y2 (4 F — ids F), dgF = Y2 (4 F + idye )
(1.2.12) 2 2
V2 : V2 .
vwF = '—2—(V‘U,IF - ZVUZF), VTU‘F = T(VUIF'*'Zvu?F)
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16 CHAPTER 1. ALMOST GLOBAL EXISTENCE

. . . oF | VgF
we see that the identification (1.2.11) sends V, F' to P and Xp(u) tos
/
If Z = [j and Z' = lc_/} are two vector fields tangent to {wy, = w;} in H*(S;C) x
c c

H*(S*; C), the symplectic form coming from wq through (1.2.11), computed at (Z, Z'),
is given by

(1.2.13) wo(Z,Z') = 2Im / c(s)c (z)dz.
Sl
Moreover, if F and G are two C functions on U, whose differentials extend to bounded

linear maps on L2(S';R?), we have

F,G} = [dyF dgF
{FG} =] | o

= i(dpF - V5G — doF - V., G).

VG
(1.2.14)

Finally, if G is a C! function on U, the Hamiltonian equation % = X¢(u) may be
written in complex coordinates

(1.2.15) W = iVgG(w, ).
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CHAPTER 2

SYMBOLIC CALCULUS

We shall introduce in this chapter classes of symbols of para-differential operators
in the sense of Bony [4]. These symbols will be formal power series of multilinear
functions on C*°(S'; R?), the general term of theses series obeying analytic estimates
that will ensure convergence on a neighborhood of zero in a convenient Sobolev space.

2.1. Multilinear para-differential symbols and operators

Let us introduce some notations. If a : Z — C is a function, we define the finite
difference operator

(2.1.1) Opa(n) =a(n) —a(n—1),n € Z.

Its adjoint, for the scalar product S+ _ a(n)b(n), is
(2.1.2) dra(n) = —(0pa)(n+1) = —7_1 0 Ora(n)
where for j,n € Z we set 7;b(n) = b(n — j). We have

9 [a(—n)] = (8na)(—n)

(2.1.3) On[ab] = (8,a)b + (T1a)(O,b).

Let us remark that the second formula above may be written
Onlab] = (Ona)b + a(Onb) — (8na)(Onb).

We generalize this expression to higher order derivatives in order to obtain a Leibniz
formula.

Lemma 2.1.1. — For any integer § € N, there are real constants 551 8,8, indezed by
integers By, B2, B3 satisfying B1 + B2 = 3,0 < B3 < B, such that for any functions a,b
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18 CHAPTER 2. SYMBOLIC CALCULUS

from Z to C, any B € N*
88[ab] = (88a)b + a(8°b)
(214) + Z 651 82,83 [(1 - Tl)ﬂaaﬁl a] [a£2b] :
B1>0,82>0

B1+P2=p
0<B3<p

Proof. — For B € N, 51 < 32 denote by Cﬁ"”"2 the value at X = —1 of
(Xﬂ 631 )(Xﬁzaﬁz)
B1!B:!

B1,82 _ 1B2,61
When 8; > B2, set Cﬂ = Cﬂ . Let us show that
oBlabl = Y Y C5vP* (85 a)(852b).
$120 3220

Since by definition Cgl #2 — 0 when b1+ B2 < B and when B; > B or B2 > (3, the
sum in the above expression is actually for § < 1 + (2,61 < 5,062 < 8. By (2.1.1),
Id — 8, = 11, so that

8P[ab] = [Id — 7] (ab)

2 (B . g 2 (8 e
=2 ([,,)H)ﬁ ol lab] = Y- (ﬁ,)(—l)ﬂ (rf' a)(r{"b)
B'=0 B'=0

(2.1.5) (=1)Prtpe [(1+ X)7].

whence
0Plab] = Z Z Z —1)F'+B1+5: (ﬂ/) ('B,) (ﬂ,) (8P a)(8%2b)
(2.1.6) =0 8,=0 B2=0 B') \B1) \ B2
— Z Z Cﬁl ,B2 6,31 6[32 b)
B B2
with

e D D (5) (?) <Z)

max(B1,82)<B'<B
Since X#28%[(1 + X)#] = > Ba<pr<p (é’,)%Xﬁ/, this coefficient is the value at
X = -1 of (2.1.5). In (2.1.6), we have 0 < 8; < 3,0 < B2 < 3,61 + B2 > B. When
b1 + B2 > B, we write
021a8%2b = ([(Id — 1)1 TP2=P 5B ~P2]0) (82b)
which shows that the corresponding contributions to (2.1.6) may be written as one of
the terms on (2.1.4), up to a change of notations. When (3 + B2 = 3, we get the first

two terms of the right hand side of (2.1.4) when 8; = 0 or 82 = 0 and contributions
to the sum in that formula. This concludes the proof. O

ASTERISQUE 341



2.1. MULTILINEAR PARA-DIFFERENTIAL SYMBOLS AND OPERATORS 19

For n € Z, we denote by 6,(x) the function on S! defined by

inx

e
2.1.7 0, (z) = S—
(217) @ =7
and for & € Z and z # 0 mod 27 we put

On ()
(218) On,a(w) = m
When a € Z, 8 € N we have
(2.1.9) 850,0 =Ona—p-

If u € L*(S%;R) (resp. u € L*(S';R?)) we set 4(n) = [, e”"*u(z) dz and

inx
e

2

M= [ wb-n)deta(c) = a(n)
the orthonormal projection on the subspace of L2(S'; C) (resp. L?(S!;C?)) spanned

1 0
by 0, (resp. 0, [ ] and 6, [ ])
0 1

Let us introduce some notations and definitions. Let (z,n) — a(z,n),(z,n) —
b(z,n) be two C* functions on S! x Z. By formula (2.1.4) and the usual Leib-
niz formula for J.-derivatives, there are real constants 52‘,’5,,’,7 indexed by o, €
N,o/,8,vyeNwith0<ad' <0, 0<3 <B,0<y<B30<d+0 <a+psuch
that for any a,b as above, any o, 8 € N

(2.1.10)
0208 ab(z, )] = (9205a)b+ a(9295b)
Y Gl lua-n)y a7 ol o).

0<a’<a

0<B'<B

0<y<B

0<a’'+p'<a+pB

We shall fix some C§°(R) functions x, X, x1 with 0 < x, X, x1 < 1, with small enough
supports, identically equal to one close to zero. We denote by C.(x1) a sequence of
positive constants such that for any n € Z, any A € R, any v € N

32)(1(%)’ < Cy(x1)(n) 7.

Moreover, we define from x the kernel

+oo
(2.1.11) K,,@):% 3 e“czx(%)
k=—00
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20 CHAPTER 2. SYMBOLIC CALCULUS

with z € S! identified with [—m,n]. We denote by C. () a sequence of positive
constants such that for any v, M € N for any n € Z, z € [—m, 7]

(21.12) 107 K (2)| < Conr () () 77 (1 + (m)]2) ™™
Definition 2.1.2. — Let T,M € R, be given. We say that a sequence (Dp)pen of

positive constants is a “(T, M)-conveniently increasing sequence” if (D,)pen is an
increasing sequence of real numbers with Do > 1, satisfying the following three in-

equalities:
For any p € N, foranya B € Nwitha+ 8 =np,
(2113) |Cg}ﬂﬂ, ‘(2(17 )T+PMD /+B1D —a/—p' < Dp,
0<a'<a
0<A'<p
0<vy<B
0<a’+p'<p
(2.1.14) > [C2h | @eN ™M Cop (x1) Dty < Dy
0<p'<p
0<y<p
(2.1.15) C&B 1(4(p))P[Cpr 2(x) + Cpr 2(R))|Dp—pr < Dy.
0,68’y p B8,2\X 8,2\ X p—B3 = Up
0<p'<p
0<vy<B

Note that since the left hand side of the above three equations depends only on
Dy,...,Dp_1, we may always construct a conveniently increasing sequence whose
terms dominate those of a given sequence.

We shall use several times that if 5/, 7", k', k" are in N*,

(k/-l-j’——l)! (k”-i-j"—l)! (k/+k',+jl+j”—2)!
"+ 1! @'+t T @ +DE NG +)
< 1 (k/ iy +j/ +jll _ 1)!
STFDEFD G
—=7, 50 that for any j € Z,c; *c1(j) < c1(j). For Ky

(2.1.16)

We set for j € N, ¢1(j) = 8(”1) 1+
a constant that will be chosen later on large enough, we put c(j) = K 'c1(j). Then
for any j € Z

(2.1.17) c*c(j) < Kite(g).

Definition 2.1.3. — Letd e R,y e R, ,( € R;,0 € Rwitho > v+(+2,j,k € N*,j >
k,No € N,B € R%,D. = (Dp)pen a (v + |d| + o, Nog + 1)-conveniently increasing
sequence. We denote by 2(,’;’3) No (0,¢, B, D.) the set of all maps

(u1,...,u5) = ((z,n) = a(uq,...,uj;z,n))

2.1.18 ‘
( ) C>(SYR?) — C=(S' x Z;C)
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2.1. MULTILINEAR PARA-DIFFERENTIAL SYMBOLS AND OPERATORS 21

which are j-linear and symmetric in (ug,...,u;), such that there is a constant C > 0
so that for any ui,...,u; € C*®(S};R?), any n; ...,n; € Z,

1
(2.1.19) a(Ilp us, ..., Iy uy;2,n) = 0 if max|ng| > Z|n|,

and for any p € N, any o/ € [v+( + 2,0], any (z,n) € S! X Z
sup |020Pa(Il,, uy,. .. M uj;z,n)|

at+pB=p
(2.1.20) . i
- 1)! o de o /
< 0 ®HT =R )0, By et 900 T () [T el
(4+1) Pt
and forany £=1,...,j
(2.1.21)
k ] — 1 ! . _ v ’
sup |0088a(Mln s, ..., Iy,uz;2,m)| < c(—ii—,)co)Dpr (nyd-Froctviobte
a+B=p (G + 1)
(T (me)” Ty, werl) ) ™ T el 2.
1<0/<j
o'+
The best constant C' > 0 in (2.1.20), (2.1.21) will be denoted by

(2.1.22) Ny ne (0,6 B, Dsa).

Remarks. — We extend systematically our multilinear maps of form (2.1.18) to C-
multilinear maps on C*(S'; C2?)? to be able to compute them at complex arguments.
— By definition for a > 0,0 > v+(+a+2,

(2.1.23) S0 e (@6 B, D) C G (0,¢, B, D).

— When Ny = 0, the above inequalities define a class of para-differential sym-
bols: by (2.1.20), if uq,...,u; belong to some Sobolev space H®, then the symbol
a(uy,...,u;;z,n) obeys estimates of pseudo-differential symbols as long as the num-
ber of z-derivatives is smaller than s — % — v. For higher order derivatives, one loses
a power of (n). Moreover (2.1.21) shows that if one of the w, is in a Sobolev space of
negative index H ™%, one gets estimates of symbols of order essentially d + s, with a

loss of one extra power for each d,-derivative.

(k+5—1)!
G+1)!

The important fact is that these quantities are bounded by k! (times a power k + j

in the above definitions is not essential.

— The precise form of the factors

of some fixed constant). For u € H®, with s large enough and ||u g small enough,
this will allow us to make converge the sum in j > k of such quantities, and to obtain
bounds in C*k!||u|%. i.e. bounds verified by the derivatives at zero of an analytic
function defined on a neighborhood of zero.
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We shall define below other classes of symbols given by infinite series whose gen-
eral terms will be given from elements of Z‘(i;c"’“ No(a, ¢, B, D.). We shall need precise
dependence of the constants in (2.1.20), (2.1.21) in 7, k to obtain convergence of these
series. But we shall also use polynomial symbols, defined as finite sums, for which
explicit dependence of the constants is useless. Because of that we introduce another
notation.

Definition 2.1.4. — Let d € R,v,{ € Ry, N € N,j € N. We denote by I3 \ (¢)

the space of j-linear maps (uy,...,u;) — ((z,n) — a(u1,...,u;;z,n)) defined on
C>(S'; R%)J with values in C*®(S! x Z; C) satisfying the following conditions:

e For any ny,...,n;,n with max |ng| > %|n|, for any ui,...,u; in C°(S}; R?),
(2.1.24) a(Ilp,ug,. .., Oy uj;2,m) = 0.

e For any o, 8 € N, any 0 > v+ ( + 2, there is a constant C' > 0 such that for any
ni,...,n;,n € Z, any z € S, any uy,...,u; in C*°(S};R),
(2.1.25)

J
10208 a (M, us, ..., I ugs 2,m)| < C(n)=PHEHHENB=D TT 0 VT, ug| s,
=1

and forany £ =1,...,j
(2.1.26)

|3§‘6§a(1’[n1u1, ooy M uy; 2, m)| <C(n)d-ProtviNofte

x (TI (me)? I, well) (ne) ™ 1ML, el -
1<0'<;
ey

Let us now define from the preceding classes symbols depending only on one argu-
ment u.

Definition 2.1.5. — Let d € R,v,{ € Ry,Ngo € Njo € Rio > v+ (+ 2,k €
N*B > 0,D. a (v + |d| + o, Ng + 1)-conveniently increasing sequence. We denote
by S?,;')’ NO(O', ¢, B, D.) the set of formal series depending on u € C*®(S!,R?), (z,n) €
St x R,

(2.1.27) a(u;z,n) a; SUT,M)

where a; € E(k]) ~,(0:¢, B, D.) are such that

(2.1.28) ‘JI?,;’;N (0,¢(,B,D.;a) wf sup‘ﬁ (0,¢,B,D.;a;) < +o0.

u]) No

ASTERISQUE 341



2.1. MULTILINEAR PARA-DIFFERENTIAL SYMBOLS AND OPERATORS 23

Note that if so > v+ ¢+ 3 and if u stays in By, (R), the ball of center 0 and radius
R in H*(S!,R?), each a; extends as a bounded multilinear map on H*°(S!, R?) and

by (2.1.20), one has estimates
j —1)! Cd—f+(a - ;
10208 a;(u, .., w 2,m)| < ca,ﬁ%cmw NN

so that if 2BR < 1 the sum in j > k of the preceding quantities converges, and is
bounded by C(4RB)*(k — 1)!.
We introduce a similar definition for polynomial symbols.

Definition 2.1.6. — Let d € R,v,¢ € Ry, Ny € N,k € N*. We denote by §f,;;NO ©)
the space of finite sums

(2.1.29) a(u;z,n) = E a;j(u,...,u;z,n)
< ——
i>k :
finite 7

where a; € Z(J) N, (©)-
Quantization of symbols
Definition 2.1.7. — Let x € C§°(1—1,1]), x even. Let a; € 3¢, v (0,¢, B, D.) (resp.
a =35, €SE) n,(0:¢, B, D.)). We define
D
ajx(U,...,uj2,n) = x(m)aj(ul,...,uj;x,n)

ay(u;z,n) = Za],X u:z:n)

jizk

(2.1.30)

Let us remark that a;,, (resp. ay) still belongs to E?kyy) Ny (0:¢, B, D.) (resp.
S?kl)INO(UaC,B,D.)) and that
(2.1.31) NGy 8o (0,6 B, Disajx) < CoNG ) v (0,¢, B, Disay)
o d,v
‘ﬂ(k),NO(U,C,B,D.;aX) < Com(k),NO(U»C,B,D.;a)

for a constant Cy depending only on x. Actually, if K,(z) is the kernel de-
fined by (2.1.11), and if we set U’ = (u1,...,u;), n’ = (n1,...,n;), LU =
(n, w1, - .., Oy uj), we have

D
ajx (MU' 2,n) = X((_{)) [aj(ﬂn'U';w,n)]
= Ky, *a;(I1,,U’;-,n)
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where the convolution is made with respect to the z-variable on S'. By (2.1.10), we
may write
(2.1.32)
329%a;, (I U';z,n) = 0P Ky, % 0%a;(T U's 2, n) + Ky, % 0208 a;(LU'; ,m)
+ > Cop (1 — 1)08 K, % (920877 a; (L U'; 2, m)).

0<p'<pB
0<y<p

We may write
(Id — )"0 Ko < Y (7,) 108" 7 K,
0<y'<y 4
Using (2.1.12) with M = 2, we bound for v < p,3' <p

(2.1.33) |(Id —7)787 Kol < Cpra(x) ) (77'> (n =) (14 (n = y)l2]) 2.
0<~'<v
Note that
1
——(n) < (n—7') <2(v){n
2<7,>( ) < {n—7) <2(v)(n)
so that the L'(dz) norm of (2.1.33) is smaller than

(2.1.35) 2C 2(X) (4(p)? (n) "

If we plug this in (2.1. 32) use (2.1.20) or (2.1.21) to estimate |9285~Fa,| and recall
that we assume that Cg‘ 5, satisfies (2.1.15), we obtain for 820Pa; , estimates of type
(2.1.20), (2.1.21) with the constant C replaced by CyC, for some uniform Cy > 6.

Let us quantize our symbols.

(2.1.34)

Deﬁmtwn218 — Let x € C°(] — 1, 30,0 < x <1, x even, x = 1 close to zero. If
e x%v (0,¢, B, D.) we define for uy,...,uj+1 € C*(S',R?)

(k,3),No
1 &K
(2136) Op[a(ul, coey Ujs -)]’u,j+1(.'1,') = % Z emza(ul, e UG T n)ﬂj+1(n).
n=-—00

If a = >k a; belongs to S?,;‘)"No(a,(,B,D.) we define Opla(u;-)] as the formal
series of operators
(2.1.37) > Op[aJ )]
i>k J
Finally, we define Op, [a;(u1, ..., u;; )] (resp. Op, [a(u;)]) replacing in (2.1.36) (resp.
(2.1.37)) a; by a; (resp. a by ay).

Let us study the L2-action of the above operators.
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Proposition 2.1.9. — Letd e R,v,( e Ry, 0 e R0 >2v+(+2,NgeN,j, ke N* 5>

k,B > 0,D. a (v + |d| + o,No + 1)- convem’ently increasing sequence. There is a

universal constant Cy such that for any a € Z(k 0y N (0,¢,B,D.), any no,...,nj41 €

Z, any uy,...,u; € C°(S};R?), any N €N, any o’ € [v +( +2,0],
”HnoOpx[a(Hnl Uy, .- ’Hnj Uj; ')]Hnj-u ”X’(L2)

kE+j—-1) .

Erg = Los)p

G+
)d+(V+N—0")+ Jj

>N H nf) |Hneul”L2

< CoDNRY )y 5o (0:¢, B, D50)

2.1.38
( ) % (nj+1

(no — nj+1

X1{|"O_nj+l|<211'("J’+1)vmax(|"l':"wlnjl)S%'"j+l|}
and forany £=1,...,7,

”Hno Opx [a’(Hnluh RN Hnj Ujs ')]Hnj+1 ”Z’(Lz)
(k+j5—1)

<CODNm(k])NO(UCBDa ) ( ) () J
(2.1.39) njpp) TN o o’
x <_J+_1>_N_( [T ) M, el ) )™ T el
(no —mjt1)" N lpg
)
X Ljng—n;1l<tingi1),max(inaly...n; )< 2 njal}:

Proof. — We denote U’ = (ui,...,u;), n’ = (ni,...,n;), and set I, .U =
(I, uy, . .., Iy, u;). By definition 2.1.8, the Fourier transform of Op, [a(IL, U’; -)]u;+1
evaluated at ny may be written

o Z ax (M U'sno — njig1, nja1)@(njen).

":+1
By (2.1.30), ay(I1,/U’; k,mj11) is supported for |k| < 3(n;+1) and by (2.1.19) it
is supported in max(|n1l,...,|n;]) < i|n]-+1|. Moreover integrations by parts and

estimates (2.1.20) show that
(k+j—1)!
(G +1)!

J
x (ny TN =04 () "N T (ng) | el 2
=1

lax (I U's k,n)| < Co‘ﬂ(k]) N, (0:¢, B, D.5a) c(j)B’Dy

for some universal constant Cy. This gives inequality (2.1.38). Estimate (2.1.39) fol-
lows in the same way from (2.1.21). O

We shall use some remainder operators that we now define.
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Definition 2.1.10. — Let v,¢ € Ry,d € Ry,0 € Ry,0 > v+2+max((,2),B >
0,7,k € N*,j > k. One denotes by /l(kj)(cr,C,B) the set of j-linear maps M from
C>(SY;R?)7 to £(L?(S*;R?)), the space of bounded linear operators on L?(S';R?),
such that there is a constant C > 0 and for any ui,...,u; € C®(S';R?), any
No,...,Nj41 € Z,any £=0,...,5+1,any o’ € [V+2+max(g‘,§l),o],

”HnoM(Hnl Uty .- ’H"j uj)nnj+l ”Z’(L2)

(2.1.40) k+j NIIE o T
< C((i—l))c(J)B] Sohrd H ne)” T, ue llza.
J =1

The best constant C > 0 in the above estimate will be denoted by ‘J’t( 4 J)(a, ¢,B; M).
We also define operators depending on a sole argument.

Definition 2.1.11. — Let v,{ € Ry,d € Ry,0 € Ry, 0 > v+ 2+ max(¢,4),B >
0,k € N*. One denotes by £(;’(c,¢, B) the space of formal series of elements of
Z’(L2(Sl; R2)) depending on u € C* (SI;RZ)

(2.1.41) =2 M.y

ji>k
where M € A‘(ik"])(a, ¢, B), such that

(2.1.42) NG (0,¢, B M) & sup‘ﬂ(k])(a,C B; M;) < +oo.

Let us give an example of an operator belonging to the preceding classes. Consider
an element a; € E((il;',/j),No(UvaBvD-) for some d > 0, some ( € R;. Let x be as in
definition 2.1.8 and take x1 € C§°(] — 1,1[), x1 = 1 close to zero. Define

aj,l(ula"'auj;x’n) (I_Xl)(<D>)[a](ula ,uj;:c,n)].

Then it follows from (2.1.20) that a;; satisfies estimates of the same form, with (d, )
replaced by (d —v,v + «) for any v > 0, any o’ € [v + ( + 2,0]. We thus get for the
operator

M(ul, e ,u]’) = Opx[am(ul, ceey Ujy )]
bounds of type (2.1.38) with N =0
“HnoM(Hn1u17 s 7H"j uj)Hnj+1 “f(LZ)

(2.1.43) < C(k +j-1)

< ﬂ—l)—— c(j)B’ (n; >d—7+(u+'y—a’)+ H(W)GIHHMWHLZ

=1
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for any o’ € [v + ¢ + 2,0]. Take v = ¢’ — v and assume o’ > v + 2 + max((, 2). We
get a bound of type
’ ’ j+1
L o) B 1) ) H ne) II L, wer | 2
el

=1

(k+j—
(J+1)'

Since by (2.1.38), (no) ~ (nj+1), this gives an estimate of form (2.1.40) for £ = 0 and

¢ = j + 1. To obtain the same estimate when ¢ € {1,...,;} we recall that because of

the cut-off in (2.1.38), we may assume (n;4;) > c(ng) £=1,...,j which shows that

in any case we obtain estimates of an element of A( A J)(a, ¢, B) since =30’ +v+d < 0.
We also define the polynomial counterpart of the preceding remainder classes.

Definition 2.1.12. — Let v,{ € Ry,d € Ry,j,k € N*. We define Ad "(C) to be
the space of j-linear maps from C*(S';R?)7 to £(L?(S';R?)) satlsfymg for any
o' > v+ 2+ max((, %) estimates of form (2.1.40) with an arbitrary constant in-

. ~d,v
stead of (’C(Jril)l,)'c( j)B?. We denote by £ (¢) the space of finite sums M(u) =

Yisk Mj(u,...,u) where M; € /]‘(i]')’(()

We have defined operators as formal series in (2.1.37), (2.1.41). Let us show that
for u in a small enough ball of a convenient Sobolev space, these series do converge.

Proposition 2.1.13. — Letd e R,v,( e Ry, 0 e Ry, 0 >v+(+2,B>0,NygeN,D.
a (|d| + v + o, Ng + 1)-conveniently increasing sequence, k € N*.

(i) Let 6 > 0 be a small positive number. There are constants 7 > 0,C > 0,
depending only on B, v, (, 8, such that if u € H*+¢+3+9(S1: R?) and lull oscrgrs <75
Op, [a(u;-)] defines a bounded linear map from H*(S';R?) to H*~4(S';R?) for any
s € R, and one has the estimate
(2.1.44)

”Opx[a(U; ')]”Z’(HS,HS—") < C(S)(CB)k(k - 1)'m‘(1kl)/ No(a’ C? Ba D~;a)”u”1;1”+6+%+6
for some constant C(s). The same estimate holds for ]|Opx[8ua(u; ) Ve, me-a
. v 5 .

ZfV € H +<+2+6’ wlth Ilullzy+<+%+5 Teplaced by ”u”k ,,+c+§+5 ||V”HV+C+%+6‘

(ii) Let o' € [v+ ¢+ 2,0 — 5[ and 6 > O such that o’ + 1 + 6 < o. There
are C > 0,7 > 0 depending only on o',8,B such that for any u € H" *3+% with
lull fors 345 < 1, any V € H~7"*3%9 the operator Op, [Oua(u;-) - V] defines for
any s € R a bounded linear map from H*(S';R?) to H*~(4+v+o'+2)(S1. R2) with an
estimate
(2.1.45)

0P, [0ua(u; ) - Vi g(as, pro-tasviorsary < C(s)(CB)*(k — 1)md’V ,(0,¢, B, D.;a)

k—
><“u” /+ +6 ”V”H—o’-«-%+a-

SOCIETE MATHEMATIQUE DE FRANCE 2012



28 CHAPTER 2. SYMBOLIC CALCULUS

Moreover, for any § > 0, there are C, po > 0 depending on 6,v, B, such that for any
u € HYFSHE+0 with lull yoicsgrs < po, any s > v+(+ 3, any V € H*(S}R?),
Op, [0ua(u;-) - V] defines a bounded linear map from H® to H~4v=5-% with an
estimate
(2.1.46)

10p, [Bua(u; ) - V]| ) < C(s)(CB)* (k= 1)!GS v (0,¢, B, D.s0)

P(He H- 4"V § ¢

k—
X ”ul Hyl+c+%+6 "V“H_"'

(iii) Assume d >0, 0 > v+ 5+ max((, ). Let o' € [v+2+max((, $),0 — 3[ and
6 > 0 such that o' + % +6 < o. There are C > 0,7 > 0 depending only on ¢’,8, B,
such that for any u € H +3+% with ||u||Hc,,+%+¢s <r, any M € 2?'(1,’6')'(0,§,B), the
operator M (u) defines a bounded linear map from HO' +t3+8 o H20' ~v=3-0=d yyth
the estimate
(2.1.47)

1M ()]l < C(o")(CB)*(k — 1)) (0, ¢, B; M) |ull,

1 1 .
Z;(Hcr"{»i—{—&yHZa’—u—f—&—d) — 0/4_%_,_5

In addition, for any V € H® *2%5 8, M(u)-V is a bounded linear map from H° +2+8
to H20'—v=3-8=d gnd its operator norm is smaller than the right hand side of (2.1.47)

. k—
with ||u[|’;la,+%+5 replaced by ||ul Ha}+%+6 IV ors g s

) Moreover, for any s €lv +d + %,o[ satisfying s > v + 3 + max((, %), there are
C,po > 0 depending on s,v, B such that for any u € H® satisfying ||u|lgs < po, the
linear maps M(u) and V — (8, M (u) - V)u belong to L(H~*, H~2+v+d) qnd satisfy

M) - Vilg-2-vma + | (QuM @) - V)ullgr-2-vms

(2.1.48) . , B
< C(CB)*(k = D)!N,y (0,¢, By M) ||ull g IV || -

Proof. — (i) We writea = ;5 a; with a; ,E E?l:,lj),No (o,¢, B, Dl) We apply (2.1.38)
with 0/ = v+(+2, N = 2 and estimate (ng)’ ||IL,,ue| 2 by (ng)_i_'scm||ug||H,,+<+%+6
for a sequence (cy,)n, in the unit ball of £2. Summing (2.1.38) in ny,...,n; we obtain

||Hn00px[aj(u, ooyt )| w2
< CoDNGY ) v (0,¢, B, D)2 (k = 1)!B7 (Collull ace gs)
Xy wll 2 (41 (10 = 7541) ™ Ly -y (my0)
for some uniform constant C§j. We deduce from this and (2.1.28) that
10D [a(u; )il pare, mre-ay < C(8)2%(k = 1)!NGY v (0,¢, B, D.5a)

X Z(2BC{,||U||H,,+C+%+6 )?
2k

which gives the first conclusion of (i). The second one is obtained in the same way.
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(i) We decompose again a = )5 a;, and write 9,a;(u,) -V as a sum of j terms
(2.1.49) a;j (U, ..., u, Vyu,...,u;z,n).
We apply estimate (2.1.39) with N = 2, the special index £ corresponding to the

. ‘ _l_s
place where is located V. We bound |, ul|z2(ne)° < cp,, (ne) ™2 ”u||H,/+%+6,
—o' _1_5

IMn,Viiz2{ne) ™ < en,(ne) 2 "IVl ;-0
of 2. Summing (2.1.39) in ny,...,n; and taking into account the fact that we have j
terms of form (2.1.49), we get

||Hn00px[8uaj (’U,, ey Uy ) . V]Hnj+1 ”Z'(Lz)
< CoDaMG)) v, (0,6, B, Da)28 71 (k= DB Jull’ ) L (Co)?

a’+%+5

14345, for sequences (cn,)n, in the unit ball

d+l/+a"+2<

—2
><||V||H~a'+%+a (nj+1) Mo — Mjy1) 1|ng—nj+1|<%<nj+1)

for some uniform constant Cj. Summing in j > k when ||u||HC,, +3+s 1s small enough,
we get estimate (2.1.45).
To obtain (2.1.46), we apply again (2.1.39) with ¢/ = v+ ( + 2,N = 2, the
special index being located on the V term. We bound for £’ # £ (ng)° |IL,, ue | L2 <
~1_5
Cny (nW} 2 “u”Ha’+%+6 and
—a’ —o'tstl _1_
(ne) ™" |Tn, V2 < €ny(ne) ™" 728 V|| - (ng) 7270
with £2 sequences (Cn,)n,, (Cn, )n, - Using that (ng) < (n;41), we get summing (2.1.39)
inny,...,n;
||Hn00px[6uaj(u, ceay US ) . V]Hnj_H ”g(LZ)
d,v - . . .
< CODZm(k,j),NO (Ua g, 37 D aj)2k+J ! (k - 1)|BJ Ilu||;{,1/+%+5 (C(,])]

d 5446
X ||V || r-e (mjgr) T2

We sum next in j > k for ||u{|H,,+(;+%Jré small enough. We obtain the bound of (2.1.46)
for the £(H*, H~%¥~3~%)-norm of Op, [Oua(u;-) - V].

(iii) We decompose M = 3~ .-, M; with M; € A‘(i,;'jj)(a,C,B). We apply estimate
(2.1.40) with £ = 0, bounding ||IL,,,, ue || .2 (ng/)d, by (ng/)_%_‘s”uer||H,,+%+5cnl, for a
sequence (Cn,, )n,, in the unit ball of ¢2. Summing in ny, ... ,nj we get
(2.1.50)

g M; (s o, )T [y < (b = 11254972 (ng) 727 T4 14)7
x ml(jk,j)(UaQB; Mj)(C(I)”u”Ho"+%+6)ij

—njp1) 21
Mo — Mj+1 [no—nj+1l<g{njt1):

for some constant C}. If we make act the resulting operator on some w in H® *2+9
and sum in n;4; and in j > k, we get that

M@y gorsio paor-s—g-s-a) < Clo"YNES (0,6, B; MYCB) (k= il .,y
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if ||uI|I]((,,+%+‘s < r small enough.

To estimate 0, M (u) - V, we have to study expressions of form (2.1.50), with one
of the arguments u replaced by V. The rest of the computation is identical.

We still have to prove (2.1.48). We write again M = .5, M; and use estimate
(2.1.40), taking for n, the index for which |n,| > |ng|, £ =0,...,5 + 1. We obtain if
we take in (2.1.40) o’ = s —  — § for some & > 0 small enough

(2.1.51)
1Tne M (T us, - i uy) Iy, Ve < C(k — 1)12549 lm(k) (0,¢,B; M)B?
j 1 5 el
x(TT tre) ™48, ) (ngan) e, HnuelnmnvnH-
=1

x (no)s—%—é (nj+1> —%—5 <ne>—-3s+§+35+u+d

where ( nz/)" o ¢ =1,...,j+ 1 are £ sequences. We obtain a bound in terms of a
constant times 2 (k — 1)/(2B) [T |lue | g+ |V || - s‘ﬂ(k) (0,¢, B; M) times
J+1 1 ’ 1 3
(H (nl,>—§—6cfl[,)[<nj+1>23<n0>s—5—6<ne)—33+§+36+u+d].
=1
Because of the choice of ng, and since s > d+v + 3 3 the factor between brackets is
bounded by (ng)' T 2+ < (ng)2 +35+V+d5n0 with an ¢2-sequence (&n)n,- Summing

in no,...,n;4+1 we obtain

IM(u) - Vi -v-2-a < CNGS(0,¢, B; M)2B|lul o) |V || -+ (k — 1)12".

Summing in j > k when |u||gs is small enough, we get the wanted upper bound.
To estimate in the same way (8, M (u) - V))u, we remark that we have to estimate j
expressions of form (2.1.51), except that the argument V' replaces now one of the u;,
so that in the right hand side of (2.1.51) we have to exchange the roles of (n;,1) and
of one of the (ng ). The rest of the proof is identical. d

2.2. Substitution in symbols

In this section, we shall study the effect of substituting a multi-linear map to one
or several arguments inside a multi-linear symbol.

Let us fix some notations. Let B > 0,v,{ € Ry,0 > 1/+C+2 deR,NyeN,D. a
(ld| + v + o, No + 1)-conveniently increasing sequence. Let b € S(R) n,(0,¢, B, D.) for
some k € N*. According to definition 2.1.5, we decompose

b(u; z,n) Zb ,uzn)

2k
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with b; € £ = (0,¢, B, D.). For uy,...,uj41 € C®(S,R?) we set

(k,3),No
(221) Vj(ul, ‘e ,'I.tj+1) = Opx [b] (ul, <oy Ujg -)]’U,j_,_l
or
(222) Vj(ul, oo ,’U,j+1) = tOpX [bj (ul, ceey Uy ~)]’U,j+1

where x € C(] — 3, 1[), x even, x = 1 close to zero.

Let us apply inequalities (2.1.38) and (2.1.39) with N = 2. There is a sequence
(Qn)r in the unit ball of ! and for any s € R a constant K, > 1, depending only on
s and Ds, such that for any o’ € [v + ¢ + 2, 0] one has estimates

(nO)s—d”Hnovj(Hnl Uty ey Hnj+1uj+1)"lz2
(k+j5-—1) -
< sz(n])N (0’ C,B D b )—m‘— ( )BJQnO_nj+l

(2.2.3) j

x (TT ()" ITngell 2 ) 1) [Ty 51122

=1

X jng—njp1l<tinge1),max(inly.lng ) <3 Injsal}

and forany £ =1,...,j
s—d
(TL()) ”Hno‘/j(nnxul’ ) ]'_I"'q'+1'u’]'-f'l)”L2
(s+5 -1
< KNG (0 yC,B,D-;bj)*WC(J)B 'Qno—njia

2.2. o' —o’
224 x (T tne) My erllz2 ) ()™ [Tl il o)

1<

#L
X ("7']'-0-1)‘;-'_(7 +V+2”Hnj+1u]'+1”L2-
Set now when d =0, =0,Ng =0,k = ko > 1
(2.2.5) V(u)=u+ Z Vi(u
Jj2ko

Jj+1

as a formal series of homogeneous terms. Note that by (2.2.3) with o/ = v + 2, we
. vt s j -

have if u € H*2+° N H* for some & > 0 that ||V;(u)||gs < C||u||;[‘,+%+6(2B)J lull g,

so that (2.2.5) is actually converging in H* if ||ul|H,, +§+s is small enough relatively to

1/B.

Proposition 2.2.1. — Letd € R,v,( e Ry, ke N*,a € Sk)o(a,( B, D.). Define

(2.2.6) c(u; z,n) = a(V(u); z,n).
Assume that the constant Kq in (2.1.17) is large enough with respect to o, Do and
(1)0(0,0 B,D.;b).
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Then c € S(k+k0 1, o(0,¢, B, D.). Moreover

227) M 1) 0(0:¢ B, Dse) < CNEY (0,¢, B, D5a)MG, (0,0, B, D.3b)

with a constant C depending only on ‘ﬂ(l) 0(0,0,B,D.;b).

Proof. — We decompose a(u;x,n) =Y ;> ai(u,...,u;x,n) so that c is by definition
the formal series 3,5 ¢j(u,...,u; ,n) where

j
(2.2.8) cj(ut,...,ujz,n) =z Z a;(V3, (U),...,V;,(U%);z,n)s
i=k ji+-+ji=j—1
where we used the following notations:
If j =0, Vo(u) = u. If j, > 0, we have set

(229) Uje = (uj1+"'+je—1+e7 .o >Uj1+~~+je+l)a L= 1, ceeyl
and S in (2.2.8) denotes symmetrization in (u1,...,u;). To further simplify notations
set

nit = (nj“,. € 77+
(2.2.10) o i) .

with nf* = nj,1opje4e4g-1,1 S g <Ge + 1
and
(2.2.11) M U7 = (I 50,3 1<agion-
We shall estimate c;(u1,...,u;;z,n) — a;j(u1,...,u;;z,n), which is given by (2.2.8)
where the (ji,...,J;) sum is taken only for j; + --- + j; > 0. Then, for a + 3 = p,
(2.2.12) 8208((c; — a;)(Mp w1, .. ., My, uj;2,m)]

will be given by the sum
(2. 2 13)

Z > > Zaaaﬂazn 51 Vi (s UP), . T30 Vi (T U7, )

i=k 0<ji1+-+ji=j—1 f)l

where we no longer write symmetrization. We apply (2.1.20) to a; and (2.2.3) with
s =o' to Vj, to bound the modulus of the general term of (2.2.13) by the product of

NG 0(0,¢, B, D ;)N (0,0, B, D5 b)) 9, 0(0,0, B, D.;b) Dy

(where 7 is the number of j; # 0, so that 1 <7 < 4) and of

(kO +.71 — 1)' (k +1i— 1)' . : 1 . i 17 d—B+(a+v—0')
: - c(i ———c(jo) B’ K5{n +

%
!
x [] Qe (H (ne)° ||nmue||L2).
=1 ° Jet1

(=1

(2.2.14)

<.
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(We have considered V}, as defined in terms of a symbol of valuation ko and Vj,, ..., V},
as defined by symbols of valuation 1 or 0, assuming that j; > 0). We sum in
nd',...,nl. We use also that by (2.1.16)
1 1
; T < -
i+ D[LGe+1) ~i+1
(ko+j1 =D (k+i—1)! (k+(k0—1)+z+]1—1)' (k+ko—1+5—1)
jl! 3! - (Jl + ’l,)‘ - j'

to bound (2.2.13) by ‘)’I(k) 0(0,¢, B, D.;a) times

(2.2.15)
(k+ (ko —1) 45— 1)! o i
D,B’ G Z max[1, N} (0,0, B, D; )] N (9,0, B, D.;b)
J
x(Ki > ) [T ety T ng” M, wellzz ),
Jitetii=j—i £=1 =1

with a new value of K». By (2.1.17), the inner sum in (2.2.15) is bounded by C(z)c(’ 9,

If we assume that K is large enough so that o

K, max][1, no Y 0(0,0,B,D.;b)] < Ky

1),

we obtain the bounds (2.1.20) for a symbol in Z(k ho—1,4), Ny (0:¢, B, D.).
Let us get bounds of type (2.1.21) for (2.2.13), when for instance the special index ¢
corresponds to one of the arguments of U7t. We apply to a; estimate (2.1.21) with £ =

1. This obliges us to bound (n}! y 7 ||1'InJO'1 Vj, (I1,,5, U%1) || 2. We control this expression

’

using (2.2.3) (resp. (2.2.4)) with s = —¢’ if we want to make appear the power (nﬁ1 )_a
with £ = j; +1 (resp. 1 < £ < j;). We obtain a bound of type (2.2.14), except that the
power of (n) is now (n)? 7?2+ and that one of the (ng)” ITL,,, ue|| 2 is replaced
by (ng)_a,”l'lneugHLz. We conclude as before.

We still have to check that the support property (2.1.19) holds. Remark that in
(2.2.13) we have |n}’| < iln| by (2.1.19) for a, and |njt| < 4|n”+1| g=1,...,70
]Hl] < 2|nd¢| because of the cut-off in (2.2.3). This implies that (2.2.12) is supported
for |ng| < %In|, £=1,...,]j as wanted. d

|n?

Our next goal is to study quantities of form 8,a(u;z,n) - V(u) where a belongs to
some Szik;')' Ny (0:¢, B, D.) and V is defined by a formula of type (2.2.5).

Proposition 2.2.2. — Letd',d’" e R,d" > 0,d=d' +d",. = min(1,d"),v,{ e R} ,0 >
t+v+C+2,K k" e N, Ng e N,B>0,D. a (v+|d'|+|d"|+ 0, No + 1)-conveniently
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increasing sequence. Define

(2.2.16) V)= > V (u,
//>k/l II+1
(as a formal series), where Vj» is deﬁned by (2.2.1) from the components of a sym-

bol b = 3" ;nspn b satisfying b € S(k,,) NO(U,C,B,D.). Let also a be an element of
Szik”)/,NO (0’ Ca Ba D)- Then

(2.2.17) c(u;z,n) = Oya(u;z,n) - V(u)
defines an element of S?,:,:L’Z,",”)L Ny (0:¢, B, D.).
Proof. — We decompose a(u;z,n) =3 ;/>k a5/ (U, . .., u;z,n). Since

aua’j'(u’ e, U T, n) ‘ V(’U/) = j/aj/(V(’U,),U, e, U T, ’I'L),
we may write with k = k' + k"

(2.2.18)
c(u,: z,n) E ci(u,...,u;z,n)
ik
. — § ./ .
cj(ul, ey Uj,.’L‘,'I’L) = J aj/(Vju(ul, . ,Ujll+1),u]'11+2, e ,uj, il,‘,’n)s
jl+le=
j’Zk'qj”ZklI

where S stands again for symmetrization. Write
agafjcj(nnlul, oy Oy ugs z,m)

as
(2.2.19)

+00
oY §0208ay (T, Vin (T vy, .. L, 1),
no=—00 j'+j'"'=j
Hnj,,+2u]-fr+2, ooy Iy ug;,m) s

We estimate the general term of the above sum. We apply (2.1.20) to a;» with o’
replaced by o/ — ¢ > v+ ( + 2, and (2.2.3) to Vj» with s = o’. We get for (2.2.19) a
bound given by the product of
(2.2.20) NEY iy (@ = 6.C, By D ag )Ny - (0,C, B, Do bjir)

times

(K7 =DV E A+ =D
BJ " no—mn;,n
nzogg;—] GTrl G 2 e nomny

(2.2.21) ;
% <n>d—b—ﬁ+(a+u+L+N0ﬁ—a') H (

£=1

’
ne)” || T, ue| 2
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using that (ng)? ~7 < () ()" because of (2.1.19). Using (2.1.16) and
(2.1.17) with Ko > K, we obtain an estimate of type (2.1.20) for (2.1.26).

We also need to prove bounds of form (2.1.21). Consider first the case when the
special index £ in (2.1.21) is between j” + 2 and j, for instance £ = j. We apply
(2.1.21) to aj and (2.2.3) to V;~, taking s = o’ + d”. We get a bound given by
N iy no (@€ By D30 )Ny v (0,C, B, Dosby) times

(2.2.22)
k// +J” 1)! (k/ +j/ _ 1)! X . .
> D K : BIe()e(5")Qng—n,
/I | ! ] 0 3 +1
vl il +1)! (7' +1)!

I_ — —_ ’
X (n)d ﬂ+a+u+N0ﬂ+o' ’n, u+1 H ng/ ||1'Ine,u1_~ ||L2(nj) 7 ”Hnjuj“L2-
=

Moreover, by the cut-off in (2.2.3) (n]n+1) (no) and by (2.1.19) for a;, |no| < 7|n|.
Since d” > 0, we bound <n]‘”+1>d y (2(n))?". Using then as in (2.2.21) inequalities
(2.1.16) and (2.1.17), we get a bound of type (2.1.21) for a symbol belonging to
d—t, v+t

E(kl:.k" )No(o-’(’ B,D.).

Consider now the case when the special index ¢ of (2.1.21) is between 1 and j" +1.
If ¢ = j” + 1, we apply (2.1.21) to aj» taking the negative power —¢’ on (no), and
(2.2.3) with s = —o’ + d” to Vj». Smce (no) ~ (njuy1), we get a bound of form
(2.2.22) with (nJu+1) o'+d" (resp. (nj)~7 ") replaced by (njr41) "t (resp. (n;)")
and conclude as above. If the special index £ is between 1 and j”, we apply (2.1.21)
to a; (taking the negative power —o’ on (ng)) and (2.2.4) with s = -0’ + d”. We
obtain the upper bound

- k”+.7”_1' k/+.7 ' i -/ 73
Y Kt 1 DB e(i)e(")@no-nyns

e G+l G +1)
d,— N, ’ ’ e
x (n)d TOHetVENBYT T () | M, wer || 2 (me) ™ ||Thn e | 2
1<0'<j
Z’:;éj”+1
O#£L
dll
x(njr 1) TN, i gl 2

We write using the support condition (2.1.19) and (2.2.3) (nju+1)"+d”+2 <

(n)d”_L(nju+1)"+2+L. Since v + 2 + ¢ < ¢/, we deduce again from that the wanted
estimate of form (2.1.21). Since the support condition (2.1.19) is seen to be sat-
isfied as at the end of the proof of proposition 2.2.1, this concludes the proof of

proposition 2.2.2. 0O

We shall need a version of proposition 2.2.2 when V;» in (2.2.16) is replaced by
a multi-linear map defined in a slightly different way. If V; is defined by (2.2.1), let
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W;(u1,...,u;41) be the multi-linear map given by
(2.2.23) (Wj(u1, ... uj+1), uo) = (Vj(uo, u2, . - -, ujt1), u1)
for any uo,...,u;j41 in C*®(S!,R?). Let us prove:

Lemma 2.2.3. — For any o' € [v + ( + 2,0] there is a constant K, depending

only on o', such that for any ui,...,uj11 in C°(S,R?), any ng,...,nj11 € Z,
M W5 (I, wt,y - ., Il uj41)| 22 i bounded from above by the product of
d,v . (k +.7 - 1)' . j
(2224) sz(k,j),No(a’C’B’D"bj)WC(J)B
times
j+1
(2.2.25) (no) ™" (njs1) 7 [ (ne)? 1M, w2
=1
resp. times, for any £=1,...,j
(2.2.26) (no)” (jr)™ ™ I (ne)” I, werllz2(ne) ™ T, el o
1<0<5+1

£'#£L
Moreover, on the support of IL,,W;(Iln, u, ..., I, uj41)
1 1
(2227) max(|n0|, |Tl2|, ey |nJ|) < Z'n]'+1', |n1 - 'Ilj+1| S Z('I’Lj_'_l).

Finally, if x € C(] — 1, 1], and if C,, 2(X) is defined by (2.1.12), we may bound for

47 4
anyy €N, e Nyy<p,f <p

/ (D
(2.2.28) 1(1d = 71)788 T, W; (T, s, ..., nnmx(m)uﬁl)llp
by the product of (2.2.24) and (2.2.25) (resp. (2.2.26)) with
(2.2.29) 21 i, 1 1<(ny/4Cr 2(X) () ™7 (4(p))P.

Proof. — Inequalities (2.2.27) follow from (2.2.23) and (2.1.19). Let us prove (2.2.25).
We compute for |lup|pz <1

(2'2'30) |(Opx [bj (Hnou07 anuz’ cee 71—‘[”]’ Uss ')]Hnj+1uj+1a Hmul)l'

We apply (2.1.39) with N = 0, taking for the special index the one corresponding to
the first argument of b;, and we get the bound

(2.2.31)
(k+j—1)

Gror 9P

CoDoM( sy n,(@,¢, B, Dsb;)

J
! — ! ’
x (nj )" (o) | Tnguollze [ [ 1T, werll2 () Ty 541 (122 | Ty [ 2
=2
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Since |ny — nj41| < $(nj41), we obtain (2.2.25) with a constant K, depending only

on o’
To obtain (2.2.26), we use (2.1.39) with N = 0 and the special index corresponding
to one of the arguments uy, ..., u; of b; in (2.2.30), for instance £ = 2. We get a bound

given by the first line of (2.2.31) times

7 ! - 7
(nj+1) "+ (o) | Mnguoll 2 (n2) ™7 T, uz |l 2

(2.2.32) i y
x JT I, werllzs (ner)” 1T wjsa ll 2 | Ty wn | e
=3

and we conclude as above. Note that (2.2.26) for £ = 1 follows from (2.1.38) and the
fact that (n1) ~ (nj41).

To estimate (2.2.28), we insert inside (2.2.30) the cut-off )Z(%) against u;41 and
write x((%)ﬂnjﬂujﬂ = K, *II,,,, uj41 where K, is defined by (2.1.11) with x
replaced by x. We then make 9,,-derivatives act and use (2.1.33), (2.1.35) to make
appear the gain (2.2.29) in estimates (2.2.31), (2.2.32). ]
Proposition 2.2.4. — Let d',d",v,(,0,k',k",No,B,D.,. be as in the statement of

proposition 2.2.2. Assume o > v + 3 + max((, d*;d ). Let a € Szi,;}')’ ~(0,¢ B, D.),

be Sf;:};7N0 (0,¢,B,D.) and define from W;» given by (2.2.23)

2.2.33 W(u) = W (u, .. ., u).
( ) (w) Z] 3 (U -5 u)
J Zk j”+1
Th,ere ”z's a symbol ¢ € Sz;ff,:,afﬁ:"b(a,(,B,D.) and a multi-linear map M(u) €
2ot 1 (0,¢, B) such that
(2.2.34) Op, [Oua(y;-) - W (u)] = Op, [c(u; )] + M (u).
Proof. — Consider the symbol c(u;z,n) =35, ¢j(u,...,u;z,n) where
ci(u1,...,uj;z,n)
(2:2.35) = > §i"ap[Wir(ur, ..., X(D/(n))ujri1), ujrga, - .., uj; 3, mls,

3+i"=j

X being a function in C§°(]— §, 5 [), with small enough support, ¥ = 1 close to zero. By
(2.1.19) applied to aj and (2.2.27), ¢; will satisfy (2.1.19) if the support of X is small
enough. Let us prove that 0285c;(Iln, u1,. .., I, uj;2,n) obeys estimates (2.1.20)
and (2.1.21). From now on, we no longer write the symmetrization operator. We
make 920° act on ¢j(Mp,uy, ..., Iy uj;z,n) fora+B=p. For0< ' < B,0<y< B
set

(2.2.36)

Wﬁ,’py(no, ceey Mg, n) = (Id - Tl)’yaﬁ,HHOWju(Hmul, . ,Hnj,,+1)2(D/(n))uj//+1).
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We use (2.1.10) to write 828%¢;(In, u1,. ..,y uj;z,n) as the sum for j' + j” = j
and for ng € Z of

(2237) j’j"(agafaj')[wﬁ’/o(no, ceey T4, n)a Hnj//+2uj”+2a EERE} Hnjuj; z, TL]

and of
> Cop od'd" (020877 ap) W (mo, ..y, ),
0<p'<

(2.2.38) "Ll

Hnj//+2uj/’+2’ e >Hnjuj; Z, n]'
We estimate the general term of (2.2.38) applying (2.1.20) to a;» and bounding
(2.2.39) (no)” W5, (o, ..., nyry1,m)| e

using the product of (2.2.24), (2.2.25), (2.2.29) in lemma 2.2.3. We obtain a bound
given by the product of

J
(2.2.40) K2m?kyf’;,1v0 (0,¢,B,D; a)m((ik/f')l,jvo (0,¢,B,D.;b) H ||Hnel ugpr|| L2
=1
and of the sum for 0 < 3’ < 3,0 < v < B of

(2.2.41)
~ LK+ =0 (K + 57— 1)
2D 3 :C"’ﬁ, /( "
at+p-p'C0,6 40 G’ + 1) J G" +1)!

c(§")e(i") B’ (4(p))* Cpr 2(X)

multiplied by
J
(2.2.42) <n>d ~Pt(atv+No(B-p")—0")+ (nj,,+1>d +v—o H (e
=1

Since by the cut-off in (2.2.29), |nj»41] < (n), we bound (njn+1)d”+"‘a, <
)Y " i) 7 < ()Y T njuga) 2 As by (2.2.27), |njri1] > cnol, the last
factor will make converge the no-series. Consequently, the sum for ng € Z, 5’ +j"” = j
of (2.2.38) will be controlled by the product of (2.2.40), of
<n>d’+d"—L—ﬂ+(a+u+Noﬂ—0')+ f[ (ne,y’
=1

and of the sum for j' + j” = 4,0 < ' < 8,0 < < B of (2.2.41). Using (2.1.15) and
(2.1.16), (2.1.17) with a large enough K (independent of any parameter), we get for
(2.2.42) an estimate of form (2.1.20).

We still have to bound the contribution (2.2.37). We proceed as above, estimating
the Wﬁ’,o term by the product of (2.2.24) and (2.2.25). We get a bound in terms of
the product of (2.2.40) multiplied by

SR 45 =D, (K 4 57 = 1)

pJ (]’ + 1)| J (j// + 1)' C(jl)c(j/I)Bj
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and by (2.2.42) with 8’ = 0. We end the computation as above.

Let us prove that (2.1.21) is valid for c;. Take first the special index £ in this
estimate be equal to some index between 1 and j” + 1, for instance £ = 1. We apply
(2.1.21) to a;-, making appear the —o’ exponent on the index corresponding to the
first argument of c;. We obtain an upper bound in terms of

(no)™* ||W T (noy -y g1, )| 2

that we bound using the product of (2.2.24), (2.2.26) (with £ = 1) and (2.2.29). We
obtain for (2.2.38) an estimate in terms of the product of (2.2.40) by the sum for
0< B <B,0<v<pof (2.2.41) multiplied by

J
<n>d —,3+0+V+N0(ﬂ_ﬂ )+U (nj“+1>d tvto H <nel)o (’l’ll)_a .
=2

Bounding as above the last factor before the product by (n)dl/_b(n]-f/+1)—2, we obtain
a control of the sum in ng, j' + 7 = j of (2.2.38) by the product of (2.2.40), of

j
(22.43) (n)? Aot N T () (ma) ™

=2
and of the sum for j' + j” = 4,0 < /' < 5,0 < v < S of (2.2.41). We again deduce
from that the looked for estimate of type (2.1.21). The contribution coming from
(2.2.37) is treated similarly.

We still have to obtain an estimate of form (2.1.21) when the special index £ is
between j” + 2 and j, say £ = j. We apply (2.1.21) to a;, with £ = j corresponding
to the last argument, and obtain a bound in terms of (2.2.39), that we control from
(2.2.24), (2.2.25), (2.2.29). We get then similar bounds as in the case £ = 1, except
that in (2.2.43) (n]-)gl(nl)_gl has to be replaced by <nj)_a,( 1)%". This concludes the
proof of the fact that ¢ belongs to S&,“** = (s,(¢, B, D.).

(k'+k"),No
Define now

(2.2.44)

&(u; z,m) ch(u, S UT, M)

i>k
¢j(u1,...,ujz,n) =
(D
Z _]] aJ u(u17 ’U,j//,(]-‘_X)(E)Uju_'_l),u]w_'_z,...,U,j;x,n]s

J'+3"=3

and set
Mj(ul, cee ,’I.Lj) = Opx[éj(ul, ceey Ugy )]

(2.2.45) =Y M, (u, ).

i>k
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Let o/ > v + 3 + max((, dl*;d”). Using (2.1.38) for Op, [a;/(u;-)], we bound

(2246) ”Hno Mj (Hn1 ULy oo ,Hnj Uj)HnJ.+1 “f([p)

by the sum for j' + j” = j and ng € Z of

Y] (kl +jl - 1)!

, d'+(v+N—-o')+
(2:2.47) CoDNMGY v (0,¢, B, D;a)j's )

. i’ <nj+1
- c(j")B’
(.7/ + 1)' ( ) (TI,O - nj+1)N

multiplied by

’ . D
(n6)0 ||Hn6W]” (Hn1u17 ey Hnj,, ’U,j//, (]_ —_ X) (m)nnj”+luj//+1)!|L2
(2.2.48) ; ,
x [ (ne)” (1T, ue e
O=35"+2

The cut-off in (2.1.38) shows moreover that we may assume

1
(2:2.49) Inol, Injeral, ..., Ing| < 7{ns+1) and {no) ~ (nj41).
The support conditions (2.2.27) on W;~ imply moreover that
(2:2.50) Ingl, Inzl, ..., Injr| < Clnjry1) and (njigs) ~ (na).

Finally, the cut-off 1 — % in (2.2.48) implies that |nj 41| > ¢(njt1) for some ¢ >
0. Altogether, these inequalities show that (njs41) > c(ng) for any £ = 0,...,7.
Consequently, to prove that M;(u1,...,u;) isin A((i;: ;)d”’yﬂ(a, ¢, B) we have to obtain
(2.1.40) with ¢ = j” + 1, v replaced by v + 1.

We estimate (2.2.48) using (2.2.26) with ¢ = 1. We obtain a bound given by (2.2.24)

multiplied by

J
2 ’ s v— ’ - a_l a/
(ng)™” (ngrs) 77 () T2 T (ne)? Ty uer 2o
=1
By (2.2.50), (nj#41) ~ (ni). Going back to the estimate of (2.2.46) by the
product of (2.2.47) — where we take N = 0 — and of (2.2.48), we see that
I M;(ny uy, . .o, I us ) [ #(z2) is bounded by the sum for j' + j” = j
and ng € Z of the product of

K>CoDoMG5 n (0,¢, B, D )N v (0,¢, B, D3b)

(2'2.51) it (k/ +jl _ 1)! (k’/ +j” — 1)!c(j')c(j”)Bj
G+ G+
and of
(2.2.52)
j+1 J
() (027 (ngr ) T2 (o)™ ()™ [T (ne)” T 1My, el
=0 =1
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Using that by (2.2.49) (n{) < (njy1) ~ (no), the sum in nj of (nh)?* (o)™ (nj+1)”°
is smaller than C(nj1) < C(njr41). If we sum (2.2.51) for j'+ j” = j using (2.1.16),
(2.1.17) we obtain an estimate of form (2.1.40) with d replaced by d/, +d", v replaced
by v+ 1. O

2.3. Composition and transpose of operators

In this section, we shall study Opx [a(u;-)] o Op, [b(u;-)] and *Op, [a(u; )] where
a€ S(k,)N (0,¢(,B,D.) and b € S(k,,)N (0,¢,B,D.).

Theorem 2.3.1. — Let d',d”" € R,Ny € N,v,( € R,k k" € N*,0 € R with o >
No+v+(+2,B>0. Let D. be a (v+|d'|+|d"| + o, No + 1)-conveniently increasing
sequence. Assume that the constant Ky in (2.1.17) satisfies Ko > 100(2Dg + 1).

(i) For any a € S v (0,¢,B,D.),b € Siu¥ n (0,¢, B, D.), the product ab €
Szlk')’No(a,g,B,D.) withd=d +d",k =k + k". Moreover

1 '
=M v (0,C, B, Dsa)NY \ (0,¢, B, D.;b).

(231) NG 4, (0., B, Djab) < T

(ii) Assume o > No+v+5+max(C, &). There is a (v+No+3+|d'|+|d"|-+a, No+1)-
conveniently increasing sequence D., a symbol e € S?k)lj\}' +N°+3(0,C ,B,D.) and an

operator M € Z’?;)’"+N°+3(U,C,B) such that

(2.3.2) Op, [a(u; -)] o Op, [b(u; -)] = Op,[ab(u; )] + Op, [e(u; )] + M (u).

Proof of (i). — Decompose a(u;z,n) = 3 sk aj(y,...,u;z,n), blu;z,n) =
Y >k bjr(u, ... ,u;z,n) according to definition 2.1.5. Then

ab:ch(u,...,u;a:,n)

izk
with
cj(ul, ceey Uy a:,n) = Z [aj/(ul, e ,uj/;z,n)bjn(ujfﬂ, e ,Uj;.’l,‘,’n)]s
J'+3"=3
where S stands for symmetrization in (uy,...,u;). Let o, € N with o + 8 = p, and

compute 0202 (a;:bj») using (2.1.10). Let us prove upper bounds of type (2.1.20). Let
o' € [v+({ +2,0]. When we estimate (0202a; )b;» or a;(0282b;n) from (2.1.20) for
a;r, by, we get a bound given by the product of

(2.3.3) NG v, (0,6, B, D)0 (0,¢, B, D.;b)
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and of
K+ -V 5" -1 —B+(atv+Nof—o
| G+ 1) : G+ 1)1 L Bie(3')e(s") Dy Do n) =24+ M=
(2.3.4) i ,
x [T ne)” 1T el -
=1

If we sum for j' + j” = j and use (2.1.16) and (2.1.17), we obtain a bound given by
the product of (2.3.3) and of

Dy (k - a+v —a’ d o’
Dy ( +J 1! Bic(j)D,(n)?~PH(etv+Nos )+H(ne) T, we| L2

Consider now a contribution to 8282 (a;b;») corresponding to terms in the sum in
(2.1.10) i.e.

(2.3.6) 2% II(1d = 71)70% 08 00|02~ 08~ bju .

By (2.1.20) for a;s and (2.1.34)

vy aa' 98’ - (kl .7 '—1)'
|(Id = 71)707 Oy ajr| < Z: (k,) NO(U G b D )ﬁl_)._Da/H’/

. ./ d—pg' ’ Nod' —o'
(2.3.7) xe(5)BY (n — ') B'+(a'+v+Nof' —0')4

/
d . || +8'+ (o + v+ Nog'—o'y . (K + 57— D! )
< 2NEH N (0,6,8,D5a)(2(7)) T TG Pes

xe(j')BY (n)? T HE Hr N0 =D

Using also (2.1.20) to estimate the b;~ contribution, we bound (2.3.6) by the product
of (2.3.3) and of

(2.3.8)

2p|Cg;§3,7 |2y 1+ +H(o vt Nof' o )+Da’+B’Dp—(a’+,B’)
g

K+ -V K +45"-1) . . ; —B+(a+v o'
! e il) H (juj+1)u R o(5)e(5") B (my =Pt o= )
J

H IHM ’u'f”L2

where we have used
(@' +v+Nof' — ')y + (o' + v+ NoB" —0')4 < (@+ v+ Nof —0')
since 0’ > v. Remark that the first line in (2.3.8) is smaller than

2°|Co% 1) TP NI D o Dy o)
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and so the sum in o/, 8, of these quantities will be bounded, according to (2.1.13)
and the assumptions by D,,. Summing also (2.3.8) for j' + j” = j, we get a bound
of form (2.3.5) with 22 replaced by %-. If we assume 2501 < o, we obtain for
0208¢; the estimate (2.1.20), with the bound (2.3.1) for ‘)’I‘(ik')',NO (0,¢, B, D.;ab). We
must next get bound (2.1.21). The proof proceeds in the same way as above, except
that one uses an estimate of form (2.1.20) (resp. (2.1.21)) for ag’a,fj’aj, and (2.1.21)
(resp. (2.1.20)) for ag—a’a,fj-ﬂ'bj”. This concludes the proof of assertion (i) of the

theorem. O

Remark. — When we estimate the sum for j' + j = j in (2.3.4), (2.3.8), we may

use the first inequality in (2.1.16). In that way, we get a bound for ¢; in terms of
(k=14j—1)!

Ginr— i-e. we have, instead of (2.3.1)

(2.3.9) MG, v, (0,¢,B,D;jab) <MY\ (0,¢, B, Dsa)NY v (0,¢, B, D.;b).
Before proving (ii) of the theorem, let us establish some intermediate results.

Proposition 2.3.2. — Let d',d" € R, o,v,(,B,D. be as in the statement of theo-
rem 2.8.1, set d =d' + d". Let V' > v be given, assume o > /' + ( + 2 and let
(2.3.10)
a(u;z,l,n) = a; u,...,u;z’,é,n,l;u;x, ,n) = bin(u,...,u;z,y,n
( )= aj( ), b(u;z,y,m) = Y bjn( y,n)

j,Zk’ Y j”Zk”

j j/l

be formal series defined in terms of multi-linear maps satisfying the following con-
ditions: 3335165263-:(1'["1111,...,Hnj,uj/;z,f,n) with 1 + B2 = B, a+ B =
(resp. 821832655j11(ﬂn1u1,...,Hnj,, ujs T, yY,m) with a1 + a2 = o, a+ f =
p) satisfies (2.1.20) and (2.1.21) with d,j,k,v replaced by d',j',k',v' (resp.
d",j", k", v'). Assume moreover that &j/(Hmul,...,Hnj,uj:;x,f,n) = 0 (resp.
bju(l'[nlul,...,Hnj,,ujn;:v,y,n) = 0) if maxj=1,...j(|ni]) > 3In| or if |¢] > 3(n)
(resp. if max;—1,.. j»(|n;]) > %|n|) Assume also that the x-Fourier transform of these
functions is supported in the interval of Z of center 0, and radius %(n) Define

2.3.11 “a(u; x, £, d
( ) é(u;z,n) = 271_2/81 a(u; z, £, n)b(u; z,y,n)dy.
Then &(u;z,n) = 3 i>pmkrtkr Cj(U,-..,u;T,n), where each &; satisfies estimates
(2.1.20), (2.1.21) of an element of 2‘(1,;'7’;:12\,0(0, ¢,B,D.) for a new increasing sequence

D., depending on D.,d',d", v, o, No. Moreover the support condition (2.1.19) is verified
with }|n| replaced by |n|.
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Proof. — We define

+o0 1
5j(u17-~-,uj;x,n)= Z Z 2—/ e_”y[&j/(ul,...,uj:;w,é,n)
£=—o00 T Js

(2.3.12) 3'+5"=j
j,Zkl ,j“ Zk”

Xl;j// (uj’+1’ ce UL, Y, n)]sdy

where S denotes symmetrization in (us,...,u;). Let p € N and for (o, 5) € Nx N
witha+f8=p,0<a' <0a,0< <B,0<v< 0, set

T2 (Gy,bjn) = / e~ [(1d — 71)78% 8% a1 (us, . . . , ujr; T, £, m)]
(2.3.13) o 51

xa:-a'aff-ﬂ’i;ju (ujrg1,. .-, uj;2,y,n)dy

when 0 < o’ + ' < p,
(2.3.14)

a,B,lc~ T _ —ily ~ . 7 .
oo (@0, b50) = /1 e Ya (u,...,ujx,l, n)agagbju(ujfﬂ, CoH UG T, Y, n)dY
s

and denote by I‘Z:g’l (@, 5]'”) the quantity of the same form obtained when all deriva-
tives fall on a;/. By (2.1.10)

(2.3.15)

+oo
- 1 B~ 7 e~ 7
8200¢ (ur, ..., uj;2,m) = o Yo > 8@y b) + T (@5, b50)
4457 =j t=—oo
~a,B Bt~ T
+ Z Cgl’ﬂ/‘,yl—‘g/”a/‘,y(aj', bj'l)].
0<a’'<a,0<6'<B
0<y<B,0<a’+8'<p

Let us estimate (2.3.15).

We make in (2.3.13), (2.3.14) two integrations by parts using the vector field L =
ll;fgl. In that way, we gain a (£)~2 factor in the integral and~lose on bj» up to two
d,-derivatives. We use that (Id —7,)782 8% a;: (resp. 82" 9 ,agbj” (6 =0,1,2)) obeys
estimates of type (2.3.7) (resp. (2.1.20)) to bound (2.3.13) by the product of

(2.3.16) Ny n (¢, B, D3 &)NGH v (0,¢, B, D3 )
and of

— . (k,-‘—J’ — 1)! .1 d’/__ 't (o 41" +NoB —o'
C(p)(£) 2C(J,)WBJ Doy pr(n) B’ +(a’'+v'+NoB' —0") 4

-1/
(kll_l_Jl _ 1)! p

. (i“—ﬂ”—i— //+2+ /+N B“— ’
(2.3.17) XC(]H)WB Doy grya(n) (@ v'+NoB'"' —0')+

J
!’
x [ (ne)” M, ue | 2

=1
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for some constant C(p) depending on d',d",v,0,Ny and for any o’ in the interval
[V + ¢ + 2, 0]. We remark that

(2.3.18) (&/+V' +NoB' —0')4+ (" +2+V +NoB"—0')4 < (a+V +2+NoS—0')+

since ¢’ > v/. Summing (2.3.17) for j' + j” = j,¢ € Z, using (2.1.16), (2.1.17) we
obtain a bound given by the product of (2.3.16) and of

ij)_ (k + .7 ) BJD ( >d—ﬁ+(0{+N()B+V,+2—O")+

i G+
(2.3.19)

J
H ne, “Hne,’u,e/ “Lz

for a new constant Dp depending on p but not on j. This gives an estimate of type
(2.1.20) for ¢;. To get an estimate of form (2.1.21), we argue in the same way, bounding
either aj or b~ using (2.1.20) and the other one using (2.1.21). The only difference
is that we have to replace (2.3.18) by either

(@ +V +Noff =)y +a"+V + Nof" +2+0" <a+v' +2+ NoB+ 0’
or
o +V + N +0' +(@"+2+V +NoB" —0' )y <a+vV +2+ NoB+0'

which again holds true because ¢’ > /. This concludes the proof of the proposition.
O

End of proof of theorem 2.3.1. — (ii) We have by definition
Op, [a(u; )] o Op, [b(u; )] = Op|c(u; )]

where

+o00
(2.3.20) c(u;z,n) Z / “#a (u;z,n — )by (u;  — y,n)dy.

l——oo

Since the Fourier transform of x — b, (u;x,n) is supported inside {; (Ti)’ € Supp x},
we may insert inside the sum in (2.3.20) a factor x(¢/(n)) for some cut-off function
X € C§°(] —1/2,1/2[), x =1 close to Supp x. We may then write

c(u;z,m) — (ayby)(uw;z,n) =

2.3. =
(2.3.21) / —ity g ax(u z,n — £)[by (u; — y,n) — by (u; z,n)]dy.
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Define

- by (u;z — y,n) — by (u;z,n
bus2,y,m) = 2T =Y - D5,

(2.3.22) .
a(u;z,€,m) = 0y [X(w)ax(u; T,n— Z)]

It follows from the definition of symbols that @ (resp b) satisfies the assumptions of
proposition 2.3.2 with d = d’ — 1, v/ = v + Ny (resp. d” = d”, v = v + 1) and with
D. replaced by a new sequence. Thus we may write

(2.3.23) c(u;z,n) = (ayby)(u; z,n) + &(u; z,n)

for a symbol ¢ satisfying the conclusion of proposition 2.3.2 i.e. ¢ = )~ &; with ¢,

obeying estimates (2.1.20), (2.1.21) of an element of E?;J;‘;’;\E)I’HNOH(G, ¢,B,D.) for

some increasing sequence D., and verifying (2.1.19) with 1In| replaced by i|n|. It
remains to show that

(2.3.24) Ople(u; )] = Opy[ab(y; )] + Opy [e(u; )] + M (u)

with the notations of the statement of the theorem. Note first that, by the example
following definition 2.1.11, Op[é(u; -)] — Op, [¢(u; -)] may be written as M (u) for some
Me f‘(l,:)’u+N°+3(a, ¢, B) (the fact that the support condition verified by ¢; is (2.1.19)
with |n| replaced by |n| does not affect the result). Moreover, modulo another
contribution M (u) of the same type, we may write Op,[é(u;-)] = Op,[e(u;-)] for

some e € S?,C_)}I;Z)+N°+3(a, ¢, B, f).): actually, we define e = 5 e; with

)

where 6 € C§°(] — %, i[), 6 = 1 close to zero, 0 < § < 1. Then, at the difference of ¢, e;
satisfies the support condition (2.1.19). Moreover, if we apply (2.1.39) to a = &; — e;,
choosing as a special index £ one for which |ng| > ¢(n), we deduce from (2.1.39) a
bound of type (2.1.40), so that Op, [é(u;-)] — Op,[e(u;-)] is of form M (u).

To show that (2.3.24) holds true, it remains to prove, because of (2.3.23), that

(2.3.25) Oplayby (u; -)] — Op,[ab(u; )]

max(|nil,...,|n;]) .
ej(ul,...,uj;a;,n):Z---Z()( ( 1(|n | Jl))c(l’lnlul,...,Hnjuj;w,n)
ni n;

may be written as another contribution of type M (u). Since

axby — (ab)x = [axby — (axbx)x] + [(ax — @)by]x + [a(by — b)]x
and since we may again apply to the first term in the right hand side and to a, —

a, by — b the example following definition 2.1.11, we conclude again that (2.3.25)
contributes to M (u) in (2.3.2). This ends the proof of the theorem. O

Let us study transpose of operators.
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Proposition 2.3.3. — Let d € R,v,( € Ry, k € NNy € Nyo > v+ No + 5+
max((, d%) ;B > 0,D. a (|d] + o + v, Ny + 1)-conveniently increasing sequence. Let
a€ S?)é')I,ND(UaC,B,D,) and denote

(2.3.26) a’(u;z,n) = a(u; T, —n).

There is a (|d| + 0 + v + Ny + 3, Ny + 1)-conveniently increasing sequence D., de-
pending only on D.,d,v,0,Ng, a symbol e in S?k_)’ll’\}:fN""'?’(a,C,B,D.) and M €

Zﬂ(jllj)’WNOJr?’(0, ¢, B) such that

(2.3.27) *Opyla(u; )] = Op, [a” (u; )] + Opy [e(u; -)] + M (w).

Proof. — We may write ‘Op, [a(u; -)] = Op|c(u; -)] where

1 +o00 )
(2.3.28) c(u;z,n) = o Z /sl e a, (u;z — y, —n + £)dy.
b=—00
We have
(2.3.29)

+o0
1 .
c(u;z,n) — ay (u;x,n) = o E /S1 e a, (u;x —y, —n +£) — ay(u, z, —n + £)]dy.
l=—

Define a(u;z,y,n) = ax(uiz—yn)—ay(uizm) Thep (2.3.29) may be written

l—e—w
1 +

(2.3.30) / e~ Wdy[a(u; z, y, —n + £)]dy.
o0 st

27 o5

Since in (2.3.29), x € C§°(] — %, 3[), in the £-sum, |¢| stays smaller than (—;‘), S0 we

may insert inside the integral (2.3.30) a cut-off X(%) for some ¥ € C5°(] — 3, 31).
We perform next two integrations by parts using L(¢, D,) = 01 -e- D). In
that way, we gain a (E)_z factor, loosing up to two 8, derivatives on . Making 0287
act on (2.3.29), (2.3.30) for a + B = p, we estimate using (2.1.20) the component
homogeneous of order j evaluated at (Il,,u,...,II,;u;) by the sum in £ of

) — ! . ’
(0)"2Cc(5) (k(;—i 1)'1)'D,,+4B’ (n)d=1=F+ @3+ No+ Nop=o) ¢

J
x [ I, wer |22 (ne)”
=1
where the replacement of v by v + Ny + 3 comes from the losses due to one 8, and
up to three 0, derivatives. We get in that way the estimate (2.1.20) of a symbol

in 2‘(1,: ;)’V;ONO-‘-:;(O‘,C ,B,D.) for a new sequence D.. One proves in the same way a
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bound of form (2.1.21). Moreover, the support condition (2.1.19) is satisfied with %|n|
replaced by %|n|. We have thus written

*Op, [a(u; )] — Op,[a" (u;-)] = Ople' (u; )]

for a symbol e! whose component homogeneous of order j satisfies (2.1.20), (2.1.21)
and a weakened form of (2.1.19). Arguing as at the end of the proof of theorem 2.3.1,
we write

Ople’ (u;-)] = Op,[e(u; )] + M(u)
with e, M satisfying the conditions of the statement of the proposition. O

2.4. Analytic functions of zero order symbols

We shall establish a stability property for symbols of order zero under composition
with an analytic function. Let k € N* be given, v € Ry,0 > v+2,B > 0,D. a
(v + o0,1)-conveniently increasing sequence. If a symbol a is in S?;;')/,O(U» 0,B,D.), we
may also consider it as an element of S?{')I,o(a’ 0,2B, D.) since in (2.1.20), (2.1.21) we

may write
(4 +1)! - j+1
and we have
(2.4.1) Ny 0(0,0,2B, D.sa) < (k — 11267190 (0,0, B, D.;a).

Proposition 2.4.1. — Let F be an analytic function defined on a neighborhood
of zero in C, satisfying F(0) = 0, |F®(0)] < R™*'4! for some R > 0. Let
a € S?,;')'O(U,O,B,D.) with ‘JI((),’C';O(G,O,B,D.;a)(k — 1)12¥-1 < R. Assume that the

constant Ko of (2.1.17) satisfies Ko > 2Dg + 1. Then F(a) € S?,;')"O(a, 0,2B,D.).

Proof. — We write

+o00
(2.4.2) Fla)=) ﬂ(%@af.

=1
According to (2.4.1), we may consider, in a product a‘, one of the factors as an element
of S?,;')',O(a, 0, B, D.) and the other ones as symbols in S?{)V,o(a’ 0,2B, D.), so that, by
(i) of theorem 2.3.1 and (2.3.9), a* € S} 4(0,0,2B, D.) with

(2.4.3) N 0(0:0,2B, Dsa’) < [(k — 1)12F 1719055 (0,0, B, D.sa)’.
We decompose each af = Dk ag,;(u,...,u;z,n) and write
(2.4.4) F(a) = Z cj(u,...,u;z,n)

jzk
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with

F®(0
(2.4.5) cj(u1,...,uj;z,n) = Z %a“(ul, e UG T, T,
=1

We have to show that c; satisfies (2.1.19), (2.1.20), (2.1.21). The support condition
is clearly verified. If we apply (2.1.20) to each term in the right hand side of (2.4.5),
and use (2.4.3), we get for [0208¢;(uy, ..., uj;z,n)| a bound

@
Z IF 0)'[ Dkt (9,0, B, Dsa)f

k+j—-1)! i — a+tv—o’ ! o’
(3 1oy, 24+ T () M el
J ’ =0

where p = o + . The choice of R implies convergence of the series. One obtains
estimates of type (2.1.21) in the same way. O
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CHAPTER 3

COMPOSITION AND POISSON BRACKETS

The aim of this chapter is to study composition of operators associated to symbols
with remainder maps, and to apply this to Poisson brackets of functions defined in

terms of such operators.

3.1. External composition with a remainder map

Proposition 3.1.1. — Let d',d" € Ry,d =d +d",v,{ € Ry,0 € Rjo >v+2+
max((, g), B> 0,k',k" e N*, Ng € N,D. a (d+v+ 0, Ng+1)-conveniently increasing
sequence. Assume that the constant K of (2.1.17) is large enough.
() Let M' € (k,)(a ¢,B), M" € Z’(k,, (0,¢,B). Then M'(u) o M"(u) belongs to
(k) Y(0,¢,B) where k =k’ + k" and

(3.1.1) N (0,¢, B; M' o M) < ‘J'(‘(ik,l)'(a,(: B; M’)‘ﬂ(k,,)(a,c,B;M”).

(ii) Leta € S(k,) ~,(0,¢, B, D.) and M" € Z’(k, (0,¢, B). Then Op, [a(u;-)]oM" (u)
belongs to Z’( Y(0,¢,B) and

(3.1.2) MG (0,¢, B;Opyla(u; )] o M") < mfk,;N (0,¢,B,D.;a)MN (k,,)(o ¢, B; M")

if Kg 1is large enough relatively to Do, 0,d.

(iii) Under the same assumption as in (i), M"(u) o Op,[a(u;-)] belongs to
Z’?,’:)'(a, ¢,B) and m‘(i,g(a,c, B; M" 0 Op, [a(u;-)]) is bounded by the right hand side of
(3.1.2).

Moreover conclusions (i), (ii), (iii) above hold true more generally if we as-
sume that M',M" (resp. a) is given instead of (2.1.41) (resp. (2.1.27)) by a
series M'(u) = Y isp i'Mi(u,...,u), M"(u) = Z],,>k,,j”MJ’-’,,(u,...,u) (resp.
a(w;z,n) = Y sk iay(u,...,uiz,n)) with M, € Adk,"J)(a,C,B), M}, €
Adk,, cae B) (resp. a; € de,])N (0,¢,B,D.)) satisfying estimates (2.1.42)
('r'esp (2.1.28)).
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52 CHAPTER 3. COMPOSITION AND POISSON BRACKETS

Remark. — Let us explain, before starting the proof, why we allow, in the last part
of the statement, series of form )" j'Mj:, > j'aj. It turns out that we shall be
using proposition 3.1.1 to estimate Poisson brackets of functions given for instance
by expressions of type (M'(u)u,u). These brackets will be expressed from the (sym-
plectic) gradient of such functions, so in particular from (JVM'(u)u,u). Because of
the homogeneity of each component of M’(u), the gradient acting on it makes lose a
factor j/ on the j’-th component.

Proof. — We prove the proposition using for M’, M" the more general expressions
of the end of the statement.
(i) We decompose

— Z j'M]{,(u, u) MII u) Z JII // )
lekl /l>kll
and define
(313) Mj(ul,...,uj) = Z [j'M]'-,(ul,...,uj,)o(j"M]'.f,(uer,...,uj))]s
J +Jl,_

where S stands for symmetrization. We bound, denoting
Hn’U, = (Hn]u17 e aHnj/uj’)an”U” = (Hnj/+1uj’+1a B Hnjuj)
and forgetting symmetrization to simplify notations
ML M (T 2y - ooy My )l ()

G149 <5 3§y My (I UYL |z 1T M (W U L n2y-
ne€zZj’'+j"=j

We apply (2.1.40) to both factors in the above sum. We bound in this way the right
hand side of (3.1.4) by the sum in n and in j' + j” = j of the product of the right
hand side of (3.1.1) and of

S+ =D, (B 45" = 1)!

Bie(q! v
Gl G (7))e(d")
20’ —30'+d'+ —30'+d" +v
x [(n)™ (max(|nol, ..., Ing|, [n) ™" 7 T (max(|n|, Inj 41l - .., Ing)) ]
i+l g
x T (ne)” T 1M, werll 2.
2=0 r=1
Since d/'gd“ + v+ 2 < o', the n sum of the factor between brackets is bounded by

’
—30"+d
Co(max(|no), .., [ny[)) 7> 4+

Using then (2.1.16), (2.1.17) when summing for j' + j” = j, we conclude that M; €

AL (0,¢, B), and (3.1.1) holds if K5 'Co < 1.
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3.2. SUBSTITUTION 53

(ii) We decompose as above M"(u) = 35 j" M. (u,. .., u) and, according to
(2.1.27), a(u,) = 3 jropr J'ajr (U, ..., u; ). Set

Mj(ug,...,u) = Y §'5"[0pylaj (ur, .., uj; )] 0 Mi (wjn, - -, u5)]s.
J'+3"=j
We need to bound, instead of (3.1.4),
(3.1.5)
Z Z j/”HnoOpx[aj’(Hn'U,; ‘)]Hn”f(Lz)j”"HnM],‘i' (Hn"U”)Hnj+1 ”Z’(L2)-
n€Zj'+j"=j
Let £ be such that |ng| > |ng| for any 0 < £/ < j+ 1. To prove for (3.1.5) an estimate
of type (2.1.40) when £ =0 or j'+1 < £ < j + 1 we apply to the first (resp. second)
factor above inequality (2.1.38) with N = 2 (resp. inequality (2.1.40)). We get a bound
given by the right hand side of (3.1.2) times
(K45 =D, (R + 57— 1)!
G+n! 7 G !

Jj+1
! _ d’
X (n)d (ne> 3o+v+ H nf' H ”Hnl’ ’u,[l”LZ

=0 =1

CoDsj’ Blc(5')e(j")(no — n) ™2

(3.1.6)

(where we have applied (2.1.40) to M, with the special index taken to be n; when
¢=j+1,...,5+1, and taken to be n when £ = 0, using that in this case (ng) ~ (n)),
C) being a constant depending on o, v, d. Since (n)d’ <C (no)d’ <C (ng)dl, we obtain
summing in n and in j' + j” = j, and using (2.1.16), (2.1.17) an estimate of form
(2.1.40), if K, is large enough relatively to Ds,0,d,v. To conclude the proof, we just
need to note that estimate (2.1.40) with ¢ = 0 implies the same estimate for any ¢
between 1 and j', since the support condition (2.1.19) satisfied by a; implies that
[ne| < 2|nol, £=1,...,5".

(iii) The proof is similar. O

3.2. Substitution

We study in this section the effect of substituting to one argument of a symbol a
quantity of form M (u)u, where M is a remainder operator.

Proposition 3.2.1. — Let d',d" € Ry,d = d' + d",. = min(1,d"),v,{ € Ry,0 >
v + max((, g) +3,B>0,Ny € N,D. a (6 +d + v,Ny+ 1)-conveniently increasing
sequence, k', k" € N*.

For every a € Sdk,')’N (0,¢,B,D.), for every M(u) = 3 jnsgn j" Mjn(u, ..., u) with
M;n € A(k,, ,,)(J,C B) and

(k//)(07< B M) sup m(k” //)(U,g B M/;) < +OO,
>k
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54 CHAPTER 3. COMPOSITION AND POISSON BRACKETS

there are a symbol @ € Sgk_)L;J”(a, ¢(,B,D.), with { = max((, 2), and an operator

Me f'(i,’;;H(U,C,B), with k = k' + k", such that

(3.2.1) Op, [8ua(u; -) - [M (u)u]] = Op, [a(u; )] + M (u).

Moreover, if the constant Ky in (2.1.17) is large enough relatively to o,

N vt (0,8, B, Dsa) <MY (0,¢, B, D)5 (0,¢, B; M)

NG+ (0,¢, B M) < MY v (0,¢, B, D )RG5 (0,¢, B M).

(3.2.2)

Proof. — We decompose

a=Zajf(u , U T, M), Z]Mu Yooy )

j/zk/ //>k'/
. ‘v d"’ v
with a; € Z‘(ik,’j,),No(a,C,B,D) M;n € Ay, ,,)(U,C B). We write
(323) M]’H(Ul, e ,Ujﬂ) = Mju(ul, ce ey Ui, ’I’l) + Mju(ul, ey uju,n)
where

M'lll( yoeey Ujrty ) ma.x(|n0|,,,,,|nj,,+1|)
(3.2.4) A Z n;ﬂ ( (n) )

XHnoMju(Hnlul, e ,Hnj,, ’u]'//)]__[

TLjII+1
with x; € C§°(R), x1 = 1 close to zero, Supp x; small enough, 0 < x; < 1. Set
M (u,n) =3 juspn M ¢, (u,...,u,n) and decompose
(3.2.5)

(Bua)(u; z,n) - [M (u)u] = (9ua)(u; z,n) - [M* (u, n)u] + (Bua)(u; z,n) - [M?(u, n)u].
We study first Mv(u) =ik J\Afj(u, ...,u) where
(3.2.6)
Mj(ul, e ,’U,j) = Z j'j"OpX[ajf(ul, ceey Ujr—1, szn(uj/, ceeyUj—1, ')Uj; )]3
i+
with S denoting symmetrization. Denote U’ = (u1,...,uj—1), U" = (ujr,...,uj-1),
n’ = (ny,...,nj—1),n” = (n;,...,n;_1) and use the natural notation IL, U’ II,»U".
Applying (2.1.38) with N = 0, we bound ||II,, M;(Il,, uy,. .., Hn,u),, [ 2z2) by
the product of ‘ﬁ(k,) ~,(0:¢, B, D.;a) and of

kl -+ -1 . - 4
CoDo z Z ——J——,—)— (") B (njs1)?
n=-o00 j'+j"=j

(3.2.7)
X H (ne) My, e[| £25" () (T M2 (T U 1 41) | 2.
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for any o’ € [v+ 2+ {, 0]. By (2.1.19) we have on the sum

1
(3.2.8) max(|nal,. .-, [njr—1l, Inf) < ZInjal, (no) ~ (nj41)
and by (3.2.3), (3.2.4)
(3:2.9) max(ngl, ., Ingly Inl) > clnjaa)-
Let £ be such that |n,| is the largest among |ng,...,|n;+1|. Inequality (3.2.8) shows

that we may assume that j' < ¢ < j+ 1. If we estimate the last factor in (3.2.7) using
(2.1.40), we bound the second line of (3.2.7) by

.1/ (k” +j,, B 1)!
"+ 1!

B o(5")(ne) 77+ (0)7 (n0) ™7 {mjn) ™7
i+1 o
x T ne)” TT 1M, el 2
=0 r=1

Plugging in (3.2.7), using (3.2.8), (3.2.9) and (2.1.16), (2.1.17) when summing for
j'+j" = j, we see that we obtain for ||IInOJ\7fj(Hnlu1, cooy Iy ui)y,, || 2(22) bounds
of form (2.1.40) with » replaced by v+ 1. If the constant K of (2.1.17) is large enough
in function of d, o, we get the second estimate (3.2.2).

We are left with studying the contribution of the first term in the right hand side
of (3.2.5) to (3.2.1). Let us show that

aj(u1,...,uj;2,n) = Z 73" laj (uq, .. .,uj/_l,Mjl,,(uj/, e Uj—1, M)U;); Ty 1 S
i'+i"=i
belongs to Z‘(iktc)l No “¥*(g,¢, B, D.). Forgetting again symmetrization in the notations,
we have by (2.1.10), fora+ 8 =p
(3.2.10)
020Pa;(u1,. .., uj;z,n) =
Z j'j”(@;"agaj«)[ul, ceeyUjr—1, Mjl,,(ujf, ey Uj—1, n)uj; Z, TL]
j'+j"—j
+ Y. Y Cuf i1 —m)"850] ag)lu, . ujron,
J'+3"=30<B'<p
0<y<B

j”ag_ﬁ Mjlu(’u]'r, cee ,uj_l,n)uj);z,n].

We replace u; by II,,ug in (3.2.10), £ = 1,...,j. We note that if Supp x; is small
enough, the support property (2.1.19) will be verified by @;. We write in (3.2.10)

Mj, =Y, I, M}, and note that by (3.2.4)

: | 1887 g ML/ (T U” 1)L, || 12
3.2.11 '
< Cpopr (x1)(n) PP g My (T UYL, | 22y
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56 CHAPTER 3. COMPOSITION AND POISSON BRACKETS

for some sequence C.(x1) depending only on x1, with Co(x1) = 1.

Let us bound the first term in the right hand side of (3.2.10). Let ¢/ > v + 2 +
¢ + max((, g) Using (2.1.20) to estimate a;- and (2.1.40) to bound the last factor in
(3.2.11), we obtain an estimate by the product of

(3.2.12) m@@wwngpg@magwthM)
and of the sum in ng,j’ + j” = j of

(3.2.13)
LK+ - 1)!j,, (k" 44" = 1)
(' + 1! (" + 1)

o(5")e(3") Dy B Co(xa) () ! ~PH (et HNoB=

J
o/ 4" ! ’
x[{max(|nol, |, ., Ing ) 7> (o) * ] T (ne)” 1T, w2
£'=0

since by assumption ¢’ > v + 2 + max((, %”)
Since —30¢’ + v + d” < 0, we bound the term between brackets by

C<n0>-—a'+b+v<n0)d —t < C<n0>—a +L+ll<n>d —t

(because of the cut-off x; in (3.2.4)). Since ¢’ > v+¢+2, the sum in ng and j'+j"” = j
of (3.2.13) will be smaller, by (2.1.16), (2.1.17) than the product of (3.2.12) and
k+j—1)!

1(
(32.14) -D, GO

J
2 OO | R | e 2

=0

if the constant Ko of (2.1.17) is large enough. To obtain estimates (2.1.20) for (3.2.10),
we have to bound by (3.2.14) the second term in the right hand side of (3.2.10). We
write (Id —71)7 =377, (,7,)(—1)'7'7'17 , estimate a; using (2.1.20) and (2.1.34), and
bound the right hand side of (3.2.11) using (2.1.40). We get for the second sum in
(3.2.10) a bound given by the product of (3.2.12) and of the sum in ngy and j' +j"” = j
of

(3.2.15)

>

0<p'<p
0<vy<B

~a, Y /
G| (7)) oy rern

x '/(kl +j/ - 1)! -//(kl’ +le - 1)!
S I ]
d'—ﬂ+(a+V+Noﬁ—0')+[<

c(5")e(i")Da+p B Cp_p (x1)

)) —30'+v+d"’ <n0>2cr']

x (n) max(|nol, ||, ..., |n;|

J
’
x [T (ne)? I, werl|z2.
=0
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By definition (2.1.14) of (¢ + d’ + v, Ny + 1)-conveniently increasing sequences

o ’y ’
(3:2.16) > [eas.] (7) (20)*+¥+VPD, 4Gy (x2) < Dy
0<p'<p
0<y<B

Using again (2.1.16) (2.1.17) we obtain for the sum in ng, j' + j”/ = j of (3.2.15) an
estimate of form (2.1.20), (3.2.14) if ¢/ > v + ¢ + max((, dT") + 2 and the constant K
of (2.1.17) is large enough.

Let us prove bounds of type (2.1.21). If the special index £ is between 1 and j' —1,
we bound (3.2.10) computed at (II,, u1,...,II,;u;) using (2.1.21) to estimate a;- and
(3.2.11), (2.1.40) to control M jl,,. We obtain an upper bound given by the product of
(3.2.12) and of (3.2.13) or (3.2.15), where the power of (n) is now d'—f+a+v+NoS+0’
and where <TLg>U, |ITL,,ue|| L2 has been replaced by (ng)_al |ITI,,, ue| 2. We conclude then
as above.

Assume next that the special index £ is between j' and j. We apply (2.1.21) to a;-,
but we take the special index in this estimate to be the one corresponding to the last
argument of a;;. We estimate the first term in the right hand side of (3.2.10). We use
(3.2.11) and (2.1.40), in which we make appear the —30’ + v+ d” exponent on (n,) if
|ne| > |no| and on (ng) if |ng| > |ne|. We obtain an upper bound given by the product
of (3.2.12) and of the sum in ng and j' + j” = j of

S+ =), (6 4§ = 1)

G+ 2 TG )

(3.2.17) J o ot o vtd”
X H (ne)7 (|Mn, ue || g2 (ne) " | Mn,uell 2 (max(|nol, |ne|)) ~7 4.

1</ <
0L

! . ’_ v ’
e(i')el")Dasg B ) Pt M0

We write

—o’+v+d” << d’— —o' v+t

(max(|nol, |ne)) < (n)" ""(max(|nol, [nl))

and sum next in ng (using o’ > v+ ¢+ 2) and in j' + j” = j (using (2.1.16), (2.1.17))
to obtain for (3.2.17) an estimate of type (3.2.14), where the power of (n) is now
d—1—-0B+a+ NS+ +v.

To estimate the last sum in (3.2.10), we proceed in the same way except that we
have to use (3.2.7) to bound the powers of (n — ) coming from (Id — 7;)”. We obtain
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58 CHAPTER 3. COMPOSITION AND POISSON BRACKETS

an estimate
(3.2.18)

Y U ’

0<ﬂ <p
0<y<B

(43 =1L, (K 45"~ 1)
G+ 1 G"+ 1)

c(§")e(j")Dats BICpp (x1)(n)* ~PHetvtNobte

J
4 — ' o 7
x ] (me)” I, uellz2(ne) ™ T, uell 22 (max(|no|, Ine])) ~ T+
1<0'<j
2#L

We conclude as after (3.2.17) above, using (2.1.14) to obtain a bound of type (3.2.14)
with a power of (n) given by d—1— B8+ a+ NoB+ 0’ +v.
This concludes the proof of the proposition. O

3.3. Poisson brackets of functions

This section is devoted to the study of Poisson brackets of functions defined in terms
of para-differential operators or of remainder operators. Let us fix some notation. We
set

(3.3.1) I’=[1 0],J=[O _1],J’=[0 1]
0 -1 1 0 10

so that any 2 X 2 matrix may be written as a scalar combination
(3.3.2) M+ pd +al’ + BJ'.

We denote by S (*),No (0,¢, B,D.) ® M2(R) the space of 2 x 2 matrices whose entries
belong to S(k) No (0,¢,B,D.). If A is a matrix valued symbol, we decompose it in

terms of scalar symbols according to (3.3.2) and define ‘ﬂ?k'; No (0,¢,B,D.; A) as the
supremum of the four corresponding quantities for the four coefficient in (3.3.2). If
s € R, p > 0, we denote by B;(p) the ball of center 0 and radius p in H*(S!; R?).

Proposition 3.3.1. — Letv € Ry, Ng € R,. There is U > v and for any ¢ € R4, any
d,d" €eNwithd=d +d" >1 any o > 7+ 2+ max((, 2), any (0 + v +d, No + 1)-

conveniently increasing sequence D., there is a (0 +U+d, No+1)-conveniently increas-
ing sequence D. and for any B > 0,k', k" € N*, for any A’ € S?k," (6,¢,B,D.)®
Ma(R), A" € S(k,,) Ny (0:¢, B, D.) ® Ma(R) with AV = A& = A", one may
find Ay € S . (0,¢, B, D.) ® My(R), Ao € Sy '3 (0,¢, B, D.) ® Mz(R) and a map
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3.3. POISSON BRACKETS OF FUNCTIONS 59

M € £35(0,¢, B), with k =K' + k", such that
(3.3.3)
{{Op, [A’ (u; -)]u, u), (Opy [A” (u; )]u, u)} = (Op, [A1(u; -)]u, u) + (Op, [Ao(u; -)]u, w)
+(M (v)u, u)

and A,V = Ay, AyY = Ag. Moreover
(334) NG v, (¢, B, D5 A1) < MG v (0,6, B, D AV (0,¢, B, D A”)
and for a uniform constant Cy,
(3.3.5)
Ny (¢, B, D5 Ao)+MG (0,¢, B; M)

(k),No (k)
d' v . d"’ v .
S Com(kl)7N0 (U) C; B) va Al)in(k"),]\lD (Ua Cv B, D~7 A”)'

Remark. — The assumptions AV = A’, A"V = A” just mean that the operators
Op, [A'(u; )], Op, [A” (u; )] send real valued functions to real valued functions.

We shall prove first a formula similar to (3.3.3) when the matrices A'(,-), A”(u,-)
are given by the product of a scalar symbol and a constant coefficient matrix.

Lemma 3.3.2. — Letd',d’ e R,,d=d' +d”",// = min(d’,1),.” = min(d”,1). Assume
o > v+ ({+3. Let E',E"” be matrices of M2(R), ' € S?k;')’No(a,C,B,D.),e” €
Szi,:,}')'y No(9:¢, B, D.). One may find symbols

(3:3.6) & € Sipv (0., B,D.),&" € Si vt (0,¢, B, D)

and a remainder map

M(u) € £(5%(0,¢, B),
such that
(3.3.7)
{(Op, [¢(u; )| E"u, u), (Op, [e" (u; )] E"u, u) }
= ([(Opy[e'(u; )1 E" + “Opy[e (u; )]'E") J (Opy[e” (u; )| E” + *Op, [e” (u; )] E")]u, u)

+([Op, [&'(u; )] E" + Op, [ (u; )| E"|u, u) + (M (u)u, u).

Moreover ‘Jt?k-)f;,’:“”(a,g,B,D.;é’) (resp. m'(ik_)f;\’,';“/(a,(,B,D.;é”)) may be esti-
mated by

CO[m?k,";,No (0,¢,B,D,; e/)m‘(ik/}l;,No (0,¢(,B,D,; e”)]

for some universal constant Cy.
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Proof. — Denote C1(u) = Op, [¢'(u; )| E’, C2(u) = Op, [¢" (u;-)]E” and set
Cy(v) = Ci(u) +*C1(w), Cy(u) = Ca(u) + *Ca(u).

We write for j = 1,2
(3.3.8) 0u(Cj(u)u,u) - U = 8, (Cj(w)w, w)|w=u - U + {(8,C;(u) - U)u, u)
whence by (1.2.5)

{(C1(w)u, u), (C2(W)u, u)} = Bu (Cr(w)w, W)|w=u - TVu(Ca(u)u, u)

+(0,C1(u) - (JV(Co(u)u,u)) - u,u).

We write the first term in the right hand side as

(3.3.9)

3310) Sy VO lum TV (Cou w)de

= —(0u(Ca(u)u, w)) - TV (C1(w)w, W) lw=u
since *J = —J. Using the notation C ; introduced above, we may write
3u(Ca(w)u, u) - U = (Ca(w)u, U) + ((0uC2(u) - U)u, u)
Vau (Cr(w)w, w) = C; (W)w
so that (3.3.10) may be written
—(Ca(wu, JC, (w)u) — (8uC2(w)(JCy (u)u)u, u).
Coming back to (3.3.9), we get
{{Ci(u)u, u), (Co(w)u, u)} = (C; (u) JCo (w)u, u)
— (BuCa(w) (JC, (w)w)u, u) + (8uCh (w) (JV . (Ca(u)u, w)u, ).
The first term in the right hand side is the first term in the right hand side of (3.3.7).
Let us check that the last two terms in (3.3.11) contribute to the last terms in (3.3.7).

If we set V(u) = JC,(u)u we get by (2.2.1), (2.2.2), (2.2.16) a quantity to which
proposition 2.2.2 applies. Consequently, by this proposition

0,Ca(u) - V(u) = E"Op, [0ue" (u; ) - [TE'Op, [e' (u; -)Ju]]u
+E"Op, [0u€" (u;-) - [J'E"* Op, [€' (u; -)]u]]u

(3.3.11)

may be written as

Op, [¢" (u; )] E"u
for some €" € SZ;L;\’,Z‘H,(J, ¢, B, D.). This gives the wanted conclusion for the second
term in the right hand side of (3.3.11). Consider now the last term in (3.3.11). We

may write

(0(Ca(u)u,u)) - U = (Cy(u)u, U) + (Op, [0ue” (u; -) - UIE"u,u).
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By (2.2.1) and (2.2.23) the last term may be written as [, W (u)Udz where W (u)
is given by (2.2.33). Moreover, as we have seen above, C,(u)u is a quantity of form
V (u) i.e. of type (2.2.16). The last term in (3.3.11) is thus

(0uC1(u) - (J(V (u) + W (u)))u, u) = (E'Op, [0ue’ (u; ) - (J(V () + W (u)))]u, u).
If we apply (2.2.17) and (2.2.34), we write this as
(Opy[€'(u; )1 E"w, u) + (M (w)u, u)

where & € S?;f;;:“u (0,¢,B,D.), M(u) € Z"(i,’c’)'Jrl(a,C,B).
This concludes the proof of the lemma. O

Proof of proposition 8.3.1. — We decompose the matrices A’, A” of the statement
using (3.3.2) and apply lemma 3.3.2. The last term in (3.3.7) contributes to the last
term in (3.3.3). When d” = 0 (resp. d’ = 0) the &' (resp. €”) contribution to (3.3.7) is of
the form of the A; term in the right hand side of (3.3.3). When d” > 1 (resp. d’ > 1) we
get instead contributions to the Ay term of (3.3.3). We are left with examining the first
duality bracket in the right hand side of (3.3.7). Using theorem 2.3.1, proposition 2.3.3
and proposition 3.1.1, we may write as well this expression as contributions to the
three terms in the right hand side of (3.3.3). Note that the decomposition of A’, A”
using (3.3.2) gives 16 terms of the form of the left hand side of (3.3.7). The first duality
bracket in the right hand side of (3.3.7) gives, using the results of symbolic calculus
(theorem 2.3.1 and proposition 2.3.3), for each of these terms four contributions of
type
(Op, [f (u; )] Fu, u),

where F' € {I,I',J,J'} and f = e’e” or e¢’Ve” or €’e”V or e’Ve”V, plus contributions
to the last two terms in (3.3.3). Using estimate (2.3.1), we see that we obtain the
bound (3.3.4). This concludes the proof of the proposition since the conditions AY =
Ay, Ay = Ay may always be satisfied, using that the left hand side of (3.3.3) is real
valued, which allows to replace in the right hand side (Op, [4;(u;-)]u, u) by

(10D, [4;(u; )] + Op [, (s T,y = (Op, [ LI AT, )+

Proposition 3.3.1 provides for the Poisson bracket of two quantities given in terms
of symbols of order d’, d” an expression involving a symbol of order d’ +d". We cannot
expect anything better if we consider arbitrary matrices A’, A”. On the other hand, if
we limit ourselves to matrices that are linear combinations of I and J, we may write
the first term in the right hand side of (3.3.3) from a commutator of Op, [A'(u;")]
and Op, [A"(u;-)], gaining in that way one derivative. We shall develop that below,
limiting ourselves to polynomial symbols in u, as this is the only case we shall have
to consider in applications.
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Definition 3.3.3. — Let d € Ry,k € N, 1,{ € Ry,Ng € N,sg € R;so > v+ 5 +
max((, %) and sg > ¢

(i) One denotes by ﬂ"(i,;’)', ~,(C) the space of functions u — F(u) defined on
H#®0(S!;R?) with values in R, such that there are symbols A(u;-), p(u;-) belonging
to §Ei,;';‘ n, (€), satisfying AV =\ iV = p and an element M(u) € ’Z’t(ik')/(() such that
for any u € H® (S!;R?)

(3.3.12) F(u) = —l-(OpX[)\(u; M + p(u;)J]u, w) + %(M(u)u,u).

(ii) One denotes by H%4Y (k)N (C) the space of functions u — F(u) defined on

H#*0(S'; R?) with values in R, such that there are a symbol A(u;-) € Szik')’ N, (O)@Ma(R)

satisfying AV = A and a map M (u) € %Z:;(C ) such that
(3.3.13) F(u) = %(Opx [A(y; )]u, w) + %(M(u)u, u).

Remark. — By proposition 2.1.13 (or its special case concerning polynomial symbols)
the left half of each duality bracket in (3.3.12), (3.3.13) belongs to H*°~4(S!; R?), so
the assumptions made on sy show that F'(u) is well defined

Let us study the stability of the preceding classes under Poisson brackets.

Proposition 3.3.4. — Let di,dy € Ry, ki, by € N* v, € Ry,Ny € N. Set { =
max((, d—‘gi‘—iz). There is some V' > v, depending only on v, Ny such that for any
so >V + + ¢ the following holds:

(i) Assumed1 > 1,dy > 1,80 > 4td2=1 gnd take F; e&-’(’(k )N (§), 3 =1,2. Then

{Fy,Fy} is in ﬂ';‘,;jf;2)l,v"o &).
(ii) Assume dy,d2 € Nydy+dy > 1,580 > M and take F}; eﬁ’(k ). No ©€),j=1,2.

Then {F1, F»} is in ﬂ?,i:rf,i;)wo(@-

Before starting the proof, we study Poisson brackets of quantities involving remain-
der operators.

Lemma3.3.5. — Let d',d" € Ry,d = d' +d",v,{ € Ry,0 > v+2+max((,$),D.
a(d+v+o,Ny+1)- convem'ently increasing sequence, k', k" € N*,E € Mz(R),e €
Szlk,')’N (6,¢,B,D.),M" € (k,, (a,(, B). Denote k = k' + k", = min(1,d").
(i) Assume o > v + 3 + max((, 2). There are a symbol & € S?k_)f]\lfoﬂ(a, (,B,D),

with ¢ = max(¢, g) a remainder operator M € fd l""l(o', ¢, B) such that

(33.14)  {(Op,le(u; )| Bu, u), (M" (wyu, u)} = (Op, [E(us ) Bu, u) + (M (w)u, u).
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(ii) Let M’ € (k,)(a, ¢, B). There is Me Z’(k) (0,¢, B) such that
(3.3.15) {{M' (w)u, u), (M" (w)u,u)} = (M (u)u, u).
Finally, if e, M', M" are polynomial i.e. belong to ,'578;,')’ No((),%?,;:;((),%?,:,’,l;((), then
g Sl (0, M e 2y (¢) in (i) and B € Py (C) i (i).
Proof. — (i) By definitions 2.1.10, 2.1.11, we may write
(M" (u)u, u) Z L u(u

Il>kll ”+2

where Lj» is (j" + 2)-linear and satisfies for any o’ € [v + 2 + max((, %"),a]
(k" +j" _ 1)!

11

d’ v .
|Lj// (Hnouo, ey H"j"+1uj"+1)| < ‘ﬂ(k,,)(o, B; M”) (j” n 1)' C(J/I)BJ
3’41
—_ ’ d/l a/
X(ne) 3o’ +v+ H (ne,> ”Hnl,uellle
=0

for any £ =0,...,5” + 1. This implies that we may write JV(M"(u)u u) as ﬁ”(u)u
where ]/\4\"(11,) = Z]'H>kll jHMI-,u (u, e ,u) with Jli/ (k” ,,)(U, C B) with

f‘;i’,,mw" (0, B; M' )<C‘J’t ,,)(a,B;M")

with a uniform constant C. Denote
C'(u) = Op,[e(u; )| E, C'(u) = C'(u) +C"(u).
By (1.2.5)
(33.16) {<C’(u)u,uzL(M”( w)u, w)} = 8, (C’ (w)u, u) - (M" (u)u)
= (C'(w) - (M" (u)u), u) + ([(0uC" (w)) - (M" (w)u)]u, u).

The first bracket in the right hand side may be written
(C' ()M (w)u, w) + (u, *M" (w)C' (u)u)

and so, by (ii) and (iii) of proposition 3.1.1, has the structure of the last
term in the right hand side of (3.3.14). The last duality bracket in (3.3.16) is
(Op, [Oue(u;-) - (A/Z”(u)u)]Eu, u) and so, by proposition 3.2.1, has the structure of
the right hand side of (3.3.14). This concludes the proof of (i).

(ii) We have written above JV(M" (u)u,u) = M (v)u for some M"'. We may find
in the same way a similar M (u) such that for any v

B (M (w)u,w)) - v = (M’ (u)u, v).
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Consequently, the left hand side of (3.3.15) may be written
(M (wyu, M (w)u) = (M ()M’ (w)u, u).

If we apply (i) of proposition 3.1.1, we get the right hand side of (3.3.15). This
concludes the proof. O

Before giving the proof of proposition 3.3.4, we state and prove a lemma, giving
a similar statement, for the more general case when F, F, are defined in terms of
symbols that are not necessarily polynomial.

Lemma 3.3.6. — Let dy,ds € R+,d1 >1,dy > 1,k1,ks € N*, Ny € N,v,( € R+,0’ >
v+2Ny+8+max((, %). Let D. be a (v+d1+dz+0, No+1)-conveniently increasing
sequence, B > 0. Denote { = max((,il;r—dz). Let \j,pu; € SZ;;NO(J,C,B,D.) with

/\}’ = /\j,ﬂ;’ =puj,j=1,2 and let M, € Z"ZZ;’;(U, ¢, B). Consider the Poisson bracket
(3.3.17)
{540m D 05 ) o a5 T, w),

(0D o )T + (s )TJu,w) + 3 (Ma(uhu, )}

One may find v' = v+2Ny+6, a new conveniently increasing sequence D., and symbols
A€ St (0,¢,B, D)) satisfying XY = X\, iV = p and M € 232" (0,¢, B)
such that (3.3.17) equals

(3.3.18) %(Opx[)\(u; )M+ p(u; )y, u) + %(M(u)u,u).

Proof. — Let us study first the contribution coming from (Ms(u)u,u) in the second
argument of the bracket (3.3.17). By (i) of lemma 3.3.5 we get a contribution to

(3.3.18), with symbols A, u € SG 12"+ (0,{, B, D.) and M € £{ 125" (a,¢, B).

This is of the wanted form. Consider now the contribution to the bracket coming from

(3319) (0D s (05 )T + a5 )T, ), (O a5 )T + pia(as ), ).

Apply lemma 3.3.2 with E’ and E” equal to I and J. The last two brackets in the right
hand side of (3.3.7) give contributions of form (3.3.18). Let us study the contributions
of the first duality bracket in the right hand side of (3.3.7). If we set

O3(u) = Op, [y 0 )T + 13 (u5 )], € (0) = 31C5(w) +*C(w)]
this may be written

(3.3.20) (C1(u)JCo(w)u, u) = %([Ql(u)J-Q?(u) — Co(w)JC, (u)]u, w).
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If we set

A5(w) = 510D, Ay a5 )] + *Op, [y (w5 )]

Bj(u) = 10D, s 05 )] — ‘Op g (us )]
so that C;(u) = A;j(u) + JB;(u), (3.3.20) equals
(3.3.21) <(([B2,A1] + [As, B1]) + J([A1, As] — [B1, Ba)))u, u>
We apply proposition 2.3.3 to write

A;(u) = OPX[%()\j + A7) (u; )] + Opyle; (us )] + M (u)
(3.3.22) 1
Bj(u) = Opy [5 (5 — 1) (w5 )] + Opy [ (ws )] + M (w)

with MA,MP € £33 (0,¢,B) and ¢, f; € S (0,¢,B,D.) (for

a new sequence f?,) since ¢ > v+ Ny + 5 + f By theorem 2.3.1 the contribu-
tions of the para-differential operators in (3.3.22) to (3.3.21) may be written as

(3.3.18) with symbols A, u in Szl,;:iﬁz_)ll’\;:f?%%(a,(,B,D.) (for another D.) and

M € f?,iff;;';“lvﬁs(a, ¢,B). On the other hand, the contributions to (3.3.21)

of MJ-A,MJ.B may be dealt with using proposition 3.1.1, and give expressions of

form (M (u)u,u) for M € phitdartNotd o ¢, B). This concludes the proof of the
(k1+k2)

lemma. O

dj,l/

Proof of proposition 8.3.4. — (i) By definition of ‘%,(k,-),No ),

(3.3.23) Fy(u) = (Op, [y 05 ) 4 ;5 ()Tt ) + 2 (M (), )

DN =

. odj,v . . 3 _ ~dj.v
with A\j, u; € S(,jj)yNO(C) satisfying A} = X\, i) = p; and M; € Z’(;j)((). We may
apply lemma 3.3.6 and (ii) of lemma 3.3.5 to { F}, F>} using that here the symbols and
remainder operators are polynomial ones. We obtain the conclusion of the proposition.
(ii) We have to study the Poisson bracket of two functions of form
1 1
Fy(w) = 5(0p, [A4; s ), ) + 5 (M; (w)u,w)
with A;(u;-) € g?,z;')/’No((@)ﬂ/tz(R) with AY = A;. Lemma 3.3.5 shows that the con-
tributions coming from a Poisson bracket involving at least one term (M;(u)u,u)
may be written as the right hand side of (3.3.13), with a symbol A belonging to
Shitdamurti By @ o (R) € SHdrH () @ My (R) (where ¢ € [0,1]). On the other

(k1+k2),No (k1+k2),No
hand, the contribution coming from

30D A4 a5, ), (Op A (s Y, )
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is of the form of the left hand side of (3.3.3), with polynomial symbols. It follows
from proposition 3.3.1 (applied to polynomial symbols), that this quantity may be
written under the form of an element of ?;jf ;;l)" No (¢) for some v/ depending only

on v, Ng. O
We shall make use below of the following lemma.

Lemma 3.3.7. — Let v,{ > 0,Ny € N. There is s > 0 large enough, po > 0 and
for any B > 0, for any (d,s) € Ry X [so,+00[ satisfying either d < 1 or 2s > d >
2s — 1, for any o > s, any (0 + d + v, Ny + 1)-conveniently increasing sequence D.,
any k € N* the following holds: Let { = max((, %), a (resp. M) be an element of
Szi,;')’yNo (0,(,B,D.) ® Mz(R) (resp. Z"(i;:)'(a,c,B)). Define

(3.3.24) F(u) = (Op, [a(y; )]u, u) + (M (u)u, u).

Then for any s > so the map u — DF(u) (resp. u — VF(u)) is C' on By(po) with
values in L(H™ 4 R) (resp. H*~2¢). Moreover, there is C > 0 such that for any
u € Bs(pO)

(3.3.25) |F(u)| < Cllull§t?.

Proof. — Let us show that DF(u) extends as a linear form on H—**4. If V €
C>(S',R?) we may write DF(u) - V in terms of

(3.3.26) (Op, [a(u; )]V, w), (Op, [au; ], V)
(3.3.27) (Op, [8ua(u; -) - V]u, u)
(3.3.28) (M (u)V, u), (M (u)u, V)
(3.3.29) (BuM(u) - V, )u, u).

Let us check that these expressions may be extended to V in H—s+4.

By (2.1.44) with s replaced by —s + d, the first duality bracket in (3.3.26) is
a H~° — H® pairing. The second one is a H*~¢ — H~*+4 pairing. Note that the
conditions u € H**+$+¢+3 and ¢ > v +  + 2 of proposition 2.1.13 hold true if s > s
large enough since, because of our assumption on d, C~ < max((, 2—33 .

Consider (3.3.27). Assume first that 0 < d < 1. If s > v + {+ % we may apply
(2.1.46) with s replaced by s — d. If we assume s > d 4+ v +  + 2, we see that
this inequality implies that (3.3.27) is a H~° — H® pairing. Consider now the case
when 2s > d > 25 — 1. Then V € H—5+d¢ ¢ Hs-1 ¢ HV+i+3+9 (6 > 0 small) if
s > sg large enough, depending only on v, (. By (i) of proposition 2.1.13, we get that
Op, [Oua(u;-) - V] is in £(H*, H*=%) C £(H®,H™*) so that (3.3.27) isa H™°* — H*
pairing.
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Let us study (3.3.28). By (2.1.47), for s > so large enough in function of v,(,
M(u)u € H*"% so that the second bracket in (3.3.28) is a H*~¢ — H~*+? pairing.
Consider now the first one. When d < 1, (2.1.48) shows that for s > s large enough
relatively to v, M (u)-V € H™*, so that we have a H™°—H* pairing. If 2s—1 < d < 2s,
V € H~*+% so that applying (2.1.47) with 0’ + 1 + 6 = —s + d, we see that M(u) -V
belongs to H~°. Consequently (3.3.28) is a H~° — H*® pairing.

To treat (3.3.29), we use when 0 < d < 1 (2.1.48) to see that for V € H—**4,
(0uM(u) - V)u belongs to H™* for s > so large enough. When 2s — 1 < d < 2s,
V € H~t4 ¢ H*! so that (8, M (u)-V)u belongs also to H™* if s > s, large enough
relatively to v, by the statement after (2.1.47).

This shows that DF(u) € £(H*t¢ R). The fact that u — DF(u) is in fact
C! follows differentiating once more (3.3.26) to (3.3.29) in u, and making act this
differential on some W € H*(S!,R?). Since a, M are converging series, this just means
replacing in the general term of their development one argument u € H*(S!; R?) by
W € H*(S';R?) which does not change the boundedness properties. O

Remark. — We shall use below the following consequences of the study of (3.3.28),
(3.3.29). If F(u) = (M(u)u,u) with M € f:,’c';(a,(,B) and if s > sq is large enough
relatively to v, ¢, then v — VF(u) is a C! map from B;(p) to H*(S!; R?). Actually,
in (3.3.28), we have M (u)u € H® by (2.1.47) if s¢ is large enough. Moreover, we have
seen in the proof that M (u) -V and (0,M(u) - V)u belong to H~* if V € H™*.

3.4. Division of symbols

The aim of this section is to construct from a symbol or an operator another symbol
or operator defined by division by a convenient function. We recall first some notations
and results of [5], [1], [12].

If ng,...,nj41 € Z, denote
(3.4.1) maxa(|nol, .. -, [nj41]) = max{|nol, ..., n;j1l} = {Ine|})

#(no, .- - njr1) = 1+ max({|nol, ..., [nj11l} — {Ing |, Ine, 1})
where £ is an index such that |ng,| = max(|ng|,...,|n;+1|) and £; is an index different
from £, such that |ng, | = maxa(|nol,. .., |n;+1]). In other words, u(no,...,n;j41) is
essentially the third largest among |ngl, ..., |njt1].

If m €]0,4+00[, j € Nyng,...,nj41 €Z,0< €< j+ 1 we set

£ Jj+1
(3.4.2) Fi(no,...,njp1) = > \/m24nd — > y/m2+ni.
£'=0 /=£+1

It follows from [5], [1] Theorem 6.5, [13] Proposition 2.2.1 that the following propo-
sition holds true:
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Proposition 3.4.1. — There is a subset /" CJ0,+oo[ of zero measure, and for every
m €]0, +oo[—N, there are N1 € N, ¢ > 0 such that the inequality

(343) |Ff;l(n0, e ,'Ilj+1)| > C[J/(’no, e ,nj+1)_N1

holds in the following two cases:

o When j is odd, or j is even and £ # %, for any (no,...,njt1) € Z7+2.
o When j is even and £ = % for any (no,...,njy1) € Z7+% — Z(j), where
(3.4.4)

Z(j) = {(no, - .. ,nj41) € Z7+%; there is a bijection 7 : {0,...,0} = {€+1,...,j+1}
such that |ny(jy| = |nj| for any j =0,...,¢}.

Note that a much better lower bound for |F¥, (no, . ..,n+1)| holds when the largest
two among |ng|,...,|n;j+1| are much bigger than the other ones, and correspond to
square roots affected of the same sign in (3.4.2). To fix ideas, let us assume that £ > 1
in (3.4.2). Then for any m > 0, there are constants C > 0,c¢ > 0 such that for any
(nos ..., nj41) € ZI+? satisfying

(3.4.5) Ino| =2 C(1+ |n2| + -+ + |njta]), [na| = C(1 + na| + - + [nj41])
one has
(3.4.6) |Fr(no, -, m541)] 2 e(1+ [no| + - -+ + [nj4a ).

Recall that we introduced in definitions 2.1.4 and 2.1.12 classes of multi-linear symbols
E‘(i]’.'; No (¢) and operators /i?]')' (¢), which are the building blocks of the polynomial

~ ~d,v
symbols Sy ¢) and operators £ y(¢). These polynomial symbols or operators
(k),No (k)

have arguments (u1, ..., u;) belonging to C*(S', R?)7. It will be convenient to identify
C> (S, R?%) to C>(S', C), and so to consider symbols or operators which are functions
of arguments in C*°(S!,C)?. We introduce a special notation for them.

Definition 3.4.2. — (i) Let d € R (resp. d € Ry), v, € Ry, j € N*, Np € N.
One denotes by CE‘(iJi')’yNO(C) (resp. Cil‘é’.‘)'(()) the space of all C j-linear maps
(v1,...,u5) = ((®,n) — a(uy,...,u;;2,n)) (resp. (u1,...,u;) — M(uq,...,u;))
defined on C*(S',C)/, with values in C®(S! x Z,C) (resp. with values in
P(L%(SY; C), L%(S,C))) satisfying conditions (2.1.24), (2.1.25) and (2.1.26) (resp.
satisfying estimate (2.1.40) for any ¢/ > v + 2 + max((, %), with %c(]‘)Bi
replaced by an arbitrary constant) for any uy,...,u; € C*°(S';C).

~ ~d,v
(ii) We denote by CS?,;’; N () (resp. Cf(k) (¢)) the space of finite sums of form

(2.1.29) (resp. (2.1.41)) with a; € T o (¢) (resp. M; € CAL(Q))-
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Let j be an even integer, { = £,b € CZ‘ZJ’.')" N, (€)- Define

(3.4.7)
/ =S ' o m) 3% '/ T
b(ul,...,u],m,n)—; /Slb(HnU,m,n)2ﬂ+; Slb(l'InU,a: y,n)e 5

!
where I, U’ = (II,, uq, ... NI u;), and where the sum Z is taken over all indices
n' = (ny,...,n;) € Z? such that there is a bijection 6’ : {1,...,¢} — {£+1,...,5} so
that |ng/(e)| = |ne| for any 1 < € < £. Then b’ € Cxdv - (¢). Actually, integrations

(j)wyo
by parts show that the last term in (3.4.7) belongs to CE?J;Y};’V’?'N(() for any N. We
set
(3.4.8) b (u1,. .y ujsz,m) = (b= b)(u1,...,uj;2,n).

Note that, denoting by & the = Fourier transform,
(3.4.9)

21 F[Op [V (M U’ N, wj1)(no) = By (M U'sm0 — mjg1,m41)ibyign (nj41)
= [6(no — 7 41)bx (M U';0,m41) + 8(no + 1541)by (T U5 =215 11, m11)] 8541 (n41)

so that
li
(34.10)  Op (U )ujyr= Y, D MayOp, [b(In U5 )My, 541

T0,Mj+1 n

[nol=[n;+11
By the support condition (2.1.24), if b(IL,,ui,...,I,;us5+,n) # 0, we have
Inil,...,|nj| < %In|. This shows that the conditions on (no,...,n;+1) in the

sum in (3.4.10) is equivalent to
(3.411 There is a bijection 6 : {0,...,¢} — {£+1,...,5 + 1} such that
A1) [ngeery| = |ne| for any £ € {0,...,£}.

Consequently, we may write as well (3.4.10) as

’
Opx[bl(U,;')]uj‘!-l = Z Hnoopx[b(ﬂn'Ul; ')]Hnj+1uj+1

!/
where Z means the sum over all n = (no,...,n;41) satisfying (3.4.11).
Ifw= (wo,...,wj+1) € {-1,1P*2, if (uq,...,u;) — A(u1,...,u;) is a j-linear
map with values in the space of linear maps from C*(S!,C) to C*°(S!,C), if A,, =

V—=A 4+ m?2, we set

J
Lw(A)(ul,. . ,Uj‘) = woAmA(ul, oo ,u]‘) + Z ij(ul,. . ,Am’ll,[/, e ,Uj)

(3.4.12) =

Fwjt1A(ug, ..., uj)Ap.

We shall use the following lemma.
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Lemma 3.4.3. — Define

j+1

(3.4.13) F“(ng,...,nj41) = Z wey/m? +n2.
£=0

(i) Assume wowjt1 = 1. Then for any m €]0,+oo[ there is ¢y > 0 and for any v € N,
there is C > 0, such that for any (h,n1,...,n;+1) € ZI+? with

def
1+ |n'| € 1+ max(|ni],...,|n;|) < co|nji1l
and |h| < 3(n;41),

(3.4.14) 107 [F(h+nj41,n1,. . ,15401)] 7 < Clngya) 7.

J+1
(i) Assume wowjt1 = —1 and #{;wp = —1} # #{l';we = 1}. Then for any m €
10, +oo[-H, for any v € N, there is C > 0 such that for any (h,n1,...,nj41) € Z+2
with |n’| < i|n]~+1| and Ihl < %]nj+1|

(34.15) |07, [F&) (h+njyr,mi, ... nip0)] 7Y < CRY () N (1) 77

J+1
(iii) Assume wowjt1 = —1 and #{l;wpy = —1} = #{l';wp = 1}.Then for any m €
10, +oo[—H", for any v € N, there is C > 0 such that for any (h,nq,...,n;41) € Z3+?2
with || < $njtal, |B] < 3Inj41| and (h+nj41,m0,. .., nj11) € Z(w), where

Z(w) = {(no,...,nj+1) € Z7%2; there is a bijection 6 : {f;w; = 1} = {fw, = -1}

with |ngg)| = |ne| for any € with we = 1}

one has

- HN -
(34.16) 187, [FE) (h+nj11,m1, ..., ny40)] 7Y < C(RY ()TN )7
Proof. — We prove (ii). Since wow;+1 = —1 we may write F,,(zw)(no, ...,Mjy41) as the
sum of a term depending only on n' = (n1,...,n;) and of a quantity given up to sign
by

1
(no — "j+1)/0 [m? + (tno + (1 = t)n;41)*] 72 (tno + (1 — t)nj41)dt.

This implies that for any fixed m, any v > 1, any (h,n1,...,n;41) as in the statement

(3.4.17) |‘9;Ij+1 [F'r(nw)(h + 41,1, 4]l < Cy(R)(nggn)
From this we deduce by induction that 97| [F (B +nj41,m1,. .. nj41)] ") may be

written as a linear combination of quantities of form
F;' (h’ ’I’L,, nj+1)

4.1
(3 8) Hg(h’a n,anj-}-l)"'H;Y’(hvn/’nj+1)
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where 0 < 4/ < v and I'},, H| satisfy

|a‘g'+1rz'| S Ca (h)7<nj+1>—-7_a

(3.4.19) \H] (b, nj41)] 2 eq(n’) ™
Iaa HZ(hﬁ nl, nj+1)' < Ca,'y(h’)(nj+l>_a7a > 0.

nj+1
Actually, at the first step of the induction, I') = 1, HY = F )(nj+1 + h,n',njt1)
and the second and third inequalities (3.4.19) are just (3.4.3) and (3.4.17). Estimate
(3.4.15) follows from (3.4.18), (3.4.19).

Let us prove (i). In this case, wow;4+1 = 1, so that the square roots involving the
largest arguments are affected of the same sign. Consequently, if the constant ¢y of
the statement is small enough

|F&) (njpn + hyma, .y mjpn)| 2 e(njga).
Moreover
w 1—
107, F& (g1 + hymay o mygn)| < Congaa)

These inequalities imply (3.4.14).

Finally, let us show that (iii) holds true. We may apply the proof of statement
(ii) if we are able to show that the lower bound of H, in (3.4.19) still holds. The
functions H, (h,n’,n;j;1) equal either F',(nW)(nj+1 + h,n1,...,n;41), or a translate of
such a function obtained replacing n;,1 by n;j41 + A. Up to a change of notations,
inequality (3.4.3) shows that the lower bound of the second line of (3.4.19) holds true
for those (h,n’,n;;1) satisfying the assumptions of the statement (since, changing
notations, we may reduce to the case when Z(w) is given by (3.4.4)). The proof of (ii)
applies then without any change and brings (3.4.16). O

Proposition 3.4.4. — Let m €]0,+o0[ be outside the exceptional subset N of proposi-
tion 3.4.1. Let j € N*,d € Ry,Nog € N,v,{ € Ry, (wo, ..., wj41) € {—1,1}7+2,

(i) Assume wowjt1 =1. Let b € CZ?;;’II’\Z) (¢). There is a € CE?]I')’J'V?) (¢) such that
(3.4.20) L, (0Op,la(uy, ..., uj;-)]) — Op, [b(ui, - . ., uj; )]

belongs to ‘C/i‘(ijt')’“(g).
(ii) Assume that wowjt1 = —1 and that #{l;w, = 1} # #{l;w, = —1}. Then if
No > 2(Ny + 1) (where Ny is the ezponent in (3.4.3)), for any b€ S = (¢), there

Sdv+C+N1+2 ()N
. NZ
is a € BV 0T (C) such that

(3.4.21) L, (Opyla(uy, ..., u5;-)]) = Op, [b(us, - . ., uj;-)]-
(iii) Assume that wo = 1,wjy1 = —1, that j is even and wy = - - = wj/p = 1, wjjo41 =

- =w; = —1. Then if Ng > 2(N; + 1) for any b €€ Ci?};No(C), there is a €
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Cf)'(ij’.')’,}i'm F2(¢) such that
(3.4.22) L, (Op,[a(us, .. .,uj;-)]) = Op, [b" (u, . . ., uj; )]

where b is defined by (3.4.8).

Proof. — (i) Let x1 € C§°(R), x1 =1 close to zero and decompose b = b; + by where

max(|n4l,...,|n;
b1(u1,...,Uj;w,n)=Z--~ZX1( ( 1(|n> | Jl))b(l'[mul,...,Hnjuj;a:,n).
niy n;

If we apply (2.1.39) to a = by, N = 2, and use that if by(Il,, u1, ..., Iy, uj;2,n) 0
there is an index ¢ for which |ng| > c(n), we see that Op, [ba(u1,...,u;;-)] de-

fines an element of C/i‘(i]’.')’”(C). Consequently, we just have to find a solving
L,(0Op,(a)) = Op,(b1). Writing from now on b instead of b, i.e. assuming that if
b(In, u1, ..., Iy, us;%,n) is not zero, then |ny| + --- 4 |n;| < ¢(n) for some given
positive constant ¢, we have to find a so that, for any no,...,n;41

Oy, Lo [Opy [a(Tn, s,y - -, Mg ), 64

(3.4.23)
= I1,,0p, [b(TLn, u, ..., Iy ug; -)]]Hnj+luj+1.

If we use the definition (3.4.12) of L, and A,,,IL, = vVm?2 4 n?Il,,, we may write this
equality

(3.4.24) Fp? (o, - m41)ax (M u, - Ty gm0 = M1, M)

= I;X(H’nlul’ sey Hn]uﬁ Nno — nj+1,nj+1).

We solve (3.4.24) defining a by

a(Hmul,. - ,Hnjuj;x,njﬂ) -
1 (P ihy fo(w) -1
(3.4.25) gEX(m) L Fp(h+nji1,n1,. 00y mg41)
h J

X b(In, w1, - -, Oy uj; ¢ — y,mjy1)dy
where ¥ € C§°(] — 3, 3[), X =1 close to [-1, 1]. We estimate

a 98 .
070y, ., 0, ur, ... Ilnjuj; 2, mj41)

from (3.4.25), using the Leibniz formula (2.1.10), estimate (3.4.14) and performing
two integrations by parts of L = (1 + h%)~}(1 + h- D,) to gain a (h)™? factor. We
obtain estimates of type (2.1.25), (2.1.26) with v replaced by v + 2. Since (2.1.24) is
also trivially satisfied, we obtain that a € Ci?}i—‘fvi ©)-

(ii) Let us define again a from b by (3.4.25). We make act 6;"85]_“ on a, using
the Leibniz formula (2.1.10). We get a sum of contributions with 8’ 0y, ,-derivatives
falling on X(h/(n;41))(F)~" and " On,,-derivatives falling on b, with '+ 8" = .

We perform (' + 2 integrations by parts using the same vector field as above, to get
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a (h)™? factor to make converge the series. Using (2.1.25) and (3.4.15) we obtain a
bound in terms of the sum for 3’ + 3" = 8 of

J
(3:426)  (myy) T IHEHIAERANOTT 0 () EHDITT () T el 2
=1
for any ¢’ > v + ¢ + 2, if ny is the index such that |n;| = max(|n4|,...,|n;|). We
want, to get the conclusion, find a bound in

(3.4.27) (nj+1>d—-ﬁ+(a+2ﬂ'(1+Nx)+B"No+2+V+C+N1—0)+ ﬁ (ng) MLy, e| 2
e=1
forany o > v+(+2.If 0 > B'(1+N1)+v+(+2, (3.4.26) applied to ¢’ = o—F'(1+Ny)
implies (3.4.27). If 0 < B'(14+ N1) + v + { + 2, (3.4.26) with ¢’ = o implies (3.4.27).
Assuming Ny > 2(1 + Ny), we obtain estimate (2.1.25) for the symbol a, with v
replaced by v + ¢ + Ny + 2.
If we estimate 282" b using (2.1.26), we get instead of (3.4.26) the bound

— ’ " ’ / 1)N. ’ =)
(nj+1>d B+a+B'+B" No+2+v+o (n’)(ﬂ +1) N1 H ("2)0 ”Hng/ul’“L2<nf> ||, el 12

1<e'<e
4L

which implies a bound of type (2.1.26) for a, with » replaced by v + N; + 2, using

that (n') < C(n;41) and Ny > N; + 1. Since moreover the support condition (2.1.24)

is satisfied by a by construction, we get that a € CFXV)‘:]’.')"*I'V?N‘“ ©).

(iii) We define a by (3.4.25) with b replaced by b”. By (3.4.10), (3.4.11), we have
F1(nw) (’no, N ,nj+1)&x(l'[nl Upy .- - ,Hnju]';’no - nj+1,nj+1)
= L(no.ms 1) 22 0x(Mna s o 5510 = M1, m41)
so that in (3.4.25) with b replaced by b” we may insert in the integral the cut-off

1{(h+"j+1 1y i1)EZ (W)}
The rest of the proof is similar to the case (ii) above, using estimate (3.4.16) instead

of (3.4.15). This concludes the proof. g

We conclude this section by an analogous of the preceding proposition for remainder
operators. Let d > 0,v,{ € Ry. When M € C/]‘(iji')’((),w € {-1,1}7*2 with j even and
when #{f;wy = 1} = #{f;we = —1}, we decompose M = M' + M" with

li
M'(uy,...,u) = > HpgM(Iu, .., Moy u),,,,

Moy yMj41
!
where Z stands for the sum on those indices for which (3.4.11) holds true.

Proposition 3.4.5. — Let m €]0,+00| be outside the exceptional subset N of proposi-
tion 3.4.1.
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(i) When j is odd or j is even and #{f;wp = 1} # #{f;we = —1}, there is for any
M in C/i‘(ij’.')'(() an element M € C/]‘(ij’.')""Nl (¢) such that L,(M) = M.

(ii) When j is even and #{l;wy = 1} = #{l;we = —1}, there is for any M in
Cflz’.')'(C) an element M € C/i'(ijl')’“LNl (¢) such that L,(M) = M".

Proof. — (i) The equation to be solved may be written

o Lo (M) (W, uty -y ),y = Mg M (I ug, - o, Ty )T

41 Tj+1

or equivalently
(3.4.28)

F{ (o, .. njp1) Mg M (Mn g, .o, i, ug)ny = Mg M (T, -, I ug)IE

Nj41 Tj41°
If ¢ is such that |ng| = max(|no|,...,|n;j+1|), we have by (3.4.3)
|F,(n“’)(n0, ce ,nj+1)| > cu(no, . ,7lj+1)_N1 > C(l + |n[|)—N1.

If we use estimate (2.1.40) for the right hand side of (3.4.28), we deduce from this
that M satisfies the estimates of an element of C/]?;;'+N H¢).
(ii) The proof is similar, using that on the support of

M, M" (I, ug, ., I g )T

N4

estimate (3.4.3) holds true. d

3.5. Structure of the Hamiltonian

In this section, we shall express the Hamiltonian given by (1.2.8) using the classes
of operators introduced in section 2.1.

Proposition 3.5.1. — Let G be the Hamiltonian (1.2.8). One may find v > 0 and:

o A symbol e(u;-) in g(ll")’70(0) satisfying e(u; -)v = e(u; ),
~1,v
o An element M € £;)(0),

. 0 0
such that if we denote E(u;z,n) =

, we may write
0 e(u;z,n)

(3.5.1) G(u) = = (Anu,u) + %(Opx[E(u; I, uw) + %(M(u)u,u)

DO =

Before starting the proof, we study some multi-linear expressions. Consider a col-
lection of j + 2 > 3 constant coefficient operators

(3.5.2) Qe=A."?or Qe =A,1%0,,0<L<j+1
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of order —1/2 or 1/2. Let a € C*®(S%; R). For any function u, in C*(S'; R?) denote

1

up = Ye | and set ve = u? € C®(S}; R). Consider

u? ¢
7

(35.3) | a@@ow) -+ @ssrvsen)ie.

Lemma 3.5.2. — Let x € C§°(] — 1,1[), x even, x = 1 close to zero, Suppx small
enough. One may find v > 0 and for any i,7 with 0 <i <4 < j+ 1 symbols
, ~1l,
(3.5.4) ag (u;z,m) in L) ,(0)
and remainder operators
(3.5.5) i(w) € 45(0)

such that (3.5.3) may be written
Y [@u)@O0p o (o T T usgs ivds
0<i<i’ <j+1

+ Y /u,-(w)[M;',(uo,...,a,...,@,...,uj+1)ui,]dw

0<i<i/<j+1

(3.5.6)

Proof. — We decompose vp = 3 II,,,v; and write QII,, vy = bg(n¢)Il,,ve with

’ine

(3.5.7) be(ng) = (m? + n2)™Y/2 or by(ny) = ———.
\/m?+n?
We may write (3.5.3) as
1 i+l
(3.5.8) @i S > a(=no =+ = njya) [ be(ne)ve(ne).
no

nj+1 £=0

Let x1 € C§°(R), x1 even, x1 = 1 close to zero with Supp x; much smaller than
Suppx. Define for 0 <i < <j+1

(3.5.9) @} ((ne)exs) = x1 (glé%(lnel)/(ni/))-

Decompose (3.5.8) as

(3.5.10) > Li+r

0<i<i’<j+1
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with
(3.5.11)
. 1 AL ‘
I,Z/ = W Z cee Z a(—no — = nj+1) H b[(ﬂg)’i)g(’ﬂ[)@b
) Mj4+1 £=0
1 Jj+1
S S JET) DLEIENN | (YT )
ng Tjt1 £=0 1,8/ 51<’
Contribution of I". — We write I" as [vo(z)M (v1,...,v;)vj+1dx With
M(vy, ..., v5)vj41 = (271_ = Z Z e %G (—ng — +++ — njt1)
Tj+1
(3.5.12) 41
X (1 - Z <I>2,)b0(n0) H bg(ng)ﬁg(Tlg)
1,450<3/ =1
so that
”HnoM(Hnl U1y ’H"j vj)nnj+1 ”2‘_’(L2)
(3.5.13) R i
<lamo =+ —ni)l|1 = > @) II Jbe(ne)| IInnnewan
,i’; z<'L’

We may bound the right hand side by the product of C [[;Z, i+l (ne)? H =11 Tn,vel L2
times

J+1
ne) ot

(3.5.14) a(no =+ —ni)l|(1- Y @)

1,4/ 51<’

as each by is a symbol of order at most 1/2. To prove that M defined by (3.5.12) may
be written as an element of /Wlb')'(O) for some v, we just need to bound (3.5.14) by
C(ng) > *! for any £ = 0,...,j + 2. If one among |ng|, ..., |n;11| is much larger
than any other one, the rapid decay of & brings the wanted estimate. If not, and
if ip < iy are those two indices for which |n;,| and |n;,| are the largest two among
Inol, ..., |nj+1], we may assume that C~1|n;,| < [ni;| < Clniy| for some constant
C > 0. If there is another index £y # 4o, o # iy and a positive constant ¢ > 0 such
that |ng,| > c|n;, |, (3.5.14) has again the wanted estimate as (n;,) ™" (ni;) ™" (ng,) 7 <
C (nio)‘sa. On the other hand, if for any £ # g, ig, |n¢| is much smaller than |n;,| ~
Ini;| then @Zg(no,...,ﬁ;,...,nﬁl) = 1 and ®(ng,...,M,...,nj+1) = 0 for any
(2,4') # (0, ig), so that the cut-off in (3.5.14) vanishes. This shows that I” contributes
to the last sum in (3.5.6).
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Contribution of I,. — We take, to simplify notations, i = 0,s = j + 1, set n’ =
(n1,...,nj41) and write ®(n') instead of ®9,,(n’). We decompose

o, =I1)+1(2)

where
(3.5.15)
no + M1 j+1
- i) ! I+ b ~ )
ue 27T)-7+2Z g}l —Tg —nj41)@(n )X(——<n]+l> )!;[0 o(ne)de(ng)
We may write I(2) = [vo(z)M (v1,...,v;) - vj41dz with
M('Ula-..,’Uj) CUj41 = Z Z —ng — -+ _nj+1)e—inom
Tj+1
(3.5.16) N i
<I)n’ 1-— M b n b n 'i) ns).
( )( X( (ny41) )) o O)E e(rue)De(ne)

We thus get for M a bound of type (3.5.13) except that (1— 35" ®% ) has to be replaced

d(n') (1 - X(Z%:—jﬁ—l)) To show that M may be written as an element of /iz]’,')’(O),

we just need to bound

Jj+1
6510 falno =~ ny)lo(w) (1 - x( 1)) T (a7
I+l =0

by C(ng) 27! for any ¢ and some v. By definition of ®, on its support |ng| <
c1({nj+1),£=1,...,7 for some small ¢; > 0 depending on Supp x;. If |ng| > |n;41| or
[nj41] > |nol, the |é| factor in (3.5.17) gives the wanted estimate. If on the contrary
C~Yno| < |nj+1] < Clno| for some constant C > 0, and if we use that because
of the (1 — x) cut-off, we may assume that |ng —n;y1| > c¢(njt1) for some small
¢ > 0 much larger than ¢;, we get again from the |G| factor a bound in (nj+1)_N ~
(max(|nol, . .., |nj+1 |))_N for any N. This implies the wanted upper bound, and shows
that I(2) contributes to the second sum in (3.5.6).
We are left with studying quantity (3.5.15). Let us define

0
ajy1(v1, ..., 052,n) = 27r Z Ze”("”' 1) g (x)

(3.5.18) ;

x®(ny,...,nj,n H (ne)be(ne)bj1(n).
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Then a;+1 satisﬁes (2.1.24), (2.1.25), (2.1.26) for Ny = 0,¢ = 0, some v and d = % S0
that a9, , € E 0(0) Moreover

d?ﬂ(vl,...,vj;no,n) = - ZZ&(TLO -—Ny— -+ — nj)Q(nl,...,nj,n)
(271')3 - m

J
x [ ] be(ne)oe(ne)bjsa(n)

=1
so that if wg = bo(D)wvo
(wO, Opx [a2+1(nn1v1? H"jvj; ')]vj+1>
no + Mjt1
DIPIL "o)X( )
27r) o~ (nj+1)
X @941 (Mo, 1, -+, T 055 =m0 — M1, nj4) D41 (njga)

= I(1).
This shows that I(1) may be written as a contribution to the first sum in (3.5.6) and

concludes the proof of the lemma. O

Proof of proposition 3.5.1. — According to (1.2.8), G(u) is the sum of 1 (A, u,u) and
of quantities of form (3.5.3) with v, = u? the second component of u. By lemma 3.5.2,
these quantities may be written as a contribution to the last term in (3.5.1) and to
expressions of form

(3.5.19) /uzQ[OpX[é(u; Nu?dx

where Q is a constant coefficients operator of order 1/2, and where € € S ’) ", (0) for
some v. By theorem 2.3.1, (3.5.19) may be written as contributions to the last two
terms of (3.5.1), replacing eventually v by some larger value. O
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CHAPTER 4

SYMPLECTIC REDUCTIONS

The goal of this chapter is to construct an almost symplectic change of vari-
ables in a neighborhood of zero in H*(S!;R?) such that a Hamiltonian of form
(Op, [E(u;-)]u, u), where E is a 2 x 2 matrix of symbols of order one, be transformed,
up to remainders, into (Op, [E’(u; -)|u, u) where the matrix E’ is a linear combination
of I, J with coefficients symbols of order one.

4.1. Symplectic diagonalization of principal symbol

Let B > 0,v > 0,0 € R,0 > v+2 be given. Let D. be a (¢ +v+ 1, 1)-conveniently
increasing sequence. Let « be a positive integer. We set

Ao(u;z,n) = Ag(n) def \/m? + n2, po(u;z,n) =0
and assume given for 1 < k < kK — 1 elements A, py, of S(l,;')’yo(a, 0, B, D.), such that
(41.1) Me(wiz,n) = Me(wz,n), we(wiz,n) = uk(u; @, n)
and that
(4.1.2) Me(uw;z,m) — A (u;z,n), pr(uw;z,n) + py(u;z,n)

belong to S?,;')’Y“Sl(a, 0,B,D.). Let Q be an element of 8(1510(0,0, B,D.) ® M2(R) sat-
isfying
(4.1.3)

Q(u;x,n)v = Q(u;z,n), and *QY(u;z,n) — Qu;z,n) € S?,;')'j)l(a,o, B,D.) @ Ma(R).

Since for any matrix valued symbol A, Op, (A)u = Op, (ZV)T;, condition (4.1.1) and
the first condition (4.1.3) imply that Op, (AxI + uxJ) and Op, (2) send real valued
functions to real valued functions. Condition (4.1.2) and the second condition (4.1.3)
imply in view of proposition 2.3.3 that these operators are self-adjoint at leading
order. According to proposition 2.1.13 (i), if sp > v + g is fixed, there is r > 0
such that if u belongs to the ball Bs,(r) of center 0 and radius r in H®(S';R?%),

SOCIETE MATHEMATIQUE DE FRANCE 2012



80 CHAPTER 4. SYMPLECTIC REDUCTIONS

then Op, [Ae(u; )] + pk(u;-)J]u and Op, [Q(u;-)]u are well defined and belong to
H#0—1(S!;R?). This allows us to consider for u in such a ball

1« 1
(414) G =3 Z (O [ (13 )T + o () T, 1) + 2 (O 2w )], ).
k=0
In this section, we want to “diagonalize” the €2 contribution, i.e. replace Q by a matrix
which is a linear combination of I and J, up to lower order terms. Moreover, we want
to do that in an approximately symplectic way.

Proposition 4.1.1. — There are a constant B’ > B and a symbol q belonging to
S?K')’O(a, 0,B’,D.) ® M2(R) satisfying ¥ = q such that if we set

k—1

(4.1.5) a'(u;z,n) = Z(Ak(u;w,n)I + pr(u; z,n)J) + Qu; z,n)
k=0

and p(u;z,n) = I + q(u; z,n) the following properties hold:
() *pY(u;z,n)Jp(u;z,n) — J € S'_l’"(a, 0,B',D.) @ M2(R).

(%),0
(ii) There are scalar symbols A (u;x,n), pe(u; z,n) in S(lﬂ')’o(cr, 0,B’,D.) such that
[V —_—V
(4 1 6) ’\N(u;l‘:n) = )‘N(u;mvn)’ /I‘K(U‘; T, ’I’L) = /‘Ln(u; T, n)
o A = AL, i + iy belong to 03+ (0,0,B',D.)
and

(4.1.7) 'Y (u; 2, m)a’ (u; 2, n)p(u; 3, m) — ’;)()\k(w z,n)I + pi(u; z,n)J)

€ S5 6 (0,0,B',D.) ® Ma(R).

Before starting the proof, let us comment on the meaning of the proposition. If we
set

18) S A
0 -1 10

and decompose the matrix Q in (4.1.5) as
(4.1.9) Qu;z,n) = by (u;z,n)I + ba(u;z,n)J + b (u;z,n)I" + by(u;z,n)J’

where by, b}, bs, b, are scalar symbols of order 1, formula (4.1.7) asserts that using
p, we may transform Q in a matrix for which b}, b, are of order zero. Moreover, (i)
means that Op, [p(u;-)] will be a linear symplectic transformation (up to a remainder
of order —1).
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Let us define some notation. Since Ag(n) = vVm?2 + n? is invertible, we may set

L(u;z,n) = XAo(n) " Ne(usz,m), k=1,..., k=1
mi(u;z,n) = Ao(n) u(uw;z,n),k=1,...,6k—1
le(u; T,n) = Ao(n) ™ 'b1 (u; z, n)
U(u;z,n) = Ao(n) ™10} (u; z,n)
m,(u;z,n) = Ao(n) 1ba(u; z,n)

(4.1.10)
m’(u;z,m) = Ao(n) "' b3 (u; 2, m)

Wu;z,m) = i: Ik(u;z,n)
k=1
m(u;z,n) = ka(u;w,n).

By construction, [, m belong to 5(1) 0(0,0,B,D.), I',m’ belong to S’(N) 0(0,0,B,D.).
Moreover, [ = IV, m=a",lI'=1"V,m’ =@V and [ — IV,m +m", (vesp. I' — I'V,m’ —

m’V) are in S(I;,gﬂ(a, 0, B, D.) (resp. S(—ﬁl):g"'l(a,O,B,D.)) by (4.1.1), (4.1.2), (4.1.3).
According to (4.1.5), (4.1.9) and (4.1.10), we may write

(4.1.11) o/(u;z,n) = Ao(n)[(1+1(w; z,n)) [+m(u; z,n)J+1' (u; z,n) I +m' (u; z,n) J'].

Set
1 |1 1 1 1

4112 K=— Kl =it K = —

L12) V2 [1 —i] N AR

and define
1+1+41 U+ im/

(4113) S(u;x,n) =KJd K™= iAo + i+ 1m +im ‘
—('=im’) —(1+1)+im

The proof of proposition 4.1.1 will rely on the diagonalization of S(u;z,n).

Lemma 4.1.2. — There is a constant B’, depending on B and on the quantities
‘.TI?IL)'O(U 0,B,D.;l), ‘.TI(K)O(U,O B,D;l"), ‘.710"0(0,0 B,D.;m’') and there are sym-

bols Aw, 1y € S(ln'; o(0,0,B',D.), satisfying conditions (4.1.6), and a matriz of symbols

ge S( )0(0,0 B',D.) ® M2(R), satisfying
K~1q'K — K™'4K € 5,57 (0,0,B', D.) ® Mz (R)

LI+ §)VII+§) - T €5,y (0,0,B,D.) ® Msy(R)

(4.1.14)

SOCIETE MATHEMATIQUE DE FRANCE 2012



82 CHAPTER 4. SYMPLECTIC REDUCTIONS

such that

(326 M) + (30T me) 0

41.15) 'T(I+§)VISUT+§) -
(4.115) *TI+@VISUT+§) —i 0 — (326 M) +i(F pw)

belongs to S?,;')':gl(cr, 0,B’,D.) @ M2(R).

Proof. — Define

l/2 +m/2
4.1.1 M = —_—_— —].
( 6) d(u;z,n) ‘/1 e 1

Since I belongs to 8% (0,0,B,D.) and I',m’ belong to S° (0,0, B,D.), we may

(1),0 (K),0
consider them as elements of S?{)VO(O',O, B"”,D.) and Sg;'; 0(0,0,B",D.) respec-

tively for any B” > B. If B” is large enough, we may make ‘ﬂ?i')"o(a, 0,B", D),
‘ﬂ?;';’o(a,(),B” ,D;l), ‘JI(();';’O(U,O,B” ,D.;m’) arbitrarily small, so that assumptions
of proposition 2.4.1 will be satisfied with B replaced by B”. This proposition implies
that 6§ € ™ (5,0,B’,D.) with B’ = 2B". Moreover, § = §¥ and § — §¥ belongs to

(x),0
S ;’S“Ll(a, 0, B’,D.). The eigenvalues of the matrix

1+1414 U +im/
(4.1.17) [ +i+wm +im ]

—('—im’) —(1+1)+im

are (1 + I)(1 + 6) + im. Define ¢ by

12 4 m'? —1/2 1 _ l’?—i;’a -I
(4118) (I +dtwz,m) = (1- ot ) Lo TEes |
1+ 0)2(2+9) [_ s 1

Applying again proposition 2.4.1, we see that § belongs to S?';';,O(a, 0,B’,D.)@ M2 (R),
eventually with a new (larger) value of B’. The inverse matrix is

(4.1.19) I+ §(u;z,n))~ = J1d + G(u; z,n))J.
Moreover since I’ — 1"V, m’ —m'V, [— [V are of order —1, G—G" € S(_Kl)’,gﬂ(a,O,B’,D.)@

M2(R). Since the eigenvectors of (4.1.17) associated to the eigenvalues (141)(1+6)+im
and —(1 + I)(1 + &) + im are collinear respectively to

1 _ U +im’
and T+ (2+9)
U —im’ 1 ’

T+ (2+9)
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(I + g) diagonalizes (4.1.13), so taking (4.1.19) into account

(4.1.20)
LTI + G(uw; z,n))JS(u : 2,n)(I + §(u; z,n))

@D +8) +im 0
=1 .
° 0 (14 1)(1 +68) +im
By (4.1.10)
k—1 k—1
(1 + (1 +68) +idom = (D Ak + 1) A+ 6) + (D px + ba)
k=0 k=1

may be written since & € S?,;';,O(a, 0,B’,D.), by,by € S(ll’g';yo(a, 0,B’,D.), and using (i)
of theorem 2.3.1 as

£ M)+ i)
k=0 k=1
with Ae, e € S2¥ (0,0,B',D.). Since § = §Y, by = by, by = by, § — 6" (resp.

(%),0
by — bY,ba + bY) is of order —1 (resp. of order 0), conditions (4.1.6) are satisfied by

e, li. Since § — GV is of order —1, (4.1.19) and (4.1.20) imply the second relation
(4.1.14) and (4.1.15). By a direct computation, K~1§K = K~!gK. Since § — §" is of
order —1, this implies the first relation (4.1.14). The proof is complete. O

Proof of Proposition 4.1.1. — We set
1
(4121)  q(uz,n) =K '§u;z,n)K, q(u;z,n) = gla(uz,n) + @ (u; z,n)].

By the first relation (4.1.14), ¢ — q1 belongs to S'(_K;:g*'l(o, 0,B’,D.) ® M2(R) and by

construction q is an element of S?,;'; 0(0,0,B,D.) ® M2(R) satisfying ¢ = §¥. We set

p = I + g and show that (i) of proposition 4.1.1 holds. By (4.1.21) and the second
relation (4.1.12)

(4.1.22)  p(u;z,n) — ' J'KJ(1+ §(u;z,n)K € S5 (0,0, B, D.) ® Ma(R).
Together with the second relation (4.1.14) and (4.1.12), this implies that
tpVJIp—J e .S’(_nl):g“(a, 0,B’',D.) ® My(R)

i.e. (i) of proposition 4.1.1 is satisfied. If we use (4.1.22), the definition (4.1.13) of S
in terms of a’ and the second equality (4.1.12), we get that

tpVa'p+itKJ[PTHI + )Y JS(I + §)| K

belongs to S&';:EI(U, 0,B’,D.) ® Mz(R). Using (4.1.15) and the definition of K, we

obtain (4.1.7). This concludes the proof of the proposition. a
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4.2. Symplectic change of coordinates

Our goal is to define from the symbol p = I + q constructed in proposition 4.1.1 an
almost symplectic change of variables near the origin in H*(S!; R?) for s large enough.

Proposition 4.2.1. — Let 0 > 0,v > 0,B > 0 be given with o — v large enough and
let D. be the (o + v + 1,1)-conveniently increasing sequence fized at the beginning of
section 4.1. Let B’ > B be the constant given in the statement of proposition 4.1.1.
There are B” > B’, pg > 0,39 > 0 and an element r € S?:)’YO(O‘, 0,B",D.) such that,
if we set for v € Bs,(po)

(4.2.1) P(v) = (Id + Op, [r(v; -)])v,

then v is for any s > so a C' diffeomorphism from a neighborhood U, of 0 in
H*(SY; R?) to a neighborhood Wy of 0 in the same space, satisfying the equality

(4.2.2) q(@(v);z,n) = r(v;z,n).

Moreover, for any v € U, ¢'(v) extends as an element of £(H %, H™?®). In addition,
1 is almost symplectic in the following sense: for any o +1 > s > sg + 1, there is
C > 0 such that for any v € Us, *0¢(v)J(v) — J extends as a bounded linear map
from H*~1(S1;R?) to H*(S'; R?) with the bounds

(4.2.3) "% () JO% (v) = Tl pare—1,m2) < Cllvllrs-

Remark. — The gain of one derivative in (4.2.3) above will be essential when applying
this proposition to our quasi-linear problem (which loses one derivative).

Let us first construct r through a fixed point argument.
Lemma 4.2.2. — Let q € S?:;O(U,O,B’,D.) ® M2(R) be the symbol constructed in

proposition 4.1.1. There is a constant B” > B’ and a symbolr € S?,:;’O(O', 0,B",D.)®
Mo (R) such that

(4.2.4) q(v + Op, [r(v; )]v; z,n) = r(v; z, n).

Proof. — Recall that elements of S?:;,o

terms, so that (4.2.4) is an equality between formal series. Decompose q(v;z,n) =
Yisn@i(v, ..., v,2,n) with ¢; € E?:i)io(a,O,B’, D.) ® Ma(R) and look for r as

7

(0,0, B’, D.) are formal series of homogeneous

r(v;z,n) = er(v,...,v,a:,n)

j > 4
JIZK j
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with r; € 507, (0,0, B”, D.) ® My(R). We shall define
g<i(vsz,n) = Y qi(v,...,v;z,n)
k<i'<i

r<j(v;z,n) = Z ri(v,...,v;z,n).
k<j'<J

We construct the r;’s by induction. We first set r, = q,. By definition of m?:;p(') we
have, since Kk > 1

‘ﬁ?:n),o(o, 0,B",D.;ry) < ‘ﬁ(();';yo(a, 0,B",D.;q)

(4.2.5) B
0,v .
S ﬁm(ﬂ),o(a’ Ov BI, D-$ q)
If B” is large enough, we may assume that the right hand side of (4.2.5) is smaller
than 1. Assume next that r,,...,7;_1 have been constructed such that
(4.2.6) My 0(0,0,B", Dijre) < 1.

Remark that the term homogeneous of degree j in the left hand side of (4.2.4) depends
only on 7,...,Tj—1, so that, equating terms of homogeneous degree j in (4.2.4) is
equivalent to taking the term homogeneous of degree j in

q(v + Opy[r<;(v; )]v; z, n).

We define r; to be this term of degree j. By proposition 2.2.1, we know that
ri(u,...,u;;¢) is in E((),;"j) 0(0,0,B",D.) ® Ma(R), or equivalently that r;1; is in

S(iy 0(0,0, B”, D.) ® My(R), and by (2.2.7)

(4.2.7) nov

(K,),O(U’ 0’ B”’ D7 T'<j+1) S Cmo"f 0(0-7 0’ B”’ D; q)

(~),

with a constant C depending only on m?;’;,o(a, 0,B”,D.;r<;). The induction assump-

tion (4.2.6) shows that C is independent of j, and using the last inequality in (4.2.5),
and assuming that B’ is taken large enough in function of C, B’, m?’;';,o(a, 0,B',D.;q),
we obtain that the left hand side of (4.2.7) is smaller than 1. We have performed the
induction hypothesis (4.2.6) at step j + 1. This concludes the proof. O

Proof of proposition 4.2.1. — We define ¢(v) by (4.2.1). Note that this is meaningful
if v € By, (po) for some large enough so and small enough pg. Actually, if so > v + g,
(i) of proposition 2.1.13 shows that for ||v||zs0 small enough and s > s

(4.2.8) 0D, [r(v; vl s < CsllolFrao 0]l -

Together with the implicit function theorem, this shows moreover that 1 is a local
diffeomorphism from a neighborhood of zero in H*(S'; R?) to a neighborhood of zero
in H*(S!;R?), for any s > so. Equality (4.2.2) follows from (4.2.4) and the definition
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of 4. Let us show that (4.2.3) holds when s > so + 1. By (4.2.1) the differential of v
acting on a tangent vector V is given by

0Y(v) -V = (Id + Op, [r(v; )))V + Op, [0u7(v;-) - V]v
= (1d + Op, [g(@(v); )V + R(v) -V

where we used (4.2.2) and defined

(4.2.10) R(v) -V = Op, [0,7(v;") - V]o.

(4.2.9)

From (i) of proposition 2.1.13, we have
(4.2.11) IR(v) - Vigs < Cllollfra IV | zeo 0] -
From estimate (2.1.46), we deduce
(4212) [R() - Vlig-s0 < Cllollfrae IV -o 0]l e
This implies together with (i) of proposition 2.1.13 that 1’(v) extends as an element
of L(H~° H~®) if s > s¢ large enough. Moreover, by duality
(4.2.13) I*R()ll eczrso, mrey < Cllvllfras 0]l are-
Let us compute
"0yp(v) Jp(v) = *(1d + Op, [¢(¥(v); )]))J (I1d + Op, la(¥ (v); -)])
+ “R(v)J(Id + Op, [a(¥(v); -)])
+*(Id + Opy[a(4(v); ) JR(v)
+ *R(v)JR(v).
Since (Id + Op, [q(¢(v);)]) is bounded on any Sobolev space, (4.2.11) and (4.2.13)
imply that the last three terms in (4.2.14) are bounded operators from H®~! to H*®
(actually from H®° to H®) if s > so + 1, with operator norm smaller than C||v||%..
We apply to the first term in the right hand side of (4.2.14) (ii) of theorem 2.3.1,

proposition 2.3.3 and (ii), (iii) of proposition 3.1.1. This allows us to write, since
p=1I+q

(4.2.14)

*(1d+Op,[q(u; -)])J (Id + Op, [q(u; -)])

(4.2.15) = Op, ['p" (u; ) Jp(u; )] + Op, [e(u; )] + M (u)

with e € S(_Nl):g,(a,O,B” ,D.) ® My(R) for some v/ > v, some new sequence D. and
Me 2??,’5,(0, 0, B"). By (i) of proposition 4.1.1 and (i) and (iii) of proposition 2.1.13
(in which we take in (2.1.47) 0’ = s — 2 — §), we obtain if so+1 < s < o + 1 that
(4.2.15) may be written J + S(u) where S(u) is a bounded operator from H*~! to
H*, with operator norm bounded from above by C||ul|%.. Setting u = ¥(v), we get
the conclusion of the proposition. O
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We end this section stating a corollary of proposition 4.1.1 and 4.2.1 that will be
needed in the last chapter.

Corollary 4.2.3. — Let G'(u) be given by (4.1.4) and let 1) be the local diffeomorphism
constructed in proposition 4.2.1. There are symbols

(4.2.16) (Vs 2, n), i (v; T, 1) in S(ll’c';,o(a, 0,B",D.)
for some B"” > B, satisfying
(4.2.17) X =X, BY = fin

and there are s > 0, po > 0 and a map v — L(v), defined on Bs,(po), C* on
a neighborhood of zero in H®(S';R?), with values in R, with VL(u) € H® for any
s € [so + 1,0 + 1], satisfying

(4.2.18) IVL(u)| s < CllullF?,

such that for any v € B, (po)

' (Yo %KZ_I (Opy (03 )T + e (v5) T, v)
(4.2.19) =
+ 50D, a3 )T + in(v3 )0, 0) + L(o).
Moreover, 1 satisfies
(4.2.20) 189 (v)J* 0% (v) = Tl g(rre-1,m+) < Clvllf

for any s € [so + 1,0 + 1], any v in an H® neighborhood of zero.

Remark. — The above corollary states that if we set u = 9(v) in (4.1.4), the matrix-
valued symbol €2 may be replaced by a new symbol, which is a combination of I, J
with coefficients scalar symbols of order 1. The remainder L(v) has by (4.2.18) a
gradient belonging to H® when v is in H®, while the gradient of the duality brackets
in (4.2.19) is only in H*~!. In that way, we can say that the change of variables 1
diagonalizes the principal part of the Hamiltonian, removing the components of 2 on
I’ and J’ in a decomposition of type (4.1.9).

Proof. — By (4.2.1) and (4.2.2)
(4.2.21) %(v) = Op,[p(¥(v); )]

with p = I + q. We plug (4.2.21) in (4.1.4), which gives using notation (4.1.5)

(4222)  G'W0) = 5{'0plp(¥(); O, [a'(Y(); OB PH(); o).
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By (4.1.7) and the theorems of symbolic calculus (theorem 2.3.1, proposition 2.3.3
and proposition 3.1.1) we may write

*Op, [p(u; -)]Op, [a’ (u; -)|Op, [p(u; -)] = Op, [P (u; -)a’ (u; -)p(u; -)]

(4.2.23) +0p, [e(u; )] + M (u)

where e(u;-) € S?:)':O(a, 0,B"”,D.) ® My(R) for some v/ > v, ¢ > v/ + 2, and some
new sequence D., and where M € f:;';l (0,0, B"). Define L(u,v) = (Op, [e(y; )]v, v) +
(M (w)v, v). It follows from (2.1.44) and (2.1.48) that 8, L(u, v) belongs to £(H~*,R) if
u,v € H® and s is large enough. The same is true for 9, L (u, v) by (2.1.46) and (2.1.48).
Consequently, since we have seen in proposition 4.2.1 that ¢'(v) is in £(H %, H™%),
we see that L(v) = L(v(v),v) satisfies (4.2.18). We deduce from that that the con-
tribution of e, M in (4.2.23) to (4.2.22) give the last term in (4.2.19). By (4.1.7), the
first term in the right hand side of (4.2.23) brings to (4.2.22) a contribution of form
L(v) (coming from the remainder in (4.1.7)) and the main term

5 > (0P e ((); M + e ($(w); o).
k=0

Note that forany k=1,...,k—1
Ak(P(v);z,m) = Ak((I + Op, [r(v;-)])v; z,m)
= )\k('v;w,n) + ;\k(v;w,n)

with A\ € S(l"c';yo(a, 0,B",D.) by proposition 2.2.1. Since \.(¥)(v);-) is also in such a
class of symbols by the same proposition, and since similar properties hold true for
Lk, we obtain (4.2.19). Finally, property (4.2.20) follows from (4.2.3) and the fact that
' (v) is invertible from H® to H® and from H*~! to H*"! for any s € [sop + 1,0 + 1]

with sg large enough. O
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CHAPTER 5

PROOF OF ALMOST GLOBAL EXISTENCE

The aim of this chapter is to combine the results obtained so far to prove theo-
rem 1.1.1. We shall do that constructing a function ©, defined on a neighborhood of
zero in the phase space H®(S;R?), equivalent to the square of the H* Sobolev norm,
and such that O(u(t,-)) will be uniformly controlled on a long time interval when «
is a solution to (1.2.9). We shall construct ©; in several steps, using composition by
(almost) symplectic transformations.

5.1. Composition with symplectic transformations

We discuss here several composition formulas. We consider a small neighborhood
of zero in H*(S!; R?), namely B,(p) for some p > 0 small enough. Let us recall that
if F: Bs(p) — R is a C! function such that for any u € Bs(p), 0F(u) € £(H*,R)
extends as an element of £(H~°,R), we may consider the gradient VF (u) and the
Hamiltonian vector field X (u) as elements of H*(S!; R?). If we assume moreover that
u — Xp(u) is C! on B,(p) with values in H®, we may solve locally the differential
equation

®(1,u) = Xp(®(1,u))

(5.1.1) 504 =1

Let us remark that if F' is C? on B;(p), then for any 7, D®(,u) which is a priori an
element of £(H*®, H®), extends as an element of ¥(H %, H™*). Actually D® solves
the ordinary differential equation

D%(r,u) = (DXF)(2(r,u))D%(7,u)

D®(0,u) =1d

so that we just need to show that DXp(u) = JDVF(u) is a continuous function
of u, with values in £(H~°, H™*®). Note that the definition of the gradient, namely
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Jos VF(u)-Vdz = DF(u)-V for any V € C(S;R), implies for any W € C*(S'; R)
/S 1 (D(VF(u))-W) - Vdz = D*F(u)(W, V)
= D*F(u)(V,W)
- /S (D(VE@W)-V) - Wda.

We want to see that the left hand side extends continuously to W € H=*and V € H*®.
This follows from the fact that such an extension holds for the right hand side, as
D(VF(u)) € £(H*, H®), since we assume that u — Xp(u) is C! on B,(p).

If moreover F(0) = 0, F(0) = 0, for p small enough, the solution of (5.1.1) is
defined up to time 7 = 1 and xr(u) = ®(1,u) is a canonical transformation from
B,(p) to a neighborhood of zero in H*®, satisfying xr(0) = 0. If © and G are two
functions on a neighborhood of zero in H*(S';R?), we get for u € B,(p) for small
enough p the usual equality

(5.1.2) {80 xr,G}(u) ={6,G o x5 }xr(u).

If we assume that G is a C? function on B,(p) such that, for any k € N* Ad*F .G =
{F,Ad*"'F -G} is also C' on B,(p), we have

& 6(@(t,0) = (-1 (AFF - G)(@(t,1)
for any k € N, so that
N k 1
(5.1.3) Goxp'(u) = A(}C!F -G(u) + 7\/'17/0 A —=7)NAAVTF - G)(®(—7,u))dr.

k=0

If we have moreover an estimate of type [Ad*F - G| < Ck!A*||u||%;. for some constants
C > 0,A > 0, then for p small enough, we shall get

400 k
_ Ad*F
(5.1.4) Goxp'(u)= § : 5 - G(u).
k=0

The above formula will apply when F is given by an expression (Op, [a(u; )]u, u), with
a symbol of order zero. Nevertheless, we shall have to consider also expressions of that
form involving symbols of order 1. In that case, VF(u) or Xr(u) belong only to H*~!
when u € H®. Consequently, we cannot consider (5.1.1) as an ordinary differential
equation. To avoid the resolution of (5.1.1) in that case, we shall use instead of (5.1.2)
a formula of the same type, up to a finite order of homogeneity, and use special
assumptions on 6, G, F to be able to write convenient substitute to (5.1.3)

Recall that we defined in definition 3.3.3 the class H#’ ?,’;)', ~,(€) of functions

on H*(SY;R?) for so > v + % + maX(Ca%),so > %. By proposition 3.3.4, if
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ki ks € N*, Fy € H'GY) v (C), Fa € H' (i n, (C), their Poisson bracket {F, Fy} is in
ﬂ’(kl+k2) No (€) for some v/ > v depending only on v, Ny, and where ¢ = max((, gl

We shall denote by %% (0) ~, (€) the space of functions of form
(5.1.5) (A u,u) + F(u)

where a €R FeHP (1),N, (¢)- Proposition 3.3.4 extends to the case when F) €

(0) NO(C) F, e f[’(k) ~o(€) (k € N*) and shows that {Fy, F>} is in ﬂ'(k) No (&) for
some V' > v.
From now on, we fix a large integer k. We introduce truncated Poisson brackets.

Definition 5.1.1. — Let F (resp. G) be an element of #'}; , Y Ny () (resp. H' (6‘)’ N (©)
with d € N*, v > 0, Ny € N*. Decompose F' and G as sums of homogeneous terms
and assume that all components of order larger or equal to « vanish,

k—1 k—1
(5.1.6) F(u) =) Fi(u), G(u) =Y _ Gi(u)
k=1 k=0
We define
(5.1.7) {F.G}x= > {Fi,Gu}.
40 <k—-1
£>1,0'>0

We obtain an element of H'% (1) No (¢) for some v/ > v. We set by induction

AdF -G = {F,G},

(5.1.8) . .
AdJF .-G = Ad.F-(AdJ7'F)-G.

We have for some increasing sequence v; depending only on v, Ny and for (; =

max((, 442)

(5.1.9) AdIF -G € H' (5 (G)-

Finally, we define

(5.1.10) exp[TAd.F]-G =) FAdn] .F.
j=0 7

Note that by (5.1.9) and the truncation in definition (5.1.7), the coefficients of T7
vanish when j > k.

Lemma 5.1.2. — Let s € N*, Ny € N, 09(u) = 2 (AS,u,AS u) element of 5"[’?3 OO(O)

Let G € %’z(’);ﬁo 0) = e Uu>05‘[’ ~,(0) and let H € ﬂ’(ll;“;vo (0). Assume that G and
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H have no component homogeneous of order greater than or equal to k. We have the
equality

(5.1.11)

{exp(TAd,.H)0% G}, = exp(TAd. H) - {©° exp(—~TAd H)}..

d .
class #H'Y

Remark that for fixed k, the functions in the preceding formula are well defined
when u € H® with s large enough: the regularity condition of definition 3.3.3 of the
()N (65), namely

5 d+j

5 d
s>y+§+max((:j,§)=u+

is satisfied for any j = 1,...,k when d = 2s and s is large enough relatively to &, v.

Proof. — Since (5.1.11) is an equality between polynomials in T', we just need to
check that all T' derivatives coincide at T' = 0. Note first that

d
d—T{exp(TAdnH) -089% G}, = {exp(TAd.H)Ad.H -6°,G},
and that

%[exp(TAdnH) {0% exp(—TAd.H) - G},]
= exp(TAd.H)[Ad.H - {60% exp(~TAd.H) - G},

—{069%,Ad.H - exp(~TAd.H) - G}
= exp(TAd H){Ad H - 0% exp(—TAd H)-G},
using the Jacobi identity

{{F1, B2}, F3} + {{F2, F3}, Fu } + {{F3, F1}, F2} = 0.
Iterating the above two inequalities, we get for any j € N

j .

%—{exp(TAd,eH) 0% G}, = {exp(TAd H)Ad,’H - 6°, G},
j

(5.1.12) %[exp(TAdnH) {8°, exp(~TAdH) - G}.]

= exp(TAd.H){Ad,”H - 2, exp(~TAd, H) - G} .

This shows that the two quantities (5.1.12) coincide at T = 0 and concludes the
proof.

O

To write a formula similar to (5.1.2), we introduce if ©°, G, H are as in the state-
ment of the preceding lemma, the notations

(5.1.13) 69 0 Xfi (u) & exp(Ad,H) - O(u)

B G o (x5) ! (v) = exp(—Ad.H) - G(u)
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so that (5.1.11) may be written at T =1
(5.1.14) {69 0 xfy, G = {83, G o (xF) ™" }u o X
We shall deduce theorem 1.1.1 from the following result.

Theorem 5.1.3. — There is a large enough so € N and Ny € N and for any s > sg
there are pg > 0 and

e A C! map F : B,(po) — R, such that u — VF(u) is C* from Bs(po) to
H*(SY;R?) and F(0) = 0,8F(0) = 0, 8VF(0) = 0,

o A diffeomorphism 1 from B,(po) to a neighborhood of 0 in H®(S';R?) with
¥(0) =0,

o An element H € f{'(li;:?voo (0),

such that if we set

(5.1.15) O,(u) = (85 o xF) 09" o xp(u),

any solution u of (1.2.9) satisfies, as long as it exists and stays in Bs(po),
d

(5.1.16) 7195 (u(t )| < Cllut, E:?

with a uniform constant C > 0.

Remark. — In (5.1.15) note that we use on the one hand the notation xr to denote
the canonical transformation defined after (5.1.1) from a C' map on H® such that
u — VF(u) is also a C' map from H® to H®, and on the other hand the notation x;
defined by (5.1.13). We could not give a meaning to xz as a map from a neighborhood
of zero in H® to H® solving an equation of form (5.1.1). Nevertheless, notation (5.1.13)
is perfectly meaningful since it involves only elements of classes #’ ?}S, , (0) for which
the stability property with gain of one derivative of proposition 3.3.4 (i) holds.

Let us show that theorem 5.1.3 implies theorem 1.1.1. It is enough to show that
if the solution of (1.2.9) exists over some interval [0,7] and satisfies for ¢t € [0,T],
u(t,-) € Bs(po) with a large enough s, then for any ¢ € [0, T]

(5.1.17) lut, e < Cllu(0, ) +/O llu(r, )2 dr]

with a uniform C > 0. Actually, since ||u(0,-)||gs < Ae for some A > 0, a standard
continuation argument allows one to deduce from (5.1.17) that there is ¢ > 0 and
A" > A such that if T < ce™* and € > 0 is small enough, |u(t,-)||gs < A’e for any
t € [0,T]. This allows one to extend the solution up to a time of magnitude ce™*.
Let us deduce (5.1.17) from (5.1.16). By this inequality, as long as u(t, -) stays in

Bs(po) and t € [0, T,

0.(u(t,) < 0,(u(0.)) +C | Ju(r,
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We just have to find some K > 0 such that for any u € B,(pg)
(5.1.18) K7 ull]: < 0s(u) < K|ju||%s-

Since xr and v are C?! local diffeomorphisms sending 0 to 0, it is enough to get such
an estimate for © o x%. By (5.1.13), (5.1.10) and (5.1.9), ©% o X% — 69 belongs to
H ?ls)’f'jf,o (¢x). Definition 3.3.3 of that space and proposition 2.1.13 (in the special case
of polynomial symbols) show that

(65 o X% — ©3)(w)| < Cllulle

if s is large enough and u € B;(po). Estimate (5.1.18) follows from that.
We have reduced ourselves to the proof of theorem 5.1.3. In the following three
sections we shall construct successively maps F, v, H involved in (5.1.15).

5.2. First reduction: elimination of low degree non diagonal terms

Let u be a solution of (1.2.9), smooth enough and defined on some interval [0, T7].

Then

d

31 Os(ult, ")) = DOs(ut, ) - Xc (ult, )
(5:2.1) = (., G}(u(t, )

={(8% oxfr) o™, G oxp' Hxr(ult, "))

using (5.1.15) and (5.1.2). The aim of this section is to construct F in order to simplify
Go XI_,l up to a given degree of homogeneity x. By proposition 3.5.1 we may write,
using notation (3.3.1),

1 1
G(u) = E(Amu,u) + Z(Opx[e(u; .)]Iu’ u)
(5.2.2) i .
Y4 1
4<OPX[€(U, N u,u) + 2(M(u)u,u)
~1,v
1)0(0), M € £;)(0) for some v > 0, e verifying €Y = e. We want to

choose F' in such a way that G o Xgl will be given by a similar expression where all

where e € SLY

contributions in I’ (or J') up to order k+ 1 will be removed. In that way, Goxz' will
be the sum of 1(Anu,u), of an element of H#” (li,)/,o(o) for some new value of v, and of
contributions vanishing at least at order x+ 2 at zero. We shall first compute G o X;l
for any given F' with a convenient structure and then, in a second step, choose F' in
order to eliminate all bad terms in the expansion brought by the first step. Recall

that we denote by B;(p) the open ball of center 0, radius p > 0 in H*(S!;R?).

Proposition 5.2.1. — One may find v > 0, symbols a, 8 € 5?1’)",0

BY = B, an element G' € H' %i')',o(O), a large enough number s > 0 and, for any

(0) satisfying &v = a,
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o > sg, a constant B > 0, a (v + o + 1,1)-conveniently increasing sequence D., an
element §, € S(l,;';’o(a, 0,B,D.) ® My(R) verifying g = gx, a C* function u — L(u)
defined on Bs,(p) for some po > 0, satisfying for any s € [so, o[

( ) VL(u) € H*(S';R?) if u € Bs(p) for a small enough p > 0

5.2.3
IVL(u)||z= < Cllulljt

such that if we set

(5.2.4) F(u) = (Opy[o(u; )T + B(u; ) I Ju, u)
we have
(5.2.5) Goxpl(u) = %(Amu, w) + G'(w) + (Op (G (s ), ) + L ().

Let us note that the map F defined by (5.2.4) satisfies VF(u) € H® if u € H?,
s € [so, o[ i.e. that OF (u) extends as an element of £(H~°,R). This follows from (i)
and (ii) of proposition 2.1.13 if s is large enough (see (2.1.44) and (2.1.46)). Moreover,
since F' is polynomial in u, these estimates show that © — VF(u) and u — Xp(u)
are C! maps from H*(S!;R?) to H*(S!;R?). We may thus consider the flow &(7,u)
of (5.1.1), and for u € Bs(p) with p small enough, define

(5.2.6) xr(w) = 9(1,w), X5 (u) = B(~1,).

As mentioned before the statement of the proposition, the first step of the proof will
be the computation of G o X;J for any given F of form (5.2.4).

Lemma 5.2.2. — Letvy >0, a,8 € S?{;'?O(O) be given with @" = a, B¥ = . One may
find sp > 0, ps, > 0,v > vy and for any o > so a constant B > 0 and a (v+1+0,1)-
conveniently increasing sequence D., a symbol g, € S(l,’c';’o(a, 0,B,D.) ® Mz(R), and
a C! function u — L(u) defined on Bs,(ps,), satisfying (5.2.3) such that

k—1 k
(27 Goxp'w) =Y oo G+ (Opylaeus us ) + Luw).

k!
k=0

Proof. — Let us show first that we may find sg > 0, p9 > 0,v > v and for any o > sg
a constant B’ > 0, a (o + v + 1,1)-conveniently increasing sequence D., a constant
C >0 and

e A sequence (gk)k>x of elements of S(l,;’)',o(a,o, B',D.) ® M(R) satisfying
My 0(0:0, B, D.sgx) < 1,

o A sequence (Lg)k>x of C'-functions on Bs,(ps,), such that for any s € [so, 0]
there is ps > 0, Cs > 0 so that for any u € Bs(ps), VLg(u) € H® and |VLg(u)||gs <
C,CFk!|ul/itY,
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such that for any K > &

k-1 K

Goxr') =3 AT G+ 3 5 (Opxdon(us )

K+1
(5:28) +Y et
T R e P ) N

We prove (5.2.8) by induction on K. By (5.1.3) with N =k —1
(5.29) Goxp'(u) = 2 OA(;: -G(u )+/1 %(Aan-G)(Q(—T,U))dT.
The definition (5.2.4) of F' shows that F belongs to the class J ?i')’?O(O) of defini-

tion 3.3.3, and G € H ;i')'?o(O) if vy is large enough. Proposition 3.3.4 (ii) implies
that )
K -+ I»V__
Ad"F -G e ﬂ(n)’03(1/3) (n) " 0(0)

for some v > vy i.e. we may write

(5.2.10) Ad®F - G = (Op, [gx(u; )]u, u) + (M (w)u, u)

~1,v
with g, € S(ln';o( ) ® Ma(R), My € £(,y(0). Let Ly (u) = (M (u)u,u). By estimates
.1.47) an, of proposition 2.1.13, if s > s large enough, u) belongs to
2.1.47 d (2.1.48) of ition 2.1.13, if 1 hVL,l6 bel
H*(S'; R?) when u € H*(S!; R?), and
IVLL(w)lls < Cllull it

If we set L, (u) = fol(l — 7)Y M (), ) (®(—7,u))dT, L, verifies similar properties
since D®(—7,u) € L(H~%, H*) as seen at the beginning of section 5.1. Let o > s¢
and choose a (v+1+0, 1)-conveniently increasing sequence D. and a positive constant

B’ such that g, € S5 (0,0, B, D.) ® Mz(R), , B € S} (0,0, B, D.) with

(5.2.11) no

ty0(0,0,B',Dal’ + BJ') < 1,9

(,g) O(O',O,B’, Dagn) S 1

(Note that taking B’ large enough, we may always make the left hand side of the
preceding inequalities as small as we want for given a, 3, g.). It follows from (5.2.9),
(5.2.10) and the definition of L, that (5.2.8) with K = x — 1 holds true.
Let us show that (5.2.8) at rank K implies (5.2.8) at rank K + 1. Integrating by
parts the integral in (5.2.8), we get
ﬁ <0PX (95 +1(u; )], u)
(5.2.12)

(1 — 7)K+1
/ (K +1)! —————{F, (Op, [9K +1(w; )]0, ) Hw=a(—ru)dT.
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Taking definition (5.2.4) of F' into account, we may apply to the Poisson bracket in
the above integral proposition 3.3.1. This allows us to write this bracket as

(5.2.13) (Opylgx+2(w; )Jw, w) + (Op, [ex+2(w; )]w, w) + (M 42 (w)w, w)

where giy2 € S(lI’é'+2)’0(o, 0,B’,D.) ® M3(R), and where for some # > v and some

new sequence D. (independents of the induction step)
ex+2 € S?}?Jrz),o(m 0,B',D.) ® My(R), Mg 12 € fz}'<7+2)(07 0,B').
Moreover, by (3.3.4), (5.2.11) and the induction hypothesis

m(}ﬂ.g)(” 0,B,D;gk+2) <1

and by (3.3.5)
M4 (0,0, B, D exi2) < Co

Nk s2)(0,0, B's Mic2) < Co.

The first term in (5.2.13) gives, when plugged in the integral (5.2.12), the last term
in (5.2.8), at order K + 1. Set

(5.2.14) Lic 42(u) = (Opylex+2(u; )u, u) + (Mi42(u)u, u).
By estimates (2.1.44), (2.1.46), (2.1.47), (2.1.48) of proposition 2.1.13, L}, is a C*
function of u on B,(ps) (for p, > 0 independent of K) such that u — VL ,(u) is
in H*(S!;R?) with an estimate

IVLi 2 (W)= < C(s)(CB)¥ (K + Dlfull .
If we set

1
Licsa(u) = /0 (1= 7)KHLY o (@(—7, u))dr

it obeys similar estimates, since we have seen after formula (5.1.1) that D®(—7,u)
extends as an element of £(H~*, H™*) so that V(Lj, ,(®(—7,u))) is in H*. We have
proved (5.2.8) at order K + 1.

To finish the proof of lemma 5.2.2, we still have to make K go to +oo in (5.2.8).
We just need to prove that for some B > B’

e There is a symbol g, € S\* (5,0, B, D.) ® Ma(R) such that

(k),0
+o0
(5.2.15) ge(u;z,n) = ,CZ k'gk u;z,m),

e The function L(u) = 3722 k_ll)!Lk(u) satisfies (5.2.3),
e The integral

1 (1 _ K
(5.2.16) /0 %(Opx[gml(w;-)]w,w>|w=q>(-f,u)df
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goes to zero when K goes to +o0o0 and u remains in By, (ps,)-

Let us prove (5.2.15). Since gi € S(llé')'yo(a, 0,B’,D.) ® M2(R), we decompose using
definition 2.1.5

gk(ua z, n) = Z gk,j(ua e U T, 'fl)
izk
with g ; € Z(k ), 0(0,0,B',D.) ® M2(R). Then gu(u;z,n) = Y5 Gr,j (U - - -, u;T,1)
with
21
Or,j(ui,...,uj;z,n) = Z Hgk,j(ul,...,uj;:v,n).
k=k

We need to check estimates (2.1.20) and (2.1.21) i.e. we have to evaluate

Z(k+J—1)‘ 2% <22j(l~z+j—1)!
G+ ~54+1 G+ -

k=K
We thus obtain for g, ; estimates of type (2.1.20), (2.1.21) with a new constant B =
4B'.
We must next verify that L(u) satisfies (5.2.3). This follows from the bounds
IVLk(uw)| e < CsCRk!|ul|%t? satisfied by each Ly if ||ul|zrs < ps small enough.
Finally, by (i) of proposition 2.1.13,

[{Opy [9xc+1 (s )w, u)| < C(CBY ' ||u|| 5 K

which shows that (5.2.16) goes to zero when K goes to infinity if ||u||gse < ps, small
enough. This concludes the proof of the lemma. Od

Proof of proposition 5.2.1. — The last two terms in (5.2.7) contribute to the last two

terms in (5.2.5), for any F of form (5.2.4). We have to show that we may find such a

F so that the sum in the right hand side of (5.2.7) may be written (Amu,u) + G’ (u)

with G'(u) € H'7; ), Y 5(0) for some v, up to remainders contributing to the last two

terms in (5.2.5). Let us write

= Ad'F
oG = G+{FG0}+{FG Go} + Z

k=0 k=2

k
(5.2.17) Ad

with Go(u) = 3(Amu,u). Since G — Gy vanishes at least at order three at zero, the
contribution to {F,G — Go} homogeneous of degree k depends only on Fy/, k' < k.
The same is true for the last sum in (5.2.17). Consequently the expression may be

written
Kk—1

(5.2.18) Go+ Y _[Gk + {Fk,Go} + Hi] + D _[Gr + Hy]
k=1 k>kK

where the last sum is finite and where Hj is homogeneous of degree k + 2 and
may be expressed using iterated brackets of Fy/, k¥’ < k, and Gj/. Consequently,
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by proposition 3.3.4 (ii), Hy belongs to % :,;';‘I’O(O) for some v§. Moreover, the expres-

sion ) ;5. [Gk + Hi| belongs to H, ’"°0(0) so may be incorporated to the last two
terms in (5.2.5), reasoning as in the study of (5.2.14), if the constants v, B of the
statement of the proposition are taken large enough. For 1 < k < k — 1 write, using
decomposition (4.1.9) of any matrix

Gy + H, = ;C+GZ

with G}, € H ':,;';‘I’O(O) homogeneous of degree k + 2 and

1
(5.2.19) Gil(u) = i(Opx[g_kI' + B, JTu, w)
where oy, 3, € §(1 ,;')"”0(0) satisfy &) = ay, BV = f, and are homogeneous of degree k.
To reduce expression (5.2.18) to (5.2.5), we have to construct Fy so that {Fy;, Go}+GY,

may be written as a term (M (u)u,u) with M € Z’(k) (0) (for a new value of 1),
that may be incorporated to G},. In other words, we are left with proving the following
lemma:

Lemma5.2.3. — Let a;,[3, be as above. There are ay,Br € S?k')'OOH(O), satisfying

&y = ok, By = Br and My € Z)(k) (0) so that

{(Op, [ok (w; )I' + Br(u;-) I |u, u), Go}

(5.2.20) — (Op, [ay,(u; )T’ + 8, (u; N u, u) + (M (w)u, u).

Proof. — In the proof, we omit the subscripts k in @, 8, @, 8, M. Let us take complex

u
coordinates (w,w) related to the real coordinates [ 1] of u € H*(S'; R?) through
U2

en 20 O
w U2 2 1 —2 U2

- Since Op,[a(u; )] = Op,la(u; )], Op, [B(u; )] = Op,[5(u; )] we have, denoting

(5.2.22) ~(w, ;- )=Q(K_1 [;] ) "'ﬁ(K_l M )

w

the equality
(5.2.23) %(Opx[g(u; '+ B(u;-)J'Ju,u) = Re / [Op, [v(w, w; -)]w]wdz.
St

Since
Go(u) = %(Amu,u) = / (A w)wdz
Sl
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we look for a symbol v(w,w;-) in Cg?,;')'f’oﬁ (0) such that

(5.2.24) { /§ (Op,[y(w,w; Yw)wd, Go} - /S (0p,r(w,m; Yw)wdz

equals some remainder. Let us decompose

k

w,Ww;) = W,y...,W,W,...,W;"*
~(w, ;) g:u( l )

with 7, € Cf]?,’;;‘:’o(O). We look for «y as

k

(5.2.25) Yw, ;) =Y (@, ..., Ww,...,w;")
£=0

with v, € Ci?,’c';‘,’: %(0). Using expression (1.2.14) for the Poisson bracket in complex

coordinates, we may write the first term in (5.2.24) as

k
5.2.26 i /L O W,y ..o W, W, ..., WW-wdx
(52.26) > ., Llopnl )
= ¢ k—¢
where Ly(-) is defined by (3.4.12) with wp = 1, w1 = - =wp = —Lwpy; = -+ =

wk+1 = 1. By (i) of proposition 3.4.4, we may find v, € ci(();c';{)(;d(o) and M, €

C/”lz;c';‘l’w(o) such that (5.2.26) equals

k k
Z/ Opx[zl(ﬁ,.,.,'u_),w,...,w;-)]w -wdz + Z/ [My(w, ..., w,w,...,wwwdz.
=08 =0 /st
If we define y by (5.2.25), we get that (5.2.24) equals [ M(w,ﬁ)w - wdx with
- k
M(w,w) = ZMZ(E,...,E,w,...,w).
£=0

Let us define
1 -
a(u;z,n) = 3 [v(Kw;z,n) + v(Ku; z, —n)]
Blus ) = — o [y(Kus 2, ) ~ 3(Kusz, 7).

We obtain elements of 5?1:)’?0”(0) satisfying @" = a, 8 = 3 such that

Re /S1 Op, [v(w, @; ) |w - wdz = %(Opx[aI' + BJu, u).
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Taking the real part of (5.2.24) and using (5.2.23) we have proved
1 1
(Ol )T+ B0 )7 Ju,w), Go} = 3 (O laws )T+ B(as ) uyw)
+Re €s t(M(Ku)w)wdx.
~1,v5+2
Writing the last term as (M (u)u, u) for some M € f(k)o (0) we obtain (5.2.20). This
concludes the proof. O

5.3. Second reduction: elimination of higher order non diagonal part

The construction of F' performed in section 5.1 allowed us by (5.2.1) and proposi-
tion 5.2.1 to write

(31)  £0.(t) = (00 xk) 0v™, G oxg e (u(t, )

with

(5.3.2) Go Xgl(u) = Go(u) + G'(u) + (Opy [ (u; -)]u, u) + L(u)

where G’ € #' zi')',o(O), and is the sum of homogeneous terms of order k = 1,...,k—1,

Jx € S(l,;‘)',o(a, 0,B,D.) ® Mo(R) and L satisfies (5.2.3). The goal of this section is to
choose ¢ in (5.3.1) in order to eliminate the non diagonal components of g, i.e. those
along I’ and J’. In other words, we want to do with g, what we did in the preceding
section for components of lower degree of homogeneity, except that we do not want to
get as remainders symbols of order one, homogeneous of degree « + 1, but a symbol
of order zero, homogeneous of degree k.

By definition ofﬂ'(li')”o(O), we may find A\(u;-), p(y;-) in 5(11,1)1’0(0) satisfying AV = ),

~1,v
BY = pand M € £(;,(0) such that

1 1
(5.3.3) G'(w) = (0P (A(ui )T + plus ) T)u, u) + 5 (M (w)u, u).
Note that in the duality bracket, we may always replace Op, (A + pJ) by

1
§[OpX(AI + uJ) + *0p, (AT + pJ)]

so that, by proposition 2.3.3, and up to a modification of v and M, we may as-
sume that AV — A\, 1V + u belong to 5?1")',0(0). In the same way, we may in (5.3.2)
replace §. by a symbol %Q(u, ) € S(I,;')"O(a, 0,B,D.) ® M(R), satisfying tQV — Q €
S?,;';Bl(a, 0,B,D.) ® Ma(R) (for a new value of v,D.), up to a modification of L
in (5.3.2). Decomposing A, u, M as sums of homogeneous contributions Ag, g, Mk,

k=1,...,k—1 we write

(5.3.4) Go(u) + G’ (u) + (O, [gx (u; -)Ju, u) = G’ (w) + G’ (u)
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with
k—1
G'(u) = % (Op, ( Ak (s ) + prg(u; ) J)u, u) + %(Opx[ﬂ(u; )y, u)
k=0
(5.3.5) k=
G/ () = 5 3 (Mi(uyu,u)
k=1

and conditions (4.1.1), (4.1.2), (4.1.3) are satisfied. Consider 7 the local diffeomor-
phism constructed in proposition 4.2.1, and let us apply corollary 4.2.3. We write the
right hand side of (5.3.1) evaluated at w = xr(u), according to (5.3.2), (5.3.4), (5.3.5)
(5.3.6)
{85 o xi) 0™, (G"+ G oo™ }(w) +{(6F o xfy) 0% ™", L}(w)
= 916% o XF] (¥ (w)) 0 0y~ (w) 0 J 0 *(BY) "} (w) - V(G + G") 0 ] (¥ (w))
+0[65 o xH1(W ™ (w)) 0 0y~ (w) 0 J - VL(w).
By (4.2.20), J = 0¢(v)J* (8¢ (v)) + Ry(v) where R;(v) is a map sending H*™! to
H?*, with norm O(]|v||%.). Plugging this into the first term in the right hand side of
(5.3.6), we get setting Ri(v) = 8¢~ ((v))Ra(v)' (%)~ ($(v))
{(82 0 x%), (G"+G") o g} (v~ (w))
+ 805 o xF](¥ ™ (W) Ra (¥~ (w) (VI(G' + G) 0 9)) (¥~ (w)).
By assumption, 0% € 5‘[’?3)’?0(0), H € ﬂ’zi')'?NO (0) for some vy > 0, some
No > 0. Consequently (5.1.13), (5.1.10), (5.1.9) imply that ©2 o x4 will belong
to 5‘[’?3)’3‘,3,0(2”:;“_1) C 5‘[’?;)"1‘{,:%(%—3) (for a new value v} of 14). By lemma 3.3.7
9[©Y o x%;] belongs to £(H*,R) and V[(G' + G’) o | belongs to H*~1(S; R?). Since
R; gains one derivative, we see that the last term in (5.3.7) belongs to H*(S!;R?)

(5.3.7)

and has H*-norm O(||wl||%;?). A similar property holds for the last term in (5.3.6),
so that (5.3.1) may be written

d — 0 o U A1 ° -1 .
3y @) =1{600XE (@4 ) o v} (xr(ult, )
+O(Jlu(t, )1552)
when u remains in some small ball B,(p;).

We express in the above formula G’ o ¢ using (4.2.19). Moreover
1

(M (4 () (v), $(v))-

1

By definition ®(v) = 9(v) — v satisfies |®(v)||gs < C|jv||5t" and 0®(v) extends as
an element of £(H~°, H™*) with [[0®(v)|¢(z-+,5-+) < C||v[|%.. It follows from this

K

N =

G oyp(v) =

L
Il
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and from the remark after the proof of lemma 3.3.7 that
G op(v) = G'(v) + L(v)
where L satisfies again (5.2.3). Consequently, we may write the right hand side of
(5.3.8) as
{69 o X5, Gt + G'YW ™ (xr(ult, ) + O(llu(t, )I5:?)

with
k—1
G, (v) = % (Op, e (w3 ) + i (5 ) T]v, v)
(5.3.9) purt
%(Opx[)\ (5 )] + i (v5-) J]v, 0)
and
Kk—1
(5.3.10) &' (v) = % 3 (Mi(v)v,0).
k=1

Moreover, up to a modification of the remainder, we may always assume
a5 + fin (v ) )Y = (03 )T + fi(v5°)T) € Sy 61 (0,0, B, D.) ® Mo (R).
Summarizing the above results, we may state:
Proposition 5.3.1. — There are v > 0,59 > 0 and for any o > sg a constant B > 0,
a (v + o + 1,1)-conveniently increasing sequence D., elements Ag(v;-), px(v;-) in

S(lk')’o( ), k=1,...,6 = 1, Ax, fix in S} 4(0,0, B, D.) satisfying conditions (4.1.1),
(4.1.2), (4.2.17) and
(5.3.11)  Ae(u;z,n) — XY (0; 2, 1), fin(u; z,1) + AY (u; 2,1) € S?:)':gl(a, 0,B,D.),

such that for any s € [sq, o there is a local diffeomorphism v defined on a neighborhood
of zero By(ps) in H*(S';R?) satisfying the following: For any H € ﬂ'éi')'f’NO (0)

(6:312)  50,(u(t, ) = {690 X5, Gt + E'} ™ o xr(u(t, ) + Ollu(e, M)

as long as u(t,-) exists and stays in a small enough neighborhood of zero in H®.

5.4. Third reduction: elimination of low degree diagonal terms

This last section will be devoted to the proof of the following:

Proposition 5.4.1. — Let G, G' be given respectively by (5.3.9), (5.3.10). Set

(5.4.1) i (Op, [Ak (vs ) + px (v3 ) J]v, v).

toll—‘
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There are vy > 0, Ng € Ry,50 >0 and H € H’ %i')'f’No (0) such that
(5.4.2) {69 o x5, Gy + G} (v) =0
for any v € H*(S';R?),s > s0.

Before starting the proof, let us make some preparations. Recall that the function
09 belongs to the space H '?3)’?0(0) defined by (5.1.5). Let us prove:

Lemma54.2. — Let H € H'({° (0). Let v € Ry, 50 > 0,B > 0,D. be as in the
statement of proposition 5.8.1. Then for any s € [so, 0]

(5.4.3) {69 o X1, (0P [Me (5 )T + fiw (u; ) JJus, u) } = O(J|ul|552).

Proof. — We note first that if we are given d;,dy € N* k; € N*,v > 0,0 > v +
dtds 1 9Ny + 8 and Ag, g in SEY \ (0,0,B,D.), My € £3(0,0, B), satisfying
AY = A2, iy = po the bracket

1
2
may be written as

(5.4.4) (L Ady,w), %(Opx Do (s )T + pa (w3 ) T, ) + (M (u)u, u))

(5.4.5) 2(0D, [ )T + a5 )T ) + 5 (M (s, w)

for \,v € S’Zi,;jf,jz_)‘ll’\;’ (o, f,B,D.), M e f?,iff;;’;/(o, 0, B), with a new value v/ of v
(independent of dy, d;), a new constant B, a new sequence D. and ¢ = dl—Jgdl. Actually,
this is a version of lemma 3.3.6, applying when the left half of bracket (3.3.17) is given
in terms of a symbol vanishing at order 0 at u = 0 instead of some order k; > 1.
The only place in the proof of lemma 3.3.6 (and in the proofs of the results used
to demonstrate it) where the fact that k; > 0 is needed is when applying inequality
(2.1.16). Actually, this inequality allows one to gain one negative power of j' + 1 and
j” + 1. When studying a bracket of form (5.4.4), we have 5’ = k' =0, j” > k" = ko,
and we can gain ﬁ writing in estimates of form (2.1.20), (2.1.25) B” < j,—,lJr—l(ZB)j”
i.e. replacing B by B = 2B. This allows one to get an expression of form (5.4.5) for
(5.4.4).

We have seen when obtaining (5.3.8) that ©% o x5, € H' ’fg;"ﬁ,o(%s) for some vg, so
that function may be written as a multiple of (A%°u, u) plus an element of ¢’ ?13)’"12,0 ( %S ).
The contribution of the (A%°u,u) term to (5.4.3) is an expression of form (5.4.4)
with d; = 2s,d = 1, and so may be written as (5.4.5), with symbols A, u €
S?}fit’&o(a, ¢,B,D.) for some v independent of s, { = 251, M € f?z;'l’",(a,O,B).
The contribution of the component of ©% o x%; belonging to #’ ?18)’"1?,0(%) to the Pois-
son bracket (5.4.3) may be treated applying lemma 3.3.6, and gives contributions of

the same type.
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If s > sq large enough, and s < o, it follows from (2.1.44) and (2.1.47) that (5.4.5)
is O(J|u||%t?). This is the wanted conclusion. O

Before proving proposition 5.4.1, let us show that together with the preceding
lemma it implies theorem 5.1.3. According to proposition 5.3.1, inequality (5.1.16) will
follow if we prove that H may be chosen so that {60 o x5, G} + G'}(v) = O(||v||5}?).
By lemma 5.4.2, such a bound holds for {69 o x%, G} — G/ }(v). We may thus prove
that {090 x%, G} + G'}(v) = O(||lv||%+?). If H is given by proposition 5.4.1, (5.4.2)
holds, so that we just have to check that

(5.4.6) {65 o xf, Gy + G’} = {60 o X, Gy + G}, = O(Ivl|F?).

The left hand side of (5.4.6) is made of those contributions to {09 o x%, G} + G'}
which are homogeneous of degree k + 2 with k > « according to definition (5.1.7) of
the truncated bracket. As we have seen in the proof of the preceding lemma, the first

28,19 (

argument in the above bracket is in 7" ;"% %) for some vo. Moreover, G} +G" defines

an element of #'7, ), Y 5(0) for some v. By (i) of proposition 3.3.4 (and the extension of
that result to components of order zero discussed in the proof of lemma 5.4.2), (5.4.6)
is a finite sum of elements of #’ ?,’;)"’(;(23; !
to apply (2.1.44), (2.1.47) to get (5.4.6).

To conclude the proof of our main theorem, we still need to prove proposition 5.4.1.

) for some v’ and for k > k. We just have

Proof of proposition 5.4.1. — We decompose é'l +@ as a sum of homogeneous terms
(5.4.7) Gi+G = Ki Qr(v) =

with Qo(v) = 1(Apv,v) and for 1 < k< k-1

(548)  Qul) = (O k(w5 ) + (w3 Mo, 0} + 5 (M0l o)

so that Qy € f[’(k) 0(0) for some v > 0. According to (5.1.14)

(5.4.9) {69 0 xfr, QY = {62, Qo (xF) ™'}, o Xfr-
We shall construct H € f[’zi')'?No (0) for some g, so that {69,Q o (x%)~'}, is zero.
This will give the wanted conclusion. By the second relation (5.1.13) and (5.1.10)

. K— 1+oo( 1) )
(5.4.10) Qo (x%) =y > = —Ad JH - Qy

k=0 j=0

(where the j sum is actually finite). We look for H as H = Y5~ H, with H, €
H' 2,}')/‘”1\,0 (0) for some increasing vy, £ = 1,...,x — 1, H, homogeneous of degree ¢. By
(i) of proposition 3.3.4

{Hfﬂ{wa'" ’{pran}}'”}
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11,0, ’ . .
belongs to (€):No (0) for some vy, with £ = ¢; + --- 4+ £, + k (we used again that

FH' (157;/1\,0 &) cH :é;l;f (0)). Consequently the contribution homogeneous of degree k,
1<k < k—1in (5.4.10) may be written

(5.4.11) Qr — {Hy,Qo} + Ki

where K € H' zl’f;kNo (0) for some increasing vy, 1 < k < k — 1, K depending only on
H,,...,H;_;. To solve the equation

{62,Qo(xf) '}, =0
we just need to construct recursively Hy, k = 1,...,k—1 so that, by (5.4.10), (5.4.11)
(5.4.12) {6%,Qx + Ki — {Hx, Qo}} = 0.

By definition of #’ z,’:;’;No (0), and the fact that Q, Hy are homogeneous of degree k,
we may write

(5413)  (Qu+ Ke)v) = 3 (Op elwi M + (5 )]0, ) + 3 (Mi(0)v,)

31, . N _ =Ly .
with Aka“k € S(IIZ;):CNO(O) with )‘Z = )\kv #l\: = Mk, Mk € f(k)’c (0)7 Ak:’,u'knj\lk belng
homogeneous of degree k. The proof of proposition 5.4.1 will be complete as soon as

we shall have solved (5.4.12). This is the aim of next lemma. O

Lemma 5.4.3. — There is Ny € N and there are symbols Ay, fix € 5(1,;')/;}3'01\[0 (0) and
—~ ~1,v; +N = ~ =

operators My € Z’(k,;k 0(0) homogeneous of degree k, with A} = Ag, i)} = fix Such

that

—;—(Opx[)\k(v; I + pr(v; ) Jv,v) + %(Mk(v)v,v)
(5.4.14) ) i ) _
= 5 UOP[Ak(vi ) + ik (v ) T]o, v) + (M (v)v, v), Qo}

Poisson commutes with ©°.

Proof. — We shall prove lemma 5.4.3 using the same complex coordinates system as

R RS A 1

We do not write the index k all along the proof. Define

in section 5.2, namely

(5.4.15) y(w, W; z,n) = )\(K_l [;] ;z,n) +iu(K‘1 l;] ;m,n)
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so that, since A = AV, u = iV,
1
(5.4.16) §<Opx[)‘(”; I + p(v;-)J]v,v) = Re /Sl [Op, [y(w, W; -)|w]wdz.

Decompose
M(v) = My(v)I + Ma(v)J + M, (v)I' + M,(v)J’

where M;(v), M,(v) are operators acting from H*(S!;R) to itself. We define

T'(w,@) = M; (K—l [;]) +iM, (K—l [;])

(5.4.17)
— 1 |w . 1 |W
I'(w,m) = M, (K [m]) —iM, (K~ [w])
so that
(5.4.18) %(M(v)v, v) = Re /S [[(w,)wmdz + Re /S [C(w,mufuwds.

We shall look for a symbol §(w, ;) and for operators I'(w, @), ['(w, @) so that

[Opx('y)w]ﬁdw+/ [F(w,w)w]mdx+/ [C(w, w)w]wdz
(5.4.19) st st st
~{ /S [Op(fulwds + /S [P(w, Dyulwde + /S [E(w, m)wlw, Qo }

Poisson commutes with ©%(w,w) = [, (A2 w)wdz. We decompose

Z7€(w7 LW, W, ., WS )
~—— L
I'w,w; )—ZF[ Wy Wy .oy, W)

E(w’w) Z Fe(’w, 7w w, . ,’LU)
t=-1 e+1 k—£-1

~1,v
with y, € €35 v (0), Te, Ty € €24 (0). When k is odd or k is even and £ # %, we
set y) = ;. When k is even and £ = % we decompose

(5.4.20) Ye(wr,y - -y wis ) = Yp(wi, ...y wi; ) + 7 (wa, - . ., wk; )
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according to (3.4.7), (3.4.8). By (3.4.10), (3.4.11) and (1.2.14)

{/81 (Opy (@, - -, w; ) |w)Wdz, /S1 [Af,fw]wdz}
(5.421) =33 q(no,- .., nks1)

x/ [, Opy [e (1L, W@, - . . , I, W0, I,y w0, - - -, Ly ;) [T, w]WOd
St

/
where Z denotes the sum over those (ng,...,ng+1) such that there is a bijection
0:{0,...,2} = {£+1,...,k+ 1} with |ng()| = |n;| for j =0,...,£ and where

¢ k+1
q(no, .-, Mg41) = — Z(m2 + n;")s + Z (m? + n?)s
=0 j=€+1

I
By definition of Z , this quantity vanishes on the summation, so that (5.4.21) is

identically zero, and since we want to find 4,T', T such that (5.4.19) is equal to quan-
tities that Poisson commute to ©%, we may in the left hand side of (5.4.19) replace v
by

(5.4.22) "(w, w; - )—Z'y @,...,ww,...,w;").

We decompose in the same way I'y, I',. When k is odd or when k is even and ¢ # g we
set I'y =Ty, Ly =T,. When k is even and £ = , we write [, =T+ T}, [, =T, +I7
with

li
Ty(wi,...,we) = M Tp(Mn,wy, ..., T wie) T,
resp.

!
Ly(wi, .., we) = Y M Ly(Mn,wy, ., T wie ),

where ZI is the sum for those ng,...,ng+1 such that there is a bijection 0 :
{0,...,} - {£+1,....,k+1} (resp. 6 : {1,...,£+1} - {0,£+2,...,k+1})
with |ng(;)| = |n;| for any j € {0,...,£} (resp. j € {1,...,£+1}). As above,

{ [FQ(U,...,E,w,...,w)w]wdx,@g}EO
—— o\
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Consequently we may replace in (5.4.19) T (resp. I') by I/ = Zl o'y (resp. I’ =
k=1, T7). We have in this way reduced ourselves to finding 7, Ty, T, such that
/ [(Op, 7 )w]wdz + / [} wlwdz + / L7 wlwdz
(5.4.23) ' s s
= {/ [(Op, 7e)w]wdz +/ [Tew]wdz + /1 [ng]wdz,Qo}
st st s

where in these expressions v/, I}, e, Fg (resp. I'y, _z) are computed at the argument
@, ..., w,w,...,w) (resp. (W,...,,w,...,w)). Let us define L,[Op, (7,)] and Le(Te)
—— N — N N —

¢ k—¢ £+1 k—£—1
by (3.4.12) with w = (wp, . ..,wk+1) given by wo =wy = - =wg = =1, wpy1 =
wis1 = 1 and Lg(T,) by (3.4.12) with wy = -+ = wppy = —1, wo = wWepp = -+ =

wi+1 = 1. To solve (5.4.23), we remark that since Qo(w, W) = [, (Amw)wdz, we have
by (1.2.14)

{/Sl [(Opx(%))w]w‘i‘”’(’?o} = i/Sl [Le(Opy (7¢))w]wdz
{/Sl [few]wdx,Qo} = z’/Sl [Le(T)w|wdz
{ /S ) [iew]wdw,Qo} =1 /S 1 [Le(T,)) wlwdz

so that we need to find 7, € Ci;,gj\,’;"’m), Ty e C/~1(1,’C’5+N° ), T, € C/lzk';JrN"(O) such
that

(5.4.24) iL¢[Op, (7¢)] = Op, (V)

h iLe(Te) =T7,iLe(Ly) = L.

By (ii) and (iii) of proposition 3.4.4, we may solve the first equation (5.4.24) if we
assume that m is outside the exceptional subset 7/ of the statement of that proposi-
tion. We get a symbol 7, if we assume that No has been taken larger than 2(N; + 1).
To solve the equation involving r ¢, 'y we use proposition 3.4.5. We set next

’y(w,ﬁ; ) = Zﬁe(mv YW, Wy ooy W,y )
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Let us define

- 1 -
)\(U; z, n) = 5[’7(1{“’ z, n) + &(KU, z, _n)]
sz, m) = - [5(K s 2,m) ~ 5K, )

so that
(Opy [N + AT lu, u).

N =

Re [ 09, 3w, wiulwds =

In the same way, if we set

M, = %[f(Ku) + T (Ku)]

M, = %[f‘(Ku) - T(Ku)],
we get
Re / [T(w, W)w|wdz = %((1\71 ()T + Ma(u)J)u, u).
St

Analogously, setting

[C(Ku) + L(Ku)]

M, (u) =

N =

My(u) = — - [E(Kw) - E(Kw),

we get
Re / [ (w, B)w|wdz = %((ﬂl(u)I' + My (u)J")u, u).
Sl

Finally, if M(u) = Ml(u)I + Mg(u)J + ﬂl(u)I’ + ﬂ2(u)J’, we see that (5.4.19)
implies the conclusion (5.4.14). This concludes the proof of the lemma. O
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