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A QUASI-LINEAR BIRKHOFF 
NORMAL FORMS METHOD. 

APPLICATION TO THE QUASI-LINEAR 
KLEIN-GORDON EQUATION ON S 1 

J.-M. DELORT 

Abstract. — Consider a nonlinear Klein-Gordon equation on the unit circle, with 
smooth data of size e —» 0. A solution u which, for any K, G N, may be extended 
as a smooth solution on a time-interval ] — cKe~K,cKe~K[ for some cK > 0 and for 
0 < e < e«, is called an almost global solution. It is known that when the nonlin-
earity is a polynomial depending only on u, and vanishing at order at least 2 at the 
origin, any smooth small Cauchy data generate, as soon as the mass parameter in 
the equation stays outside a subset of zero measure of R + , an almost global solution, 
whose Sobolev norms of higher order stay uniformly bounded. The goal of this paper 
is to extend this result to general Hamiltonian quasi-linear nonlinearities. These are 
the only Hamiltonian non linearities that depend not only on u, but also on its space 
derivative. To prove the main theorem, we develop a Birkhoff normal form method 
for quasi-linear equations. 

Résumé (Une méthode de formes normales de Birkhoff quasi-linéaire. Application à 
réquation quasi-linéaire de Klein-Gordon sur S 1 ) . — Considérons une équation de 
Klein-Gordon non-linéaire sur le cercle unité, à données régulières de taille e —> 0. 
Appelons solution presque globale toute solution u, qui se prolonge pour tout K E N 
sur un intervalle de temps ] — cKe~K

JcKe~K[, pour un certain cK > 0 et 0 < e < eK. Il 
est connu que de telles solutions existent, et restent uniformément bornées dans des 
espaces de Sobolev d'ordre élevé, lorsque la non-linéarité de l'équation est un poly­
nôme en u nul à l'ordre 2 à l'origine, et lorsque le paramètre de masse de l'équation 
reste en dehors d'un sous-ensemble de mesure nulle de R + . Le but de cet article est 
d'étendre ce résultat à des non-linéarités quasi-linéaires Hamiltoniennes générales. 
Il s'agit en effet des seules non-linéarités Hamiltoniennes qui puissent dépendre non 
seulement de u, mais aussi de sa dérivée en espace. Nous devons, pour obtenir le 
théorème principal, développer une méthode de formes normales de Birkhoff pour 
des équations quasi-linéaires. 

© Astérisque 341, SMF 2012 
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CHAPTER 0 

INTRODUCTION 

The main objective of this paper is the construction of a Birkhoff normal forms 
method, applying to quasi-linear Hamiltonian equations. We use this method to obtain 
almost global solutions for quasi-linear Hamiltonian Klein-Gordon equations, with 
small Cauchy data, on the circle S1. 

Let us first present the general framework we are interested in. Let A be the 
Laplace-Beltrami operator on Rd or on a compact manifold, and consider the evolution 
equation 

(1) 

cvxc F(v, dtv, v F(v, dtv, dxv, dtdxv, d^v) 

x \t=0 ev0 

dtvw wx wxwx 

where VQ^VI are real valued smooth functions, e > 0 is small, F is a polynomial non-
linearity with affine dependence in (dtdxv,dxV), so that the equation is quasi-linear. 
We are interested in finding a solution defined on the largest possible time-interval 
when e —> 0+. If F vanishes at order a + 1 at the origin, local existence theory implies 
that the solution exists at least over an interval ] — ce~a, ce~a[, if VQ G iJs+1, v\ G H8 
with s large enough, and that F(v, dtv,-)||^s+i + \\dtv(t, -)\\HS stays bounded on such 
an interval. The problem we are interested in is the construction of almost global 
solutions, i.e. solutions defined on ] — cKc~K,cKe~K[ for any K. 

This problem is well understood when one can make use of dispersion, e.g. when one 
studies (1) on RD, with vo,v\ smooth and quickly decaying at infinity (for instance 
vo,vi G Co° (RD)) . When dimension d is larger or equal to three, Klainerman [16] 
and Shatah [20] proved independently global existence for small enough e > 0. Their 
methods were quite different: the main ingredient of Klainerman's proof was the use of 
vector fields commuting to the linear part of the equation. On the other hand, Shatah 
introduced in the subject normal form methods, which are classical tools in ordinary 
differential equations. Both approaches have been combined by Ozawa, Tsutaya and 
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2 CHAPTER 0. INTRODUCTION 

Tsutsumi [19] to prove global existence for the same equation in two space dimensions. 
We also refer to [10] and references therein for the case of dimension 1. 

A second line of investigation concerns equation (1) on a compact manifold (with 
a nonlinearity that may then depend also on x even if we ignore this possible depen­
dence in this introduction, for the sake of simplicity). In this case, no dispersion is 
available. Nevertheless, two trails may be used to obtain solutions, defined on time-
intervals larger than the one given by local existence theory, and whose higher order 
Sobolev norms are uniformly bounded. The first one is to construct periodic or quasi-
periodic (hence global) solutions. A lot of work has been devoted to these questions 
in dimension one, i.e. for x G S1, when the non-linearity in (1) depends only on v. We 
refer to the work of Kuksin [17, 18], Craig and Wayne [8], Wayne [21], and for a state 
of the art around 2000, to the book of Craig [7] and references therein. More recent 
results may be found in the book of Bourgain [6]. Of course, this approach does not 
provide solutions to the Cauchy problem, as the traces at t = 0 of such quasi-periodic 
solutions do not exhaust the whole Sobolev space. 

The second approach concerns the construction of almost global Hs-small solutions 
for the Cauchy problem (1) on S1, when the non-linearity depends only on v. In this 
case, small H1 Cauchy data give rise to global solutions, and the question is to keep 
uniform control of the iiP-norm of the solution, over time-intervals of length e~K, for 
any K and large enough s. This has been initiated by Bourgain [5], who stated a result 
of almost global existence and uniform control for (d2 — d2 + m2)v = F(v) on S1, when 
m stays outside a subset of zero measure, and the Cauchy data are small and smooth 
enough. A complete proof has been given by Bambusi [1], Bambusi-Grebert [3] (see 
also Grebert [15]). It relies on the use of a Birkhoff normal form method, exploiting 
the fact that when the non-linearity depends only on v, the equation may be written 
as a Hamiltonian system. 

Let us mention that some of the results we described so far admit extensions to 
higher dimensions. Actually, constructions of periodic or quasi-periodic solutions for 
equations of type (idt — A + M)v = F(v) (where M is a convenient Fourier multiplier) 
or (d2 — A + m2)v = F(v) have been performed by Eliasson-Kuksin [14] and Bour­
gain [6] on higher dimensional tori. Almost global solutions for the Cauchy problem 
on spheres and Zoll manifolds have been obtained by Bambusi, Delort, Grebert and 
Szeftel [2] for almost all values of m. 

We are interested here in the Cauchy problem when the non-linearity is a function 
not only of v, but also of derivatives of v. Recall that a non-linear wave equation is 
called semi-linear (resp. quasi-linear) if the non-linearity depends on derivatives up 
to order one (resp. up to order two and is linear in second order derivatives) of the 
unknown. Some results have been proved by Delort and Szeftel [12, 13] for semi-linear 
non-linearities of the form F(v,dtv,dxv) on §d or on Zoll manifolds. For instance, it 
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CHAPTER 0. INTRODUCTION 3 

has been proved that if F is homogeneous of even order a + 1, then the solution 
exists over an interval of length e~2a, when the mass m stays outside a subset of zero 
measure. Similar statements have been obtained in one space dimension for quasi-
linear equations in [11]. Nevertheless, no result of almost global existence was known 
up to now, for non-linearities depending on the derivatives. The difficulty, for general 
semi-linear equations, in contrast with the case of non-linearities of type F(v), is not 
the presence of first order derivatives in the non-linearity, since the inverse of the 
d'Alembertian is smoothing of order one, but the fact that a non-linearity F(v, dxv) 
that depends effectively on dxv is never Hamiltonian. Actually, it turns out that 
one may construct examples of non-linearities depending on derivatives for which 
solutions do not exist over a time interval larger than the one given by local existence 
theory (see [9]). This is due to the presence of non-trivial resonances in the non-linear 
terms. In cases when such resonances are not present, one may use a Poincaré normal 
forms method to pass from a time existence of magnitude e~a (corresponding to local 
existence theory) to a better lifetime for the solution (say e_2a), but the new equation 
brought by the Poincaré reduction may contain itself resonances that do not allow a 
new iteration. 

On the other hand, for non-linearities like F(v), the equation may be written 
as a Hamiltonian system, and a Birkhoff normal forms method may be applied to 
successively reduce the non-linear terms to contributions vanishing at higher and 
higher order, up to quantities depending only on the actions, which do not make 
grow Sobolev norms. To try to obtain almost global existence for equations involving 
derivatives in their right hand side, it is thus natural to limit oneself to systems 
of the form of (1) for which the non-linearity is Hamiltonian. This obliges one to 
consider quasi-linear equations, as the only semi-linear non-linearities enjoying the 
Hamiltonian structure of theorem 1.1.1 below are those depending only on v. 

The main result of this paper asserts that the quasi-linear Klein-Gordon equa­
tion on S1, with Hamiltonian non-linearity, admits almost global solutions for small 
enough, smooth enough Cauchy data, when the mass is outside a subset of zero 
measure (see section 1.1 for a more precise statement). The main novelty in this pa­
per, compared with the semi-linear setting, is the introduction of a Birkhoff method 
adapted to quasi-linear equations. We shall describe below the idea of the method on 
a model case, which can be used as a road-map for the more technical approach that 
will be followed in the bulk of the paper. Roughly speaking, the idea is to combine 
the usual Birkhoff normal forms method with the strategy used to obtain quasi-linear 
energy inequalities (namely (para)diagonalization of the nonlinear principal symbol of 
the operator). The latter was used in [11] in the non-Hamiltonian framework. Here, as 
we need to preserve the Hamiltonian structure of our problem, such a diagonalization 
will have to be performed respecting the underlying symplectic form. 
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4 CHAPTER 0. INTRODUCTION 

Let us describe the organization of the paper and the idea of the proof on a model 

problem. Chapter one is devoted to the statement of the main theorem and to the 

introduction of the symplectic framework. In this presentation, let us consider the 

symplectic form on the Sobolev space HS(S1:C) (s > 0) 

u>o(c, c') = 21m 
/s1 

c(x)cf(x)dx. 

If F, G are two C1 functions defined on an open subset of H8(S1; C ) , whose gradients 

belong to L2, we define the Poisson bracket 

F,G] i(duF üG — dUG 7uF) 

For a given C1 Hamiltonian G on HS(S1; C ) , the associated evolution equation defined 

by its symplectic gradient is 

(2) ù = V 7üG(u,u) 

Let us study as a model the case when 

(3) G(u, u) 
S1 

(hmuiudx + Re 
Js1 

(a(u, u)Amu)udx + Re 
,s1 

[b(u, ujAmUJudx, 

where a, b are polynomials in (u, u) and Am = -di + m2. The associated evolution 

equation is 

(4) 

du 

dt 
iAmU-{ 

i 
7 

2 Am + AmOÌU 
1 

2 
h Am + Amb]u 

i 

2Y 

da 

du 
(Amu)u 

i 
2 

da 

dw (AmU)U 

i 

9 

db 

<du 
AmU)u 

i 
2 

db 
du.) 

(Amu)u. 

This equation is, if a(0) = b(0) = 0 and if u is small enough, a small perturbation of 

the linear hyperbolic equation ^ = iAmu. Moreover, since the non-linearity involves 

first order derivatives, this is a quasi-linear equation. 

To prove that (4), with a Cauchy data u\t=o = euo with ^o G ifs(S1;C), has a 

solution defined on an interval ] — ce~K,ce~K[ for any given K G N, it is enough to 

prove an a priori bound QQAu(t, •)) < Ce2 when \t\ < ce~K, where 

(5; F(v, dtv, l 

2 
F(v, dtv, 

is equivalent to the square of the Sobolev norm of u. Let us recall how such a uniform 

control may be obtained in the case of semi-linear equations (i.e. when the last two 

terms in (3) are replaced by Re J§1 a(u, u)uudx + Re J§1 b(u,u)uudx). One introduces 

an auxiliary C1-function F and solves the Hamiltonian equation 

(6) F(v, dtv, XF(Mt,u)) $(0,u) u, 
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CHAPTER 0. INTRODUCTION 5 

where Xp is the Hamiltonian vector field associated to F. Then XF{U) = $(1 ,^ ) 

is a canonical transformation, defined on a neighborhood of zero in i / ^ S ^ C ) , with 

x(0) = 0 , and one wants to choose F so that Qs(u) = °XF(U) satisfies, for a given 

arbitrary 

(7) 

d 

dt 
F(v, dtv, 0(\\u(tr)\ K+2 

HS 

F(v, dtv, F(v, dtv, 0(\\u(t,-)\ xc 

These two equalities imply that, for small enough Cauchy data, ||rx(t9 -)L|JFIRS stays 

bounded by Ce over an interval of time of length ce~K. One wants to apply a Birkhoff 

method. Since by (2) u = XcMt, •)), one has 

(8) 
d 
sd 

F(v, dtv,cxc •2 XF,G}(U(T, cv F(v, dtxcx,F(v, dtv, 

and one would like to choose F so that { 9 ^ , G o Xp }(u) vanishes at order tt + 2 when 

F(v, dtv, If F satisfies convenient smoothness assumptions, one may deduce from Taylor 

expansion that 

0 GoxpHu) 
K-1 

fc=0 

kdkF 

kl 
-Gin) 

i 

F(v, dtv, 

s 

'0 

(l-r)K-1(AdKF'G] ($(—r, u))dr, 

where AdF • G = {F, G}. When considering semi-linear equations, one looks for 

F = J2e=iF(v, dtv,w^n Ft homogeneous of degree £ + 2, such that 

;io; 's 
<K-1 
jk=0 

ARLFC Tt 
k\ G(u)\ •0(\\u(L')\ K+2 

xcxc 
F(v, dtv, 

Decomposing the second argument of the above Poisson bracket in terms of increasing 

degree of homogeneity, one gets 

Go 

F(vtv, 

{Fp,Ga\ + Hp), 

where GQ{U) = J§1 (Ami£)ue£r and where He is homogeneous of degree £ + 2, and 

depends on the homogeneous component Gk of degree k of G, for k = 1,..., £ and on 

F i , . . . , Ft-\. In that way, (10) can be reduced to 

:n) 
O 

si 
f*i ,G0} -He} 0,F(dtv,F(vdtv,£= 

This homological equation can easily be solved in the semi-linear case, as soon as the 

parameter m in Am = a/—d2 + m2 is taken outside a subset of zero measure, to avoid 

resonances. More precisely, at each step, the He contribution may be written as the 

sum of scalar valued multilinear expressions of the form Mj(u,..., u, û , . . . , u), where 

j arguments are equal to u and £ + 2 — j ones equal to U. One looks for Fe as a sum 

of similar expressions M7(г¿,.. . , it, U,..., u). To try to solve equation (11), one looks 

first for Fe satisfying {Fe, Go}(u, u) + He(u,u) = 0. Replacing in this equality each 

u argument by its decomposition u = ^2nIinu, where nn is the spectral projector 
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6 CHAPTER 0. INTRODUCTION 

associated to the eigenvalue n2 of —d2/dx2 on § , one gets from the definition of G0 

a family of equations 
( 1 2 ) 

7 

0=0 
m2 + n2 -

fg 

F(v, dtv, 

m2 + n2 |M7- xc F(v, dtv, Af^IT^u, ...,Une+1u) 

The left hand side vanishes identically if j + 1 = ^ + 2 — j and if {n2),. . . ,n2} = 

{n2+1 , . . . , n2+1}. But it turns out that in this case, the corresponding contributions to 

{i7^, GQ} + HZ lie in the kernel of { 0 ° , • } , so that ( 1 1 ) is always satisfied. Consequently, 

( 1 2 ) has to be solved only when {n2 , , . . . , n2} ̂ F(v, dtv , . . . , n2+1}. In this case, if m is 

taken outside a subset of zero measure, one may always ensure that 

( 1 3 ) 
3 

F(v, dtv, 

m2 + n* 

xcx 

P=j+1 

m2 + n\ cfi(no,...,ne+1) N° 

for some c > 0, some AT0 G N, where / / (no , . . . , n^+i) is the third largest among 

no , . . . ,ri£+i. In that way, the division of the right hand side of ( 1 2 ) by ( 1 3 ) allows 

one to determine Mj without loosing derivatives: the only losses come from a power 

/j,N°, i.e. a power of small frequencies, which is recovered because of the smoothness 

of the solutions. 

Let us describe the new difficulties one has to cope with for a quasi-linear equation, 

like ( 4 ) . In this case, one has still to solve an equation of form ( 1 2 ) , except that in the 

right hand side, Mj involves a loss of one derivative with respect to large frequencies 

(one should think of Mj as being given for instance in terms of the integral of the 

product of the right hand side of ( 4 ) with u). Consequently, Mj, that may be still 

defined using ( 1 3 ) , will also involve a loss of one derivative i.e. a loss of one power 

of max(no,.. . ,n^+i). In ( 1 1 ) at rank £ + 1, the given quantity, JFZ^+I, that may be 

computed from the Mj determined at rank £, will then display a loss of two derivatives 

relatively to large frequencies. If one iterates, it becomes clear that one would lose 

one more derivative at each step. 

Nevertheless, remark that estimate ( 1 3 ) is not always optimal. Actually, if the 

largest two among all frequencies are nPl and nP2, with either 0 < pi < P2 < j or 

j + 1 < Pi < P2 < Z + 1» then the left hand side of ( 1 3 ) is bounded from below by 

cmax(no, . . . ,n^+i). Consequently, when solving ( 1 2 ) , one actually gains one deriva­

tive on Mj versus Mj , so that the Fa expression in ( 1 1 ) does not involve derivative 

losses. The first idea we shall use to get normal forms for quasi-linear equations will 

be to exploit this, in order to get rid in ( 1 1 ) of those contributions to Hi that may 

be written as the right hand side of ( 1 2 ) , with the largest two frequencies being both 

either on w or w. 
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CHAPTER 0. INTRODUCTION 7 

After such a step, one is morally reduced to equations of form (11), where He 
is given in terms of J2n0,...,ni+1F(v, dtv,. • • ,Пп^+1й), where the sum is reduced to 
indices for which the largest two are nPl and nP2, for some p\ < j and some P2 > j . 
Moreover, because of the quasi-linear character of the equation, Mj involves a loss 
of one power of the large frequencies. To eliminate these terms in (11) through a 
convenient choice of i^, we still have to solve (12). The point is that the only estimate 
we may use is (13), so that the Mj we shall construct will involve a loss of one 
derivative, as Mj. The property that will save us is that, because of the special 
structure of the terms we have reduced ourselves to after step one, the contributions 
coming from these Mj to the data He+i of equation (11) at rank £ + 1, will lose 

only one derivative, instead of two. Actually, #¿+1 will be computed from Poisson 

brackets of expressions of type Mj\ if these multilinear expressions are written in 

terms of the action of operators on w or w, this Poisson brackets structure, together 

with the special form of the quantities at hand, shows that Нц+\ may be written from 
the commutator of two first order operators instead of their composition. We explain 
this more precisely below, returning to the expression (3) of the Hamiltonian. At this 
point, we just note that the splitting between the case when the largest frequencies are 
both on two йот й terms, and the case when one is on а и and one onaw term cannot 
be easily exploited if one uses general expressions as (12). To be able to give the ideas 
outlined above a precise meaning, we need to write the multilinear expressions in a 
way that makes clearly appear the places over which are located large frequencies. 
Actually, the main contributions to the Fe,Hi in (11) will be written 

14 Re 
s1 

(A(u, u)u)u dx + Re 
'§1 

(B(u, u)u)udx, 

where A(u, u), B(u, u) are para-differential operators whose coefficients depend on 
?j, u. This means in particular that, when A(u, u) acts on a spectrally localized func­
tion, like nn?j, then A(u, u)Hnv will be also spectrally localized around frequency n, 
while only those components of (u, u) of frequency much smaller that n will have to be 
taken into account. In other words, a quantity like J§1 (A(Uniu, Un2u)Unov) (Un3w) dx 
will be non zero only if ni + ri2 <C n0 ~ n%. It is to get such a property, which im­
plies that in an expression /(A(u, u)v)w dx the large frequencies are always those 
falling on v and w, that we shall write all expressions in (11) using operators A, B 
which are para-differential quantization of symbols. Of course, one has to introduce 
also some corrections, given by multilinear expressions of type (12), where the third 
largest frequency is of the same magnitude as the largest one. But for such expres­
sions, derivative losses coming from the quasi-linear character of the non-linearity 
are automatically compensated, so that such terms are treated in the normal forms 
process as semi-linear ones. 
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8 CHAPTER 0. INTRODUCTION 

Let us now explain with more technical details the preceding ideas. We consider a 

Hamiltonian G given by (3), corresponding to a quasi-linear problem. Equation (11) 

for £ = 1 may be written 

115) 0 
s 

FUG0} + G, 0. 

where 

(16 F(v, dtv, Re 
xc 

(aAu, u^KmU^udx 
xc 

bi (u, u)Amu)udx 

with ai,6i homogeneous of degree 1 in u,u. Let us look for F\ given by 

17Ï Re 
51 

Ai(u, u)u)udx Re 
S3 

(Bi(u, u)u)udx, 

where A\, B\ are operators depending on u, u to be determined. We have 

xc [Ai (u, u)u)udx, Go i 
Js1 

Fi4i(iz,w)Am AmAi(u,u)]u] udx 
(18) 

xc 
x 

\duAi(u,u) AmU - dûAAUjU) Amг¿! udx 

and 

L(Bi(w,u)w)uda:,Go xc 
si 

'[éi(îi,w)Am F(v, dtv,F(v, dtv, 

(19) 

-i 
s1 

F(v, dtv, Amit - duBAu,% Amu]u)udx. 

Let us try to solve (15) finding F\ such that {Fi , Go} + Gi = 0. It would be enough 

to determine A±,Bi such that, according to (16), (18), (19), 

i[ÂuAm] iduAi(u, u (AmU idûÂi(u,u (AmU) ai(u,w)Am 
(20) 

ilBxAm + AmJ5i iduBAu.u) Amu idaBi(u, u Amu) bi(u,u)Am 

Note that if Ai (resp. B\) is an operator of order a (resp. /3), then duAi(u, u) • (Amix), 
F(v, dtv,xx (Amu) (resp. duBi(u,u) • (Amix), duBi(u.u) • (Amtt)) is also of order a 

(resp. /3), since the loss of one derivative coming from Am affects the smoothness of 

the coefficients, and not the order of the operator. On the other hand [Âi, Am] (resp. 

[BiAm + AmBi\) is of order a (resp. /3 + 1). Since the right hand sides on (20) are 

operators of order 1, we may expect, if we can solve (20), to find A\ of order 1 and 

B\ of order zero. This would give F\ by expression (17). Let us switch to (11) for 

£ = 2. Then B.2 will contain, because of (10), a contribution of form {Fi,Gi}. Denote 

to simplify notations 

At 
1 

2 
(ai(u,u)Am + Amai(w,w)),Bi(u,u) = bi(u,u)Am. 
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CHAPTER 0. INTRODUCTION 9 

Let us compute the Poisson brackets (18), (19) with Go replaced by G\\ 

(21 

's* (Ai(u, u)u)udx, fg Ai(u, u)u)udx l 
2 's1 (Bi(u, u)u)udx l 

2 
^Bl(г¿u)u)udx u)u)udx, 

: i 
cv 

fgfgfg ^, u)u)udx 
i 
9. 

S1 
A i f B i + ' B i ' u)u)udx 

i 

2 s1 
u)u)udx Ai(u,u)u)udx • other terms 

anc 

(22 

s1 (J5i(ii, u)u)udx, s1 rAi (M. u)u)uda l 
' 2 

is v(Bi(u,u)u)udx l 
" 2 

s1 (.BI(M, )̂̂ )̂ cfo;} 

cv 
/s1 

u)u)udx u)u)udx (ix, u)u)udx 
i 

v v 
i(B1+tB1)(tB1 Bi)(u, u)u)udx 

other terms. 

Note that since A\ and B\ are of order 1, the right hand side of (21) has a structure 

similar to Gi, except that the expressions which are bilinear in u or in u are now 

of order 2. In other words, if we solve (15) for a quasi-linear Hamiltonian, we get 

in (11) with £ = 2 a contribution to H2 which loses two derivatives, instead of just 

one. Obviously, if we repeat the process, we shall lose one new derivative at each 

step, which apparently ruins the method. Observe nevertheless that we can avoid 

such losses if, in a first attempt, we choose in order to eliminate in (10) only those 

terms homogeneous of degree 1 ,2 , . . . ,« — 1 coming from the second contribution on 

the right hand side of (16). In other words, we look for F\ given by (17) with A\ = 0, 

and want to solve only the second equation in (20). As already noticed, we shall find 

an operator B\ of order zero. If we look at the contribution induced by this B\ at 

the following step, we have to consider (22), whose right hand side may be written 

essentially 

'si 
f Ao(u. u)u)udx 

Js1 
(B2(u,u)u)udx other terms 

where A2 = (B1+tB1)(tB1+Bx) and B2 = BXAX u)u)udxare of order 1. We obtain 

again an expression of type (17), without any loss of derivatives, and a gain on the 

degree of homogeneity. Of course, we have completed only part of our objective, since 

the bi contribution to (16) has been removed, but not the a\ one. In other words, the 

best we may expect is to choose F in such a way that in (10) 

(23) 
K-l 

fc=0 

Ad F 

cv 
G(u) 

K-l 

k=0 
G'k(u) + RK(u), 
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10 CHAPTER 0. INTRODUCTION 

with G0 = Go and Gk(u) = Re J§1 {Ak(u,ujujudx, with Ak operator of order 1, 
homogeneous of degree k in (u,u). The remainder RK will be of type 

24) Re 
s1 

[AfK(u, u)u)udx Re 
/s1 

[B'K(u, u)u)udx, 

with AfK,BfK of order 1, homogeneous of degree K. The reduction to such a form, for 
the true problem we study, will be performed in section 5.2 of the paper. 

The next step is to eliminate in (24) the B'K contribution. We cannot repeat the pre­
ceding method, as it would induce another remainder of the same type, with an higher 
degree of homogeneity. Instead, we shall use a diagonalization process. When one 
wants to obtain an energy inequality for an equation of type (4), the 6-contributions 
of the right hand side already cause trouble. Actually, if one multiplies (4) by A^u, 
integrates on S1 and takes the real part, the contributions coming from the a-term 
is controlled by some power of | |^| |#S, since it may be written in terms of the com­
mutator [a + a, Am]. On the other hand, the contribution coming from b cannot be 
expressed in such a way, and loses one derivative. The way to avoid such a difficulty is 
well-known: one writes the system in (u, u) corresponding to equation (4), diagonalizes 
the principal symbol of the right hand side, and performs the energy method on the 
diagonalized system. We adapt here a similar strategy to the Hamiltonian framework: 
We look for a change of variable close to zero in Hs, (v,v) —» (u = t/j{y),u = ip(v)), 
to transform (24) into 

(25) Re 
s1 

[A^{v,v)v)vdx, 

where A!'K is an operator of order 1. This is done looking for ^)(v) = (Id 4- i?(^,7J))v, 
where R is some operator, determined by a symbol diagonalizing the principal sym­
bol of the Hamiltonian equation associated to (23). Since we need to preserve the 
Hamiltonian structure, i.e. to construct ip as an (almost) canonical transformation, 
this diagonalization has to be performed in an (almost) symplectic way. The argument 
is given in section 5.3, using the results obtained in chapter 4 concerning symplectic 
reductions. To exploit this, we shall consider instead of Qs(u) =F(v, dtv, o XF(U) in (7), 
(8) a quantity Os^) = Q\ oF(v, dtv, o xf(^)5 for someF(v, dtv, that will be chosen later on. 
Then (10) has to be replaced by 

(26 l 
s 

F(v, dtv, KK-L 
fk=0 

AdkF 
v G 0(\\u\\ cvcv 

HS 

Because of (23), this is equivalent to 

l 
s 

É-1 K-l 
<k=0 G'k{u) RdffdM 0(\\u\ K+2 

IH-
and since ip is canonical, this is also equivalent to 

27 l 
S ' 

K-l 
k=0 

F(v, dtv, 
F(v, dtv, 

F(v, dtvxcx, 
F(v, dtv,x 

0(\\v\ K+2> 
HS 
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CHAPTER 0. INTRODUCTION 11 

The remainder Rk(I/J(V)) is given by (25). Since 0* will be constructed under the form 

/(ft(v, v)v)vdx, where ft is a self-adjoint operator of order 2s,F(v, dtv,RK(ip(v))} will be 

seen to be controlled by the right hand side of (27) (again, the structure of 0* and 

of (25) allows one to express the Poisson bracket from a commutator [ft, A'£\ of order 

2s, vanishing at order K at v = 0). Similar statements hold for Gk(ip(v)) — G'k(v), so 

that (27) is equivalent to 

(28) sd 
sd 

1 
y/c=0 

F(v, dtv, 0(\\v\ F(v, dtv, 
F(v, dtv, 

We are reduced to finding Gj(v), equivalent to \\v\\2Hs for small v's, such that (28) 

holds when all Gk are of type Re /§1 (A'k(v, v)v)vdx. If we look for Q] = ©g o XH> for 

some auxiliary function H, we get formally by (9), (10), that (28) is equivalent to 

(29) |0 s K-l 
k=0 

AdkH 
k\ 

sd 
sd 

0(\\v\ | « + 2 
sd 

with Gr = ^2k=l Gk(v). As in (11), (15), this equality may be reduced to a family of 

homological equations, the first one being 

(30 o 
s 

F(v, dtv, F(v, dtv, 0. 

The gain in comparison to (15), (16), is that G[ is given by Re J§1 (A[(v, v)v)vdx, 

i.e. does not contain any component in J§1 (B[(v, v)v)vdx. If one looks for some Hi of 

type Re /gl (A[(v, v)v)vdx, with A[ of order 1, all Poisson brackets involved in (30) 

may be expressed from commutators, so that the overall order never increases. In 

particular, the second homological equation may be written 

sd 
sd 

ÏÏ2,GQ G'2 0, 

where G'2 is given in terms of G'2 and of the Poisson brackets of Hi, G\, and so is still 

of the form Re Jgl (A2(v, v)v)vdx with A'2 of order 1. In other words, the reduction 

performed in the first two steps of the proof made disappear the terms of higher order 

in (21). In that way, one determines recursively Hi,H2,..., all of these functions 

being expressed from quantities Re fsl(Aj(v,v)v)vdx with Aj of order 1. There is 

nevertheless a technical difficulty in the implementation of this strategy: it turns out 

that one cannot define the canonical transformation XH from some Hamiltonian if, as 

the value at time 1 of the solution of (6) (with F replaced by H). Actually, since H is 

given in terms of quantities J§1 (Af(v, v)v)vdx, with A! an operator of order 1, XH(V) 

is given by an operator of order 1 acting on v, so that $(t,v) = Xn(^{t,v)) is no 

longer an ordinary differential equation. We get around this difficulty in section 5.3, 

defining a substitute to XH in terms of expressions involving finitely many Poisson 

brackets, which allows us to proceed as described above, without constructing the 

flow of XH . 

Let us conclude this introduction with some more technical details. As explained 

above, our quasi-linear Birkhoff normal forms method uses Hamiltonians given by 
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12 CHAPTER 0. INTRODUCTION 

expressions of form /§1 (A(u,u)u)udx, Jsl{B(u,u)u)udx, where A,B are operators 
depending on u, u. Chapters 2 and 3 are devoted to the construction of the classes of 
operators that we need. These are para-differential operators on S1, whose symbols 
depend multilinearly on u,u. Such classes have been already introduced in [11] (see 
also [12]). We have to modify here their definition for the following technical reason. 
When one uses a Birkhoff normal form method in the semi-linear case, one does not 
need to know much about the structure of the remainder given by the integral in (9). 
On the other hand, for quasi-linear problems, we need to be able to write for the 
remainder a quite explicit expression, of the form of (24). It is not clear how to do 
so from the integral expression in (9), as it involves the flow $ of Xp. To overcome 
this difficulty, we use instead of (9) a full Taylor expansion of G o ^ 1 . The remainder 
is thenF(v, dtv,A<k\F ' G(u)i and we need estimates to make converge the series. Since 
F, G are expressed in terms of para-differential operators, we have to introduce classes 
of symbols ak(u,u;x,n), which vanish at order k at u = 0, and are controlled by 
Ckk\\\u\\k„.. Each dk is itself an infinite sum of the type j>k ak(u-> u:> x-> n)> wnere 

xc is homogeneous of degree j in (u,u) and satisfies bounds of the form Bjk\ (For 
technical reasons, the actual ( j , /c)-dependence of our bounds will be more involved 
than that). The construction of these classes of symbols, the study of their symbolic 
calculus and of the Poisson brackets of functions defined in terms of the associated 
operators, occupies chapters 2 and 3 of this paper. 

Finally, let us mention that an index of notations is provided at the end of the 
paper. 
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CHAPTER 1 

ALMOST GLOBAL EXISTENCE 

1.1. Statement of the main theorem 

Let H(x, X , Y) be a polynomial in (X, Y) with real coefficients which are smooth 

functions of x e S1. Assume that (X, Y) —» H(x,X, Y) vanishes at least at order 3 

at zero. Let m e]0, +oo[. For 5 a large enough real number, (v0, vi) an element of the 

unit ball of ffs+^(S1;R) x Hs~i (S1; R), e G]0,1[, consider the solution (t, x) ->vt x) 

defined on [—T, T] x S1 for some T > 0 of the equation 

(1.1.1) 

d Ol m2 v = 
sfdf 

dx 

dH 

.BY 
[XiVidxV; 

dH 
dx 

x,v,dxv] 

v\t=o ev0 

dtv \t=0 evi. 

The right hand side of the first equation in (1.1.1) is a quasi-linear non-linearity. Its 

special form will allow us to write (1.1.1) as a Hamiltonian equation in section 1.2 

below. Note that the only semi-linear non-linearities of the form of the right hand 

side of (1.1.1) are those depending only on v. Our main result is: 

Theorem 1.1.1. — There is a subset J{ c]0,+oo[ of zero measure and, for any H as 

in (1.1.1), for any m G]0, + o o [ — , for any n € N, there is SQ G N such that for any 

integer s > SQ, there are eo G]0,1[, C > 0, satisfying the following: 

For any e €]0, eo[, for any pair {v$,vi) in the unit ball of i i P + ^ S ^ R ) x 

iiP~s (S^R) , equation (1.1.1) has a unique solution v, defined on ) — X^TefxS1 with 

Te > ce—, and belonging to the space 

qfdfdf Tr,T±H Î+^(S1;R)) sdsd Te,TJ H'-tiS1;®.)) 

(where C3h{\ — Te,Te[,E) denotes the space of 0 functions on the interval ] — Tc,Te[ 

with values in the space E, whose derivatives up to order j are bounded in E uniformly 

on]-T£,Te[). 
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14 CHAPTER 1. ALMOST GLOBAL EXISTENCE 

Remarks. — As pointed out in the introduction, when | ^ = 0 theorem 1.1.1 is 
well-known. It is stated in Bourgain [5] and a complete proof has been given by 
Bambusi [1], Bambusi-Grebert [3] (seae also the lectures of Grebert [15]). 

— Results involving a semi-linear non-linearity depending also on first order deriva­
tives (i.e. equation (1.1.1) in which the right hand side is replaced by f(v, dtv, dxv)) 
have been obtained by Delort and Szeftel [12, 13], included for equations on Sd, (d > 
1) instead of S1. One obtains then a lower bound for the existence time in terms of 
some non-negative power of e - better (when convenient assumptions are satisfied) 
than the one given by local existence theory - depending on the order of vanishing of 
the non-linearity at zero. In particular, one does not get almost global solutions for 
such non-linearities. For some examples of polynomial non-linearities depending on v 
and its first order derivatives, the lower bound of the existence time given by local 
existence theory (namely Te > ce~a when v vanishes at order a + 1 at zero) is even 
optimal. 

— In the same way, for more general quasi-linear equations than (1.1.1), it is shown 
in [11] that the existence time is bounded from below by ce~2a when the non-linearity 
vanishes at some even order a + 1 at zero. 

— The proofs of the almost global existence results of Bambusi, Bambusi-Grebert 
refered to above rely in an essential way on the fact that the equation under consid­
eration may be written as a Hamiltonian system. This is also the key to extend these 
lower bounds on the time of existence of solutions to the case of equations on SD, as 
in Bambusi, Delort, Grebert and Szeftel [2]. In our problem (1.1.1), we shall use the 
special form of the non-linearity to write the equation as a Hamiltonian system. 

1.2. Hamiltonian formulation 

We shall describe here the Hamiltonian formulation of our problem. Let us intro­
duce some notation. Set 

[1.2.1) J = 
0 - 1 

1 0 

and if Z, Z' are two L2-functions on S1 with values in 1R2, define 

(1.2.2) Mz,dfdfz') I'JZ, Z') IZ,JZ') 

where (•, •) stands for the L2(S1; E2) scalar product. Let s > 0, U be an open subset of 
Hs(Sl;R2) and F : U —• K be a C1 map. Assume that for any u eU, dF(u) extends 
as a bounded linear map on L2(S1; E2). We define then Xp{u) as the unique element 
of L2(§1; M2) such that for any Z € ^(S1; R2) 

1.2.3) wo(A>(u),Z) dF(u) • Z. 
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1.2. HAMILTONIAN FORMULATION 15 

In an equivalent way 

(1.2.4) XFsfdf(u JVF(u). 

If G : U R is another function of the same type, we set 

(1.2.5; F,G} dF(u) • XG(u dF(u\ G(u) 

Let us rewrite equation (1.1.1) as a Hamiltonian system. Set 

(1.2.6) Am + ra2 on S1. 

If v solves (1.1.1), define 

(1.2.7; u(t, x) 
u(t, xvc, xc 

u(ggh, x 
u1 

u2 

For u e i J ^ S ^ R 2 ) with s > 1 set 

(1.2.8) G(u) 
1 
2 

AmU,u) 
J S1 

H(x,ltf'2u\dxA^'2usdsd2)dx. 

By (1.2.7), (1.2.8), equation (1.1.1) is equivalent to 

(1.2.9) 
dtu = XG(u) 

u\t=o = eu0 

where uo(t, x) = 
Am Vi 

aU2V0 
is in #*(§*; R 2 ) . To prove theorem 1.1.1, it is enough to 

get a priori uniform bounds for the Sobolev norm \\u(t, -)\\HS when s is large enough. 
We shall do that designing a Birkhoff normal forms method adapted to quasi-linear 
Hamiltonian equations. 

Let us end this section writing equation (1.2.9) in complex coordinates. We identify 
f P ^ j R 2 ) to H'Q&iC) through the map 

(1.2.10) u = 
u1' 

u2 
w 

2 
2 

V + iu2] 

More precisely, we identify i f ^ S ^ R 2 ) to the submanifold {w\ = W2} inside the 
product # s (§*;€) x HS(§U,C) through 

(1.2.11) u = 
u1 

u(t, x 

u(t, xxvc 

u(t, xcv 

u1 + iu2] 

u1 — iu2] 

If we set for a real C1 function F defined on an open subset U of HS(S1; R2) 

(1.2.12; 
dwF 

1 
2 

(<LiF id,.2F dwF 
*2 

i 2 
iuiF idsdsuiF 

7 j? 
w1-

2 
2 

uiF-iVu2F 7—F 
2 

2 
'uiF + i u(t, x 
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16 CHAPTER 1. ALMOST GLOBAL EXISTENCE 

we see that the identification (1.2.11) sends VUF to 
—F 

F 
w ± 

and Xp{u) to i 
—F 
w J-

F 

If z 
d 

C 
and Z 

sd 

sd are two vector fields tangent to VÜ2 = Wi in HS u(t, x 

^ ( S 1 ; C ) , the symplectic form coming from UJQ through (1.2.11), computed at (Z, Z ' ) , 

is given by 

(1.2.13) sd Z, Z' 21m 
's1 

c(s)d(x)dx. 

Moreover, if F and G are two C1 functions on U, whose differentials extend to bounded 

linear maps on L ^ S ^ R 2 ) , we have 

(1.2.14) 
u(t, x d"u)F dyjF 

i wG 

c wG_ 

i(dwF 7wG • dwF wG) 

Finally, if G is a C1 function on U, the Hamiltonian equation u = XG(U) may be 

written in complex coordinates 

(1.2.15) w = Ï wG(w,w) 
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CHAPTER 2 

SYMBOLIC CALCULUS 

We shall introduce in this chapter classes of symbols of para-differential operators 

in the sense of Bony [4]. These symbols will be formal power series of multilinear 

functions on C ° ° ( S 1 ; R 2 ) , the general term of theses series obeying analytic estimates 

that will ensure convergence on a neighborhood of zero in a convenient Sobolev space. 

2.1. Multilinear para-differential symbols and operators 

Let us introduce some notations. If a : Z —• C is a function, we define the finite 

difference operator 

(2.1.1) dna(n) ayn) a(n — 1). n G Z 

Its adjoint, for the scalar product +00 
¿n= — OQ 

a(n)b(n), is 

(2.1.2) <9>(n; -(0na)(n + l) - t_ i o dna(n) 

where for j , n G Z we set Tjb(n) = b{n — j). We have 

(2.1.3) 
u(t, xu(t, x (dna)(-n) 

dn[ab] (dna)b {na){dnb). 

Let us remark that the second formula above may be written 

dn[ab] (dna)b a(dnb) (dna){dnb), 

We generalize this expression to higher order derivatives in order to obtain a Leibniz 

formula. 

Lemma 2.1.1. — For any integer (3 G N, there are real constants u(t, xu(t, x, indexed by 

integers /?2 /?2,/?2 satisfying /?i + ^2 = 0 < /̂ 3 < /3, such that for any functions a, b 
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18 CHAPTER 2. SYMBOLIC CALCULUS 

from Z to C , any /3 G N* 

(2.1.4) 

a£[a6] /?2/?/?22 /?2/?2/?2 

0i>O,02>O 
Pl+02=P 
O<03<0 

c sd 
/?2/?2/?2 

/?2/?2/?2 /?2/?2 
/?2/?2 a 

/?2/?2 

Proo/. — For 0 G N , ft < ft denote by C|1,/32 the value at X = - 1 of 

(2.1.5) - 1 3i+/32 
/?2/?2/?2 X^d^2 

P1W2 
[(i + x n 

When A > ft, set ^01,02 
a/?2 Let us show that 

d?\ab] 
0i>O p2>o 

/?2/?2/?2/?2/?2 /?2/?2 

Since by definition/?2/?2/?2/?2= 0 when ft +- ft < /3 and when ft > /3 or ft > ft the 

sum in the above expression is actually for 0 < ft -+ ft, ft < /3, ft < ft By (2.1.1), 

Id - dn = ri so that 

/?2/?2/?2 Id - ril '(ab) 

0 

3'=0 

(3 

0' 
- 1 0't? [ab] 

g 

p>=o 

fg 

,0 
-1 

/?2/?2/?2/?2/?2/?2 
/?2/?2/?2/?2/?2/?2 

whence 

/?2/?2 
0 

(3'=0 

0' 

01=0 

0' 

32=0 
- 1 \0'+01+02 6y 

ft 

ft 

ft 

xc 

ft 
/?2/?2/?2/?2/?2 

[2.1.6) 

/3i /?2 

£01,02 /?2/?2V d?2b 

with 

r0U02 - 1 01+02 

max(0i,02) <0'<£ 
- H 0' 0 

0' 

0' 

Pi 

sd 

02 

Since X^2d£2[(l +- X)P\ = Y,02<0'<0 (p) (0>-h)\Xl3'>this coefficient is the value at 
X = - 1 of (2.1.5). In (2.1.6), we have 0 < ft < ' f t 0 < ft < ft ft + ft > ft When 

ft+ft /?2/?2>ft we write 
/?2/?2/?2 

; i d - n ) 
/?2/?2 /?2/?2/?2 /?2/?2 

/?2/?2 

which shows that the corresponding contributions to (2.1.6) may be written as one of 

the terms on (2.1.4), up to a change of notations. When ft +- ft = ft we get the first 

two terms of the right hand side of (2.1.4) when ft = 0 or ft = 0 and contributions 

to the sum in that formula. This concludes the proof. • 
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2.1. MULTILINEAR PARA-DIFFERENTIAL SYMBOLS AND OPERATORS 19 

For n G Z, we denote by ^n(^) the function on S1 defined by 

{2.1.1) On(x) 
/?2/?2 

/2tt 

and for a G Z and a: =¿ 0 mod 2tt we put 

(2.1.8) /?2/?2/?2 
fln(x) 

1 - e-'x va 

When a € Z, ß € N we have 

(2.1.9) /?2/?2/?2 /?2/?2/?2 

Hue Z /^S^R) (resp. u G L^S^R2) ) we set u(n) = Jgl e~inxu(x)dx and 

[nu 
'S1 

u(y)6-n(y)dy6n(x) u(n) 
/?2/?2 

2tt 

the orthonormal projection on the subspace of L2(S ,C) (resp. L2(§,C2)) spanned 

by 6n (resp. 0n 1 

0 
and 0n 

0 

1 
Let us introduce some notations and definitions. Let (#,n) —» a(#, n), (x, n) —• 

b(x,n) be two C°° functions on S1 x Z. By formula (2.1.4) and the usual Leib­

niz formula for ^-derivatives, there are real constants C^;^, 7 indexed by a,(3 G 

N,a ' , f t ,7 G N with 0 < a' < a, 0 < ft < ft 0 < 7 < ft 0 < a' + ft < a + ¡3 such 

that for any a, 6 as above, any a, /3 G N 

(2.1.101 

<9?<9f? afr(x, n) /?2/?2/?2 /?2/?2 /?2/?2 

0<a'<a 
O<3'<0 
0<7</3 

0<a/+/3/<a+/3 

/?2/?2/?2 
/?2/?2/?2 

(Id - n |7 /?2/?2V/?2 /?2/?2/?2/?2/?2 

We shall fix some Co°(]R) functions x> X> Xi with 0 < x> X> Xi ^ 1> with small enough 

supports, identically equal to one close to zero. We denote by C.(xi) a sequence of 

positive constants such that for any n 6 Z, any A s M , any 7 G N 

d«Xi 
A 

(n) 
^(xi ) (n>-7 . 

Moreover, we define from % the kernel 

(2.1.11) Kn(z. 
1 

2tt 

+00 

/?2/?2 

eikzX k 

(n) 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2012 



20 CHAPTER 2. SYMBOLIC CALCULUS 

with z G S1 identified with [—7r,7r]. We denote by C.?M(X) a sequence of positive 

constants such that for any 7 , M G N for any n G Z, z G [—7r, 7r] 

(2.1.12; WW/?2/?2V C 7 , M ( X ) ( ™ ; 1-7 l + (n)b | — M 

Definition 2.1.2. — Let T, M G R+ be given. We say that a sequence (Dp)pe^ of 

positive constants is a "(T, M)-conveniently increasing sequence" if (Dp)pe^ is an 

increasing sequence of real numbers with Do > 1, satisfying the following three in­

equalities: 

For any p G N, for any a, (3 G N with a + /3 = p, 

(2.1.13) 2p 

0<a'<a 
0<{3'</3 
0<7</3 

0<a'+/3'<p 

c /?2 
/?2/?2/?2 

/?2/?2/?2/?2/?2 Da'+/3'Dp-a'_p> < Dp, 

(2.1.14) 

0<8'<3 
O<7<0 

C /?2 
/?2/?2V 

/?2/?2/?2/?2/?2 C(3-(3>(Xl)Da+f3 /?2/?2 

(2.1.15; 
O</3'<0 

0<7<P 

s sds 
U,P',7 

(4(p))"[C7^,2(x) c>,2(x)]-Dp-/3' /?2CFD 

Note that since the left hand side of the above three equations depends only on 

Do,..., Dp-i, we may always construct a conveniently increasing sequence whose 

terms dominate those of a given sequence. 

We shall use several times that if j',j",k',k" are in N*, 

(2.1.16; 

(k'+j'-l) 

(f + 1)! 

[k"+/?2/?2/?2j"-l)\ 

(j" +1)! 

(k' + k" +f +j" -2) 

U' + W+J") J" + 1) 
1 

( j ' + l ) ( j " +/?2/?2 l ) 

(k'+ k"+ f+j/?2VV"-iy. 

/?2/?2/?2/?2/?2/?2 

We set for j € N, ci(J) = 8^+1)T^, so that for any j € Z,c i *c1(j) < ci(j). For K0 

a constant that will be chosen later on large enough, we put c(j) = K^lc\(j). Then 

for any 7 € Z 

(2.1.17) c * c(i) /?2/?2/?2/?2 

Definition 2.1.3. — Let d G R, v G R+, C £ R+, a G R with a > i /+C+2,j , A: G N*, j > 

fc,JV0 G N , 5 G R+,Z). = (Dp)peN a (y + |d| + cr,iV0 + 1)-conveniently increasing 

sequence. We denote by E^-N n (cr, £, £>) the set of all maps 

(2.1.18) 
(uU...,Uj) ({x,n) a(ui, ...,Ujm,x, n) 

/?2/?2/?2/?2/?2/?2 
C00^1 x Z ; C 
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which are j-linear and symmetric in (m,..., Uj), such that there is a constant C > 0 

so that for any ui,..., Uj G C^fS1; R2), any rt\..., n7- G Z, 

(2 .1 .19 ) /2 NI^l /?2 /?2/?2V 0 if max |n^| 
1 

4 
n|, 

and for any p G N, any er' € [i/ + Ç + 2, <J], any (x, n) G S x Z 

sup 
a+ß=p 

/?2/?2/?2/?2 •ni^i, N-I7/?2/?2V 5 

(2 .1 .20 ) 

c 
c(j)DvBxv 

j + 1 ; 
c(j)DvBUn] d-ß+(ot+v+Noß-a') 

3 

£=1 

wcwc , er c(j)DwcxvB 

and for any ^ = 1 , . . . , j 

( 2 . 1 . 2 1 ) 

sup 
a-\-ß—p 

c(j)DvB 
c(j)DvB -N? ^7 J ^5 ^> xc ((j)DvB+j-l) 

ü' + i) 
c(j)D„BUn) d-ß+ot+v+Noß+a' 

Kt'<i 
c(j)DvB 

(ne>)a •ne,U£'\ (ne) ° II N ^ l U 2 ' 

The best constant C > 0 in ( 2 . 1 . 2 0 ) , ( 2 . 1 . 2 1 ) will be denoted by 

(2 .1 .22 ) xc xcx 
c(j)DvB >, C, B,D.\ a). 

Remarks. — We extend systematically our multilinear maps of form ( 2 .1 .18 ) to C -

multilinear maps on C°°(§1; C2)-7 to be able to compute them at complex arguments. 

— By definition for a > 0, a > v + C + a -J- 2 , 

(2 .1 .23 ) \d,v 
c(j)DvB <t,cb,d.: 

d,v-\-oc 
'(k,j),N0 

c(j)DvB 

— When iVo = 0, the above inequalities define a class of para-differential sym­

bols: by ( 2 . 1 . 2 0 ) , if ui,...,Uj belong to some Sobolev space Hs, then the symbol 

a(u i , . . . , Uj; x, n) obeys estimates of pseudo-differential symbols as long as the num­

ber of ^-derivatives is smaller than s — \ — v. For higher order derivatives, one loses 

a power of (n). Moreover ( 2 . 1 . 2 1 ) shows that if one of the ui is in a Sobolev space of 

negative index H~s, one gets estimates of symbols of order essentially d + s, with a 

loss of one extra power for each 9x-derivative. 

— The precise form of the factors ^*+7)V! *n ^ne above definitions is not essential. 

The important fact is that these quantities are bounded by k\ (times a power k + j 

of some fixed constant). For u G H8, with s large enough andc(j)DvB small enough, 

this will allow us to make converge the sum in j > k of such quantities, and to obtain 

bounds in C f̂clHwll̂ S i.e. bounds verified by the derivatives at zero of an analytic 

function defined on a neighborhood of zero. 
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We shall define below other classes of symbols given by infinite series whose gen­

eral terms will be given from elements of E^.1^ jv0(a' C^^.). We shall need precise 

dependence of the constants in (2.1.20), (2.1.21) in j , k to obtain convergence of these 

series. But we shall also use polynomial symbols, defined as finite sums, for which 

explicit dependence of the constants is useless. Because of that we introduce another 

notation. 

Definition2.1.4. — Let d €c(j)DvBG R+,iVo G N,j G N. We denote by ^q)iNq(0 

the space of j-linear maps (u\,...,Uj) —> {(x,n) —• a(ui,..., Uj\ x,n)) defined on 

C00^1;!*2)' with values in C00^1 x Z;C) satisfying the following conditions: 

• For any n i , . . . , rij, n with max \ri£ \ > \\n\, for any m,...,Uj in C°° (S1; R2), 

(2.1.24) a(IIniizi, rij M j i X)7l 0 

• For any a, /3 G N, any a > v + £ + 2, there is a constant C > 0 such that for any 

n i , . . . , rij, n G Z, any a: G S1, any ui,...,Uj in C°° (S1 ; R), 

(2.1.25; 

d?d£a( c(j)DvB c(j)DvBc(j)DvB VD-/3+(a+i/+JVo0-ff) + 
.7 

¿=1 

n^)a| |IIN,^||L2, 

and for any £ — 1,..., j 

(2.1.26) 

c(j)DvB c(j)DvB TinB7FGF5 ;c<n) c(j)DvBc(j)DvBc(j)DvB 

!<£'<j 
I'M 

(np>Y\ c(j)DvB c(j)DvB •ney>e\\L2-

Let us now define from the preceding classes symbols depending only on one argu­

ment u. 

Definition 2.1.5. — Let d G R,z/,C G R+,iV0 G N,<J G R,a > v + C + 2,fe G 

N*,l? > 0 , a [y + |d| + a,iV0 -h 1)-conveniently increasing sequence. We denote 

by S?j\ N (a,£,B,D.) the set of formal series depending on u G C°°(S1,R2), (x,n) G 

S1 x R, 

(2.1.27) a(u: x, n) 
DEI 

j>k 
a* u w.x.n 

3 

where dj G E^.X ̂  (a, C, B -D.) are such that 

(2.1.28) sd sd 
(k),N0 

a,(,B,D.:a 
DEF 

sup 
j>k 

sd sd 
c(j)DvB 

a,Ç,B,D.;aj -CO. 
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Note that if so > v + £ + | and if u stays in BSQ (R), the ball of center 0 and radius 

R in H8°(S1,R2), each a,j extends as a bounded multilinear map on HS°(S11R2) and 

by (2.1.20), one has estimates 

c(j)DvBv 
w u:x.n Ca,ß 

(k + j-1) 
c(j)DvB 

c(j)DvB <J-0+(a+JVo/3-2) er 

so that if 2i?i2 < 1 the sum in j > k of the preceding quantities converges, and is 

bounded by C(ARB)k(k - 1)!. 

We introduce a similar definition for polynomial symbols. 

Definition2.1.6. — Let d G R,i/,C € R+,JVo G N,fc G N*. We denote by S^)Nq(() 

the space of finite sums 

(2.1.29) a(u; x, n 

j>k 
finite 

(u*... ,u:x.n 

3 

where a, G £ ^ ^ ( 0 . 

Quantization of symbols 

Definition 2.1.7. — Let Y G Cn°(| — 1, If), Y even. Let a? G Ej^.x AT (a, C, £>) (resp. 

a = c(j)DvB G YD,!/ 
(c(j)DvBfc),JV0 (^c,b,-d-): We define 

(2.1.30] 

a>j x {u\,..., Uj ; x, n) sd 
D 

c(j)DvB 
a 7 ( u i , . . . , ? j 7 ; n ) 

ax(u; x, n) 

3>k 
,a3\x\ (w,..., u; a:, n), 

cx 

Let us remark that a,jiX (resp. ax) still belongs to Y^^NQ{a^,B,D.) (resp. 

S(k)NSG*^BiD-)) and that 

(2.1.31) 
sd sd 

c(j)DvB 
(cr,C, B,D.;aja) c(j)DvBvvc 

c(j)DvBxvcv 
?,C,sdB,D.;aj) 

9T c(j)DvB <a,Çi,B,D.',ax c(j)DvBxc a,Çsd,B,D.;a 

for a constant Co depending only on %. Actually, if jRTn(̂ ) is the kernel de­

fined by (2.1.11), and if we set U' = (u\,..., Uj), n' = ( n i , . . . , rij), Hn>U' = 

(IInii6i,... ,UnjUj), we have 

aj,x ln>U'',x,n\ X 
D 

In). 
2j( sd U';x,n)\ 

Kn*aj( sd U';;n) 
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where the convolution is made with respect to the x-variable on S1 . By ( 2 . 1 . 1 0 ) , we 
may write 

( 2 . 1 . 3 2 ) 

c(j)DvBc(jdfd)DvB c(j)DvB .dßnKn^d^aj 
n 
/U']xin) + Kn*a^dZaj {niXJ'\x,n 

0<6'<3 
0<7</3 

°0,/3',7 (Id-n)sdds^ Kn) c(j)DvBxcv 
c(j)DvBxvv Ln' <U :x.n 

We may write 

c(j)DvBc(j)DvB 
0<7'<7 

7 
, 7 ' 

c(j)DvBc(j)DvB 

Using ( 2 . 1 . 1 2 ) with M = 2 , we bound for f<p,0'<p 

( 2 . 1 . 3 3 ) K i d - n r ^ X l c ( j ) D v B C/J',2(X) 
0<7'<7 

7 

7' 
(n-j')1-0 (l + ( n - 7 ' ) N ) - 2 . 

Note that 

( 2 . 1 . 3 4 ) 
1 

2 ( 7 ' ! 
(n) <(n- isdsd) 2{i){n) 

so that the Lx{dz) norm of ( 2 . 1 . 3 3 ) is smaller than 

(2 .1 .35 ) 2Cß,i2(x№p))P(n)-ß . 

If we plug this in ( 2 . 1 . 3 2 ) , use ( 2 . 1 .20 ) or ( 2 . 1 . 2 1 ) to estimate \d£d%-0'aj\ and recall 

that we assume that CQ 'p, satisfies ( 2 . 1 . 1 5 ) , we obtain for d^d^aja estimates of type 

( 2 . 1 . 2 0 ) , ( 2 . 1 . 2 1 ) with the constant C replaced by CoC, for some uniform Co > 6. 

Let us quantize our symbols. 

Definition 2.1.8. — Let \ € C X ° ( ] - \ , 0 < x < 1, X even, \ = 1 close to zero. If 
c(j)DvBc(j)DvB ( e r , C , w e define for ui . . . , i^+i G C 0 0 ^ 1 , ! * 2 ) 

(2 .1 .36 ) Op[a(wi,...,^;-)K+i(x) 
1 

2tt 

dfdd 

N= —OO 

einxa{ui,... ,itj;x,n)ûj+i(n). 

If a = Y^j>kaj belongs to S^"No(a,(,B,D.) we define Op[a(u; •)] as the formal 

series of operators 

( 2 . 1 . 3 7 ) 

j>k 

Op[aj u,...,u; 

j 

Finally, we define Opx[aj(ui,... ,Uj', •)] (resp. Opx[a(u; •)]) replacing in ( 2 . 1 . 36 ) (resp. 

( 2 . 1 . 3 7 ) ) dj by a^x (resp. a by ax). 

Let us study the L2-action of the above operators. 
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Proposition 2.1.9. — Let de R , I / ,Cg M + , <T G R , a > I/ + C + 2,iVo G N, j,fc G N*, j > 

fc,£ > 0, D. a {y + |d| + <7, iV"o + 1)-conveniently increasing sequence. There is a 

universal constant Co such that for any a Gc(j)DvBNq (a, £, B, D.), any no,..., rij+i G 

Z , any ui,... ,Uj g C ° ° ( S 1 ; R 2 ) , any N eN, any g' e [I/ + C + 2,<T], 

[noOpx[a ni ^1 5 c(j)DvB nj+1 II £{L2) 

(2 .1 .38 ) 

c(j)DvB 
c(j)DvB 7,Ç,B,D.;a 

c(j)DvBc(j)DvB 

c(j)DvB 
c(j)DvB 

c(j)DvBc(j)DvBc(j)DvB 

(n0 - ni+i) 

cv 

¿=1 

c(j)DvB c(j)DvB 

X^{|n0-nJ + i|<|(nJ + i ,max(|m|,...,|nj|)<^|ni+i|} 

and for any I = 1,...J, 

Ln0 O p > cxvx cxvxv UJ + 1||^(L2) 

c(j)DvB vc 
(fc,j),IV0 

c(j)DvBc(j)DvB 
(fc + j - 1 ) ! 

Ü + 1 

c(j)DvB 

(2 .1 .39) c(j)DvB 
c(j)DvBvc 

(n0 - nj+i)N l<€'<j 
cvcv 

(ne>)a v ^ I IL2 c(j)DvB 
U£^|IL2 

X 1 
* A{|n0-nj + i 

:i(^i + i)5max(|ni|,...,|n7| <il^+i|}' 

Proof. — We denote U' = (u\,...,Uj), n' = (ni, . . . , rij), and set Un'U' = 

(Uniui,..., UnjUj). By definition 2 .1.8, the Fourier transform of Opx[a(IIn/{7/; -)]UJ+I 

evaluated at no may be written 

1 

2TT 
cvc 

axi ln'U'\ no c(j)DvBc(j) î(ni+i) 

By ( 2 . 1 . 3 0 ) , ^(Iln/t/'jfcjnj+i) is supported for < \{nj+i) and by ( 2 . 1 .19 ) it 

is supported in max(|ni|,..., |nj|) < ||nJ+i|. Moreover integrations by parts and 

estimates (2 .1 .20 ) show that 

ws 
n' U';k,n)\ c(j)DB cvv 

c(j)DvB 
(a,C,B,D.:a) 

c(j)DvBvcv 

(J + I)! 
c(j)BWN 

c(j)DvBc(j)DvBc(j)DvB -N 
j 

cvcv 
{ni)a 

•ne( 
c(j)DvB 

for some universal constant Co- This gives inequality ( 2 . 1 . 3 8 ) . Estimate (2 .1 .39 ) fol­

lows in the same way from ( 2 . 1 . 2 1 ) . • 

We shall use some remainder operators that we now define. 
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Definition 2.1.10. — Letc(j)DvB G R + , d G R+,<T G R+,<r > + 2 + max(C,f),B > 

0, j , / c G N*, j > k One denotes by A^^(a,C,B) the set of j-linear maps M from 

C 0 0 ^ 1 ^ 2 ) ' to ^ ( L ^ S ^ R 2 ) ) , the space of bounded linear operators on L2(§AiR2), 

such that there is a constant C > 0 and for any u\,...,Uj G C ^ S ^ R 2 ) , any 

no,. •. ,n j+I G Z , any £ = 0 , . . . J + 1, any o7 G [i/ + 2 + max(C, f ),<r], 

l|nnoM(nc(j)DvB c(j)DvB xvxv xxwvcv 

(2.1.40) 
xcc (fc + i - 1 ) ! 

Ü +QDS 
c(j)DvB 

V -Zo'+v+d 
cvvc 

cvcvc 

xc(j)DvB 
vv 

£'=1 

c(j)DvBxc 

The best constant C > 0 in the above estimate will be denoted by ^ ¿ ^ ( ¿ 7 , C,B; M). 

We also define operators depending on a sole argument. 

Definition2.1.11. — Let v,( G R + , d G R+,CT G R+,<T > v + 2 + max(C, f ) , £ > 

0,fc G N*. One denotes by £^(<r ,C ,B) the space of formal series of elements of 

£(L2(SA;R2)) depending on u G C ^ S ^ R 2 ) 

(2.1.41) M(u) 

j>k 

Mi г¿, . . . , u 

3 

where Mj G A^^(a,£,B), such that 

f2.1.42i J\k) (C7,C,B;M) 
DEF 

sup 
j>k 

(k,3 (a,Ç,B',Mj -oo. 

Let us give an example of an operator belonging to the preceding classes. Consider 

an element cij G ^^j) A R 0 ( A ' ^ ' ^ ) ^OR SOME d > 0, some ( G R + . Let x be as in 

definition 2.1.8 and take Xi £ CQ°(] — 1,1[), Xi = 1 close to zero. Define 

0 ^ 1 ( ^ 1 , . . . , ^ ; x,sds n) : i - x i : 
sd 

sdfdf 
[oj^i,...,^;qdfsdf^,^)]. 

Then it follows from (2.1.20) that a^i satisfies estimates of the same form, with (d, v) 

replaced by (d — 7, v + 7) for any 7 > 0, any cr' G + C + 2, ¿7]. We thus get for the 

operator 

M ( I I I , . . . ,TXJ Op [07,1(1x1,...,^;-; 

bounds of type (2.1.38) with N = 0 

Ln0-
M ni ̂ 1 5 • • • 5 INJ«;) sqddsd l|j?(L2) 

(2.1.43) 
cv fc+j-1qsds 

Ü + 1)! 
c(j)BJ(nj+1) D-7+(Z/+7-<j/)4 

7 

qdsd 

c(j)DvB 
vc c(j)DvB 
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for any a' € [v + £ + 2, a}. Take 7 = a' — v and assume a1 > v + 2 + max(C, | ) . We 

get a bound of type 

C-
c(j)DvBxv 

7 + 1 ! 
c(j)Bi(nj+1) c(j)DvBc(jB —a 

sdqd 

£'=0 

qsfqfqdf 
3 

¿'=1 

| | n N ^ / | | L 2 . 

Since by (2.1.38), (no) ~ (n^+i), this gives an estimate of form (2.1.40) for £ = 0 and 

£ = j + 1. To obtain the same estimate when £ G { 1 , . . . , j} we recall that because of 

the cut-off in (2.1.38), we may assumec(j)DvB> c(n^), £ = 1,... , j which shows that 

in any case we obtain estimates of an element of Ad^^ (cr, eB) since — 3af + v + d < 0. 

We also define the polynomial counterpart of the preceding remainder classes. 

Definition 2.1.12. — Let z/,C e R+,d G R+,j,k G N*. We define 4 ^ ( 0 to be 

the space of j-linear maps from C°°(S1; M2)J to ^?(L2(S1;R2)) satisfying for any 

a' > v + 2 + max(C, | ) estimates of form (2.1.40) with an arbitrary constant in­

stead of (k^~^1 c(j)BJ. We denote by £^)(0 the space of finite sums M(u) = 

Y^>kMAu,...,u) where Mj G Aa£(Ç)-

We have denned operators as formal series in (2.1.37), (2.1.41). Let us show that 

for u in a small enough ball of a convenient Sobolev space, these series do converge. 

Proposition 2.1.13. — Let d G M, z/, C G R+, a G R+, a > v + C + 2 , 5 > 0, N0 G N, D. 

a (|d| + i/ + <7,iVo + i; )-conveniently increasing sequence, A; G N*. 
(i) Lei 5 > 0 be a small positive number. There are constants r > 0, C > 0, 

depending only on J5, z/, £, 5, such that ifu G HI/+<^+i+(5(S1; R2) and ||n||̂ .iy+c+|+(5 < r, 

Opx[a(n;-)] defines a bounded linear map from if^S^R2) to Hs~d(S1]R2) for any 

sGK, and one has the estimate 
(2.1.44) 

l|Opx[a(n; ')}\\£{Hs,Hs-d) < C(s)(CB)k(k - l ) ! ^ N o ( a , C , 5 , a ) | | n | | ^ + c + i + 5 

for some constant C(s). The same estimate holds for \\Opx[dua(u; •) • V]||£(#a,Hs~d) 

ifVec(j)DvBwith |M|^+c+,+, replaced by 1 1 ^ 1 1 ^ 5 ^ 1 1 ^ 1 1 ^ ^ ^ . 

(ii) Let o' G \v + C + 2,a - \[ and 6 > 0 suc/i *Aa* o' + § + 5 < o. There 

are C > 0,r > 0 depending only on cr',8,B such that for any u G H°+2+s with 

\\u\\H<,,+i+s < r, any V e H~" +2+s! the operator Opx\dua(u; •) • V] defines for 

any s eR a bounded linear map from fl^S^R2) to JP-(d+I'+<T'+2>(§1;R2) with an 

estimate 

(2.1.45) 

||Opv[Ôuo(«;-)-Vl| £(H* ìHs-(d+"+<r'+2)) c(s)(CB)k(c(j)DvBk-ic(j)DvB)md(^No [aX,B,D.;a) 

xc k-1 
c(j)DvB 

\\V\\H^+i+s. 
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Moreover, for any 6 > 0, there are C, po > 0 depending on 5,v,B, such that for any 

u G J f+C+H* with ||T4||Hi,+c+j+, < po, any s > v + C + | , any V G tf-^S1; R 2 ) , 

Op [dua(u; •) • V] defines a bounded linear map from Hs to Ji-d~v-\-^ Wnh an 

estimate 

(2.1.46) 

\\OpJdua(u;-) • fsf 
c(j)DvBc(j)DvBc(j)DvB 

C(s)(CB)kc(j)DvB(k -xc 
{k),J\0 

(a ,C ,B,i?.;a) 

x\\u\\ ifc-1 
c(j)DvBxc \\V\\H-. 

(iii) Assume d > 0 , c r > i / + § + max(C, §) . £e£ cr' G [i/ + 2 + max(C, | ) , cr - \\ and 

S > 0 si/c/i £fta£ a' + \ + 5 < a. There are C > 0, r > 0 depending only on a',5,B, 

such that for any u G i7CR'+2I+<5 WITH||n||^£r/+i+(5 < r, any M G £fy(a,(, B), the 

operator M(u) defines a bounded linear map from H"+2+s to H2° -v-2-t-d With 

the estimate 

(2.1.47) 

\\M(u)\ £(H<T'+2+6IH2<T'~U~2-ô-d) 
; C{a')(CB)k c(j)DvBc(j)DvB (a,C,B;M)||ti|| k 

c(j)DvBxcv 

In addition, for any V G H*'***6, duM(u)-V is a bounded linear map from H^'^i^5 

to -v-\-t>-& and ns operator norm is smaller than the right hand side of (2.1.47) 

with N | ^ / + J + , replaced by | | ^ | | ^ + i + J | ^ | | ^ + i + 5 . 

Moreover, for any s e]v + d +c(j)DvB satisfying s > v + | + max(£, §) , there are 

C,po > 0 depending on s,v,B such that for any u G Hs satisfying \\U\\H* < Po, the 

linear maps M(u) and V -+ (duM(u) • V)u belong to £{H~8 ,H~^2+V^) and satisfy 

(2.1.48) 
\\M(u) • V\\ ft-2-v-d + I c(j)DvBc(j)DvBc(j)DvBxc 

C(CB)k(k - l)!9tfo {<T,Ç,B;M)\\u\\kH.\\V\\H-.. 

Proof. — (i) We write a = £V>fc aj with aj € £^)iVo(<7, <, £?, £>.). We apply (2.1.38) 
a' — — —5 

wither' = */+C+2,iV = 2 and estimate (n )̂a | | I IN^ | |L2 by (n*) 2 CNJ'MI^+C+F+<* 

for a sequence (cnJn€ in the unit ball of £2. Summing (2.1.38) in n i , n j we obtain 
nnoOpx[ c(j)DvBc(j)DvB ITni+1w||L2 

< C0^2^ sd 
c(j)DvB c(j)DvBc(j)DvB |2fc+J"-1(fc-i; ! ^ K | | ^ | | ^ + c + § + 5 ) J 

c(j)DvBc(j)DvB L2(nJ+i) (n0 - n i + i ; -2 
A|NO-NJ + I|<Ì<NJ + I) 

for some uniform constant C0. We deduce from this and (2.1.28) that 

l|Opvfa(«;-)] £{HS,HS~D) C(s)2k(k-1) ,Jt(fc),IVO cr,Cc(j)DvBa) 

wxw 
(2BC£||u| c(j)DvBc xcx 

which gives the first conclusion of (i). The second one is obtained in the same way. 
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(ii) We decompose again a = Ylj>k a3-> and write dua3\u, •) • V as a sum of j terms 

(2.1.49) dj(u,... ,u,V,u,... ,u;x, n). 

We apply estimate (2.1.39) with N = 2, the special index £ corresponding to the 

place where is located V. We bound ||IIn£/u||L2(n*/)°" < cne,(nt>)~*~6\\u\\H<7/+i+s, 

\\KniV\\L*(ne)~a < cn£(n^)"2"<5||F||^_(T,+ i+5, for sequences (cne)ne in the unit ball 

of £2. Summing (2.1.39) in m, . . . , rij and taking into account the fact that we have j 

terms of form (2.1.49), we get 

nQOpx[duaj CS)fc(fc-l 'V]ILnj+1\\£(L*) 

CS)fc(fc-lxvv ((T,Ç,B,D.',aj CS)fc(fc-l (k-l)\Bj\\u\ cvcv 
CS)fc(fc-l 

vxcvv 

x\\V\\H_.,+i+s< xcxc CS)fc(fc-l (n0 - rij+i\ -21CS)fc(fc-lCS)fc(fc-l 

for some uniform constant CL Summing in j > k when \\u\\ ,+i+s is small enough, 
H 2 

we get estimate (2.1.45). 

To obtain (2.1.46), we apply again (2.1.39) with a' = v + C + 2, N = 2, the 

special index being located on the V term. We bound for £' ̂  £ (n^Y ||IIn ^ / | | ^ 2 < 
Cne, \n£') 

xcxc MlCS)fc(fc-land 

— cr xcc U ^ l l ^ < Cne(ne] CS)fc(fc-l 
|V||ff-.<n«)-i-Ä 

with £2 sequences (cnt)nt, (cn£/ )n£,. Using that (n^) < (nJ+i), we get summing (2.1.39) 

in ni,..., Uj 

\\UnoOpx[duaj CS)fc(fc-lCSl CS)fc(fc-lvcvv 

CS)fc(fc-lvcv (<j, (7,B,Z?.;ai)2ife+J-1(ib-i; \Bj\\u\\j-] 
CS)fc(fc-l (Co)' 

<||V||H-.<ni+i> 
CS)fc(fc-l (no - Tij+i -2 

^l^o-nj+i|<§(ni+i)-

We sum next in j > k for ||M|| +c+|+6 small enough. We obtain the bound of (2.1.46) 

for the £(HS, H-d-"-*-s)-noTm of Opx[dua(u; .)-V]. 

(hi) We decompose M = J2j>k^j with Mj e A^^(aX,B). We apply estimate 

(2.1.40) with £ = 0, bounding ||nn ^/||L2(n^)CT by (ra^/)"" || 

upII ua'+^+s^-nft for a 

sequence (c„„ )n„ in the unit ball of £2. Summing in m , . . . , n,- we get (2.1.50) 

[noMj(u,...,u) CS)fc(fc-lCS)fc(fc-lCS)fc(fc-l CS)fc(fc-l -2(T' + l/+d; id' 
<nJ + l) 

Wfc,)(a,C,ß;Mj CS)fc(fc-lCS)fc(fc-l 

for some constant CQ. If we make act the resulting operator on some w in Ha'+2+s 

and sum inCS)fc(fc-land in j > fc, we get that 

||M(«)|i <£^Ha' +\ + 5 j^2o' — v— 1 —(5 —d-CS)fc(fc-lCS)fc(fc-l CS)fc(fc-l) xc ifc CS)fc(fc-l 
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if ||-u|l CT/+i+<5 < r small enough. 
ti 2 

To estimate duM(u) • V, we have to study expressions of form (2.1.50), with one 

of the arguments u replaced by V. The rest of the computation is identical. 

We still have to prove (2.1.48). We write again M = ^j>k^j and use estimate 

(2.1.40), taking for ne the index for which \ne\ > |ri£/|, £' = 0 , . . . , j + 1. We obtain if 

we take in (2.1.40) <r' = s — \ — S for some 5 > 0 small enough 
(2.1.51; 

IIInoM^n ni^lj • • • 5 rijUj , rij V\\L2 < C(k - ìytf+l-1^ :^(cr,C ,B ;M)^ 

j 

V=i 

rijrijrijrij 
rijrijrijrij 

rijrijrij 
cv 

l 

"Hltf -min­

ano)* 2 6(nj+i[ rijcv cvc -3s+§ +3S+v+d 

where (c^ )n£/ ^ = 1,..., j + 1 are £2 sequences. We obtain a bound in terms of a 

constant times 2k(k - l)\(2B)j Ui\\ut'\\H4V\\H-srfrijjK(a, C B\ M) times 

7 + 1 

£' = 1 

rijrijrijrij 
rijrijrijrij 

rijrijrijrijrijrijrij rijrijrijrij 

Because of the choice of n̂ , and since s > d + ^ + §, the factor between brackets is 

bounded by (no)1+I/+2(5+d < {no)*~{~36+u*'dcno with an £2-sequence (cno)no. Summing 

in no,... , n?+1 we obtain 

l|M,-(«).V| rijrij C ^ > , < , B ; M ) ( 2 B | | r i j u\\H.)J\\V\\H-. (fc-l)!2fc. 

Summing in j > k w h e n r i j i s small enough, we get the wanted upper bound. 

To estimate in the same way (duM(u) • V)u, we remark that we have to estimate j 

expressions of form (2.1.51), except that the argument V replaces now one of the Uj, 

so that in the right hand side of (2.1.51) we have to exchange the roles of {UJ+I) and 

of one of the (n^). The rest of the proof is identical. • 

2.2. Substitution in symbols 

In this section, we shall study the effect of substituting a multi-linear map to one 

or several arguments inside a multi-linear symbol. 

Let us fix some notations. Let B > 0, v, Ç G R+, cr > v + Ç + 2, d G R, N0 G N , D. a 

(\d\ + v + cr, No + Inconveniently increasing sequence. Let b G Sfy N0(ai C> ^ ) A?or 

some K G N * . According to definition 2.1.5, we decompose 

b(u: x, n) 

j>K 

sd [u,...,u] x, n 

3 
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2.2. SUBSTITUTION IN SYMBOLS 31 

with bj IIniwi 
(«,j),iVc ((cr,C,For uu...,uj+1 G C00̂1,]IIniwiIIniwiIIniwî2) we set 

[2.2.1) VAui,.IIniwi..,uj+1) : Opx[^(m,..IIniwi.,^;-)]^+i 

or 

(2.2.2) IIniwiIIniwiIIni IIniwiIIniwiIIniwiIIniwi 

where x £ Co°(] ~ i? ^[)> X even, x = 1 close to zero. 

Let us apply inequalities (2.1.38) and (2.1.39) with N = 2. There is a sequence 

(Qn)n in the unit ball of £} and for any s G l a constant K2 > 1, depending only on 

5 and Z?2> such that for any a' G ]y + C + 2, a] one has estimates 

IIniwi nc V^(IIniwi, •nJ + 1%+l)llL2 

IIniwiIIniwi a,CB,D.;bj) 
IIniwiIIniwi 

(¿ + 1)! 
•c(j)BJQno-nj+1 

(2.2.3) xc 

¿=1 

xcxc ^neUt\\L2 \(rii+i)s\ •nj+iy<j+i\\L2 

l{\n0-nj+1\<l(nj+1) ,max(|ni|,...,|ni|)<i|nJ-+i|} 

and for any £ = 1,..., j 

(2.2.4) 

(no)s-d\ 
nQ c Ini^l, lnj + 1Uj + l)\\L2 

cvcv cv 
(K,J),N0 

{a,C,B, D.;bj] 
(K+j-l)\ 

U +1)! 
c{j)BH Qn0—nj+ 

i<£'<j 
IIniwi 

(npr)a II rtt,Ui>\\L2 Km) a | | n N ^ | | L 2 

IIniwiIIniwi nj + 1Uj + l\\L2. 

Set now when d = 0, £ = 0, N0 = 0, K = ko > 1 

(2.2.5 V(u) = u -

IIniwi 

v3 IIniwivcv 

j'+i 

as a formal series of homogeneous terms. Note that by (2.2.3) with a' = v + 2, we 

have if u G Hv+i+5f\Hs for some 5 > 0 that ||V;-(u)||jr. < C\\u\\j „+fi+,(2B)J,|M|jf, 
H 2 

so that (2.2.5) is actually converging in Hs if ||^|| „v+z+s is small enough relatively to 
H 2 

1/B. 
Proposition 2.2.1. — Let d e R,i/,C e M+,A; G N*,a G IIniwiIIniwiIIniIIniwi 

(2.2.6) c(u; x, n) a(V(u)]x, n). 

Assume that the constant KQ in (2.1.17) is large enough with respect to a, 1?2 and 
0*0,1/ 
Jl(i),c ,((7,0,5,1?.; 6). 
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Then c e S^kQ_1)i0(a,C,B,D.). Moreover 

(2.2.7) ^ J % o _ 1 ) 0 ( a , C , ^ i ? . ; c ) < CWJ^0(IT,C,-B,I?.;a)OT^)>0(^0»IIniwi 

with a constant C depending only on IIniwi0(cr,0,B,D.;b). 

Proof. — We decompose a(u; x, n) = X^>fc ai(ui • • • > u\ x->n) so that c is by definition 

the formal series Y,j>k cj(ui • • •, ̂ ; x, n) where 

(2.2.8) Cj(u\, . . . ,Uj\X,Ut 
3 

i—k , jiH \-ji=J-i 

IIniwiIIniwi IIniwiIIniwivxv 

where we used the following notations: 

if i = 0, Volu) u. If je > 0, we have set 

(2.2.9) Ujt IIniwiIIniwi IIniwiIIniwi IIniwi s 1 

and 5 in (2.2.8) denotes symmetrization in (ui,..., Uj). To further simplify notations 

set 

(2.2.10) 
sdsd n3* IIniwi IIniwixc 

WITH n3q IIniwiIIniwiIIniwiIIniwiIIniwi 

and 

(2.2.11) IIniwi IIniwi IIniwivcv 

We shall estimate Cj(u\,..., ZZJ; a:, n) — a?(^i,.. . , i^; n), which is given by (2.2.8) 

where the ( j i , . . . ,ji) sum is taken only for j \ + V j%> 0. Then, for a + /3 = p, 

(2.2.12; 95 (cj — aj IIniwi IIniwixv 

will be given by the sum 

2.2.13) 
3 

i—k 0<7'iH \-ji=j-i njl xcwx 
9Ä<IIniwi njl 

xc xc TJ3i^ xc vJt> xc UJi);x,n) 

where we no longer write symmetrization. We apply (2.1.20) to a* and (2.2.3) with 

s = a> to Vjt to bound the modulus of the general term of (2.2.13) by the product of 

91 sd 
[k),0 

[<T,Ç,B,Dr,a •91 0,1/ 
IIniwi (<r,0,B,D.;b) ,Î-i IK 11 

;fe0),o 
(a,0,B,D.;b)Dp 

(where i is the number of je ^ 0, so that ! < ? < « ) and of 

(2.2.14) 

IIniwiIIniwiIIniwi 

IIniwi 

IIniwiIIniwi 

(¿ + 1)! 
-c(t) 

xc 

¿=1 

1 

0* + 1 
:c(je)BiK\{n) d-/3+(a+i/-<r') + 

xc 

£=1 
Qni*-njt 

0 J£+1 

xc 

¿=1 

IIniwi IIniwiwx 
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(We have considered Vjl as defined in terms of a symbol of valuation ko and Vj2,..., Vji 

as defined by symbols of valuation 1 or 0, assuming that ji > 0). We sum in 

n3Q ,..., HQ . We use also that by (2.1.16) 

1 

IIniwi IIniwi 

1 

IIniwi 

[ko + ji - 1) 

cvc 

IIniwivxvv 

i! 

(fc+ (*0-l)+i+IIniwiji-l)l 

IIniwi 

. (fc + fco-l+j-1)IIniwi! 
sds 

to bound (2.2.13) by md'^)0(a,CB,D.;a) times 

(2.2.15) 

D„Bj 
(k+(k0-l)+j-l)\ 

U + 1)' 

3 

i=k 
max[l,3t?^0(or,0,B,Z?.;6) sds J\k0),0 o,0,B,D.;b) 

sdsq 

JiH \-3%=3-i 

c(i 
i 

1=1 
' c{jt){n)d-0+{a+v-°')+ 

3 

sds 
(ntY'\ ssdsdd 

L2 

with a new value of K2. By (2.1.17), the inner sum in (2.2.15) is bounded by c(i)c(j-i) 
K-1 

If we assume that Kn is large enough so that 

Ko maxfl. sd sd 
Ï1),0' 

[(T,0,B,D.;b)[ Kn 

we obtain the bounds (2.1.20) for a symbol in E^fco_1 ̂  N0(a> ^» 

Let us get bounds of type (2.1.21) for (2.2.13), when for instance the special index £ 

corresponds to one of the arguments of UJ1. We apply to estimate (2.1.21) with £ = 

1. This obliges us to bound (n̂ 1 )IIniwi H^vi V3\ (nnJ1 Ujl)\\l2- We control this expression 

using (2.2.3) (resp. (2.2.4)) with s = —o' if we want to make appear the power (n^1 )-a 

with £ = ji + 1 (resp. 1 < £ < ji). We obtain a bound of type (2.2.14), except that the 

power of (n) is now ^n^d-/3+a+l/+0' anc[that one Qf ̂ he (m)*7 ||IIn£i^||£2 is replaced 

by (ne)~a L|nN^^||L2- We conclude as before. 

We still have to check that the support property (2.1.19) holds. Remark that in 

(2.2.13) we have | < | < \\n\ by (2.1.19) for a, and |n£| < | |n£+J ,g = l , - - - , ^ , 

\n°/e+11 < 2|riQ£ I because of the cut-off in (2.2.3). This implies that (2.2.12) is supported 

for \ri(\ < | |n | , £ = 1,... ,j as wanted. • 

Our next goal is to study quantities of form dua(u; x, n) • V(u) where a belongs to 

some Sfy"Nq(<t,Ç,B,D.) and V is defined by a formula of type (2.2.5). 

Proposition 2.2.2. — Let dld" G R , d" > 0, d = d' + d", * = min(l, d"), 1/, Ç G R + , a > 

* + i/ + C + 2,fc/,fc// G N*,AT0 G N, > 0, IX a + |d'| + |d"| + a,7V0 + 1)-conveniently 
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increasing sequence. Define 

(2.2.16) V(u) 

3»>k" 

sdsqd u,ss..., u 

IIniwi 

(as a formal series), where Vj» is defined by (2.2.1) from the components of a sym­

bol b = J2j">k" bj" satisfying b G S^k,]"Nq(ct,£,B, D.). Let also a be an element of 

Sfk%N0sd^B,D.). Then 

(2.2.17) c(u; x, n) dua(u: x, n) • V(u) 

defines an element of 5^,^,1^No(a,Ç,B,D.). 

Proof. We decompose a(w,x,n) <i'>k' aj (u,usqdqs:x,n). Since 

duaj'(u,..., u; x, n] V{u) j,ar{y(uqdqd),u,...,u\x,n), 

we may write with k = k' + kn 

(2.2.18) 

c{u, : x, n) 
j>k 

Cj(u,..., u\ n) 

Cj(u\, ... ,Uj;x,n) 
i'+i"=i 

j'>k',j">k" 

j'aj>(Vj»(ui,...,uj»+i) IIniwiIIniwiIIniwi 

where S stands again for symmetrization. Write 

IIniwi IIniwi IIniwiIIniwi 

as 
(2.2.19) 

IIniwi 

no = —oc j'+3"=3 

IIniwiIIniwi 
•no 

xcx xcxcw [n1// + 1^j,, + l) 

n,„+2<V,+2, • n.Uj',X,n)S. 

We estimate the general term of the above sum. We apply (2.1.20) to ay with a' 

replaced by a' - i > v + C + 2, and (2.2.3) to Vy> with s = a'. We get for (2.2.19) a 

bound given by the product of 

2.2.20) J\k>,j>),N0 [cr — l, B, D.\aj> 71 xcx 
(k",j"),N0 (aX,B,D.-bj„) 

times 

(2.2.21) 
77, n i'+i"=i 

K2f-
(k"+j"-l)l(k'+j'-IIniwil)l 

IIniwi IIniwixcxcxc 
Bjc(j')c(j")Qno-nj/f+1 

X /n\d"i-/5+(a+iy+<'+iVo/3-<x') 
3 

xcx 

IIniwi neU£\\L2 
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using that (n0)d" a> < (n)d" L{n0)L °' because of (2.1.19). Using (2.1.16) and 
(2.1.17) with K0 > K2, we obtain an estimate of type (2.1.20) for (2.1.26). 

We also need to prove bounds of form (2.1.21). Consider first the case when the 
special index £ in (2.1.21) is between j" + 2 and j, for instance £ = j. We apply 
(2.1.21) to a3> and (2.2.3) to Vj», taking s = a' + d". We get a bound given by 
tfvj'^No(a'B>D'iaJ'№tk;'j-"),NQ(*>C,B,D.;b3n) times 

(2.2.22) 

xc j'+j"=j 

IIniwi 
k"+jfdgf"-l)\ 

IIniwi 
IIniwiIIniwi 

(Jv + l)l 
Bjc(j')c(j")Qno-nj//+1 

cxc IIniwiIIniwiIIniwi IIniwi 
cx xc 

IIniwi 
IIniwi IIniwi L2 (™?\ — c 

•njUjW L2 -

Moreover, by the cut-off in (2.2.3) (n3'>+i) < 2 (no) and by (2.1.19) for ay, |n0| < | |n | . 
Since d" > 0, we bound (n3»+i)d by (2(n))d". Using then as in (2.2.21) inequalities 
(2.1.16) and (2.1.17), we get a bound of type (2.1.21) for a symbol belonging to 

2j(fc'+fc,,,j),iVoV IIniwiIIniwi 
Consider now the case when the special index £ of (2.1.21) is between 1 and j" + 1 . 

If £ = j" + 1, we apply (2.1.21) to a3n taking the negative power — a' on (n0), and 

(2.2.3) with s = -a' + d" to V3». Since (n0) ~IIniwiIIniwiwe get a bound of form 

(2.2.22) with (nr+1)a'+d" (resp. (n,)-*') replaced by ( n , - ^ ) - ^ " (resp. (n3)a') 

and conclude as above. If the special index £ is between 1 and j", we apply (2.1.21) 

to ay (taking the negative power -a' on (no)) and (2.2.4) with s = -a' + d". We 

obtain the upper bound 

n0 j'+j"=j 

xcxc 
,(fc" + ¿ " - 1 ) ! 

(¿" + 1)! 

IIniwiIIniwi 

(¿' + 1)! 
IIniwivcv IIniwixvx 

, xd'-ß+ct+v+Noß+a' 

l<l'<j 
IIniwi 

IIniwi 

(np>)a In,/ ^ ' |L2XC(M -n^|U2 

(n ẑ + i vi/+d"+2. 
IIniwiIIniwi L2 • 

We write using the support condition (2.1.19) and (2.2.3) (nj"+i)l/~*~d +2 < 

{n)d -l(nj»+1)v+2+L. Since v + 2 + 6 < a', we deduce again from that the wanted 

estimate of form (2.1.21). Since the support condition (2.1.19) is seen to be sat­

isfied as at the end of the proof of proposition 2.2.1, this concludes the proof of 

proposition 2.2.2. • 

We shall need a version of proposition 2.2.2 when V3>> in (2.2.16) is replaced by 

a multi-linear map defined in a slightly different way. If V3 is defined by (2.2.1), let 
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Wj(ui,..., Uj+i) be the multi-linear map given by 

(2.2.23) (Wj(uu • • •, v>j+i), u0) = (Vj(u0, u2,..., uj+1), u{) 

for any uo,..., iZj+i in C00^1, R2). Let us prove: 

Lemma 2.2.3. — For an?/ a' € +- C + 2, a] there is a constant K2, depending 

only on a', such that for any ui,...,Uj+i in C°°(S1,R2), any no , . . . ,rij+i G Z, 

l|nnoWi(nni^ij • • • >nni+1TXj+i)||jr,2 ¿5 bounded from above by the product of 

(2.2.24) (n0) (n0) 
(n0)(n0) 

(n0)(n0)(n0)(n0) (n0)(n0)(n0) 

(¿ + 1)1 
(n0)(n0) 

times 

2.2.25 (n0) (n0)(n0) d+v—a' 
7 + 1 

¿' = 1 

(n0)(n0) (n0)(n0)(n0) 

resp. times, for any £ = 1,..., j 

2.2.26) (^o)a nj+i d+i/-<r' 

i<€'<i+: 
(n0) 

(n0)(n0) (n0)(n0) (n0)(n0)(n0) (n0)(n0) 

Moreover, on the support o/nnoWj(IIniiii, . . . ,IIn.+1?Zj+i) 

(2.2.27) max(|n0|, |n2| (n0) 
xc 

E 
|ni+i|, |ni - n i + i | 

1 

4 (n0) 

Finally, if x £ Co°G — ^, ^[) ; and if C1^{x) is defined by (2.1.12), we may bound for 

any 7 € N, ¡3' e N, 7 < p, < p 

(2.2.28) ( I d - n ; n cv w7 (n0) nJ + i Y 
cv 

(n) 
^+I)IIL2 

by the product of (2.2.24) and (2.2.25) (resp. (2.2.26); with 

(2.2.29) 21K+i «n)/4C0'o(x)(n) cv 4<p>y\ 

Proo/. — Inequalities (2.2.27) follow from (2.2.23) and (2.1.19). Let us prove (2.2.25). 

We compute for ||^O||L2 < 1 

(2.2.30) \(Opx[bj(Unouo, Un2u2i..., TLnjUj; ')]Unj+1uj+1, IIniizi)|. 

We apply (2.1.39) with N = 0, taking for the special index the one corresponding to 

the first argument of 6,, and we get the bound 

(2.2.31) 

CnDoVl cvc 
(n0) No 

(n0)(n0)(n0)(n0) 
(n0)(n0)(n0) 

(n0)(n0) 
c(j)Bi 

1^ \d+v-\-<j (n0) 
—a' (n0) L2 

3 

'=2 
ne,Ui'\ Am*)* II b+i^+ilU2 U^IIIL2-
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Since \ni —IIniwi< |(nJ+i), we obtain (2.2.25) with a constant K2 depending only 

on cr'. 

To obtain (2.2.26), we use (2.1.39) with N = 0 and the special index corresponding 

to one of the arguments u2,..., Uj of bj in (2.2.30), for instance £ = 2. We get a bound 

given by the first line of (2.2.31) times 

(2.2.32) 

IIniwi \ d+v+a' 'no)a I InIIniwiIIniwi n2U2\\L2 

j 

£'=3 
U£>\\L*(ni') IJ + IUJ+IWL* IIniwi 

and we conclude as above. Note that (2.2.26) for £ = 1 follows from (2.1.38) and the 

fact that (m) ~ (rij+i). 

To estimate (2.2.28), we insert inside (2.2.30) the cut-off x(-^y) against Uj+i and 

write x (^)nnj+iUj+i = Kn * Unj+1Uj+i where Kn is defined by (2.1.11) with \ 

replaced by \ . We then make 9n-derivatives act and use (2.1.33), (2.1.35) to make 

appear the gain (2.2.29) in estimates (2.2.31), (2.2.32). • 

Proposition2.2.4. — Let d!,dnC>cr,kl\k"\N0,B,D.IIwi,l be as in the statement of 

proposition 2.2.2. Assume a > v + 3 + max(CII, - ^ 3 — ) • Let a iwiIIniwiG No(a,^,B,D.), 

b G Sdk,)^No(a,(,B,D.) and define from Wj» given by (2.2.23) 

(2.2.33) W(u) 
j">k'> 

IIniwi it, . . . , U 

¿"+1 

There is a symbol c G Sdk^dk„^^b(o-,(t,B,D.) and a multi-linear map M(u) G 

£^£^„'"+1(a,C,B) such that 

2.2.34) OvJdua(u: • >W(U) OpJc(u;-)] + M(u). 

PROOF. — Consider the symbol C(U\ X, N) = J2j>k CJ\U-> • • • > U'I X->N) where 

Cj{ui,... ,u3\x,n) 
(2.2.35) 

j'+j"=j 
J'F'aJF[WRF(U: ,x{D/{n))uyf+1) IIniwi ,Uj\X,n]S, 

X being a function in CQ°(] — \ , \ [ ) , with small enough support, x = 1 close to zero. By 

(2.1.19) applied to ay and (2.2.27), Cj will satisfy (2.1.19) if the support of x is small 

enough. Let us prove that d^d^Cj(Ilniui^...,HnjUdfj\x, n) obeys estimates (2.1.20) 

and (2.1.21). From now on, we no longer write the symmetrization operator. We 

make d^d^ act on Cj(Uniui,..., IIn.u7-; x, n) for a + @ = p. For 0 < / 3 ' < / ? , 0 < 7 < / 3 

set 
(2.2.36) 

W?„,lf(no,...n7//+i,n IIniwiIIniwi 
Ln0 

Wj»{Uniui sdfd ,+ix{D/(n))ujt/+1). 
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We use (2.1.10) to write d%d%Cj(Ilniui,... ,Hn.Uj;x,ri) as the sum for jf + j" = j 

and for no G Z of 

(2.2.37) IIniwiIIniwiIIniwixv 
IIniwiIIniwiIIniwiIIni 

, n.-"_i_i, n). In,//̂ o'W7//+25 Cn j u j 5 3?, n] 

and of 

(2.2.38) 0<£'</3 
IIniwi 

c sds 
0,^,7 J i (c IIniwi 

x wn dsd sd 0V 
7-/, (no, • •. ,n7//+i,n), 

IIniwiIIniwi IIniwiIIniwi 

We estimate the general term of (2.2.38) applying (2.1.20) to aj and bounding 

(2.2.39) IIniwi cxv IIniwi 
All n0,. • . ,nj//+i,n)||L2 

using the product of (2.2.24), (2.2.25), (2.2.29) in lemma 2.2.3. We obtain a bound 

given by the product of 

(2.2.40) R sdq l',v 
k'),N0 

(a,C,B,D.:a IIniwiIIniwiIIniIniwi 
j 

xvxv 
ln£,U£'\\L* 

and of the sum for 0 < /3' < /3,0 < 7 < 3 of 

[2.2.41) 

IIniwiIIniwi C xcx 
o,ß',r f 

(k'+j'-l)\ 

(ï +1)! 
xcc ,(k"+j"-l)\ 

IIniwixcv i{i')c{j")Bi{A(p)yCßly2{x) 

multiplied by 

(2.2.42) IIniwiIIniwiIIniwiIIniwi (nj"+l, 
d"+v—cr' 

3 

e'=i 

IIniwi 

Since by the cut-off in (2.2.29), |nj"+1| < (n), we bound (rij"+1) +v a < 

(n)d"-L(n3"+i)V*L~<T' < (n)d"~L(nj"+i)~2' As by (2.2.27), |n^,+1| > c|n0|, the last 

factor will make converge the no-series. Consequently, the sum for no G Z,f + j" = j 
of (2.2.38) will be controlled by the product of (2.2.40), of 

l^d'+d"-i-ß+(a+v+NQß-<r') + 
3 

xcxc 
(nt)° 

and of the sum for j ' + j" = j , 0 < /3' < /3,0 < 7 < /3 of (2.2.41). Using (2.1.15) and 

(2.1.16), (2.1.17) with a large enough K$ (independent of any parameter), we get for 

(2.2.42) an estimate of form (2.1.20). 

We still have to bound the contribution (2.2.37). We proceed as above, estimating 

the Wp,° term by the product of (2.2.24) and (2.2.25). We get a bound in terms of 

the product of (2.2.40) multiplied by 

IIniwi 
IIniwiIIniwi 

IIniwiIIniwi 
j" 

(k"+sddj"-l)\ 

(j" + 1)! 
c(j')c(j")B> 
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and by (2.2.42) with ßf = 0. We end the computation as above. 

Let us prove that (2.1.21) is valid for Cj. Take first the special index £ in this 

estimate be equal to some index between 1 and j " + 1, for instance £ = 1. We apply 

(2.1.21) to ay, making appear the —a1 exponent on the index corresponding to the 

first argument of cy. We obtain an upper bound in terms of 

(™o) IIniwi 
IIniwi 

N 0 , . . . , N Y / + i,n)| |L2 

that we bound using the product of (2.2.24), (2.2.26) (with £ = 1) and (2.2.29). We 

obtain for (2.2.38) an estimate in terms of the product of (2.2.40) by the sum for 

0 < 3' < 3,0 < 7 < 0 of (2.2.41) multiplied by 

^d'-ß+a+v+N0(ß-ß')+<r' ny/ + i 
, d"+v+a 3 

l'=2 

n?)*niIIniwi) a . 

Bounding as above the last factor before the product by (n)d L{rijn+1) 2, we obtain 

a control of the sum in no , j ' + j " = j of (2.2.38) by the product of (2.2.40), of 

;2.2.43) ^d'+d"-L-ß+a+Noß+o 3 

l'=1 
(ne>)a (ni) 

and of the sum for j ' + j " = j , 0 < (3f < /3,0 < 7 < /? of (2.2.41). We again deduce 

from that the looked for estimate of type (2.1.21). The contribution coming from 

(2.2.37) is treated similarly. 

We still have to obtain an estimate of form (2.1.21) when the special index £ is 

between j " + 2 and j , say £ = j . We apply (2.1.21) to ay, with £ = j corresponding 

to the last argument, and obtain a bound in terms of (2.2.39), that we control from 

(2.2.24), (2.2.25), (2.2.29). We get then similar bounds as in the case £ = 1, except 

that in (2.2.43) (rij)a (ni}~<7 has to be replaced by (rij)~a (ni)a . This concludes the 

proof of the fact that c belongs to Sfr,1?^^ m (0, C B,D.). 

Define now 
(9,.9 AA' 

IIniwiIIniwi 

3>k 

Cj(u,..., u; x, n) 

Cj(u\, . . . ,Uj]X,n) = 

j'+j"=j 

IIniwi Wj»(ui,...,UY/,(l - x 
D 
xc UY/ + i ,Uj»+2, • - .,Uj',X,n\s 

and set 

(2.2.45) 

MAu1,..sd.,uj) Opx[cj(u1,sd.sd..,uj'i')] 

M lu) 

j>k 

w IInixcxwi 

3 
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Let a' > v + 3 + max(Ck'+j'k'+j'). Using (2.1.38) for Opx[aj/(u; •)], we bound 

k'+j' (2.2.46) -Til ̂ 1 5 :nj.^)nNJ.+1||^(L2) 

by the sum for jf + j" = j and nf0 G Z of 

(2.2.47) k'+j'k'+j'k'+j'k'+j'k'+j'k'+j' k'+j'-l)\ 

W + 1 ! 
c(j')B< 

(n0)(n0)(n0)(n0)(n0) 

(no-nj+1)N 

multiplied bv 

k'+j' k'+j' k'+j' [n,,,%//,(! - x ) 
xc 

ni+i>. 
:nJ.,,+1Uj" + l)IU2 

(2.2.48) sd 

£'=¿"+2 
sdds sd sdsdsdsdsd 

The cut-off in (2.1.38) shows moreover that we may assume 

(2.2.49> lnol' lnj"+2| xc 
1 
xc s d j + i ) a n d n 0 ) ( n 0 ) ( n 0 ) ( n 0 ) ~ 

The support conditions (2.2.27) on Wj» imply moreover that 

(2.2.50) \nf0l\n2\,...,\nj"\ <C(njn+1) and (?ty/+i) ~ (ni). 

Finally, the cut-off 1 — x in (2.2.48) implies that |rij//+1| > c(rij+i) for some c > 

0. Altogether, these inequalities show that (nj"+1) > c(n^) for any £ = 0, 

Consequently, to prove that Mj(u\,..., u3;) is in A^*^ ,u+1 (a, C, # ) we have to obtain 

(2.1.40) with £ = j" + 1, v replaced by v + 1. 

We estimate (2.2.48) using (2.2.26) with £ = 1. We obtain a bound given by (2.2.24) 

multiplied by 

k'+j'k'+j' k'+j'k'+j' k'+j'cv 
v 

¿' = 1 

MA II k'+j'k'+j' 

By (2.2.50), (rij"+i) ~ (ni) . Going back to the estimate of (2.2.46) by the 

product of (2.2.47) - where we take N = 0 - and of (2.2.48), we see that 

||nnoAf7-(nniwi,...,nnj.wJ-)nNI+1||^(L2) is bounded by the sum for f + j" = j 

and nf0 e Z of the product of 

(2.2.51) 

k'+j'k'+j' •d' ,v 
k'+j' 

(<rX,B,D.:a№. k"),N0 (a,<:,B,D.;b) 

k'+j' {k'+j'-l)\ 
j> +1)! 

[k" + j"-l)\ 
(j" + 1)! 

c{j')c{j")BJ 

and of 
(2.2.52) 

(ni+1)d (no)2a / \d"+v—3cr' 1 \—a \ —a 
nj+l) 

k'+j' 

£'=0 

k'+j' 
j 

ef=i 
[ne,U£f\\L2-
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Using that by (2.2.49) (nf0) < (rij+i) ~ (no), the sum in nf0 of (nf0)2(7 (no)~a (nj+i)~a 

is smaller than C(nJ+i) < C^nyz+i). If we sum (2.2.51) for f+j" = j using (2.1.16), 

(2.1.17) we obtain an estimate of form (2.1.40) with d replaced by d'+ + d"', v replaced 

byi/ + l. • 

2.3. Composition and transpose of operators 

In this section, we shall study Opx[a(u;-)] o Opx[b(u;-)] and tOpx[a(u; •)] where 

a € S$?)fNo(v,C,B,D.) and b G S$f)9No(v,C,B,D.). 

Theorem2.3.1. — Let d',d" G R,iVo G R+,fc',G R+,fc',k" G N*,cr G R mtfi a > 

No + ^ + C + 2 , 5 > 0. Le£ -D. be a (is + \d'\ + + cr, iVo + 1)-conveniently increasing 

sequence. Assume that the constant KQ in (2.1.17) satisfies KQ > 100(2Do + ! ) • 

(i) For any a G S^k)^No(a,£,B,D.),b G S*k,)^No(<T,(,B,D.), the product ab G 

Stk)tNo(a>t>B'D>> with d = d> + d"'k = k' + k"' Moreover 

(2.3.1) OTjt)tJVo(^C,S,Z?.;a6) < ^rffi^faC,2 R+,fc', R+,fc',3.;a)^?)tNo(v,C,B,D.;b). 

(ii) Assume a > iV0+i>+5+max(C, R + , f c ' , ^ ) . T/iere ¿5 a ( i /+N0+3+K |+ |d" |+a, iV0+l)-

conveniently increasing sequence D., a symbol e G S R+ , fc ' ,^1^N°^ '3 (a , ( , B, D.) and an 

operator M G £^+No+3(<j, C, B) such that 

(2.3.2) Opx[a(u; •)] o Opx[6(u; •)] = Opx[a6(u; •)] + Opx[e(u; •)] + M(u). 

Proof of (i). — Decompose a(^;#,n) = Ylj'>k' aj'(u> • • • > w>n)> 6(w;ar,n) = 
2j//>fc// bj"(u,... ,u;x,n) according to definition 2.1.5. Then 

sd 

j>k 

Cj(u,..., u; x, n) 

with 

Cj(U\, . . . ,Uj]X,n) 

3 -rJ =3 

a7-/(wi,R+,fc',R+,fc', 6--//(w--/+1,gfhg,Uj',X,n)]s 

where S stands for symmetrization in (u\,... ,Uj). Let a,/3 G N with a + /? = p, and 

compute d%dP(aj'bj») using (2.1.10). Let us prove upper bounds of type (2.1.20). Let 

a' G [is + C + 2,a]. When we estimate (d^d^ar)b3n or a3'(d^d^b3n) from (2.1.20) for 

aj',bj», we get a bound given by the product of 

(2.3.3) xc l',v 
k'),NQ\ (a,CB,D.:a) D1 xcx 

R+,fc', (((7,C,B,I?.;6) 
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and of 

(2.3.4) 

( f c ' + j ' - l ) 

C?' + l)! 

R+,fc', R+,fc', 

(¿" + 1)!dsfsdds 
B^{jfwf)DpD0(n) ,d-/9+(a+i/+A/0/3-cr,) + 

sd 

¿=1 

;n̂ )CT | | nN^£ | |L2 . 

If we sum for f + j " = j and use (2.1.16) and (2.1.17), we obtain a bound given by 

the product of (2.3.3) and of 

(2.3.5) 
sd 

K0 

[k + j - i y 

^ + 1)1 
B*c(j)Dp(n) 

d-P+{ot+v+Nol3-(T') + 3 

£=1 

{nt)a | | n N , ^ | | L 2 . 

Consider now a contribution to d%dP(cij'bj") corresponding to terms in the sum in 

(2.1.10) i.e. 

(2.3.6) G 
sds 
qdqfdfd (idR+,fc'TiLrdïd£ai.\\dî-a'dtf>'bi..\. 

By (2.1.20) for cu- and (2.1.34) 

(2.3.7 

K i d - n r ^ a g o y i 
7 

7'=0 

7 

sd 
d sfg 

R+,fc', [<7,C,b]D.',a) 
(kf + 7' - 1) 

C?' + l ) ! 
v R+,fc', 

c(jf)Bi (n - i 
d'-/3' + (af+is+N0/3'-*')+ 

- Z J\k'),Nc {a,C,b,D.]a)(2M) \sdsdsdd3'-a') ( k ' + j ' - l ) \ s d s d 

W + 1)! 
Da'+0' 

xc(i')Bj'(n) sd'-f3' + (a'+v+N0l3'-cT') + 

Using also (2.1.20) to estimate the by contribution, we bound (2.3.6) by the product 

of (2.3.3) and of 

(2.3.8 
R+,fc', R+,fc', 
R+,fc', R+,fc', 

(2(7))ld'l+/3'+(«'+^+JVo0'-<r') 9a'+/5'-Dp-(a'+/3') 

( f c ' + j ' - l ) ! 
R+,fc', 

(k"+j"sdsdl)\ 

U" + I) ' 
c(j')c(j")ssdsBj(n) d-(3+(a+v+N0P-<Tf) + 

3 

£=1 
(ne)a | |nN£^| |L2 

where we have used 

(a' + v + NnB1 - a' (a" + v + No3" -a' (a + v + N0f3- a') 

since a > v. Remark that the first line in (2.3.8) is smaller than 

R+,fc', R fc', R+,fc', d'\+v+p(N0 + r R+,fc', R+,fc', R+,fc', 
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and so the sum in a!, / ? ' , 7 of these quantities will be bounded, according to (2 .1 .13 ) 

and the assumptions by Dp. Summing also (2 .3 .8 ) for j ' + j " = j , we get a bound 

of form ( 2 . 3 . 5 ) with R+,fc',^ replaced by R+,fc', If we assume 2D£^1 < J^Q, we ODtam f°r 

d^d^Cj the estimate ( 2 . 1 . 2 0 ) , with the bound ( 2 . 3 . 1 ) for W*£hNQ(a,C,B,D.\ab). We 

must next get bound ( 2 . 1 . 2 1 ) . The proof proceeds in the same way as above, except 

that one uses an estimate of form ( 2 .1 .20 ) (resp. ( 2 . 1 . 2 1 ) ) for 3%' d^a3> and ( 2 . 1 . 2 1 ) 

(resp. ( 2 . 1 . 2 0 ) ) for d%~a d@~P by. This concludes the proof of assertion (i) of the 

theorem. • 

Remark. — When we estimate the sum for j' + j" = j in ( 2 . 3 . 4 ) , ( 2 . 3 . 8 ) , we may 

use the first inequality in ( 2 . 1 . 1 6 ) . In that way, we get a bound for c7 in terms of 
(fc-l+j-l)!  

(7 + 1)! i.e. we have, instead of ( 2 . 3 . 1 ) 

(2 .3 .9 ) ^_1)iNo(a,C,B,D.;ab) < ^ J ^ C ß . i ) . ; « ) ^ ^ ^ ^ , ! ) . ; * ) . 

Before proving (ii) of the theorem, let us establish some intermediate results. 

Proposition 2.3.2. — Let d!\d" G R, <r, v, B, D. be as in the statement of theo­

rem 2.3.1, set d = a! + d"'. Let v' >v be given, assume a > v' + £ + 2 and let 

( 2 . 3 . 1 0 

a(u:x,£, n) 

i'>k 
xc 'u.....u: xA, n)xc 

xc 

b(u;x,y,n) • 

i">k" 

xc x,y,n) 

j " 

be formal series defined in terms of multi-linear maps satisfying the following con­

ditions: d^d^1d^2ajf(Iiniui,...,UrijfUjr1x,£,n) with j3\ + (32 = /3, a + /3 = p 

(resp. d^dyidPbjt'tTl^ui,... ,Un.„Uj>';x,y,n) with 0:1+0:2 = a, a + /3 = 

p) satisfies ( 2 . 1 .20 ) and ( 2 . 1 . 2 1 ) with d,j,k,v replaced by d',j',k',v' (resp. 

d" ,3" ,k" ,v'). Assume moreover that a3r(Jlniui,... ,Tln.fu3r,x,£,ri) = 0 (resp. 

bj*>(IU1u1,...,nnj„uj»]x,y9n) = 0 ; if maxi=i,...ji,(|ni|) > \\n\ or if \£\ > \(n) 

(resp. i/maxi=i?...5j//(|ni|) > \\n\). Assume also that the x-Fourier transform of these 

functions is supported in the interval of Z of center 0, and radius \ (n). Define 

( 2 . 3 . 1 1 ) c(u\x,n) 
1 

2TT 

+00 

¿=-00 ' s1 
e Uyà(w,x,£,n)b [u',x,y,n)dy. 

Then c(u;x,n) = Ylj>k=k'+k" Cj(ui • • • > u'i x-> n)> where each c3 satisfies estimates 

( 2 . 1 . 2 0 ) , ( 2 . 1 . 2 1 ) of an element o/E^.^Q(cr, £, B, D.) for a new increasing sequence 

D., depending on D.,d', d", v, <J, NQ. Moreover the support condition ( 2 .1 .19 ) is verified 

with j\n\ replaced by \\n\. 
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Proof. — We define 

(2.3.12) 

Cj(u\,..., u3\ x, n) 

R+,fc', 
3 >k ,3 >k 

R+,fc', 

£=-oo 

1 

2tt S1 
e l£y[äjr(ui,... ,Uj/;x,i, n) 

x&j//(wj/+i, ..sdsd.,u3\x,y, n)]sdy 

where S denotes symmetrization in (u\,... ,u3). Let p G N and for (a,/?) G N x N 

with a + (3 = », 0 < a' < a, 0 < ff < 3,0 < 7 < /3, set 

(2.3.13) 
R+,fc', R+,fc', R+,fc', 

sd 
e - ^ f ( I d - n >7<9£ 9N ä j / ( M I , . . . , ^ / ; a : , ^ n ) ] 

R+,fc', R+,fc', ij»(uj>+idfdfUj',x,y,ri)dy 

when 0 < a7 + /?'sd < p, 

(2.3.14; 

ro,f^(%'^i") 
qs 

e t£yäj'(ui,... ,Uj']x,£, n) dxdnh"(u3'+ii -<,u3',x,y, 

and denote by r^j^(äj/ , 6̂//) the quantity of the same form obtained when all deriva­

tives fall on ä7v. By (2.1.10) 

(2.3.15) 

x n 3 {ui,...,u3',x,ri) 
1 

2TI 
j'+j" 

+00 

3-<e=-oo 

R+,fc', R+,fc', 
Vaß/^3'^3") 

0<a''<a,0<ß''<ß 
O<7<0,O<a'+/?'<p 

C cvc 
a''.3'',7 

R+,fc', R+,fc', R+,fc', 

Let us estimate (2.3.15). 

We make in (2.3.13), (2.3.14) two integrations by parts using the vector field L = 

\^2V • In that way, we gain a (£)~2 factor in the integral and lose on b3n up to two 

^-derivatives. We use that {là-r^d^ R+,fc', ar (resp. df d%'d5yb3» (5 = 0,1,2)) obeys 

estimates of type (2.3.7) (resp. (2.1.20)) to bound (2.3.13) by the product of 

(2.3.16) R+,fc', R+,fc', R+,fc', R+,fc', ̂fhNo(v,C,B,D.-,b) 

and of 

R+,fc', R+,fc',cxv 
R+,fc', R+,fc', 

W + 1)! 
Bj'Da,+ß,{n) d'-ß' + (a'+v' + N0ß'-<T')+ 

R+,fc',v xc( j " ) 
(k" + j"-vl)\ 

U" +1)! 
B3 Dni"+R"+i(n) J"-ß" + {ot"+2+i/'+NQß"'-*') + 

3 

£' = 1 

(nvY ||nn4/U£/||L2 
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for some constant C(p) depending on d', d", IV, <r, NQ and for any a' in the interval 

[i/ + C + 2,ct]. We remark that 

(2.3.18) {a' + v' + Noß'-a') . + (a" + 2 + v' + NQß"-al : (a + z/ + 2 + Ar0/3-</)+ 

since a' > v'. Summing (2.3.17) for f + j " = j,£ € Z, using (2.1.16), (2.1.17) we 

obtain a bound given by the product of (2.3.16) and of 

(2.3.19) 

sds 

j 

(k + j-l)\ 

(j + 1 ) ! 
BWJnf~ß+(a+N°ßqdsqdW+2~°')+ 

3 

R+,fc', 

R+,fc', 
xcx U£'\\L2 

for a new constant Dp depending on p but not on j . This gives an estimate of type 

(2.1.20) for dj. To get an estimate of form (2.1.21), we argue in the same way, bounding 

either ay or by using (2.1.20) and the other one using (2.1.21). The only difference 

is that we have to replace (2.3.18) by either 

la' + i/' + No? - a' *" 4- v' + N0ß" 2 4- a1 < a 4- v' • - 2 + N0ß + a' 

or 

a' 4- v' 4- iVn/?' 4- tr' + (a" + 2 + i/ + N0ß" <t')+ < öl + I / + 2 + JV0/3 4- (T; 

which again holds true because o7 > v'. This concludes the proof of the proposition. 

End of proof of theorem 2.3.1. — (ii) We have by definition 

OpJa(wr)[ Opx [%;•)] Op[c(u; -X 

where 

(2.3.20) c(u: x, n) 1 

27V 

qsqs 

£=-oo 

e *iyax(u;x,n - £)bx [u\x- y,n)dy. 

Since the Fourier transform of x —> bx(u;x,n) is supported inside {£; £ Suppx}, 

we may insert inside the sum in (2.3.20) a factor x(£/(n)) for some cut-off function 

X G Co°(] - 1/2, l/2[), x = 1 close to Supp%. We may then write 

c(u: x, n) (axbx)(u;x,n) 

(2.3.21) 1 

2?r 

•Hoo 

e=-ooJ 

R+,fc', e 

(n) 
ax(u; x,n — £) \by(u:x-y,n) - bx(u; x, n))dy. 
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Define 

2.3.22 

blu: x, y, n) = 
bx(u\x- y,nj bx(u\x,n) 

1 - e-*y 

a(u;x,£,n dt sd 
ft 

(n) 
\dv(u: x,n — £)]. 

It follows from the definition of symbols that à (resp b) satisfies the assumptions of 

proposition 2.3.2 with d! = d! - 1, v' = v + N0 (resp. d" = d", v' = v + 1) and with 

D. replaced by a new sequence. Thus we may write 

(2.3.23) clu; x, n) (axbx) lu: x,n) c(u; x, n) 

for a symbol c satisfying the conclusion of proposition 2.3.2 i.e. c = ^2CJ R+,fc',with Cj 

obeying estimates (2.1.20), (2.1.21) of an element of E^'^AdkFAdkFAdkFAdkFAdkFfor 

some increasing sequence £>., and verifying (2.1.19) with \\n\ replaced by R+,fc ' , \ \n\ . It 

remains to show that 

(2.3.24) Op[c(u; •) :Opx[a6(ti;.)] hOpx[e(w;-)]TM(u; 

with the notations of the statement of the theorem. Note first that, by the example 

following definition 2.1.11, Op[c(w; •)] — Opx[c(w; •)] may be written as M(u) for some 

M G .£^,I/+iVo+3(cr, £, B) (the fact that the support condition verified by Cj is (2.1.19) 

with \\n\ replaced by \\n\ does not affect the result). Moreover, modulo another 

contribution M(u) of the same type, we may write Opx[c(^;-)] = Opx[e(u; •)] for 

some e e 5^1^+iVo+3(cr, ^, .B, Ô.): actually, we define e = X)j>fe ej with 

^•(-MI, . . . , Uj\ x, n) 

sd Tlj 

ssd maxflsddsdml,...,^!) 

n 
R+,fc',wx ij Uj j X) n) 

where 6 G Cq°(] — \, | [) , 0 = 1 close to zero, 0 < 6 < 1. Then, at the difference of c, e3-

satisfies the support condition (2.1.19). Moreover, if we apply (2.1.39) to a = c3- — ej, 

choosing as a special index £ one for which \ng\ > c(n), we deduce from (2.1.39) a 

bound of type (2.1.40), so that Opx[c(u; •)] — Opx[e(^; •)] is of form M(u). 

To show that (2.3.24) holds true, it remains to prove, because of (2.3.23), that 

(2.3.25) Op[axbx(wr) Opx[ab(wr)] 

may be written as another contribution of type M(u). Since 

axbx - {ab)x axbx ~ (°>xhx)x\ lay - a)by\Y • Hhx ~ h)\x 

and since we may again apply to the first term in the right hand side and to ax — 

a, bx — b the example following definition 2.1.11, we conclude again that (2.3.25) 

contributes to M(u) in (2.3.2). This ends the proof of the theorem. • 

Let us study transpose of operators. 
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Proposition2.3.3. — Let d G R,i/,C € R+,k G N*,N0 G N,cr > v + N0 + 5 + 

max(£, ^-),B > 0,D. a (|d| + <r -f-1/, iVo + 1)-conveniently increasing sequence. Let 

a G 5^NQ(CT,Ç,B,D.) and denote 

(2.3.26) R+,fc', R+,fc', : a(?x; —n), 

T/iere is a (\d\ + a + v + iV"o + 3, iV0 + 1)-conveniently increasing sequence D., de­

pending only on D.,d,v,a,No, a symbol e in S^^}^N°^3(a,C),B,D.) and M G 

<pd+,i>+N0+3 / ^ r>\ such that 

(2.3.27) *Opx[a(ti;-) = Op [av(u;-)j -OpY[e(w;-) M ( M ) . 

Proof. — We may write *Opx[a(tx; •)] = Op[c(u; •)] where 

(2.3.28) c(u: x, n) 
1 

2TT 

+00 

e=-oo 
cv 

R+,fc', u\x — y,—n + £)dy. 

We have 

(2.3.29) 

c(u; x, n) - ax(u',x,n) 
1 

2TT 

4-00 

¿=-00 S1 
e Uy[ax(u;x-y,-n + £) - ax(u, x, —n + ^)]d?/. 

Define a(u; x, y, n) ax(u;x—y,n)—ax(u;x,n) 
L — e-%v 

Then (2.3.29) may be written 

(2.3.30) 
1 

2TT 

+00 

:= — 00 
cv 

e-i£yde[a(u;x,y,-n + e)]dy 

Since in (2.3.29), \ £ C7g°(] - | , | [ ) , in the £-sum, |£| stays smaller than ^ , so we 

may insert inside the integral (2.3.30) a cut-off x ( ^ y ) f°r some % G CQ°(] — | , | [ ) . 

We perform next two integrations by parts using L(£,Dy) = (£)~2(l — £ • Dy). In 

that way, we gain a (£)~ factor, loosing up to two dy derivatives on a. Making d^d^ 

act on (2.3.29), (2.3.30) for a + ¡3 = p, we estimate using (2.1.20) the component 

homogeneous of order j evaluated at (Uniui,..., UnjUj) by the sum in £ of 

(t)~2Cc(j) 
R+,fc', R+,fc', 

J + 1)! 
-Dp+±Bj(n) d-l-ß+(a+3+v+No+N0ß-a') + 

3 

£' = l 
ne,U£'\\L2 \ni') 

CJ' 

where the replacement of v by v + N0 + 3 comes from the losses due to one de and 

up to three dy derivatives. We get in that way the estimate (2.1.20) of a symbol 

in E^~jj^o/Vo+3(cr, (,B,D.) for a new sequence D.. One proves in the same way a 
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bound of form (2.1.21). Moreover, the support condition (2.1.19) is satisfied with \ \n\ 

replaced by \\n\. We have thus written 

'Op Jafr;-)] Opx[av(ti;-)] Opfe1^;.)] 

for a symbol e1 whose component homogeneous of order j satisfies (2.1.20), (2.1.21) 

and a weakened form of (2.1.19). Arguing as at the end of the proof of theorem 2.3.1, 

we write 

OpfeV;.; OpJefa.)] M(u) 

with e, M satisfying the conditions of the statement of the proposition. 

2.4. Analytic functions of zero order symbols 

We shall establish a stability property for symbols of order zero under composition 

with an analytic function. Let k G N* be given, v G R+,cr > v + 2,£? > 0,D. a 

[y + cr, 1)-conveniently increasing sequence. If a symbol a is in R+,fc', 0(a, 0, B,D.), we 

may also consider it as an element of R+,fc',0(a, 0,2B, D.) since in (2.1.20), (2.1.21) we 

may write 
[k + j-1)1 

R+,fc', 
R3 

[k-l)\ 

3 + 1 
2k-\2B)j 

and we have 

(2.4.1) Vpfii0(*,0,2B,Dr,a] ; (k - 1 I2fe~19t0'1' -z Jl(fc),o [a, 0, £?,£>.; a) 

Proposition 2.4.1. — Let F be an analytic function defined on a neighborhood 

of zero in C, satisfying F(0) = 0, | F ^ ( 0 ) | < R'^il for some R > 0. Let 

a G S°^0(<7,0, £,£>.) with 9t^j0(°"> 0, B, D.\a)(k - l)!2fc-1 < R. Assume that the 

constant K0 of (2.1.17) satisfies K0 > 2D0 + 1. Then F(a) G 5(°^0(cr, 0 ,25, D.) . 

Proof. — We write 

(2.4.2) Fia) 
R+,fc', 

R+,fc', 

R+,fc', 

c 
a1. 

According to (2.4.1), we may consider, in a product ae, one of the factors as an element 

of S^o(<7,0, B,D.) and the other ones as symbols in R+,fc',Q(cr, 0,2B, £).), so that, by 

(i) of theorem 2.3.1 and (2.3.9), a£ G S(°^0(<7,0,25, D.) with 

(2.4.3) ^ 0 ( c 7 , 0 , 2 5 , D . ; ^ ) < [ ( f e - l J ^ - Y - ' R + , f c ' , ^ o ^ O . B ^ . j a ) ' . 

We decompose each = ^7>fc a£,j{u, > • - ,u;x,n) and write 

(2.4.4) F(a) 

R+,fc', 

^Cj(w,...,w;a;,n) 
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with 

(2.4.5) C7-(Wi, ...,Uj\X,n 

+oo 

£=1 

fW(o; 
sd 

- a ^ ( u i , . . . , ^ ; £ , n ) . 

We have to show that cj satisfies (2.1.19), (2.1.20), (2.1.21). The support condition 

is clearly verified. If we apply (2.1.20) to each term in the right hand side of (2.4.5), 

and use (2.4.3), we get for \d%d%Cj(ui,.. .,Uj;x,n)\ a bound 

+oo 

£=1 

\FW(0)\ 

ei 
R+,fc', R+,fc', R+,fc', cv 

[fc),0 
>,0,B,JD.;a)€ 

R+,fc', R+,fc', 

R+,fc', 
-c(j)(2ByDp(n) R+,fc', R+,fc', 

3 

£'=0 

R+,fc', R+,fc', 
R+,fc', 

where p = a + [3. The choice of 5 implies convergence of the series. One obtains 

estimates of type (2.1.21) in the same way. • 
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CHAPTER 3 

COMPOSITION AND POISSON BRACKETS 

The aim of this chapter is to study composition of operators associated to symbols 

with remainder maps, and to apply this to Poisson brackets of functions defined in 

terms of such operators. 

3.1. External composition with a remainder map 

Proposition3.1.1. — Let d',d" G l + , d = (i, + d",v,Ç G R + , a € M , J > I/ + 2 + 

max(£, | ) , B > 0, kf, k" G N*, N0 G N , D. a (d +v +a, NQ + 1)-conveniently increasing 

sequence. Assume that the constant KQ of ( 2 .1 .17 ) is large enough. 

(i) Let M' G £? R+,fc ' ,^((7 ,< ,B), M" GR+,fc',tf^Aa^B). Then M'(u) o M"(u) belongs to 

R+,fc', (cr, C, B) where k = kf + k" and 

(3.1.1) R+,fc',rf&ip, C, B; M' o M") < mf^(a, C, B; M')<K$',^(<7, C, B; M"). 

(ii) Letae sf$tIfo(<T,(,B,D.) andM" e gfcfa^B). Then Opx[a(u; -)]oM"{u) 

belongs to £^(a,^,B) and 

(3.1.2) 9tg(<r, C, B; Opx[a(u; •)] o M") < ttj'^fo C, B, D.; a)9lffc'̂ (<7, C, B; M") 

if KQ is large enough relatively to D2,cr,d. 

(iii) Under the same assumption as in (ii), M"(u) o Opx[a(-u;-)] belongs to 

£d(k) (a' -S) anĉ  ̂ fc) (a' C> -B; M" o Opx[a(^; •)]) bounded by the right hand side of 

(3.1.2). 

Moreover conclusions (i), (ii), (iii) above hold true more generally if we as­

sume that M',M" (resp. a) is given instead of ( 2 . 1 . 4 1 ) (resp. (2.1.27)) by a 

series M'(u) = Y,j>>k> f'M'jf(u,... ,u), M"(u) = Y,j">k» J"M!f„(u,...,u) (resp. 

a(u;x,n) = J2j'>k>faj'{u<,...,u]x,n)) with M'., G A*£.t)(a,<l,B), M'^, G 

Adk,fjf^(aXiB) (resp. a3 G E^./)iVo(c7,C,B,D.)) satisfying estimates ( 2 . 1 . 4 2 ) 

(resp. ( 2 . 1 . 2 8 ) ; . 
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Remark. — Let us explain, before starting the proof, why we allow, in the last part 

of the statement, series of form X^- ' j 'Mj / , Ylj'i'a3'' ^ turns out that we shall be 

using proposition 3.1.1 to estimate Poisson brackets of functions given for instance 

by expressions of type (M\u)u,u). These brackets will be expressed from the (sym-

plectic) gradient of such functions, so in particular from (JVMf(u)u, u). Because of 

the homogeneity of each component of Mf(u), the gradient acting on it makes lose a 

factor j ' on the j '-th component. 

Proof. — We prove the proposition using for M ' , M" the more general expressions 

of the end of the statement. 

(i) We decompose 

M'{u) 
j'>k' 

j'M'j,(u,...SDFD,u),M"(u) 
j»>k" 

j"QDQM"(u,...,u) 

and define 

(3.1.3) R+,fc', R+,fc', 

3 —J 

\j'M!i,(uu...,ui>)c R+,fc', R+,fc', R+,fc',V R+,fc', 

where 5 stands for symmetrization. We bound, denoting 

\n> U' = (IIni ui,..., IIn up ) n»U" = R+,fc', R+,fc', R+,fc', R+,fc', 

and forgetting symmetrization to simplify notations 

XC R+,fc', R+,fc', R+,fc', R+,fc', [nj + 1\\£(L2) 

(3.1.4) 

R+,fc', R+,fc', 
jfj"\\nnoM'(nn,u')nn\\£(L^ R+,fc', R+,fc', lnj + 1\\£(L*)' 

We apply (2.1.40) to both factors in the above sum. We bound in this way the right 

hand side of (3.1.4) by the sum in n and in f + j " = j of the product of the right 

hand side of (3.1.1) and of 

SD 
,(k' + f-SDSDl)\ 

( / + 1)! 
SDS 

(k" +SDS j"-l)\ 

U" +1)! 
Bjc(j')c(j") 

(n) max n0 R+,fc', R+,fc', 
R+,fc', R+,fc', max(|n|, In-,-/.il, \ R+,fc',nj\)/ 

R+,fc', 

£'=0 

R+,fc', 
3 

R+,fc', 

R+,fc', R+,fc', 

Since d'\d" + v + 2 < cr', the n sum of the factor between brackets is bounded by 

Co(max(\n0\,...,\nj\)) 3cr+d+iy. 

Using then (2.1.16), (2.1.17) when summing for f + j " = j , we conclude that Mj G 

A^.JoXiB), and (3.1.1) holds if K^Cq < 1. 
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(ii) We decompose as above M"(u) = J2j">k" j"M",,{u,... ,u) and, according to 

(2.1.27), a(u, •) = £ i ' > * ' j'ayiu, . . . , « ; • ) . Set 

M j ^ i , . . . , Uj) = ] T / / ' [ ° P x h ' ( ^ i > • • • > 0] ° Mj',,(uy+i,..., u^ls. 

R+,fc', R+,fc', 

We need to bound, instead of (3.1.4), 

(3.1.5) 

nezj +j"=j 
j , | |nnoOpyK . (nn^,;.) nn||£(L2)j"||nn M?„(nn„u"y. nnJ+1||^(L2)-

Let £ be such that \ng\ > R+,fc', for any 0 < £' < j + 1. To prove for (3.1.5) an estimate 

of type (2.1.40) when £ = 0 or f + 1 < £ < j + 1 we apply to the first (resp. second) 

factor above inequality (2.1.38) with N = 2 (resp. inequality (2.1.40)). We get a bound 

given by the right hand side of (3.1.2) times 

(3.1.6) 

CM 
(k'+f-XCVVi) 

(i' + l)! 
CV (k"+j"-l)\ 

(j" +1)! 
B>c(j')c(j") n0 - n) 

R+,fc', R+,fc', R+,fc', 
CVC 

£'=0 

R+,fc', 
3 

£' = l 

R+,fc', R+,fc', 

(where we have applied (2.1.40) to M",, with the special index taken to be ri£ when 

£ = j ' + 1 , . . . , j' + 1 , and taken to be n when £ = 0, using that in this case (no) ~ (ra)), 
d' d! d' 

Co being a constant depending on cr, z/, d. Since (n) < C(no) < C(rif>) , we obtain 

summing in n and in + j " = j , and using (2.1.16), (2.1.17) an estimate of form 

(2.1.40), if KQ is large enough relatively to D2, cr, d, v. To conclude the proof, we just 

need to note that estimate (2.1.40) with £ = 0 implies the same estimate for any £ 

between 1 and j \ since the support condition (2.1.19) satisfied by a3> implies that 

| n / | < 2 | n o U = l , . . . , / . 
(iii) The proof is similar. • 

3.2. Substitution 

We study in this section the effect of substituting to one argument of a symbol a 

quantity of form M(u)u, where M is a remainder operator. 

Proposition 3.2.1. — Let d',d" G R+,fc',M+,d = d! + d",i = min(l,d"), 1/,C G M+,cr > 

v + max(£, f ) + 3, B > 0, N0 G N, D. a (a + df + v, N0 + 1)-conveniently increasing 

sequence, k', k" G N*. 

For every a e SfK'X N(cr, R+,fc',/or every M (u) = Yl,j">k" J"Mj» (u,...,u) with 

M3" € Aj^.;/)((7 ,C ,J3) and 

< / / > , C , £ ; R+,fc',M) def 
sup 

?">fc' 
01 R+,fc', 

R+,fc', R+,fc', R+,fc', +00, 
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there are a symbol a G S^fc^o+t(a,£, £ , D.), with £ = max(£, | ) , and an operator 

M G R+,fc', V , C B), with k = k' + fc", sucft tfia* 

(3.2.1) OpJduaiu; •] [M{u)u\\ •• Opx[a(wr)] + M(u). 

Moreover, if the constant K0 in (2.1.17) is large enough relatively to a, 

(3.2.2) 
R+,fc', R+,fc', 

k),N0 [a,C,B,Z?.;a) < r R+, fc ' , t£No(v ,C,B,D. ;a)Ôfe(<r ,C,B;M) 

R+,fc', 
R+,fc', 

(a, C, 5 ; M) < R + , f c ' , m ^ l ^ i o , C, B R+, R+,fc',fc', a)OTfFC (̂<7, C, B; M). 

Proof — We decompose 

a = 

j'>v 

djt (u,..., ÎX; a;, n), M(u) 

j">k" 

j"MQSQ3»(u,...,u) 

with AJ G E^R ./)fiVo(cr,C,B,B.), Mj// G i l J ^ ^ C B ) . We write 

(3.2.3) Mj''(ui, . . . ,Uj'>) = Mj,,(ui,. . . ,Uj»,n) + Mj„(ui, . . . ,Uj»,n) 

where 

(3.2.4) 
Mj,,(ui,.FDF..,Uj»,n 

Tin nj"+l 

DFDF 
max(|n0|,...,|ni//+1|) 

SD 

xIInnAf7-// (IIni wi,... ,nn,/7w7-//)] R+,fc', 

with xi £ Co°№> Xi = 1 close to zero, Suppxi small enough, 0 < Xi < 1- Set 
M£(u, n) = y%2j">k" Mj„(u,..., u, n) and decompose 
(3.2.5) 
(dua)(u;x,n) • [M(u)u] = (dua)(u;x,n) • [M1^, n)u] + (dua)(u; x,n) • [M2(u, n)?j]. 

We study first M(u) = Ylj>k Mj(u,..., u) where 

(3.2J5) 

Mjim, ...,Uj)= R+,fc ' , i / / /°PxK',(^i ' • • •, R+,fc ' ,Af?,,(^/, . . . R + , f c ' , > J ; >)]S 
j'+j"=j 

with 5 denoting symmetrization. Denote U' = (ui,..., 'MF-i), U" = (WJ>, . . . , ^¿-1), 

n' = (m, . . . , nj/_i), n;/ = (rij/,..., nj-i) and use the natural notation Hn'Uf, Hn»U". 

Applying (2.1.38) with N = 0, we bound l i n ^ M ^ n ^ i , . . . , Unju3)Unj+1 ||̂ (L2) by 

the product of 91̂ .'/) ^ (cr, C> B, D.; a) and of 

(3.2.7) 

C0Do 
+00 

n= — oc j'+j"=3 

XC R+,fc', R+,fc', 

R+,fc', R+,fc', 
c(f)Bi'\n3+1)d' 

<,'-i 

XC 
(nt>)a I ^nifUi>\\L2J"(n)a R+,fc', n"U" ,n3+\ R+,fc', R+,fc', 
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for any a' 6 \y + 2 + Ca}- By (2.1.19) we have on the sum 

(3.2.8) max(|ni | , . . . , |ni/_1|, |n|) 
1 

4 
™j+i|,(no) ~ <ni+i) 

and by (3.2.3), (3.2.4) 

(3.2.9) max(|ni/ | , . . . , |nj | , |n |) c(nj+1). 

Let £ be such that \ne\ is the largest among |n0| , . . . , R+,fc',Inequality (3.2.8) shows 

that we may assume that j ' < £ < j + 1 . If we estimate the last factor in (3.2.7) using 

(2.1.40), we bound the second line of (3.2.7) by 

3" 
jk"+SDQS"-l) 

(j" + l)! 
Bj"cU")(m) 

R+,fc R+,fc',', (n)2a (n0) a (n,-+i) 

¿+1 

£'=0 

R+,fc', 
3 

£' = 1 

|nN£/^/ | |L2. 

Plugging in (3.2.7), using (3.2.8), (3.2.9) and (2.1.16), (2.1.17) when summing for 

j ' +j" = j , we see that we obtain for ||nnoMj(IIniui,...,IInj^)IInj.+1 \\Z(L2) bounds 

of form (2.1.40) with v replaced by v + l. If the constant K0 of (2.1.17) is large enough 

in function of d, cr, we get the second estimate (3.2.2). 

We are left with studying the contribution of the first term in the right hand side 

of (3.2.5) to (3.2.1). Let us show that 

âj(ui,..., Uj] x, n) 

3'+j"=3 

R+,fc', R+,fc', R+,fc', R+,fc', Mjf,(Ujf,. . . ,Uj-i,n)Uj)]X,n]s 

belongs to n R+,fc',R+R+,fc',,fc', R+,fc',0L,V+L(°'I C> B,D.). Forgetting again symmetrization in the notations, 

we have by (2.1.10), for a + ¡3 = p 

(3.2.10) 

^d%âj(u1,...,uj;x,n) 

j'+3"=3 

ffid R + , f c ' , ^ a j , ) R+,fc', R+,fc', Rfc', [ujf,..., Uj-i,n)uj;x, n] 

i'+i" 3 0<3'<3 
0<7</3 

R+,fc R+,fc',', (Id-T1FdZd%aj,)[ul,...,ur-l, 

R+,fc', MhAuj',... ,Uj-i,ri)Ui):x,n] 

We replace ut by Tlneue in (3.2.10), I = R+,fc',We note that if Suppxi is small 

enough, the support property (2.1.19) will be verified by a,. We write in (3.2.10) 

Ml, = Y,„0 n„0ML and note that by (3.2.4) 

(3.2.11) 
ne*3'] no Ml n»u",n): R+,fc', R+,fc', 

R+,fc', R+,fc', R+,fc', R+,fc', R+,fc', R+,fc', R+,fc', 
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for some sequence C.(xi) depending only on xi, wrfcn Co(xi) = 1-

Let us bound the first term in the right hand side of (3.2.10). Let a1 > v + 2 + 

i + max(£, | ) . Using (2.1.20) to estimate ay and (2.1.40) to bound the last factor in 

(3.2.11), we obtain an estimate by the product of 

(3.2.12) Jt(fc'),WO ( (7 ,C ,B , i? . ;a ) tó ( (7 ,C ,B;M) 

and of the sum in no, f + j" = j of 

(3.2.13Ì 

SD (k' + jSD'-l)\ 

W + 1)! 
3 

(k"+j"-l) 

ti" +1)! 
-c(j')c(j")DpBiC0(xi)(n) 

d'-(3+(a+v+N0(3-a') + 

x[(max(|no|, \rij'\ >\nj\)\ 
-Za'+v+d" 

(no)2* 
3 

£f=0 

R+,fc', 
ne, U£'\\L2 

since by assumption a1 > v + 2 + max(£, 4f) . 

Since —3(7' + + d" < 0, we bound the term between brackets by 

C(no)'a'+l+v(nof-L : C(nQ)-a'+L+"(n)d"-L 

(because of the cut-off xi in (3.2.4)). Since a' > v+i+2, the sum in no and jf+j" = j 

of (3.2.13) will be smaller, by (2.1.16), (2.1.17) than the product of (3.2.12) and 

(3.2.14) 
1 
2 

CV 
(k + j-l)\ 

R+,fc', 
R+,fc',VCXV d-L-f3+{(x+v+No(3-<j') + 

3 

£'=0 
(ne>)a SDQ R+,fc', L2 

if the constant K0 of (2.1.17) is large enough. To obtain estimates (2.1.20) for (3.2.10), 

we have to bound by (3.2.14) the second term in the right hand side of (3.2.10). We 

write (Id - n)1 = Y^y=o (y)(_1)7ri7' estimate a3> using (2.1.20) and (2.1.34), and 

bound the right hand side of (3.2.11) using (2.1.40). We get for the second sum in 

(3.2.10) a bound given by the product of (3.2.12) and of the sum in no and j' +j" = j 

of 

(3.2.15) 

[)<3'<B 
0<7</3 

R+,fc', 
R+,fc', 

r 
'Y XXXC (2(7))cr+(iVo"fl)p 

R+,fc', 
R+,fc', R+,fc', 

(j' + iy. 
3" 

[k"+j" - 1 ) 
R+,fc', R+,fc', c(j')c(j")Da+p>B'Cp-p>(xi) 

R+,fc', R+,fc', R+,fc', (max n0) n f R+,fc',n,-
R+,fc',XXC R+,fc', 

R+,fc', 
3 

£'=0 
(ne>y II •n£, U£'\\L2' 
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By definition (2.1.14) of (a + d! + i/, iV"o + 1)-conveniently increasing sequences 

(3.2.16) 

o<ß'<ß 
0<7<P 

R+,fc', 7 

CX 
(2(7))D,+(IVO+1^ Da+ßfQSDCß-ß'(xi) Dp. 

Using again (2.1.16) (2.1.17) we obtain for the sum in no, j ' + j " = j of (3.2.15) an 

estimate of form (2.1.20), (3.2.14) if a' > v + i + max(C, 4f ) + 2 and the constant if0 

of (2.1.17) is large enough. 

Let us prove bounds of type (2.1.21). If the special index £ is between 1 and j ' — 1, 

we bound (3.2.10) computed at (IInini,..., IInj.itj) using (2.1.21) to estimate ay and 

(3.2.11), (2.1.40) to control My,. We obtain an upper bound given by the product of 

(3.2.12) and of (3.2.13) or (3.2.15), where the power of (n) is now d!'-ß+a+v+Noß+a' 

and where (n )̂a ||IIN^^||£/2 has been replaced by (n^)-a ||IIn€i^||£,2. We conclude then 

as above. 

Assume next that the special index £ is between j ' and j . We apply (2.1.21) to ay^ 

but we take the special index in this estimate to be the one corresponding to the last 

argument of ay. We estimate the first term in the right hand side of (3.2.10). We use 

(3.2.11) and (2.1.40), in which we make appear the — Saf + v + d" exponent on (ne) if 

| ^ | > |̂ oI and on (no) if |no| > \ni\. We obtain an upper bound given by the product 

of (3.2.12) and of the sum in n0 and jf + j " = j of 

(3.2.17) 

SD ( f c ' + j ' - l ) ! 
R+,fc', -j 

(k"+j"-XCCXl) 

U" + 1)! 
c(j')c(j")Da+ßBi(ny 

i'-ß+ot+v+Noß+a' 

3 

l<?<3 
(ne>)a II 'nefu£'\\L^(ne) a II In,uA\L2(max(|n0|, M Y -a'+v+d" 

We write 

(max(|n0|, \ni\ -a'+v+d" (n)d '(max(|n0|,K[ —a'+v+L 

and sum next in no (using a' > v + ¿ + 2) and in f + j " = j (using (2.1.16), (2.1.17)) 

to obtain for (3.2.17) an estimate of type (3.2.14), where the power of (n) is now 

d - i - (3 + a + Nof3 + cr' + v. 

To estimate the last sum in (3.2.10), we proceed in the same way except that we 

have to use (3.2.7) to bound the powers of (n — 7 ) coming from (Id — T1)7. We obtain 
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an estimate 

(3.2.18) 

0<P'<{3 
0<7</3 

c îat.0 
R+,fc', 

7 

.7 ' 
(2(7))d '+v+° '+(No+i)p 

DFDF k'+j'-DDFl) 

(f + 1)! 
DF 

(k"DF+j"-l) 
(j" + 1)! •cU'W)Da+p.B'Cp-P,(xSDSDi){n) 

d'-/3+a+^+jVo/3+<7' 

j 

i<t<j 

(np>)a I Up+fc'GJHR+,fc',/ neu>e\\L2(max(|n0|, K | \ — a'+v+d" 

We conclude as after (3.2.17) above, using (2.1.14) to obtain a bound of type (3.2.14) 

with a power of (n) given by d — i — ¡3 + a + NQ(3 + af + v. 

This concludes the proof of the proposition. • 

3.3. Poisson brackets of functions 

This section is devoted to the study of Poisson brackets of functions defined in terms 

of para-differential operators or of remainder operators. Let us fix some notation. We 

set 

(3.3.1) SD 1 o 

0 - 1 
, J = 

0 - 1 

1 0 
J' 

0 1 

.1 o 

so that any 2 x 2 matrix may be written as a scalar combination 

(3.3.2; XI + aJ + alf + BJ'. 

We denote by R+,fc',No(o~,(,B,D.) ( g i ^ W the space of 2 x 2 matrices whose entries 

belong to Sfy"Nq((7, £,!?,£>.). If A is a matrix valued symbol, we decompose it in 

terms of scalar symbols according to (3.3.2) and define R+,fc', JS^O7? C B, D.\ A) as the 

supremum of the four corresponding quantities for the four coefficient in (3.3.2). If 

s G R, p > 0, we denote by Bs(p) the ball of center 0 and radius p in HS(S1; R2). 

Proposition 3.3.1. — Let v G R+, N0 G R+. There is v>v and for any ( G R+, any 

d!\ d" G N with d = d! + d" > 1 any a > v + 2 + max(C, § ) , any (a + v + d, AT0 + 1)-

conveniently increasing sequence D., there is a (a+ v + d, JVQ + I)-conveniently increas­

ing sequence D. and for any B > 0,k',k" G N*; for any A' R+,fc',No(a,C, B,D.) ® 

^fe(R), A" G S J ' ^ ^ C , ^ , ^ . ) ® J«2(R) wîtft Â'V = A',Â"V = A", one may 

find Ax G S^)No(a,C,B,D.) ®M2(R), A0 G S j ^ ^ C ^ è . ) ® j«2(M) and a map 
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M G tdÂ(er, C, B), with k = kf + k", such that 

(3 3 3 Ì 

{ ( O p l A U u ' r ^ ^ A O p J A ^ u ' r A d k F R + , f c ' , R + , f c ' , ^ u ) ] (OpvL4i(DSFDSFu;-)Ku) • (Op JAo(wr)]u,u) 

•(M(u)u,u) 

and Aiv = Ai,Aoy = AQ. Moreover 

(3.3.4) KIno^C.B^SQDSD^A,) K^Nq{o,(;,B,D.',A') „̂((7GHJR+,fc',R+,fc',,̂ ,1).;̂ ) 

and /or a uniform constant CQ, 

(3.3.5) 

R+,fc', R+,fc', R+,fcV+,fc', R+,fc', R+,fc', 

R+,fc', R+,fc', R+,fc', R+,fc', ^r)iNo(a,C,B,D.;A"). 

Remark. — The assumptions Xy = A',AÏ'y = A" just mean that the operators 

Opx[A'(u-, •)], Opx[A"(u; •)] send real valued functions to real valued functions. 

We shall prove first a formula similar to (3.3.3) when the matrices A'(, •), A"(u, •) 

are given by the product of a scalar symbol and a constant coefficient matrix. 

Lemma 3.3.2. — Let d', d" G R+,d = d' + d", J = min(d', 1), i" = min(d", 1). Assume 

° > ^ + C + 3. Let E',E" be matrices of M2(№), e' G sfyNo(cj,Ç>,B,D.),e" G 

(̂fc'O No (a' CìB,D.). One may find symbols 

(3.3.6; l'e S R+,fc', R+,fc', 
(k),N0 

(oX,B,D.),ë" G S d—i ,v+i 
(k),N0 

(°,C,B,D.) 

and a remainder map 

M(u) G £ d,v+: > , C , B ) , 

such that 

(3.3.7) 

{(OpJe'(u; •)]£'«,«>, R+,fc', R+,fc', R+,fc', R+,fc', 

:<[(Opv[e>; . ) ]£ ' *Opv[e'(tt;.)]t^)J(Opv[c"(tt;.)]i5" *Opv[e"(«; •)]*£?")]«,«> 

<[Opx[ë'(«; •)]£' Opx[ë"(u; • ) ]£> ,«> (M(«)«,«). 

Moreover sd A-i",v+i" 
R+,fc', 

(a,C,B,D.;ë') (resp. sd d—i',v+i 
(k),N0 {a,Ç,B,D.;ë"l may be esti­

mated by 

Co x R+,fc', 
R+,fc', 

R+,fc', R+,fc', R+,fc', R+,fc', 
R+,fc', 

(<7,C,£,D.;e"): 

/or some universal constant Co • 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2012 



60 CHAPTER 3. COMPOSITION AND POISSON BRACKETS 

Proof. — Denote C1(u) = OpJe'(u;-)]E',C2(u) = Op \e"(u;-)]E" and set 

G1(«) = C1(«)- •'CM , C2(u) C2(u) + '(72(u). 

We write for j = 1,2 

(3.3.8) du(Ci(u)u,u) • £7 dw(Cj(u)w,w)\ w=u U+({duC3{u)-U)u,u) 

whence by (1.2.5) 

(3.3.9) 
[(Ci(u)u,u),(C2(u)u,u)} dw{Ci(u)w,w)\ j=u J 7u(C2(u)u,u) 

(dud(u).(J u{C2(u)u,u)) • u,u). 

We write the first term in the right hand side as 

(3.3.10) xc 
'w(Ci{u)w,w)\w=u J 7u(C2(u)u, u)dx 

-(du(C2(u)u,u)) E w 
{Ci(u)w,w)\w=u 

since t J = —J. Using the notation C_3- introduced above, we may write 

du(C2(u)u,u) • U ((duC2{u)- ((duC2{u)-U)u,u) 

w{Ci(u)w,w) • C1(u)w 

so that (3.3.10) may be written 

-(C0(u)u, JC-1 (u)u) • {duC2(u)(JC1(u)u)u,u). 

Coming back to (3.3.9), we get 

(3.3.11) 
[(Ci{u)u,u),s(C2(u)u,u)] ( d (u)JCo(u)u,u) 

(duC2(u)(JCi (u)u)u, u) ((duC2{u)- 'u(C2(u)u,u))u,u). 

The first term in the right hand side is the first term in the right hand side of (3.3.7). 

Let us check that the last two terms in (3.3.11) contribute to the last terms in (3.3.7). 

If we set V(u) = JC^((d2{u)-u we get by (2.2.1), (2.2.2), (2.2.16) a quantity to which 

proposition 2.2.2 applies. Consequently, by this proposition 

duC2(sddsu)-V(v E"Ovx[due"{w,-) [JE'0Vx[e'(w,-)}u]}u 

-E"Ovx[due"(u-.) [ j ' £ ' < O p x [e ' ( u ; . )Mb 

may be written as 

Opx[ê((duC2{u)->; • ) ]£"« 

for some e" € S^N^''' (a' B>D.). This gives the wanted conclusion for the second 

term in the right hand side of (3.3.11). Consider now the last term in (3.3.11). We 

may write 

(d(C2(u)u,u))-V (C2(u)u,U) (Opx[0„e"(u;-) U]E"u,u). 
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By (2.2.1) and (2.2.23) the last term may be written as J§1 W(u)Udx where W(u) 

is given by (2.2.33). Moreover, as we have seen above, C2(u)u is a quantity of form 

V{u) i.e. of type (2.2.16). The last term in (3.3.11) is thus 

(0«Ci(t*) • (J(V(u) + W(u)))u,u) = (E'Opx[due'(u; •) • (J(V(u) + W(u)))]u,u). 

If we apply (2.2.17) and (2.2.34), we write this as 

;Op [e'(u-r)]Efu,u (M(u)u,u) 

where g G 5 ^ ; ; ^ ( a , C , B , D . ) , M(u) G £d((duC2{u)-^\o,^B). 

This concludes the proof of the lemma. • 

Proof of proposition 3.3.1. — We decompose the matrices A', A" of the statement 

using (3.3.2) and apply lemma 3.3.2. The last term in (3.3.7) contributes to the last 

term in (3.3.3). When d" = 0 (resp. d' = 0) the el (resp. ê") contribution to (3.3.7) is of 

the form of the A\ term in the right hand side of (3.3.3). When d" > 1 (resp. d! > 1) we 

get instead contributions to the AQ term of (3.3.3). We are left with examining the first 

duality bracket in the right hand side of (3.3.7). Using theorem 2.3.1, proposition 2.3.3 

and proposition 3.1.1, we may write as well this expression as contributions to the 

three terms in the right hand side of (3.3.3). Note that the decomposition of A', A" 

using (3.3.2) gives 16 terms of the form of the left hand side of (3.3.7). The first duality 

bracket in the right hand side of (3.3.7) gives, using the results of symbolic calculus 

(theorem 2.3.1 and proposition 2.3.3), for each of these terms four contributions of 

type 
< 0 p J / ( u ; - № , u ) , 

where F G { / , / ' , J, J '} and / = e'e" or e ' V or e'e"v or e ' V / v , plus contributions 
to the last two terms in (3.3.3). Using estimate (2.3.1), we see that we obtain the 
bound (3.3.4). This concludes the proof of the proposition since the conditions Â\ = 
AI,ÂQ = Ao may always be satisfied, using that the left hand side of (3.3.3) is real 
valued, which allows to replace in the right hand side (Opx[Aj(u; -)]u,u) by 

1 
2 

lOpJAiiu:-)] Op JAj(u;>)]]u,u Opx 
((duC2{u)- AAu^Y 

2 
u, u ) 

Proposition 3.3.1 provides for the Poisson bracket of two quantities given in terms 
of symbols of order d', d" an expression involving a symbol of order d' + d". We cannot 
expect anything better if we consider arbitrary matrices Af, A". On the other hand, if 
we limit ourselves to matrices that are linear combinations of / and J, we may write 
the first term in the right hand side of (3.3.3) from a commutator of Opx[A'{u\ •)] 
and Opx[A"(u; •)], gaining in that way one derivative. We shall develop that below, 
limiting ourselves to polynomial symbols in u, as this is the only case we shall have 
to consider in applications. 
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Definition 3.3.3. — Let d G R+,fc G N*,i/,C G R+,iVo € N, s0 G R , s0 > i/ 4- § + 

max(C, | ) and s0 > f. 

(i) One denotes by M'fyNO(C) the space of functions ^ —>((duC2{u)-defined on 

JEP^S^R2) with values in R , such that there are symbols A(u;-), ((duC2{u)-•) belonging 

to S(j^NQ(C), satisfying Av = A, /xv = \x and an element M(u) G -£(fc)(C) sucn that 

for any u G ^ ( S ^ R 2 ) 

(3.3.12) Fin) 
1 

2 
[Opv[A(w; •) J + fi(u; -)J]u, u) 

1 

wx 
M(u)u,u) 

(ii) One denotes by ^ ^ ) ^ 0 ( C ) the space of functions u —> i'Xu) defined on 

# S ° ( S 1 ; R 2 ) with values in R, such that there are a symbol A(u\ •) G S^>Aro(C)0^2(R) 
~d,v 

satisfying Ay = A and a map M(u) G £(k)(0 sucn that 

(3.3.13) F(u) 
1 

2 
[Op [Ì4(M;-)]M,U) 

1 

wx 
{M(iz)u,u). 

Remark. — By proposition 2.1.13 (or its special case concerning polynomial symbols) 

the left half of each duality bracket in (3.3.12), (3.3.13) belongs to Hs°~d(S1;R2), so 

the assumptions made on so show that F(u) is well defined 

Let us study the stability of the preceding classes under Poisson brackets. 

Proposition3.3.4. — Let dud2 G R+,fci,fc2 G N*,i/,C € R+,iVo G N . Set ( = 

max(C, dl*d2). There is some v* > v, depending only on V,NQ such that for any 

so > v' + | + ( the following holds: 

(i) Assume d1 > l,d2 > M o >((duC2{u)-((duC2{u)-and *afce i*} G №*kj)iNo(0> 3 = 1;2 Then 

{FUF2} is inW*£fc$((duC2{u)-0(Q. 

(ii) Assume d1,d2 G N , d i + d i > l,s0 >((duC2{u)-((duC2{u)-and take FJ € ^fc'),Ar0(£)' J =1,2 

7%en {Fx,F2} is in &£x,F2x,F2^NQ{Q. 

Before starting the proof, we study Poisson brackets of quantities involving remain­

der operators. 

Lemma 3.3.5. — Let d', d" G R + , d = d' + d", C G R + , a > ^ + 2 + max(C, f ) , D. 

a (d 4- v + a, iV0 + I)-conveniently increasing sequence, k',k" G N*,i£ G J ^ 2 ( R ) , e G 

S'Jj^^cr,C, B,D.),M" G Zf^'fa,C,-B). £eno*e A: = fc' + fc", i, = min(l,d"). 

(i) Assume a > v + 3 + max((, | ) . TTiere are a symbol è G S((duC2{u)-a^,B,D.), 

with £ = max(C, | ) , a remainder operator M G -^?^+1(^ C -B) swc/i £/&a£ 

(3.3.14) {(Opx[e(u; - ) ] £ ^ ) , (M"(u )u ,u» = (Opx[e(u; - ) ] £ ^ > + (M(u)ti,u). 
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(ii) Let M' G £fk'X((r,C,B). There is M e £tX(a,Ç,B) such that 

(3.3.15) (Mf(u)u,u),(Mfdfdf"(u)u,u)} (M(u)u.u) 

Finally, ife,M\M" are polynomial i.e. belong to S(k)jNo((),£(k,)(C),£x,F2(k")(()> ^en 

g e ^ J T C ^ O ' M 6x ,F2x ,F2 i n W and M e £%(0 in (ii). 

Proof. — (i) By definitions 2.1.10, 2.1.11, we may write 

(M"(u)u,u) 

j">k" 

sd x,F2x,F2 

j"+2 

where L3n is (j,f + 2)-linear and satisfies for any a' G \y + 2 + max(£, 4f ), a\ 

\Lj"№nou0, x,F2xsdsdsd,F2 xc d",v 
•(fc") 

[a, B; AT 
(k" + j"-l) 

x,F2x,F2x,F2 
<3")Bi 

x(ne] -Zo'+v+d" x,F2 

x,F2 
(ne>/\\ ne,Ui>\\L2 

for any i = 0 , . . . , j " + 1. This implies that we may write JV(M"(u)u, u) as M"{u)u 
where M"(ii) = £*">*" j " A^i, (t i , . . . , u) with Mj'„ G ;1 J^.,,,(a, C, B) with 

sup 
j">fc' 

9 d".v 
Xk"j") 

x,F2x,F2x,F2 Crf"fJv,B;M") 

with a uniform constant C. Denote 

C'(u) OpJe(u:-)]E, C'(u) C'{u) + *C"(u). 

By (1.2.5) 

(3.3.16; 
[(sdcwxC'(u)u,u),(M"(u)u,u)} du(C (u)u,u) (M"(u)u) 

{C'(u)-(xcsdsdxM"(u)u),u) (KduC'(u)) [M"{u)u)]u,u). 

The first bracket in the right hand side may be written 

(C'(usds)M"(u)u,u) (« ,*M"(«)C'(«) t t ) 

and so, by (ii) and (iii) of proposition 3.1.1, has the structure of the last 

term in the right hand side of (3.3.14). The last duality bracket in (3.3.16) is 

(Opx[9„e(u; •) • (Mqsqsq"(u)u)]Eu,u) and so, by proposition 3.2.1, has the structure of 

the right hand side of (3.3.14). This concludes the proof of (i). 

(ii) We have written above JV(Msds"(u)u,u) = M"{u)u for some M". We may find 

in the same way a similar M'(u) such that for any v 

du{{M'(u)usdsd,u))-v {M'(u)u,v). 
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Consequently, the left hand side of (3.3.15) may be written 

{M'{u)u,M"(u)u) ÇsdsdsM'\u)M'{u)u,u). 

If we apply (i) of proposition 3.1.1, we get the right hand side of (3.3.15). This 

concludes the proof. • 

Before giving the proof of proposition 3.3.4, we state and prove a lemma, giving 

a similar statement, for the more general case when Fi1F2 are defined in terms of 

symbols that are not necessarily polynomial. 

Lemma3.3.6. — Letdud2 G R+,di > l,d2 > l,*i,*2 € N*,iV0 G N,z/,Ç G R+,<7 > 

i/+2iV0+8+max(£, d l ) . LetD. be a (*/+di+d2+<7, No + 1)-conveniently increasing 

sequence, B > 0. Denote ( = max(£, dlx,F2 ) . Le£ A^/XJ G S^'"NQ(<T,Ç,B,D.) with 

Xj = Aj,/xJ = /ij, j = 1,2 and /et M2 G £d^(cr,Ç, B). Consider the Poisson bracket 

(3.3.17) 
1 

L2 Opx[Ai(ti;.)J -/ii(ti;-)Jjw,ii), 

1 

2 
(Opx[A2(^;.)J -/i2(u;-)</K/a) 

1 

2 
|M2(w)n,n)} 

One may find v* = z/+2iVo+6, a new conveniently increasing sequence D., and symbols 

X,fie S^Xx,F2)x,F2x,F2%^B^-) ™t™fy™9 Av = A,AV = M and M e ^ ^ W , ^ ) 
such that (3.3.17) equals 

(3.3.18) 
1 

2 
OpY[A(ti;.)/ u(u: -)J]u, u) 

1 

2 
[M(u)u,u). 

Proof. — Let us study first the contribution coming from (M2(u)u,u) in the second 

argument of the bracket (3.3.17). By (i) of lemma 3.3.5 we get a contribution to 

(3.3.18), with symbols A,/x € SD(^-^O+x,F2L(<T,^B,D.) and M € £x,F2x,F2fcï%+1(<r,Ç,B). 

This is of the wanted form. Consider now the contribution to the bracket coming from 

(3.3.19; 
1 

4 
;<Opx[Ai(ti;.)/ Hi(u] -)J]u,u), (Op [A2(u; • ) / • - ii2(u',-)J]u,u)}. 

Apply lemma 3.3.2 with E' and E" equal to / and J. The last two brackets in the right 

hand side of (3.3.7) give contributions of form (3.3.18). Let us study the contributions 

of the first duality bracket in the right hand side of (3.3.7). If we set 

CAu Opx \j(u\-)I •fijiw,-)J] x,F2 
x,F2 

1 

2 
x,F2v 'CM 

this may be written 

(3.3.20) (Qi (u)JqsqÇ_2(u)u,u 
1 

2 
[[Csqqs^JC^u) C2(u)JQl (u)]u,u). 
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If we set 

Aj(u) 
1 
2L 

:0px[AJ-(«;-)]+t0px[AJ-(«;-)] 

x,F2 1 
2 Opv[a*J(w; •) 'Opx[Mj («;•)] 

so that (? . («) = A,-(u) + JBj(u), (3.3.20) equals 

(3.3.21' :[B2,i4i] + [i42,BI] • / ( [ ¿ 1 , ^ 2 ] [ B I , B 2 ] ) ) « , « 

We apply proposition 2.3.3 to write 

(3.3.22) 
Aj{u) :0Px 

1 

2 
(A,- + AY)(u;-)] •OpxM«; . ) ] + x , F 2 M / ( « ) 

Bi(«) Opx 
1 

2< 
x,F2x,F2x,F2v x,F2x,F2x,F2 x,F2x,F2 

with M / , M f e ^ ; ) + J V O + 3 ( < T , C , B ) and e,-,/,- € S ^ ^ V , < , £ , £ • ) (for 

a new sequence D.) since cr > v + iV"o + 5 + er By theorem 2.3.1 the contribu­

tions of the para-differential operators in (3.3.22) to (3.3.21) may be written as 

(3.3.18) with symbols A,// in S^^~^2N°^6(o, C,Bx,F2x,F2, (f°r another D.) and 

M G £%^l^2No^{(J,Csdd^B). On the other hand, the contributions to (3.3.21) 

of M^,Mf may be dealt with using proposition 3.1.1, and give expressions of 

form (M(u)u,u) for M G £f£+l%+No+3(<T,C,B). This concludes the proof of the 

lemma. • 

Proof of proposition 3.3.4' — (i) By definition of x,F2x,F2x,F2 
x,F2x,F2x,F2 

(3.3.23) x,F2 
1 

2 
Opx[\i(u;-)I- fij(wr)J]u,u) 

1 
2 

[Mj(u)u, u) 

w i t h x , F 2 G S(^)NQ(C)SD satisfying Aj = A, , / / / = ^- andmj G £(FCI)(C). We may 

apply lemma 3.3.6 and (ii) of lemma 3.3.5 to f1 F2} using that here the symbols and 

remainder operators are polynomial ones. We obtain the conclusion of the proposition, 

(ii) We have to study the Poisson bracket of two functions of form 

F Au) 
1 

2 
[OpJAj(u;')]u,u) + 

1 

2 
[Mj^u, u) 

with Aj(w, •) G 5^!^JVo(®)J%2(K) with ÂY = aj Lemma 3.3.5 shows that the con­

tributions coming from a Poisson bracket involving at least one term (Mj(u)u,u) 

may be written as the right hand side of (3.3.13), with a symbol A belonging to 

S ( l + W o + l K ) ® ̂ ( K ) C 5 ^ - ^ ( 0 ® M2(R) (where t G [0,1]). On the other 

hand, the contribution coming from 

1 

4 
(Opx[Ai(u;-)Ku) (Opx[j42W-)]u>u}} 
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is of the form of the left hand side of (3.3.3), with polynomial symbols. It follows 
from proposition 3.3.1 (applied to polynomial symbols), that this quantity may be 
written under the form of an element of &%+?V\x,F2x,F2 N (C) f°r some v' depending only 
on v, NQ. 

We shall make use below of the following lemma. 

Lemma 3.3.7. — Let sd> 0,iVo G N. There is so > 0 large enough, po > 0 and 
for any B > 0, for any (d, s) G M+ x [s0,+oo[ satisfying either d < 1 or 2s > d > 
2s — 1, for any a > s, any (a + d + i/, No + 1)-conveniently increasing sequence D., 
any k G N* the following holds: Let £ = max(£ | ) , a (resp. M) be an element of 
Sd^Ng(<J,(,B,D.)®M2(R) (resp. £$%{a,{,B)). Define 

(3.3.24) F(u). {Opx[a(u;-)]u,u) (M(u)u,u). 

Then for any s > so the map u —> DF{u) (resp. u —• WF(u)) is C1 on Bs(po) with 
values in £(H~s+d,R) (resp. H3~d). Moreover, there is C > 0 such that for any 
u e BJpo) 

(3.3.25) № ) | < c | | « | | ^ . 

Proof. — Let us show that DF(u) extends as a linear form on H s+ . If V G 
^ ( S 1 , ^ 2 ) we may write DF(u) • V in terms of 

(3.3.26) <OpJa(ti;.)]V,ti) <Opy[a(u;.)]ti,V) 

;3.3.27) (Op [dua(u;-) V]u,u) 

(3.3.28) (M(u)V,u) (M(u)u,V) 

(3.3.29) {(duM(u) V,)u,u). 

Let us check that these expressions may be extended to V in H~s+d. 
By (2.1.44) with s replaced by — s + d, the first duality bracket in (3.3.26) is 

a H~s — Hs pairing. The second one is a Hs~d — H~s+d pairing. Note that the 
conditions u G i^+s+C+s an(j 0->jy-f-£-f-2of proposition 2.1.13 hold true if s > s0 

large enough since, because of our assumption on d, £ < niax(£ ) . 

Consider (3.3.27). Assume first that 0 < d < 1. I f s > z / + £ + | w e may apply 

(2.1.46) with s replaced by s — d. If we assume s > d + ^ + C + f> we see that 

this inequality implies that (3.3.27) is a H~s — Hs pairing. Consider now the case 

when 2s > d > 2s - 1. Then V G H~s+d C H8'1 C x , F 2 x , F 2 ( 6 > 0 small) if 

s > so large enough, depending only on z/, By (i) of proposition 2.1.13, we get that 

Opx[dua(u; •) • V] is in £{Hs,Hs~d) C £(HS,H~S) so that (3.3.27) is a H~s - Hs 

pairing. 
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Let us study (3.3.28). By (2.1.47), for s > so large enough in function of v, £, 

M(u)u G Hs~d so that the second bracket in (3.3.28) is a Hs~d - H~s+d pairing. 

Consider now the first one. When d < 1, (2.1.48) shows that for s > so large enough 

relatively to v, M(u)-V G H~s, so that we have a H~s—Hs pairing. If 2s — 1 < d < 2s, 

V G H~s+d so that applying (2.1.47) with a' + \ + S = -s + d, we see that M{u) • V 

belongs to H~s. Consequently (3.3.28) is a H~s — Hs pairing. 

To treat (3.3.29), we use when 0 < d < 1 (2.1.48) to see that for V G if_s+d, 

(duM(u) - V)u belongs to H~s for s > so large enough. When 2s — 1 < d < 2s, 

V G H~s+d C iiP-1 so that (duM(u) • V)u belongs also to H~s if s > s0 large enough 

relatively to v, C by the statement after (2.1.47). 

This shows that DF(u) G £(H~s+d,W). The fact that u -> DF(u) is in fact 

C1 follows differentiating once more (3.3.26) to (3.3.29) in u,and making act this 

differential on some W G ̂ ( S 1 , R2). Since a, M are converging series, this just means 

replacing in the general term of their development one argument u G i f ^ S ^ R 2 ) by 

W G i / ^ S ^ R 2 ) which does not change the boundedness properties. • 

Remark. — We shall use below the following consequences of the study of (3.3.28), 

(3.3.29). If F(u) = (M(u)u,u) with M G £^ (a ,C , -B) and if s > s0 is large enough 

relatively to v, £ then u —> VF(u) is a C1 map from Bs(p) to ^ ^ ( S ^ R 2 ) . Actually, 

in (3.3.28), we have M(u)u G Hs by (2.1.47) if so is large enough. Moreover, we have 

seen in the proof that M{u) • V and (duM(u) • V)u belong to H~s ifVe H~s. 

3.4. Division of symbols 

The aim of this section is to construct from a symbol or an operator another symbol 

or operator defined by division by a convenient function. We recall first some notations 

and results of [5], [1], [12]. 

If n o , . . . , ft-J+i G Z, denote 

(3.4.1) 
max2(|n0|,...,|n<7+i|) max{ |n0 | , . . . , |n i+i |} ( K l » 

/i(n0,... ,nj+i = 1 + max({|no| Kf+il} - { l ^ o U ^ i l } 

where £o is an index such that |n̂ 01 = max(|no| , . . . , x,F2|) and t\ is an index different 

from ¿0? such that |n̂ 11 = max2(|no|,.. . , |nj+i|). In other words, /^(no,.. . , WJ+I) is 

essentially the third largest among |no|,...x,F2,AdkF 

[f m GjO,+oo [ j " e N , n o , , nJ+i G Z, 0 < £ < j + 1 we set 

(3.4.2) FL [no,... ,n-J+i) 
sd 

^=0 
m2 + n2, 

sd 

i'=t+i 

m2 + n2,. 

It follows from [5], [1] Theorem 6.5, [13] Proposition 2.2.1 that the following propo­

sition holds true: 
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Proposition 3.4.1. — There is a subset c]x,F20, +00[ of zero measure, and for every 
m G]0, +oo[—Ж, there are Ni G N, с > 0 such that the inequality 

3.4.3 m x,F2x,F2x,F2 x,F2x,F2x,F2x,F2 x,F2 

holds in the following two cases: 
• When j is odd, or j is even and £ ^ | , for any (n0 , . . . , rij+i) G Z J + 2 . 

• When j is even and £ = | for any (n0, . . . , ^J+i) G ZJ+2 - Z(j), where 

(3.4.4) 

x,F2 Un0, • • • ,%+!, € Z ' + 2 ; Леге is a bijection a [о , . . . ,П x,F2x,F2x,F2x,F2x,F2 

S'MC/I that \na(j)\ \rtj\ for any j 0,...,*}. 

Note that a much better lower bound for |F^(no , . . . , WJ+I) | holds when the largest 
two among |n0|,.. •, l^J+il are much bigger than the other ones, and correspond to 
square roots affected of the same sign in (3.4.2). To fix ideas, let us assume that £ > 1 
in (3.4.2). Then for any m > 0, there are constants C > 0, c > 0 such that for any 
(no , . . . , rij+i) G ZJ+2 satisfying 

(3.4.5) K | > C ( l + |n2| K + i | ) > i | C(l + |n2| + --- + |ni+i|) 

one has 

(3.4.6) |i^(n0,...,nJ+i) c(l + |no| x,F2vx,F2 

Recall that we introduced in definitions 2.1.4 and 2.1.12 classes of multi-linear symbols 
x,F2x,F2 and operators Л ^ ( £ ) , which are the building blocks of the polynomial 

symbols Sfy" Nq(() and operators ^ (^ (C) - These polynomial symbols or operators 

have arguments (u\,... ,Uj) belonging to C°°(§1, R2)-7. It will be convenient to identify 

C°°(S1, R 2 ) to Cco(S1, C ) , and so to consider symbols or operators which are functions 

of arguments in C°°(S1 ,Cy. We introduce a special notation for them. 

Definition3.4.2. — (i) Let d G R (resp. d G R + ) , i/,C € R + , j G N*, AT0 G N. 

One denotes byx,F2x,F2x,F2#0(C) (resP- ^ ( ^ ( C ) ) the space of all C j-linear maps 

( n i , . . . , ^ ) ((x,n) -> a ( ^ i , . . . , i ^ ; x , n ) ) (resp. ( m , . . . , n,) M(ul9... ,Uj)) 

defined on C°° (S1, C)j:, with values in C00^1 x Z , C ) (resp. with values in 

^ ( L 2 ( S 1 ; C ) , L 2 ( S 1 , C ) ) ) satisfying conditions (2.1.24), (2.1.25) and (2.1.26) (resp. 

satisfying estimate (2.1.40) for any a7 > v + 2 + max(C, f ) , with {k+{~^]c(j)Bi 

replaced by an arbitrary constant) for any u\,... ,Uj G C ° ° ( S 1 ; C ) . 

(ii) We denote by CS^n0(C) (resp. c£(k)(()) the space of finite sums of form 

(2.1.29) (resp. (2.1.41)) with a,- € c E g ^ 0 ( C ) (resp. Mj e C ^ ( C ) ) -
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Let j be an even integer, £ = | , b G C^?j)'JV0(C)- Define 

(3.4.7Ì 

b'(ui,... ,Uj',x,n) 

71' 
/§1 

b(nn'U';x,n) 
dx 

2TT 
n' s 

b(Un,U'',x-y,n)e-2iny 
dy 

2TT 

where IIn/C// = (IIniui,..., IInj.i^), and where the sum ^ is taken over all indices 

n' = (ni,... ,rij) G ZJ such that there is a bijection 0' : { 1 , . . . , £} —> {£ + 1,..., j } so 

that |ri0/(£/)| = \ri£'\ for any 1 < £' < £. Then &' G cE^IVO(C). Actually, integrations 

by parts show that the last term in (3.4.7) belongs to C S ^ ^ + A R ( C ) for any N. We 

set 

(3.4.8) b"(ui,... ,Uj]x,n) (b - V\ [ill, . . . , Uj\X, n). 

Note that, denoting by £7" the x Fourier transform, 

C3.4.9Ì 

27r£7[Opx[6' x,F2 x,F2 uj+i](n0) x,F2 [n>U ;n0 - nJ+i,nJ+i) %+iK+i ) 

[S(n0 -nj+1)bx\ !„/£/'; 0,7l7-+l) <5(n0 + nJ+1)6x( n/£/'; -2n7+i,n7+i) ûj+ iK+i ) 

so that 

(3.4.10) O p x № ' ; . ) K + i 
no,rij+i 

|nn| = |n._|_l I 
c 

»0OPY[&(] x,F2x,F2 x,F2x,F2 

By the support condition (2.1.24), if 6(IIniui,..., TLnuy,-, n) ^ 0, we have 
|ni|,..., \rij\ < \\n\. This shows that the conditions on (no,...,^j+i) in the 
sum in (3.4.10) is equivalent to 

(3.4.11) 
There is a bijection 0 : [0 , . . . , £] (£+1 7 + 1 such that 

™0W) ri£' I for any £' G 0, . . . ,£] 

Consequently, we may write as well (3.4.10) as 

OPX № ' ; x , F 2 x,F2 
n 

n0OpJb( •n'U';-)] nj+1U>j+l 

where y , means the sum over all n = (no,..., nJ+i) satisfying (3.4.11). 
If UJ — (CJO, • • • >^j+i) G {—1,1}J+2, if (ui,... ,Uj) —>x,F2x,F2 is a j-linear 

map with values in the space of linear maps from Cco(S1,C) to C ° ° ( S 1 , C ) , if Am = 
—A + m2, we set 

(3.4.12) 
Lw(A)(wi,.. ,,Uf) voAmA(ui,...,Uj) 

j 

p>=\ 
•J)JA(UI., AmU£> ,,Uj) 

+uj+1A(ull...,uj)Am. 

We shall use the following lemma. 
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Lemma 3.4.3. — Define 

(3.4.13) ± m (ra0, • • • ,^¿+1. 

x,F2 

t'=0 

x,F2 m2 + n2. 

(i) Assume u ^ j + i = 1. Then for any m G]0, +OO[ there is c0 > 0 and /or am/ 7 G N, 

£ftere is C > 0, stzcft that for any (ft, n\,..., n7+i) G ZJ+2 wz£ft 

1 + In'l d̂ f 1 max(|ni|, |n7| : coK+i| 

and \h\ < 7j(rij+i), 

(3.4.14) 1x,F2 p(«), 
L m 

(/i + nJ+i,ni,...,nj+i) I"1 x,F2x,F2x,F2x,F2 

(ii) Assume CJO^+I = —1 and #{£'',(*>£' = —1} 7̂  #{£';&£' = 1} . Tften /or am/ m G 

]0, + 0 0 [ — / o r any 7 G N, there is C > 0 sixcft £fta£ /or any (ft, n i , . . . , n^+i) G ZJ+2 

ty f̂t |n'| < | |nJ+i| and |ft| < | |rcj+i| 

(3.4.15) |^+1[F^)(ft + n,-+1,n1>...,nj+1)]-1| < C{hy{n')x,F2^+l)Nl{nj+1)-\ 

(iii) Assume LJQUJJ+I = —1 a n d x , F 2 = —1} = #{£';&£' = l}.Then for any m G 

] 0 , 4 - o o f o r any 7 G N, there is C > 0 swcft £fta£ /or any (ft, n i , . . . , n^+i) G ZJ+2 

witft \n'\ < \\nj+i\, \h\ < !|rij+i| and (ft + r i j+i ,n i , . . . ,n j+i) ^ Z(w), where 

Z(UJ) = { ( n o , . . . >^j+i) € ZJ+2; tfftere ¿5 a bijection 0 : {£;uj£ = 1} —>x,F2= —1} 

x,F2x,F2x,F2 |n^| for any £ with uj£ = 1 

one has 

(3.4.16) \d2 
1 nj + i 

x,F2x,F2x,F2x,F2x,F2 x,F2x,F2x,F2 x,F2x,F2x,F2 (7+l)̂ Vi (ni+i) 7. 

Proof. — We prove (ii). Since UJOUJ+I = — 1 we may write Fm\no,... , n^+i) as the 

sum of a term depending only on n' = (n i , . . . ,rij) and of a quantity given up to sign 

by 

(n0 - rij+i 
»1 

0 
[ra2 + (*n0 + ( l -£)nj+1)2] x,F2 ^no + (1 — t)nj+i)dt. 

This implies that for any fixed m, any 7 > 1, any (ft, n i , . . . , nJ+i) as in the statement 

(3.4.17; \Q1 \p(u) ft + n,-+i, Jli «i + l)] x,F2x,F2x,F2x,F2v 

Prom this we deduce by induction that d%j+1 [Fm (ft + n^+i, n±,..., nJ+i)] 1 may be 

written as a linear combination of quantities of form 

(3.4.18) 
r^(ft,n;,nj+i) 

TTl [h, ri, n^+i) -Hi (ft, n', nJ+i) 
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where 0 < jf < 7 and Г7,, Hj satisfy 

(3.4.19) 

x,F2x,F2v Ca(/i)7(n7+i —7—a 

|#7(ft,n',*b4-i) c7(n,}-iVl 

(ft,n',*b4 (ft,n',*b4 Ca^(h}(nj+1] ~a,a>0. 

Actually, at the first step of the induction, r§ = 1, HQ = Fm\rij+i + h,n' ,nj+\) 
and the second and third inequalities (3.4.19) are just (3.4.3) and (3.4.17). Estimate 
(3.4.15) follows from (3.4.18), (3.4.19). 

Let us prove (i). In this case, cc^j+i = 1, so that the square roots involving the 
largest arguments are affected of the same sign. Consequently, if the constant CO of 
the statement is small enough 

(ft,n',*b4 (ft,n',*b4(ft,n',*b4 (ft,n',*b4 2(ni+i). 

Moreover 

Id7 F(a;) 
L̂ N„-_Li X M 

rij+i + ft,nb . . . ,7^+1, : C7(nj+i) 7. 

These inequalities imply (3.4.14). 
Finally, let us show that (iii) holds true. We may apply the proof of statement 

(ii) if we are able to show that the lower bound of Hj in (3.4.19) still holds. The 
functions Hj(h, n^n^+i) equal either Fm\rij+i + ft, n i , . . . , nj+i), or a translate of 
such a function obtained replacing rij+i by n^+i + A. Up to a change of notations, 
inequality (3.4.3) shows that the lower bound of the second line of (3.4.19) holds true 
for those (h,nf,rij+i) satisfying the assumptions of the statement (since, changing 
notations, we may reduce to the case when Z{uS) is given by (3.4.4)). The proof of (ii) 
applies then without any change and brings (3.4.16). • 

Proposition ЗАЛ. — Let m E]0, +oo[ be outside the exceptional subset $f of proposi­
tion З.4.1. Letj eN*,deR+,N0 G N, 1/, С G R+, (ш0,... ^ j + i ) ^ { - l , l } i + 2 . 

(i) Assume LJQUJJ+X = 1. Let be C E ^ ^ ( C ) . There is a e СЕ^+2 (C) such that 

(3.4.20) Ьш(Ору[а(ии...,и~-г)]) Opx[b(uu...,Uj-r)] 

belongs to cAd£+2(Q. 
(ii) Assume that UJQUJ+I = —1 and that(ft,n',*b4= 1} ^ #{£;u;^ = —1}. Then if 

N0 > 2(NX + 1) (where Nx is the exponent in (3A.3)), for any b G C%fy NQ{C), there 

isae cSj^+jVl+2(C) such that 

(3.4.21) LiJ(OpJa(u1,...,uj:-)\ Op [6 (^1, . . . ,^; •) 

(iii) Assume thatuo =(ft,n',*b4= —1, £fta£ j is even andu\ = • • • =(ft,n',*b4 = 1,(^72+1 = 
••• = Uj = - 1 . Tften t/JV0 > 2(iVi + 1) /or any b EG с£^^о(С), tftere is a G 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2012 



72 CHAPTER 3. COMPOSITION AND POISSON BRACKETS 

sd (ft,n',*b4(ft,n',*b4 
(ft,n',*b4 

[£) such that 

(3.4.22) LujlOvJaiu-i,... ,Un \ •) Opx[b"(uu...,Uj;-)] 

where b" is defined by (3.4.8). 

Proof. — (i) Let Xi G C Q ° ( M ) , XI = 1 close to zero and decompose b = b\ + b2 where 

b1(u1,....ui:x,n) 
ni rij 

Xi 
'max m n7-J 

In) 
\b( (ft,n',*b4 rij 5 x , n).sdsdsd 

If we apply (2.1.39) to a — b2, N = 2, and use that if b2(Tlniui,...,nnj.isdsdsij; n) ^ 0 

there is an index ^ for which |n |̂ > c(n), we see that Opx[b2(ui,...,Uj\ •)] de­

fines an element of C ^ J P ~ 2 ( £ ) . Consequently, we just have to find a solving 

Luj(Opx(a)) = Opx(&i). Writing from now on b instead of bi i.e. assuming that if 

b(Hniui,...,Jln.Uj\x,n) is not zero, then \m\ + • • • + \nj\ < c(n) for some given 

positive constant c, we have to find a so that, for any no,..., n^+i 

(3.4.23) 
:noLu;[Opx[a( m "l UjUj] (ft,n',*b4 

n0Opx[ò! (ft,n',*b4 (ft,n',*b4 nj+1 "j+l 

If we use the definition (3.4.12) of lw and Am] 
n -

/m2 + n2] ru we may write this 
equality 

(3.4.24) 
L m (n0,...,n7+i sdssds •m«i njUj\no - nj+1sdfd 1nj+l) 

xccx (ft,n',*b4 .njUj;n0 nj+unj+1). 

We solve (3.4.24) defining a by 

xc (ft,n',*b4 n. 5 X) n̂ -j-i 

3.4.25) 
1 

2TT 
h 

xl 
h 

{nj+1) 'S1 
C * W « ) ( Ä + n.+1>ni, . . . ,n .+1)-i 

sd sdsds njuf,x- y,nj+i)dy 

where x £ Co°(] — è, è D? X = 1 close to [(ft,n',*b4We estimate 

(ft,n',*b',*b4 (ft,n',*b4 (ft,n',*b4(ft,n',*b4 

from (3.4.25), using the Leibniz formula (2.1.10), estimate (3.4.14) and performing 

two integrations by parts of L = (1 + n2)_1(l + h • A , ) to gain a (h)~2 factor. We 

obtain estimates of type (2.1.25), (2.1.26) with v replaced by v + 2. Since (2.1.24) is 

also trivially satisfied, we obtain that a G c £ ^ ^ ( £ ) . 

(ii) Let us define again a from b by (3.4.25). We make act d^d^.+i on a, using 

the Leibniz formula (2.1.10). We get a sum of contributions with f3' dUj+1 -derivatives 

falling on x(V(™j+i))(^m V 1 and (3" dnj+1 -derivatives falling on 6, with /? '+/?" = /3. 

We perform f3' + 2 integrations by parts using the same vector field as above, to get 
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a (h) 2 factor to make converge the series. Using (2.1.25) and (3.4.15) we obtain a 

bound in terms of the sum for ¡3' + (3" = (3 of 

(3.4.26) (ft,n',*b4 d-ß+(ot+ß' +2+v+N0ß" (ni) 
(ft,n',*b4 

j 

(ft,n',*b4 

(nef II lnev>e\\L2 

for any a' > v + £ + 2, if n\ is the index such that |ni| = max( |ni | , . . . , |nj|). We 

want, to get the conclusion, find a bound in 

(3.4.27) (ft,n',*b4 vd-/?+(a+2/?'(l+iVi)- /3"AT0+2+iH-C+Wi-t7 
sd 

¿=1 

(ft,n',*b4 (ft,n',*b4 

for any a > */+C+2. Ua> y3/(H-JVi)+i/+C+2, (3.4.26) applied to a7 = a - / ? ' ( l+ iVi ) 

implies (3.4.27). If a < (3'(1 + + i> + C + 2, (3.4.26) with a' = cr implies (3.4.27). 

Assuming NQ > 2(1 + iVi), we obtain estimate (2.1.25) for the symbol a, with v 

replaced by v + C + NX + 2. 

If we estimate d£c^ 6 using (2.1.26), we get instead of (3.4.26) the bound 

(ft,n',*b4 d-ß+a+ß' ß"N0+2+v+a' xc (£' + l)iVi 

(ft,n',*b4 
(ft,n',*b4 

(ft,n',*b4 
U ^ H I L 2 ^ ) a I ^ ^ I I L 2 

which implies a bound of type (2.1.26) for a, with v replaced by v + iVi + 2, using 

that {n') < C(nj+i) and Ao > N\ + 1 . Since moreover the support condition (2.1.24) 

is satisfied by a by construction, we get that a G c£^^+ iVl+2(C) . 

(iii) We define a by (3.4.25) with 6 replaced by b". By (3.4.10), (3.4.11), we have 

F£>(n^...,nj+1)ax (ft,n',*b4 ijUj\no nj+i,ni+i) 

: l{(no,...,nJ + 1)^M}&x(] •m«i: (ft,n',*b4 ni+i,ni+i) 

so that in (3.4.25) with 6 replaced by o" we may insert in the integral the cut-off 

l{(/i+nj + i,rai,...,nJ-+i)gZ(w)}' 
The rest of the proof is similar to the case (ii) above, using estimate (3.4.16) instead 

of (3.4.15). This concludes the proof. • 

We conclude this section by an analogous of the preceding proposition for remainder 

operators. Let d > 0, i/, C € R+. When M G cAd{f) (£),u G { - 1 , l}j+2 with j even and 

when #{£;uj£ = 1} = #{£\u>£ = - 1 } , we decompose M = M ' + M" with 

M'(u i , . . . ,^ ) 

n0,...,nj + i 

:noM(nniwi, 7ljUj) nj+i 

where stands for the sum on those indices for which (3.4.11) holds true. 

Proposition 3.4.5. — Let m G]0,+oo[ be outside the exceptional subset Jf of proposi­

tion 3.4.I. 
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(i) When j is odd or j is even and #{£;u>e = 1} / #{£;uj£ = —I}, there is for any 

M in cÂdf)(Ç) an element M G cÂdf)+Nl(() such that LU(M) = M. 

(ii) When j is even and #{£;uj£ = 1} = #{£;uj£ = — 1}, there is for any M in 

cAdf)(() an element M G cÂdf)+Nl(Ç) such that LW(M) = M". 

Proof — (i) The equation to be solved may be written 

(ft,n',*b4 (ft,n',*b4 InjUj) (ft,n',*b4 'no M Ifli Ml! rijU3. nj+1 

or equivalently 

(3.4.28) 

F ^ ( n 0 , . . . , n , + 1 '-no1 
M (ft,n',*b4 njUjj- nj+1 nc M (ft,n',*b4 (ft,n',*b4 (ft,n',*b4 

If ^ is such that |n^| = max(|no| |nj+i|), we have by (3.4.3) 

x m n0, • • • ,nj+i) c/i(n0, • . • ,nJ+i (ft,n',*b4 :c(i + \m\)-N*. 

If we use estimate (2.1.40) for the right hand side of (3.4.28), we deduce from this 

that M satisfies the estimates of an element of £Ad^+Nl{C). 

(ii) The proof is similar, using that on the support of 

[n0M"( IniWl,. (ft,n',*b4 nj+1 ì 

estimate (3.4.3) holds true. 

3.5. Structure of the Hamiltonian 

In this section, we shall express the Hamiltonian given by (1.2.8) using the classes 

of operators introduced in section 2.1. 

Proposition 3.5.1. — Let G be the Hamiltonian (1.2.8). One may find v > 0 and: 

• A symbol e(u] •) in (ft,n',*b4(ft,n',*b4 0(0) satisfying e(u\ •) = e(w, 

• An element M G £(1) (0), 

such that if we denote E(u; x, n) = 
C 0 

0 e(u;x,n)\ 
, we may write 

3.5.1 Gin) 
1 

2 
AmU, U) 

1 

2 
;OpvtE(u;-)]u,u 

1 

2 
M(u)u,u). 

Before starting the proof, we study some multi-linear expressions. Consider a col­

lection of j + 2 > 3 constant coefficient operators 

(3.5.2) Of A"1/2 or Qi A-V2dsdx,0<£< j 1 
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of order - 1 / 2 or 1/2. Let a e C ^ S ^ R ) . For any function ut in C 0 0 ^ 1 ^ 2 ) denote 

lie = 
u\ 

sd 
and set ve = uj e C°°(S1;R). Consider 

(3.5.3) 
s1 

a(x)(Q0v0) - - - (Qj+iVj+i)dx. 

Lemma 3.5.2. — Let \ £ Q T Q ~~ 1 , X even> X = 1 c^ose t° zero> Suppx small 
enough. One may find v > 0 and for any z, %' with 0 < i < i' < j + 1 symbols 

(3.5.4) a\,(u;x,n) in 
sds 
<J)fi ,(0) 

and remainder operators 

(3.5.5) Mi,(u)eAlfsds} (0) 

such that (3.5.3) may be written 

(3.5.6) 0<*<i'<? + l 

QiVi)(x)Opx (ft,n',*b4 (ft,n',*b4 xcx xcxcxcx Vi'dx 

0<i<i'<j+l 

Ui(x)[Ml,(u0, xcx xc , Uj+i)Uit]dx 

Proof. — We decompose vt = ^ I I n £ ^ and write Qe (ft,n',*b4 be(ne) neV£ with 

(3.5.7) bi(ni) (m2 + nj) -1/2 3r o^(n^) 
in/ 

m2 + n2 

We may write (3.5.3) as 

(3.5.8) 
1 

(27Tp'+2 
n0 nJ+i 

a(—n0 (ft,n',*b4x 
cxcc 

¿=0 
be(ne)vt(n£) 

Let xi G Co°(R), Xi even, xi = 1 close to zero with Suppxi much smaller than 

Supp x- Define for 0 < i < i' < j + 1 

(3.5.9) (ft,n',*b4(ft,n',*b4 Xi max 
xcxcx 

\ne\)/(ne)). 

Decompose (3.5.8) as 

(3.5.10) 

0<i<i'<j+l 

ii + sddsdi" 
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WITH 

(3.5.11) 

qsq 
qsq 

qsq 
(2TTV+2 

no nj + 1 

] â(-n0 nj+1) 

dsds 

sds 

bi(ni)vi(ni)$\, 

Ï 1 
(2TTV+2 

no n,-+i 

a(—n0 nJ+i 
sdssd 

sdsdd 
bi(ni)ve(ni) 1 

i,i'-,i<i' 
qsdq 

Contribution of J". — We write I" as / v0(x)M(vi,... ,Vj)vj+\dx with 

(3.5.12) 

M(v1,...,vj)vj+1 
1 

(27rp+2 
n0 nj + i 

(ft,n',*b4 -n0 nj+1 

1 
i,i';i<i' 

xwx bo (n0) 

wxwx 

¿=1 
b£(n£)ve(ne) 

so that 

(ft,nsd',*b4 (ft,n',*b4 (ft,n',*b4 ï ^+ILL^L2) 

(3.5.13) 
|sds(n0 - (ft,n',*b4 1 

i,i';i<i' 
* : 0 

xcxc 

¿=0 

(ft,n',*b4 
xc 

¿=1 

^ I I L 2 -

We may bound the right hand side by the product of C wcw 
£=0 (ft,n',*b4x j 

£=1 
cxcxc L2 

times 

(3.5.14) |sd(n0 (ft,n',*b4 1 

i,i'-,i<i' 

xcxcx 
7 + 1 

£=0 

xcxc xcxcxc 

as each b̂  is a symbol of order at most 1/2. To prove that M defined by (3.5.12) may 

be written as an element of yl^(O) for some v, we just need to bound (3.5.14) by 

C(n^)-3a+I/+1 for any £ = 0 , . . . , j + 2. If one among |n0|,...(ft,n',*b4is much larger 

than any other one, the rapid decay of a brings the wanted estimate. If not, and 

if io < i'0 are those two indices for which \rii0\ and |nio| are the largest two among 

|no | , . . . , |nj+i|, we may assume that C-1|ni0| < |n^| < C|nf0| for some constant 

C > 0. If there is another index £Q ^ ¿0, £0 ^ i'0 and a positive constant c > 0 such 

that \ri£0 \ > c\riiQ\, (3.5.14) has again the wanted estimate as (ni0)~a (n^)-* (n£0)~a < 

C(ni0)~3a. On the other hand, if for any £ ^ io,i0, \ng\ is much smaller than |ni0| ~ 

\n^\ then ^? (n0 , . . . ,n7 ; , . . . , n j+ i ) = 1 and $j,(ra0,..., raj, . . . , nj+1) = 0 for any 

(i, i1) ̂  (¿0, i0), so that the cut-off in (3.5.14) vanishes. This shows that I" contributes 

to the last sum in (3.5.6). 
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Contribution of II. — We take, to simplify notations, i = 0, i' = j' + 1, set n' —iin 

( m , . . . , n i + i ) and write <ï>(n') instead of iin, (nf). We decompose 

iin 7(1)+ i in / (2) 

where 

(3.5.15) 

iiniin 
1 

(27rV'+2 
n0 713 + 1 

a ( - n 0 - nj+iWn )x 
n0 + n7+i 

iiniin 

iin 

¿=0 
MnAvAnA. 

We may write 7(2) = f i;0(a;)M(vi,..., v7-) • Vj+\dx with 

M(vi, iin iin 
n0 nj + i 

a ( - n 0 • ni+i)c-*noaB 

(3.5.16) 

: *(n ' ) i - x l 
(noiin+ 

(rc.7 + l> 
&o(no) 

J'+l 

iin 

bAnAv£(ne). 

We thus get for M a bound of type (3.5.13) except that (1 - J2 &\>) nas to be replaced 

by ^ ( n O ( l - x ( n ^ 1 ) 1 ) ) . To show that M may be written as an element of 4 ^ ( 0 ) , 

we just need to bound 

(3.5.17) |a(n0 - ^ i + i ) | * ( n ) i - x l 
np - nj+! > 

(™J + 1> 

i+i 

¿=0 

iiniiniin 

by C{ne) 3<T+U+1 for any ^ and some i/. By definition of on its support |n*| < 

ci(nJ+i),^ = 1,..., j for some small c\ > 0 depending on Suppxi- If |^o| ^> i ini inor 
iiniin ^> |no|, the \a\ factor in (3.5.17) gives the wanted estimate. If on the contrary 
C_1|no | < l^ j+ i l < C'lnol for some constant C > 0, and if we use that because 

of the (1 — x) cut-off, we may assume that |no — fij+il > c(n j+i) for some small 

c > 0 much larger than c±, we get again from the \a\ factor a bound in (nJ+i)-iV ~ 

(max(|no|,... , |nJ+i I ) )~ for any N. This implies the wanted upper bound, and shows 

that 7(2) contributes to the second sum in (3.5.6). 

We are left with studying quantity (3.5.15). Let us define 

(3.5.18) 

iin vu...,Vj;x,n 
1 

(27T)J 
ni rij 

ix(n!-\ \-rij a(x) 

iin nj, n) 
3 

£=1 
biin^vtin^bjiin+xin) 
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Then aj+1 satisfies (2.1.24), (2.1.25), (2.1.26) for N0 = 0,C = 0, some v and d = \ so 

that oPj+1 e E ^ o ( 0 ) . Moreover 

iiniin Vi,...,v7-;no,n) 1 
(27r)i 

ni iin 

v a(no — fti iiniiniiniiniiniiniin 

xc 

¿=1 

AdkFAdkFAdkFvAdkF 

so that if wo = bo(D)vo 

(w0,Opv iinx iinxxc ^ ^ O R + i ) 

1 

(2TT)2 
n0 ni+i 

w(n0)x 
no + nj+i, 

<ni+i) 

iinxc iiniin n,̂ -; -no - flj. i,nj+i)vi+i(nj+i) 

7(1). 

This shows that 7(1) may be written as a contribution to the first sum in (3.5.6) and 

concludes the proof of the lemma. • 

Proof of proposition 3.5.1. — According to (1.2.8), G{u) is the sum of ̂ (Amu, u) and 

of quantities of form (3.5.3) with V£ = u2 the second component of u. By lemma 3.5.2, 

these quantities may be written as a contribution to the last term in (3.5.1) and to 

expressions of form 

(3.5.19) u2Q[Opx[ë(u;-)]]u2dx 

where Q is a constant coefficients operator of order 1/2, and where ë G S^o(0) for 

some v. By theorem 2.3.1, (3.5.19) may be written as contributions to the last two 

terms of (3.5.1), replacing eventually v by some larger value. • 
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CHAPTER 4 

SYMPLECTIC REDUCTIONS 

The goal of this chapter is to construct an almost symplectic change of vari­

ables in a neighborhood of zero in i f S ( S 1 ; R 2 ) such that a Hamiltonian of form 

{Opx[E(u; -)]u, u), where E is a 2 x 2 matrix of symbols of order one, be transformed, 

up to remainders, into (Opx[E'(u] -)]u, u) where the matrix E' is a linear combination 

of 7, J with coefficients symbols of order one. 

4.1. Symplectic diagonalization of principal symbol 

Let J3 > 0, i/ > 0, cr G R , a > v + 2be given. Let D. be a (a + v +1,1)-conveniently 

increasing sequence. Let K be a positive integer. We set 

\0(u\x,n) An(ra) = ra2 + n2, /^o(w; x, n) = 0 

and assume given for 1 < k < K — 1 elements \k,V>k of 5^0(cr, 0, J3, .D.), such that 

(4.1.1) Xk(u;x,n) Xk(w,x,n), tik{w,x,n) lik(w,x,n) 

and that 

(4.1.2) Afc(u;x,n) A£(u;x,n), /xfc(w;x,n) - tâ(w,x,n) 

belong to S ^ ' J 1 ^ , 0, B,D.). Let ft be an element of S}%0(a, 0, B,D.) <g> J#fe(R) sat­

isfying 

(4.1.3) 

ft(w; x, n) = fi(u;rr,n), and *ÎÎV(ÎXÏx,n) - fî(u;a?,n) G 5?^^ (a ,0 ,5 ,L> . ) 0M2(R) 

Since for any matrix valued symbol A, Opx(A)u = Opx(Ay)U, condition (4.1.1) and 

the first condition (4.1.3) imply that Opx(AfcJ + fikJ) and Opx(ft) send real valued 

functions to real valued functions. Condition (4.1.2) and the second condition (4.1.3) 

imply in view of proposition 2.3.3 that these operators are self-adjoint at leading 

order. According to proposition 2.1.13 (i), if So > v + § is fixed, there is r > 0 

such that if u belongs to the ball BSo(r) of center 0 and radius r in JffS°(S1;R2), 
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then Opx[Afc(u; • ) / + p,k(u;-)J]u and Opx[Q(ix; -)]u are well defined and belong to 

HS°~1(S1;R2). This allows us to consider for u in such a ball 

(4.1.4) G'(ti) 
1 
2 

K-l 

k=0 

(Oj>J\k(u;.)I - p,k(u;-)J}u,u 
1 

2 
;Opx[fi(u;-)]u,u). 

In this section, we want to "diagonalize" the Q, contribution, i.e. replace Q by a matrix 

which is a linear combination of I and J, up to lower order terms. Moreover, we want 

to do that in an approximately symplectic way. 

Proposition 4.1.1. — There are a constant B' > B and a symbol q belonging to 

S,^Q(a, 0, B', D.) ® M2{^) satisfying qy = q such that if we set 

(4.1.5; af(u: x. n) 
K-l 

k=0 
(\k(u;x,n)I uk(u:x,n)J) ii(u\ x, n) 

and p(u; x, n) = I + q{u\ x, n) the following properties hold: 

(i) *pv(w; n)Jp(u; x , n ) - J e i i n S^(<t, 0, BF, D.) ® M2(R). 

(ii) There are scalar symbols XK(u\ x, n), /jlk(w, x, n) in S1^ Q(a, 0, BF, D.) such that 

(4.1.6Ì 
A«(w;x,n) 

-V 
: \ Ju\X,ri) LlJu]X,n) -V fiK(u;x,n) 

^K — A^, /x« ai belong to S 
iin 
00,0 a,Q,B,D. 

and 

(4.1.7) 
tpv(u] x, n] a'(u; x, n)p(u; x, n) 

K 

k=0 
(\k(u;x,n)l Uk(u;x,n)J) 

6 Ô(IC),0 <T,0, £',£>.) M2(R). 

Before starting the proof, let us comment on the meaning of the proposition. If we 

set 

(4.1.8) T = 
fi 0 

0 - 1 
, J' 

0 1 

1 0 

and decompose the matrix ft in (4.1.5) as 

(4.1.9) il(u;x,n) = bi(w,x,n)I + b2(u]x,n)J + b[(u;x,n)If + b2{u;x,n)J' 

where 61,6^,62,62 are scalar symbols of order 1, formula (4.1.7) asserts that using 

p, we may transform in a matrix for which b[, b'2 are of order zero. Moreover, (i) 

means that Opx[p(n; •)] will be a linear symplectic transformation (up to a remainder 

of order —1). 
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Let us define some notation. Since Ào(n) = vm2 + n2 is invertible, we may set 

(4.1.10) 

lk(u;x,n) : A0(n) 1Xk(u',x,n). * = 1, qs qs- 1 

mtfn: x, n) X0(n) 1/j>k(u;x,n) fc = 1, qs - 1 

lK(w,x,n) w,x,nw,x,n w,x,n 

l'(u\ x, n) w,x,nw,x,n [u;x,n) 

mK(u;x,n) w,x,nw,x,n (u; x, n) 

xa'(u\x,n) w,x,nw,x,n u: x, n 

l(u: x, n) 
K 

k=l 

lk(u;x,n) 

m(u; x, n) 
K 

k=l 
mk{u;x,n). 

By construction, Z,m belong to AdkF0(a,0, B,D.), Z',m' belong to Ad kF0(cr,0,B,D.) 

Moreover, I = Iv, m = mv, V = 7'v, m/ = m'v and I - /v, m + mv, (resp.' V - /'v, m' -

m'v) are in S ^ V , 0, B, 23.) (resp. S ^ \ o , 0, B, D.)) by (4.1.1), (4.1.2), (4.1.3) 

According to (4.1.5), (4.1.9) and (4.1.10), we may write 

(4.1.11) a!{u\x,n) = \o(n)[(l+l(u;x,n))I+m(u;x,n)J+l\u;x,n)If+m'(u;x,n)J']. 

Set 

(4.1.12) K 
1 

2 

1 i 

1 - * 
R-1 = t^KJ 

1 

2 

1 1 

—2 2 

and define 

(4.1.13) S(u: x, n) KJa'K'1 = iA< 
1 + / + im V + im' 

w,x,nw,x,nwn - ( l + /) + itn 

The proof of proposition 4.1.1 will rely on the diagonalization of S(u;x,n). 

Lemma 4.1.2. — There is a constant B', depending on B and on the quantities 

W°^?0(a,0,£,£>.;/), OT°;*jO(a,0, £,£>.;/ ' ) , ^ 0 ( c r , 0 , B , i 3 . ; m ' ) and there are sym­

bols \K,/JLK G 0(cr, 0, JB', D.), satisfying conditions (4.1.6), and a matrix of symbols 

q e S°(f)0{a, 0, B', D.) <8> ^fe(R), satisfying 

(4.1.14 
K^q^K K~lqK G S -i,i/+i 

w,x,n 
w,x,nw,x,nx,n 

J«2 (R) 

V ( ( / + g)vJ (7w,x,n + g) - Je £ w,x,n 
(«),o 

a,Q,B',D. w,x,n 
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such that 

(4.1.15) ^Hl + qYJSil + cD-i 
w,x,n xcxc xccx 

0 

0 

w,x,n - i w,x,n 

w,x,nw,x,nw,x,nw,x,nw,x,nw,x,nw,x,nvb 
w,x,nw,x,nw,x,nw,x,nw,x,nw,x,nw,x,n,n 

Proof. — Define 

(4.1.16) S(u; x, n) - 1 -
V2 + m'2 

(1 + Z)2 
- 1. 

Since I belongs to <S^0(<T,0,B,D.) and Z',m' belong to w,x,n5°^0(<7,0,B,D), we may 

consider them as elements of Ad kFQ(a,0,B",D.) and w,x,n0(a,0, B",D.) respec­

tively for any B" > B. If B" is large enough, we may make w,x,n0(cr,0, B", D.\ /), 

W ° ^ o ( a , 0 , £ ^ £>.;/')>w,x,n Ja ,0 , £" ,£) . ; m') arbitrarily small, so that assumptions 

of proposition 2.4.1 will be satisfied with B replaced by B". This proposition implies 

that S G 5(°^0(c7,0, B ' ,D. ) with B' = 2B". Moreover, S = <5V and Ô - Sw belongs to 

5(~*'o+1(cr,0, £ ' , ! ) . ) . The eigenvalues of the matrix 

(4.1.17) 
1 + / + im V + im' 

-(V-im') - ( 1 + I) + im 

are ±(1 + l + S) + im. Define q by 

(4.1.18) (I + q(u;x,n)j 1 -
Z'2 + m'2 

;i + o2( (2 + <5)2 

-1/2 1 

"(1 + 0(2+5) 

l'+im' 
"(1+0(2+5) 

1 

Applying again proposition 2.4.1, we see that q belongs to 5 ^ 0(<r,0, B', D.)<g>M2(R), 

eventually with a new (larger) value of B'. The inverse matrix is 

(4.1.19) (I + q(w,x,ri) - l = *J*(Id f- q(u;x,n))J. 

Moreover since Z'v, m'-m/v, Z-Zv are of order-1 , q-qy G S ^ + V . 0, D.)® 

j%2(R)- Since the eigenvectors of (4.1.17) associated to the eigenvalues (l-\-l)(l+5)+im 

and —(1 + Z)(l + 5) + im are collinear respectively to 

1 

V-im' 
(1 + 0(2+5)-

and 
l'+im' 

(1+0(2+5) 
1 
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(I + Q. diagonalizes (4.1.13), so taking (4.1.19) into account 

(4.1.20) 

*J*(J + q(w,x,n] )JS(u : x, n) (I + q(u]x,n)) 

By (4.1.10) 

w,x,n [(i + 0( i + *) f zm 

0 

0 

•(l + 0(l + *) + *mJ 

:Ao(l + 0(1 + )̂ + ^otn 
K-l 

k=0 

Afc+ &!)(! + <ï) + I 
xcx 

k=l 
Vk+02 

may be written since S Gw,x,n 0(<j,0,B\D.), 6i,62 Gw,x,n S1^0(cr,0,B',£).), and using (i) 

of theorem 2.3.1 as 
K 

k=0 

.Afc)+t( 
K 

k=l 

w,x,n 

with A«,/i« G ^ 0 ( ^ 0 , £',£>.). Since * = <*V> &i = 6^, 62 =w,x,n <J - Jv (resp. 

61—6^,62 + 62) is of order —1 (resp. of order 0), conditions (4.1.6) are satisfied by 

XK,p,K. Since q — qv is of order —1, (4.1.19) and (4.1.20) imply the second relation 

(4.1.14) and (4.1.15). By a direct computation, K~xqK = K~xqK. Since q — qy is of 

order —1, this implies the first relation (4.1.14). The proof is complete. • 

Proof of Proposition 4A.I. — We set 

(4.1.21) qi{u\x,n) K-la(u:x<n)K. a(u: x. n) s1 
s 

[qi(u',x,n) + q± (u]X,n)] 

By the first relation (4.1.14), q - qx belongs to S~^+1(a, 0, D.) <g> M2(M) and by 

construction q is an element of S®^ 0(cr, 0, B, D.) ® M2(№) satisfying q = qy. We set 
p = I + q and show that (i) of proposition 4.1.1 holds. By (4.1.21) and the second 
relation (4.1.12) 

(4.1.221 p(u; x, n) J*XV(1 q(u; x, n))K eS -11/0-1 
(«),0 (a ,0,B, ,D.) M2(R). 

Together with the second relation (4.1.14) and (4.1.12), this implies that 

w,x,n J e S w,x,n 
(«),0 (a,0,B',D.) i M2{R) 

i.e. (i) of proposition 4.1.1 is satisfied. If we use (4.1.22), the definition (4.1.13) of S 
in terms of a' and the second equality (4.1.12), we get that 

* » V p + i*KJ w,x,nw,x,n TS(I + q)}K 

belongs to S ° ^ + V , 0 , £ ' , £ • ) ® M2(M.). Using (4.1.15) and the definition of K, we 

obtain (4.1.7). This concludes the proof of the proposition. • 
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4.2. Symplectic change of coordinates 

Our goal is to define from the symbol p = I + q constructed in proposition 4.1.1 an 

almost symplectic change of variables near the origin in HS(S1] R 2 ) for s large enough. 

Proposition 4.2.1. — Let o > 0, v > 0, B > 0 be given with o — v large enough and 

let D. be the (o + v + 1,1)-conveniently increasing sequence fixed at the beginning of 

section 4-1- Let B' > B be the constant given in the statement of proposition 4-1-1-

There are B" > B', p0 > 0,so > 0 and an element r G w,x,wxn0(<r, 0, B", D.) such that, 

if we set for v G BSQ(p0) 

4.2.1) 0(v) = (Id+ Opv[r(t;;.)])«, 

then ifi is for any s > so a C1 diffeomorphism from a neighborhood Us of 0 in 

HS(S1;M2) to a neighborhood Ws of 0 in the same space, satisfying the equality 

(4.2.2) q(tp(v);x,n) r(v, x, n). 

Moreover, for any v G Us, ifi'iv) extends as an element of £{H~S, H~s). In addition, 

if) is almost symplectic in the following sense: for any a + l > s l > s o + l, there is 

C > 0 such that for any v G Us, tdip(v)Jip(v) — J extends as a bounded linear map 

from ff*-1^1;!*2) to i / ^ S ^ R 2 ) with the bounds 

(4.2.3) fdil)(v)Jdil)(v) J\\£(HA-1,HA) C\MKHs. 

Remark. — The gain of one derivative in (4.2.3) above will be essential when applying 

this proposition to our quasi-linear problem (which loses one derivative). 

Let us first construct r through a fixed point argument. 

Lemma 4.2.2. — Let q G 5 ^ 0(cr, 0, B', D.) 0 J ^ 2 ( R ) be the symbol constructed in 

proposition 4-1-1- There is a constant B" > B' and a symbol r G S?jX 0(cr, 0, B", D.)<S> 

llllv such tha 

(4.2.4) q(v + OpJr(vr)] v\ x, n) r(v; x, n). 

Proof. — Recall that elements of S^0(a, 0, B',D.) are formal series of homogeneous 

terms, so that (4.2.4) is an equality between formal series. Decompose q(v\x,n) = 

n>K Qi V, . . . , V 

i 

x, n) with qi G E ? ; ^ 0(<7,0, lD.) 0 J ^ 2 ( R ) and look for r as 

r{v; x, n] 

x, n 

cvc V, . . . , v, x, nj 

3 
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with r7 df J(AC,j),0 >,0 , £",£>. >.%(R). We shall define 

ç<i(7J;x,n) 

7,0,B, 

g</(v,...,v;a;,n) 

r<7(?j; x, n 

K<j'<j 

rj>(v,...,v;x,n). 

We construct the r / s by induction. We first set rK = qK. By definition of 7,0,B,0(-) we 

have, since ^ > 1 

(4.2.5; 

7,0,B,7,0,B, (7,0,B,,,D.;r№) 7,0,B, 7,0,B,7,0,B,v 
B' 
B" 

m0^ 
7,0,B, 

7 ,0 ,B ' , £>.;</). 

If B" is large enough, we may assume that the right hand side of (4.2.5) is smallei 

than 1. Assume next that rK,..., r3-\ have been constructed such that 

(4.2.6] 7,0,B, [a,0,B",D.;r<j < 1. 

Remark that the term homogeneous of degree j in the left hand side of (4.2.4) depends 

only on rK,... ,7j-_i, so that, equating terms of homogeneous degree j in (4.2.4) is 

equivalent to taking the term homogeneous of degree j in 

q{v + Opx y<j(V'r)]v\x,n) 

We define rj to be this term of degree j . By proposition 2.2.1, we know that 

Vj(ui,... ,Uj', •) is in Y,0^^ Q(a,0, B", D.) ®^2(R) , or equivalently that r<j+i is in 

S ^ 0 ( a , 0 , #",£>.) ®-%(M), and by (2.2.7) 

(4.2.7) (V>0,I/ 
7,0,B, 

<7,0,B",Z>.;r<i+i; 7,0,B, •0,1/ 
L(«),0 

7,0,B,7,0,B,vv 

with a constant C depending only on 7,0,B,0(cr, 0, B", D.\ r<j). The induction assump­

tion (4.2.6) shows that C is independent of j , and using the last inequality in (4.2.5), 

and assuming that B" is taken large enough in function of C, B',7,0,B, 0(cr, 0, B',D.;q), 

we obtain that the left hand side of (4.2.7) is smaller than 1. We have performed the 

induction hypothesis (4.2.6) at step j + 1. This concludes the proof. • 

Proof of proposition 4-2.1. — We define xjj{v) by (4.2.1). Note that this is meaningful 

if v e BSo(po) for some large enough s0 and small enough p0- Actually, if s0 > v + |, 

(i) of proposition 2.1.13 shows that for |H|#s0 small enough and s > SQ 

(4.2.8) \\Opx[r(v;-)\v\\Hs CS\\V\\KHS0\\V\\H^ 

Together with the implicit function theorem, this shows moreover that ifi is a local 

diffeomorphism from a neighborhood of zero in BS(S1;R2) to a neighborhood of zero 

in ^(SS'IR2), for any s > s0. Equality (4.2.2) follows from (4.2.4) and the definition 
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of ip. Let us show that (4.2.3) holds when s > so + 1. By (4.2.1) the differential of tp 
acting on a tangent vector V is given by 

(4.2.9) 
dip(v) • V (Id + Opx[r(V;-)])V •OpJdvr(v;-)-V]v 

(W + Opv[ q(ip(v);-)' V + R(v) • V 

where we used (4.2.2) and defined 

(4.2.10) R(v) • V Ovx[dvr(v;-)-V}v. 

Prom (i) of proposition 2.1.13, we have 

(4.2.11) \\R(v) • V\\H. C\\v\\KH^\\V\\H^\\v\\H.. 

Prom estimate (2.1.46), we deduce 

(4.2.12) \\R(v)-V\\Hs0 C\\v\\"H-.l\\V\ H~S \\V\\HS' 

This implies together with (i) of proposition 2.1.13 that ^'{v) extends as an element 
of £(H~S, H~s) if s > SQ large enough. Moreover, by duality 

(4.2.13) l № ) l £{Hso,HS) C\\v\\"H-.l\\v\\H.. 

Let us compute 

(4.2.14) 

*di/>(v)Jtl>(v) *(M +Op Jq(ib(v): J(Id + Opx J(Id + Opx 

*R(v)J{U Opx[«(^(»);0: 
'(Id + Opx q(TP(v);-)])JR{v) 

tR^JRiv). 

Since (Id + Opx[q(ip(v); •)]) is bounded on any Sobolev space, (4.2.11) and (4.2.13) 

imply that the last three terms in (4.2.14) are bounded operators from J?s_1 to Hs 

(actually from Hs° to Ha) if s > SQ + 1, with operator norm smaller than C||i;||5ys. 

We apply to the first term in the right hand side of (4.2.14) (ii) of theorem 2.3.1, 

proposition 2.3.3 and (ii), (iii) of proposition 3.1.1. This allows us to write, since 

p = I + q 

(4.2.15) 
'(Id+OpJç <«;-)])J(Id + Opx J(Id + Opx 

J(Id + Opx (u;-)Jp(u;-) Op Je(u;-) M(u) 

with e G <S(K)'Q (<T,0, B",D.) ® M2^-) for some v' > v, some new sequence D. and 

M € £°{'^{a,0,B"). By (i) of proposition 4.1.1 and (i) and (iii) of proposition 2.1.13 

(in which we take in (2.1.47) a' — s — | — Ô), we obtain ifso + l < s < < r + l that 

(4.2.15) may be written J + S(u) where S(u) is a bounded operator from Hs~1 to 

Hs, with operator norm bounded from above by C||u||^3. Setting u = ij>(v), we get 

the conclusion of the proposition. 
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We end this section stating a corollary of proposition 4.1.1 and 4.2.1 that will be 
needed in the last chapter. 

Corollary 4.2.3. — Let G'(u) be given by (4.1.4) and let ift be the local diffeomorphism 
constructed in proposition 4-2.1. There are symbols 

(4.2.16) 7,0,B,7,0,B, ßxcK(v;x,n) in S]<0((j,Ü,B",D.) 

for some B" > B, satisfying 

(4.2.17) re — ^«5 Mre — A« 

and there are s0 > 0, po > 0 and a map v —> L(v), defined on BSo(po), C1 on 
a neighborhood of zero in Hs{^l]R?), with values in R, with VL(г¿) G Hs for any 

s G [SQ + 1, a + 1[, satisfying 

[4.2.18] L(u)\\Hs 7,0,B,7,0,B, 

such that for any v G BSQ(po) 

(4.2.19) 
G'Mv)) 

1 

2 

re-l 

k=0 

(Opx[Xk(v;-)I ßk(vr)J]v,v) 

1 

3 
OpJ\K(v;-)I ùJv: -)J\v,v) L(v). 

Moreover, tp satisfies 

(4.2.20) \\dtl>(v)Jtdil>(v) - J\ \£(H*-1IHA) ^\\V\\HS 

for any s G [SQ + 1, a + 1[, any v in an Hs neighborhood of zero. 

Remark. — The above corollary states that if we set u = tp(v) in (4.1.4), the matrix 

valued symbol Q, may be replaced by a new symbol, which is a combination of / , 

with coefficients scalar symbols of order 1. The remainder L(v) has by (4.2.18) i 

gradient belonging to Hs when v is in Hs, while the gradient of the duality bracket! 

in (4.2.19) is only in Hs~x. In that way, we can say that the change of variables y 

diagonalizes the principal part of the Hamiltonian, removing the components of oi 

V and J' in a decomposition of type (4.1.9). 

Proof. By (4.2.1) and (4.2.2) 

(4.2.21) 7,0,B, • Opx[p(^(i;);-)]v 

with p = I + q. We plug (4.2.21) in (4.1.4), which gives using notation (4.1.5) 

(4.2.22) 7,0,B,7,0,B, 0 
2 

(*Opx|p(^(i;);0 |Opx[a'(</>(*>); -)]Opx|pMtO; •)]«,«> 
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By (4.1.7) and the theorems of symbolic calculus (theorem 2.3.1, proposition 2.3.3 
and proposition 3.1.1) we may write 

(4.2.23) 
' O p X ^ ; . ) ] 0pJa'(ti;.)]OpY p(u; •)] 0px| *pv(iz;-W(w;-)p(w;-y 

0px [e(u-r)] + M(u) 

where e(t*; •) G S®^Q(o,0,B",D.) ® M2(№) for some i/ > z/, a > z/ + 2, and some 
new sequence £>., and where M G 7,0,B,^ (<r, 0, B"). Define L(u, v) = (Opx[e(u; -)]v, v) + 

( M v ) . It follows from (2.1.44) and (2.1.48) that dvL(u, v) belongs to £(H~S,R) if 

16, v G ifs and 5 is large enough. The same is true for duL(u, v) by (2.1.46) and (2.1.48). 

Consequently, since we have seen in proposition 4.2.1 that i/)f(v) is in £(H~S, H~s), 

we see that L(v) = L(ilj(y),v) satisfies (4.2.18). We deduce from that that the con­

tribution of e ,M in (4.2.23) to (4.2.22) give the last term in (4.2.19). By (4.1.7), the 

first term in the right hand side of (4.2.23) brings to (4.2.22) a contribution of form 

L(v) (coming from the remainder in (4.1.7)) and the main term 

1 

2 

K 

k=0 
(OpJ\M(v);.)I 7,0,B,7,0,B,7,0,B, 

Note that for any fc = 1 , — 1 

\M(v)7,0,B,;x,n) Afc((/ + Opx r(vr)])v,x,n) 

•• \k(v;x,n] \k(v;x,n) 

with Àfc G7,0,B,7,0,B,0(cr, 0, B", D.) by proposition 2.2.1. Since A«(^>(v); •) is also in such a 

class of symbols by the same proposition, and since similar properties hold true for 

/ifc, we obtain (4.2.19). Finally, property (4.2.20) follows from (4.2.3) and the fact that 

ij)'{v) is invertible from Hs to Hs and from Hs~x to Hs~l for any s G [s0 + 1, cr + 1[ 

with SQ large enough. • 
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CHAPTER 5 

PROOF OF ALMOST GLOBAL EXISTENCE 

The aim of this chapter is to combine the results obtained so far to prove theo­

rem 1.1.1. We shall do that constructing a function ©s, defined on a neighborhood of 

zero in the phase space HS(SX; R2), equivalent to the square of the Hs Sobolev norm, 

and such that @s(u(t, •)) will be uniformly controlled on a long time interval when u 

is a solution to (1.2.9). We shall construct ©s in several steps, using composition by 

(almost) symplectic transformations. 

5.1. Composition with symplectic transformations 

We discuss here several composition formulas. We consider a small neighborhood 

of zero in iiF^^R2), namely Bs(p) for some p > 0 small enough. Let us recall that 

if F : Bs(p) —• R is a C1 function such that for any u € B8(p), dF(u) <E £(H*,R) 

extends as an element of £(H~S,R), we may consider the gradient VF(u) and the 

Hamiltonian vector field Xp(u) as elements of H3(Slm, R2). If we assume moreover that 

u —> Xp(u) is C1 on Bs(p) with values in Hs, we may solve locally the differential 

equation 

(5.1.1) 
$(r, U) Xf(9(T,U)) 

7,0,B,7,0,B, a. 

Let us remark that if F is C2 on Bs(p), then for any r, D$(T, U) which is a priori an 

element of £(HS,HS), extends as an element of £(H~S,H~S). Actually D$ solves 

the ordinary differential equation 

D$(r , U) {DXF){®{T, U))D${T, U) 

7,0,B,7,0,B, Id 

so that we just need to show that DXpyu) = JDVF(u) is a continuous function 

of ^, with values in £{H~S, H~s). Note that the definition of the gradient, namely 
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'S1 7Flu) • Vdx DFlu) • V for any V G C^fS1; R), implies for any W G C ^ S ^ R ) 

ds 
(D(VF(u)) • W) Vdx D2F(u)(W,V) 

D2F{u)(V,W) 

s1 
(D(VF(u)) • V) • Wcto. 

We want to see that the left hand side extends continuously to W G H s and V G Hs. 

This follows from the fact that such an extension holds for the right hand side, as 

D(VF(u)) G £(HS,HS), since we assume that u -* XF(u) is G1 on S8(p). 

If moreover F(0) = 0, dF(0) = 0, for p small enough, the solution of (5.1.1) is 

defined up to time r = 1 and XF(U) = $(l,u) is a canonical transformation from 

Bs(p) to a neighborhood of zero in Hs, satisfying XF(0) = 0. If 0 and G are two 

functions on a neighborhood of zero in i l ^ S ^ R 2 ) , we get for u G Bs(p) for small 

enough p the usual equality 

(5.1.2) »oXF)G}(u) 7,0,B,7,0,B,7,0,B, 

If we assume that G is a C 1 function on 2?s(p) such that, for any k G N* Ad JF • G = 

{ i ^ A d ^ F - G } is also G1 on Bs(p), we have 

sd 

sdsd 
G W , « ) ) (-l)fe(AdfcF-G)($(txcwx ,w)) 

for any A; € N , so that 

(5.1.3) GoXz}(u) 
N 

k=0 

AdkF 

sds 
G(u) 

1 
sdsd 

•l 

o 
[l-r)N(AdN+1F G)(9(-T,v))dT. 

If we have moreover an estimate of type |AdfeF • G\ < Ck\Ak ||u|||fS for some constants 

C > 0, A > 0, then for p small enough, we shall get 

(5.1.4) 7,0,B,7,0,B, 
+oo 

fe=0 

7,0,B, 

kl 
G(u). 

The above formula will apply when F is given by an expression (Opx[aqsw; 16), with 

a symbol of order zero. Nevertheless, we shall have to consider also expressions of that 

form involving symbols of order 1. In that case, VF(u) or XF{u) belong only to Hs_1 

when u G Hs. Consequently, we cannot consider (5.1.1) as an ordinary differential 

equation. To avoid the resolution of (5.1.1) in that case, we shall use instead of (5.1.2) 

a formula of the same type, up to a finite order of homogeneity, and use special 

assumptions on 0 , G , F to be able to write convenient substitute to (5.1.3) 

Recall that we defined in definition 3.3.3 the class7,0,B,No(C) of functions 

on i J ^ S ^ R 2 ) for s0 > v + | + max(C,f),$o > f- By proposition 3.3.4, if 
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*i,*2 G N*, Fi G №{kl)tNo(Q, F2 G Wi£)tNo(0, their Poisson bracket {FUF2} is in 

^'tiei+k*) n0(0 ^or some v' ^ ^ depending only on z/, iVo, and where ( = max(£, ^p) . 

We shall denote by J^7^ ^ (C) the space of functions of form 

(5.1.5) a(Admu,u) + F(u) 

where a € R, F S H (i"n0(0- Proposition 3.3.4 extends to the case when Fi € 

^%,n0(0, F2 € ^ ' ^ ( O (* G N*) and shows that {FltF2} is in ^ ' ^ 0 ( C ) for 
some v' > v. 

From now on, we fix a large integer K. We introduce truncated Poisson brackets. 

Definition 5.1.1. — Let F (resp. G) be an element of M')^n0(0 (resP- ^f((o) n0(0) 

with d G N*, > 0, iV0 G N*. Decompose F and G as sums of homogeneous terms 

and assume that all components of order larger or equal to n vanish, 

(5.1.6) F(u) = 
K-l 

k=l 
Fk(u), G(u) 

K-l 

k=0 

Gk(u). 

We define 

(5.1.7) {F,G}K 
£+£'<K-l 
£>1,*'>0 

{Ft^Gi'}. 

We obtain an element of & 'd^ Nq (£) for some v1 > v. We set by induction 

(5.1.8) 
AdKF • G {F,G}K 

AdjF • G AdKF (AdJ^F) • G. 

We have for some increasing sequence Vj depending only on 1/, NQ and for Q = 

maxi 7,0,B, 

(5.1.9) A d ' F 7,0,B,7,0,B,7,0,B, 

Finally, we define 

(5.1.10) exp[TAdKF] • G 
sds 

7=0 

To 

vvc 
AdKj • F. 

Note that by (5.1.9) and the truncation in definition (5.1.7), the coefficients of Tj 

vanish when j > K. 

Lemma5.1.2. — Let s € N*, N0 € N, 6°(u) = ±(Asmu,Asmu) element of W2{*ffi(0). 

Let G € X'\$%o(0) d= Uv>oM'lfittfo(0) and let H € ^ ' ^ „ ( 0 ) . Assume that G and 
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H have no component homogeneous of order greater than or equal to k. We have the 

equality 

(5.1.11) exp(TAdKH) o 
s 

G}K exp(TAdKtf) S exp(-TAdKH)}K. 

Remark that for fixed the functions in the preceding formula are well defined 

when u G Hs with s large enough: the regularity condition of definition 3.3.3 of the 

class ^'d(j^No((j)i namely 

s > v 
5 

2 " 
max(Cj 

d 

3 
= v 

5 

2 
max(C, 

d + j 
3 

is satisfied for any j = 1,..., k when d = 2s and s is large enough relatively to k, v. 

Proof — Since (5.1.11) is an equality between polynomials in T, we just need to 

check that all T derivatives coincide at T = 0. Note first that 

d 
dT 

{exp(TAdKH).G°s,G}K {exp(TAdKH)AdKH-Gös,G}K 

and that 

d 

dT 
exp(TAdKH dsd exp(-TAdKtf) • G}K] 

exp(TAdKH) [AdKH S exp -TAdKH) • G}K 

8» kdKH • exp(-TAdKH) • G}K] 

exp(TAdKH){AdKH o 
s : 

exp(-TAdKH).G}K 

using the Jacobi identity 

Fi, Fz}, F3] {F2,F3},F1} f{F3,Fi},F2i 0. 

Iterating the above two inequalities, we get for any j € N 

(5.1.12) 

d? 

dTJ 
exp(TAdKiî s 

s 
Gì, {exp(TAdKH)AdK H • G», G}K 

d> 
7,0,B, 

exp(TAdKH Jsi exp(-TAdKif) • G}K] 

exp(TAdRH) AdjH S exp(-TAdKH) - G}K. 

This shows that the two quantities (5.1.12) coincide at T = 0 and concludes the 

proof. 

To write a formula similar to (5.1.2), we introduce if 0°, G, H are as in the state­

ment of the preceding lemma, the notations 

(5.1.13) 
>2 XKH(U) 

def 
exp(Ad^if) »2 7,0,B, 

G (x&)_1(«) : exp(-AdKH) • G(u) 
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so that (5.1.11) may be written at T = 1 

(5.1.14) o 
s 

XKh,G}K •2 • G o O Ä ) - 1 } « » ^ . 

We shall deduce theorem 1.1.1 from the following result. 

Theorem 5.1.3. — There is a large enough s0 G N and N0 G N and for any s > s0 

there are po > 0 and 

• AC1 map F : Bs(p0) —> R, suc/i £fta£ u —> VF(u) is C1 from Bs(p0) to 

JT^S^R2) and F(0) = 0,&F(0) = 0,<9VF(0) = 0, 

• 4̂ diffeomorphism tp from Bs(po) to a neighborhood of 0 in f P ^ j R 2 ) with 

m = o, 
An element H G ^'(iyv0(0)> 

such that if we set 

(5.1.15) xcv '2 
xcvxcv 0-1 X F ( U ) , 

an?/ solution u of (1.2.9) satisfies, as long as it exists and stays in Bs(po), 

(5.1.16) 
d 
dt 

7,0,B,7,B, C I N * , « 2 

with a uniform constant C > 0. 

Remark. — In (5.1.15) note that we use on the one hand the notation xf to denote 

the canonical transformation denned after (5.1.1) from a C1 map on Hs such that 

u —* VF(u) is also a C1 map from Hs to and on the other hand the notation Xh 

defined by (5.1.13). We could not give a meaning to xh as a map from a neighborhood 

of zero in Hs to Hs solving an equation of form (5.1.1). Nevertheless, notation (5.1.13) 

is perfectly meaningful since it involves only elements of classes M'^) n0 W f°r which 

the stability property with gain of one derivative of proposition 3.3.4 (i) holds. 

Let us show that theorem 5.1.3 implies theorem 1.1.1. It is enough to show that 

if the solution of (1.2.9) exists over some interval [0,T] and satisfies for t G [0,T], 

^(£, •) G Bs(po) with a large enough s, then for any t G [0,T] 

(5.1.17) \\u(t,.)\\2HS <C IM0,-) I IH. 
t 

(j 

| « (r , . ) | |^dr 

with a uniform C > 0. Actually, since \\u(0, -)\\hs < Ae for some A > 0, a standard 

continuation argument allows one to deduce from (5.1.17) that there is c > 0 and 

A! > A such that if T < ce~K and e > 0 is small enough, \\u(t, -)\\hs < A'e for any 

t G [0,T]. This allows one to extend the solution up to a time of magnitude ce~K. 

Let us deduce (5.1.17) from (5.1.16). By this inequality, as long as u(t, •) stays in 

Bs(po) and t G [0,T], 

)s(u(t,-))<es(u(0,.) c 
t 

o 
7,0,B,7,0,B,7,0,B, 
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We just have to find some K > 0 such that for any u € Bs(p0) 

(5.1.18) K-l\\u\\\s es(u)<K\\u\\2Hs. 

Since xf and tp are C1 local diffeomorphisms sending 0 to 0, it is enough to get such 

an estimate for G° o XH- BY (5.1.13), (5.1.10) and (5.1.9), 0° o XH ~ e ° belongs to 

^ ' ( i j ^ C C c ) - Definition 3.3.3 of that space and proposition 2.1.13 (in the special case 

of polynomial symbols) show that 

sd XH S. («)l < C\\u\\3H. 

if s is large enough and u G Bs(p0). Estimate (5.1.18) follows from that. 

We have reduced ourselves to the proof of theorem 5.1.3. In the following three 

sections we shall construct successively maps F,il>,H involved in (5.1.15). 

5.2. First reduction: elimination of low degree non diagonal terms 

Let u be a solution of (1.2.9), smooth enough and defined on some interval [0,T1. 

Then 

(5.2.1) 

d 

dt 
7,0,B, xc 

7« ut.)) XG(u(t,-)) 

s 
G}(u(t,-)) 

q 
q 

XH 7,0,B,7,0,B,7,0,B, [XF(u(t,-))) 

using (5.1.15) and (5.1.2). The aim of this section is to construct F in order to simplify 

G o Xp1 up to a given degree of homogeneity K. By proposition 3.5.1 we may write, 

using notation (3.3.1), 

(5.2.2) 
G(u) E 

2 
(AmU, Ut 

1 
4 

Opx[e(wr)]Iu,u 

1 
4 

'Opv[e(u; ')]I'u,u) 
1 

m 
(M(u)u,u) 

~1 v ~1'z/ 
where e G S ^ o ( 0 ) , M G -£(i)(0) for some v > 0, e verifying ev = e. We want to 

choose F in such a way that G o ^ 1 will be given by a similar expression where all 

contributions in V (or J') up to order K + 1 will be removed. In that way, G o ^ 1 will 

be the sum of ^(Amu,u), of an element of M'1^ Q(0) for some new value of i/, and of 

contributions vanishing at least at order « + 2 at zero. We shall first compute G o ^ 1 

for any given F with a convenient structure and then, in a second step, choose F in 

order to eliminate all bad terms in the expansion brought by the first step. Recall 

that we denote by Bs{p) the open ball of center 0, radius p > 0 in i f ^ S ^ R 2 ) . 

Proposition 5.2.1. — One may find v > 0, symbols a,f3 G 5 ^ 0 ( 0 ) satisfying av = a, 

/5V = ß, an element G G № (\) o(0)> a ^ar9e enough number SQ > 0 and, for any 
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a > so, a constant B>0, a(v-\-o + l, 1)-conveniently increasing sequence D., an 
element gK G S^0(osd,0,B,D.) ® Jfe(R) verifying g^ = gK, a C1 function u —• L(u) 
defined on BSo(p) for some po > 0, satisfying for any s G [so,o[ 

(5.2.3) 
X(ti)€ JÎ^S^R2) if u G Bs (p) for a small enough p > 0 

L(u)\\h' 7,0,B,7,0,B,7,0,B, 

such that if we set 

(5.2.4) F(v) <Opy [<*(«;•)/ ß(u;-)J']u,u) 

we have 

(5.2.5) GoX-l(u) 1 
2 7,0,B, G'(ti) 7,0,B,7,0,B,7,0,B, г¿, u) L(u) 

Let us note that the map F defined by (5.2.4) satisfies VF(w) G Hs if u G Hs, 

s G [SOJ0"[ i.e. that dF(u) extends as an element of £(H~S,R). This follows from (i) 

and (ii) of proposition 2.1.13 if SQ is large enough (see (2.1.44) and (2.1.46)). Moreover, 

since F is polynomial in u, these estimates show that u —•> VF(^ ) and u —> X p ( ^ ) 

are C1 maps from i P ^ - R 2 ) to fl^S^R2). We may thus consider the flow $(r,w) 

of (5.1.1), and for u G #s(p) with p small enough, define 

(5.2.6) 7,0,B,cv = *(l,tx), XFHW) *( - l , t i ) . 

As mentioned before the statement of the proposition, the first step of the proof will 

be the computation of G o x"1 for any given F of form (5.2.4). 

Lemma 5.2.2. — Let vo > 0, a, ¡3 G S^°o(0) be given with av = a, fiy = /3. One may 

find so > 0, pSo > 0, v > vo and for any a > s0 a constant B > 0 and a [y + 1 + a, 1)-

conveniently increasing sequence D., a symbol gK G S^0(o,0,B,D.) ^ ^ ( M ) , and 

a C1 function u —> L(ii) defined on BsApSn), satisfying (5.2.3) such that 

(5.2.7) G ox*1 M 
K-l 

k=0 

AdkF 

kl 
G+ (OuJâK(u:-)]u,u) L(u). 

Proof — Let us show first that we may find so > 0, po > 0, v > vo and for any o > so 

a constant B' > 0, a (o + v + 1, D-conveniently increasing sequence D., a constant 

C > 0 and 

A sequence (gk)k>n of elements of S}XQ(a,0,D.) 0 J ^ ( R ) satisfying 

m1^ /7,0,^,^.;^)7,0,B,: 1, 

• A sequence {Lk)k>K of C -functions on BSo{pSo), such that for any s G [So>0"l 

there is ps > 0, Cs > 0 so that for any u G Bs(ps), VLfc(u) G if* and ||VZ/fc(^)||i/s < 
7,0,B,7,0,B,7,0,B, 
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such that for any K > K 

(5.2.8) 

GoX-\u)--
K-l 

k=0 

AdkF 
kl 

G(u) 
K 

vbvb 

1 
kl [OpY[gk{u;-)]u,u] 

IS I 1 

vbvb 

1 
AdkFvbv Lk(u) 

x 

xwc 

AdkF 

xcxc 
(OpvkK+i(^;-)]^,^)L vbvb (-T,u)dr. 

We prove (5.2.8) by induction on K. By (5.1.3) with N = K — 1 

(5.2.9) GoX-F\u) 
K-l 

k=0 

kdkF 

k\ 
G(u) 

b 

'o 

(1 - rY~l 
AdkFvb 

A d * F - G ) ( * ( - T , u))dr. 

The definition (5.2.4) of F shows that F belongs to the class ^ ^ ° 0 ( 0 ) of defini­

tion 3.3.3, and G G <#(iw)(0) if uo is large enough. Proposition 3.3.4 (ii) implies 

that 
AdKF • G e J# («),o ( i / 3 ) c t f ; U o ) 

for some v > uo i.e. we may write 

(5.2.10) AdKF • G = (Opx[gK(u;-)]u,u) + (MK(u)u,u) 

with gK G S{£}Q(0)®M2(№), MK G £{k)(0). Let L^u) = (MK(u)u,u). By estimates 

(2.1.47) and (2.1.48) of proposition 2.1.13, if 5 > s0 large enough, VLlK{u) belongs to 

i ^ S ^ M 2 ) when u G ̂ ( S ^ R 2 ) , and 

L1K(u)\\H.<C\\u\\^1. 

If we set LK(u) — /^(1 — r)K~1{MK(')-, •)($(—r, u))dr, LK verifies similar properties 

since D$(—r, u) G £(H~S, H~s) as seen at the beginning of section 5.1. Let a > SQ 

and choose a (z/ + l + cr, 1)-conveniently increasing sequence D. and a positive constant 

B' such that gK G S^0(a,Q,B\D.) ^ > ^ 2 W , € S(°^0(a, 0, £>.) with 

(5.2.11) v .0,1/ 
(i),o l(a,0,B,,D.;aJ/ ^ ) < l , ^ 0 ( a , 0 d k F A d k F A d k F 1. 

(Note that taking B' large enough, we may always make the left hand side of the 

preceding inequalities as small as we want for given a,/3,gK). It follows from (5.2.9), 

(5.2.10) and the definition of LK that (5.2.8) with K = K — 1 holds true. 

Let us show that (5.2.8) at rank K implies (5.2.8) at rank K + 1. Integrating by 

parts the integral in (5.2.8), we get 

(5.2.12) 

1 
AdkFAdkF OpY[gK+i(ur)]u,u) 

1 

0 

( 1 - r ) ^ 1 A d k F 

( * + 1)! 
FAOpJgK+i(w'r)}w,wY AdkFAdkFAkF 
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Taking definition (5.2.4) of F into account, we may apply to the Poisson bracket in 
the above integral proposition 3.3.1. This allows us to write this bracket as 

(5.2.13) (Opx[gK+2(wr)]w,w) + (Opx[eK+2(^; -)]w, w) + {MK+2{w)w, w) 

where Qk+2 € &Ik+2) o(a' >̂ ̂ > -^-) ^ ^ W > and where for some v > v and some 
new sequence D. (independents of the induction step) 

eK+2 e ^(x+2) 0(a,0,B',D.) M2(R),MK+2 e 7,0,B,7,0,B,7,0,B, 

Moreover, by (3.3.4), (5.2.11) and the induction hypothesis 

Jl(K+2 (M,7,0,B,ww№+2 1 

and by (3.3.5) 

Jl(K+2) [*,0,B',D.;eK+2) Co 

Jl(K+2) (<t,0,B';MKSDSSD+2)<CO. 

The first term in (5.2.13) gives, when plugged in the integral (5.2.12), the last term 
in (5.2.8), at order K + 1. Set 

(5.2.14) 7,0,B,7,0,B, Opsdsd[e/r+2(u;-)Ku) (MK+2{u)u,u). 

By estimates (2.1.44), (2.1.46), (2.1.47), (2.1.48) of proposition 2.1.13, L^+2 is a C1 
function of u on Bs(ps) (for ps > 0 independent of i f ) such that u VL^+2(u) is 
in fl^S1;]»2) with an estimate 

7Li(u)\\Hs C(s)(CB')K : * + l)!Nl£+3. 

If we set 

LK+2(u) 
r1 

o 
;i-r)^+1L],+2($(-r)M))dr 

it obeys similar estimates, since we have seen after formula (5.1.1) that D&(—r, u) 

extends as an element of £(H~S, H~s) so that V(L^+2($(—r, u))) is in Hs. We have 

proved (5.2.8) at order K + 1. 

To finish the proof of lemma 5.2.2, we still have to make K go to +oo in (5.2.8). 

We just need to prove that for some B > B' 

• There is a symbol gK G S}£0(cr, 0, By D.) <g> M2(R) such that 

(5.2.15) aJu\x*n) 
4-oo 

k=K 

0 

sd 
gk(u;x,n), 

' The function L(u) 7,0,B, 
ik = K. 

1 
(fe-1) 

Lfc^) satisfies (5.2.3), 

The integral 

(5.2.16) 
xc 

cv 

7,0,B,vxcv 

7,0,B, ! ° p x [ ^ + i ( ^ ; - y 7,0,B,7,0,B,7,0,B,7,0,B, 
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goes to zero when K goes to +00 and u remains in BSo(pSQ). 
Let us prove (5.2.15). Since gk G7,0,B, Q(a, 0, B', D.) 0 ^ ( 1 ) , we decompose using 

definition 2.1.5 
gk(u;x,n) 

j>k 
gkJ(u,...,u;xJn) 

with 9j7,0,B,7,0,B,e Xo^sdsB'D.) • J«2(R). Then gK\ u: x. n j>K9K,j(qsqu,-'-,u;x,n) 
with 

gKAui,...,u3\x,ri) 
3 

k=K 

1 
k\ gk1j(ui,...,Uj',x,n) 

We need to check estimates (2.1.20) and (2.1.21) i.e. we have to evaluate 

3 

k=K 

(fc + j - l ) ! 
(j +1)!*! 

22j 

7,0,B, 
22̂  

7,0,B,7,0,B, 

J + 1)! 

We thus obtain for gKj estimates of type (2.1.20), (2.1.21) with a new constant B = 

AB'. 
We must next verify that L(u) satisfies (5.2.3). This follows from the bounds 

||VLfc(tz)||Hs < CsC^fclll^H^1 satisfied by each Lk if \\U\\H* < Ps small enough. 
Finally, by (i) of proposition 2.1.13, 

7,0,B,7,0,B, [u\')]u,u)\ C{CB)K+1 HKHX*K\ 

which shows that (5.2.16) goes to zero when K goes to infinity if |M|#s0 < pSo small 
enough. This concludes the proof of the lemma. • 

Proof of proposition 5.2.1. — The last two terms in (5.2.7) contribute to the last two 
terms in (5.2.5), for any F of form (5.2.4). We have to show that we may find such a 
F so that the sum in the right hand side of (5.2.7) may be written |(Amii,iz) +G/(,u) 
with G'(u) G tâ'^0(0) for some 1/, up to remainders contributing to the last two 
terms in (5.2.5). Let us write 

(5.2.17) 
xcw 

k=0 

Adkt 
k\ 

xc G + \RG0}+{F,G7,0,B,-G0 
K-l 

k=2 

AdkF 
kl 

G 

with GQ(U) = \(krnu,u). Since G — GQ vanishes at least at order three at zero, the 
contribution to {F, G — Go} homogeneous of degree k depends only on Fk>, kf < k. 
The same is true for the last sum in (5.2.17). Consequently the expression may be 
written 

(5.2.18) Go 
K-l 

k=l 
[Gk + {Fk,G0} 7,0,B, 

k>n 
[Gk + Hk] 

where the last sum is finite and where Hk is homogeneous of degree k + 2 and 
may be expressed using iterated brackets of Fw, k' < k, and Gk>. Consequently, 
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by proposition 3.3.4 (ii), Hk belongs to ^(^°0(0) f°r some vf0. Moreover, the expres­

sion y jk->K. [Gk + HH] belongs to ^ ( ^ 0 ( 0 ) , so may be incorporated to the last two 

terms in (5.2.5), reasoning as in the study of (5.2.14), if the constants v, B of the 

statement of the proposition are taken large enough. For 1 < k < K — 1 write, using 

decomposition (4.1.9) of any matrix 

Gk + Hk = G'k + Gk 

with G'k G ^'(M°O(0) homogeneous of degree k + 2 and 

(5.2.19) G'l{u) 
1 

2 
Opx[akr + ß,Jf}u,u] 

where ak,(3k G S^°0(0) satisfy ak = &k,Pk = Pk and are homogeneous of degree k. 

To reduce expression (5.2.18) to (5.2.5), we have to construct Fk so that {Fk, Go}+Gk 

may be written as a term (Mk(u)uyu) with Mk G £7,0,B,^ (0) (for a new value of v'0)y 

that may be incorporated to G'k. In other words, we are left with proving the following 

lemma: 

Lemma5.2.3. — Let Q,k,@_k be as above. There are ak,/3k G S^°Q2(0), satisfying 

wxx 7,0,B, : ßk and Mk G £(k) (0) so that 

(5.2.20) 
{(Opx[ak(u;.)r -ßk{ui.)J']u,u),G0} 

(Opx[ak(wr)ï ßk(u] -)J']u, u) + (Mk(u)u, u). 

Proof. — In the proof, we omit the subscripts k in a, /3, OJ, /? , M. Let us take complex 

coordinates (w,w) related to the real coordinates 
sd 

sds 
of u G Hs(ßl',M?) through 

(5.2.21) 
w 

w 
K 

qsq 

[u2 

*2 
2 

1 i 

i -i 

Ui 

_u2] 

Since Opx[a(u; •)] = Opx[a(ii; •)], Opx[/?(^; •)] = Opx[/?(u; •)] we have, denoting 

(5.2.22) 7,0,B,7,0,B, • a K-1 
w 

w 
iß K-1 

w 

w 

the equality 

(5.2.23) 
1 

9 
Opx[a(wr)r- ß(u'r)J']u,u) : Re 

's1 
Opx\j(w,w', -)}w]wdx. 

Since 

Go(u) 
1 

2' 
7,0,B,7,0,B, 

Js1 
(Amw)wdx 
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we look for a symbol 7(u?, w: •) in CS 0,i/£+2 
(fc),o 

(0) such that 

5.2.24 
's1 

Opx[y(w,w; -)]w)wdx,Go 
s1 

0px[7(iu,u;; -)]iy)ii;d£ 

equals some remainder. Let us decompose 

7(w,w;-) 
k 

7,0,B, 

7,0,B, 7,0,B,7,0,B, 

e 

w.... ,w 

k-e 

with 7 7,0,B,7,0,B,B, We look for 7 as 

(5.2.25) 7,0,B,7,0,B, 
k 

e=o 
it w,... ,w 

e 

w,...,w; 

k-e 

with 7̂  G CE^°0+2(0). Using expression (1.2.14) for the Poisson bracket in complex 

coordinates, we may write the first term in (5.2.24) as 

(5.2.26) 
k 

c 

o—r\ ' S1 
7,0,B,7,0,B, 7,0,B,7,0,B, 

e 

7,0,B,7,0,B, 

k-e 

w - wdx 

where I^(-) is defined by (3.4.12) with UJQ = 1, wi = • • • = wi = — l,ue+i = • • • = 

ojk+i = 1. By (i) of proposition 3.4.4, we may find 7̂  G CS^°0+2(0) and Me G 

c i ^ ° + 2 ( 0 ) such that (5.2.26) equals 

k 

e=o 'S1 

7,0,B, in ?/;.?/; in:- W • wdx 
k 

e=o 's1 
Me(w, ...,w,w,...,w) v]wdx. 

If we define 7 by (5.2.25), we get that (5.2.24) equals J M(w,w)w • wdx with 

M(w,w) 
k 

e=o 

M Aw, ...,w,w,...,w). 

Let us define 

a(u',x,n) 
1 

2 1 
y(Ku: x, n) - ^(Ku; x, —n 

ß(u',x,n) 1 
2i 

[liKu] x, n) -y(Ku',x,-n)] 

We obtain elements of S^°Q+2(0) satisfying av = a,/3v = /3 such that 

Re 
'si 

7,0,B,7,0,B,7,0,B, wdx 
1 

2 
OpY[aJ' + /?J>7,0,B,,u) 
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Taking the real part of (5 .2 .24 ) and using (5 .2 .23 ) we have proved 

1 

2 
[OpJa(u;-)T •P(u-r)J']u,u),G0} 1 

s 
Opx\a(ui-)r + p(u;.)J']u,u) 

hRe G§i t(M(Ku)w)wdx. 

Writing the last term as (M(u)u, u) for some M G 7,0,B,£{k) ( 0 ) we obtain ( 5 . 2 . 2 0 ) . This 

concludes the proof. • 

5.3. Second reduction: elimination of higher order non diagonal part 

The construction of F performed in section 5.1 allowed us by ( 5 . 2 . 1 ) and proposi­

tion 5.2.1 to write 

( 5 . 3 . 1 ) 
d 

dt 
7,0,B, 7,0,B,7,0,B,7,0,B,7,0,B, <XF(u(t,-))) 

with 

( 5 . 3 . 2 ) GoX-\u) = Go(u) + G!(u) (Opx[gK(u;-)]u,u) +L(u) 

where Gf G7,0,B,0(0), and is the sum of homogeneous terms of order & = 1 , . . . , K — 1, 

gK G Sfy o(cr,0,B,D.) ®M2(R) and L satisfies ( 5 . 2 . 3 ) . The goal of this section is to 

choose ip in ( 5 . 3 . 1 ) in order to eliminate the non diagonal components of gK i.e. those 

along I' and J'. In other words, we want to do with gK what we did in the preceding 

section for components of lower degree of homogeneity, except that we do not want to 

get as remainders symbols of order one, homogeneous of degree n + 1, but a symbol 

of order zero, homogeneous of degree K. 

By definition of 7,0,B,7,0,B,(0), we may find X(u; •), p{u\ •) in7,0,B,Q(0) satisfying Av = A, 
~ i , i / 

jiy = fi and M G £M) ( 0 ) such that 

5.3 .3) G'(ti) ̂  
1 
2 

(Ox>^(X(u: + a(u: •) J)u, u) 
1 

2 
(M(u)u,u). 

Note that in the duality bracket, we may always replace OpX(A7 + fiJ) by 

1 

2 
OpJXI + aJ) -'Opx(AJ + /iJ)] 

so that, by proposition 2.3.3, and up to a modification of v and M , we may as­

sume that Av — A,/iv + ¡1 belong to S ^ O ( 0 ) . In the same way, we may in ( 5 . 3 . 2 ) 

replace gK by a symbol7,0,B,7,0,B,G S^o(a,0,B,D.) <g> M2(M), satisfying fQv - 1 Î G 

5^Q1(CT, 0 , 5 , JD.) <S> M2(R) (for a new value of v,D.), up to a modification of L 

in ( 5 . 3 . 2 ) . Decomposing A , / / , M as sums of homogeneous contributions Xk,pk,Mk, 

k = 1 , . . . , K — 1 we write 

(5 .3 .4 ) G0(«) + G'(«) (Opx[ffK(u; •)]«»«) : G'{u) + G'{u) 
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102 CHAPTER 5. PROOF OF ALMOST GLOBAL EXISTENCE 

with 

G'(u) 
1 

2 

sds 

k=0 

(OpJ\k(u;.)l /j,k(u;-)J)u,u) 
1 

2 
Opx[Sl(u;-)]u,u) 

(5.3.5) 

G'(u) 
1 

2 

sdsd 

dfdf 
(Mk(u)u,u) 

and conditions (4.1.1), (4.1.2), (4.1.3) are satisfied. Consider Y the local diffeomor-

phism constructed in proposition 4.2.1, and let us apply corollary 4.2.3. We write the 

right hand side of (5.3.1) evaluated at w = XF(U), according to (5.3.2), (5.3.4), (5.3.5) 

(5.3.6) 

7,0,B,7,0,B, V>- \ (G ' + G') éoé }(w) 7,0,B,7,0,B, rp-\L}(w) 

= d [ e ° o X & ] ( V r > ) ) 
7,0,B,7,0,B,v7,0,B, _ 1 M l(G' + G')oTp}(1p-\w)] 

7,0,B,7,0,B,7,0,B,7,0,B, dtp~1(w)oJ -VL{w) 

By (4.2.20), J = di/>(v)J*(0V(v)) + Ri(v) where 7,0,B,7,0,B ,is a map sending H*'1 to 

Hs, with norm 0(||t; | |^s). Plugging this into the first term in the right hand side of 

(5.3.6), we get setting R^v) = d V " 1 ^ ) ) ^ ! W W ) - 1 ^ ) ) 

(5.3.7) 
>°oX£) , (G ' + G') V > } « > - » ) 

sds 7,0,B,7,0,B,7,0,B,v for»; 7,0,B,7,0,B,7,0,B,7,0,B, 

By assumption, 0° e7,0,B,7,0,B,̂ (O), i7 6 7̂,0,B,"'(i)°jvo(0) for some i/0 > 0, some 

N0 > 0. Consequently (5.1.13), (5.1.10), (5.1.9) imply that 9° o Xh wil1 belong 

to ^ ' ( o T i o ^ ^ 2 ^ 1 ) c ^ ' ( ^ ^ ( f ) (for a new value v'o of *b)- By lemma 3.3.7 

d[@°s ° XH\ belongs to £(HS,R) and V[(G' + G') o i/>] belongs to Jffs_1(S1; R2). Since 

Ri gains one derivative, we see that the last term in (5.3.7) belongs to H" (S1 iR2) 

and has /F-norm 0(||u;| |j£2). A similar property holds for the last term in (5.3.6), 

so that (5.3.1) may be written 

(5.3.8) 

d 

dt 
7,0,B,7,0,B, )0soXH,(G' + G'] Mt-HxFMt,-)))) 

-0(\\u(t,-)\\iï2) 

when u remains in some small ball Bs(ps). 

We express in the above formula Gf o ip using (4.2.19). Moreover 

G' O ll){v) : 
1 

2 

K-l 

k=l 

'Mk(rl>(v))i/>(v),il>(v)) 

By definition $(v) = i[>(v) - v satisfies ||$(v)ll#a < CIMI j j t1 and d$(v) extends as 

an element of £(H-S,H~S) with \\d$(v)\\£(H-eiH-a) < C||v||^a. It follows from this 
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5.4. THIRD REDUCTION: ELIMINATION OF LOW DEGREE DIAGONAL TERMS 103 

and from the remark after the proof of lemma 3.3.7 that 

G' o ip(v) -- G'(v) + L(v) 

where L satisfies again (5.2.3). Consequently, we may write the right hand side or 
(5.3.8) as 

>°soX«H,G'1+G'} ^_1(X f («(* , - ) ) : 0(||«(t,.)||&2) 

with 

(5.3.9) 
G'Av) 

1 

2 

xcvx 

fc=U 

(Opx[Afc(t;;-)/ - fJLk{v;')J]v,v) 

1 

cv 
(Opx[XK(vr)I •ÎMK(V\-)J\V,V) 

and 

(5.3.10) &(v) 
1 

2 

K-l 

k=l 
(Mk(v)v,v). 

Moreover, up to a modification of the remainder, we may always assume 

< ( A > ; 0 / + / i > ; - y ) v (\K(v;-)I + p,K(v;>)J 7,0,B,7,0,B,7,0,B,7,0,B,7,0,B, 
7,0,B,7,0,B,7,0,B,7,0,B,7,0,B, 

Summarizing the above results, we may state: 

Proposition 5.3.1. — There are v > 0, so > 0 and for any o > SQ a constant B > 0, 

a (u + o + 1,1)-conveniently increasing sequence D., elements Afc(v;-), iik{v\') in 

5 ^ 0 ( 0 ) , k = 1 , . . . ,« — 1, \K, fiK in S^0(a,Q,B,D.) satisfying conditions (4.1.1), 

(4.L2), (4.2.17) and 

(5.3.11) \K(u;x,n) - \y(u;x,n),p,K(u;x,n) + p,y(u;x,n) G 5°^ ̂ (cr, 0, B, £>.), 

such that for any s G [so, CJ[ there is a local diffeomorphism defined on a neighborhood 

of zero Bs(ps) in Hs(§1;№2) satisfying the following: For any H G &\Ï)°no(0) 

(5.3.12) fes(u(t, •)) = { 6 ° o x«H, G[ + G'XV-1 o XF(u(t, •))) + 0(\\u(t, -)||£t2) 

as long as u(t, •) exists and stays in a small enough neighborhood of zero in Hs. 

5.4. Third reduction: elimination of low degree diagonal terms 

This last section will be devoted to the proof of the following: 

Proposition 5.4.1. — Let G[, G' be given respectively by (5.3.9), (5.3.10). Set 

(5.4.1) <5i(u) 
1 

2 

K-l 

k=0 

[Opx[\k(v,-)l ltk(v;-)J]v,v). 
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There are v0 > 0, N0 G R+, s0 > 0 and H G №(\\°N (0) such that 

(5.4.2) Js 7,0,B, 7,0,B,7,0,B, = 0 

for any ve H8(S1\R2),s> s0. 

Before starting the proof, let us make some preparations. Recall that the function 
sd 
sd belongs to the space $C'(q\ o(0) defined by (5.1.5). Let us prove: 

Lemma5.4.2. — Let H G & $°tNo(0)' Let v G M+,s0 > 0,B > 0,D. be as in the 
statement of proposition 5.3.1. Then for any s G [SQ, O[ 

(5.4.3; 7,0,B,7,0,B,7,0,B, "XJu:-)I -\- uH (u: -)J]UiU)} •o(\\u\№2: 

Proof. — We note first that if we are given di,d2 G W ,k2 G N*,z/ > 0,0 > v + 
ai+Q2  

3 2N0 + 8 and A2)M2 in S%%N (a,0,B,D.), M2 € £^X(<T,0,B), satisfying 

À2 — A2, ¿¿2 ~ = ¿¿9 the bracket 

(5.4.4) 
x 

V2 
<A>,u>, 

1 

E 
(Opx[\2(u;>)I +p2(u-r)J]u,u} + (M2(u)u,u) 

may be written as 

(5.4.5) 
0 
2 

7,0,B,7,0,B,7,0,B,7,0,B, 7,0,B, 
1 

2 
\M(u)u,u) 

for A,i/ G s j ^ X ' ^ ^ ^ 5 - ) ' M G ^ R + 1 ; ) , ( ^ ° ^ ) » w i t h a new value 1/7 of 17 

(independent of ¿¿1, d2), a new constant JE?, a new sequence D. and £ =7,0,B, . Actually, 

this is a version of lemma 3.3.6, applying when the left half of bracket (3.3.17) is given 

in terms of a symbol vanishing at order 0 at u = 0 instead of some order k\ > 1. 

The only place in the proof of lemma 3.3.6 (and in the proofs of the results used 

to demonstrate it) where the fact that ki > 0 is needed is when applying inequality 

(2.1.16). Actually, this inequality allows one to gain one negative power of f + 1 and 

j " + 1. When studying a bracket of form (5.4.4), we have f — k' = 0, j " > k" = k2l 

and we can gain -pr+i writing in estimates of form (2.1.20), (2.1.25) B" < jjr^-(2By 

i.e. replacing B by B = 2B. This allows one to get an expression of form (5.4.5) for 

(5.4.4). 

We have seen when obtaining (5.3.8) that 6° o XH ^ 7 ,0 ,B ,^ ' \O^N0 ( t ) ̂ or some ô> so 

that function may be written as a multiple of (A2su, u) plus an element of ^l2{^0 (^f) . 

The contribution of the (A2su,u) term to (5.4.3) is an expression of form (5.4.4) 

with di = 2s, (¿2 = 1? and so may be written as (5.4.5), with symbols A,/i G 

S2^NQ(O,C,B,D.) for some v' independent of s, C = 7 , 0 , B , H ^ S M G £2{$IY(<T,0,B). 

The contribution of the component of ©° OXH belonging to ^ ' ( i j ^ C ^ f ) to the Pois­

son bracket (5.4.3) may be treated applying lemma 3.3.6, and gives contributions of 

the same type. 
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5.4. THIRD REDUCTION: ELIMINATION OF LOW DEGREE DIAGONAL TERMS 105 

If s > so large enough, and s < cr, it follows from (2.1.44) and (2.1.47) that (5.4.5) 

is 0 ( |M|#t2) . This is the wanted conclusion. • 

Before proving proposition 5.4.1, let us show that together with the preceding 

lemma it implies theorem 5.1.3. According to proposition 5.3.1, inequality (5.1.16) will 

follow if we prove that H may be chosen so that { 6 ° o G[ + G'}{v) = Ofl|v||£t2). 

By lemma 5.4.2, such a bound holds for { 0 ° o XH,sds G[ — G[}(v). We may thus prove 

that { 6 ° o x&,G?i + G'}(v) = 0 ( |M |£ t2 ) . If H is given by proposition 5.4.1, (5.4.2) 

holds, so that we just have to check that 

(5.4.6) dsfds 7,0,B, & 9°ox&,G'1 + G' o ( I M l £ 2 ) 

The left hand side ol (5.4.6) is made ot those contributions to {<s^ o XH^'I + ^"1 

which are homogeneous of degree k + 2 with k > K according to definition (5.1.7) of 

the truncated bracket. As we have seen in the proof of the preceding lemma, the first 

argument in the above bracket is in ^'(0)%, ( I F ) for some UQ. Moreover, G^-hG7 defines 

an element of ^ ' ( 0 ) 0(0) for some v. By (i) of proposition 3.3.4 (and the extension of 

that result to components of order zero discussed in the proof of lemma 5.4.2), (5.4.6) 

is a finite sum of elements of W ^ i ^ ) for some v' and for k > K. We just have 

to apply (2.1.44), (2.1.47) to get (5.4.6). 

To conclude the proof of our main theorem, we still need to prove proposition 5.4.1. 

Proof of proposition 5.4-1- — We decompose G[ + G' as a sum of homogeneous terms 

(5.4.7) 7,0,B,7,0,B, K— 

k=0 

Qk(v) = Q(v) 

with Qo(v) = |(Amv, v) and for 1 < k < hi — '. 

'5.4.8) QkM 
l 
2 

OvJ\k(v:-)I + uk(v:-)J\ v< v) 
1 

2 
(Mk(v)v,v) 

so that Qk G &fl(k) 0(0) for some v > 0. According to (5.1.14) 

(5.4.9) Ï0 
' s 

xKH,Q}k 0 
S5 

o ( X ^ ) - 1 } . >XH-

We shall construct H G ^']r)°N0(fy for some z/o, so that { B ^ , Q ° {XH) X}K *S ZERO 

This will give the wanted conclusion. By the second relation (5.1.13) and (5.1.10) 

(5.4.10) 7,0,B,7,0,B,7,0,B,7,0,B, 
K-1 

k=\ 

xcx 

7=0 

(-1V 

7,0,B, 
AdKjH • Qk 

(where the j sum is actually finite). We look for H as H = Y11=7,0,B,i with Hi G 

&'le"eNo(0) for some increasing £ = 17,0,B, K — 1, Hi homogeneous of degree L By 

(i) of proposition 3.3.4 

[Hil,{Hi2, {Hin,Qk}} 
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belongs to ^f^£No(0) for some v'e, with £ = £i + • • • + £p + k (we used again that 

^'le),N0(0 c ^'le),No(Q))' Consequently the contribution homogeneous of degree 
1 < k < K — l i n (5.4.10) may be written 

(5.4.11) Qk-{Hk,Qo} + Kk 

where Kk G ̂ ' ( ^ ^ ( O ) for some increasing v'k, 1 <k < n — 1, Kk depending only on 

Hi,..., Hk-i. To solve the equation 

(0° Q o ( x * ) - n 0 

we just need to construct recursively Hk, k = 1,..., K — 1 so that, by (5.4.10), (5.4.11) 

(5.4.12) 7,0,B,7,0,B, Kk {Hk,Qo}) 0. 

By definition of ^ ' ( ^ ^ ( 0 ) , and the fact that Qk,Hk are homogeneous of degree k, 

we may write 

(5.4.13Ï (Qk + Kk)(v] 
1 

2 
'OT>J\k(v:. + uk(v:>)J] v. v) 

1 

2 
(Mfc(ü)u,v) 

with Afe,/xfc € S^^iO) with X% = \k, p,^ = fik, Mk e £¿{(0), \k,nk,Mk being 

homogeneous of degree A:. The proof of proposition 5.4.1 will be complete as soon as 

we shall have solved (5.4.12). This is the aim of next lemma. • 

Lemma 5.4.3. — There is NQ G N and there are symbols \k,pLk G S^kNQ ° ( 0 ) and 
—7,0,B,l,v'k+N0 ~ ~ 

operators Mk G £^ 7,0,B,(0) homogeneous of degree k, with \k = \k,jlk = jlk such 
that 

(5.4.14) 

1 

2 
OpY[\k(v;-)I + iik(v\-)J V, V 

1 
sd (Mk(v)v,v) 

1 

2 
(OpJXk(v;' I + ßk(v]>)J sd • (Mk(v)v,v),Qo} 

Poisson commutes with 7,0,B, 

Proof. — We shall prove lemma 5.4.3 using the same complex coordinates system as 

in section 5.2, namely 

w 

w 
K 

Vl 

V2 

ft 

2 

1 % 

1 -i 

Vi 

V2\ 

We do not write the index k all along the proof. Define 

(5.4.15) j(w, w: x, n sd IC-
sd 

w 
x, n - Ill K-1 

w 

w 
)x,n\ 
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so that, since A = Av, // = \i , 

(5.4.16) 
1 

2 
( O P J A ( v ; . ) / + Mv ; - )JRi /> Re 

s1 
[Opx[j(w,w; -)]w]wdx. 

Decompose 

M(v) : M1(V)I + M2(V)J -Mi(v)r M2(v)Jf 

where MAv).MAv) are operators acting from ^ ( S ^ M ) to itself. We define 

(5.4.17) 

T(w, w) Mi 7,0,B, W 

W 
+ iM2 sds w 

sd 

T(w, w) Mi K 
IL 

W 
%M2 k-1 

w 

w\ 

so that 

(5.4.18) 
1 

2 
(M(v)v,v) Re 

s1 
[r(w, w)w] xcx Re 

xc 
[£(it;, w)w]wdx. 

We shall look for a symbol j(w,w; •) and for operators r(w,w),r(w,w) so that 

(5.4.19) 

Re 
xc 

Op^Mwiwdx 
xc 

\T(w, w)w]wdx 
/s1 

\T(w, w)w]wdx 

JS1 
[OpY(;y)w]wdx -

'S1 
[T(w, w)w]wdx -

'S1 
[f(w,w)w]w,Qo 

Poisson commutes with 0°(w,w) — fsl(A^w)wdx. We decompose 

7,0,B,7,0,B, 
k 

¿=0 
It 7,0,B,7,0,B, 

c 

7,0,B,7,0,B, 

k-e 

T(w,w: -) 
k 

7,0,B, 

cv 7,0,B,7,0,B, 

e 

w,... ,w 

k-e 

E(w,iu; •) 
k-l 

£=-1 
5 (w,...,wi 

e+i 

W VL 

k-l-1 

with j£ G CE^iNo(0), Ti,!^ G c^(fc)(0). When fc is odd or fc is even and I £ §, we 

set 7 " = 7^. When fc is even and £ = | we decompose 

(5.4.20) 7,0,B,7,0,B,7,0,B,7,0,B, yï(wu...,wkdf\') yif(wlì...ìwk;-) 
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according to (3.4.7), (3.4.8). By (3.4.10), (3.4.11) and (1.2.14) 

/s1 
7,0,B, 7,0,B,7,0,B,7,0,B, \w)wdx, 

cv 
[A£w]wdx 

(5.4.21) =i g(n0,...,nfc+icvc) 

s1 
LTlr OpY[7*(IIniw, Unew,Une+1w 7,0,B, 7,0,B, wiwdx 

where denotes the sum over those (no, - - - ,7lfc+i such that there is a bijection 

0:{O, . . . , * } {* + l , . . . ,k + lJ with \ne(i) \ = \nA for j = 0, , ̂  and where 

7,0,B,7,0,B,7,0,B, 
e 

7,0,B, 
;(m2 + n2r 

fc+i 

j=i+i 

(m2 + n2)s. 

By definition of this quantity vanishes on the summation, so that (5.4.21) is 

identically zero, and since we want to find 7 ,F , r such that (5.4.19) is equal to quan­

tities that Poisson commute to 0^, we may in the left hand side of (5.4.19) replace 7 
by 

(5.4.22) 7"(w,w;-) 
k 

e=o 

7^'(w,...,w,w,...,w;-) 

We decompose in the same way 1 ,̂ T_e. When k is odd or when k is even and £ ̂  | we 

set 17 = T^, r£ = r̂ . When k is even and £ = f, we write r* = T't + 17, T£ = rf£ + T" 

with 

7,0,B,7,0,B,7,0,B, 
-n0 

cv 
df v cv cv Wk) lnk + 1 

resp. 

T^(w1,...iwe) ln0L£ 7,0,B, nkWk •rik+i J 

where7,0,B,is the sum for those n o , . . . , rik+i such that there is a bijection 6 : 

{ 0 , . . . , ^ } - > 7 , 0 , B , + (resp. 0 : { 1 , . . . , * + 1 } - » {0,€ + 2, . . . , fc + l } ) 

with \no(j) \ — \rij\ for any j £ {0, ...,£} (resp. j G {1 , . . . , £ + 1}) . As above, 

'§1 

cv w,... ,w. 

e 

IÜ, . . . . it; 

k-e 

w]wdx, cv 
cv 

0 

's1 

cv lu,..., w 

£+1 

,w,.. . ,w) 

k-e-i 

w]wdx, ,0 
s 

0. 
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Consequently we may replace in (5.4.19) T (resp. £) by T" = Y,e=oT" (resP- E" = 
M-l 
7,0,B, Ei')- We have in this way reduced ourselves to finding 7̂ , f^, Te such that 

(5.4.23 's1 
7,0,B,7,0,B, wdx 

si 
\T'Jw]wdx 

s1 
T'twiwdx 

s* 
(Op 7^)w]wcfo • 

s1 
[Tiwiwdx 

^s1 
7,0,B,7,0,B,7,0,B, 

where in these expressions jp,TfI,7^,1^ (resp. £¿,1^) are computed at the argument 

7,0,B,7,0,B, 

cv 

7,0,B,7,0,B, 

k-£ 

(resp. I w,...,w 

€+1 

7,0,B,7,0,B, 

k-£-l 

Let us define L^[Opx(7^)] and i^(ÎV) 

by (3.4.12) with CJ = (o;o, • . . , WJB+i) given by u0 = CJI = • • • = u)t = - 1 , o^+i = • • • = 

7,0,B,7,0,B, and LATp) by (3.4.12) with UJ\ = • • • = u^+i = —1, LUQ = 0^+2 = • • • = 

№+1 = 1. To solve (5.4.23), we remark that since Qo(w,w) = Jsl(Arnw)wdxi we have 
by (1.2.14) 

^s1 
(Op Jit) )w]wdx,Qo cv 

Is 
[^(Opv(7^; )w]wdx 

's1 
[T£w]wdx, Qo • i 

/si 
[Li(Yi)w]wdx 

s1 
[T^wdx^Qo = % 

s1 
[Li (Jii)w\wdx 

so that we need to find 7̂  G C E ( ^ ^ ° ( 0 ) , Ti G c ^ + i V ° ( 0 ) 7 , 0 , B , G c ^ + i V ° ( 0 ) such 

that 

(5.4.24) 
iLilOpJ^t) OpJlT 

iLi{Te) V ,iLATi) Li • 

By (ii) and (iii) of proposition 3.4.4, we may solve the first equation (5.4.24) if we 

assume that m is outside the exceptional subset 9f of the statement of that proposi­

tion. We get a symbol 7̂  if we assume that ÌVQ has been taken larger than 2{N\ + 1). 

To solve the equation involving r^,£^ we use proposition 3.4.5. We set next 

7(iy, !£;;•) 
k 

£=C 
l£ W U 

0 

w w. 

k-£ 

T(w, w) 
k 

£=() 

cv w w 

f. 

w,...,w) 

k-£ 

7,0,B,7,0,B, 
k-l 

£=-1 

cv 
cv 

( w , . . . , w 

£+1 

w,...,w 

k-£-l 
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Let us define 

\(u; x, n) 
1 

z j(Ku] x, n) ^(i î*; x, —n) 

fi(u; x, n) 1 
2i 

[*((Ku\ x, n) 7(ivг¿; x, —n) 

so that 

Re 
s1 

7,0,B,7,0,B,7,0,B, w]wdx 
1 
vb (OPx A / + llJ u, ix) 

'n the same way, if we set 

Mi 
1 

2 
7,0,B, T(Ku) 

M2 1 
2iL 

7,0,B, T(Ku) 

we get 

Re 
s1 

[T(w,w)w] wdx 
1 

2 
(Mi(ti)J M2(u)J)u,u 

Analogously, setting 

7,0,B, 
1 

2 
7,0,B, 7,0,B, 

Ma(ti) 
1 

2V 
T(Ku T{Ku) 

we get 

cv 
's1 

7,0,B,7,0,B, 7,0,B, 
1 

2 
(Mi fuU' M_o(u)J')u,u). 

Finally, if M(u) = Mi(w)J + M2(u)J + M ^ u ) / ' + M2(u)Jf, we see that (5.4.19) 

implies the conclusion (5.4.14). This concludes the proof of the lemma. • 
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