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THE q-ANALOGUE OF THE 
WILD FUNDAMENTAL GROUP (II) 

by 

Jean-Pierre Ramis & Jacques Sauloy 

Abstract. — In a previous paper, we defined g-analogues of alien derivations and 
stated their basic properties. In this paper, we prove the density theorem and the 
freeness theorem announced there. 
Résumé (Le -̂analogue du groupe fondamental sauvage (II)). — Dans un article précédent 
nous avons défini les g-analogues des dérivations étrangères et leurs propriétés de 
base. Dans cet article nous démontrons le théorème de densité et d'indépendance que 
nous y avions annoncé. 

1. Introduction 
1.1. The problem. — In this paper we shall continue the study of the local mero-
morphic classification of -̂difference modules. In [10] we gave such a classification in 
Birkhoff style, using normal forms and index theorems; this classification is complete 
in the "integral slope case". (One could extend it to the general case using some results 
of[3].) 

In [6] we introduced a new approach of the classification, using a "fundamental 
group" and its finite dimensional representations, in the style of the Riemann-Hilbert 
correspondence for linear differential equations. At some abstract level, such a clas
sification is well known: the fundamental group is the tannakian Galois group of the 
tannakian category of local meromorphic g-modules. But we wanted more informa
tion: our essential aim was to get a smaller fundamental group which is Zariski dense 
in the tannakian Galois group and to describe it explicitly, in the spirit of what was 
done by the first author for the differential case [5]. 
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302 J.-P. RAMIS & J. SAULOY 

In [6] we built a family of elements of the Lie algebra of the tannakian group, the 
q-alien derivations, we achieved our program for the one-level case and we announced 
the main results in the general case. The aim of the present paper is to give some 
proofs omitted in [6] for the multi-level case. We will finally give a more precise 
algebraic formulation of our results in [7], which will end the series. 

1.2. Contents of the paper. — General notations and conventions are explained 
in the next paragraph 1.3. In section 2, we recall basic properties of the category s[0^ 
of linear analytic ^-difference equations with integral slopes, and the structure and 
action of its Galois group G^K In section 3, we recall the unipotent structure of the 
Stokes subgroup &t of G^\ and the construction (taken from [6]) of elements of the 
Lie algebra si of 6t, the so-called q-alien derivations. Our q-analogue of the wild 
fundamental group" is the Lie subalgebra they generate. We then prove in 3.2 and 
3.3 our main results: density and a freeness property of the #-alien derivations. In 
section 4, we summarize what remains to be solved, and will be the contents of [7]. 

The paper is written so as to be read widely independently of [6] - granted the 
reader is willing to take on faith some key points. The principle of the proofs is 
almost purely tannakian, but we have stated explicitly the underlying methods and 
prerequisites. Moreover, they are described in a concrete, computational form (with a 
systematic use of matrices). Since neither ^-difference equations, nor even tannakian 
methods are so popular, this may help the reader to get familiarized with either 
domain. Note that, since we heavily rely on transcendental tools, the methods here 
are, to a large extent, independent of those of M. van der Put and his coauthors. 

1.3. General notations. — The notations are the same as in [6]. Here are the 
most useful ones. 

We let q G C be a complex number with modulus \q\ > 1. We write aq the q-
dilatation operator, so that, for any map / on an adequate domain in C, one has: 
o~qf(z) = f(qz). Thus, aq defines a ring automorphism in each of the following rings: 
C{z} (convergent power series), C[[z]] (formal power series), 0(C*) (holomorphic 
functions over C*), 0(C*,O) (germs at 0 of elements of 0(C*)). Likewise, aq defines 
a field automorphism in each of their fields of fractions: C({z}) (convergent Laurent 
series), C((z)) (formal Laurent series over), M(C*) (meromorphic functions over C*), 
M(C\ 0) (germs at 0 of elements of A4(C*)) 

The (jg-invariants elements of M(C*) can be considered as meromorphic functions 
on the quotient Riemann surface Eq = C*/qz. Through the mapping x ^ z = e2l7rx, 
the latter is identified to the complex torus C/(Z + Zr), where q = e2l7rr. Accordingly, 
we shall identify the fields A^C*)^ and M(Eq). We shall write a i—• a the canonical 
projection map TT : C* —* E9 and [c;q] = 7r_1 (c) = cqz (a discrete logarithmic 
^-spiral). 

Last, we shall have use for the function 9 G (9(C*), a Jacobi Theta function such 
that o~q6 = z0 and 9 has simple zeroes along [—1;<?]. One then puts 9c(z) = 9(z/c), 
so that 9C G (9(C*) satisfies o~q9c = (z/c)9c and 9C has simple zeroes along [—c\q\. 
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THE g-ANALOGUE OF THE WILD FUNDAMENTAL GROUP (II) 303 

2. Linear analytic g-difference equations 

A linear analytic (resp. formal) g-difference equation (implicitly: at 0 G C) is an 
equation: 

(1) aqX = AX, 

where A G GLn(C({z})) (resp. A G GLn(C((z)))). There is an intrinsic description 
as a "g-difference module MA, which runs as follows. We consider the operator $A 
on C({z})n which maps a column vector X to A~1aqX. This can be abstracted 
as a finite dimensional C({2;})-vector space V endowed with a so-called "cr9-linear 
automorphism" 3>. A g-difference module is such a pair M = (V,3>). Here, we have 
MA = (C({z})n,*A). 

We shall here stick to the matrix model and, for all practical purposes, the reader 
may identify the equation (1), the matrix A and the ^-difference module MA with 
each other. For instance, we call solution of A, or of (1), or of MA in some extension 
K of C({z}), on which aq operates, a column vector X G Kn such that aqX = AX. 
The underlying space of A G GLn(C({z})) is C({z})n. 

2.1. Description of the tannakian structure. — We now proceed to describe 
the tannakian category of analytic q-difference equations £(°\ There is a similar 
description for the corresponding formal category £(°\ The objects of £(°) are linear 
analytic ^-difference equations (1). A morphism from A G GLn(C({z})) to B G 
GLp(C({z})) is a matrix F G Mp,n(C({z})) such that: 

(2) (aqF)A = BF. 

This just means that F sends any solution X of A to a solution FX of B. One can 
check that £ ^ is an abelian category. Indeed, it is the category of finite length left 
modules over the euclidean non-commutative ring 2 \ K of ^-difference operators over 
K = C{{z}). 

The abelian category £ ^ is endowed with a tensor structure. The tensor product 
A\ <g) A2 of two objects (resp. the tensor product F\ 0 F2 of two morphisms) is just 
the Kronecker product of the matrices; of course, we must define a consistent way of 
identifying Cn<g)CP with Cnv, or C({z})n ®C({z})p with C({z})np (see, for instance 
[11]). 

The unit object 1 (which is neutral for the tensor product) is the matrix (1) G 
GLi(C({z})) = C({z})*, with underlying space C({z}). The object 1 of course 
corresponds to the "trivial" equation ^ ax = x. One easily checks that the space 
Hom(l, A) of morphisms from 1 to A is exactly the space of solutions ofAinC({z}), 
or, equivalently, the space of fixed points of $A in C({z})n. We shall write T(A) or 
T(MA) that space, as it is similar to a space of global sections (and, indeed, can be 
realised as such, see [14]). 

(i) In differential Galois theory, the matrix A of a system is in Mn(C({z})) (rather than in GLn), 
the trivial equation is x' = 0, etc. The theory of -̂difference equations rather has a multiplicative 
character 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2009 



304 J.-P. RAMIS & J. SAULOY 

The characterization (2) of morphisms can itself be seen as a ^-difference equation 
aqF = BFA-1. This means that there is an "internal Horn" object, which can be 
described in the following way. Consider the linear operator F »-» BFA~X on the 
vector space MPjn(C({z})). Through identification of Mp,n(C({z})) with C({z})np, 
this operator is described by a matrix in GLnp(C({z})), which yields the desired 
equation. We shall write Horn (A B) the corresponding object. Thus, one gets: 

(3) r(Hom(Afl)) ~ Hom(l,Hom(AB)) ~ Hom(j4,B). 

Actually, this is a special case of the following canonical isomorphism:: 

(4) Hom(A, Hom(B, C)) ~ Hom(A <8> fl, C). 

The reader will check that the object Horn (A 1) has the following description. The 
underlying space is Mijn(C({z})), which we identify with C({z})n. The correspond
ing matrix for the linear operator F »-* FA~X is the contragredient matrix Ay — tA~1. 
We call the object Ay the dual of the object A. From this, we get yet another con
struction of the internal Horn: 

(5) H o m ( i , B ) - i v 0 B . 

We summarize these properties by saying that £ ^ is a tannakian category. This 
is halfway to showing that it is (isomorphic to) the category of representations of a 
proalgebraic group, our hoped for Galois group. To get further, one needs a fiber 
functor on £(°\ This was defined and, to some extent, studied in full generality in 
[13], [12] and [6]. However, for our strongest results, we need to restrict to the case 
of integral slopes. 

2.2. Equations with integral slopes. — In [13], one defined the Newton polygon 
of a g-difference module (analytic or formal). This consists in slopes (2) \i\ < • • • < µk 
(rational numbers) together with ranks (or multipicities) r i , . . . , r/~ (positive integers). 
We shall say that a module is pure isoclinic if it has only one slope and that it is 
pure (3) if it is a direct sum of pure isoclinic modules. We call fuchsian a pure isoclinic 
module with slope 0. The Galois theory of fuchsian modules was studied in [11]. Pure 
modules are irregular objects without wild monodromy, as follows from [10], [12] and 
[6]. 

The tannakian subcategory of £ ^ made up of pure modules is called £p°\ Modules 
with integral slopes also form tannakian subcategories, which we write £ ^ and £ ^ . 
From now on, we restrict to the case of integral slopes. Our category of interest is 
therefore £ a n d we shall now start its description. 

(2) Note that here, as in [6], we have changed the definitions of slopes. Those used here are the 
opposites of those used in [13], [8] and [12]. 
(3) Here again, starting with [6], we changed our terminology: we now call pure isoclinic (resp. pure) 
what was previously called pure (resp. tamely irregular). The latter are called split modules in [3]. 
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Any equation in s[0^ can be written in the following standard form: 

(6) A = 

z^Ai 

Uij ... 
0 

0 
0 . . . 0 . . . z^Ak 

where the slopes fii < • • • < fik are integers, r» € N*, -A* G GLri(C) (i = 1, . . . , fc) 
(those /ii and r* make up the Newton polygon of A) and: 

Vi, j s.t. 1 < i < j < k , t/ij 6 Matr.,ri(C({z})). 

We actually can, and will, require the blocks Uij to have all their coefficients in 
C[z, z~x\. Then any morphism F : ̂ 4 —• B between two matrices in standard form is 
easily seen to be meromorphic at 0 (by definition) and holomorphic all over C*; this 
is because the equation aqF = BFA~l allows one to propagate the regularity near 0 
to increasing neighborhoods. 

We moreover say that A is in polynomial standard form if each block Uij with 
1 < i < j < k has coefficients in J2 &zd. It was proved in [10] that any object in 

lii<d<fjLj 
£ ^ is analytically equivalent to one written in polynomial standard form (in essence, 
this is due to Birkhoff and Guenther). Last, we say that A is in normalized standard 
form is if all the eigenvalues of all the blocks Ai are in the fundamental annulus 
{ 2 G C * | l < | z | < | # | } . Any standard form can be normalized through shearing 
transformations. Note that polynomial standard form is stable under tensor product, 
while normalized standard form is not. 

The standard form (6) above expresses the existence of a filtration by the slopes 
([13]). The functoriality of the filtration moreover entails that a morphism F : A —> B 
is also upper triangular (by blocks) in the following sense: if the slopes of B G 
GLp(C({z})) are ui < ••• < v\, with ranks S\ < ••• < sj, then the morphism 
F G Mp?n(C({z})) from A to B has only non null blocks Fitj G M8jiri(C({z})), 
1 < i < k, 1 < j < I for Uj < µi 

To the matrix A and module M = MA is associated the graded module grM = 
MQ = MA0 with block diagonal matrix: 

(7) A0 = 

(z^Ax \ 
0 

0 

0 

0 . . . 0 . . . z^Ak/ 

The graded module Mo is the direct sum Pi © • • • © Pjt, where each module Pt is pure 
of rank ti and slope fa and corresponds to the matrix z^Ai. The functor M grM 
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also acts on morphisms. To F, it associates FQ which has the same diagonal blocks 
as F, that is, (Fo)ij = Fij if \ii = Vj. But all the (Fo)ij such that \ii ^ Vj are null. 

By formalisation, i.e. base change C({z}) —• C((z)), the slope filtration splits 
and the functor gr becomes isomorphic to the identity functor. In matrix terms, 
this translates as follows. There is a unique isomorphism F : AQ —> A with formal 
components Fij G MR.IRJ(C((z))) (for 1 < i,j < k) and the following shape: 

(8) F = 

iri 
F 

0 

. . . 0 

0 . . . 0 . . . Irk 

To express that a matrix has such a shape and coefficients in some domain K, we shall 
write F G <5A0 (K)- Thus, <&A0 is a unipotent algebraic subgroup of the linear group 
and it can be realised above any field K: in the above case, one has F G G(3A0(C((Z))). 
For further use, we also give a notation for the corresponding Lie algebra £u0. An 
element / G QA0 (K) has the shape: 

(9) 

0ri 

kj 
0 

. . . 0 
0 . . . 0 . . . orfc 

where 0r is the null r x r matrix and where each foj G Mr.jrj(K). 
We shall denote FA the unique F mentioned above. Its blocks can be characterised 

as the unique formal solutions to the following recursive equations: 

(10) VI < i < j < k , o-qFijz^Aj - z^AiFij = Ui,iFhJ + ui,j-
i<Kj 

There are usually no analytic solutions (that is, with coefficients in C({z})) for equa
tions (10). (The existence of analytic solutions is equivalent to MA being pure.) There 
are, however, meromorphic solutions, to be considered as resummations of the formal 
solution FA (section 3.1). 

The graded counterpart FQ of F = FA satisfies simpler equations. Prom the above 
description, we know that (Fo)ij = 0 for any i, j such that /ii ^ / / j , that is, if i ^ j ; 
if i = j : 

aq(Fo)i^iAi = z^Ai(F0)i,i. 

This implies that (Tq(Fo)i1iAi = Ai(Fo)iyil and it then follows from [11] that the 
coefficients of FQ are Laurent polynomials (elements of C[z, 2-1]); if moreover A is in 
normalized standard form, then these coefficients are in C. 
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2.3. Description of the fiber functor. — In Tannaka theory, the Galois group 
is defined as the group of tensor automorphisms of a fiber functor. We now describe 
a fiber functor on £[0\ There is actually a whole family of these, indexed by C*, 
and one can therefore define a Galois groupoid ([6]). Here, we shall first choose an 
arbitrary basepoint a G C*. As a consequence, some constructions of 3.1 will be valid 
for most equations, but not all. This means that, to study a particular equation, one 
has to choose a basepoint compatible with it, which will be seen to be a generically 
true condition. 

The fiber functor d>i°̂  goes from s[0^ to the category of finite dimensional C-vector 
spaces. On the side of objects, to each matrix A £ GLn(C({z})) and module MA, 
it associates the space u^\A) = Cn. On the side of morphisms, to F : A —• B G 
GLp(C({z})), it associates Fo(a) : Cn —• Cp. (The dimensions are right and it follows 
from the last remark in 2.2 that F0(a) is well defined). 

Apart from functoriality, the properties of u)i°̂  which make it a fiber functor are 
the following: it is exact, faithful and 0-compatible. The latter means that, for any 
A, B, the natural map tA,B ' U>£\A) 0 &£\B) —> LJ^\A 0 B) is an isomorphism. 

We now define the Galois group of S[0) (at base point a) as G(0) = Aut®^). It 
would be more rigorous to write explicitly the index a indicating the basepoint, but 
this would make the notation heavier without true necessity. An element of the group 
Aut® (cu^) is, by definition, a natural transformation g : A -W g(A) G GL (ti^\A)^J = 
GLn(C), subject to the following conditions: 

1. Functoriality: for any morphism F : A —» B, one has g(B)oFo(a) = Fo(a)og(A). 
Thus, the following diagram is commutative: 

w0 (0) [A) Foia) 
Va 

[0) (B) 

9{A) 9{B) 

Uà 
(0) 'A) F0(a) 

Va 
,(0) 

(B) 

2. Tensor compatibility: for any objects A, B, up to the natural identifications, 
one has an equality g(A 0 B) = g(A) 0 g(B). Thus, the following diagram is 
commutative: 

u,{°\A)®№(B) -TA, B ̂ U №(A ® B) 

g(A)®g(B)^ |p(A®J5) 

№(A)®w<?\ (B) tA,B u,P(A®B) 

In [11] was completely described the Galois group G^ of the subcategory £ ^ of 
£(°) made up of fuchsian equations. From [13], one could (trivially) deduce the Galois 
group Gp0^ of the category £p°J of pure objects with integral slopes. Here, we will 
describe the Galois group G^ of s[°\ The extension of these results to the case of 
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308 J.-P. RAMIS & J. SAULOY 

non integral slopes should not involve new ideas on the analytic side, but will have to 
take in account the results of van der Put and Reversât in [3]. 

2.4. Galois group and Galois action 
Theorem 2.1. — The structure of the Galois group G^ is as follows: 

G (o) 
7i = 6 t x G (0) 

'PI ("tota/ Galois group with integral slopes). 
G io) 

P,I = T l 
-(0) x G t(0) 

f (pure Galois group with integral slopes), 

T (0) 
1 = C* (theta torus with integral slopes), 

G r(0) 
f = G{ (o) 

t,s 
xG f(0) 

f,v (fuchsian Galois group), 
G^\ = C (unipotent component of the fuchsian Galois group), 

G^?l = H.omgr(C*/qz, C*) (semisimple component of the fuchsian Galois group). 

The structure and action of the prounipotent Stokes group &t are the subject 
matter of [6] and of section 3 of the present paper. We shall presently explain the 
structure and action of the pure group Gp0\. This means that we should associate to 
any object A a representation of Gp0^ in the space LJ^(A)', thus, for any g G Gp0^ and 
any matrix A € GLn(C({z})), we should realize g(A) G GLn(C). 

We start from the standard form (6). For each of the block matrices Ai, we write: 

Ai — Ai^sAi^u 

its multiplicative Dunford decomposition: AiyS is semisimple, AiiU is unipotent and 
they commute. 

1. Let g = 7 G G(^s = Komgr(C*/qz, C*). The latter is here identified with the 
group of morphisms from the abstract group C* to itself that send q to 1. We 
let 7 act on each Ai:S through its eigenvalues: if Ai,s = Pdiag(ci,... ,cr)P~l, 
then j(AiiS) = Pdiag(7(ci),... ,7(cr))P_1 (it does not depend on the choice of 
a particular diagonalisation). Then: 

9(A) 

y(Ai,e) 
О 

О 
о 

О ... О ... 7(¿*,.). 
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2. Let g — A G G^\ = C. Since the Ai,u are unipotent matrices, the A*u are well 
denned and we put: 

9(A) = 

Aп1,и 
о 

о 
о 

О ... О ... А^и 

3. Let g = t G (o) = C*. This theta torus is the analogue here of the exponential 
torus of the classical differential Galois theory. Then: 

9(A) = 

t^Iri 
0 

0 
0 

0 ... 0 .. . t»kIrk 

Note that all these depend on A0 only. This is because the category £p°J of pure 

modules with integral slopes is equivalent to the category of representations of GP0^, so 
that giving a representation of the latter group is the same as giving an object in the 
former category. We leave as an exercise for the reader the reconstruction of AQ from 
the representation described above. For further use, we shall now prove two lemmas 
about the action of GP°\ on LU^^A). These lemmas actually express the "duality" of 

G o) and E ,(0) 

Lemma 2.2. — Let A be in normalized standard form (6). Let X G Lua°\A) be covari-
ant under the action of G^, that is, for all g G G^X, the vectors X and g(A)X are 
colinear. Then there exists i G {1 , . . . , k} and a G Sp(Ai) such that: AQX = az^X. 

Proof — First note that the block decomposition of AQ (or, equivalently, the action 
of the theta torus) entails a splitting of vector spaces: 

u>a0){A) = Cn = Cri 0 • • • © Crfc, 

each A{ acting upon the corresponding CTi. We can accordingly write X = 
(Xi,... ,Xk) (in row form, instead of column form, for economy of space). Co-
variance under the action of T(0) say that (t^Xi,... ,t^kXk) and (Xi,... ,Xk) are 
colinear for all t G C*, which implies that at most one component Xi is non trivial. 
Then, covariance under the action of G^U says that Xi is fixed by A^u (since the 

latter is unipotent). Last, covariance under G^\ implies that Xi is an eigenvector of 
AiiS. Indeed, this comes from the fact that, if a ^ a' are eigenvalues of A^ then, by 
the normalization condition, aqz O a'qz = 0; it is then easy to see that there exists 
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7 G Hom^r(C*/gz, C*) such that 7(a) ^ 7(0/)» so that ^ cannot have nontrivial 
components in both eigenspaces of A{. The conclusion follows. • 

Lemma 2.3. — Let A be in normalized standard form (6). Let X G CJ£\A) be invari
ant under the action of Gp0^, that is, for all g G Gp0^, the vectors X and g(A)X are 
equal. Then AQX = X. 

Proof. — The proof is similar, with two adaptations. First, equality of (t^Xi,..., t^kXk) 
and (Xi,...Xk) entails that at most one component Xi is non trivial and the cor
responding slope is fa = 0; second, invariance under G^p8 implies that at most 
one component of Xi (in the eigenspace decomposition) is non trivial, that the 
corresponding a G Sp(^) is in the kernel of all elements of Hompr(C*/gz, C*), so it 
is in qz, so equal to 1 by the normalisation condition. • 

Again because of the duality of Gp0^ and £p°l, the conclusions of these two lemmas 
have useful interpretations. The conclusion of lemma 2.2 says that the column matrix 
X G Mn?i(C) is a morphism from the rank one object (az^) G GLi(C({z})) into Ao. 
The conclusion of lemma 2.3 says that the column matrix X G Mn?i(C) is a morphism 
from the unit object 1 = (1) G GL\(C({z})) into Ao, i.e. a section X G T(A0). 

3. The wild fundamental group 

3.1. The action of the Stokes group. — An element 5 G ©t is characterized by 
the following properties: 

1. To each A in standard form (6), it associates a matrix s(A) G 0Ao(^)5 recall 
that <&a0 was described as the algebraic group of matrices of shape as in equation 
(8). 

2. If A = Ao, that is, if A is pure, then s(A) = In. 
3. Functoriality and tensor compatibility are defined as in section 2.3. 
Since (5t is a prounipotent proalgebraic group, it is convenient to study it through 

its Lie algebra si. (The underlying formalism is expounded in the appendix of [2].) 
An element D G st is also a natural transformation of LJ^ . It associates to each 
object A an endomorphism D(A) G C(u>^(A)) = Mn(C), subject to the following 
conditions: 

1. For each A in standard form (6), the matrix D(A) G Mn(C) is in Qa0(C); recall 
that qa0 was described as the Lie algebra of matrices of shape as in equation 
(9). 

2. If A = A0, that is, if A is pure, then D(A) = 0n. 
3. Functoriality is defined as in section 2.3. 
4. Tensor compatibility is that of "Lie-like elements" (as in [15], §6): for any 

A G GLN(C({z})) and B G GLp(C({z})), one should have, up to natural 
identifications: D(A ® B) = D(A) ® Ip + In <g> D(B). Thus, D behaves like a 
derivation. 
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In [6], we have produced many elements of &t and of st. However, for a given 
basepoint a G C*, these do not operate on the whole of s[0^ but on a tannakian 
subcategory of it. Therefore, the way of using them is the following: given an equation 
A of interest, proposition 4.2 of loc. cit. yields an explicit criterion to select adequate 
basepoints (these are generically adequate). Then all the constructions that follow 
make sense in the tannakian subcategory of £ ^ generated by A . This means that each 
time we shall evaluate a meromorphic function at a, this will be possible. Henceforth, 
we shall not anymore discuss this matter. We assume that the basepoint has been 
chosen so that all the objects we deal with are compatible with it. 

In [12] and [6], we defined an explicit finite subset MAo of Eg and proved: 

Theorem 3.1. — Let c G Eq \ XU0. Then, there is a unique F : A0 —> A such that 
F G <&A0(M(C*)), with poles only on [—c; q] = —cqz and such that, for 1 < i < j < k, 
the poles of Fij have multiplicity < fij — 

We write this meromorphic isomorphism SCFA and see it as some kind of summa
tion of FA in the direction c G Eq. Therefore, changing direction of summation, we 
may define, for every c, d G E9 \ E^0: 

S-crdFA = {S-cFAylS-dFA, 

some kind of "ambiguity of summation", that is, a Stokes operator. It is plainly a 
meromorphic automorphism of AQ. We also proved in loc. cit: 

Proposition 3.2. — // moreover a ^ c,d, then A ~> S--^FA{O) is an element of St. 

In particular, S--^FA(O) G &t(A). (Recall that we implicitly restrict ourselves to a 
subcategory of S[°^ where everything is defined.) 

For the following corollary, we fix an arbitrary direction of summation CQ G Eg, 
again to be considered as a choice of basepoint (and inessential). 

Corollary 3.3. — Putting LSC,A(A) = log(5CB~,CP.A(a)) £ st (A) yields a family of ele
ments of elements ofst(A). Moreover, A >̂ LSC,A(A) is an element of st. (We omit 
Co in the notation.) 

The above family is a meromorphic map from Eg to a vector space, hence one can 
take residues. Define the g-alien derivations by the formula: 

AM) = Res-d=-LS-dJA). 

(We do not mention the arbitrary basepoints Co, a in the notation.) Of course, for 
c £ IU0, we have AC(A) = 0. Another result we need from [6] is: 

Theorem 3.4. — One has AC (A) G st(A). More precisely, A ^> AC( A) is an element 
of st. 
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