Asterisque

JEAN-LOUIS LODAY
Generalized bialgebras and triples of operads

Astérisque, tome 320 (2008)
<http://www.numdam.org/item?id=AST_2008__320__R1_0>

© Société mathématique de France, 2008, tous droits réservés.

L’acces aux archives de la collection « Astérisque » (http://smf4.emath.fr/
Publications/Asterisque/) implique I’accord avec les conditions générales d’uti-
lisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou
impression systématique est constitutive d’une infraction pénale. Toute copie
ou impression de ce fichier doit contenir la présente mention de copyright.

NuMmbDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=AST_2008__320__R1_0
http://smf4.emath.fr/Publications/Asterisque/
http://smf4.emath.fr/Publications/Asterisque/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

ASTERISQUE

GENERALIZED BIALGEBRAS
AND TRIPLES OF OPERADS

Jean-Louis Loday

SOCIETE MATHEMATIQUE DE FRANCE

Publié avec le concours du CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE



Jean-Louis Loday

Institut de Recherche Mathématique Avancée, CNRS et Université de Strasbourg,
7 rue R. Descartes, 67084 Strasbourg (France)

loday@math.u-strasbg.fr

www-irma.u-strasbg.fr/“loday/

Mathematical classification by subject (2000). — 16A24, 16W30, 17A30, 18D50, 81R60.

Keywords. — Bialgebra, generalized bialgebra, Hopf algebra, Cartier-Milnor-Moore, Poincaré-Birkhoff-
Witt, operad, prop, triple of operads, primitive part, dendriform algebra, duplicial algebra, pre-Lie
algebra, Zinbiel algebra, magmatic algebra, tree, nonassociative algebra.

Many thanks to Maria Ronco and to Bruno Vallette for numerous conversations on bialgebras and
operads. Thanks to E. Burgunder, B. Fresse, R. Holtkamp, Y. Lafont, and M. Livernet for their
comments. A special thank to F. Goichot for his careful reading. This work has been partially
supported by the “Agence Nationale de la Recherche”. We thank the anonymous referee for his/her
helpful corrections and comments.



GENERALIZED BIALGEBRAS
AND TRIPLES OF OPERADS

Jean-Louis Loday

Abstract. — We introduce the notion of generalized bialgebra, which includes the
classical notion of bialgebra (Hopf algebra) and many others, like, for instance, the
tensor algebra equipped with the deconcatenation as coproduct. We prove that, under
some mild conditions, a connected generalized bialgebra is completely determined by
its primitive part. This structure theorem extends the classical Poincaré-Birkhoff-Witt
theorem and Cartier-Milnor-Moore theorem, valid for cocommutative bialgebras, to
a large class of generalized bialgebras.

Technically we work in the theory of operads which allows us to state our main
results and permits us to give it a conceptual proof. A generalized bialgebra type
is determined by two operads : one for the coalgebra structure C, and one for the
algebra structure .A. There is also a compatibility relation relating the two. Under
some conditions, the primitive part of such a generalized bialgebra is an algebra over
some sub-operad of A, denoted P. The structure theorem gives conditions under
which a connected generalized bialgebra is cofree (as a connected C-coalgebra) and
can be re-constructed out of its primitive part by means of an enveloping functor from
P-algebras to A-algebras. The classical case is (C,.A,P) = (Com, As, Lie).

This structure theorem unifies several results, generalizing the PBW and the CMM
theorems, scattered in the literature. We treat many explicit examples and suggest a
few conjectures.

Résumé (Bigébres généralisées et triples d’opérades)

On introduit la notion de bigébre généralisée, qui inclut la notion de bigebre clas-
sique (algébre de Hopf) et bien d’autres, comme, par exemple, I’algebre tensorielle
munie de la déconcaténation comme coproduit. On montre que, sous des hypotheéses
raisonnables, une bigebre généralisée connexe est entierement déterminée par sa partie
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primitive. Ce théoreme de structure étend a la fois le théoreme classique de Poincaré-
Birkhoff-Witt et le théoréme de Cartier-Milnor-Moore valables pour les bigebres co-
commutatives, & une large classe de bigébres généralisées.

On travaille dans le cadre de la théorie des opérades qui nous permet d’énoncer le
résultat principal et d’en donner une démonstration conceptuelle. Un type de bigebres
généralisées est déterminé par deux opérades, I'une pour la structure de cogebre,
notée C, autre pour la structure d’algebre, notée A. Ces deux structures sont reliées
par certaines relations de compatibilité. Le théoréme de structure donne des conditions
sous lesquelles une bigébre généralisée connexe est colibre (en tant que C-cogébre
connexe) et peut étre re-construite & partir de sa partie primitive grace & un foncteur
du type “algébre envelopante” des P-algebres dans les 4-algebres. Le cas classique est
(C, A, P) = (Com, As, Lie).

Ce théoréme de structure unifie plusieurs généralisations du théoreme PBW et
du théoreme CMM déja présentes dans la littérature. On donne plusieurs exemples
explicites et on formule quelques conjectures.

ASTERISQUE 320



CONTENTS

Introduction ...........oiiiiiniii e 1
1. Algebraic operads .......... ..ot 9
1.1, S-module ..ot i e e 9
1.1.1. S-module and Schur functor ............... .. oo it 9
1.1.2. Composition of S-modules ... 10
1.1.3. Generating Series ........c.cuvuviiininiinitiiniiiiaai e aaaanns 10
1.2. Algebraic operad ...........oiuiiiiiiiiii e 10
1.2.1. Definition .. ..o e e e 10
1.2.2. Algebra over an operad ............cooiiiiiiiiiiiiiii i 10
1.2.3. Free P-algebra .......c.oooiiiiiiiiiiiiiii 11
1.2.4. Operadicideal .........c.coiuiriiiiiiiiiiiii i 12
1.2.5. Type of algebras and presentation of an operad ..................... 12
1.2.6. Binary and quadratic operad ............. ..ol 13
1.2.7. Nonsymmetric operad .................... e 13
1.2.8. Set-theoretic operad .............cooiiiiiiiiiiiiiii 13
1.2.9. Classical examples: the three graces ...................oooiiiiiii, 14
1.3. Coalgebra and cooperad ..............ccciiiiiiiiiiiiiiii i 14
1.3.1. Coalgebra over an operad ..........c.oviiiiiiiiiiiiiiiiiiiiien., 14
1.3.2. Primitive part, connectedness (conilpotency) ....................... 14
1.3.3. Cofree coalgebra ...........cooviiiiiiiiiiiiiiiiiiiiiii i 15
1.3.4. Cooperad and coalgebra over a cooperad ........................... 15
1.3.6. Cofree coalgebra and cooperad ..............ccoiiiiiiiiiiiiiiia 16
1.3.7. Invariants versus coinvariants ............. ... il 17
1.3.8. Nonsymetric cooperad ...........c.ouiiiiiiiiiiiieiiiiiiiiiienenn.. 17
T SR 5 o) J P 17
1.4.1. Definition ......ouuiuiin i e e 17
2. Generalized bialgebra and triple of operads ........................... 19
2.1. Generalized bialgebra ..............c.ciiiiii 20
2.1.1. Compatibility relation and generalized bialgebra .................... 20
2.1.2. Hypothesis (HO) ........oouiiiiiniiiiiiiiiiiiiiiiiiii i 20
2.1.3. DIQGIAIMS .. votettt ettt e 21
2.1.4. Examples of distributive compatibility relations .................... 22



vi CONTENTS

2.2. The primitive operad ...t 23
2.2.1. The hypothesis (HO) .........c.coiiiiniiiiiiiiiiiiiiiiiiiiian, 24
2.2.2. The primitive part of a bialgebra ........................... 24
2.2.4. EXaMPLES ...ttt e 26
2.3. Rigidity theorem ............c.ciiiiiiiiiiiii 27
2.3.1. Hypotheses ........c.oiuiiiiniiiiiii it 27
2.3.4. The universal idempotent e ............ ..ot 28
2.3.9. Explicit universal idempotent .............. ... ...l 31
2.4. Triple of 0perads .........cooiiiiniiniiiiiiii i e 31
2.4.1. Triple of operads ........cooviiiiiiiiiiiii e 32
2.4.2. The map ¢ and the hypothesis (H2epi) ................ccoiiiinit. 32
2.4.3. Universal enveloping functor .....................ooiiilL 32
2.5. Structure theorem for generalized bialgebras ............................ 34
2.5.2. The versal idempotent € ...........c..oiiiiiiiiiiiiiiiiiiiiiiin.. 34
2.5.5. Proof of the structure theorem ................ ..o, 36
2.5.6. Good triple of operads ........ ..ot 37
2.5.7. About the verification of the hypotheses ............................ 38
2.6. A few consequences of the structure theorem ............................ 38
2.6.1. From the structure theorem to the rigidity theorem ................ 38
2.6.2. Dualization ............oeiiitiiiiiiiiii i i e 39
2.6.6. Searching for good triples ............coiiiiiiiiiii i 40
2.6.7. Frobenius characteristic ..............cooiviiiiiiiiiiiiiiiiiii.., 40
3. Applications and variations ................ . ..ol 41
3.1. Quotient triple ....... ...t e 42
3.1.3. Remark ...ooii i e 42
3.1.5. Remark on PBW ... . i 43
3.1.6. Split triple of operads ............cooiiiiiiiiiiii 43
3.2. Hopf operad, multiplicative operad ................ociiiiiiiiiiiiilt, 44
3.2.1. Hopfoperad .........covniiiniiiiiii ittt 44
3.2.2. Multiplicative operad [48] ..ot 44
3.3. The nonSymmetriC Case ..........coviiririiintiroiiiiat it 45
3.4. Koszul duality and triples ..........coooiiiiiiiiiiiii i 46
3.4.1. Koszul duality of quadratic operads .................coiiiiilt 46
3.4.2. Extension of operads ..........cooiiiiiiiiiiiiiii e 47
3.5. Other symmetric monoidal categories ................c.coiiiiiiiiiat 47
3.5.1. Graded VECLOT SPACE .. ..e.eutneieneerini i iearaeanann, 48
3.5.2. Structure theorem in the graded case ......................coiill 48
3.5.3. Structure theorem for twisted bialgebras ............................ 48
3.5.4. Generalization to colored operads ..............c.cooiiiiiiiiiiiin 48
3.5.5. Generalization of the nonsymmetric case ........................... 48
3.6. CoalgebraiC VEISION . ...........vuiuniuiuiiniin it iiiiiaiiaaeeneennes 49
3.7. Generalized bialgebras in characteristicp ................coooii 50

ASTERISQUE 320



CONTENTS vii

3.7.1. prestricted Lie algebras ... 50
3.7.2. Operads in characteristic p ............oooiiiiiiiiiiiiii i, 50
3.7.3. Structure theorem in characteristicp .............. ... ...l 51
3.8. Relationship with rewriting systems ............... ...l 51
3.9. Application to representation theory .....................oiiall 51
4. EXamPes .....o.ouinii e 53
4.1. Hopf algebras: the classical case .............cooiiiiiiiiiiiiiiiiiiien., 55
4.1.1. The Hopf compatibility relation ...................ooiiiiiiiiin... 55
4.1.2. The triple (Com, As,Li€) .......oooiiiiiiiiiiiiiiiiiii i, 56
4.1.4. Eulerian idempotent [44] ... 57
4.1.6. Explicit formula for the PBW isomorphism ......................... 58
4.1.7. Remark ..ot i s 58
4.1.8. The triple (Com,Com,Vect) ........cooviviiiiiiiiiiiiiiiinenn.. 59
4.1.9. The triple (Com, Parastat, NLie) ............cccoeiiiiieiinineeenn. 59
4.1.10. The triple (Com, Mag, Sabinin) ............cccooiiiiiiiiiianinn.. 60
4.1.11. Sabinin algebras ..........c..cooiiiiiiiiiiii i 60
4.1.12. Remarks ...ooviiii e e 61
4.1.13. Quotients of Com®-Mag ..........coviiiiiiiiiiiiiiiiiiiiia 62
4.1.14. Poisson bialgebras .............ooiiiiiiiiiiiiii i 62
4.1.15. A conjectural triple (Com, ??, preLie) U 62
4.2. Unital infinitesimal bialgebras ............c.cooiiiiiiiiiiiiiiiiiiiiii.. 63
4.2.1. The (non)unital infinitesimal compatibility relation ................. 63
4.2.2. The triple (As, As,Vect) .....ccoviiiiiiiiiiiiiiiii i, 63
4.2.4. The triple (As, Mag, MagFine) ..............coiiiiiiiiiiiinann.. 64
4.2.5. The triple (A8,2a8, MB) .......cioiiiiiiiiiiiiiiiiiiiiiaaiainnns 65
4.2.6. The triple (As,2a8, Mag™) .....c.ovviiiiiiiiiiiiiiiiiiiiiins 66
4.3. Dendriform, dipterous and Zinbiel bialgebras .................. ... ... 66
4.3.1. Zinbiel algebra and semi-Hopf compatibility relation ................ 67
4.3.2. Dipterous bialgebras ............coooiiiiiiiiiiiiiii 68
4.3.3. Dendriform bialgebras .............cooiiiiiiiiiiiiii 68
4.3.4. Tridendriform algebra ............c.ccoiiiiiiiiiiiiiii i 72
4.4. Lie-Lie-bialgebras ....... ..ot 73
4.4.1. Definition ......oiuiiii i e 73
4.4.6. The conjectural triple (Lie, PostLie, Prim 4, PostLie) .............. 76
4.5. NAPC-A-bialgebras .........oouiuiiitiiii i iiiiiiiiiiinenes 76
4.5.1. Pre-Lie algebras ...........cooiiiiiiiiiiiiiiiiiii 76
4.5.2. NAP-algebIa ......c.ouiiniuii ittt 76
4.5.3. NAPC-PreLie-bialgebra .........c.cocuiiiiniiiiiiiiiiiiiniinennn. 77
4.5.4. NAP¢-Mag-bialgebras ............oooiiiiiiiiiiiiiiiiiiiiiiiin, 77
4.5.6. Conjecture on N AP°-Mag-bialgebras ....................oooiiits. 78

(1) Added in proof: this problem has been settled in [55].

SOCIETE MATHEMATIQUE DE FRANCE 2008



viii CONTENTS

4.6. Some examples of the form (A, A, Vect) ...........oooviiiiiiiiiiiin. 79
4.6.1. The triple (Mag, Mag,Vect) .........covviiiiiiiiiiiiiiiniiianns 79
4.6.2. The triple (2as,2as,Vect) ........oooiiiiiiiiiiiii 79
4.6.3. The triple (A4, A, Vect) for a multiplicative operad A ............... 80
4.6.5. EXAMPIES .. .o.outntt e 81
4.6.6. The triple (Dend, Dend,Vect) ........coovviiiiiiiiiiiiiiiiins. 81
4.6.7. The triple (Nil, Nil,VECt) «...covvviiiiiiiiiiiiiiiiiiiaiiaia, 82
4.6.8. The triple (Nil, Mag, Mag®®') ... ... 83
4.6.9. The triple (Mag3®, Mag®,Vect) ....coovviiiiiiiiiiiiiiiniiiiii, 83

4.7. Pre-Lie algebras and a conjectural triple ................... ... 83
4.7.1. From Pre-Lie algebras to Lie algebras .............................. 83
4.7.2. The conjectural triple (??, PreLie,Li€e) .........cooovviiiiiiiainn... 84
4.7.3. Symmetrizing the pre-Lie product ............. ...l 84

4.8. Interchange bialgebra ..............ooo i 84
4.8.1. Interchange algebra and bialgebra .................. ...l 84

4.9. The (K)-8IY CASE .. evuunnetiii ittt e e eaeens 85
4.9.1. Associative (k + 1)-ary algebras ... 85
4.9.2. The triple (tAs®) tAs®) Vect) ......coooviiiiiiiiiiii . 86
4.9.3. The triple ((Com ), tCom ¥ Vect) .........cccooeiiiiiiiii .. 87

5. Duplicial bialgebras ................. . 89

5.1. Duplicial algebra ........ ..o e 89
5.1.1. Definition ....vrinii e e 89
5.1.2. Planar binary trees .........coouiiiiiiiiiiiii i 90
5.1.4. Relationship with other algebraic structures ........................ 91

5.2. Duplicial bialgebra ...t 91
5.2.1. Definition ......onriirii e 91
5.2.3. Remark ....ooniii i e 92
5.2.8. Proof of theorem 5.2.5 and corollary 5.2.6 .......................... 94
5.2.10. Remark on themap f: Mag = Dup ...t 94

5.3. Explicit PBW-analogue isomorphism for Dup ........................... 95

5.4. Koszulity of the operad Dup ...........cooiiiiiiiiiiiiiiiiiii e, 96
5.4.1. Dual operad ..........c.ininiiiiiiiii e 96
5.4.2. The total bicomplex O 96
5.4.5. Alternative proof (Bruno Vallette, private communication) ......... 98
5.4.6. QUESHION .. ..ouieit i 98

5.5. On quotients of DUP .......ouveniuiiniiniiiiii i 98
5.5.1. The triple (As, A%, A8) ..vvrieeiiii i 98
5.5.2. DupPreLie-algebras ...........cooiiiiiiiiiiiiiiiiiiiiiiii 99

5.6. Shuffle bialgebras .........c.oooiiiiiiiiii 99

5.7. The triple (Dup, Dup,Vect) .......ccooviiiiiiiiiiiiiiiiiiiiii ... 100
5.7.1. Biduplicial bialgebra ............ccoiiiiiiiiiiii 100

5.8. Towards NonCommutative Quantization ................. ... .coooieae. 101

ASTERISQUE 320



CONTENTS ix

CAPPendixX ... e 103
6.1. Types of algebras mentioned in this monograph ......................... 103
6.2. Compatibility relations () mentioned in this monograph ................. 105
6.3. Tableau of some good triples of operads ......................oi 107

Bibliography .........c.oiiiniiiii e 109
1Yo =< 115

SOCIETE MATHEMATIQUE DE FRANCE 2008






INTRODUCTION

The aim of this monograph is to prove that, under some simple conditions, there
is a structure theorem for generalized bialgebras.

First we introduce the notion of “generalized bialgebras”, which includes the clas-
sical notions of bialgebras, Lie bialgebras, infinitesimal bialgebras, dendriform bialge-
bras and many others. A type of generalized bialgebras is determined by the coalgebra
structure C¢, the algebra structure A and the compatibility relations between the op-
erations and the cooperations. For C¢ = As® (coassociative coalgebra) and A = As
(associative algebra) with Hopf compatibility relation, we get the classical notion of
bialgebra (Hopf algebra). In the general case we make the following assumption:

(HO) the compatibility relations are distributive.

It means that any composition of an operation followed by a cooperation can be
rewritten as cooperations first and then operations. So is the Hopf relation: A(zy) =
A(z)A(y). In several cases the compatibility relation is equivalent to: the cooperation
is an algebra morphism, but we deal here with a far more general situation. Then, we
make an assumption on the free A-algebra with respect to the bialgebra structure:

(H1) the free A-algebra A(V') is naturally a C°-A-bialgebra .

For any generalized bialgebra H there is a notion of primitive part given by
PrimH := {z € H | §(z) = O for any cooperation § of arity > 2}.

At this point we are able to determine a new algebra structure, denoted P, such that
the primitive part of any C¢-A-bialgebra is a P-algebra. In other words we show that
the A-operations, which are well-defined on the primitive part of any bialgebra, are
stable by composition. Of course we get P = Lie in the classical case. One should
observe that, even when the types A and C are described by explicit generators and
relations, there is no obvious way to get such a presentation for the type P. Therefore
one needs to work with “abstract types of algebras”, that is with algebraic operads.
In this setting we introduce the notion of connected coalgebra, which generalizes the
similar notion introduced by Quillen when the generating cooperations are binary.
The forgetful functor A-alg — P-alg from the category of A-algebras to the cat-
egory of P-algebras admits a left adjoint which we denote by U : P-alg — A-alg.
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2 INTRODUCTION

The main result unravels the algebraic structure and the coalgebraic structure of any
connected C¢-A-bialgebra under the hypothesis:

(H2epi) the coalgebra map p(V) : A(V) — C(V) is split surjective.
More precisely we get the

Structure theorem for generalized bialgebras. — Let C°-A be a bialgebra type
which satisfies (H0), (H1) and (H2epi).

Then, for any C¢-A-bialgebra H with primitive part Prim H, the following are equiv-
alent:

(a) H is connected,

(b) H is isomorphic to U(Prim H),

(c) H is cofree over its primitive part, i.e. isomorphic to C¢(Prim H).

As said above, the tool to determine P, and also to prove the structure theorem,
is the operad theory. A triple of operads (C,.A,P) as above is said to be good if the
structure theorem holds.

The case of (classical) cocommutative bialgebras (i.e. Com®-As-bialgebras, with
Hopf compatibility relation) is well-known. Here P is Lie, that is, the primitive part
of a classical bialgebra is a Lie algebra. So the triple

(Com, As, Lie)

is an example of a good triple of operads. The functor U is the universal enveloping
functor

U : Lie-alg — As-alg.
The isomorphism H = U(Prim H) is the Cartier-Milnor-Moore theorem. The isomor-
phism U(g) = S°(g), where g is a Lie algebra, is essentially the Poincaré-Birkhoff-Witt
theorem. It implies that, given a basis for g, we can make up a basis for U(g) from
the commutative polynomials over a basis of g (classical PBW theorem).

In many cases, like the one above, characteristic zero is a necessary assumption,
but here is an example of a good triple of operads which is valid over any field K.
The algebra type has two associative operations denoted, ¢ < y and = > y , which
satisfy moreover the relation

(z-y)<z=2z> (y<2).

We call them duplicial algebras and we denote by Dup the associated operad. The
free algebra admits an elegant description in terms of the Over and the Under op-
eration on planar binary trees. The coalgebra type is determined by a coassociative
cooperation § and the compatibility relation is the nonunital infinitesimal relation for
both pairs (4, <) and (4, >) (see below and 4.2). We can show that there is a structure
theorem in this case and that the primitive structure is simply a magmatic structure.
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INTRODUCTION 3

The magmatic operation x - y is given by £ -y := £ > y — z < y. In short, there is a
good triple

(As, Dup, M ag).
This example, which is treated in details in chapter 5, is remarkable, not only because
all the operads are binary, quadratic and Koszul (like in the (Com, As, Lie) triple),
but because they are also set-theoretic and nonsymmetric.

When the bialgebra type satisfies the stronger hypothesis
(H2is0) the C¢-coalgebra map (V) : A(V) — C(V) is an isomorphism,

then the operad P is trivial, P = Vect, that is P-alg is the category Vect of vector
spaces. The triple is (C,.A, Vect), and the structure theorem becomes the

Rigidity theorem for generalized bialgebras. — Let C°-A be a bialgebra type
which satisfies (H0), (H1) and (H2iso). Then any connected C°-A-bialgebra H is free
and cofree:

APrimH) &2 H = C°(Prim H).

There are many good triples of the form (A, A, Vect), for instance
(Com,Com,Vect), (As,As,Vect), (Lie,Lie,Vect).

When A = Com the compatibility relation is the Hopf relation and the rigidity
theorem is the classical Hopf-Borel theorem (originally phrased in the framework of
graded vector spaces). When A = As, then the compatibility relation that we take is
not the Hopf relation, but the nonunital infinitesimal relation which reads:

dzy) =z @y +20) ® T(2)¥ + Y1) O Y(2),
where ¢ is the comultiplication and we have put d(z) = z(1) ® z(2). When A = Lie

the compatibility relation that we take is not the cocyle relation (giving rise to the
notion of Lie bialgebras), but a new one (see 4.4.1).

Let us say a few words about the proofs. As said before we work in the efficient
and well-adapted language of operad theory. The key point in the proof of the main
theorem is a conceptual construction of a universal idempotent ey : H — H which
is functorial in the bialgebra H and which does not depend on a presentation of the
operads C and A. Its image is the primitive part of H and so it permits us to construct
a morphism: H — C°(H). In the other direction the morphism U(PrimH) — H is
induced by the inclusion PrimH — H.

In the classical case the idempotent so obtained is precisely the Eulerian idempo-
tent, whose construction is based on the logarithmic series. It is an important object
since it provides an explicit description of the Baker-Campbell-Hausdorff formula [44],
and it permits us to split the Hochschild and the cyclic chain complexes [43], [46].
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4 INTRODUCTION

See also [8] for an application to the Kashiwara-Vergne conjecture. In the case of
the triple (As,2as, M B) the idempotent is Ronco’s idempotent [76], based on the
geometric series. Our construction gives an analogue of the Eulerian idempotent for
each triple of operads.

We give several variations of our main theorem and many examples. We show that
several results on bialgebras in the literature can be interpreted in terms of triples of
operads. Our conceptual proof encompasses many ad hoc proofs of particular cases.

Here is the content of this monograph.

Chapter 1 contains elementary facts about “types of algebras and bialgebras”
from the operadic point of view. The proofs of the theorems are performed in this
framework, not only because of its efficiency, but also because some of the types of
algebras (namely the primitive ones) that we encounter are not defined by generators
and relations, but come as the kernel of some operad morphism. We introduce the
notion of “connected coalgebra” used in the hypotheses of the main theorem. The
reader who is fluent in operad theory can easily bypass this chapter.

Chapter 2 contains the main results of this monograph together with their proof.
First, we study the algebraic structure of the primitive part of a generalized bialgebra
of type C°-A. In general a product of two primitive elements is not primitive. However
the primitive part is stable under some operations. We determine all of them under
the hypotheses (HO) and (H1) and we get the “maximal” algebraic structure for the
primitive part. We call it the primitive operad and denote it by Prim¢ A or P.

Then we study the generalized bialgebra types which satisfy the hypothesis
(H2iso). Though it will become a particular case of the general theorem, we prefer
to treat it independently, because of its importance and because it is the key part
of the proof of the general case. The result is the rigidity theorem for triples of the
form (C,Z,Vect). Then we move to the structure theorem. We establish that the
conditions (HO), (H1) and (H2epi) ensure that the structure theorem, referred to
above, is valid for the C°-A-bialgebras.

There are several consequences to the structure theorem. For instance any good
triple of operads (C,.A,P) gives rise to a natural isomorphism

A(V) 2 C o P(V).

It generalizes the classical fact that the underlying vector space of the symmetric
algebra over the free Lie algebra is isomorphic to the tensor module

T(V) = S(Lie(V)).

Equivalently, we have an isomorphism of functors and/or of S-modules : A & C¢o P.
Taking the Frobenius characteristic (resp. the generating series) gives interesting func-
tional equations of symmetric functions (resp. of power series).
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INTRODUCTION 5

In the known cases the proof of the structure theorem uses an ad hoc construction of
an idempotent, which depends very much on the type of bialgebras at hand. The key
point of our proof is to construct an “abstract” idempotent which works universally.

Chapter 3. In the first three sections we give recipes to construct good triples
of operads. An important consequence of our formulation is that, starting with a
good triple (C, A,P), we can construct many others by moding out by some op-
eradic ideal. If J is an operadic ideal of A generated by primitive operations, then
(C, A/J,Prim¢ A/J) is also a good triple. In particular any good triple (C,.A,P)
determines a good triple of the form (C, Z, Vect), where Z = A/(P).

Assuming that the tensor product of two A-algebras is still a A4-algebra (Hopf
operad, multiplicative operad, for instance), there is a natural way of constructing a
notion of As®-A-bialgebra which verifies (H0) and (H1).

For quadratic operads there is a notion of Koszul dual operad. We explain how
this construction should permit us to construct new triples of operads.

In order to keep the proofs into the most simple form we treated the case of al-
gebraic operads in vector spaces over a characteristic zero field. But the structure
theorem admits several generalizations. First, if we work with regular operads, then
the characteristic zero hypothesis is not necessary anymore. Second, the tensor cate-
gory of vector spaces Vect can be replaced by any linear symmetric monoidal category,
for example the category of sign-graded vector spaces (super vector spaces) or the cat-
egory of S-modules. The formulas are the same provided that one applies the Koszul
sign rule. Third, in characteristic p it is expected that similar results hold.

The structure theorem can be “dualized” in the sense that the role of the algebra
structure and the coalgebra structure are exchanged. The role of the primitive part
is played by the indecomposable part.

In the last two sections we explain the relationship with the theory of “rewriting
systems” and we give some application to the representation theory of the symmetric
groups.

Chapter 4. We study some explicit examples in details. We show how several
results in the literature can be interpreted as giving rise to a good triple of operads.
Any good triple (C, A, P) gives rise to a quotient triple of the form (C, Z, Vect) where
Z = A/(P). We put in the same section the triples which have the same quotient
triple:

> (Com,Com,Vect) and Hopf compatibility relation. This section deals with the
classical case of Com®- As-bialgebras (cocommutative bialgebras) and some of its vari-
ations: (Com, Parastat, N Lie), (Com, Mag, Sabinin). Our structure theorem for the
triple (Com, As, Lie) is equivalent to the Poincaré-Birkhoff-Witt (PBW) theorem plus
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6 INTRODUCTION

the Cartier-Milnor-Moore (CMM) theorem. We show that our universal idempotent
identifies to the Eulerian idempotent.

> (As, As,Vect) and nonunital infinitesimal compatibility relation. It contains
the case of 2-associative bialgebras, that is the triple (As,2as, Brace), and also
(As, Dipt, M B), (As, Mag, MagFine). It is important because it permits us to han-
dle the structure of classical cofree Hopf algebras [54].

> (As, Zinb, Vect) and semi-Hopf compatibility relation. It contains the dendri-
form and dipterous bialgebras. It is interesting for its role in the study of the graph-
complexes & la Kontsevich obtained by replacing the Lie homology by the Leibniz
homology [46], [10].

> (Lie, Lie, Vect) and the Lily compatibility relation. This is a completely new
case. It gives a criterion to show that a Lie algebra is free.

> (Nap, PreLie,Vect) and the Livernet compatibility relation. It is due to M.
Livernet [42]. A variation (Nap, Mag,Primyp PreLie) needs more work to find a
small presentation of the primitive operad.

> Then we survey some examples of the form (A, A, Vect). We formulate a con-
jecture related to a question of M. Markl and we introduce an example coming from
computer sciences (interchange bialgebra). Finally we present a triple involving k-ary
operations and cooperations.

Chapter 5. We treat in details the duplicial bialgebras which give rise to the triple
(As, Dup, Mag) mentioned before. We prove that this triple is good and we make
explicit the analogue of the PBW isomorphism. We prove that the operad Dup is
Koszul. We treat the case (Dup, Dup, Vect) and we comment on further generaliza-
tions (operadic quantization).

Appendix. We provide a tableau of compatibility relations and a tableau of triples
summarizing the examples treated in chapters 4 and 5.

Notation, convention. In this monograph K is a field, which is, sometimes, sup-
posed to be of characteristic zero. Its unit is denoted 1k or just 1. All vector spaces
are over K and the category of vector spaces is denoted by Vect. We often say “space”
in place of “vector space”. An injective linear map (monomorphism) is denoted by —
and a surjective linear map (epimorphism) is denoted by —». The space spanned by
the elements of a set X is denoted K[X]. The tensor product of vector spaces over K
is denoted by ®. The tensor product of n copies of the space V is denoted by V®".
For v; € V the element v; ® - ® v, of V®" is denoted by (vy,...,v,) or simply
by vy - - - vp,. For instance in the tensor module

TV)=KeoVe oV a--.
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we denote by v; ... v, an element of V®", but in T(V)®* we denote by v; ® - - - ® v
the element such that v; € V C T(V) is in the ith factor. The reduced tensor module

TV):=Va oV e-..

can be considered either as a subspace of T'(V') or as a quotient of it.

A linear map V®" — V is called an n-ary operation on V and a linear map V —
V®" is called an n-ary cooperation on V. The symmetric group is the automorphism
group of the finite set {1,...,n} and is denoted S,. It acts on V®" on the left by
o (v1,...,Vn) = (Vg-1(1),- - -, Yo-1(n))- The action is extended to an action of K[S,]
by linearity. We denote by 7 the switching map in the symmetric monoidal category
Vect, that is 7(u ® v) = v @ u (in the nongraded case).

A magmatic algebra is a vector space A equipped with a binary operation
A® A — A, usually denoted (a,b) — a-b . In the unital case it is assumed that there
is an element 1, called the unit, which satisfies -1 = a = 1. a. In the literature a
magmatic algebra is sometimes referred to as a nonassociative algebra.

Quotienting by the associativity relation (ab)c = a(bc) we get the notion of asso-
ciative algebra. Quotienting further by the commutativity relation ab = ba we get
the notion of commutative algebra. So, in the terminology “commutative algebra”,
associativity is understood.

References. — References inside the monograph include the chapter; so “see 2.3.4”
means see paragraph 3.4 in chapter 2.
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CHAPTER 1

ALGEBRAIC OPERADS

We briefly recall the definition, notation and terminology of the operad framework
(see for instance [62], [61] or the most recent book [56]). The reader who is familiar
with algebraic operads and props can skip this first chapter and come back to it
whenever needed.

1.1. S-module

1.1.1. S-module and Schur functor. — An S-module P is a family of right S,,-
modules P(n) for n > 0. Its associated Schur functor P : Vect — Vect is defined as

P(V) := P P(n) ®s, Ve,

n>0
where S,, acts on the left on V®" by permuting the factors. We also use the notation
P(V), :=P(n) ®s, V"

so that P(V) := @,50 P(V)n-

In this monograph we always assume that P(n) is finite dimensional. In general
we assume that P(0) = 0 and P(1) = K id (simply connected operad). In a few cases
we assume instead that P(0) = K, so that the algebras can be equipped with a unit.
The natural projection map which sends P(V'),, to 0 when n > 1 and P(V); to itself,
that is K id ®V =V is denoted

proj: P(V) — V.

A morphism of S-modules f : P — P’ is a family of S,-morphisms f(n) : P(n) —
P’(n). They induce a morphism of Schur functors:

F(V):P(V) — PI(V).
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10 CHAPTER 1. ALGEBRAIC OPERADS

1.1.2. Composition of S-modules. — Let P and Q be two S-modules. It can
be shown that the composite Q o P of the Schur functors (as endomorphisms of
Vect) is again the Schur functor of an S-module , also denoted Q o P. The explicit
value of (QoP)(n) involves sums, tensor products and induced representations of the
representations Q(i) and P(i) for all ¢ < n. This composition makes the category
of S-modules into a monoidal category whose neutral element is the identity functor.
Observe that this is not a symmetric monoidal category since the composition of
functors is far from being symmetric.

1.1.3. Generating series. — The generating series of an S-module P is defined as
dim P(n)
P e n
o) = E>1 — T t".

It is immediate to check that the generating series of a composite is the composite of
the generating series:

FP () = F2(fP (1))

1.2. Algebraic operad

1.2.1. Definition. — By definition an algebraic operad, or operad for short, is a
Schur functor P equipped with two transformations of functors ¢ : Idyect — P and
vy : PoP — P which make it into a monoid. In other words we assume that ~ is
associative and that ¢ is a unit for 7. Such an object is also called a monad in Vect.

The identity functor Idyect is itself an operad that we denote by Vect (instead
of Idyect) when we consider it as an operad. We call it the identity operad.

We usually assume that the operad is connected, that is P(0) = 0.

1.2.2. Algebra over an operad. — By definition an algebra over the operad P, or
a P-algebra for short, is a vector space A equipped with a linear map 4 : P(4A) —» A
such that the following diagrams are commutative:

PoP(4) 204 p(a) A—Epa)
'y(A)l J:YA \x JV’YA
PA) —2 5 A A

There is an obvious notion of morphism of P-algebras. The category of P-algebras is
denoted P-alg. Since we made the assumption P(0) = 0, these algebras are nonunital.

If we want a unit for the P-algebras, then we take P(0) = K and the image of
1€ Kby v4 : P(0) — A is the unit of A.
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1.2. ALGEBRAIC OPERAD 11

The operation id € P(1) is the identity operation: id(a) = a for any a € A.
For 4 € P(k) and p1 € P(n1),...,ux € P(ng) the composite y(u;p1,: - , k) €

P(ny+---+mng) is denoted po (p1,- -, pk) or p(p1,- - - , px) if no confusion can arise:
1 Hi
plpn, - pe) = \ /
I

So, an operad can also be described as a family of linear maps
v:Pk)@P(i1) ® - - @ P(ix) — P(i1 + -+ + ix)

which assemble to give a monad (P, 7, ¢).

The restriction of y4 to P(n) ®s, A®" is denoted 7, : P(n) ®s, A®™ — A if no
confusion can arise.

Given an element p € P(n) and an n-tuple (ay,...,a,) of elements of A, we can
construct

play, ..., an) =7 ® (a1,...,a,)) € A.

Hence P(n) is referred to as the “space of n-ary operations” for P-algebras. The
integer n is called the “arity” of the operation pu.

The category of algebras over the operad Vect is simply the category of vector
spaces Vect. Hence we have Vect(1) = K and Vect(n) =0 for n # 1.

1.2.3. Free P-algebra. — By definition a P-algebra Ag is free over the vector
space V if it is equipped with a linear map i : V — Ag and if it satisfies the following
universal property:

Any map f: V — A, where A is a P-algebra, extends uniquely into a P-algebra

v
a=--L 34

Observe that the free algebra over V is well-defined up to a unique isomorphism.

For any vector space V one can equip P(V) with a structure of P-algebra by
setting yp(v) := ¥(V) : P(P(V)) — P(V). The axioms defining the operad P show
that (P(V),v(V)) is the free P-algebra over V.

morphism f: A4y — A:

SOCIETE MATHEMATIQUE DE FRANCE 2008



12 CHAPTER 1. ALGEBRAIC OPERADS

Categorically, the functor P : Vect — P-alg,V — P(V) is left adjoint to the
forgetful functor which assigns, to a P-algebra A, its underlying vector space:

Homp._ag (P(V), A) = Homyecs (V, A).

1.2.4. Operadic ideal. — For a given operad P and a family of operations {v}
in P the ideal Z, generated by this family, is the sub-S-module Z linearly generated
by all the compositions p o (u1,- -+ , pi) where at least one of the operations is in the
family. The quotient P/Z, defined as (P/I)(n) = P(n)/Z(n), is an operad.

If Q is a suboperad of P, then we denote by Q the sub-S-module of Q such that
9(1) = Q(1)/Kid and Q(n) = Q(n) for n > 2. We denote by (Q) the operadic ideal
generated by Q in P. So the quotient P/(Q) is an operad.

1.2.5. Type of algebras and presentation of an operad. — For a given type
of algebras defined by generators and relations (supposed to be multilinear), the as-
sociated operad is obtained as follows. Let P(V) be the free algebra of the given type
over V. Let V = Kz; @ - - - & Kz,, be a based n-dimensional vector space. The multi-
linear part of P(V) of degree n ( i.e. linear in each variable) is a subspace of P(V),
denoted P(n). It is clear that P(n) inherits an action of the symmetric group. The
universal property of the free algebra P(V) permits us to give a structure of operad on
the Schur functor P. The category of P-algebras is precisely the category of algebras
we started with.

The operad P can also be constructed by taking the free operad over the generating
operations and quotienting by the ideal (in the operadic sense) generated by the
relators.

For instance the free operad on one binary operation y (with no symmetry) is the
magmatic operad Mag. In degree n we get Mag(n) = K[PBT,|®K|S,] where PBT,
is the set of planar binary rooted trees with n — 1 internal vertices (and n leaves),
cf. 5.1.2. The tree | € PBT codes for id € Mag(1) and the tree Y € PBT> codes for
the generating operation u € Mag(2).

The operad As of (nonunital) associative algebras is the quotient of Mag by the
ideal generated by the relator

po (u®id) — po (id®u) € Mag(3).

Observe that a morphism of operads P — Q gives rise to a functor between the
corresponding categories of algebras in the other direction:

Q-alg — P-alg.
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1.2. ALGEBRAIC OPERAD 13

1.2.6. Binary and quadratic operad. — An element y € P(2) defines a map
I‘L:A®2——_)A’ a’®b'_’u’(a’b)’

called a binary operation. Sometimes such an operation is denoted by a symbol, for
instance *, and we write a *b instead of u(a,b). We allow ourselves to talk about “the
operation a * b”.

An operad is said to be binary, resp. (k)-ary, if it is generated by binary, resp. (k)-
ary, operations (elements in P(2), resp. P(k)). An operad is said to be quadratic if
the relations are made of monomials involving only the composition of two operations.
In the binary case, it means that the relations are of the form

Z pi(v; ®1d) = Z p;(1d ®v;)

where the elements p;,v;, 1, v; are binary operations (not necessarily the generat-
ing ones). Sometimes, in the literature, the adjective quadratic is used in place
of binary and quadratic (see for instance [28]). Most classical types of algebras
are defined by binary quadratic operads: associative, commutative, Lie, Poisson,
pre-Lie, Leibniz, dendriform, 2-associative, alternative, magmatic, etc. Some are
generated by n-ary operations, but are still quadratic: Lie triples, Jordan triples,
Ao, Cooy Loo, Brace, M B, Mag®™, etc.

1.2.7. Nonsymmetric operad. — Let P be an operad whose associated type of
algebras has the following property. The generating operations do not satisfy any
symmetry property and, in the relations, the variables stay in the same order. Then,
it is easy to show that P(n) = P, ® K[S,] for some vector space P,. Here K[S,]
stands for the regular representation. Moreover the operadic structure is completely
determined by composition maps

Yigeerin ¢ P’n ® Pil K- Q Pin — Pi1+...+i".

Such operads are called regular operads. The object (Pn,7i,...i, )n>1 is called a non-
symmetric operad. The operads as defined in 1.2.1 are also called symmetric operad
when there is a risk of confusion. The operads

As, Dend, Dipt,2as, Mag, Dup, A, Mag™
are regular and so are determined by nonsymmetric operads that we denote by the

same symbol.

1.2.8. Set-theoretic operad. — So far we have defined an operad in the monoidal
category of vector spaces (and tensor product ®), but we could choose the category
of sets (and cartesian product x). This would give us the notion of set-operad. Since
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14 CHAPTER 1. ALGEBRAIC OPERADS

the functor K[—] : Set — Vect is strong monoidal, any set-operad gives rise to an
algebraic operad. Such an operad is said to be set-theoretic.

1.2.9. Classical examples: the three graces. — The classical examples of alge-
braic operads are the operad As of associative algebras, the operad Com of commu-
tative algebras (understood to be associative) and the operad Lie of Lie algebras. In
each case the free algebra is well-known, so the operad is easy to describe: As(V) is
the (nonunital) algebra of noncommutative polynomials over V (i.e. reduced tensor al-
gebra T(V)), Com(V) is the (nonunital) algebra of polynomials over V (i.e. reduced
symmetric algebra S(V)), Lie(V) is the subspace of As(V) generated by V under
the bracket operation [z,y] = zy — yz. It follows that in the associative case we get
As(n) = K[S,] (regular representation). In the commutative case we get Com(n) = K
(trivial representation). In the Lie case we get Lie(n) = Indé’; (K) (induced represen-
tation from the cyclic representation over the cyclic group C,, when K = C).

Observe that As is nonsymmetric, As and Com are set-theoretic, but Lie is not
regular nor set-theoretic.

1.3. Coalgebra and cooperad

1.3.1. Coalgebra over an operad. — By definition a coalgebra over the operad C
is a vector space C equipped with S, -equivariant maps

Cn)®C —C®", 6@cr—dc)=c® - ®c

(we omit the summation symbol on the right hand side) which are compatible with
the operad structure of C. In particular, there is a commutative diagram

C(k) ® Ci1) ® - ® Cli) ® C ———— 5 C(i1) ® - - ® C (i) ® C®*

| N

Clir+---+ix)®C Cli1))®C®---®@C(ix) ®C

e |

» OO = OO @ ... ® C®

In this framework the elements of C(n) are called n-ary cooperations.

1.3.2. Primitive part, connectedness (conilpotency). — Let C be an operad
such that C(0) = 0 and C(1) = K id. We suppose that there is only a finite number of
generating cooperations in each arity so that C(n) is finite dimensional. The identity
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1.3. COALGEBRA AND COOPERAD 15

operation id is not considered as a generating cooperation. Let C be a C-coalgebra.
We define a filtration on C as follows:

F,C =PrimC := {z € C | §(z) = 0 for any generating cooperation 6}.

The space Prim C is called the primitive part of C, and its elements are said to be
primitive. Then we define the filtration by:

F,C:={z€C|é(x)=0forany 6 € C(n),n >r}.

We adopt Quillen’s terminology (cf. [73] Appendix B) and say that the coalgebra C
is connected, or conilpotent, if C =, FrC.

If the operad C is binary, then this definition of connectedness is equivalent to the
definition which uses the filtration

FlIC:={zeC|éx)e (F'_,C)® for any generating cooperation 6}

If C is a connected graded coalgebra, that is C = @,,5; Cn, then C is connected in
the aforementioned sense.

1.3.3. Cofree coalgebra. — By definition a C-coalgebra Cj is said to be cofree
over the vector space V if it is connected, equipped with a map s: Cy — V and if it
satisfies the following universal property:

Any map p: C — V, where C is a connected C-coalgebra, extends uniquely into a
C-coalgebra morphism p : C — Cy:

The cofree coalgebra over V is well-defined up to a unique isomorphism. Observe that
we are working within the category of “connected” coalgebras. If we were working in
the whole category of coalgebras, the notion of cofree object would be different.

Let C = As. The cofree coassociative coalgebra over V' is the reduced tensor module
T (V) equipped with the deconcatenation operation:

d(vy...v,) = E V1.V @ Vi1 ... Un.
1<i<n—1

1.3.4. Cooperad and coalgebra over a cooperad. — Taking the linear dual of
an operad C gives a cooperad denoted C°. Let us recall that a cooperad is a comonoid
structure on a Schur functor. As a vector space C°(n) = C(n)* = Hom(C(n),K). We
equip this space with the following right S,,-module structure:

o) = Fp ),
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16 CHAPTER 1. ALGEBRAIC OPERADS

for f € C(n)*,u € C(n) and o € S,,.
The cooperadic composition is denoted 8 : C° — C°oC®. There is an obvious notion
of coalgebra C over a cooperad C° given by maps

9(C): C — c°(C)" = [] c°(n) ®s, C®".
n>1

It coincides with the notion of coalgebra over an operad when the cooperad is the
linear dual of the operad. Here we use the characteristic zero hypothesis to identify
invariants and coinvariants under the symmetric group action. We always assume that
C¢(0) =0, C°(1) = Kid and that C(n) is finite dimensional. The elements of C°(1) are
called the trivial cooperations and an element f € C¢(n), n > 2, is called a nontrivial
cooperation.

The projection of §(C) to the n-th component is denoted

6, :C — C°(n) ®s, C®"
if no confusion can arise. Let (—, —) : C(n) ® C°(n) — K be the evaluation pairing.
The relationship with the notation introduced in 1.3.1 is given by the commutative
diagram

C(n) ® C°(n) ®s, C®"

C(n)®C cen

d®c - fe)=cd®---®c

1.3.5. Lemma. — If the coalgebra C is connected (cf. 1.3.2), then the map 6(C) factors
through the direct sum:
8(C) : C — C°(C) == P C°(n) ®s,C®".
n>1
Proof. — Since for any z € C there is an integer 7 such that §(z) = 0 for any

cooperation & such that |§| > r, it follows that there is only finitely many nonzero
components in 6(C)(z). O

1.3.6. Cofree coalgebra and cooperad. — From the axioms of a cooperad it
follows that C¢(V') is the cofree C°-coalgebra over V.

Explicitly, for any connected coalgebra C, the universal lifting 5 : C — C¢(V)
induced by a linear map p : C — V is obtained as the composite

c 29, ceoy LB, ey,
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1.4. PROP 17

Suppose that the operad C is binary quadratic, generated by operations uj, o, . . .
and relations of the form

Z a;;pi(p; ®id) = Z Bijpi(id ®pj), s, Pij € K.

%,
Then a coalgebra C over C is defined by the cooperations ) : C — C ® C satisfying
the relations:

> au(py @id)u; =Y Bi;(id ®p)u; -

,j ,J

1.3.7. Invariants versus coinvariants. — Saying that a binary cooperation
6:C —Co®C

is symmetric means that its image lies in the invariant subspace (C ® C)52. In
characteristic zero the natural map from invariants to coinvariants is an isomorphism
(C®C)% = (C®C)s,. Therefore, if C(2) = K (trivial representation), then § defines
amap C — C(2) ®s, C®2.

1.3.8. Nonsymetric cooperad. — If the operad C is nonsymmetric (cf. 1.2.7),
then the equivalence between the two notions of coalgebra does not need the charac-
teristic zero hypothesis. Indeed, since C(n) = C, ® K[S,], we simply take C¢(n) :=
C: @ K[Sy].

1.4. Prop

A type of algebras is governed by an operad. Similarly there is an algebraic device
which governs a type of bialgebras: it is called a prop.

1.4.1. Definition. — In the algebra framework (i.e. operad framework) an opera-
tion p can be seen as a box with m inputs and one output:
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18 CHAPTER 1. ALGEBRAIC OPERADS

In the coalgebra framework (i.e. cooperad framework) a cooperation § can be seen
as a box with 1 input and n outputs:

a

If we want to deal with bialgebras, then we need boxes with multiple inputs and
multiple outputs:

called multivalued operations or bioperations. Hence we have to replace the S-modules
by the S°P-S-modules , i.e. families P(m,n) of S x S,-bimodules. A composition

of multivalued operations is prescribed by a bipartite graph. This composition is
supposed to be compatible with the symmetric group actions and to satisfy some
obvious associativity and unitality axioms. The whole structure is called a prop (also
denoted previously PROP), cf. [57], [19], [79]. An algebra (or better a gebra) over a
prop is a vector space H equipped with maps

P(m,n) @ H®™ — H®"

which are compatible with the symmetric group actions and with the composition in
the prop.

A type of gebra can be defined by generators and relations. When the generators
are either operations (i.e. elements in P(m, 1)) and/or cooperations (i.e. elements in
P(1,n)), the gebras are called generalized bialgebras, or simply bialgebras if there is
no ambiguity with the classical notion of bialgebras. An explicit description of the
props corresponding to the classical bialgebras can be found in [71].

Given a generating set of multivalued operations one can construct the free prop
over them (cf. for instance [19] and [79, section 2]). Moding out by relations gives
rise to a quotient prop.

Unlike the case of algebras and operads, this prop cannot be interpreted as a “free
gebra” because the forgetful functor from gebras (of a given type) to vector spaces
does not admit a left adjoint in general.
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CHAPTER 2

GENERALIZED BIALGEBRA AND
TRIPLE OF OPERADS

We introduce the notion of generalized bialgebra and its primitive part. We denote
by C the operad driving the coalgebra structure and by .4 the operad driving the
algebra structure. We prove that, under some hypotheses (HO) and (H1) , a gen-
eralized bialgebra type determines an operad called the primitive operad. Primitive
elements in a generalized bialgebra do not, in general, give a primitive element under
an operation. However they do when this operation is primitive. So, the primitive
part of a generalized bialgebra has the property of being an algebra over the primitive
operad.

Then we treat the case where the primitive operad is trivial (i.e. Vect). We prove
that under the hypotheses (HO) (distributive compatibility condition), (H1) (the free
algebra is a bialgebra), and (H2iso) (free isomorphic to cofree), any connected C°-.A-
bialgebra is both free and cofree. This is the rigidity theorem 2.3.7. The key of the
proof is the construction of a universal idempotent ey : H — H whose image is the
space of primitive elements Prim H.

For a given prop C°-A (satisfying (HO) and (H1) ) whose primitive operad is P,
we call (C, A, P) a triple of operads. Our aim is to find simple conditions under which
the “structure theorem” holds for (C,.4,P) . This structure theorem says that any
connected C¢-A-bialgebra is isomorphic to U(Prim H) as an algebra and is cofree over
Prim’H as a coalgebra. These simple conditions are (HO), (H1) and (H2epi). The
latter condition says that the coalgebra map A(V) — C¢(V) is surjective and admits
a coalgebra splitting.

Then we give some immediate consequences of the main theorem.

In this chapter we suppose that the ground field is of characteristic zero. We
indicate in the next chapter how to avoid this hypothesis in certain cases.
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20 CHAPTER 2. GENERALIZED BIALGEBRA AND TRIPLE OF OPERADS

2.1. Generalized bialgebra

We consider a certain type of prop generated by operations and cooperations.
A gebra over such prop is called a generalized bialgebra.

2.1.1. Compatibility relation and generalized bialgebra. — Let A and C be
two algebraic operads. We always assume that there is a finite number of generating
operations in each arity. As a consequence C(n) and .A(n) are finite dimensional vector
spaces.

By definition a (C¢, {§, A)-bialgebra, or C°-A-bialgebra for short, also called general-
ized bialgebra, is a vector space H which is an A-algebra, a C-coalgebra, and such that
the operations of A and the cooperations of C acting on H satisfy some compatibility
relations, denoted (), read “between” (some equalities involving composition of opera-
tions and cooperations valid for any elements of H). This set of relations is, of course,
part of the structure. A category of generalized bialgebras is governed by an algebraic
prop (we simply say a prop) as mentioned in 1.4 (cf. for instance [79]). Starting with
any presentation of the operad A and of the cooperad C, this prop is obtained as
the quotient of the free prop generated by the generators of A and C (considered as
multivalued operations), modulo the relations between the operations, the relations
between the cooperations and the relations entwining operations and cooperations.
The gebras over this quotient are the generalized bialgebras.

A distributive compatibility relation between the operation y and the cooperation §
is a relation of the form

Sopu=) (M@ ®pui)ow o (8} ® - ®3) @

i
where
p€ An), pi € Ak1), ..., prm € Alkm),
5 € C(m), & € C(4),..., 64 € C(Ly),
ki+-tbkpn=bL+ -+l =1y
w' € K[Sy,]-
Hence, in a generalized bialgebra, the composite of an operation and a cooperation
can be re-written as cooperations first and then operations. Observe that the identity
is both an operation and a cooperation.

2.1.2. Hypothesis (H0). — There is a distributive compatibility relation for any
pair (8, 4) where p is an operation and 4 is a cooperation.

~ Of course, it suffices to check this hypothesis for x4 a generating operation and ¢ a
generating cooperation.
For a given relation (] we denote by ® the right-hand side term.
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2.1. GENERALIZED BIALGEBRA 21

The distributive compatibility relations induce a mized distributive law in the sense
of Fox and Markl [19], that is a map
P(m) ® C(n) — @D Cli) ® -+ ® Clim) ®s, K[Sn] ®s, P(j1) @ - @ P(jn)-
Here we used the multi-index notation for ¢ = (i,...,%,) and for j, and 5; :=
Siy X x 8, N=d3+- - +imp=J1+ "+ Jn.

im)

2.1.3. Diagrams. — It will prove helpful to write the compatibility relations as
diagrams instead of long algebraic expressions. For instance, for a binary operation
1 and a binary cooperation § we draw

A4 |
Iz )
| /" N\
The associativity property of u, which is written p(u(z,y), 2) = p(z, u(y, 2)) alge-
braically, becomes

N, \\/

© ©
\ = /
v T

pictorially.
Example of a compatibility relation for the pair (4, u) withn =3,m =4andr =8:

LA A

w

| =
AN YTV Y
Here we have ¢y = 1,0, = 3,43 = 4;k1 = 2,ke = 1,k3 = 3,k4 = 2 and so

r=14+3+4=2+1+43+ 2. Observe that, in the general case, the right-hand side
term @ is a sum of such compositions. We split ¢ into two summands

d =, + Py,

as follows. The summand ®; contains all the terms for which r = n and ®, contains
all the terms for which » > n, see section 2.1.1 for the meaning of r and n. There
is no term with r < n since we assume that C(0) = 0. The important point of this
splitting is the following: for each summand

M ® - Qup)ow' ol ® - ®8)
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22 CHAPTER 2. GENERALIZED BIALGEBRA AND TRIPLE OF OPERADS

of ®, at least one of the cooperations 5}; is nontrivial (i.e. of arity > 2). In ®; the
only cooperation which pops up is the identity.

When both operads A and C are nonsymmetric and, in the compatibility relations,
there is no crossing (in particular the only permutations w are the identity), then we
say that this is a nonsymmetric case and that C°-A is a nonsymmetric prop.

2.1.4. Examples of distributive compatibility relations

2.1.4.1. Hopf algebra (classical bialgebra, Hopf relation). — A classical bialgebra is
a unital associative algebra equipped with a counital coproduct A which satisfies the
Hopf compatibility relation

A(zy) = A(z)A(y)-

Since, here, we want to work without unit nor co-unit, we work over the augmentation
ideal and with the reduced comultiplication § defined by

dz)=Az)—z®1-1®«x.
The classical Hopf compatibility relation becomes {gops :

zy) =z @Y+y® T+ 1) ®T(2)Y +T(1)Y @ Z(2)
+2Ya) @ Ye) +ya) @ TY2) + T1)Y1) ® T(2)¥Y(2)

under the notation 6(z) := z(1) ® T(2) (Sweedler notation with summation sign un-
derstood).
Pictorially the relation {jgops reads:

L2

2.1.4.2. Nonunital infinitesimal bialgebra (As®-As-bialgebra, n.u.i. relation). — The
motivation for this case is the tensor algebra that we equip with the deconcatenation
coproduct (instead of the shuffle coproduct). In the nonunital framework the compat-
ibility relation satisfied by the concatenation product and the (reduced) deconcate-
nation coproduct is

d(zy) = @Y+ z1)y ® T(2) + TYQ) ® Y(2)

under the notation 6(z) := z(1) ® z(3).
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2.2. THE PRIMITIVE OPERAD 23

Pictorially we get {nu: :

It

+ +

N /. ~ v
Ql (}2

See [54], where a unital version is handled, and 4.2 for more details. The prop defined
by this type of generalized bialgebras is nonsymmetric.

2.1.4.8. Bimagmatic bialgebra (Mag°®-Mag-bialgebra, magmatic relation). — The
motivation for this case is the magmatic algebra Mag(V). We equip it with the
magmatic coproduct obtained by identifying the classical basis of Mag(K) (planar
binary trees) with its dual. In the nonunital framework the compatibility relation

is Jmag:

=/ [+ 0
—— =N
(171 q>2

This is a nonsymmetric prop.

2.1.4.4. Frobenius algebra (As®-As-bialgebra, Com®-Com-bialgebra, Frobenius rela-
tion)

Loty = AoV

®, [ @, D2
This is a nonsymmetric case if the algebra and the coalgebra are not supposed to be
commutative.
These examples and many more will be treated in chapters 4 and 5. See 6.2 for a
list of some compatibility relations.

2.2. The primitive operad

The primitive part of a generalized bialgebra is, in general, not stable under the
operations of the operad 4. However it may be stable under some operations. In
this section we describe the maximal suboperad P of 4 such that the primitive part
Prim H of the C°-A-bialgebra H is a P-algebra. Both operads A and C are supposed
to be finitely generated and simply-connected, that is A(0) = 0 = C(0) and A(1) =
K id = C(1).
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24 CHAPTER 2. GENERALIZED BIALGEBRA AND TRIPLE OF OPERADS

2.2.1. The hypothesis (H0). — Given a type of bialgebras, for instance a set of
generating operations, a set of generating cooperations and a set of relations, it may
happen that the only bialgebra that can exist is 0. See for instance the discussion
in [19, section 11]. The following hypothesis asserts that this is not the case, that is,
the prop is nontrivial.

(H1) The free A-algebra A(V) is equipped with a C¢-A-bialgebra structure which
is functorial in V.

One could translate this hypothesis as a condition on the associated prop.

2.2.2. The primitive part of a bialgebra. — Let H be a C°-A-bialgebra. By
definition the primitive part of the C°-A-bialgebra H, denoted Prim H, is
PrimH := {z € H|d(z) =0 for all § € C°(n),n > 2}.
Hence, if C is generated by é;,...,0dk,..., then we have
PrimH =Kerd; N ...NKerdpN...

Let us suppose that the hypotheses (HO) and (H1) are true. By definition an element
u € A(n) is called a primitive operation if, for any independent variables z1,...,Z,,
the element u(z1,...,z,) € A(Kz18- - -®Kz,) is primitive. In terms of the prop C*-A,
1 being primitive is equivalent to the following: for any generating cooperation é the
®1-part of the compatibility relation for (4, x) is 0.
Let (Prime A)(n) C A(n) be the space of primitive operations for n > 1:
(Prime A)(n) := {p € A(n) | p is primitive}.

By functoriality of the hypothesis, (Prim¢ A)(n) is a sub-S,-module of A(n) and so
we obtain an inclusion of Schur functors

Prime A — A.
As a result we have (Prim¢ A)(V) = Prim(A(V)).

2.2.3. Theorem (the primitive operad). — Let (C, (), A) be a type of generalized bialge-
bras over a characteristic zero field K. We suppose that the following hypotheses are
fulfilled:

(HO) any pair (9, 1) satisfies a distributive compatibility relation,

(H1) the free A-algebra A(V) is equipped with a C¢-A-bialgebra structure which is
functorial in V.

Then the Schur functor P, given by P(V) := (Prim¢ A)(V), is a suboperad of A. For
any C°-A-bialgebra 'H the space Prim H is a P-algebra and the inclusion PrimH — H
is a morphism of P-algebras.
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2.2. THE PRIMITIVE OPERAD 25

Proof. — First we remark that the elements of V' C A(V) are primitive, hence V C
P(V), and id is a primitive operation. Indeed, since the bialgebra structure of A(V) is
functorial in V', any cooperation ¢ on A(V') respects the degree. For n > 2 the degree
one part of A(V)®" is trivial. Since V is of degree one in A(V), we get §(V) = 0.
Hence any element of V' is primitive and the functor ¢ : Id — A factors through P.

To prove that the Schur functor P : Vect — Vect is an operad, it suffices to show
that it inherits a monoid structure P o P — P from the monoid structure of 4. In
other words it suffices to show that composition of primitive operations, under the
composition in A, provides a primitive operation:

PoP .. s P
Ao A—— A

We use the hypothesis of distributivity of the compatibility relation between oper-
ations and cooperations, cf. 2.1.

Let w,p1,-.., 4 be operations, where u € P(n). We want to prove that the
composite o (1, ..., My ) is primitive when all the operations are primitive. It suffices
to show that é o o (u1,...,un) applied to the generic element (z1,...,zs) is 0 for
any nontrivial cooperation 6.

By 2.1 we know that § o uy = ®; + ®2, where ®; involves only operations, and ®,
is of the form

=) (W® - @u,)ow o(fi® @)
i

where, for any i, at least one of the cooperations 8}, k = 1,...,n, is nontrivial.
We evaluate this expression on a generic element (z1,...,Z,). On the left-hand side
u(z1,...,x,) is primitive by hypothesis, so (6 o u)(z1,...,2,) = 0. On the right-
hand side ®5(z1,...,2,) = 0 because the evaluation of a nontrivial cooperation on a
generic element (which is primitive) is 0. Hence we deduce that ®;(z1,...,z,) = 0.
Therefore the operation ®; is 0.

Let us now suppose that, not only y is primitive, but (g1, ..., 4,) are also primitive
operations. By the preceding argument we get

D30 (41, oy i) =) Vo (Sl ® - ® Shpin)
i
where, for any i, at least one of the cooperations 6¢, k = 1,...,n is nontrivial. Hence,
summarizing our arguments, the evaluation on (z1,...,zs) gives

(5°H°(Nl,---,ﬂk))(ﬂfl»---aws) = Q?O(Hl)'-",un)(xlv"-a‘?s)
=Wo (&ipi(zy...),...,00pus (... z5))
=0,
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26 CHAPTER 2. GENERALIZED BIALGEBRA AND TRIPLE OF OPERADS

because a nontrivial cooperation applied to a primitive element gives 0.
In conclusion we have shown that, when u, p1, ..., 4, are primitive, then

dopo(pry.--,tn)(x1,...,25) =0.

Hence the operation yo (u1,...,uy,) is primitive. As a consequence the image of the
composite

PoPr—>Ac AL A

lies in P as expected, and so P is a suboperad of A.

From the definition of the primitive part of the C°-A-bialgebra H it follows that
Prim H is a P-algebra. Since P is a suboperad of A, H is also a P-algebra and the
inclusion Prim ‘H — H is a P-algebra morphism. O

2.2.4. Examples. — Theorem 2.2.3 proves the existence of an operad structure
on P = Prim¢ A, however, even when A and C are described by generators and
relations, it is often a challenge to find a small presentation of P and then to find
explicit formulas for the functor F' : A-alg — P-alg.

In the case of the classical bialgebras, the primitive operad is Lie and the functor
F : As-alg — Lie-alg is the classical Liezation functor: F(A) is A as a vector space
and the bracket operation is given by [z,y] = zy — yz, cf. 4.1.2.

In the case of u.i. bialgebras the primitive operad is Vect and the functor F is
simply the forgetful functor, cf. 4.2.2.

In the magmatic bialgebras case the primitive bperad is Vect and the functor F is
simply the forgetful functor, cf. 4.6.1.

In the case of Frobenius bialgebras the primitive operad is As (that is the whole
operad) and the functor F' is the identity.

We end this section with a result which will prove helpful in the sequel.
2.2.5. Lemma. — Let C°-A be a generalized bialgebra type verifying the hypotheses

(HO) and (H1) of theorem 2.2.3. Let o(V) : A(V) — C%(V) be the unique coalgebra
map induced by the projection map proj: A(V) — V. Denote by
(=,—):C(n) xC(n) — K
the pairing between the operad and the cooperad.
For any cooperation § € C(n) the image of (u;z1---x,) € A(V) is
S(usx1 - @) = (6, pn(p))21® - Ty € Ve C A(V)®™.

Proof. — Let us recall from 1.3.4 that the map ¢, : A(n) — C°(n) is given by the
composite

AWV) 22 co(n) @5, A(V)®" 18P ooy g YR,
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2.3. RIGIDITY THEOREM 27

By assumption the bialgebra structure of A(V) is functorial in V.. Therefore 6,,(u4®
(x1,...,T,)) is linear in each variable z;. Hence it lies in C°(n) ®s, A(V)1®" =
C¢(n) ®s, V®™. So we have proved that 0,(u ® (z1,...,2n)) = @n(k) ® (Z1,...,Zs).

By definition, the coalgebra structure of A(V)

C(n) ® A(V) — A(V)®"
is dual (cf. 1.3.4) to
6, : A(V) — C°(n) ® A(V)®"
via the pairing (—, —). Hence we get

5([1:@(1:1,,$n))=<6,(f7n(ll/)>$1®®.’L'n o

2.3. Rigidity theorem

We first study the generalized bialgebra types for which the primitive operad is
trivial. The paradigm is the case of cocommutative commutative bialgebras (over a
characteristic zero field). The classical theorem of Hopf and Borel [6], can be phrased
as follows:

Theorem (Hopf-Borel). — In characteristic zero any connected cocommutative
commutative bialgebra is both free and cofree over its primitive part.

In other words such a bialgebra H is isomorphic to S(Prim H) (symmetric algebra
over the primitive part), see 4.1.8 for more details. Recall that, here, we are working
in the monoidal category of vector spaces. The classical Hopf-Borel theorem was
originally phrased in the monoidal category of sign-graded vector spaces, cf. 3.5.

Our aim is to generalize this theorem to the C¢-A-bialgebra types for which
P = Vect. :

2.3.1. Hypotheses. — In this section we make the following assumptions on the
given C°-A-bialgebra type:

(HO) for any pair (6,u) of generating operation p and generating cooperation &
there is a distributive compatibility relation,

(H1) the free A-algebra A(V') is naturally equipped with a C¢-A-bialgebra structure,

(H2iso) the natural coalgebra map p(V) : A(V) — C%(V) induced by the projection
proj: A(V) — V is an isomorphism of S-modules ¢ : A = C°.

2.3.2. Proposition. — Let C°-A be a type of bialgebras which verifies hypotheses (HO),
(H1) and (H2iso). Then the primitive operad is the identity operad: P = Vect.
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28 CHAPTER 2. GENERALIZED BIALGEBRA AND TRIPLE OF OPERADS

Proof. — It follows from (HO), (H1) and theorem 2.2.3 that there exists a primitive
operad P. Let pu € P(n) be a nonzero n-ary operation for n > 2. Since ¢ : A(n) &
C°(n) is an isomorphism by (H2iso), there exists a cooperation § € C(n) such that
(0,pu) =1. Let V =Kz, & - -- & Kz,,. It follows from lemma 2.2.5 that

50[,&(.'1,'1,...,.'1,‘")=:L‘1®‘H®.’L’nEV®nCA(V)®n-

Therefore § o 4t # 0 and there is a contradiction. Hence we have P(n) = 0 for
any n > 2. O

2.3.3. Proposition. — Let C°-A be a type of bialgebras which verifies hypotheses (HO),
(H1) and (H2iso). Let H be a C°-A-bialgebra and let V — Prim M be a linear map.
Then the unique algebra lifting & : A(V) — H of the composite o : V — PrimH — H
s a bialgebra map.

Proof. — First let us observe that, by proposition 2.3.2, we have Prim A(V) = V.
Since & is an algebra map by construction, we need only to prove that it is a coalgebra
map. We work by induction on the filtration of A(V') given by

FLA(V) == @ A(k) ®5,V .
k<n
When z is primitive, that is z lies in F1.A(V) =V, then a(z) = a(x) is primitive by
hypothesis. Let z € A(V) be an obstruction of minimal filtration degree m, that is
an element such that x € F;, A(V) and Ay 0 a(z) # (@ ® @) o A 4(v)(z). From the
definition of the filtration by the cooperations there exists some cooperation which
provides an obstruction of minimal filtration degree m — 1. But, since for m = 1 there
is no obstruction, we get a contradiction and & is a coalgebra morphism. O

2.3.4. The universal idempotent e. — Let H be a C°-A-bialgebra. We define a

linear map w(™ : H — H for each n > 2 as the following composite:
-1

®Id
W O co(n) @5, HE™ = A(n) ®s, HE" -1 H.
We define a linear map e : H — H by the formula:
e = ey = (Id—w@)1d -wP). .. (1d —w™)... .

We will show that, though e is given by an infinite product, it is well-defined. We
also denote by ey, or simply e, the surjective map H — Im(e).

Before stating and proving the main theorem of this section, we prove some tech-
nical results on the universal idempotent e.

We denote by iy : A(Prim’H) — H the unique algebra lifting induced by the
inclusion map ¢y : PrimH — H.
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2.3.5. Proposition. — If the C°-A-bialgebra H is connected, then the map e = ey :
H — H is well-defined and satisfies the following properties:

(a) eaqvy = projy : A(V) =V,

(b) the image of ey is PrimH,

(c) e is an idempotent: €% = e.

Proof. — Let (6}, ..,07,) be a linear basis of C(n) and let (87,...,6") be the dual
basis (of C¢(n)). We know by lemma 2.2.5 that for any x € C we have

On(z) = ZS;; ® 07 (z).

From the connectedness assumption on C (cf. 1.3.2) it follows that, for any =z € C,
there exists an integer r such that z € F,’H. Hence we have 6,,(z) = 0 whenever n > r
and therefore wl™ = 0 on F,’H whenever n > r. As a consequence

e(z) = ((1ld —w®)(1d -wB) - - (1d —wl™)) (z),
and so e(z) is well-defined.

Proof of (a). We consider the following diagram (where ® means ®g,, ):

Am)@Ver 8, cem)gver £, Am)eVer =, A(n)gVer

I L] |

A(V) —22 5 ()@ A(V)®" 25 A()@A(V)®» — 1 A(V)

where the composition in the last line is w[™. The left hand side square is commutative
by definition of ¢, cf. 1.3.4. The middle square is commutative by construction.
The right hand side square is commutative by definition of the .A-structure of A(V),
cf. 1.2.3. As a consequence the whole diagram is commutative. Since, in the diagram,
the lower composite is w!” and the upper composite is the identity, we deduce that
the restriction of w(™ on the n-th component A(V), is the inclusion into A(V). As a
consequence Id —w(™ is 0 on the n-th component for any n > 2. So e is the projection
on V = A(V); parallel to the higher components, since e(z) = z for any primitive
element.

Proof of (b). First we remark that the statement is true for H = A(V') by virtue
of (a). Since a is a bialgebra morphism by proposition 2.3.3, there is a commutative
diagram:

SOCIETE MATHEMATIQUE DE FRANCE 2008



30 CHAPTER 2. GENERALIZED BIALGEBRA AND TRIPLE OF OPERADS

where V = Prim H. Statement (a) implies that ey is surjective.

Proof of (c¢). From the definition of e we observe that e(z) = z for any = € PrimH
because w!™ (z) = 0 for any n > 2. Since e(x) is primitive by (b) we get e = e.
O

2.3.6. Corollary. — Let C°-A be a type of generalized bialgebras which verifies hy-
potheses (HO) and (H1). For any connected bialgebra H the natural algebra map
I: A(Prim’H) — H induced by the inclusion ¢ : PrimH — H is surjective.

Proof. — If x € Prim’H = Im, then clearly z € Im¢. Let us now work by induction
on the filtration of H. Assume that F,,,_1H C Im7 and let z € F,,’H. In the formula

=e(@)+ (Xow(@) - 3wl ewll@) + )

the first summand e(z) is in Prim H C Im I by proposition 2.3.5. The second summand
is also in Im7 because it is the sum of elements which are products of elements in
Prim H by induction. Therefore we proved x € Im7 for any =z € H, so [ is surjective.

O

2.3.7. Theorem (rigidity theorem). — Let C¢-A be a type of generalized bialgebras (over
a characteristic zero field) verifying the following hypotheses:

(HO) the operad C is finitely generated and for any pair (6,u) of generating op-
eration u and generating cooperation § there is a distributive compatibility
relation,

(H1) the free A-algebra A(V) is naturally equipped with a C¢-A-bialgebra structure,
(H2iso) the natural coalgebra map (V) : A(V) — C¢(V) is an isomorphism.

Then any C°-A-bialgebra H is free and cofree over its primitive part:
A(Prim H) = 'H = C*(Prim H).

Proof. — By proposition 2.3.3 the map 7 : A(PrimH) — H is a bialgebra morphism.
On the other hand the projection e : H — Prim’H induces a coalgebra map € :
‘H — C¢(Prim H) by universality (cf. 1.3.3). We will prove that both morphisms are
isomorphisms and that the composite A(Prim H) = H — C*(Prim H) is ¢.

By proposition 2.3.3 and the fact that the idempotent is functorial in the bialgebra,

N

A(PrimH) ——>——— Prim H

there is a commutative diagram
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which induces, by universality of the cofree coalgebra, the commutative diagram:

/ ' \
A(PrimH) ——%— C°(Prim H)

Since ¢ is an isomorphism by (H2iso), it follows that { is injective.
In proposition 2.3.6 we proved that  is surjective, therefore e = 7 : A(Prim H) —
‘H is a bialgebra isomorphism and, as a consequence, € is also an isomorphism. O

2.3.8. Corollary. — Let H be a connected C°-A-bialgebra and let H? denote the image
in M of @, 5y A(n)s, H®". Then one has ex(H?) = 0.

Proof. — By the rigidity theorem it suffices to show that this assertion is valid when H
if free. By definition of e we have e 4() = projy,, whose kernel is precisely A(V)?. 0O

2.3.9. Explicit universal idempotent. — Let us suppose that .A and C are given
by generators and relations, and that one knows how to describe A(n) and C(n)
explicitly in terms of these generators. Then it makes sense to look for an explicit
description of e in terms of the elements of .A(n) and C(n). In the cases already treated
in the literature (cf. for instance [73], [54], [42], [34], [35], [9], [18], the first step
of the proof of the rigidity theorem consists always in writing down such an explicit
idempotent. In the case at hand (i.e. under (H2iso)) the universal idempotent and
the explicit idempotent coincide because, on A(V), it is the projection onto V parallel
* to the other components @, A(n) ®s, V"

The exact form of the compatibility relation(s) depends on the choice of the pre-
sentation of A and of C. Let us suppose that hypotheses (HO), (H1) and (H2iso)

hold. Once a linear basis (u[lnl, ey :“;c"]) of A(n) is chosen, then we can choose, for
basis of C(n), its dual (65"], .o ,5,[:1]) under the isomorphism ¢: ((p(ugn]),égnl) =1 if
i = j and 0 otherwise. Then the compatibility relation of the pair (6][-"], ”Enl) is such

that ®; = id,, if i = j and 0 otherwise.

2.4. Triple of operads
We introduce the notion of triple of operads
(C,A,P)=(C{,A,F,P)

deduced from the prop C¢-.A, that is from a notion of C¢-.A-bialgebra. We construct
and study the universal enveloping functor

U : P-alg — A-alg.
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2.4.1. Triple of operads. — Let (C,{(),.4) be a type of generalized bialgebras.
Suppose that the hypotheses (HO) and (H1) are fulfilled, cf. 2.3.1. Then it determines
an operad P := Prim¢ A and a functor F' : A-alg — P-alg. Observe that the operad P
is the largest suboperad of A such that any P-operation applied on primitive elements
gives a primitive element. For any C°-A-bialgebra H the inclusion PrimH — H
becomes a morphism of P-algebras. We call this whole structure a triple of operads
and we denote it by

c,9,A,F,P),or (C,{,.A,P), or more simply (C, A, P).

2.4.2. The map ¢ and the hypothesis (H2epi). — Since, by hypothesis (H1),
A(V) is a C°-A-bialgebra, the projection map projy, : A(V) — V determines a unique
coalgebra map (cf. 2.2.5):

(V) : A(V) — C4(V).
We recall from 1.3.6 that ¢(V) is the composite

AW) LAY, ce( g(y)) L8, ceqy),

We denote by ¢ : A — C° the underlying functor of S-modules and by ¢, : A(n) — C°(»
its arity n component.

We make the following assumption:
(H2epi) the natural coalgebra map ¢(V') is surjective and admits a natural coalgebra

map splitting s(V) : C¢(V) = A(V), i.e. (V) os(V) = Id¢e(v).

2.4.3. Universal enveloping functor. — The functor
F : A-alg — P-alg
is a forgetful functor in the sense that the composition
A-alg iR P-alg — Vect

is the forgetful functor A-alg — Vect. In other words, in passing from an .A-algebra
to a P-algebra we keep the same underlying vector space. Hence this forgetful functor
has a left adjoint denoted by

U : P-alg — A-alg

and called the universal enveloping algebra functor (by analogy with the classical case
U : Lie-alg — As-alg). Let us recall that adjointness means the following: for any
P-algebra L and any .A-algebra A there is a binatural isomorphism

Hom 4 a1z (U(L), A) = Homp_aig (L, F(A)).
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2.4.4. Proposition. — Let L be a P-algebra. The universal enveloping algebra of L is
given by
U(L) = A(L)/~

where the equivalence relation ~ is generated, for any x1,...,z, in L C A(L), by
P (@1, .., x0) ~ (wh21,. .. 20), u” € P(n),

where p¥ — pA under the inclusion P(n) C A(n).

Proof. — We have pP(z1,...,2,) € L = A(1) ® L and (p#;z1,...,2,) € A(n) ®s,
L®", So the equivalence relation does not respect the graduation. However, it respects
the filtration given by
F A(V) = @ AV);.
j<n

Let us show that the functor L — U(L) := A(L)/ ~ is left adjoint to the forgetful
functor F. Let A be an A-algebra and let f : L — F(A) be a P-morphism. There
is a unique A-algebra extension of f to A(L) since A(L) is free. It is clear that this
map passes to the quotient by the equivalence relation and so defines an .A-morphism
U(L) — A.

In the other direction, let g : U(L) — A be a A-morphism. Then its restriction
to L is a P-morphism L — F(A) by theorem 2.2.3. It is immediate to verify that
these two constructions are inverse to each other. Therefore we have an isomorphism

HomA-alg (U(L)v A) = Hom’P—alg (L; F(A))v
which proves that U is left adjoint to F'. O

2.4.5. Proposition. — Under the hypotheses (HO), (H1) and (H2epi) the universal
enveloping algebra U (L) of the P-algebra L is a C¢-A-bialgebra.

Proof. — Since we mod out by an ideal, the quotient is an .A-algebra. By hypothesis
the free algebra A(L) is a C°-A-bialgebra. The coalgebra structure of U(L) is induced
by the coalgebra structure of \A(L). For any nontrivial cooperation § we have

§(uP(z1,...,2,)) =0
since u¥(x1,...,,) lies in L, and we have
é(uA(xl,...,xn)) =0

because §(u) is a primitive operation. Hence for any cooperation § we have
d(relator) = 0. Then ¢ is also 0 on Ker(U(L) — A(L)) by the distributivity property
of the compatibility relation {. O
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2.5. Structure theorem for generalized bialgebras

In this section we show that any triple of operads (C, 4, P), which satisfies (H2epi),
gives rise to a structure theorem analogous to the classical CMM + PBW theorem
valid for the triple (Com, As, Lie) (cf. 4.1.3). It says that any connected C°-A-
bialgebra is cofree over its primitive part as a coalgebra and that, as an algebra,
it is the universal enveloping algebra over its primitive part.

2.5.1. Theorem (structure theorem for generalized bialgebras). — Let C°-A be a type of
generalized bialgebras over a field of characteristic zero. Suppose that the following
hypotheses are fulfilled:
(HO) for any pair (0, ) of cooperation § and operation u there is a distributive
compatibility relation,
(H1) the free A-algebra A(V) is naturally equipped with a C¢-A-bialgebra structure,
(H2epi) the natural coalgebra map (V) : A(V) — C¢(V) is surjective and admits a
natural coalgebra map splitting s(V) : C¢(V) — A(V).
Then for any C°-A-bialgebra H the following are equivalent:
(a) the C°-A-bialgebra H is connected,
(b) there is an isomorphism of bialgebras H = U (Prim H),

(c) there is an isomorphism of connected coalgebras H = C¢(Prim H).

We need a construction and two lemmas before entering the proof of the struc-
ture theorem. We first introduce a useful terminology.

2.5.2. The versal idempotent e. — The choice of a coalgebra splitting s permits
us to construct a functorial idempotent e = ey : H — H as follows. First we define
w™ : H — H as the composite

s(n)®Id
_—

Wil H 2y co(n) @5, HE™ A(n) ®g, H®" 2 H.

We define a linear map e : H — H by the formula:
e=(Id—w®)(1d —wbB) ... (1d —wl™).. . .

By the very same argument as in the proof of proposition 2.3.5 we show that e is
well-defined though it is given by an infinite product.

We will show below that e is an idempotent (e? = e). We call it the versal idempo-
tent (and not universal since it depends on the choice of a splitting). Different choices
of splitting lead to different idempotents.

2.5.3. Lemma. — We assume hypotheses (HO), (H1) and (H2epi). Let 0%,...,0%
be a basis of C°(n). Let u; = s(65) € A(n) and complete it into a basis
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W1 -y ks Hk+1s - - -5 e Of A(n). Then one has:

8; o p; = id +higher terms,
d; o u; = 0+ higher terms, when j # i,

where “higher terms” means a sum of some multivalued operations which begin with
at least one nontrivial cooperation (®2-type multivalued operations).

Proof. — Graphically, for n = 2 the statement that we want to prove is

DZN
Y

Since we are interested only in the ®,-type part, it is sufficient to compute the value

=( orO) + 3

of 6 o u; on the generic element z; - - -z, of A(Kz, ®---®Kw,). By proposition 2.2.5

we get
djopi(z1---xn) = (07, n(1:))T1 @ - ® Ty,
= (§;,0{)21 ® -+ ® Tn,
=(@Gd or0)z1® -+ ® zy,
depending on j =i or j # i. O

2.5.4. Lemma. — If the C¢-A-bialgebra H is connected, then the mape =ey : H - H
is well-defined, functorial in H, and satisfies the following properties:
(a) the image of e is PrimH,

(b) e is an idempotent.

Proof. — First we observe that, if z is primitive, then e(z) = z. Indeed, it is clear
that w(™(z) = 0 for any n > 2 since w[® begins with a nontrivial cooperation. Hence
we have e(z) = Id(z) = z.

Proof of (a). We will prove by induction on n that the image of F,,H by e lies
in PrimH. It is true for n = 1, since F;’H = PrimH. We use the notation of the
previous lemma.

For n = 2 we have

i=k
O2(z) = Y pi 0 8i(x).
i=1
On FyH we have e = Id —w!?l. We want to prove that for any x € FyH we have

(Id —w)(z) € Fy’H = Prim ', that is, for any &; € C(2), §;(z) = §;wl?(z).
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We have
k
6w (z) = Z 0;pi0;(x) = 6;(x) + higher terms,

i=1

by lemma 2.5.3. So we have
6;(Id —w®)(z) = §;(x) — 6;(z) + Z d; o higher terms(z).

Since z € FoH, we have §; o higher terms(z) = 0 and therefore §;(Id —w(?)(z) = 0 as
expected.

A similar proof shows that = € F,,H implies (Id —w!™)(z) € F,,_;H. Hence, putting
all pieces together, we have shown that x € F,,’H implies e(z) € Fi'H = Prim H. The
expected assertion follows from the connectedness of H.

Proof of (b). Since e(z) = z when z is primitive and since e(r) € PrimH for
any x € H, it is clear that ece =e. O

2.5.5. Proof of the structure theorem. — (a) = (b). Since the functor U :
P-alg — A-alg is left adjoint to the forgetful functor F' : A-alg — P-alg, the adjoint
to the inclusion map ¢ : PrimH — H is an algebra map a : U(Prim H) — H.

If x € H is in Prim H, then obviously it belongs to the image of a. For any x € H
there is an integer m such that z € F,,’H by the connectedness hypothesis. We now
work by induction and suppose that « is surjective on F,,_1H. From the formula

r =e(z) + Zw[i] (z) — Zw[i]wlj)(w) N
i \ i,
and the fact that w(™ consists in applying a coopefation first and then an operation, it
follows that  —e(z) is the sum of products of elements in F;,,_1H. From the inductive
hypothesis we deduce that  — e(x) is in the image of . Since e(z) € PrimH by
proposition 2.3.4 we have proved that any = € H belongs to the image of @ and so «
is surjective.

The inductive argument as in the proof of theorem 2.3.7 shows the injectivity of a.

In conclusion the algebra map o : U(PrimH) — H is surjective and injective, so it
is an isomorphism. It is also a coalgebra map by 2.3.3 and 2.4.5, so it is a bialgebra
isomorphism.

(b) = (c). Let L be a P-algebra. Since U is left adjoint to the functor F': A-alg —
P-alg the map ¢(L) : A(L) — C¢(L) factors through U(L):

A(L) ) co(L)

N

U(L)
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We first show that the map U(L) — C°(L) is an isomorphism when L is a free
P-algebra. In this case we know that PrimU(L) = L since U(P(V)) = A(V) (left-
adjointness), and Prim A(V) = P(V) by definition of P. Since U(L) is a C*-A-
bialgebra and PrimU(L) = L by proposition 2.4.5, there is a surjection ey(z) :
U(L) — L. By the universality of the cofree coalgebra there is a lifting €y (1) and so
a commutative diagram:

€u(r)

UL) — 29 L)
\ L /

Observe that the composite A(L) - U(L) — C°(L) is the map ¢(L), hence &y (y,)
is compatible with the filtration.

We claim that the associated morphism gr(U(L)) — g¢rC¢(L) = C°(L) on the
graded objects is an isomorphism. Indeed, the quotient F,,U(L)/F,—1U(L) consists
in moding out A(L); & - -- & A(L), by the subspace J, generated by the elements
pP(zy...2,) — pA(z1...2,) and by A(L); @ -+ ® A(L)p—1. On the other hand,
the quotient F,,C°(L)/F,,_1C¢(L) is simply C¢(L)n, which is the quotient of .A(L), by
the homogeneous degree n part of J,. These two quotients are the same because the
relations

u+v~0anduvn~0,
and
u~0andv~0,

are equivalent (recall that u”(z;...z,) is in degree 1).
Let us now prove that U(L) — C°(L) is an isomorphim for any Lie algebra L. Let

L1—>L0—»L-—’0

be a free resolution of L. Since the morphism U(V) — C¢(V) is natural in V, the
isomorphisms for Ly and L; imply the isomorphism for L.

The implication (c) = (a) is a tautology. d

2.5.6. Good triple of operads. — If a triple of operads (C,.A,P) satisfies
the structure theorem, then we call it a good triple of operads. So theorem 2.5.1
shows that, if the triple of operads (C,.A,P) satisfies the hypothesis (H2epi),
then it is a good triple. Conversely, if the triple is good, then the coalgebra isomor-
phism A(V) = C¢(P(V)) composed with the projection induced by proj: P(V) - V
defines A(V) — C¢(V'), which is a splitting of ¢(V'). Hence the hypothesis (H2epi) is
fulfilled. Therefore the triple (C,.A,P) is good if and only if the hypothesis (H2epi)
is fulfilled.
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2.5.7. About the verification of the hypotheses

2.5.7.1. (HO). — The hypothesis (HO) (distributivity of the compatibility relation)
is, in general, immediate to check by direct inspection. Observe that, when the oper-
ads C and A are given by generators and relations, it suffices to check the compatibility
relations on the pairs (4, 4) when they are both generators.

2.5.7.2. (H1). — In order to verify hypothesis (H1) there are, essentially, three
strategies.

1) When the free algebra A(V) is known explicitly (for instance a basis of A(n) is
identified with some explicit combinatorial objects), then one can usually construct
explicitly the generating cooperations and check that they satisfy the relations of C¢
and the compatibility relations.

2) Another strategy consists in taking advantage of the distributivity of the compat-
ibility relations. One constructs inductively the cooperations on A(V) = @,,~; A(V)n
by sending V to 0 and then by using the compatibility relations. Then one checks,
again inductively, that they satisfy the relations of C¢ and the compatibility relations.
This is very close to the techniques used in “rewriting systems”, cf. [37] and 4.8.

3) The third strategy consists in viewing a given triple as a quotient of a good
triple. It is given in proposition 3.1.1 below.

2.5.7.8. (H2epi). — The map ¢ is in fact a map of S-modules. Therefore it sends
the degree n part of A to the degree n part of C°. So in order to check surjectivity,
it is sufficient to compute the composite § o p for any pair (4, 4) where u is a linear
generator of A(n) and ¢ is a linear generator of C¢(n). From this functorial property
of ¢ we deduce that the element dou(z1, ..., y,) is of the form ) ay(25(1),- - ) To(n))-
Let a(u, d) be the coefficient a;q of this sum. The map ¢ is
en(p) = Z a(u,6)é
s
where the sum is over a basis of C¢(n).

2.6. A few consequences of the structure theorem

We derive a few consequences of the structure theorem, namely by applying it to
the free algebra A(V'). It gives some criterion to check if a given triple of operads has
some chances to be good.

2.6.1. From the structure theorem to the rigidity theorem. — The rigidity
theorem is a corollary of the structure theorem. Indeed, if the hypothesis (H2iso)
holds, then (H2epi) holds (unique choice for the splitting) and the primitive operad
is Vect by proposition 2.3.2. Hence the triple (C,.A, Vect) is a good triple and the
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functor F' is simply the forgetful functor to Vect. The left adjoint functor of F is the
free A-algebra functor, so item (b) in the structure theorem becomes H = A(Prim H).
So H is free and cofree over its primitive part, as claimed in theorem 2.3.7.

2.6.2. Dualization. — Observe that if (C, A, Vect) is a good triple of operads, then
so is the triple (A,C, Vect). The compatibility relation(s) is obtained by dualization,
i.e. reading ) upsidedown. The new map ¢ is simply the linear dual of the former one.

2.6.3. Theorem. — If (C, A, P) is a good triple of operads over the field K, then there
is an equivalence of categories between the category of connected (i.e. conilpotent)
C¢-A-bialgebras and the category of P-algebras:

U
{con. C°-A-bialg} = {P-alg}.

Prim

Proof. — We already know that if L is a free P-algebra, i.e. L = P(V), then
PrimU(L) = PrimU(P(V)) = Prim A(V) = P(V) = L. By the same argument as in
the proof of (b) = (c) it is true for any P-algebra L.

In the other direction, let H be a connected C¢-.A-bialgebra. By item (b) in theo-
rem 2.5.1 we have an isomorphism H = U(Prim H). d

2.6.4. Proposition. — If (C, A, P) is a good triple of operads, then there is an isomor-
phism of Schur functors:

ACoP.

Proof. — It suffices to apply the structure theorem to the free algebra A(V'), which
is a C°-A-bialgebra by hypothesis. It is connected because A(1) = K.

We have U(P(V)) = A(V) since the composite of left adjoint functors is still left
adjoint. Hence, by the structure theorem 2.5.1, we get the expected isomorphism. [J

2.6.5. Corollary. — If (C, A, P) is a good triple of operads, then there is an identity
of formal power series:

FAR) = fE(F7 @)

Proof. — Since C°(n) is finite dimensional, the two Schur functors C and C¢ have well-
defined generating series which are equal. The formula follows from proposition 2.6.4

and the computation of the generating series of a composite of Schur functors, cf. 1.1.3.
O
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2.6.6. Searching for good triples. — Observe that this relationship entertwining
the generating series gives a criterion to the possible existence of a good triple. Indeed,
let us suppose that we start with a forgetful functor 4-alg LN P-alg and we would
like to know if it can be part of a good triple (C, (), A, F, P). Then, there should exist
a power series c(t) = Y ,5; 4i¢(n)t™ where the coefficients ¢(n) are integers (and
¢(1) = 1), such that fA(t) = c(fP(t)).

For instance, if (Com,.A,P) is a good triple of operads and if B-alg — A-alg is
a forgetful functor, then there is no good triple for the composite B-alg — P-alg

(unless B = A).

2.6.7. Frobenius characteristic. — There is an invariant which is finer than the
generating series. It consists in taking the Frobenius characteristic of the Schur functor
in the symmetric functions. Indeed the isomorphism
An)= Y C(k) ®s, Indgy 4. ps, (Pi) ® - ® Plix))
i1+ Fig=n
implies that the composite of the Frobenius characteristic of C° and P is the Frobenius
characteristic of .A. See [50] for an explicit example.
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CHAPTER 3

APPLICATIONS AND VARIATIONS

In this chapter we give a few applications of the structure theorem, some general-
izations and we give some general constructions to obtain a good triple of operads.
Concrete examples will be given in the next chapters.

One of the most easy ways of constructing a good triple from an existing triple is
to mod out by primitive relators. It gives rise to many examples.

There are some techniques to obtain triples of the form (As, A, Prim4,.4). For
instance one can assume that A is a Hopf operad, that is, the Schur functor is a functor
to coalgebras. Another assumption is to suppose that there exists an associative
operation verifying some good properties (multiplicative operad).

In the nonsymmetric case, we do not need the characteristic zero hypothesis to get a
good triple, so, under this hypothesis, the structure theorem is valid in a characteristic
free context.

We show how Koszul duality should help to construct good triples out of existing
ones.

Our basic category is the category Vect of vector spaces. It is a linear symmetric
monoidal category and this is exactly the structure that we used. So there is an
immediate extension of our main theorem to any linear symmetric monoidal category,
for instance the category of sign-graded vector spaces and the category of S-modules.

We can reverse the roles of algebraic and coalgebraic structures. Then the primi-
tives are replaced by the indecomposables and we obtain a “dual” result.

The classical result (PBW + CMM) admits a characteristic p variant. We expect
similar generalizations in characteristic p and we explain how to modify the operad
framework to do so.

We mention briefly the relationship with rewriting systems in computer sciences.

Finally, we give an application to a natural problem in representation theory of the
symmetric groups.
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3.1. Quotient triple

Let C°-A be a type of bialgebras, which satisfies the hypotheses (H0), (H1) and
(H2epi). So we start with a good triple of operads (C,.4,P). We will show that
moding out by primitive operations gives rise to other good triples of operads.

3.1.1. Proposition. — Let C¢-A be a type of bialgebras, which satisfies the hypotheses
(HO), (H1) and (H2epi). Let J be an operadic ideal of A generated by (nontrivial)
primitive operations. Then (C, A/J,Prim¢ A/J) is a good triple of operads.

Proof. — Let P = Primc.A. We have P = Kid®P. In this proof a primitive
operation is an element in P(n) for some n (so we exclude id).

Since (HO) is fulfilled for C¢-A, it is also fulfilled for C¢-A/J.

By hypothesis the ideal J is linearly generated by the composites p o (uy,. .., tn)
where at least one of the operations is primitive. If y is primitive, then the ®;-part of
dop is 0. If pg is primitive for some index [, then the ®;-part of dopo(p1,.. ., 1y) is of
the form Y oo (u1,...,us) for some permutations o. Since u, is primitive, the value
of this operation on a generic element is 0 in the quotient .A/J. Therefore (A/J)(V)
is a C°-A/J-bialgebra. Hence hypothesis (H1) is fulfilled.

The above calculation shows that the map ¢ : A — C¢ factors through .A4/J and
the resulting map A/J — C€ is the map ¢ for C°-A/J. Hence the composite

Ccc 5 A AT

is a splitting of ¢. So hypothesis (H2epi) is fulfilled.
Therefore, by theorem 2.5.1, (C,.A/J, Prim¢ A/J) is a good triple of operads. O

3.1.2. Corollary. — Any good triple of operads (C, A, P) determines a good triple of
operads (C, Z,Vect), called its quotient triple, where the operad Z is the quotient of A
by the operadic ideal (P) generated by the nontrivial primitive operations: Z = A/(P).

3.1.3. Remark. — Observe that in many cases, including the classical case, the
S-module isomorphism C = A/(P) is in fact an operad isomorphism. But this is not
always true, see for instance examples 4.3.1 and 4.5.2.

3.1.4. Theorem (analogue of the classical PBW theorem). — Let (C,A,P) be a good
triple of operads, and let Z := A/(P) be the quotient operad of A by the ideal
generated by the (nontrivial) primitive operations. Then, for any P-algebra L there
is an isomorphism of Z-algebras:

Z(L) — grU(L).
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Proof. — First we observe that grU(L) is a Z-algebra by direct inspection of the
structure of U(L), cf. 2.4.4. The composite map

L— A(L) — U(L) — gr,U(L) CU(L)
induces a Z-algebra map Z(L) — grU(L). The commutativity of the diagram

Z(L) ——grU(L) —— C¢(L)

N

L

shows that the composite of the horizontal arrows is the isomorphism Z(L) — C%(L)
coming from the good triple (C, Z,Vect). Since grU(L) — C°(L) is an isomorphism
(cf. the proof of (b) = (c) in theorem 2.5.1), we are done. O

3.1.5. Remark on PBW. — In the classical case (Com, As, Lie) (see 4.1 for de-
tails) the isomorphism of commutative algebras

S(g) — erU(g)

is often called the Poincaré-Birkhoff-Witt theorem (cf. [31]).

3.1.6. Split triple of operads. — Let (C,.A,P) be a triple of operads and let
Z := A/(P) be the quotient operad. We say that (C, .4, P) is a split triple if there is a
morphism of operads s : £ >~ A such that the composite Z — A — Z is the identity
and the map s(V) : Z(V) — A(V) is a C°-Z-bialgebra morphism. For instance the
triple (Com, As, Lie) is not split, and the triple (As, Dup, Mag) (cf. 5.2.4) admits two
different splittings.

3.1.7. Proposition. — Let (C, A,P) be a split triple of operads. Then any C°-A-
bialgebra H is also a C¢-Z-bialgebra and the idempotent ey is the same in both
cases.

Proof. — Since, by hypothesis, the splitting s induces a morphism of bialgebras on the
free algebras, it induces a morphism of props C¢-Z — C°-A, or, equivalently, a functor
between the category of bialgebras C°-A-bialg and C°-Z-bialg. In the construction of
the idempotent e} for C¢-.A-bialgebras we need a coalgebra splitting C¢ — A. We can
take the composite C¢ = Z > A. From the construction of e (cf. 2.3.4) it follows
that we get precisely the universal idempotent for C°-Z-bialgebras. O
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3.2. Hopf operad, multiplicative operad

Under some reasonable assumptions on an operad P we can show that the tensor
product of two P-algebras is still a P-algebra. As a consequence one can equip the
free P-algebra with a coassociative cooperation. It gives rise to a notion of As®-P-
bialgebras. Quite often the assumptions are easy to verify and show immediately that
hypothesis (H1) is fulfilled. We present two cases: Hopf operad and multiplicative
operad.

3.2.1. Hopf operad. — By definition a Hopf operad is an operad P in the cate-
gory of coalgebras (cf. [65] for instance). Moreover we assume that P(0) = K, so
P-algebras have a unit (the image of 1 € P(0)). Explicitly the spaces P(n) are coal-
gebras, i.e. they are equipped with a coassociative map A : P(n) — P(n) ® P(n),
compatible with the operad structure. For instance a set-theoretic operad gives rise
to a Hopf operad by using the diagonal on sets. As a consequence the tensor product
of two P-algebras A and B is a P ® P-algebra (where P®P is the Hadamard product,
i.e. (P®P)(n)=P(n)®P(n) and the map A makes it into a P-algebra.

An algebra over P in this framework is a coalgebra equipped with a coalgebra
map P(A) — A. Hence we get a notion of As®-P-bialgebra. In particular the free
P-algebra is a Asc-P-bialgebra since there is a unique P-algebra morphism

PV)—P(V)QP(V)

which extends v — v ® 1 + 1 ® v. Several examples of triples of operads
(As, P,Prim 4, P) are of this type (see chapter 4).

3.2.2. Multiplicative operad [48]. — Let P be a binary quadratic nonsymmet-
ric operad which contains an associative operation, denoted * (this hypothesis is
sometimes called “split associativity” as * comes, often, as the sum of the generating
operations). We call it a multiplicative operad. In other words we suppose that there
is a morphism of ns operads As — P).

We suppose that there is a partial unit 1 in the following sense. We give ourselves
two maps

a:P;,—P;=K and f:P;— P =K
which give a meaning to z o1 and 10z for any o € P, and any x € A (where A is a
P-algebra):
zol=qao)z loz = B(o)z.

We always assume that 1 is a two-sided unit for * (i.e. a(x) = 1 = B(x)). Observe
that we do not require 1 o1 to be defined. Let A, = A @ K14 be the augmented
algebra. For two P-algebras A and B the augmentation ideal of Ay ® By is

ARK1p Kl B® AQ B.
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The Ronco’s trick (cf. [75]) consists in constructing an operation o on the augmenta-
tion ideal as follows:

(@a®b)o(a'®b)=(axa")® (bob)
whenever all the terms are defined, and (when b = 15 = ¥')
(a® 15) o (a' ® 1}3) = (aoa') ® (1A®B)-

Observe that the relations of P are verified for any a,a’ € A and b,b’ € B. If they are
also verified in all the other cases, then the choice of o and 3 is said to be coherent
with P.

It was proved in [48] that, under this coherence assumption, the free P-algebra
P(V) is equipped with a coassociative coproduct d. It is constructed as follows. By
hypothesis there is a P-algebra structure on

PV)®eKlaK1IQP(V)eP(V)®P(V).

We define A from P(V) to the P-algebra above as the unique P-algebra map which
sends v € V to v® 1+ 1 ® v. The projection to P(V) ® P(V) gives the expected
map 4.

From this construction we get a well-defined notion of As®-P-bialgebra for which
the hypotheses (HO) and (H1) are fulfilled. Of course, this construction can be re-
written in the nonunital context. But, then, the formulas are more complicated to
handle (see 4.1.1).

In many cases we get a good triple of operads (A4s, P, Prim4; P), see [48]. Several
cases will be described in chapter 4. The interesting point about these examples is
that P(V) is a Hopf algebra in the classical sense. In fact many combinatorial Hopf
algebras (cf. [55]) can be constructed this way.

A refinement of this method gives triples of the form (A, A, Vect), cf. 4.6.3.

3.3. The nonsymmetric case

In the preceding chapter we always made the hypothesis: K is a characteristic zero
field. The reason was the following. In the interplay between operad and cooperad
we had to identify invariants and coinvariants, cf. 1.3.4. There is an environment for
which this hypothesis is not necessary, it is the nonsymmetric case (for the character-
istic p case, see 3.7).

We suppose that C and A are nonsymmetric operads (cf. 1.2.7) and that, in the com-
patibility relations, the only permutation, which is involved, is the identity (cf 2.1.3).
Such a type is called a nonsymmetric type of generalized bialgebras (nonsymmetric
prop). In hypothesis (H2epi) we suppose that there is a cooperad splitting of the
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form C; — A, i.e. not involving the symmetric group. This is called the nonsymmet-
ric version of (H2epi). Then the very same proof as in the structure theorem can be
performed and we get the following result.

3.3.1. Theorem (structure theorem for ns generalized bialgebras)

Let C°-A be a nonsymmetric type of generalized bialgebras over a field K. Suppose
that the hypotheses (H1) and nonsymmetric (H2epi) are fulfilled. Then the good
triple of operads (C, A, P) has the following property.

For any C¢-A-bialgebra H the following are equivalent:
(a) the C°-A-bialgebra H is connected,
(b) there is an isomorphism of bialgebras H = U (Prim H),

(c) there is an isomorphism of connected coalgebras H = C¢(Prim H).

The following rigidity theorem is a corollary of the structure theorem in the non-
symmetric case.

3.3.2. Theorem (rigidity theorem, nonsymmetric case). — Let C°-A be a nonsymmetric
type of generalized bialgebras over a field K. Suppose that the hypotheses (H1) and
(H2iso) are fulfilled.

Then any C¢-A-bialgebra H is free and cofree over its primitive part:

A(PrimH) =2 H = C°(Prim H).

Explicit examples will be given in the next section.

3.4. Koszul duality and triples

We provide a method to construct good triples of operads by using the Koszul
duality for operads.

3.4.1. Koszul duality of quadratic operads. — Let us recall briefly from [28]
and [24] (see also [56] for details) that any quadratic operad P gives rise to a dual
operad P'. It is also quadratic and (P')' = P. For instance As' = As, Com' = Lie,
Mag' = Nil. When the operad P is binary, then the generating series of P and of P
are related by the formula:
TG

(in the Appendix of [47] there is a brief account of Koszul duality of operads). When
the operad P is k-ary, one needs to introduce the skew-generating series

g'P(t) = Z(_l)k dlm'P((k —" l)n + 1) t((k—l)n+1).
n:

n>1
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If the operad P is Koszul, then Vallette proved in [80]) the formula:
!
P (=gP(-t) =t.

In the most general case (generating operations of any arity), it is best to work with
a series in two variables, cf. [80] for details.

3.4.2. Extension of operads. — Let us say that the sequence of operads
P—A—»Z

is an extension of operads if — is a monomorphism, —» is an epimorphism, and if
there is an isomorphism of S-modules (which is part of the structure) A =2 Z o P
such that Idyect — Z induces P »— A, and P —» Idyec; induces A — P. Under this
hypothesis we say that A is an extension of Z by P. For instance As and Pois are
both extensions of Com by Lie.

In many cases where all the operads are quadratic we can check that

Z'h A P

is also an extension of operads (Exercise: show that it works at the level of generating
functions). For instance the following classical extension is self-dual:

Lie — As —» Com.

Suppose that (C,.A,P) is a good triple and that P' is part of a good triple
(Q',P',Vect). We recall that we have also a good triple (C, Z,Vect). Then com-
paring the generating functions we can expect the existence of a good triple of the
form:

(Q, 4, 2"
In the case where @ = P and C = Z, we would get the triple

(P, A, Ch.

Similar structures have been studied in [19].

3.5. Other symmetric monoidal categories

Until now our ground category was the category of vector spaces over a field. The
only property of Vect that we used is that it is a symmetric monoidal category. Hence
we can replace it by any other symmetric monoidal category.
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3.5.1. Graded vector space. — The category of graded vector spaces (more accu-
rately we should say the sign-graded vector spaces) is a symmetric monoidal category.
Recall that the objects are the graded vector spaces {V,}n>0 and the symmetric
isomorphism (twisting map) is given by

rz®y) = (1) ez,

where z and y are homogeneous elements of degree |z| and |y| respectively.

3.5.2. Structure theorem in the graded case. — The main result (cf. 2.5.1)
holds in this more general setting because, as already said, our proofs use only the
symmetric monoidal properties of Vect. The result is not significantly different when
the operads are nonsymmetric (since the symmetric group does not play any role).
However it is different for general operads since, for instance, the free commutative
algebra over an odd-degree vector space is the exterior algebra instead of the sym-
metric algebra. In particular when the vector space is finite dimensional, the exterior
algebra is finite dimensional, while the symmetric algebra is not.
In algebraic topology it is the sign-graded framework which is relevant.

3.5.3. Structure theorem for twisted bialgebras. — The category of S-
modules can be equipped with a symmetric product as follows. Let M and N be two
S-modules. We define their tensor product M ® N by

(M ® N)(V) := M(V)® N(V).

Here we use the interpretation of S-modules in terms of endofunctors of Vect (Schur
functors, see 1.1). For any operad .4 one can define a notion of .A-algebra in the
category of S-modules. They are sometimes called twisted A-algebras. Similarly,
given a prop C°-A, there is an obvious notion of twisted C°-A-bialgebra over this prop.
The structure theorem admits an obvious extension to twisted bialgebras.

3.5.4. Generalization to colored operads. — A category is a generalization of
a monoid in the sense that the composition of two elements is defined only if certain
conditions are fulfilled (source of one = target of the other). Similarly there is a
generalization of the notion of operads in which the composition of operations is
defined only if some conditions are fulfilled among the operations. This is called a
colored operad or a multicategory. One should be able to write a structure theorem
in this framework. See [77] for an example.

3.5.5. Generalization of the nonsymmetric case. — In the nonsymmetric case
we don’t even use the symmetry properties of the monoidal category Vect. Hence we
can extend our theorem to other monoidal categories. For instance we can replace
(Vect,®) by the category of S-modules equipped with the composition product o ,
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cf. 1.1.2. Then, there are notions of (generalized) algebras, coalgebras and bialgebras
in this context and we can extend our main theorem. For instance the analogue
of associative algebra (resp. associative coalgebra) is the notion of operad (resp.
cooperad). So a unital infinitesimal bioperad B is an S-module B equipped with an
operad structure v : BoB — B and a cooperad structure 0 : B — B o B satisfying the
following compatibility relation

0y = —idgog +(idg 08)(y 0 idp) + (6 o idg)(ids o)

which is nothing but the unital infinitesimal relation 2.1.4.2. Observe that we denoted
the composition of functors by concatenation (for instance 6-y) to avoid confusion with
the composition of S-modules. The generalization of our theorem says that the only
example of unital infinitesimal bioperad is the free operad.

Observe that there is no such object as Hopf bioperad since the monoidal category
(S-mod, o) is not symmetric.

We plan to come back to this notion of generalized bioperads in a subsequent paper.

3.6. Coalgebraic version

Let C%-A be a bialgebra type. The notion of “indecomposable” is dual to the notion
of “primitive”. By definition, the indecomposable space of a C°-A-bialgebra H is the
quotient

IndecH := H/H?
where H? is the image of @,,5, A(n) ®s, H®™ in H under . Observe that it depends
only on the 4-algebra structure of H. In general Indec H is not a C°-coalgebra, but
we will construct a quotient cooperad of C¢ on which Indec M is a coalgebra.

3.6.1. Proposition. — Suppose that the bialgebra type C¢-A satisfies (HO) and
(H1¢) the cofree C°-coalgebra C¢(V') is equipped with a natural C°-A-bialgebra struc-

ture.
Then the S-module Q°(V) = Indec4 C(V) := C°(V)/C*(V)? inherits a cooperad
structure from C°.
Moreover for any C°-A-bialgebra H the indecomposable space IndecH is a Q°-
coalgebra, and the surjection H — IndecH is a Q°-coalgebra morphism.

Proof. — Tt suffices to dualize the proof of 2.5.1. a

Example. Let As®-Com be the type “commutative (classical) bialgebras”. Then
Q = Lie and the surjection As® — Lie® is simply the dual of the inclusion Lie — As.
Explicitly the coLie structure of the coassociative coalgebra (C, §) is given by (id —7)4
where 7 is the twisting map.
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Since Q° is a quotient of C¢, there is a forgetful functor
F°: C°coalg — Q°-coalg
which admits a right adjoint, that we denote by
F*: Q°coalg — C°-coalg.

So now we have all the ingredients to write a structure theorem in the dual case.

Observe that U°(C) acquires a C°-A-bialgebra structure from the C°-.A-bialgebra
structure of C¢(V).

The dual PBW has been proved in [63]. See also [25] §4.2 for the dual PBW and
dual CMM theorems. The Eulerian idempotent has been worked out in this context
by M. Hoffman [33].

3.7. Generalized bialgebras in characteristic p

First, observe that in the nonsymmetric framework there is no characteristic as-
sumption, therefore the structure theorem holds in characteristic p. In [12] and [64]
the authors give a characteristic p version of the PBW and CMM theorems. So there is
a characteristic p version of the structure theorem for cocommutative (classical) bial-
gebras. But the notion of Lie algebra has to be replaced by the notion of p-restricted
Lie algebras.

3.7.1. p-restricted Lie algebras. — By definition a p-restricted Lie algebra is a
Lie algebra over a characteristic p field which is equipped with a unary operation
z +— z[P called the Frobenius operation. It is supposed to satisfy all the formal
properties of the iterated bracket

[.’L‘,[:L',[ ,[.’E,—]]]]
times

in an associative algebra (cf. loc. cit.).

In the PBW and CMM theorems the forgetful functor is replaced by the functor
As-alg — p-Lie-alg where the bracket is as usual and the Frobenius is the iterated
bracket as above. Since this functor admits a left adjoint U all the ingredients are in
place for a structure theorem in that case (cf. loc. cit.).

3.7.2. Operads in characteristic p. — Since the Frobenius is not a linear oper-
ation (it is polynomial of degree p), a p-restricted Lie algebra is not an algebra over
some operad in the sense of 1.2.2. Note that, in our definition of operad, we defined
the Schur functor P(V) := @,, P(n) ®s, V" by using the coinvariants. If, instead,
we had taken the invariants, then there would be no difference in characteristic 0, but
it would be different in characteristic p. In short, there is a way to handle p-restricted
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Lie algebras in the operad framework by playing with the two different kinds of Schur
functors. In fact B. Fresse showed in [23] how to work with any operad in characteris-
tic p along this line. It gives rise to the notion of P-algebra with divided symmetries.
For instance, in the commutative case, it gives rise to the divided power operation.
If the operad is nonsymmetric the notions of P-algebra and P-algebra with divided
symmetries are equivalent.

3.7.3. Structure theorem in characteristic p. — Now we have all the ingredi-
ents to write down a structure theorem for generalized bialgebras in characteristic p,
including a toy-model. I conjecture that such a theorem exists. In fact some cases,
with C = As or Com, have already been proved, see [68] and the references in this
paper.

Observe that there are two levels of difficulty. First write the general theorem and
its proof, second handle explicit cases. Recall for instance that, for Poisson algebras,
we have to work with two divided operations: the Frobenius operation and the divided
power operation. The relationship between these two are quite complicated formulas
(cf. [25]).

3.8. Relationship with rewriting systems

The rewriting theory aims at computing a monoid (or a group) starting from a
presentation. The idea is to write any relation under the form wu; - - - ux = vy - - - vp and
to think of it as a “rewriting procedure” uy - --ux — vy - - - v¢. In this setting one can
define the notions of noetherianity, confluence, critical peak and convergence. There
is a way to extend the rewriting theory to operads and even props, see Y. Lafont [38].
For instance a distributive compatibility relation like d o 4 = ® (cf.2.1.1) can be
thought of as a rewriting procedure § o y — ®. The aim is to find a reduced form for
the multivalued operations. In this setting hypothesis (H1) can be proved by verifying
that a rewriting system is convergent. See 4.8 for an example taken out of [37].

3.9. Application to representation theory

Given an S-module A4 and a sub S-module P it is usually difficult to decide whether
there exists an S-module Z such that A = Z o P (recall that in this framework the
composition o is called the plethysm). We will show that, in certain cases, we can
give a positive answer to this question.
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3.9.1. Proposition. — Let A be an operad and let P be a suboperad of A. The following
condition

“there exists an operad C and a good triple of operads (C,A,P)

giving rise to the inclusion P C A”

is sufficient to ensure that there is an isomorphism of S-modules A = Z o P, where
Z:= A/(P).

Proof. — If (C, A, P) is good, then so is (C,.A/(P),Vect) = (C,Z,Vect) by propo-
sition 3.1. So we get isomorphisms of S-modules C® = Z and A & C¢ o P (proposi-
tion 2.6.4), which imply A= Z o P. O
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CHAPTER 4

EXAMPLES

The problem of determining if a triple of operads (C,.4,P), or more accurately
(C,0, A, F,P), is good may crop up in different guises. Most of the time the starting
data is the prop (C, {,.A), that is the type of bialgebras. Verifying (HO) is, most of the
time, immediate by direct inspection. The first problem is to verify the hypotheses
(H1) and (H2epi). The second problem (and often the most difficult) is to find a
small presentation of the operad P = Prim¢ A and make explicit the functor F' :
A-alg — P-alg.

Another kind of problem is to start with a forgetful functor F' : A-alg — P-alg
(i.e. P is a suboperad of .A) and to try to find C and { so that the data (C, (), A, F, P)
is a good triple.

In both problems corollary 2.6.5 relating the generating series of C,. A and P is
a good criterion since the knowledge of two of the operads determines uniquely the
generating series of the third.

As said in the introduction the (uni)versal idempotent e is a very powerful tool. In
chapter 3 it is constructed abstractly. To get it explicitly in a given example is often
a challenge.

In this chapter we present several concrete cases. For many of them, existing results
in the literature permit us to prove the hypotheses and to find a small presentation
of the primitive operad. In some cases the technique is very close to the rewriting
techniques in computer sciences. Proposition 3.1.1 is quite helpful in proving that
(C, A, Prim¢ A) is a good triple since it reduces several cases to one case. For instance
when A is generated by one operation, it suffices to prove the hypotheses for the prop
C°-Mag.

We have seen that any good triple (C,.4,P) gives rise to a triple of the form
(C,Z,Vect) (the quotient triple) by moding out by the primitive operad P. We
put in the same section the triples which have the same quotient triple (with a few
exceptions).
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We give only the proofs of the statements which are not already in the literature.

In section 1 we treat (Com,Com,Vect) with Hopf compatibility relation. It
includes the classical case (Com, As,Lie) as well as (Com, Parastat, Nil) and
(Com, Mag, Sabinin). The rigidity theorem for (Com, Com, Vect) is the Hopf-Borel
theorem and the structure theorem for (Com, As, Lie) is the union of the CMM
theorem and the PBW theorem. We prove that, in this classical case, the universal
idempotent is precisely the well-known Eulerian idempotent. -

In section 2 we treat (As, As, Vect) with nonunital infinitesimal compatibility rela-
tion. It includes the case (As, Mag, MagFine) and the case (As,2as, M B) which is
important because the category of cofree Hopf algebras is equivalent to the category
of M B-algebras. The triple (As, Dup, M ag) where a Dup-algebra is a space equipped
with two associative operations satisfying further the relation

(z>y)<z=z> (y<2),

should be in this section. It will be treated in full detail in the next chapter.

In section 3 we treat (As, Zinb, Vect) with semi-Hopf compatibility relation. It
includes the case (As,Dipt, MB) and the case (As, Dend,brace) (due to Maria
Ronco [76]) which is important since it permits us to unravel the structure of a free
brace algebra.

In section 4 we treat (Lie, Lie,Vect). It should be noted that the notion of
Liec-Lie-bialgebra is NOT what is commonly called Lie bialgebras because the com-
patibility relation is different. In particular there is a nontrivial ®; term in our case
(cf. 2.1.3).

In section 5 we treat (NAP, PreLie,Vect) due to M. Livernet [42] and the triple
(NAP,Mag,Primyap Mag).

In section 6 we describe several cases of the form (A, A, Vect).

In section 7 we describe the interchange bialgebra case. Here the operads are no
more quadratic but cubic.

In section 8 we treat a case where the generating operations and cooperations are
of arity k.

When there is no ®; term in the compatibility relation(s) (see 2.1.3), every oper-
ation is a primitive operation and there is nothing to prove. This is why we do not
treat the Frobenius case.
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4.1. Hopf algebras: the classical case

In this section we treat several triples admitting the triple (Com, Com, Vect) (Hopf-
Borel) as a quotient triple. It includes the classical case (Com, As, Lie). The com-
patibility relation in these cases is the Hopf relation. More examples can be found in
the subsequent paper [55].

4.1.1. The Hopf compatibility relation. — First, let us recall some elementary
facts about unital associative algebras. The tensor product A ® B of the two unital
associative algebras A and B is itself a unital associative algebra with product given
by (a ® b)(a’ ® b') = aa’ ® bb' and with unit 14 ® 15. The free unital associative
algebra over V is the tensor algebra

TV)=KeVe --oV®a®---
whose product is the concatenation:

('Ul ""Up)(,vp—'-l fvn) ='U1""Un.
Let V — T(V) ® T(V) be the map given by v — v ® 1 + 1 ® v. Since T'(V) is free,
there is a unique extension as algebra homomorphism denoted

A:TV)—T(V)QT(V).

It is easy to show, from the universal property of the free algebra, that A is coasso-
ciative and cocommutative. The fact that A is an algebra morphism reads

A(zy) = A(z)A(y),

which is the classical Hopf compatibility relation. Hence the tensor algebra, equipped
with this comultiplication, is a classical cocommutative bialgebra. The map A can be
made explicit in terms of shuffles, cf. [44].

In order to work in a non-unital framework, we need to restrict ourselves to the
augmentation ideal of the bialgebra and to introduce the reduced coproduct

0z) =Ax)—z®1-1Q«.

As already mentioned (cf. 2.1.4.1) the compatibility relation between the product p
and the coproduct § becomes (jfopf:

Izy) =2Q@y+yQz+dz)(y®1+1®y)+(z®1+1®z)d(y) + §(x)d(y),

where zy = p(z,y). Diagrammatically it reads:

Observe that this is a distributive compatibility relation.
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4.1.2. The triple (Com, As, Lie). — By definition a Com®-As-bialgebra is (in the
non-unital framework) a vector space H equipped with a (nonunital) associative op-
eration p, a commutative associative comultiplication 4, satisfying the Hopf compati-
bility relation §gops. Obviously hypothesis (HO) is fulfilled. As we already mentioned
in 2.1.4.1 a Com®-As-bialgebra is equivalent to a classical bialgebra 1) by the map
H—H, =KloH.

The free As-algebra over V is the reduced tensor algebra

As(V)=T(V)=V®---aVea--.

equipped with the concatenation product. From the property of the tensor algebra
recalled above, it follows that T(V) is a cocommutative bialgebra, in other words it
satisfies the hypothesis (H1). We claim that the operad P deduced from theorem 2.5.1
is the operad Lie of Lie algebras. Indeed it is well-known that Prim (V) = Lie(V),
cf. for instance [83] for a short proof.

The map ¢ : As — Com?® is given by z,---z, — z;---x, in degree n, where
on the left side we have a noncommutative polynomial, and on the right side we
have a commutative polynomial. In other words ¢, : As(n) — Comc(n) is the
map K[S,] — K, o — 1k. This map has a splitting in characteristic zero, given
by z1-- -z, — # 3 ves, o(z1---xn). It is a coalgebra morphism for the coalgebra
structure of T(V) = As(V) constructed above. Hence the hypothesis (H2epi) is
fulfilled. So the triple (Com, As, Lie) is a good triple of operads and the structure
theorem holds for this triple. Translated in terms of unital-counital cocommutative
bialgebras it gives:

4.1.3. Theorem (CMM + PBW). — Let K be a field of characteristic zero. For any
cocommutative bialgebra ‘H the following are equivalent:

(a) H is connected,

(b) there is an isomorphism of bialgebras H = U(Prim H),

(c) there is an isomorphism of connected coalgebras H = S¢(PrimH).

Here the functor U is the classical universal enveloping algebra functor from the
category of Lie algebras to the category of unital associative algebras (or more accu-
rately classical cocommutative bialgebras).

Of course, this is a classical result. In fact (a) = (b) is the Cartier-Milnor-Moore
theorem which first appeared in Pierre Cartier’s seminar lectures [12] (2) and was later
popularized by Milnor and Moore in [64].

(1) Here we only deal with connected bialgebras for which an antipode always exists. So there is an
equivalence between connected bialgebras and Hopf algebras.

(2) In this paper a bialgebra is called a “hyperalgebra”.
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Then (b) = (c) is, essentially, the Poincaré-Birkhoff-Witt theorem. In fact it is
slightly stronger since it not only gives a basis of U(g) from a basis of the Lie algebra g
but it also provides an isomorphism of coalgebras U(g) — S°(g). This is Quillen’s
version of the PBW theorem, cf. [73, Appendix B]. In this appendix Dan Quillen gives
a concise proof of the PBW and of CMM theorems. The idempotent that he uses in
his proof is the Dynkin idempotent

1
T1...Zp > ;;{ Az, z2), 23], - - - 0]

We will show that the idempotent given by our proof (cf. 2.3.5) is the Eulerian
idempotent (cf.[74], [44]).

Theorem 3.1.4 applied to the triple (Com, As, Lie) gives the most common version
of the PBW theorem:

grU(g) = S(g)-
Observe that the implication (a) = (c) had been proved earlier by Jean Leray

(cf. [40]), who had shown that the associativity hypothesis of the product was not
necessary for this implication (see 4.1.12 for an explanation in terms of triples of

operads).

One may consult the paper by P.-P. Grivel [31] for historical notes on the PBW
theorem.
4.1.4. Eulerian idempotent [44]. — Let H be a connected cocommutative bial-

gebra (nonunital framework). The convolution of two linear maps f,g : H — H is
defined as

frg:=po(f®g)od.
It is known that § can be made explicit in terms of shuffles. By definition the (first)
Eulerian idempotent eV) : H — H is defined as
e = log*(uc + J) = J — %J*2+ %J*3_...

where J := Idy —uc. For H = T(V), the nonunital tensor algebra, e(!) sends V&
to itself and we denote by el : V®" — V& the restriction to V™. Explicitly, it
is completely determined by an element el = Y., as0 € Q[Sy,] since, by the Schur
lemma,

651,1)(1'11 coe »xn) = Zaa(wcr(l) e 'xo(n))v

for some coeficients a(o) (here we let o act on the right).
The higher Eulerian idempotents are defined as

s
o .= )
il
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From the relationship between the exponential series and the logarithm series, it

comes:
Id, = e +-- +elM.
4.1.5. Proposition. — For any connected cocommutative bialgebra H the universal

idempotent e is equal to the Eulerian idempotent:

e:=[](1d—w") = Z(-l)ni;z = eV,

n>2 n>1
Proof. — Tt suffices to prove this equality for % = T((V'). From the definition of w!”!
we get its expression in terms of shuffles. We get
Wl — o) 4 gnt)) L
Hence we deduce
1d —wl = M + .4 em=1)
Since the idempotents e(*) are orthogonal to each other (cf. [44]) we get

e = [ (1 -wl) = e®(e® 4 e@)(e®) 4 @ 1 e@)(..)... = e, O

n>2

4.1.6. Explicit formula for the PBW isomorphism. — Since the Eulerian
idempotent can be computed explicitly in the symmetric group algebra, one can give
explicit formulas for the isomorphism

T(V) = S°(Lie(V)).
In low dimension we get = = z,

zy = [z, y] + 3 (zy + yz),
zyz = ¢([[z,y], 2] + [z, [y, 2]])
+ 3 (zly, 2] + [y, 2]z + y(z, 2] + [z, 2Jy + 2]z, 4] + [z, y]2)

+2 Z o(zyz).

o€S3

4.1.7. Remark. — In the case of classical bialgebras, not necessarily cocommuta-
tive, i.e. As°-As-bialgebra with § = () Hops, the hypotheses (H0) and (H1) are also ful-
filled. However the condition (H2epi) is not fulfilled, since the map ¢ : T(V) — T* (V)
factors through EC(V). This is due to the cocommutativity of the coproduct on the
free associative algebra.
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4.1.8. The triple (Com,Com,Vect). — As mentioned in 3.1 if we mod out by
relators in Lie, then we get a new triple of operads. For instance if we mod out by
Lie (cf. 1.2.4 for the notation), then we get a good triple of operad:

(Com,Com, Vect).

In the unital framework the free commutative algebra Com(V) is the symmetric
algebra S(V'), which is the polynomial algebra K|z, ..., z,] when V = Kz, ®- - -®Kz;,.
Similarly the cofree coalgebra Com¢(V') can be identified with K[zy,...,z,] and the
coproduct is given by A(z;) = z; ® 1 + 1 ® z;. Under these identifications the
map (V) : Com(V) — Com®(V) is not the identity, but is given by zi' ---zir s

ol % This phenomenon can be phrased differently as follows. On the vector

il
s;l)ace of polynomials in one variable one can put two different commutative algebra
structures:

(I) zP2?:=zP*9, (1) zPz?:= (p:q)xp”,
where (”:") is the binomial coefficient %’%ﬁ. Of course, over a characteristic zero
field, they are isomorphic (z" +— ”fl—',') By dualization we obtain two coalgebra struc-
tures (I¢) and (II°). In order to make K[z] into a Hopf algebra we have to combine
either (I) and (I1¢) or (II) and (I°).

The rigidity theorem for the cocommutative commutative connected bialgebras is
the classical Hopf-Borel theorem recalled in the introduction of 2.3. Let us recall that
the classical version (the one which is used in algebraic topology) is phrased in the
graded framework (cf. 3.5). Here we gave the claim in the nongraded framework.

4.1.9. The triple (Com, Parastat, NLie). — A parastatistics algebra is an asso-
ciative algebra for which the Lie bracket verifies the relation

([, ylvz] =0.

In a classical bialgebra the elements [[z,y],2] are primitive, hence we are in the
situation of proposition 3.1. The primitive type associated to the bialgebra type
As®-Parastat is simply nilpotent algebras whose product is antisymmetric. The struc-
ture theorem was proved in [50] (it follows easily from the classical one). This triple
is interesting on several grounds. First, the parastatistics algebras (and their sign-
graded version) appear naturally in theoretical physics. Second, the parastatistics
operad is interesting from a representation theory point of view because Parastat(n)
is the sum of one copy of each irreducible type of S, -representations. Third, the
parastatistics algebras are exactly the algebras which are at the same time associative
and Poisson (for the Lie bracket and the symmetrized operation).
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4.1.10. The triple (Com, Mag, Sabinin). — Let Com®-Mag be the magmatic co-
commutative bialgebra type. The compatibility relation is the Hopf compatibility
relation. Let us recall that a magmatic algebra is a vector space equipped with a bi-
nary operation, without further hypothesis. This is the nonunital case. In the unital
case we assume further that there is an element 1 which is a unit on both sides. It is
easy to show that the free magmatic algebra can be equipped with a cocommutative
cooperation as follows. Working in the unital framework we put on the tensor product
of two unital magmatic algebras a unital magmatic structure by

(a®b)-(a'®b’)= (a-a’)®(b-b’) and 1A®B:1A®IB-

So the free unital magmatic algebra Mag (V') tensored with itself is still a unital
magmatic algebra. There is a unique morphism Mag, (V) — Mag (V) ® Mag, (V)
which extends the map

V — Mag,(V)® Mag+(V), v—v®1+1Qw.

This cooperation is immediately seen to be coassociative and cocommutative. Re-
stricting the whole structure to the augmentation ideal gives a Com®-Mag structure
on the free magmatic algebra Mag(V'). Hence hypothesis (H1) holds. Explicitly the
cooperation ¢ is given by

n—1
5(t; V1y... ,’Un) = Z Z(ta); Vg(1)s - - 7’”0(1’)) ® (t?z); Vo (i+1)s -+ - ,’Uc,(n))

i=1 o
where o is an (i, n—1)-shuffle and the trees t‘(’l) and t‘(’z) are subtrees of ¢t corresponding
to the shuffle decomposition (cf. [35]).
A coalgebra splitting s to ¢(V') is obtained by

s(vy...v,) = Z %(combfb; Vo(1) - - - Vo (n))
o€S,
where comb? is the left comb (cf. 5.1.2). So hypothesis (H2epi) is fulfilled. Hence
the structure theorem holds for Com®-Mag-bialgebras. It was first proved by
R. Holtkamp in [35]. Earlier studies on this case can be found in the pioneering work
of M. Lazard [39] in terms of “analyseurs” and also in [26].

4.1.11. Sabinin algebras. — The problem is to determine explicitly the primi-
tive operad Primcom Mag. Results of Shestakov and Urmibaev [78] and of Pérez-
Izquierdo [69] show that it is the Sabinin operad. A Sabinin algebra can be defined
as follows (there are other presentations). The generating operations are:

<x1,-‘-amm;y;z>, mZO,

q)(ml)-")xm;ylw'wyn), le,nZZ,

ASTERISQUE 320



4.1. HOPF ALGEBRAS: THE CLASSICAL CASE 61

with symmetry relations

(T1y s Tm3 Yy 2) = —(T1y -+, Tm} 2, ),

B(T1,.. T Y1y -y Yn) = Pw(Z1,. -y Zm);0(Y1,--.1Yn));, W E Sm,0 € Sy,

and the relations are

<$L'1,--.,-’l?r,u,/l),l'r+1,...,1'm;y,2) - ($1,---,mr,U,U,$r+1»~~-,$m;y»Z>

r .
+ Z Z <‘TU(1): <oy To(k)s <wa(k+1), s To(r)y Wy U)vw’r+17 v ,wm;yaz>
k=0 o

where o is a (k, 7 — k)-shuffle,
Kz,y,z ((xlv ey Ty T3 Y, Z)
T
+ Z Z(xa(l)y <oy To(k)s (xa'(k+1)’ e Zo(r)s Yy Z>,$>) =0
k=0 o
where K , . is the sum over all cyclic permutations.

Observe that there is no relation between the generators (—; —) and the gener-
ators ®. The functor F' : Mag-alg — Sabinin-alg is constructed explicitly in [78]
(also recalled in [69]). For instance (y,2) = —y-z+z-yand (z-y)-z2—z-(y-2) =
- % (z;y, 2)+®(z;y, 2). It is easy to check that in Mag(V) the two operations “bracket”

and “associator” are not independent but related by the nonassociative Jacobi iden-
tity(cf. [35]):

([z,9), 2] + [y, 2], @] + [z, 2l sl = D o as(z,y,2).
sgn(o)o€Ss

In the preceding presentation it corresponds to the cyclic relation with » = 0.
So, there is a good triple of operads

(Com, Mag, Sabinin).

As a consequence, the generating series is f5%°(t) = log (1+ (1 —+/1— 4t)) and the
dimension of the space of n-ary operations is

dim Sab(n) = 1,1,8,78,1104, ...

4.1.12. Remarks. — Since the Com®- M ag-bialgebra type satisfies (H0), (H1) and
(H2epi), any connected bialgebra is cofree. This result has been proved earlier by
Jean Leray in [40]. See also [66], [22] for a different generalization.
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4.1.13. Quotients of Com®-Mag. — The classical type (Com, As, Lie) is a quo-
tient of the triple (Com, Mag, Sabinin) (quotient by the associator, which is a prim-
itive element and apply proposition 3.1). In fact we have the following commutative
diagram of operads:

Sabinin » Lie » NLie —» Vect
Mag > As > Parastat —» Com

It may be worth to study other quotients of Mag by an ideal J (for instance
PreLie since (z;y,z) is the pre-Lie relator), and find a small presentation of the
quotient Sabinin/(J). Some results in this direction have been done for Malcev-
algebras in [70]. It fits into this framework, since the Malcev relators:

Ty—y-zx
(z-y)-2) t+(z-(y-2)t—(xy)-z-t)+z-(y-2)-t)+z-(y-(z-1)

are primitive in Mag(V). Other examples with Moufang algebras, Bol algebras and
Lie triple systems should come into play.

4.1.14. Poisson bialgebras. — Let us mention that there is a notion of Hopf-
Poisson algebras (see for instance [19]), that is As®-Pois-bialgebra and also cocom-
mutative Hopf-Poisson algebras, that is Com®-Pois-bialgebra. The compatibility re-
lation for the pair (4,-) (where a - b is the commutative operation) is Hopf and the
compatibility relation for the pair (4,[]) (where [] is the Lie bracket) is given by

N

As in the classical case there is a good triple (Com, Pois, Lie) since it is well-known
that the free Poisson algebra Pois(V') is precisely Com(Lie(V)).

4.1.15. A conjectural triple (Com,??,preLie) (®. — In [14] F. Chapoton and
M. Livernet showed that the symmetric algebra over the free pre-Lie algebra in one
generator can be identified with the dual of the Connes-Kreimer Hopf algebra [16].
The study of this case, as done in [32] for instance, suggests the existence of a triple
of the form (Com, A,preLie) where the operad A is the unknown. It is expected
that A(K) & Mgy and that this triple admits (Com, As, Lie) as a quotient. It is

(3) Added in proof: this problem has been settled in [55].
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also interesting to remark that dim .4(n) should be equal to (n + 1)»~! which is also
dim Park(n) (parking functions).

4.2. Unital infinitesimal bialgebras

In this section we study some triples (As, A, P) which are over (As, As, Vect) with
compatibility relation the nonunital infinitesimal relation.

4.2.1. The (non)unital infinitesimal compatibility relation. — On the tensor
algebra T'(V) the product is the concatenation product p. Let us equip it with the
deconcatenation coproduct given by

n
A(vy - vp) := Zvl---vi@)vi“---vn,
=0
The pair (A, 1) does not satisfy the Hopf compatibility relation, but does satisfy the
unital infinitesimal relation:

Ary) = —z Q@ y + z(1) ® T(2)¥ + TY(1) ® Y(2),

where A(IL') =2Z(1) ® T(2)-

Since we want to work in the nonunital framework, we need to introduce the reduced
coproduct § defined by the equality A(z) =z ®1+1Q® z + &(z).

The compatibility relation for the pair (4, 1) is the nonunital infinitesimal (n.u.i.)
compatibility relation {jp,;:

S(zy) =z @y +4(z)(1®Y) + (z@1)(y),

Diagrammatically it reads (cf. 2.1 example 2):

4.2.2. The triple (As, As,Vect). — By definition a nonunital infinitesimal bialge-
bra (As°-As-bialgebra) is a vector space equipped with an associative operation and a
coassociative cooperation satisfying the n.u.i. compatibility relation. hypothesis (HO)
is obviously fulfilled. From the above discussion it follows that hypothesis (H1) is also
fulfilled.

The next proposition shows that hypothesis (H2iso) is fulfilled. So we get the
rigidity theorem for the triple (As, As,Vect). It was first announced in [52] and
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proved in [54] where details can be found. Let us just recall that the universal
idempotent in this case is given by the geometric series:
e=) (-1)"'id*"
n>1

where « is the convolution product fxg:= po (f ®g) o 6.

4.2.3. Proposition. — The map p(V) : T(V) — T(V)° is induced by the identification
of the generator of As, with its dual.

Proof. — The prop As®-As is nonsymmetric and As, is one-dimensional. Let u,
denote the generator of As,, so pun(z1,...,Zn) = Z1...Z,. In order to compute its
image by ¢ it suffices to compute 8, o p,(z1,...,2,) where d, is the dual of u,, that
is the generator of Asg, (cf. 2.5.7). From the compatibility relation we get

8n O in(T1,. ., Tp) =21 ® -+ @ T, € VO™ C As(V)®"

where V =Kz, @ - - - ® Kz,,. Hence ¢(V)(pn) = 8, and ¢ is an isomorphism. O

4.2.4. The triple (As, Mag, MagFine). — This triple has been studied and proved
to be good in [36]. The compatibility relation is {j,;. The coproduct § on Mag(V) =
@®,.>, K[PBT,|®V®", where PBT, is the set of planar binary trees with n internal
vertices (cf. 5.1.2), can be constructed as follows. Let ¢ be p.b. trees whose leaves are
numbered from left to right beginning at 0. We cut the tree along the path going
from the ith vertex (standing between the leaves ¢ — 1 and %) to the root. It gives two
trees denoted t{;, and t{,).We have

n
0(t;vo -+ vn) = Z(tfl);vo < 0i-1) ® (t{g); i+ Vn)-

i=1
hypothesis (H1) can be proved either by using the explicit form of § or by an inductive
argument as explained in 2.5.7. The map ¢(V) : Mag(V) — As®(V) sends t to the
generator 1, of AsS. We choose the splitting s, : As, — Mag, given by s(1,) =
comb, (left comb). So hypothesis (H2epi) is fulfilled and we have a good triple of
operads:

(As,Mag,Primss Mag).

It is proved in [36] that the primitive operad Primg, Mag is generated by n — 2
operations in arity n and that they satisfy no relations. So this operad is a magmatic
operad (free operad). Since the dimension of (Primss Mag), is the Fine number, it
is called the magmatic Fine operad, denoted MagFine. So there is a good triple of
operads

(As, Mag, MagF'ine).

ASTERISQUE 320



4.2. UNITAL INFINITESIMAL BIALGEBRAS 65

4.2.4.1. Relationship with previous work. — As a byproduct of the structure theorem
for As®-Mag-bialgebras we have that a connected coassociative algebra equipped with
a magmatic operation satisfying the n.u.i. relation is cofree. Dually we have the
following: an associative algebra equipped with a comagmatic operation, which is
connected and satisfies the n.u.i. relation is free. A very similar result has been shown
by L. Berstein in [5], who proved that a cogroup (in fact comonoid) in the category
of associative algebras in free. J.-M. Oudom remarked in [66] that coassociativity of
the cooperation is not even necessary to prove the freeness. The difference with our
case is in the compatibility relation. See also [4] for similar results in this direction.

4.2.4.2. Quotient triples. — Of course the quotient triple of (As, Mag, MagF'ine) is
(As, As, Vect). It would be interesting to find a small presentation of the intermediate
quotient by the pre-Lie relator

(m;y,2):=(z-y)-2—z-(y-2)—(z-2) - y+z-(2-y),
which gives the good triple
(As, PreLie,Prim 45 PreLie).

4.2.5. The triple (As,2as, MB). — (Cf. [54]). By definition a 2-associative al-
gebra or 2as-algebra for short, is a vector space A equipped with two associative
operations denoted a - b and a * b. In the unital case we assume that 1 is a unit for
both operations. By definition a As®-2as-bialgebra is a 2as-algebra equipped with a
coassociative cooperation d, whose compatibility relations are as follows:

(a) - and 4 satisfy the n.u.i. compatibility relation (cf. 4.2.2),

(b) * and § satisfy the Hopf compatibility relation (cf. 4.1).

The free 2as-algebra can be explicitly described in terms of planar trees and one can
show that it has a natural As®-2as-bialgebra structure. Hypotheses (HO), (H1) and
(H2epi) are also easy to check (cf. loc. cit.) and so there is a good triple of operads
(As,2as,Prim4s 2as). It has been first proved in [54] where the primitive operad
Prim 4, 2as has been shown to be the operad of multibrace algebras (abbreviated into
M B-algebras, denoted Bo-algebras in [54]). This is a very important operad since
there is an equivalence between the category of M B-algebras and the category of
cofree Hopf algebras H equipped with an isomorphism H = 7¢(Prim H).

Let us give some details on this equivalence. By definition a M B-algebra (cf. [27],
[54]) is a vector space A equipped with (p + g)-ary operations M, satisfying some
relations. Let T°(A) be the cofree counital coalgebra on A. Let

*: T°(A) @ T°(A) — T¢(A)

be the unique coalgebra morphism which extends the operations M,, : A%®? ®
A®? — A, Then the relations satisfied by the operations M, imply that
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(T¢(A), *, deconcatenation) is a cofree Hopf algebra. In the other direction, any
cofree Hopf algebra determines a M B-structure on its primitive part. The details are
to be found in [54].
Hence we deduce that
(As,2as, M B)

is a good triple of operads (first proved in loc. cit.). One of the outcomes of this result
was to give an explicit description of the free M B-algebra. Indeed the operad 2as can
be explicitly described in terms of planar rooted trees. Thanks to this description and
the structure theorem, one can describe the operad M B in terms of trees (cf. loc. cit.).
Observe that moding out by the primitives gives the triple (As, As, Vect).

Since the functor As-alg — 2as-alg admits an obvious splitting (forgetful map), we
can use it to construct the splitting of ¢. Hence the idempotent e is the same as in the
case of the triple (As, As,Vect). It was shown in [54] that the universal idempotent
is given by the geometric series:

e=Id_Id*Id+"'+(—1)n_1ld*"+--- .

Here « stands for the convolution product.

4.2.6. The triple (As,2as, Mag®). — Consider As°-2as-bialgebras with compat-
ibility relations being both the n.u.i. compatibility relation. So this type of bialgebras
is different from the one described in 4.2.5. It is immediate to check (HO), (H1) and
(H2epi) are fulfilled. So there is a good triple of operads (As, 2as, Prim 4, 2as). With
some more work (cf. [77]) one can show that the primitive operad is the operad Mag®™
which has one generating operation in each arity n > 2 and no relation. So there is a
good triple of operads
(As,2as, Mag™).

4.3. Dendriform, dipterous and Zinbiel bialgebras

In this section we study some triples (As,.A,P) which are over (As, Zinb, Vect)
with compatibility relation the semi-Hopf relation. Here Zinb is the operad of Zin-
biel algebras. The triple (As, Zinb,Vect) is used by E.Burgunder in her analy-
sis of a noncommutative version of the Kontsevich graph complex, cf. [10]. The
triple (As, Dipt, M B) is particularly interesting since it gives a structure theorem
for cofree Hopf algebras, cf. [54]. The triple (As, Dend, Brace) was studied by
M. Ronco in [75], [76]. It gives rise to a noncommutative version of the Connes-
Kreimer Hopf algebra, cf. [55]. The triple (As, TriDend, Prim 4, TriDend) admits
a quotient (As, CTD,Com) which is strongly related to the quasi-shuffle algebras,
cf. [49].
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4.3.1. Zinbiel algebra and semi-Hopf compatibility relation. — By definition
a Zinbiel algebra is a vector space A equipped with an operation denoted a < b
satisfying the Zinbiel relation

(a<b)<c=a=<(b<c+c=b).

We note immediately that the operation a x b := a < b+ b < a is associative (and
commutative of course). The terminology comes from the fact that the Koszul dual
operad is the operad of Leibniz algebras (cf. [47]).

By definition a As®-Zinb-bialgebra, or Zinbiel bialgebra, is a Zinbiel algebra
equipped with a coassociative cooperation §, whose compatibility relation is nonuni-

tal semi-Hopf, denoted Qﬁemmopf :

Observe that, as a consequence, the compatibility relation for the pair (4, ) is Hopf
(nonunital setting). It was-obtained as a consequence of the semi-Hopf relation in the
unital framework, given by

Az <y) = Az) < A(y),
where the tensor product of the bialgebra with itself has been equipped with following
Zinbiel structure:
(a®b) < (' @V)=axd @b =<V,
whenever it is defined, and
(a®1)<(@®1)=a<d ®1,
otherwise (cf. M. Ronco [75] and 3.2.2). The behavior of < with respect to the unit
is given by
1<z=0, z<1l=z.
The free Zinbiel algebra over V is the reduced tensor module T(V) (cf. [45]) and the
relationship between the tensors and the Zinbiel algebra structure is given by
vi v =01 < (v2 < (0 (Uno1 <) ).
Explicitly, the Zinbiel product is given by the half-shuffle:
Vi...Up < Upyl- Up =1 Z o(vg -+ vn)
oc€SH(p—1,n—p)

where SH(p—1,n — p) is the set of (p — 1,n — p)-shuffles. As a consequence (T'(V'), *)
is the (nonunital) shuffle algebra.
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It can be shown that the free Zinbiel algebra satisfies both hypotheses (H1) and
(H2iso). It is a consequence of the work of M. Ronco [75], [76], see E. Burgunder [10]
for a self-contained proof. Hence

(As, Zinb, Vect)

is a good triple of operads. This example is interesting because it shows that, for a
certain algebraic structure A, (A = As here), there can be several different coalgebraic
structures C for which (C, A, Vect) is a good triple. Here C = As or Zinb.

We can revert the roles of As and Zinb in this example (cf. 3.6) and so there is a
notion of Zinb°-As-bialgebra. As a consequence

(Zinb, As, Vect)

is also a good triple (cf. 3.6). This result plays a role in the analysis of the Leibniz
homology of the Lie algebra of derivations of an operad (cf. [10]).

4.3.2. Dipterous bialgebras. — By definition a dipterous algebra is a vector space
A equipped with two binary operations denoted a*b and a < b verifying the relations:

(x<y)<z=2z=<(y*2),

By definition a As¢-Dipt-bialgebra, or dipterous bialgebra, is a dipterous algebra
equipped with a coassociative cooperation J, whose compatibility relation is Hopf
with * and semi-Hopf with <. In fact one can put a unit on a dipterous algebra by
requiring that 1 is a unit for * and that

1<a=0, a<1=a,
(1 < 1 is not defined). This is a particular case of a multiplicative operad, see 3.2
and [48].
The free dipterous algebra can be described in terms of planar trees. It can be
shown that the free dipterous algebra satisfies both hypotheses (H1) and (H2iso)

(cf. [52]). The primitive operad was proven to be the operad M B introduced in
loc. cit. (cf. 4.2.5). Hence

(As, Dipt, M B)

is a good triple.

4.3.3. Dendriform bialgebras. — Because of the importance of the dendriform
and brace notions, we give more details on this case. The results are due to M. Ronco
[75], [76].
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4.3.8.1. Dendriform algebras. — A dendriform algebra A is determined by two binary
operations A ® A — A called left (a,b) — a < b and right (a,b) — a > b, satisfying
the following three relations

(z<y)<z=z<(y*2),

(z-y)<z=z>(y=<2),

(zxy)=z=z> (y > 2),
where £ *y := z < y +z > y. From these axioms it follows that the operation
is associative, hence a dendriform algebra is an example of dipterous algebra. The
operad Dend is obviously nonsymmetric. It has been shown in [47] that Dend, =
K[PBT,+1] where PBT;,,; is the set of planar binary rooted trees with n + 1 leaves
(cf. 5.1.2 for more details on trees).

A unital dendriform algebra is a vector space A := K 1® A where A is a dendriform
algebra and where the left and right products have been extended by:

1<a=0, a<1=a, 1>a=a, a>1=0.

Observe that 1 is then a unit for the associative operation *. If A, and B, are two
dendriform algebras, then we can put a unital dendriform structure on their tensor
product A, ® By by

(a®b) < (a'®V):=(axa’)®(b=<b'), whenever a # 1 and a' # 1,
and a similar formula with > in place of <.

4.8.8.2. Dendriform bialgebras. — By definition a As®-Dend-bialgebra, or dendri-
form bialgebra, is a dendriform algebra A equipped with a coassociative cooperation 4,
whose compatibility relations are as follows.

For the pair (4, >) it is given by {

T .
semiHopf*

>< ) 7J+L{H}+%ij+(?xij

and for the pair (6, <) it is given by (%, ;pops :

ii“H+hYL<%+k?+¢Xé
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Equivalently, there is a coassociative diagonal A : A, — A, ® A,, such that
A(1)=1®1 and

Afa<b)=Ala) < A®), Ala> b) = A(a) = Ab).

The relationship between A and ¢ is given by A(a) =a® 1+ 1® a+ d(a). It follows
that hypothesis (HO) is true.

Though As and Dend are nonsymmetric, the prop of dendriform bialgebras is not
nonsymmetric because of the form of the compatibility relation. Observe that the
sum of these two relations gives the Hopf compatibility relation for the pair (4, *).

Let Dend(V)4 be the free unital dendriform algebra. It has a functorial bial-
gebra structure constructed as follows. There is a unique map A : Dend(V)y —
Dend(V)+ ® Dend(V), which extends the map V — Dend(V)4 ® Dend(V)4,v +—
v®1+4+1Q®wv because Dend(V) is free. The map A is easily shown to be cocommutative.
Hence the hypothesis (H1) is true.

4.8.8.8. Structure theorem for dendriform bialgebras. — The map of S-modules
Dend — As® is obviously surjective. Let us choose the splitting which maps the
cooperation p, to the operation (<)™ defined inductively as

(<)1(1‘0,$1) =9 <X 21, (-<)n($0, . ,a:n) =T < ('<)n_1((l'1, . ,:En).
Under this choice the versal idempotent is:
e=) (-)"(<)" e d",
n>1

where 6" is the iteration of 4. This is exactly the idempotent used by M. Ronco in
her proof of the structure theorem for dendriform bialgebras.

Since the hypotheses (HO), (H1) and (H2epi) are true, the structure theorem
holds for dendriform bialgebras. The good triple (As, Dend, Prim 45 Dend) will be
completely understood once we make the primitive operad explicit.

4.8.8.4. Brace algebras. — The Brace operad admits one n-ary operation {—; —,- -+ , -},
for all n > 2, as generators and the relations are:

Brn,m:{{z;yl,...,yn};zl,...,zm}=Z{w;...,{yl;...},...,{yn;...,},...}.

On the right-hand side the dots are filled with the variables z;’s (in order) with the
convention {yx; @} = yx. The sum is over all the possibilities of inserting the z;’s.
Equivalently a brace algebra is a M B-algebra for which Mp, = 0 for p > 2 and
Mg = {—;—,...,—}. The first nontrivial relation, which relates the 2-ary operation
and the 3-ary operation reads

Bri: {{=z; 9} ?} —{z;{y; 2}} = {z;9, 2} + {=z; 2,4}

ASTERISQUE 320



4.3. DENDRIFORM, DIPTEROUS AND ZINBIEL BIALGEBRAS 71

As a consequence we deduce that the associator of the 2-ary operation is right-
symmetric:

{zyh 2} — {z {y; 23} = {=z 2} 9} — {5 {5 9}}-
So the binary brace operation is in fact a pre-Lie operation.
There is a functor Dend-alg — Brace-alg given by the following formulas:

n
{w;yla ce 1yn} = Z(_l)zw~<(y17' . ’yl) - T < w*(yi-f-l’ o ,y'n),
=0

where w<(y1) = y1,w<(Y1,- -+, %) = y1 < w<(Y2,---, %) and wy (Y1) = Y1, ws (Y1, -, ¥i) =
w<(Y1,---,Yi—1) > ¥;. In low dimensions it reads

{9} =z <y—y»>uz,

and
{z;y,2} =z <(@y>=2)—y>z<2+(@y<z2) >z
One can verify that a brace product of primitive elements in a dendriform bialgebra
is still primitive. Hence there is a morphism Brace(V) — Prim g, Dend(V), which
can be extended as a map

O(V) : T°(Brace(V)) — T°(Prim g5 Dend(V)) =& Dend(V).

On the other hand, T°(Brace(V)) can be equipped with an associative product
and a left product (compare with the dipterous case). But, because M,, = 0 for
p > 2 the extra relation (z > y) < z = = > (y < 2) holds. Therefore T°(Brace(V)) is
a dendriform algebra. So there is a functorial map

Z(V) : Dend(V) — T°(Brace(V)).

One can show that © and = are inverse to each other. As a consequence of this
discussion (As, Dend, Brace) is a good triple of operads.

Comments. The Hopf structure of the free dendriform algebra was first constructed
in [51]. See [2] for an alternative basis with nice behavior with respect to the coprod-
uct. The primitive operad Prim 45 Dend was first identified to be the brace operad by
Marfa Ronco in [75]. The structure theorem was proved in [76] and in [13]. It was
the first example outside the classical framework and the one which motivated this
theory.

Since Dend is a quotient of Dipt by the relation (z > y) < 2z =z > (y < 2) and
since the operation (z > y) < z —z > (y < 2) in Dipt is primitive, it follows from
proposition 3.1 that (As, Dend, M B/ ~) is a good triple. The quotient M B/ ~ turns
out to be the operad Brace.

If we mod out by the primitive operation z < y — y > x, then we get the good
triple (As, Zinb, Vect).
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4.3.4. Tridendriform algebra. — The notion of dendriform algebra admits sev-
eral generalizations. One of them is the notion of tridendriform algebra (originally
called dendriform trialgebra in [53]). It has three generating operations denoted <
(left), > (right), and - (dot or middle). They satisfy the following 11 relations (one
for each cell of the pentagon, see loc. cit.):

(z<y)<z=z<(y*2),
(z-y)<z=z>(y=<2),
(xxy) = 2

z > (y > 2),
(>y)-z=2>(y-2),
(z<y)-z=2-(y>2),
(z-y)<z==z-(y<2),
(z-y)-z2=2-(y-2),
wherezxy:=zx <y+z>y+zx-y.

The operad T'ridend is obviously binary, quadratic and nonsymmetric. The free
tridendriform algebra on one generator has been shown to be linearly generated by
the set of all planar rooted trees in [53].

Using the existence of a partial unit one can put a structure of As®-Tridend-

bialgebra structure on T'ridend(V) as in [48]. The coefficients o and 3 (cf. 3.2.2) are
given by:

r<l=z=1>z,andl<z=z>1=1-z=2-1=0.

These choices are coherent with the operad structure of Dend and therefore, by [48]
(see also 3.2.2), there is a well-defined notion As®-Dend-bialgebra for which the hy-
potheses (HO) and (H1) are fulfilled.

Hypothesis (H2epi) is easy to check, and therefore the triple

(As, Tridend, Prim 4 Tridend)

is good. The operad Prim 45 Tridend can be described explicitly as a mixture of the
brace structure and the associative structure, cf. [67].

One of the interesting points about the good triple (As, Tridend, Brace+ As) is its
quotient (As,CTD,Com), where CTD stands for the Commutative TriDendriform
algebra operad. The commutativity property is

r<y=y>z,andz-y=y-z.

Hence a CT D-algebra can be described by two generating operations z < y and = - y
(the second one being symmetric), satisfying the relations:

(z<y)<z=z<(y*z), (T-y)<z=z-(y<2)=(<2)y, (z-y)-z=z(y 2).
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The good triple (As, CT D, Com) has been studied in [49] () and shown to be related
with the quasi-shuffle algebras in the following sense. The left adjoint U : Com —
CT D-alg gives a classical bialgebra U(R) which is the quasi-shuffle algebra over the
commutative algebra R.

4.4. Lie®-Lie-bialgebras

In this section we work over a characteristic zero field. We introduce the notion of
Lie®-Lie-bialgebra, different from the classical notion of Lie bialgebra, and we prove
a rigidity theorem for Lie®-Lie-bialgebras.

4.4.1. Definition. — A Lie®-Lie-bialgebra is a vector space A which is a Lie algebra
for the bracket [z, y], a Lie coalgebra for d; | and whose compatibility relation is jLi:

ol |- )+;(N+<>{+m+}<>)

Here \( stands for the bracket [—, —] and /k stands for the cobracket 4.

Observe that the notion of Lie®-Lie bialgebra is completely different from the
notion of Lie bialgebras, since, in this latter case, the compatibility relation is the
cocycle condition {§p;pie:

XA G40

In particular for {1, there is a ®;1-term, so there is some chance for the existence
of a rigidity theorem.

In order to show that the free Lie algebra Lie(V) is equipped with a structure
of Lie®-Lie-bialgebra, we are going to use the tensor algebra T(V) for V = Kz; @
---@®Kz,. Hence T(V) is the space of noncommutative polynomials without constant
term in the variables z;’s. The coproduct 6 on T(V) is the deconcatenation coproduct
(cf. 4.2.2). Recall that Lie(V) is made of the Lie polynomials, that is the polynomials
generated by the z;’s under the bracket operation. The degree of a homogeneous
polynomial X is denoted |X|. We use the involution X + X on T(V) which is the
identity on the x;’s and satisfies (XY) =Y X.

(4) The relation z - (y < 2) = (z < 2) - y is missing in the axioms of a CTD-algebra given in [49).
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4.4.2. Lemma. — If X € Lie(V), then X = —(—1)1X1X and
26(X) = X1 ® X2 — (-1)PH1X, ® X1,

where §(X) =: X1 @ X2 (Sweedler notation) and p = | X1|,q = |Xa|.
Proof. — The proof is by induction on the degree n of X. We assume that these

formulas are true for X, and then we prove them for [X, z] where z is of degree 1.
For the first formula we get

[X,2] = (Xz—2X) =2X — Xz = —(-1)"([z, X]) = —(-1)""}[X, 2],

as expected.
For the second formula, the n.u.i. compatibility relation and the induction hypoth-
esis give:
0([X,2]) = 0(Xz— zX)
=X®R24+4X1®X2z2—20 X —2X;® X,
= X®z—z®X+%(X1®X2z—zX1®X2
_(_1)p+qX2 ® )—(12 + (_1)p+qu2 ® Xl)

On the other hand we have

[X,2]: ® [X, z]2 — (-1)PH[X, z]); ® [X, 2],
=1 (X®2-20X+X1®Xoz - 2X1 ® Xo — (-1)""2® X
+(-1)"MX @z — (1P X, @ X + (—1)PHHIX, @ X12).

The two expressions are equal, because, since X is a Lie polynomial, we have
X =—-(-1)"X. a

4.4.3. Proposition. — Let §; ) := 6 — 7. The image of Lie(V') by 4, is in Lie(V) ®
Lie(V).

Proof. — The proof is by induction on the degree n of X € Lie(V). It is immediate

for n = 1. Suppose that X € Lie(V),8(X) = X; ® X, and X, X, € Lie(V). We
observe that, by lemma 4.4.2 we have

§(X)=1X1® X, =1(X1® X - X2 ® X1).
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We are going to show that, for any element z of degree 1, we have &} ([X,2]) €
Lie(V) ® Lie(V). We compute:
0 ,1([X, 2]) = (6 — 76)(X2z — 2X)
=X®R2-20X+X10X02—2X,0 X,
—2X+X®2z2—X220 X; + Xo® 22Xy
=2(X®z-20X)
+3 (X1 ® Xa2 —2X1 ® X2 — X22 @ X1 + X2 ® 2X3
~Xo® X124+ 2X2® X1+ X12® X2 — X1 ® 2X7)
= 2(X ®z2—2Q X)
+1 (X1 ® [X2,2] — [2, X1] ® X2 — [X2,2] ® X1 + X2 ® [z, X1]).
So we have proved that &; ([X, 2]) € Lie(V) ® Lie(V). O
4.4.4. Proposition. — On Lie(V) the bracket operation [z,y] and the bracket coopera-
tion &} ) satisfy the compatibility relation (ray (cf. 4.4.1).
Proof. — Let X,Y € Lie(V). We compute d[ ;([X,Y]) :
5[,]([X,Y]) = (6-10)(XY -YX)
§(XY)—-46(YX)—70(XY)+716(YX)
=+XQY+X1Y QX +XY1QY;
“YX-YV1X®Y-YX1®X>
“YX-X0X1Y -, XY
+XRY+Y, V1 X +Xo0YX,
2(X®Y -Y®X) ,
+HX1,Y]® X2 + [X, V1] @Yo + X1 ® [X2, Y] + Y1 ® [X, Y]
2(XQY -Y®X)+ 5([Xu, Y] ® Xpg
+[X, Yyl ® Yoy + X1y @ [X2, Y] + Yy ® [ X, ¥z)]).

Observe that, in this computation, we have used the fact that, for any element Z €
Lie(V), the element §(Z) = Z; ® Z, is antisymmetric, that is Z1 ® Zo = —Z; ® Z;
(cf. 4.4.2). As a consequence we have $8( 1(Z) = §(Z). ]

4.4.5. Theorem. — In characteristic zero, the prop Lie-Lie satisfies hypotheses (HO),
(H1) and (H2iso); therefore the triple (Lie, Lie,Vect) (with § = (Liy) is a good
triple. Hence any connected Lie®-Lie-bialgebra is both free and cofree.

Proof. — 1t is clear that the compatibility relation {1, is distributive. By proposi-
tions 4.4.3 and 4.4.4 the hypothesis (H1) is fulfilled. Let us prove (H2iso).
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We have seen in the last proof that d[ |(Z) = 20(Z) when Z € Lie(V'). The coop-
eration 4 induces the isomorphism map ¢4s(V) : As(V) — As°(V) which identifies
the generator of As, with its dual. Hence, restricted to Lie(V') it is injective. So
the map (V) : Lie(V) — Lie(V), induced by 4|} is injective. Since Lie(n) and
Lie“(n) have the same dimension, it is an isomorphism. d

4.4.6. The conjectural triple (Lie, PostLie, Prim 45 PostLie). — By definition,
cf. [81], a PostLie algebra is a vector space A equipped with two operations z o y
and [z, y] which satisfy the relations

[.'17, y] = _[y7 .’L'],

[.’L‘, [ya Z]] + [ya [Z,l']] + [z’ [‘Tv y]] =0,
(zoy)oz—zo(yoz)—(zxo2)oy+zo(zoy)=x0oy,2],
[z,9]0z=[zozy]+[x,yoz]

It is shown in loc. cit. that the operad PostLie is the Koszul dual of the operad
ComTrias. A PostLie algebra is a Lie algebra for the bracket [z,y]. But it is
also a Lie algebra for the operation {z,y} = zoy —yoz + [z,y] (cf. loc.cit).
We conjecture that there exists a notion of Lie®-PostLie bialgebra such that the
free PostLie algebra is such a bialgebra. Hopefully there is a good triple of operads
(Lie, PostLie, Prim 45 PostLie). The isomorphism of PostLie = Lie o PBT, where
PBT = &,K[PBT,] proved in [80] is an evidence in favor of this conjecture. It is not

clear what is the algebraic structure one should put on PBT to make it work (Mag
is one option out of many).

4.5. N AP°-A-bialgebras
Triples of the form (NAP¢, A, Primy ap A) come from the work of Muriel Liver-
net [42].

4.5.1. Pre-Lie algebras. — By definition a pre-Lie algebra is a vector space A
equipped with a binary operation a - b which satisfies the following relation

(@) -z (y2)=(2-2)y-2-(2-9)
(right-symmetry of the associator). The free pre-Lie algebra has been described in

terms of abstract trees in [14].

4.5.2. NAP-algebra. — By definition a non-associative permutative algebra, or
N AP algebra, for short, is a vector space A equipped with a binary operation denoted
ab which satisfies the following relation

(zy)z = (z2)y.
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In fact we are going to use the notion of N AP-coalgebra, whose relation is pictorially

4.5.3. NAP¢°-PreLie-bialgebra. — By definition a NAP¢-PreLie-bialgebra is a
pre-Lie algebra equipped with a NAP cooperation §, whose compatibility relation {1,

It has been shown by M. Livernet in [42, Prop. 3.2|, that the free pre-Lie algebra
is naturally a NAPC°-PreLie-bialgebra. She also proved the rigidity theorem for

as follows:

is as follows:

N AP¢-PreLie-bialgebras by providing an explicit idempotent. This result follows
also from our general result, since the coalgebra map PreLie(V) — NAP¢(V) is an
isomorphism (cf. loc. cit.). The explicit description of the universal idempotent in
terms of generating operations and cooperations (as described in 2.3.9) is to be found
in loc. cit.

4.5.4. NAP°-Mag-bialgebras. — The compatibility relation for NAP°-Mag-
bialgebras is {r.,. Hypothesis (HO) is clearly fulfilled. Here is a proof of hypothe-
sis (H1).

4.5.5. Proposition. — On the free magmatic algebra Mag(V') there is a well-defined
cooperation § which satisfies the N AP relation, that is (6 ® Id)é = (Id ®7)(d ® Id)4,
and the Livernet compatibility relation (i, .

Proof. — We use the inductive method described in 3.2. We let
d:Mag(V) — Mag(V) ® Mag(V)

be the unique linear map which sends V' to 0 and which satisfies the compatibility re-
lation (j1i,. Here the tensor product Mag(V)® Mag(V) is equipped with its standard
magmatic operation. In low dimension we get
é(z-y) =20y,
6(z-y)-2) =z y®z+z®y-z+z-20yY,
6z -(y-2)=zQy-=z.
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Remark that the pre-Lie relator is primitive. We show that & satisfies the N AP°-
relation (see the diagram above) inductively, by using the natural filtration of
Mag(V) = @,,5, K[PBT,] ® V®". Applying (L., twice we get

X
AR

Let us denote by w; + wg + w3 + w4 + ws the five terms on the right-hand side of the
last line. We check that (Id ®7)w; = w3, and that, under the N AP* relation, we have
(Id ®7)ws = w4 and (Id ®7T)ws = ws. Hence we have proved that the N AP¢-relation
holds. By theorem 2.2.3 there is a triple of operads (NAP, Mag, Primyap Mag). O

4.5.6. Conjecture on N AP°-Mag-bialgebras. — We mentioned in the proof
of proposition 4.5.5 that the pre-Lie relator is primitive in the bialgebra Mag(V).
Moding out by the ideal generated by this pre-Lie relator gives the N AP¢-PreLie-
bialgebra PreLie(V'). It follows that the map ¢(V') described in 2.4.2 is the composite

@(V): Mag(V) — PreLie(V) = NAP¢(V).

Conjecture. — The coalgebra map (V) : Mag(V) - NAP¢(V) admits a coalgebra
splitting.

It would follow that there is a good triple of operads
(NAP, Mag,Primy ap Mag)

with quotient triple (NAP, PreLie,Vect). The operad Primyap Mag has no gen-
erating operation in arity 2, but has a generating operation in arity 3, namely the
pre-Lie relator

(xyz):=(z-y)-2—z-(y-2)—(z-2)-y+z-(2-9).
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4.6. Some examples of the form (A, A, Vect)

We have already discussed the cases (Com,Com,Vect) and (As, As,Vect). We
give here some more examples, some of them being already in the literature. The
main point is to unravel the compatibility relation. The triple (Dup, Dup, Vect) will
be treated in chapter 5.

4.6.1. The triple (Mag, Mag,Vect). — The free magmatic algebra Mag(V) =
@, K[PBT,] ® V®" inherits a comagmatic coalgebra structure under the identifi-
cation of the basis PBT,, of Mag, with its dual. An immediate inspection shows that
the magmatic operation and the comagmatic cooperation are related by the magmatic
compatibility relation (meq:

Hence Hypotheses (HO) and (H1) are fulfilled for Mag®-M ag-bialgebras. Since the
map (V) : Mag(V) — Mag®(V) is easily seen to be the identification of the basis
of Mag, with its dual, it is an isomorphism and hypothesis (H2iso) is fulfilled. By
theorem 2.3.7

(Mag, Mag, Vect)
is a good triple of operads.

Exercise. — Describe the idempotent e explicitly in terms of the generating opera-
tion and the generating cooperation. The answer is to be found in [10].

4.6.2. The triple (2as,2as,Vect). — The operad 2as admits a basis made of pla-
nar trees. In fact, for n > 2, the space 2as,, is spanned by two copies of the set of
planar trees with n leaves. So it is immediate to describe the 2as-coalgebra structure
on the same space. We put the compatibility relations given by the following tableau:

| = |
6./ Hopf | n.u.i.
O« || mou.i. | Hopf

It was shown in [54] (see also 4.2.5) that 2as(V') equipped with 4. satisfies the first
row of the compatibility relations. Inverting the role of - and * it is clear that there is
an associative cooperation J, which satisfies the second row of compatibility relations.
Therefore the free 2as-algebra is a 2as®-2as-bialgebra. It is interesting to note that,
in this case, the isomorphism between the free 2as-algebra and the free 2as-coalgebra
is not given by identifying the basis with its dual.
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4.6.3. The triple (A, A, Vect) for a multiplicative operad A. — Let A be a
binary operad with split associativity (cf. 3.2.2 and [48]). We denote by z * y the
associative operation and by a(o), 8(o) the coefficients such that

zol=qa(o)z and loz = fB(o)z.

We always assume a(*) = 1x = (B(*). Let us suppose moreover that all the relations
in A are generalized associativity, that is

(zo1y) oz 2 =103 (yoq 2),

where o; € A(2). For each generating operation o we denote by A, the associated
cooperation in the unital framework. By definition a .A°-A-bialgebra, called biA-
bialgebra, has the following compatibility relations:

Ao(zey) = Au(x) e Ao(y)
where, by definition,
@®y)e (@ ®Y)=(zx2")®(yey)

(Ronco’s trick, see 3.2.2 for the convention when y = 1 = y’). In order to formu-
late this compatibility relation in the nonunital framework we need to introduce the
reduced cooperations d,, defined by the equality

As=0a(0)z®1+ 5(0)l @ + bo.

The compatibility relations become:

() ! !
| =B8()8(e)| |+ alo)ae) +ﬂ(°)( 1 J+a(o)a<->( %
‘Y I i

| | | |
] o * o
wael S )+ KO+ (X))
* L * [ ]
[ [ | [
4.6.4. Proposition. — If A is a multiplicative operad with generalized associativity re-

lations, then the free A-algebra has a natural structure of biA-bialgebra.

Proof. — Let us work in the unital framework (cf. 3.2.2). First, we construct a
cooperation A, on A(V), for each generating binary operation o by induction as
follows. First, Ao(v) = a(o)v ® 1 + B(0)1 ® v. Second, we use the compatibility
relations to define A, on A(V)3, then on A(V)3 and so forth. So the maps A, are
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uniquely defined and satisfy the compatibility relations. Let us use the inductive
argument to prove the generalized associativity relations.
One one hand we have:

As((z 01 y) 02 2) = Au(x 01 y) 02 Ao(2)
= (Ax(z) 01 Ax(y)) 02 Ao(2)
On the other hand we have:

Ao(z 03 (yo42)) = Au(x) 03 Ao(y o4 2)
= Au(x) 03 (Au(y) 04 Ao(2))

Assuming that the generalized associativity relations hold in some dimension (includ-
ing the associativity of %), we prove from this computation that they hold one step
further.

Again by induction we can show, by a straightforward verification, that these
cooperations do satisfy the A€ relations. So A(V) is a unital-counital .A°-.A-bialgebra
and, by restriction, A(V) is a A% A-bialgebra. O

4.6.5. Examples. — The operads
As, Dend, Dipt, 2as, Dup, Dup', Tridend, Dias, Trias, Quad, Ennea

(cf. [47], [52], [54], [53], [3], [41], [17]) are examples of multiplicative operads with
generalized associative relations. In some of these examples the map ¢ is an isomor-
phism. However it is not always true: As is a counter-example. In the following
section we study in more details the case A = Dend. Observe that in the case of
2as (resp. Dup) we get a type of bialgebras which is different from the type studied
in 4.6.2 (resp. 5.7) since the compatibility relations are different.

4.6.6. The triple (Dend, Dend,Vect). — Let us make explicit the particular case
A = Dend which has been treated in details in [18]. Recall that the coeflicients a
and [ are given by the relations

l1<z2=0=z>1 and z<1=z=1%>z.

The compatibility relations for the reduced cooperations read as follows. For the pair
(6 > >‘).
L) | | ! | |
- * - - * -
S B R G N B JERE: )+ ( >< )
s > * - * -
(N | | | | |
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for the pair (4, >):
K») | ) I
| =040+0+0+
i SO OXO
() | | | |
for the pair (4., <):
./ | J N
| =0+0+ 0+0
N L Jrovos T>+(T><T)

for the pair (0<, <):

NI ' X . X
T -0+ +0+(>%+0+}( )+(>< )
‘Y 1 D

It has been shown by L. Foissy in [18] that the triple (Dend, Dend, Vect) is good
by using the explicit description of the free dendriform algebra [47] (compare with
3.2.2). So there is a rigidity theorem in this case.

4.6.7. The triple (Nil, Nil,Vect). — By definition a Nil-algebra is a vector
space A equipped with a binary operation a - b such that any triple product is 0:

(x-y)-z2=0=z-(y-2).
Hence the operad Nil is binary, quadratic and nonsymmetric. We have Nil; = K,

Nil, = K and Nil, =0 when n > 3.
By definition a Nil°-Nil-bialgebra is determined by the following compatibility

SR

On Nil(V) = V & V®2 the cooperation § is given by §(z) =0 and §(z-y) =z Qy.
We obviously have (6 ® id)d = 0 = (id ®4)J as expected.

From the explicit formula of § it follows that ¢(V) : Nil(V) — Nil®(V) is an
isomorphism. Therefore (Nil, Nil, Vect) is a good triple of operads.

relation {ny:
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4.6.8. The triple (Nil, Mag, Mag®?'). — By definition a Nil°-Mag-bialgebra is
determined by the compatibility relation {x;. It is easy to check that the hypothe-
ses (H1) and (H2epi) are fulfilled. The primitive operad can be shown to be free
(i-e. magmatic) generated by two ternary operations and one quaternary operation.
They are

(z-y) 2, z-(y-2) and (z-y) - (z-¢).
We denote by Mag®??! the associated operad. Hence there is a good triple
(Nil, Mag, Mag®??').
Its quotient triple is, of course, (Nil, Nil, Vect).

Question. — Is there a compatibility relation which makes (Nil3, Nil3, Vect) into a
good triple of operads? Here Nil2 is the operad of algebras equipped with a binary
operation for which any quadruple product is 0.

4.6.9. The triple (Mag?®, Mag?®,Vect). — By definition a Mag{°-algebra is a
vector space equipped with an m-ary operation u, for any integer n > 2 and also
equipped with a unit 1. Moreover we suppose that

pn(ar - aic1laiy1 - @n) = pin-1(01° - Gi-1Gi41 -+ - Gp).

The compatibility relations are of the following form (indicated here in low dimen-

This triple has been treated in [11] along the same lines as the general case.

sions)

4.7. Pre-Lie algebras and a conjectural triple

4.7.1. From Pre-Lie algebras to Lie algebras. — Let A be a pre-Lie algebra,
cf. 4.5.1. It is immediate to check that the antisymmetrization [z,y] := zy — yz
of this operation is a Lie bracket. Therefore there is defined a forgetful functor
F : PreLie-alg — Lie-alg which associates to a pre-Lie algebra A the Lie algebra
(Aa [_7 _])
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4.7.2. The conjectural triple (??, PreLie, Lie). — In [59] Markl studied this
functor. He mentioned the possible existence of connection with some triple of op-
erads. Indeed it is very likely that there exists a notion of generalized bialgebras
Ce-PreLie giving rise to a good triple of operads (C, PreLie, Lie). Not only we have
to find the operad C but also the compatibility relations. The operad C would have at
least one binary generating operation verifying the symmetry xy = yz and one ternary
operation verifying the symmetry (z,y,2) = (v, z,z) (and probably more generators
in higher arity). The compatibility relation between the binary coproduct and the
pre-Lie product is probably of Hopf type. In low degrees the dimension of C(n) are
(1,1,4 =3+1,23,181).

It is also natural to ask the same question for the functor from Lie admissible
algebras to Lie algebras.

4.7.3. Symmetrizing the pre-Lie product. — When symmetrizing the product
of an associative algebra we get the notion of Jordan algebra. By an argument on the
Poincaré series of the operads it can be seen that the forgetful functor from associative
algebras to Jordan algebras cannot be part of a triple of operads.

Let us denote by X the operad governing the type of algebras determined by the
symmetrization of a pre-Lie product, that is the operation z - y := {z,y} + {y,z}. It
might happen that the forgetful functor from pre-Lie algebras to X-algebras is part
of a triple of operads (or at least that there exists a factorization preLie = F o X for
some S-module F').

4.8. Interchange bialgebra

We introduce the notion of interchange algebra and interchange bialgebra and we
prove that hypothesis (H1) holds. This example is extracted from the paper [37] by
Yves Lafont.

4.8.1. Interchange algebra and bialgebra. — By definition an interchange alge-
bra is a vector space A equipped with two operations o and e satisfying the interchange
law:

(aob)e(cod)=(aec)o(bed).

This law is quite common in category theory and algebraic topology since it is part of
the axioms for a double category (o = horizontal composition, ® = vertical composi-
tion of bimorphisms). It can be used to prove the commutativity of the higher homo-
topy groups (Eckmann-Hilton argument). Observe that this relation is not quadratic.
It is closely related to the notions of rack, quandle and left-distributivity.
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By definition a bi-interchange bialgebra (IC°-IC-bialgebra) H is both an inter-
change algebra and an interchange coalgebra with compatibility relations as follows:

L) y

| = | =
) &
) N
P-CXD) L T-OxX)

[e] [ ] [

(\]ll (\ll

4.8.2. Proposition. — The free interchange algebra IC(V) has a natural IC¢-IC-
bialgebra structure.

Proof. — Since the operad IC is set-theoretic, IC(V) ® IC(V) is still an IC-algebra
and one can define maps §, and d, : IC(V) — IC(V) ® IC(V) sending V to 0
and satisfying the compatibility relations, cf. 3.2. By induction they can be shown
to satisfy the interchange law (cf. strategy number (2) in 2.5.7). This proof can be
explained in terms of rewriting systems. O

4.9. The (k)-ary case

In the preceding examples the generating operations and cooperations were all
binary (except sometimes for the primitive operad). In this section we give some
examples with (k + 1)-ary operations and cooperations for k¥ > 1. There are many
more, not yet explored.

4.9.1. Associative (k + 1)-ary algebras. — Let k be an integer greater than or
equal to 1. Let C and A be two operads generated by (k + 1)-ary operations. Here
are two important examples taken from [29].

A totally associative (k+1)-ary algebra is a vector space A equipped with a (k+1)-
ary operation (ao - - - ax) satisfying the relations

((ao---ak)ars1---agk) = (a0- - (@i @iyk) - - agk)

for any i = 0,..., k. The operad is denoted tAs¢*).

SOCIETE MATHEMATIQUE DE FRANCE 2008



86 CHAPTER 4. EXAMPLES

A partially associative (k + 1)-ary algebra is a vector space A equipped with a
(k + 1)-ary operation (ag - - - ax) satisfying the relations

k
Z(_l)k’i(ao ce (ai e a‘i+k) .. .a2k) = 0
=0

for any i = 0,...,k. These two operads were shown to be Koszul dual to each other
by V. Gnedbaye in [29].

In this context, a C°-A-bialgebra (or generalized bialgebra) is a vector space H
equipped with a C-coalgebra structure, a .A-algebra structure, and each pair (4, 1) of a
generating operation and a generating cooperation is supposed to satisfy a distributive
compatibility relation. Observe that in this case the ®;-term is an element of the
group algebra K[Sk41].

Here is an example for k = 2, denoted {, 4, :

We let the reader figure out the similar relation for higher k’s.

4.9.2. The triple (tAs(k),tAs(k>,Vect). — By definition a tAs(*)-bialgebra is a
vector space H equipped with a structure of tAs(*)-algebra, a structure of tAsk)-
coalgebra, related by the compatibility relation {, 44 described above. For k =1
this is the nonunital infinitesimal compatibility relation.
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The free totally associative (k+1)-ary algebra over V is tAs*) (V) = @, 5, V& 5",
We put a structure of tAs‘¥)-coalgebra on it by dualizing the natural basis. Then it
is easy to prove by induction that the compatibility relation is precisely §, 4. The
map (V') is an isomorphism, hence the triple

(tAs(k) ,tAs) Vect)
is good and the rigidity theorem holds.

4.9.3. The triple (tCom ¥, tCom*) Vect). — By definition a tCom ¥)-algebra is
a totally associative (k + 1)-ary algebra which is commutative in the sense

(ao---ax) = (ac(0) " * @o(k))
for any permutation o € Si4;.

Exercise. — Find the compatibility relation which gives a good triple of operads
(tCom'F) tCom ) Vect).

It would be also interesting to work out the cases pAs‘*} and pCom ¥}, and also
the triple
(tCom® tAs® tLie®)),
which is (Com, As, Lie) for k = 1.
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CHAPTER 5

DUPLICIAL BIALGEBRAS

In this chapter we study in details the duplicial algebras and the duplicial bial-
gebras. They are defined by two associative operations verifying one more relation.
The coproduct is going to be coassociative. We show that there exists a good triple
of operads

(As, Dup, Mag),

which is quite peculiar since the three operads are binary, quadratic, nonsymmetric,
set-theoretic and Koszul.

In order to prove that the operad Dup is Koszul, we compute its dual and construct
the chain complex giving rise to the homology of duplicial algebras. It turns out that
it is the total complex of a certain chain complex whose horizontal (resp. vertical)
components are of Hochschild type. The relationship between duplicial algebras and
quantum electrodynamics can be found in [7] and [20].

5.1. Duplicial algebra

5.1.1. Definition. — A duplicial algebra (or Dup-algebra for short) A is determined
by two binary operations A ® A — A called left (z,y) — = < y and right (z,y) —
x > y respectively, satisfying the following three relations

(z=<y)<z=z<(y<2),

(z>y)<z=z>(y<2),

(z>y)>=z=z> (y > 2).
So the two operations left and right are associative. From this definition it is clear
that the operad Dup is binary, quadratic, nonsymmetric and set-theoretic.

In order to describe the free duplicial algebra (or, equivalently, the operad), we
need to introduce the planar binary rooted trees.
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5.1.2. Planar binary trees. — By definition a planar binary rooted tree (we sim-
ply say planar binary tree, or p.b. tree for short) is a finite planar rooted tree with
vertices which have two inputs and one output. The edge with no successor is called
the root. The edges with no predecessors are called the leaves. The set of planar
binary rooted trees with n leaves is denoted PBT,,:

PBTy={|} , PBL={Y } , PBTa:{K/' \/}
- { NN NN

Recall that the number of elements in PBT;,; is the Catalan number
(2n)!

Cp = —————
n!(n + 1)!
and the generating series is

e(t) =Y caat" =11 - VI—4&).
n>1

On these trees one can perform the following two kinds of grafting: the operation Over
and the operation Under. By definition the operation Over, denoted t/s, consists in
grafting the tree ¢t on the first leaf of s. Similarly, the operation Under, denoted t\s
consists in grafting the tree s on the last leaf of t. Observe that for ¢ € PBT,; and
s e PBTq+1 we have t/S € PBTp+q+1,t\S € PBTp+q+1.

¢ s
t/s= s t\s = t

The Over and Under operations, together with their properties appear in the work
of C. Brouder and A. Frabetti [7]. We will also use another type of grafting, denoted
t V s which consists in creating a new root and grafting the two trees to this root.
Hence we have t Vs € PBTp; 2. Observe that any tree t (except |) is uniquely
determined by its left part t¢ and its right part " so that ¢t = t¢ V ¢". The left comb

is the tree comb’, defined inductively as comb’ = Y and comb’, = Y Jcomb?,_,.

5.1.3. Proposition. — The free duplicial algebra on one generator is spanned by the
set of planar binary trees and the left (resp. right) operation is induced by the Over
operation t/s (resp. Under operation t\s). Hence the space of nonsymmetric n-ary
operations is Dup, = K[PBT,,11].
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Proof. — First, we verify immediately that @,,.,; K[PBT,+1] equipped with the
Over and Under operations is a duplicial algebra ge;lerated by the unique element Y
of PBT,. Moreover we see that, for any p.b. tree t = t{ V t" we have t = t¢/ Y \t".
Let us show that @, K[PBT,,] satisfies the universal condition. Let A be a
duplicial algebra and let a € A. We define a map ¢ : D,.>, K[PBT,41] — A induc-
tively by ¢( Y ) = a and @(t) = ¢(t¢ V") = ¢(t%) = a < #(t7). It is straightforward
to check that this map is a duplicial morphism (same proof as in the dendriform case,
see [47] proposition 5.7). Since we have no other choice for its value, it is the expected
universal extension map. O

Remark. — The same structure in the category of sets, instead of vector spaces, has
been investigated by Teimuraz Pirashvili in [72] under the name duplez.

5.1.4. Relationship with other algebraic structures. — The operad of dupli-
cial algebras is related to several other algebraic operads by the following morphisms:

Dias ——— > Nil

2mag —— 2as — Dup

AN

As?2 —— As —— Com

5.2. Duplicial bialgebra

5.2.1. Definition. — By definition a As°-Dup-bialgebra, also called duplicial bial-
gebra, is a vector space H equipped with a duplicial algebra structure <, >, a coas-
sociative coalgebra structure §, and the compatibility relations are of nonunital in-
finitesimal type for both pairs (4§, <) and (4, >):

./

= +
< <
A <

(1\2 ) 7J+t7

Observe that this is a nonsymmetric bialgebra type (hence a nonsymmetric prop).
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5.2.2. Proposition. — The free duplicial algebra Dup(V') is a As®-Dup-bialgebra.

Proof. — Let us first define the cooperation

8 : Dup(K) = @ K[PBTn11] — P K[PBT,41] ® @ KIPBT, 11

For any t € PBT, 1 we define

=Y, &)= > mno®s

1<i<n—1 1<i<n—1
as follows. Let us number the leaves of ¢ from left to right by the integers 0,1,...,n.
For any ¢ = 1,...,n — 1 we consider the path going from the leaf number i to the

root. The left part of ¢ (including the dividing path) determines the tree r; and the
right part of ¢ (including the dividing path) determines the tree s;. In particular

(Y )=0.

Example for ¢ = 2:

0 1 2 3 4

- K</ ne X me N

It is immediate to verify, by direct inspection, that ¢ is coassociative. Let us prove

that
é(z/y) =c@Y+z1)®T(2) <Y+ T < Y1) ®Y(2),

under the notation 6(z) = z(1) ® z(2). Let z € PBTpy1,y € PBTyy, so that
z/y € PBTp4q41. The element 6(x/y) is the sum of three different kinds of elements:
either the dividing path starts from a leaf of £ not being the last one, or starts from
the last leaf of x, or starts from a leaf of y. In the first case we get z < y1) ® y(2),
in the second case we get £ ® y, in the third case we get x(;) ® z(3) < y. The proof
for > is similar.

To prove that Dup(V) is a As®-Dup-bialgebra for any V it suffices to extend § to
@D, K[PBT,+1] ® V®™ by

S(tvr-v) = Y (riv1--vs) ® (865 0it1 - V)

1<i<n—1
and use the property that T(V) is a n.u.i. bialgebra (cf. [54] of 4.2.2). O
5.2.3. Remark. — We could also prove this proposition by using the inductive

method described in 2.5.7 (it is a good exercise !).

5.2.4. Proposition. — The prop As®-Dup satisfies hypothesis (H2epi).
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Proof. — Since we are dealing with a nonsymmetric bialgebra type, it suffices to look
at Dup(K) = @,, K[PBT,41]. The map ¢ : Dup, = K[PBT,;1] — K = As¢, is given
by ¢(t) = a where a is a scalar determined by the equation

6"“1(t)=a\( ® - ® Y
Here 6™ ! stands for the iterated comultiplication. From the explicit description of §
it comes immediately: d"~1(t) = Y ®® Y Hence a = 1 and the map ¢ is
given by p(t) = 1.
Define a map s, : As, = K — K[PBT,41] by s,(1) = combfl, where combfl is the
left comb. It is immediate to check that s, induces a coalgebra map s(V): As(V) —
Dup(V) which is a splitting to (V). Hence hypothesis (H2epi) is fulfilled. O

As a consequence the triple (As, Dup, Prim 4, Dup) is a good triple and it satisfies
the structure theorem over any field K by 3.3.1. Let us now identify the operad
Prim s, Dup.

5.2.5. Theorem. — The primitive operad Prim s Dup of the bialgebra type As®-Dup
is the magmatic operad Mag and the functor
F : Dup-alg — Mag-alg, F(A,<,>)=(4,")
is determined by
T-Yy =T <y—r>y.
5.2.6. Corollary. — There is a good triple of operads
(As, Dup, Mag).

Before entering the proof of the theorem and its corollary we prove some useful
technical proposition.

5.2.7. Proposition. — Let (R,-) be a magmatic algebra. On As(R) = T(R) we define

the operation a > b as being the concatenation (i.e. == ®) and we define the operation

a<bbya<b=a-b+a> b where the operation a-b is defined inductively as follows:
(r®a)-b=r®(a-b),
r-(s®b)=(r-s)-b—r-(s-b)+(r-s)®b.

Then (As(R), <, >) is a duplicial bialgebra with the deconcatenation as coproduct.

Proof. — The last relation of duplicial algebra (associativity of >) is immediate. The
other two are proved by a straightforward induction argument on the degree. The
compatibility relation for the pair (4, >) is well-known (cf. 4.2.2). The compatibility
relation for the pair (4, <) is proved by induction. O
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5.2.8. Proof of theorem 5.2.5 and corollary 5.2.6. — Applying proposi-
tion 5.2.7 to the free magmatic algebra R = Mag(V), we get a duplicial algebra
As(Mag(V)). The inclusion map

V = As(Mag(V))1 — As(Mag(V))
induces a Dup-map Dup(V) — As(Mag(V)). From the construction of As(Mag(V))
it follows that this map is surjective.
From proposition 5.1.3 it follows that dim Dup, = c¢,. It is also known that
dim(As o Mag), = c, because
(t) c(t) —t
FAs fMe9(t) = = =) cat
(t) t n>1
(Use the identity c(t)? — c(t) +t = 0). Therefore the surjective map Dup,, — (Aso
Mayg),, is an isomorphism. Hence Dup — As o Mag is an isomorphism. Since the

comultiplication in As(Mag(V)) is the deconcatenation, its primitive part is Mag(V).
It follows that Prim s Dup(V) = Mag(V') as expected.

Corollary 5.2.6 follows from proposition 5.2.4 and proposition 5.2.7. O

5.2.9. Corollary. — As an associative algebra for the product > = / the space Dup(V')
is free over Mag(V).

Proof. — By the structure theorem for As®-Dup-bialgebras we know that there is
an isomorphism Dup(V) = T°(Prima, Dup(V)). Because of our choice of s, it turns
out that the As-structure of the As®-As-bialgebra T°(Prim s, Dup(V)) corresponds
to / = >, cf. 4.2.2. Hence Dup(V) is free for the operation >. O

We have an extension of operads
As — Dup - Mag
in the sense of 3.4.2. It is even a split extension.
5.2.10. Remark on the map f: Mag — Dup. — Let us write PBT,,; as a union
of two disjoint subsets PBT2,, and PBT?,,, where PBTZ,, is made of the trees of

the form |Vt for t € PBT,. From the definition of f, : Mag, — Dup, = K[PBT,,,]
and theorem 5.2.5 it follows that the composition of maps

K[PBT,] = Mag, — Dup, = K[PBT,1]
— K[PBT,11/PBT®, ] = K[PBT®,,] = K[PBT,]

is an isomorphism.
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It is a nontrivial isomorphism, given in low dimension by:

= —

<

G ESas
EEEEAES
(<<

NN
N -

5.3. Explicit PBW-analogue isomorphism for Dup

When H = Dup(V) the isomorphism H = As®(PrimH) becomes Dup(V) =
T°(Mag(V)). Therefore we should be able to write any linear generator of Dup,
as a tensor of elements in Magy,k < n. Since we choose the operation > to split the
map ¢, we can replace the tensor by > and write an equality in Dup(V') (analogous
to what we did in the classical case, see 4.1.6). In low dimension it gives the following
equalities:
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Dup T'Mag T?Mag T3Mag

T = z

>y = 0 + ]

T<y = -y + T-y
T>=Yy>=z = 0 + 0 + x>y>z
(z=<y)»=2z = 0 + (zy>=2z + z=y>z
T-y<z = 0 + z>(@y-2) + Tz>y>z
z<y>2) = (zy)-z + (y=z + z>y>=z

-z (y-2)
z<y<z = (z-y)2z2 + (z-y>=z + z>yr=z
+z > (y-2)

These formulas are consequences of proposition 5.2.7.

5.4. Koszulity of the operad Dup

5.4.1. Dual operad. — Since the operad Dup is quadratic, it admits a dual operad,
denoted Dup', cf. [28]. The Dup'-algebras are duplicial algebras which satisfy the
following additional relations:

(r<y)>=2=0 and 0=z < (y> 2).

This is easy to check from the conditions given in [47, Appendix] for a nonsymmetric
operad to be Koszul. See also [55].

The free Dup'-algebra is easy to describe (analogous to the free diassociative alge-
bra, see [47]). We have Dup!, = K", where the ith linear generator corresponds to

T>T > " T>T<ZT - <T<XZ.
S——— S————r

i—1 n—i

5.4.2. The total bicomplex C5*P. — Let A be a duplicial algebra. We define a
chain bicomplex C:5*(A) as follows: CRUP(A) = A®BP+e+1 and
p—1
d"(ao- " Opyq) = Z(—l)iao (@i > @it1) " Gpig,
i=0
p+g—1
Pl aprg) = 3 (Va0 (a5 < azsa) -+ g
i=p

The relation d"d" = 0 follows from the associativity of the operation >. The re-

lation d¥d® = 0 follows from the associativity of the operation <. The relation
dhdv + dvd" = 0 follows from the relation entwining < and >.
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chrr(A)
AéS —_—
1d ®<
PRI aiingy Ty .
<| -u ®<l l
AT g02 72 jes

5.4.3. Proposition. — The (operadic) homology of a duplicial algebra A is the homology
of the total complez of the bicomplez CE*P(A) up to a shift.

Proof. — The operadic chain complex of a duplicial algebra is given by
C*P(A) = (Dup,,)*(A)

and the differential d is the unique coderivation which extends the Dup-products.
From the description of the operad Dup', cf. 5.4.1, we check immediately that
Tot CR*P(A) = CP¥P(A). The fact that d* + d identifies to the operadic differential

is also immediate. O
5.4.4. Theorem. — The operad Dup is a Koszul operad.

Proof. — Let us recall some facts about Hochschild homology of non-unital algebras.
Let R be a non-unital algebra and let M be a right R-module. The Hochschild
complex of R with coefficients in M is:

C.RM): — - -MOR" s M@R®" ! ... s M

where b (ag, .. .,a,) = E::g_l(—l)i(ao, ey @iQi41,..-,0,) and ag € M, a; € R. The
homology groups are denoted by H, (R, M). If R is free over W, i.e. R = T(W), then
one can prove the following (cf. for instance [46]):

Ho(R,M) = M/MR, H,(R,M)=0 otherwise.

In order to prove the theorem it suffices to show that the Koszul complex is acyclic,
or equivalently that the Dup homology of the free duplicial algebra Dup(V) is

HY"™ (Dup(V)) =V, and HP"(Dup(V)) =0

for n > 2.

SOCIETE MATHEMATIQUE DE FRANCE 2008



98 CHAPTER 5. DUPLICIAL BIALGEBRAS

Since by proposition 5.4.3 the chain complex of the duplicial algebra A is the total
complex of a bicomplex, we can use the spectral sequence associated to this bicomplex
to compute it:

Ezzrq = H;Hz’: (Chrr(4)) = Hgﬂ—u:H(A)-
Since A := Dup(V) is free over Mag(V) as an associative algebra for > (cf. 5.2.9)
and since the horizontal complex is the Hochschild complex (for >) with coefficients
in Mag(V), we get

H(CP*P(A)) =0, for ¢ > 1 and Hy(CR*P(A)) = A®? ® Mag(V).

Hence the complex (E},,d") is the Hochschild complex (for <) of A with coefficients
in Mag(V'). Its homology is

E%y = Mag(V)/Mag(V)A=V, qu = 0 otherwise.

Hence the spectral sequence tells us that HP“?(A) = 0 for n > 1 and that
H lD “P(A) = V. So we can deduce that Dup is a Koszul operad. O

5.4.5. Alternative proof (Bruno Vallette, private communication). — Since the
operad Dup is set-theoretic, one can apply the poset method of Vallette [80, 15] to
prove its Koszulity. Here the poset is as follows. Let us fix an integer n. The poset
I pup(n) is made of ordered sequences (t1,...,tx) of p.b. trees such that Ele ltil=n
and |¢;| > 1. The covering relations defining the poset structure are

(t1,- -y thy1) — (B0, ..o th)
if and only if the second sequence is obtained from the first by replacing two con-
secutive trees t;,t;11 either by t;/t;11 or by t;\t;+1. One can show that the poset
is “Cohen-Macaulay” by methods of [15], and so, by [80], that the associated chain
complex is acyclic (except in top dimension). In fact the top dimension homology
group is Dup!,. This computation proves the Koszulity of the operad Dup.

5.4.6. Question. — Since Mag' = Nil and As' = As the construction proposed
in 3.4 suggests the existence of a good triple of operads (Nil, Dup', As). Does it exist?

5.5. On quotients of Dup

5.5.1. The triple (4s, As?, As). — An As?-algebra is, by definition, a vector space
A equipped with two operations denoted a - b and a * b such that the associativity
relation

(ao1b)ogc=ao; (boyc)
holds for any value of o; (i.e. either equal to - or to *). In a As°-As2-bialgebra we
choose the compatibility relations to be the nonunital infinitesimal relation. It is
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immediate to verify that Prim,, As? = As, because z oy := z -y — x * y is also
associative. Therefore we get a good triple of operads

(As, As?, As),

which appears as a quotient of (As, Dup, Mag). The operad As? appears in many
places in the literature. For instance in [30] there is a notion of Com¢-As?-bialgebra
where the compatibility relation for the pair (4, ) is Hopf (unital version) and for the

AMM

5.5.2. DupPreLie-algebras. — Let DupPreLie be the operad which is a quotient

pair (4, *) it is

of Dup by the relation
(z<y)>=z—z=<@yr2)=@@=<2)>y—z<(2>1y).

This operad is still binary and quadratic, but is not nonsymmetric anymore since the
added relation does not keep the variables in the same order.

5.5.3. Lemma. — In any duplicial algebra the following equality holds:
(z-y)-z—z-(y-2)=(x<y)=z—z<(y> 2).
Proof. — Recall that z -y := z <y — x > y. It is an immediate consequence of the
relations. O
5.5.4. Proposition. — There is a good triple
(As, DupPreLie,Prim 45 DupPreLie).
Proof. — It follows from the lemma that the relator defining DupPreLie as a quo-

tient of Dup is a primitive operation. The claim is therefore a consequence of propo-
sition 3.1.1. O

Question. — Do we have Prim 4, DupPreLie = PreLie 7

5.6. Shuffle bialgebras

For duplicial algebras we used the grafting on the first leaf and the grafting on the
last leaf. However there is a more subtle structure which consists in using the grafting
operations on any leaf. Strictly speaking it does not give an operad because, for a
given integer 4, the operation “grafting on the ith leaf” exists only when the elements
have high enough degree. This “grafting algebra” structure has been studied in details
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by Maria Ronco in [77], where she proves the analog of a structure theorem in this
setting.

5.7. The triple (Dup, Dup, Vect)

5.7.1. Biduplicial bialgebra. — By definition an infinitesimal biduplicial bialge-
bra is a Dup®-Dup-bialgebra with the following compatibility relations:

L) i !

U o s

‘Y f 1
N .
ol s
(N
NI
1=(\
(Y T

<
5.7.2. Proposition. — Equipped with the dual basis coalgebra structure, the free dupli-

cial algebra Dup(V) is a natural infinitesimal biduplicial bialgebra. So hypothesis (H1)
is fulfilled.

Proof. — We use the explicit description of Dup(V) in terms of planar binary trees
given in 5.1.3. We check the case
Sz <y)=z@y+a3, @5 <y+ <y Oy,

where 04(z) = 2§, ® 233,

First we describe d<(z) explicitly when z is a p.b. tree. Along the right edge
of  we can cut between legs to obtain two trees denoted :1:(*1) and wa) such that
z = 2(})\z(3)- Then d-(z) is the sum of these T3 ® x5y for all possible cuts.
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Let £ and y be two p.b. trees. Since z < y = z\y in the free algebra, the cuts on
the right edge of x > y are of three different types:

> either a cut in z,

> or a cut separating = from y,

> or a cut in y.

The first type of cuts gives the summands of wa) ® (xa) < y); the second type of
cuts gives z ® y; the third type of cuts gives the summands of (z < ya)) ® ya). So we
are done with this case.

Since in z > y = z/y the right edge is the same as the right edge of y the cuts to
obtain d4(y) are exactly the cuts of y. Therefore we get d<(z > y) =z > ya) ® yé)
as expected.

The proof of the other two cases (involving d, ) is analogous. O

5.7.3. Proposition. — The map o(V) : Dup(V) — Dup®(V) identifies the basis of
Dup,, with its dual, which is a basis of Dup’,. So hypothesis (H2iso) is fulfilled.

Proof. — Let t and s be p.b. trees. We need to compute d;(s), which is of the form

Az ® -+ ®z, where ) is a coefficient and x = Y is the generator of Dup(K). From

the compatibility relations it is immediately seen that A =1 if t = s and that A =0
ist#s. a

5.7.4. Corollary. — The triple (Dup, Dup, Vect) is a good triple of operads.

5.8. Towards NonCommutative Quantization

There is another possible choice of compatibility relations for which the free du-
plicial algebra would still be a bialgebra. It consists in taking C = Dup = A and the
n.u.i. compatibility relation for the four cases

(6<, =), (65, =), (6<,>), (6, >).
For this new type of bialgebras the map (V) is not surjective anymore because,
for Dup(V'), we have < = §,. = § as described in 5.2.2. Hence (V') factors through
As®(V). This phenomenon is similar to (V') factorizing through Com¢(V) in the
As®-As case with () = §gopys-

Analogously, for C = As? = A and compatibility relations as above, the free As?-
algebra is a bialgebra, but the map ¢ is not surjective since it factors through As¢
(cf. 5.5.1). The notion of infinitesimal associative bialgebra (with infinitesimal com-
patibility relation, cf. [1]) is going to play a role in the analysis of these bialgebras.

We intend to address these cases in a forthcoming paper.
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CHAPTER 6

APPENDIX

6.1. Types of algebras mentioned in this monograph

References for types of non-binary operads:
> Sabinin: 4.1.10,

> MagFine: 4.2.4,

MB: 4.2.5,

brace: 4.3.3.4,

Mag™: 4.2.6,

(k)-ary: 4.9.1,

tAstk): 4.9.2,

pAsk): 4.9.2.

v v v v Vv V¥
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The following tableau contains the binary operads mentioned in this monograph.

name | gen. Fymmetry | relations ]
associative Ty none (zy)z = z(yz)
commutative | zy Ty = yzx (zy)z = z(y2)
Lie [:l?, y] [z,y] = _[y>z] [[xvy]vz] + [[y: z],z] + [[zv’t]’y] =0
parastatistics | zy none (zy)z = z(yz2)
([, y]’ z] =0
NLie [z,y] |[=9]= —[y,z] | [[z,y],2] =0
magmatic zy none none
Poisson zy |z-y=y-z (z-y)-z=z-(y-2)
[,9] | [zl =—[y2] | [lz,9],2] + [y, 2], 2] + [[2, 2], ] = 0
-y 2]=2z-[y, 2] +[z,2] -y
2-associative | z-y | none (z-y)-z=z-(y-2)
Txy (z*xy)xz=zx*(y*2)
Zinbiel z-y | none (z-y)-z=z-(y-2+2-y)
dendriform z <y | none (r<y)<z=z<(y<z+2<y
T>y (z>y)<z=z>(y<2)
(z<y+z>y)>=z=z> (y> 2)
dipterous z <y | none (z<y)<z=z<(yx*x2)
z*y (zry)xz=ax(y+2)
tridendriform | x < y | none 11 relations
Ty see 4.3.4
Ty
CTD z<y (z<y)<z=z<({y<z+z<y)
Ty |zy=y-z (zy)<z=z-(y<z)=(x=<2)y
(z-y)-z=z-(y-2)
pre-Lie {z;y} | none {{=z; v} 2} — {=; {y; 2}} =
{{z; 2} 0} — {z; {z v}
NAP xy none (zy)z = (z2)y
Nil zy none (zy)z = 0 = z(y2)
interchange |aob | none (aob)e(cod)=(aec)o(bed)
aeb
duplicial T <y | none (z<y)<z=z<(y<2)
Ty (z-y)<z=z> (y<2)
(z>y)=2z=z> (y> 2)
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6.2. Compatibility relations { mentioned in this monograph

Infinitesimal (unital):

Hopf (unital):

Hopf (nonunital):

Infinitesimal:

Infinitesimal (nonunital):

Magmatic:

Frobenius:

va
| A JAA
va

SOCIETE MATHEMATIQUE DE FRANCE 2008



106 CHAPTER 6. APPENDIX

::; X[
XA

><=2

Nilpotent:

|‘H>4%<N+<>%*W+F<>>
SRR
M

Infinitesimal 3-ary (nnunital):

X :

P
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6.3. TABLEAU OF SOME GOOD TRIPLES OF OPERADS

6.3. Tableau of some good triples of operads

c A P ) reference
Com Com Vect Hopf [6]
Com | Parastat NLie Hopf [50]
Com As Lie Hopf (12], [64]
Com 7? As Hopf + 7 conjectural
Com SGV PreLie Hopf + ad hoc | [55]
Com | ComAs SMB Hopf + ad hoc | [55]
Com Mayg Sabinin Hopf (69], [35]
Com Dipt Prim ¢y Dipt Hopf see 4.3.2
Com 7? Com ? conjectural
As As Vect n.u.i. [54]
As PreLie Prim 4, PreLie n.u.i.
As Mag MagFine n.u.i (36]
As 2as MB n.ui. + Hopf | [54]
As As? As n.ui. + nui. | see 5.5.1
As | DupPreLie | Prim g, DupPreLie | n.u.i. + n.u.i. | see 5.5
As Dup Mag n.u.i. + n.ui. | see 5.2.6
As 2as Mag®> n.ui. + n.ui. | see 4.2.6
As Zinb Vect semi-Hopf [10]
As Dipt MB semi-Hopf [52], [55]
As Dend Brace semi-Hopf [76], see 4.3.3
As GV Brace semi-Hopf [55]
As Dipt MB semi-Hopf [52]
As CTD Com semi-Hopf [49]
As Tridend Brace + As semi-Hopf (67]
Zinb As Vect semi-Hopf [10]
Mag Mag Vect magmatic [9]
NAP PreLie Vect Liv [42]
NAP Mag Primyap Mag Liv see 4.5
2as 2as Vect n.u.i.? + Hopf? | [54]
2as 2mag Primgy,, 2mag n.u.i.? + Hopf?
Dend Dend Vect hemisemi-Hopf | [18]
Dend 2mag Primpeng 2mag hemisemi-Hopf

107

The notation Prime A in the column “P” means that we do not know yet about a

small presentation of this operad.
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C A P ] reference
Lie Lie Vect Lily (not biLie) | see 4.4
Lie PreLie 77 Lily + ? conjectural
Lie Mag Primp;. Mag | Lily (not biLie) | see 4.4
Lie PostLie | Primp;, PostLie Lily + 7 [80]
Nil Nil Vect Nil see 4.6.7
Nil Mag Mag?21 Nil see 4.6.8
Nil Dup' As ? conjectural
Ic Ic Vect Hopf + ad hoc | see 4.8, [37]
tCom*) | tAs(k) tLiet*) Hopf style see 4.9.2
tAs(k) tAs(*) Vect n.u.i. see 4.9.2
777 PreLie Lie ? conjectural
777 Lie-adm Lie ? conjectural

The notation Prime A in the column “P” means that we do not know yet about a

small presentation of this operad.
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