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BERGMAN KERNELS AND 
SYMPLECTIC REDUCTION 

Xiaonan M a , Weiping Zhang 

Abstract. — We generalize several recent results concerning the asymptotic expan
sions of Bergman kernels to the framework of geometric quantization and establish an 
asymptotic symplectic identification property. More precisely, we study the asymp
totic expansion of the G-invariant Bergman kernel of the spinc Dirac operator as
sociated with high tensor powers of a positive line bundle on a symplectic manifold 
admitting a Hamiltonian action of a compact connected Lie group G. We also develop 
a way to compute the coefficients of the expansion, and compute the first few of them, 
especially, we obtain the scalar curvature of the reduction space from the G-invariant 
Bergman kernel on the total space. These results generalize the corresponding results 
in the non-equivariant setting, which have played a crucial role in the recent work of 
Donaldson on stability of projective manifolds, to the geometric quantization setting. 

As another kind of application, we establish some Toeplitz operator type properties 
in semi-classical analysis in the framework of geometric quantization. 

The method we use is inspired by Local Index Theory, especially by the analytic 
localization techniques developed by Bismut and Lebeau. 

© Astérisque 318, SMF 2008 
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Résumé (Noyaux de Bergman et réduction symplectique). — Nous généralisons des ré
sultats récents sur le développement asymptotique du noyau de Bergman au cadre de 
quantification géométrique, et établissons une propriété d'identification asymptotique 
symplectique. Plus précisément, nous étudions le développement asymptotique du 
noyau de Bergman G-invariant de l'opérateur de Dirac spinc associé à une puissance 
tendant vers l'infini d'un fibre en droites positif sur une variété symplectique com
pacte munie d'une action hamiltonienne d'un groupe de Lie compact connexe. Nous 
développons aussi une façon de calculer les coefficients du développement, et nous 
calculons les premiers termes, en particulier, nous obtenons la courbure scalaire de la 
réduction symplectique à partir du noyau de Bergman G-invariant sur l'espace total. 
Ces résultats généralisent les résultats correspondants dans le cas non-équivariant, 
qui ont joué un rôle crucial dans un travail récent de Donaldson sur la stabilité de 
variétés projectives, au cadre de quantification géométrique. 

Comme application de notre développement, nous établissons aussi des propriétés 
de type opérateur de Toeplitz en limite semi-classique dans le cadre de quantification 
géométrique. 

Notre méthode est inspirée par la théorie de l'indice local, en particulier les tech
niques de localisation analytique développées par Bismut-Lebeau. 
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CHAPTER 0 

INTRODUCTION 

The study of the Bergman kernel is a classical subject in the theory of several 
complex variables, where usually it concerns the kernel function of the projection 
operator to an infinite dimensional Hilbert space. The recent interest of the analogue 
of this concept in complex geometry mainly started with the paper of Tian [43], 
which was in turn inspired by a question of Yau [46]. Here, the projection concerned 
is, however, onto a finite dimensional space. 

Since [43], the Bergman kernel has been studied extensively in [38], [14], [47], 
[25], where the diagonal asymptotic expansion properties for high powers of an ample 
line bundle were established. Moreover, the coefficients in the asymptotic expansion 
encode geometric information of the underlying complex projective manifolds. This 
asymptotic expansion plays a crucial role in the recent work of Donaldson [18], where 
the existence of Kahler metrics with constant scalar curvature is shown to be closely 
related to the Chow-Mumford stability. 

In [17], [28], [30], Dai, Liu, Ma and Marinescu studied the full off-diagonal asymp
totic expansion of the (generalized) Bergman kernel of the spinc Dirac operator and 
the renormalized Bochner-Laplacian associated to a positive line bundle on a com
pact symplectic manifold. As a by product, they gave a new proof of the results 
mentioned in the previous paragraph. They found also various applications therein, 
especially as was pointed out in [30], the full off-diagonal asymptotic expansion im
plies Toeplitz operator type properties. This approach is inspired by the Local Index 
Theory, especially by the analytic localization techniques of Bismut-Lebeau [7, §11]. 
We refer to the above papers as well as the recent book [31] for detail informations 
of the Bergman kernel on compact symplectic manifolds. 

In this paper, we generalize some of the results in [17], [28] and [30] to the frame
work of geometric quantization, by studying the asymptotic expansion of the G-
invariant Bergman kernel for high powers of an ample line bundle on symplectic 
manifolds admitting a Hamiltonian group action of a compact Lie group G. 



2 CHAPTER 0. INTRODUCTION 

To start with, let (X, u) be a compact symplectic manifold of real dimension 2n. 
Assume that there exists a Hermitian line bundle L over X endowed with a Hermitian 
connection V L with the property that 

(0.1) 
V-1 

2tt 
RL =LJ, 

where RL = ( V L ) 2 is the curvature of V L . 
Let (E, hE) be di Hermitian vector bundle on X equipped with a Hermitian con

nection and let RE denote the associated curvature. 
Let gTX be a Riemannian metric on X. Let J : TX —• TX be the skew-adjoint 

linear map which satisfies the relation 

(0.2) UJ(U, v) — gTX (Ju, v) 

for u, v G TX. 
Let J be an almost complex structure such that 

(0.3) gTX(Ju,Jv)=gTX(u,v), OJ(JU, Jv) = u(u, v) 

and that cj(-,J-) defines a metric on TX. Then J commutes with J and J = 
j ( _ j 2 ) - l / 2 ( c f > (2.8)). 

Let V T A be the Levi-Civita connection on [TX1g
TX) with curvature RTX and 

scalar curvature r x . The connection V T X induces a natural connection V d e t on 
det(r^'°^X) with curvature Rde\ and the Clifford connection V c l i f f on the Clifford 
module A(T*^X) with curvature i ? c l i f f (cf. Section 2.2). 

The spinc Dirac operator Dp acts on Q°<'{X<LP <g> E) = @™=Qtt°>q(X,Lp 0 E), 
the direct sum of spaces of (0, q)- forms with values in Lp CB) E. We denote by the 
restriction of Dp on ft°'evcn(X, Lp <g> E). The index of L>+ is defined by 

(0.4) Ind(U>+) = Ker£>+ - Coker D+. 

Let G be a compact connected Lie group with Lie algebra g and dim^ G = no-
Suppose that G acts on X and its action on X lifts on L and E. Moreover, we 
assume the G-action preserves the above connections and metrics on TX. L, E and J. 
Then Ind(D^) is a virtual representation of G. Denote by (Ker DP)

G, li\à(D+)G the 
G-trivial components of KerD p , Ind(£)+) respectively. 

The action of G on L induces naturally a moment map /i : X —> g* (cf. (2.16)). 
We assume that 0 G g* is a regular value of ¡1. 

Set P = / i " 1 (0 ) . Then the Marsden-Weinstein symplectic reduction (XQ = 
P/G,UJXG) is a symplectic orbifold (Xg is smooth if G acts freely on P ) . 

Moreover, (L, V L ) , V ^ ) descend to ( L G , V L G ' ) , ( # G , V ^ g ) over X G so that the 
corresponding curvature condition V-1 

2tt 
RLG=wG holds (cf. [21]). The G-invariant 

almost complex structure J also descends to an almost complex structure J G on TXQ, 
and hL,hE,gTX descend to hL°, h E a , g T X c respectively. 

One can construct the corresponding spinc Dirac operator DQIP on XG-
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CHAPTER 0. INTRODUCTION 3 

Assume for simplicity that G acts freely on P. The geometric quantization conjec
ture of Guillemin-Sternberg [21] can be stated as follows: for any p > 0, 

(0.5) dim ( l n d ( / } + ) G ) = dim (Ind(£>+ p ) ) , 

holds when E is the trivial bundle C on X. 
When G is abelian, this conjecture was proved by Meinrenken [34] and Vergne [45]. 

The remaining nonabelian case was proved by Meinrenken [35] using the symplectic 
cut techniques of Lerman, and by Tian and Zhang [44] using analytic localization 
techniques. 

More generally, by a result of Tian and Zhang [44, Theorem 0.2], for any general 
vector bundle E as above, there exists p0 > 0 such that for any p > p0j (0.5) still 
holds. 

On the other hand, by [27, Theorem 2.5] (cf. (2.15)), which is a direct consequence 
of the Lichnerowicz formula for DP, for p large enough, both Coker and Coker DQ 
are null (cf. also [10], [13]). Thus there exists p0 > 0 such that for any p > p0, 

dim(KeTDp)
G = dim(KerD G , p ) = dim ( l n d ( D + p ) ) 

(0.6) 

= 
VG 

Td{TXG)ch(Lp

G®EG) 

= rk(E) 
XG 

(pci(LG)) 
n — rio 

(n - n 0 ) ! 

+ 
XG 

( C I ( £ G ) + 
rk(£) 

2 
ci{TXG) 

(pd(LG)) a — no — 1 

(n-no- 1)! 
+ ^ ( p n - n ° - 2 ) , 

where ch(.), c\(.), Td(.) are the Chern character, the first Chern class and the Todd 
class of the corresponding complex vector bundles (TXG is a complex vector bundle 
with complex structure JG). 

Set Ep := A(T<°^X)®LP(g)E. Let (. , . ) be the L2-scalar product on (X, LP® 
E) = ^ ° ° ( X , Ep) induced by gTX,hL, hE as in (1.19). 

Let PG be the orthogonal projection from Lp 0 E), (. , .)) on (Ker Dp)
G. 

The G-invariant Bergman kernel is PG{x,xf) (x,x' G X ) , the smooth kernel of PG 

with respect to the Riemannian volume form dvx(%')-
Let pr̂  and pr2 be the projections from X x X onto the first and the second factor 

X respectively. Then PG(x,x') is a smooth section of prl(Ep) (g) pr^(^*) on X x X. 
In particular, PG(x,x) e End(Ep)x = End(A(T<°^X) <g> E)x. 

The G-invariant Bergman kernel PG(x,xf) is an analytic version of (Ker Dp)
G. In 

view of (0.6), it is natural to expect that the kernel PG(x, xf) should be closely related 
to the corresponding Bergman kernel on the symplectic reduction XG. The purpose 
of this paper is to study the asymptotic expansion of the G-invariant Bergman kernel 
Pp{x, x') as p —* oo, and we will relate it to the asymptotic expansion of the Bergman 
kernel on the symplectic reduction XG. 
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4 CHAPTER 0. INTRODUCTION 

Let dx(x,xf) be the Riemannian distance between x, x' G X. 
In Section 2.4, we prove the following result wrhich allows us to reduce our problem 

as a problem near P = /i-1(0), it works without the assumption on the freeness of 
the action of G on P. 

Theorem 0.1. — For any open G-neighborhood U of P in X, > 0, Z, m G N7 there 
exists Ci^rn > 0 (depending on Uy eo) such that for p ^ 1, x,x' G X, dx (Gx, x') ^ So 
or x, x' G X \ U, 

(0.7) \pC(x,x')\^m < Ci,mP-1, 

where ^m is the cé?1Tl-norm induced by VL,VE, VTX, hL,hE and gTX. 

Let U be an open G-neighborhood of /JL~1(0) such that G acts freely on U. 
For any G-equivariant vector bundle (F, VF) on {7, we denote by FB the bundle 

on U/G = P induced naturally by G-invariant sections of F on [/. The connection 
VF induces canonically a connection VFß on FB- Let RFB be its curvature. Let 

(0.8) piF(K) = VFx -LKe End(F) 

for K G g and iTx the corresponding vector field on U. 
Note that PG G ( ^ ° ° ( P x c7,pr*Fp 0 pr*F*))GxG, thus we can view PG(x,x') 

(x, a/ G C/) as a smooth section of J)V\(EP)B <S> pr^F*)^ on B x B. 
Let gTfî be the Riemannian metric on U/G — B induced by gTX. Let VTB be 

the Levi-Civita connection on (TB,gTB) with curvature RTB. Let NQ be the normal 
bundle to XG in P. We identify NG with the orthogonal complement of TXG in 
(T£?|Xc,flTß). 

Let gTX°, be the metrics on TXG, NG induced by gTB respectively. 
Let PTXG , PNG be n̂e orthogonal projections from TB\xG on TXG, NG respec

tively. Set 

(0.9) 
VNA =PNA(VTB\XA)PNA, VTXG = PTXG{VTB\XG)PTXGJ 

°vTB = V M G ® V W G . A = VTB|XG. - ° V T B . 

Then V ^ , °VTB are Euclidean connections on NG, TB\XG respectively, VTX° is the 
Levi-Civita connection on (TXG, gTX°), and A is the associated second fundamental 
form. 

Denote by vol(Gx) (x G U) the volume of the orbit Gx equipped with the metric 
induced by gTX. Following [44, (3.10)], let h(x) be the function on U defined by 

(0.10) h(x) = (vol(Gx))1/2. 

Then h reduces to a function on P. 
Denote by IC®E the projection from A(T*^0'^X) 0 F onto C ^ F under the decom

position A(T*^°'1)X)(g)F = C 0 F © A > o ( r ^ ° ' ^ X ) 0 F , and Ic®EB the corresponding 
projection on P. 

ASTÉRISQUE 318 



CHAPTER 0. INTRODUCTION 5 

In the whole paper, for any xo G X G , Z G TXQB, we write Z — Z ° + Z - 1 , with 
z° GTX0XGl z1- ENG,X0. 

Let TzoZ1- G ^ G E X P

X G ( Z O ) be the parallel transport of Z1- with respect to the 
connection V N G along the geodesic in XG, [0, 1] 3 t —> exp^G ( £ Z ° ) . 

For so > 0 small enough, we identify Z G TXOB, \Z\ < SQ with exp B

 X g (rzoZ±) G 
B. Then for x 0 eXG, Z,Z' e TXoB, \Z\,\Z'\ < e0, the map * : TB\XA

 X TB\XG - » 
В X В, 

* ( Z , Z ' ) = exp B 
expín

G(Z") 
( r zoZ X ) exp B 

EXX R. (Z'°) (TZ'OZ'±)) 

is well defined. 
We identify (EP)B,Z to (EP)BIXO by using parallel transport with respect to \/^EV)B 

along [0, 1] 3 u —> wZ. 
Let : Ti3|x G x T B | x G ~~> be the natural projection from the fiberwise 

product of TB\xG on XG onto XG. 
From Theorem 0.1, we only need to understand P ^ o ^ 7 and under our identification, 

Pp o ^ ( Z , Z') is a smooth section of 

7TB(End(Ep)B) = 7rB(End(A(T<°^X) ® E)B) 

on TB\XG *TB\XG. 

Let | \<em>{XG) be the ^ ' -no rm on Coo(XG, End(A(T*(°' 1)X) (8) £ )b ) induced 

by V c l i f f B , V £ B , / I ^ and gTX. The norm | | ^ ™ ' ( X g ) induces naturally a ^ m / -norm 

along XG on ^ ° ° ( T S | X g x T ^ | x G , 7 r | ? ( E n d ( A ( T ^ 0 ' 1 ^ ) ® E)B)), we still denote it 

by I \v™'(xGy 
Let dvB,dvxG, dvxG be the Riemannian volume forms on (B,gTB), (XG, gTXc), 

(NG:g
NG) respectively. Let K G C^00{TB\XG , M), with K = 1 on X G , be defined by 

that for Z G TXOB, XQ G X G , 

(0.11) dvB{xo,Z) = K(XQ, Z)dvTxoB(Z) = K(X0, Z)dvxG(oo0)dvNG^Q. 

The following result is one of the main results of this paper. 

Theorem 0.2. — Assume that G acts freely on ¡1 x (0) and J = J on \i x (0) . Then 
there exist Qr(Z,Zr) G End(A(T<°^X) ® E)BiXQ (x0 G X G , r G N), polynomials 
in Z,Z' with the same parity as r, whose coefficients are polynomials in A, RTB, 
RCMB f r E B ^ ^Cliff (RESP^ RX ? ^det̂  ^ i^ . resp ^, RL, RLB; resp<^ ^ and the%r 

derivatives at xo to order r — 1 (resp. r — 2; resp. r; resp. r + 1), swc/i z/ toe 
denote by 

(0.12) P M ( Z , Z ' ) = Q r ( Z , Z ' ) P ( Z , Z ' ) , Qo{Z. Z') = Ic®EBi 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2008 



6 CHAPTER 0. INTRODUCTION 

with 

(0.13) P(Z,Z') =exp 
7T 

" 2 ' 
Z0 

- Z ' ° | 2 - 7 r v ^ î < J x o ^ 0 ^ ' 0 > ) 

x 2 2 exp -TrOZ-Lp + I Z ^ I 2 ) " 

£/ien iftere exists C" > 0 swcft t/iaf /or any fc, m, m', m" € N, f/iere exists C > 0 suc/i 
tfwrf /or x 0 G X G , Z, Z' £ T X 0 B , |Z|, \Z'\ ^ e 0;

 ( 1 ) 

(0.14) (l + VPl^l + v ^ l ^ i r " sup 
lal + lo;' I 

Q\OL\ + \OL'\ 

dZ^dZ,OL' 

p-n+ 

rlQ 
2 7l/̂ 2 ) ;z)(/ i^)(z , )p p

G o«r(z, z ' ) -
it 

r=0 
P ^ ( V P Z , v ^ z ' ) p - ^ ) j 

V™'(XG) 

< cp-( f c + 1-m)/ 2(i + v^|z 0i+>|z' 0i; 2(n+/e+m/T2) + m exp -Vc^^\z-z'\)+û{p—). 

Furthermore, the expansion is uniform in the following sense: for any fixed 
k,m,m',mn G N 7 assume that the derivatives of gTX, hL, V L . hE

7 VE ,and J 
with order ̂  2n + fc + ra + ra' + 5 run over a set bounded in the ̂ m -norm taken with 
respect to the parameters and, moreover, gTX runs over a set bounded below, then 
the constant C is independent of gTX] and the ^ m -norm in (0.14) includes also the 
derivatives on the parameters. 

In (0.14), the term &(p~OG) means that for any /, li G N, there exists C\^x > 0 such 
that its ^^-norm is dominated by Ciii1p~l. 

It is interesting to see that the kernel P(Z, Zr) is the product of two kernels : along 
TXQXG, it is the classical Bergman kernel on TXQXG with complex structure JXO, while 
along NG, it is the kernel of a harmonic oscillator on NQ,X0-

Remark 0.3. — i) Theorem 0.2 is a special case of Theorem 2.23 where we do not 
assume J = J on P = /x - 1 (0 ) . In Theorem 3.2, we get explicit informations on P^ 
when J verifies (3.2). 

ii) If G does not act freely on P, then XG is an orbifold. In Section 4.1, we 
explain how to modify our arguments to get the asymptotic expansion, Theorem 4.1. 
Analogous to the usual orbifold case [17, (5.27)], PP (x1x)(x G P ) does not have a 
uniform asymptotic expansion if the singular set of XG is not empty. 

iii) Let V be an irreducible representation of G. let P^ be the orthogonal projection 
from Q°^(X,LP 0 E) on Hom G(V, Ker DP) 0 V C KerP p . In Section 4.2, we get the 
asymptotic expansion of the kernel P^ (x ,x 7 ) from Theorems 0.1, 0.2. 

iv) When G = { 1 } , Theorem 0.2 is [17, Theorem 4.18']. 
v) If ŵe take Z = Z' = 0 in (0.14), then we get for x0 G XG, 

(0.15) Pj°>(0,0) = 2 2 
COEB. 

(^In the exponential factor of [32, (7)], we missed m' as in the last line of (0.14) here. 

ASTÉRISQUE 318 



CHAPTER 0. INTRODUCTION 7 

and 

(0.16) p-n+ 

710 
2 h2(x0)Pp

G(x0lx0) -

k 

r=0 
p£rHo,o)p-r 

€">'(XG) 
< Cp-k-

In Section 4.3, we showT that (0.15) and (0.16) are direct consequences of the full off-
diagonal asymptotic expansion of the Bergman kernel [17, Theorem 4.18/]. In fact, 
one possible way to get Theorem 0.2 is to average the full off-diagonal asymptotic 
expansion of the Bergman kernel on X [17, Theorem 4.18'] with respect to a Haar 
measure on G. However, we do not know how to get the full off-diagonal expansion, 
especially the fast decay along NQ in (0.14) in this way. 

In this paper wre will apply the analytic localization techniques to prove Theorem 
0.2, and this method also gives us an effective way to compute the coefficients in 
the asymptotic expansion (cf. §3.2). The key observation is that the G-invariant 
Bergman kernel is exactly the kernel of the orthogonal projection to the zero space 
of a deformation of D2 by the Casimir operator (i.e., to consider D2 — pCas). This 
plays an essential role in proving Theorems 0.1, 0.2. 

Let J?p be a section of End(A(T*( 0 '^X) 0 E)B on XG defined by 

(0.17) Fp(xo)= 
zeNG,\z\^e0 

h2(x0l Z)Pp

G o \&((x0, Z ) , (x0, Z))K(X0, Z)dvNC(Z). 

By Theorem 0.1, modulo û(p 0 0 ) , ^(XQ) does not depend on so, and 

(0.18) 

dim(Ker£> p)
G = 

fx 
Tr[lf{y,y)]dvx(y) 

= 
u 

Tr{pC(y,y)}dvx(y) + 0(p-°°) 

= 
b 

h2(y)Tr{P°(y,y)]dvB(y) + 

= 
XG 

Tr[,yp(x0)}dvXG(x0) + ff(p-°°)-

A direct consequence of Theorem 0.2 is the following corollary. 

Corollary 0.4. — Taking Z = Z' E NG,XQ, rn = 0 in (0.14), we get 

(0.19) p-n+ 2 [h2K){Z)Pp

G(Z,Z) -
k 

r=0 

P(r) (VpZ,VpZ)p-r/2 
^m\xG) 

< Cp-{k+1)/2(l + Jb\Z\rm" + ff(p-°°) 

In particular, there exist $ r G End(A(T*^°'x^X) 0 E)B,X0 (R (R E N) which are poly
nomials in A, R T B , R C U S B , R E b , nE, / i C l i f f

7 (resp. r x , RDET, RE; resp. h, R L B , 

RL; resp. ¡1), and their derivatives at x$ up to order 2r — 1 (resp. 2r — 2; resp. 2r; 
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8 CHAPTER 0. INTRODUCTION 

resp. 2r + 1), and $o = fc®EB? such that for any k,m! G N 7 there exists Ck,mf > 0 
such that for any XQ G XQ7 P G N, 

(0.20) p - n + n o ^ p ( x 0 ) -
k 

r=0 
^> r(x 0)p r 

cgrn' < Ck.m'p-1'-1 

In the rest of Introduction, we will specify our results in the Kahler case. 
We suppose now that (X, LJ, J) is a compact Kahler manifold and J = J on X. 

Assume also that (P, hL, V L ) , (P, hE, V ^ ) are holomorphic Hermitian vector bundles 
with holomorphic Hermitian connections, and the action of G on X, L, P is holomor
phic. 

Let Hj (X, Lp 0 P ) (0 ^ j ^ n) be the Dolbeault cohomology of the Dolbeault 
complex (n°>'(X,LP®E),dLP®E) of X with values in LP®E. Espeically, H°(X,LP® 
E) is the space of the holomorphic sections of Lp (g) E on X . 

Let 9 7 be the formal adjoint of the Dolbeault operator d , then 

(0.21) DP = \/2(d O E h О ) 

and 

(0.22) D2 : 
V 

2 (dLV®EaL"®E-* -rLpK)E.*^rLp£òE' 

preserves the Z-grading of il°'*(X, Lp ® E). 
By the Kodaira vanishing theorem, for p large enough, 

(0.23) ( K e r D p ) G = P ° ( X , Lp ®E)G. 

Thus for p large enough, PG(x,x') G ( L p <g) P ) ^ 0 ( L p 0 P)* , and so PG(x,x) G 
End(P x ), J^p(xo) G End(£ ,

a ; ( )). In particular, in (0.15), 

(0.24) P ^ ) ( 0 , 0 ) = 2 ^ I d ^ . 

Remark 0.5. — In the special case of E — C, PG(XQ, XQ) is a non-negative function 
on X G , and (0.16) has been proved in [36, Theorem 1] (without obtaining the infor
mations on Pig7^(0, 0)), while in [37, Theorem 1], it was claimed that P^J (0,0) = 1. 
In [36, Prop. 1], Paoletti showed that for any l G N, there is C > 0 such that for 
any p, \PG(x, x)\ ^ Cp~l uniformly on any compact subset of X \ ( / i _ 1 ( 0 ) U P ) , with 
R the subset of unstable points of the action of G. In [37], some Toeplitz opera
tor type properties on XQ were also claimed to follow from the analysis of Toeplitz 
structures of Boutet de Monvel-Guillemin [11], Boutet de Monvel-Sjostrand [12] and 
Shiffman-Zelditch [40]. If we suppose moreover that G is a torus, Charles [15] has 
also a different version on the Toeplitz operator type properties on XQ-

In Section 4.5, we will show that Theorem 0.2 implies properties of Toeplitz oper
ators on XQ (which also hold in the symplectic case). In particular, we recover the 
results on Toeplitz operators from [15], [37]. 
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Let h denote the restriction to XG of the function h defined in (0.10). 
The second main result of this paper is that we can in fact obtain the scalar 

curvature rx° on the symplectic reduction XG from J>V. 
We wrill use the following notation: when a subscript index appears two times in a 

formula, we sum up with this index. 

Theorem 0.6. — / / (X, a;) is a compact Kahler manifold and L.E are holomorphic 
vector bundles with holomorphic Hermitian connections V L , V ^ , J = J, and G acts 
freely on fi~l(0), then for p large enough. J^p(xo) E End(£Tc) ; r ( J, and in (0.20), 
®r(xo) E End(EG)x() are polynomials in A? RTB, REB , iiE, RE (resp. h, RLB : 
resp. ¡1) and their derivatives at xq to order 2r — 1 (resp. 2r; resp. 2r + 1). and 
$0 = IdjsG. Moreover 

(0.25) $1(^0) = 
1 

Sty 
rx° + 

3 
47T 

A X G log h + 
1 

2TT 
R^(w^w^). 

Here r X c is the Riemannian scalar curvature of (TXG, QTXg), ^xG ^s the Bochner-
Laplacian on XG (cf. (1.21)), and {w®} is an orthonormal basis of T^1^XG-

Since the non-equivariant version of this result has already played a crucial role in 
the work of Donaldson mentioned before, we have reason to believe that Theorem 0.6 
might also play a role in the study of stability properties of projective manifolds. 
Indeed, as Donaldson usually interprets his results in the framework of geometric 
quantization, this seems likely to be so. 

We recover (0.6) from (0.25) after taking the trace, and then the integration 
on XG- Thus (0.25) is a local version of (0.6) in the spirit of the Local Index Theory. 
The appearance of the term £^AxG log/1 is unexpected. 

Let T be the torsion of the connection ° V T X in (1.2) on U. The curvature (-) of 
the principal bundle U —> B relates to the torsion T by (1.6). 

Following (3.6) and (5.21), we choose {ef} to be an orthonormal basis of NG,X{] and 

{t^tt} £ Txl'°^XG to be the holomorphic basis of the normal coordinate on XG, and 

define Tkim,T3ki as in (5.14). In particular, by Remark 5.3, Tjki = 0 if G is abelian. 
The G-invariant section J1E of TY 0 End(P) on U is defined by (1.13) and (1.14). 
If there is no other specific notification in the next formula (0.26), when we meet 

the operation | | 2 , we will first do this operation, then take the sum of the indices. 
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10 CHAPTER 0. INTRODUCTION 

Theorem 0.7. — Under the assumption of Theorem 0.6, for p > 0 large enough, 
Pp{x,x) G End(Ex) and pj^(0,0) G End(P X ( )). Moreover, 

(0.26) ^ ( 0 , 0 ) = 2 ^ 
1 

[8TT XQ 
1 
7T 

REG 
D 

SzOI 
e 
ecoj 

1 
7T 

A x G log ft, 

3 
8TT 

V e i V e i log ft -
2 
7T 

/ ^ Ï V 
JT e 

ecij 
D 

DZY ' 
log ft — 

3 
7T 

V D 
e=0j 

log ft 
i2 

_5_ 
47T 

2 
V e x log ft 

1 
27T1 n 4 , J , ) l 2 

1 

2TT 
T(dzo i d¿o ) 

2 

1 
2TT 

3 

T D 
EZOJ 

D 
EZJ 

|2 1 
24TT 

T 2 

1KHN 

1 
267T 

Tijk - Tkji + 3Tijk) 

1 
2TT 

<pexo,UEx0>gTY 
1 
7T 

'иЕ.т _9_ 
ezij 

0 
ezijo 

S x / 3 ! 
2?r 

UE, Jek1 V e ^ log ft + 
V-1 
4TT 

<Jek, VTY UE 

Remark 0.8. — Certainly, if we only assume that J = J on a neighborhood U of 
P = / i _ 1 ( 0 ) , then we still have $. r(xo) G End(PG)x ( )- as we work on the kernel of the 
Dirac operator Dp. Set = IC®Eg:^pIc<g>EG • t n e component of on C 0 PG-
As the computation is local, we still have Theorem 0.6 with J>P replaced by J ,̂o 
and -Ĵp — J P̂io — 0(p~~°°) (cf. (5.19)). If we only work on the 9-operator, i.e., the 
holomorphic sections, in Section 5.5, we explain how to reduce the case of general J 
to the case J = J. Same remark holds for PG (.x'o, XO). 

Let i : P c—-> A be the natural injection. 
Let 7VG : R ^ ° ° ( P , L p 0 E)G -> Y, ^{XG. LP

G ® P G ) be the natural identification. 
By a result of Zhang [48, Theorem 1.1 and Proposition 1.2], one sees that for p 

large enough, the map 

TTGO2* : ^ ° ° ( X , Z / ^ P ) G ~ Y^(XG. IJ;: :•: EG) 

induces a natural isomorphism 

(0.27) ap =TTGO i* : H°(X. Lp ® E)G -> H°(XG. LP

G ® P G ) -

(When E = C, this result was first proved in [21. Theorem 3.8].) 
The following result is a symplectic version of the above isomorphism which is 

proved in Corollary 4.13, as a simple application of the Toeplitz operator type prop
erties proved in that subsection. It might be regarded as an "asymptotic symplectic 
quantization identification", generalizing the corresponding holomorphic identifica
tion (0.27). 

Theorem 0.9. — / / X is a compact symplectic manifold and J = J, then the natural 
map ap : (Ker DP)G —•» KerDG,p defined in (4.88) is an isomorphism for p large 
enough. 
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Now we go back to the holomorphic situation. 
Let ( , ) LG<&EG ^ e the metric on LP

G Cg> EQ induced by hL° and hE°. 
In view of [44, (3.54)], the natural Hermitian product on ^ ( J G , LG (g EG) is the 

following weighted Hermitian product ( , ) ^ : 

(0.28) {si,s2)Tl 

XG 
{si,s2)L

p

G®EGOo)h2(x0) dvxG (x0). 

In fact, TIG : ( ^ ° ° ( P , £ P (8) P ) G , ( , ) ) - * ( ^ ^ ( I G , <8> P G ) , <, h) i s a n isometry. 
We still denote by ( , ) the scalar product on H°(X, LP 0 E)G induced by (0.23). 

Theorem 0.10. The isomorphism (2p)~~+~o~p is an asymptotic isometry from 
( P ° ( X P ^ 0 P ) G , ( , ) ) onto (H°(XG,L%.®EG),(,)Ti), i.e., if {sP}^ is an orthonor-
mal basis of (H°(X, LP ® E)G, ( , ) ) , then 

(0.29) 2p) * (<rps£, (TpS^i = ôij + ¿ 
1 
P 

From the explicit formula (0.26), one can also get the coefficient of p 1 in the 
expansion (0.29) (cf. [31, Problem 7.2]). We leave it to the interested readers. 

Remark 0.11. Theorem 0.10 also admits a natural symplectic extension correspond
ing to the asymptotic identification result in Theorem 0.9 (cf. Chapter 7). 

Let P X G denote the orthogonal projection from (&°°(XG, LG 0 EG)* (^}jl) onto 

H°(X, LP

G&EG). Let P ^ G (x0. xf

0) (x0, x;

0 G XG) be the smooth kernel of the operator 

P X G with respect to h2(x'0)dvxG (%o)> 
The following result is an easy consequence of [17, Theorem 1.3]. 

Theorem 0.12. ----- Under the assumption of Theorem 0.6, there exist smooth coeffi
cients ^r(xo) G End(Ec)a;0 which are polynomials in R7 X G , REg (resp. h), and 
their derivatives at XQ to order 2r — 1 (resp. 2r), and $o = Id# G , such that for any 
k,l G N 7 there exists Ck.i > 0 such that for any XQ G XG, P G N, 

(0.30) 0-n+noh2(xo)pXa{x^Xo 

K 

r = 0 
<$>r(xo)'P T 

C ^ Ck.iP 

Moreover, the following identity holds, 

(0.31) ®i(x0) = 
1 

8TT 
XG 

1 

2TY 
AXG log/2 + 

1 
2T~X 

REG(W^W»). 

Remark 0.13. —- From (0.25) and (0.31), one sees that in general $ x ^ <3>i, if h is not 
constant on XG- This reflects a subtle defect between the Bergman kernel and the 
geometric quantization. 

From the works [17], [28] and the present paper, we see clearly that the asymptotic 
expansion of Bergman kernel is parallel to the small time asymptotic expansion of the 
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12 CHAPTER 0. INTRODUCTION 

heat kernel. To localize the problem, the spectral gap property (2.15) and the finite 
propagation speed of solutions of hyperbolic equations play essential roles. 

Let U be a G-neighborhood of / i _ 1 ( 0 ) as in Theorem 0.2, in this paper, we will 
then work on U/G. 

Indeed, after doing suitable rescaling on the coordinates, we get the limit operator 
Ji?2 (cf. (3.13)) which is the sum of two terms, one along TXQXG, whose kernel is 
infinite dimensional and gives us the classical Bergman kernel as in C n~~ r i°, the other 
along NQ. which is a harmonic oscillator and its kernel is one dimensional. This 
explains well why we can expect to get the fast decay estimate along ATG in (0.14). 

This paper is organized as follows. In Chapter 1. we study connections and Lapla-
cians associated to a principal bundle. In Chapter 2, we localize the problem by using 
the spectral gap property and finite propagation speed, then we use the rescaling 
technique in local index theory to prove Theorem 2.23 which is a version of Theo
rem 0.2 without assumption on J. We assume G acts freely onP = /x _ 1 (0) in Sections 
2.5 2.8, and in Section 4.1 we explain Theorem 4.1. the version of Theorem 0.2 where 
we only assume that fi is regular at 0. In Chapter 3, we get explicit informations 
on the coefficients P^ when J verifies (3.2), thus we get an effective way to com
pute its first coefficients of the asymptotic expansion (0.14). Especially, we establish 
(0.12) and (0.13). In Chapter 4, ŵe explain various applications of our Theorem 0.2, 
including Toeplitz operator properties, etc. In Chapter 5, we compute the coefficient 
$i in Theorem 0.6 and in the general case: J ^ J. In Chapter 6, we compute the 
coefficient P X o (0.0) in Theorem 0.7. In Chapter 7. we prove Theorems 0.10, 0.12. 

Some results of this paper have been announced in [32], [33]. 

Notations. — We denote by C, N, Q, R, Z the complex, natural, rational, real, inte
ger numbers, and C* = C \ { 0 } . N* = N \ { 0 } . JR* = M \ { 0 } , R + = [0.oc[, R*+ =]0.oc[. 
For u G M, we denote by \_u\ the integer part of u. 

For a = ( « i , . . . , ct m ) G Nni. D = (Bu . . . . Brn) G C m . we denote by 

|a| = 
rn 
i=1 " • - I T " ! 

j 
" • ' - I K ' -

3 
We denote by dim or dime the complex dimension of a complex (vector) space. 

We denote also by dim^ the real dimension of a space. 
For a complex vector bundle E on a manifold X, rank(P) denotes its rank, and 

Id^ the identity endomorphism. Also, det(E) := Arank^E\E) is the determinant line 
bundle of E, E* is the dual bundle of E and End(£') := E 0 E*. The space of smooth 
sections of E over X is denoted by ^^(X. E). 

If Q is an operator, we denote by Ker(Q) its kernel, Im(Q) its image set. 
If V is a representation of the group G. then wTe denote its G-invariant sub-space 

by VG. 
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In the whole paper, if there is no other specific notification, when an index variable 
apperas twice in a single term, it implies that we are summing over all its possible 
values. 
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CHAPTER 1 

CONNECTIONS AND LAPLACIANS 
ASSOCIATED TO A PRINCIPAL BUNDLE 

In this Chapter, for a G-principal bundle TY : X —+ B — X/G, we will study the 
associated connections and Bochner-Laplacians. The results in this chapter extend 
the corresponding ones in [2, § Id)] and [1, §5.1. 5.2] where the metric along the fiber 
is parallel along the horizontal direction. These results will be used in Proposition 2.7 
and in Sections 3.3, 5. 

If G acts only infinitesimal freely on X, then B = X/G is an orbifold. The results in 
this chapter can be extended easily to this situation, as will be explained in Section 4.1. 

This Chapter is organized as follows. In Section 1.1, we study the Levi-Civita 
connection for a principal bundle which extends the results of [2, § Id)]. In Section 1.2, 
we study the relation of the Laplacians on the total and base manifolds. 

1.1. Connections associated to a principal bundle 

Let a compact connected Lie group G act smoothly on the left on a smooth mani
fold X and diniM G = UQ. We suppose temporary that G acts freely on X. Then 

TT : X B = X/G 

is a G-principal bundle. We denote by TY the relative tangent bundle for the fibration 
TY : X - » B. 

Let gTX be a G-invariant metric on TX. Let V T X be the Levi-Civita connection 
on TX. By the explicit equation for < V T A . , . ) in [1. (1.18)], for VL, Z, Z' vector fields 
on X , 

(1.1) 2 (Vj^Z, Z') = W (Z, Z1) + Z (VL, Z') - Z' (W, Z) 
- (\\\[Z, Z'\) - (Z, [\Y Z'\) + <Z' [VL, Z\) . 

Let THX be the orthogonal complement of TY in TX. 
For U G TB, let UH G THX be the lift of U such that TT*UH = U. Let LVH be 

the corresponding Lie derivative. 
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Let gTY,gT x be G-irivariant metrics on TY,TH X induced by gTX. Let P T Y , 
P T H X be the orthogonal projections from TX onto TY, THX. 

Let g T B be the metric on TB induced by gT x . Let V T j B be the Levi-Civita 
connection on (TB,gTB) with curvature RTB. Set 

(1.2) V T ^ X = / V T ^ V T 7 = pTY T—>T X pTY ^ ° v T X = v r y e v T H x 

Then V T " X , ° V T X define Euclidean connections on THX, TX, and V T r is the 
connection on TY induced by VTX (cf. [2, Def. 1.6]). 

Let T be the torsion of ° V T X , and let S G T*X®End(TX), gTY G T*B®End(TY) 
be defined by 

(1.3) s = v T X - ° v r x . • T7 ( ^ ) - ( L ^ ^ ) for U G TB. 

Then S is a 1-form on X taking values in skew-adjoint endomorphisms of TX. 
By [6, Theorem 1.2] (cf. [5, Theorems 1.1 and 1.2]) the proof of which can also be 

found in [1, Prop. 10.2] where one applies directly (1.1), we know that V T r is the 
Levi-Civita connection on TY along the fiber Y, and for U G TB, 

(1.4) VTY— LjjH 4 
1 
2 \9

TYYX 'LuHgTY) LjjH H-
1 
2 У и 

Let g be the Lie algebra of G. For if G 0, we denote by Kx E 
ETE x\t=o the 

corresponding vector field on X, then gKx = (Ad p ( i f ) ) ^ . . Thus wtj can identify the 
trivial bundle I x g with Ad-action of G on g to the G-equivariant bundle TY by the 
map K —> Kx. 

Let 6 : T J ^ g be the connection form of the principal bundle TT : X —• B such 
that THX = Ker#, and 0 its curvature. 

For K\, K2 G g, U.V G TB. as [ / ^ is G-invariant, we have 

(1.5) LUHKX = -[Iff, C/H] = 0. 

By (1.4), (1.5), we get T G A 2 ( T * X ) ® TY and 

(1.6) 
T{UH,VH) = 0(UH,VH) = - P ^ C / ^ F " ] , T(KX,KX) = 0. 

T{UH,KX) = 1 
2 ( f l ^ ) - 1 ( L t / H f f r y ) ^ i X = 

1 
2 

gUTY KXI 

And by (1.1), (1.4), (1.5) and (1.6), for W G TX, we have (cf. also [2, (1.28)], [1, 
Prop. 10.6]), 

(1.7) 

S{W)[TY) c THX, S(UH)VH G TY, 

2(S(UH)KX.VH) =2(S{K?)UH,VH) = (T(UH.VH).KX) . 

(S(KX)UH.KX) = -(S(KX)KXMH) 
1 

" 2 
UH [KX.KX) = (T(UH.KX).KX). 
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Let {el} be an orthonormal basis of TB. By (1.3) and (1.7), for Y a section of T 7 , 

(1.8) VUY = VTXY + 
1 
2 

< W , c f ) , K > e f . 

Proposition 1.1. — Le£ { / / j ^ fre a G-invariant orthonormal frame of TY, then 

(1.9) 
n0 

/ = 1 
V ^ / z = 0. 

Proof. — (1-9) is analogous to the fact that any left invariant volume form on G is 
also right invariant. We only need to work on a fiber b G B. 

Let dvy be the Riemannian volume form on Yb. 
By using Lfkfi = V j A

y fi — V ^ 1 fk and dvy is preserved by VTY on 1 ,̂ we get 

(1.10) LfkdvY = 
n0 

1=1 
( V " fk,fl)dVY 

Now from Lfk — ifkd
Y + dYifk and (V" fk,fl) is G-invariant and (1.10), we get 

( L U ) 0 = 
Yb 

LfkdvY = 
n0 

1=1 

(V" fk,fl) 
Yb 

dvy. 

From (1.11), we get (1.9). • 

Remark 1.2. - If g T y is induced by a family of AdG-invariant metric on g under the 
isomorphism from X x q to TY defined by K —» i T x , then (1.9) is trivial. In this 
case, as in [19, Theorem 11.3], for Y"i, Y2 two G-invariant sections of TY, by (1.1), we 
have 

(1.12) v ^ y 2 = 
1 
21 

[Y1,Y2] 

1.2. Curvatures and Laplacians associated to a principal bundle 

Let (F,hF) be a G-equivariant Hermitian vector bundle on X with a G-invariant 
Hermitian connection V F on X. For any K G g, denote by the infinitesimal 
action induced by K on the corresponding vector bundles. 

Let jdF be the section of g* (g> End(F) on X defined by, 

(1.13) ßF(K) = v £ x - LK for K 6 0. 

By using the identification X x g —> T Y , / / F defines a G-invariant section / i F of 
T Y ® End(F) on X such that 

(1.14) <uF,Kx> = uF (K) 
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The curvature RF of the Hermitian connection V F — \iF(0) on F is G-invariant. 
Moreover as V F is G-invariant, by (1.13), 

(1.15) RF(Kx,v) = [LK,V
F -vF(0)](v) = 0 

for K e a. v e TX. and 

(1.16) RF = RF - VF(vF(9)) + M F(0) A /iF (6). 

The Hermitian vector bundle (F, hF) induces a Hermitian vector bundle (FB, hFn) 
on B by identifying G-invariant sections of F on X . 

For s E ^°°{B,FB) ~^°°(X,F)G, we define 

(1.17) VFBS = VF

HS. 

Then V F b is a Hermitian connection on FB with curvature i ? F e . 
Observe that VFD is the restriction of the connection V F - fiF(0) to ^ ° ° ( X , F ) G , 

and B F b is the section induced by i? F . From (1.16), for Ui,U2 G TB, we get 

(1.18) RFB (UuU2) = RF(UL, u? ) - M F ( E ) ( C / I , U2). 

Let dvx be the Riemannian volume form on (X,gTX). We define a scalar product 
on < * f ° ° ( X , F ) by 

(1.19) (si,s2) = 
X 

(si,s2)F(x) dvx(x). 

As in (1.19), hFs, g T j B induce a natural scalar product ( ) on ff00(B, FB). 
Denote by vol(Gx) (x G X) the volume of the orbit Gx equipped with the metric 

induced by gTX. The function 

h(x) = vAol(Gx), x e X, 

as in (0.10) is G-invariant and defines a function on B. 
Denote by TTG : ^ ° ° ( X , F ) G ^(B^FB) the natural identification. Then the 

map 

(1.20) <S> = hnG : ( < * f ° ° ( X , F ) G , ( , } ) ( ^ ° ° ( B , F b ) , < , » 

is an isometry. 
Let {ea}a=i D e a n orthonormal frame of TX. 
Let (B, / 2 F ) be a Hermitian vector bundle on X and let V F be a Hermitian con

nection on E. The usual Bochner Laplacians A F , A x are defined by 

(1.21) AE := -
rn 

a=l 
' ( V £ ) 2 - V F X X ^ A x = A c . 

Let {fi}^l be a G-invariant orthonormal frame of TY, and { / ' } its dual frame, 
and let {si} be an orthonormal frame of TB, then {ef, / ; } is an orthonormal frame 
of TX. 
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1.2. CURVATURES AND LAPLACIANS ASSOCIATED TO A PRINCIPAL BUNDLE 19 

To simplify the notation, for <7i,er2 G TY 0 End(i ?), we denote by (o-\, a2)qTY G 
End(F) the contraction of u\ 0 <r2 on the part of TY by gTY. In particular, 

(1.22) (ßF,flF)GTY = 
n0 

1=1 

(^J^2 eEnd(F). 

The following result extends [1, Prop. 5.6, 5.10] where F = X xG V for a G-
representation V, and where gTY is induced by a fixed Ad^-invariant metric on g 
under the isomorphism from X x g to TY defined by K —* Kx (Thus h is constant 
on B). 

Theorem 1.3. — As an operator on ̂ ^(B, Fß), we have 

(1.23) $ A F $ ^ = A F B -(JiF^F)GTY 
1 

' h 
ABh. 

Proof. — At first by (1.6) and (1.7), 

(1.24) 1 
h 

eih) 1 
-2{ 

LEH dvy)/dvy 
1 
2 

\L(uj\f)--
1 

~~2 (Le?fiJi) 

_ 1 
~ 4 

LEH9

TY)(fhfl) = 
1 
2( <T(ef , / , ) , /*> = -1 

2 
"S(/z)/z,ef>. 

As /i is G-invariant, then (/i , / / ) is also a G-invariant section of End(F). 
By (1.13), V F = (£ F , / , ) on <*f°°(X, F ) G , and by (1.3), VFX ft = V ^ / j + S( / , ) / i , 

thus by (1.20), we get for 1 ̂  Z ^ no, 

(1.25) O[(VFft)2-VFvTxft]O-1 = <uF , fl>2 - <uF, VTYfl fl> - hVFBS(fl)flh-1 

From (1.7), (1.9), (1.21), (1.22), (1.24) and (1.25), we have 

(1.26) 

OAF Q-1 = -
m — n o 

i = l 
l > [ ( V F

f )
2 

" VVT*eH 

Q-1 rt0 

«=1 
* [ ( v £ ) 2 - " VVT*eH $ - 1 

= hùaFBbrx -
no 

1=1 

ßFJt)
2 - 2{elh)VF°h-1 = AF* - (TlfJif)9TV 

1 
h Aß/T . 

• 
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CHAPTER 2 

G-INVARIANT BERGMAN KERNELS 

In this Chapter, we study the uniform estimate with its derivatives on t 1/vp of 
the G-invariant Bergman kernel Pp(x,xf) of Dp as p —> oc. 

The first main difficulty is to localize the problem to arbitrary small neighborhoods 
of P = / / - 1 ( 0 ) , so that one can study the G-invariant Bergman kernel in the spirit 
of [17]. Our observation here is that the G-invariant Bergman kernel is exactly the 
kernel of the orthogonal projection on the zero space of an operator CP, which is a 
deformation of Dp by the Casimir operator. Moreover, CP has a spectral gap property 
(cf. (2.24), (2.25)). In the spirit of [17, §4], this allows us to localize the problem to a 
problem near a G-neighborhood of Gx. By combining with the Lichnerowicz formula, 
we get Theorem 0.1 in Section 2.4. 

After localizing the problem to a problem near P, we first replace X by G x R 2 n - n o ^ 
then we reduce it to a problem on R 2 n _ n ° . On R 2 n _ n ° , the problem in Section 2.7 is 
similar to a problem on R2n considered in [17, §4.3]. 

Comparing with the operator in [17, §4.3], we have an extra quadratic term along 
the normal direction of XQ. This allows us to improve the estimate in the normal 
direction. After suitable rescaling, we will introduce a family of Sobolev norms defined 
by the rescaled connection on LP and the rescaled moment map in this situation, then 
we can extend the functional analysis techniques developed in [17, §4.3] and [7, §11]. 

This Chapter is organized as follows. In Section 2.1, we recall a basic property on 
the Casimir operator of a compact connected Lie group. In Section 2.2, we recall the 
definition of spinc Dirac operators for an almost complex manifold. In Section 2.3, 
we introduce the operator CP to study the G-invariant Bergman kernel PG of Dp1. In 
Section 2.4, we explain that the asymptotic expansion of PG[x, x') is localized on a G-
neighborhood of Gx, and we establish Theorem 0.1. In Section 2.5, we show that our 
problem near P is equivalent to a problem on U/G for any open G-neighborhood U 
of P. In Section 2.6, we derive an asymptotic expansion of ^>£ p $ _ 1 in coordinates 
of U/G. In Section 2.7, we study the uniform estimate, with its derivatives on t, 
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of the Bergman kernel associated to the rescaled operator from QCpQ^1, using 
the heat kernel. In Theorem 2.21, we estimate uniformly the remaining term of the 
Taylor expansion of e~u^ for u ^ UQ > 0, 0 < t ^ to < 1. In Section 2.8, we identify 
Jr,u, l n e coefficient of the Taylor expansion of e~u^, with the Volterra expansion of 
the heat kernel, thus giving a way to compute the coefficient P^ in Theorem 0.2. 
In Section 2.9, we prove Theorem 0.2 except (0.12) and (0.13). 

We use the notation in Chapter 1. In Sections 2.5-2.9, we assume G acts freely 
on P = p~l(0). 

2.1. Casimir operator 

Let G be a compact connected Lie group with Lie algebra g and dim^ G — TLQ. We 
choose an Ado-invariant metric on g such that it is the minus Killing form on the 
semi-simple part of g. 

Let {Kj}™^ be an orthogonal basis of g and {Kj} be its dual basis of g*. 
The Casimir operator Cas of g is defined as the following element of the universal 

enveloping algebra U(g) of g, 

(2.1) Cas : = 
n0 

j=1 
Kj,Kj. 

Then Cas is independent of the choice of {Kj} and belongs to the center of U(g). 
Let t be the Lie algebra of a maximum torus T of G, and t* its dual. Let | | denote 

the norm on t* induced by the Ado-invariant metric on g. 
Let IV C t* be the fundamental Weyl chamber associated to the set of positive 

roots A + of G, and its closure W C t*. 
Let I = {K G t; exp(2?ri^) = 1 G T} be the integer lattice such that T = t/27rJ, 

and P = {cv G t*; ct(I) C Z } the lattice of integral forms. 
Let qg be the half sum of the positive roots of G. 
By the Weyl character formula [19, Theorem 8.21], the irreducible representations 

of G correspond one to one to i? G W Pi P, the highest weight of the representation. 
Moreover, for any irreducible representation p : G —> End(F) with highest weight 

r? G W Pi .P, classically, the action of Cas on V is given by (cf. [19, Theorem 10.6]), 

(2.2) p(Cas) = -(|i9 + QG\2 - \qg?) I d v • 

Set 

(2.3) v1:= inf 
a#vEWnP 

> ( ! ^ + № | 2 - | ^ G I 2 ) > O . 

By (2.2), for any representation p : G —> End(V r), if the G-invariant subspace VG 

of V is zero, then 

(2.4) —p(Cas) ^ v\ Idv • 
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2.2. SPINC DIRAC OPERATOR 23 

2.2. Spinc Dirac operator 

Let (X,cj) be a compact symplectic manifold of real dimension 2n. Assume that 
there exists a Hermitian line bundle L over X endowed with a Hermitian connection 
V L with the property that 

(2.5) 
V-1 

2TT 

RL=W, 

where RL — ( V L ) 2 is the curvature of (L, V L ) . 
Let (E, hE) be a Hermitian vector bundle on X with Hermitian connection V £ 

and its curvature RE. 
Let gTX be a Riemannian metric on X. 
Let J : T X > T X be the skew adjoint linear map which satisfies the relation 

(2.6) io(u, v) — gTX (Ju, v) 

for u, v G TX. 
Let J be an almost complex structure such that 

(2.7) gTX(Ju,Jv)=gTX(u,v), UJ(JU, Jv) — u(u, v). 

and that UJ(. , J.) defines a metric on TX. Then J commutes with J and 

-(JJ.,.)=LJ(.,J.) 

is positive by our assumption. Thus — JJ G End(TX) is symmetric and positive, and 
one verifies easily that 

(2.8) -JJ = ( - J 2 ) 1 / 2 , J = J ( - J 2 ) " 1 / 2 . 

The almost complex structure J induces a splitting 

TX ® K C = T ( 1 ' 0 ) X 0 T ( 0 ' 1 } X , 

where T^ 1 , 0 ^A and T ^ ' ^ X are the eigenbundles of J corresponding to the eigenvalues 
and - v 7 1 7 ! respectively. Let T^1^X and T<°^X be the corresponding dual 

bundles. 
For any v G TX 0 M C with decomposition v = vli0 + t;0,i G T ^ ' ^ X 0 T ^ ' ^ X , let 

v\ 0 G T * ^ 0 , 1 ^ be the metric dual of i?i,o- Then 

(2.9) c(y) := \ / 2 K „ A - V L ) 

defines the Clifford action of v on A(T*^ 0 , 1 *X) . where A and i denote the exterior and 
interior multiplications respectively. 

Set 

(2.10) u0 : = inf 
uETx(1,0) X,xEX 

^ ( « , n ) / | « | 2

T X > 0. 

Let V T X be the Levi-Civita connection of the metric gTX with curvature RTX. 
We denote by P T ( 1 A ) ) X the projection from T X 0 M C to T ^ - ^ X . 
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Let V r ( 1 ° ) x = P T ( 1 A i ) x V T X F T ( 1 ' ° ) x be the Hermitian connection on T{1^X 
induced by VTX with curvature RT(1'°)X . Let V d c t be the connection on det(T^ 1 , 0^X) 
induced by v t ( 1 ' ° ) x . 

Formally, 

(2.11) A ( r * ( o , i ) x ) = s(TX) 0 ( d e t ( T ( 1 ' 0 ) X ) ) 1 / 2 , 

here S(TX) is the possible (non-existent) spinors bundle associated to (X,gTX), 
and ( d e t ( T ^ ' ^ X ) ) 1 / 2 is the possible (non-existent) square root of det (T^ '° )X) . By 
[24, pp.397 398], [31, §1.3], V T X induces canonically a Clifford connection V c l i f f 

on K(T<°^X) and its curvature i ? c l i f f (cf. also [27, §2]). 
Let {ea}a be an orthonormal basis of TX. Then 

(2.12) ĵ Cliff 1 
4 

ab 
[RTXea,eb)c(ea)c(eb) + 

1 
2 

Tr[RT(1-°)x]. 

For p G N, we denote by Lp := L®p. Let V ^ 3 be the connection on 

(2.13) Ep := A(T*(°>iy>X) ®Lp(g)E 

induced by V c l i f f , V L and VE. 
Let (.,.)£; be the metric on Ep induced by gTX, /zL and /i^. 
The L2-scalar product (. , .} on Q°'*(X, Lp 0 the space of smooth sections of 

Epi is given by (1.19). We denote the corresponding norm by ||.||i,2. 

Definition 2.1. — The spinc Dirac operator Dp is defined by 

(2.14) DP : = 
2n 

a=l 
c(ea)VFTT" ^ ° ' # ( X , Lp ®E) > n°**(X, Lp <g) £7) . 

Clearly, Z}p is a formally self adjoint, first order elliptic differential operator on 
il°^(X, Lp <g> E), which interchanges Q ° ' c v e n ( X . L p 0 £ ) and Q ° ' o d d ( X , Lp ® E). 

If 4̂ is any operator, we denote by Spec(yl) the spectrum of A. 
The following result was proved in [27, Theorems 1.1, 2.5] by applying directly the 

Lichnerowicz formula (cf. also [8, Theorem 1] in the holomorphic case). 

Theorem 2.2. — There exists CL > 0 such that for any p G N and any s G 
n>0(X, Lp®E) = 0 ^ ft°^(X, Lp <g> E), 

(2.15) | | i V | | £ 2 > ( 2 ^ o - C L ) | | 5 | | | 2 . 

Moreover Spec(£>2) C {0} U [2pu0 - CL. +oc[. 
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2.3. G-invariant Bergman kernel 

Suppose that the compact connected Lie group G acts on the left of X, and the 
action of G lifts on L, E and preserves the metrics and connections, uo and the almost 
complex structure J. 

Let ¡1: X —» g* be defined by 

(2.16) 2 ^ v / Z I M ( ^ ) := i-iL(K) = VL

KX - LK, К e g. 

Then ¡1 is the corresponding moment map (cf. [1, Example 7.9]). i.e., for any K £ g, 

(2.17) dfi(K) = iKxuj. 

For У a subspace of Г2 0 , Ж(Х, L p 0 P ) , we denote by the orthogonal complement 
of V in (Q°>9(X,LP® P ) , ( ) ) . 

Let ft0'*(X,Lp^P)G, (KeiDp)G be the G-invariant subspaces of A0 .(X,Lp (&E), 
Кет Dp. Let P G be the orthogonal projection from f2°'*(X, P p (8) P ) on (Ker P p ) G . 

Definition 2.3. — The G-invariant Bergman kernel PG(x, x') (x,xf G X ) of Dp is the 
smooth kernel of PG with respect to the Riemannian volume form dvx{x'). 

Let {Sf}^^ {dp = dim(KerPp) G) be any orthonormal basis of ( K e r P p ) G with 
respect to the norm || . | |l 2^ then 

(2.18) PGp(x,x') = 
Gp 

2=1 
Sf(x)®(SP(x')y e(Ep)x®(E;)x,. 

Especially, PG(x,x) e End(P p ) x ~ End(A(T*( 0 ' 1 ) X) <g> E)x. 
We use the notation fiF in (1.13) now. 
Observe that the Lie derivative LK on TX is given by 

(2.19) LKV = VT

K

X

XV - V F X K X . 

Thus 

(2.20) pTX{K) = VTXKX e End(TX). 

By (2.11), the action on A(T^°^X) induced by fiTX(K) is given by 

(2.21) рсш(К) = 1 
4 

2n 

a=l 
c(ea)c\ VjxKx 1 

" 2 
Tt[PT{1A))XVTXKX}. 

Thus the action LK of P on smooth sections of A(T*^ 0 , 1 ^X) is given by (cf. also [44, 
(1.24)]) 

(2.22) LK = VCliff -
KX ß

cm{K). 

By (2.16) and (2.22), the action LK of К on Çl°'*(X,D' ® E) is V% - /лЕ»(К) 
with 

(2.23) uE» (К) = 2irV^ïpu(K) •+ •ßE(K) + ij,cm(K). 
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Definition 2.4. - The (formally) self-adjoint operator Cp acting on (Q0,m(X, Lp ® 
E), (,)) is defined by, 

(2.24) Cp = D2

p - p 
71 (j 

1=1 

LKi,LKi. 

The following result will play a crucial role in the whole paper. 

Theorem 2.5. — The projection PG is the orthogonal projection from Q°^(X, Lp (g) E) 
onto Ker (£ p ) . Moreover, there exist v, CL > 0 such that for any p G N, 

(2.25) 
Ker(£ p ) = (KerDp)

G, 

S p e c (£ p ) c{ 0 }U [2pu - CL, +oc[. 

Proof. — By (2.24), for any s G ft°'#(X, Lp <g E), 

(2.26) (Cps,s) = \\Dps\\2

L2 +p 
no 

1=1 
\\LKLS\\L-

Thus Cps = 0 is equivalent to 

(2.27) Dps — LK7S — 0. 

This means s is fixed by the G-action. Thus we get the first equation of (2.25). 
For s G (KerCp)

±, there exist si G ^ ° - # (X ,LP <g> £ ) G D (Ker£> p )
x , s 2 G 

(f t° ' # (X, L p (8) ^ ) G ) - L , such that s = sx + s2- Clearly, 

DpSi G Vt°^(X,Lp ®E)G, DPS2 G (n 0 '*(X,L p® 

By Theorem 2.2 and (2.4), 

(2.28) (JCPS,S) = -p(p(C<às)s2,s2) + \\Dps2\\
2

L2 + | |Z> PSI||i2 

^ ^ I | | 5 2 | | | 2 + (2pu0 - C L ) | | S I | | i 2 , 

from which we get (2.25). 

We assume that 0 G g* is a regular value of ¡1. Then XQ — ^ ~ 1 ( 0 ) / G is an 
orbifold (XG is smooth if G acts freely on P = / i _ 1 ( 0 ) ) . Furthermore, 00 descends 
to a symplectic form UJG on XQ. Thus one gets the Marsden-Weinstein symplectic 
reduction 

Moreover, (L, VL), (E, VE) descend to ( L G , V L G ) , (EG, VEG) over XG so that the 
corresponding curvature condition holds [21] : 

(2.29) 
V-1 

2TT 

RLG = wG 

The G-invariant almost complex structure J also descends to an almost complex 
structure JG on TXG. and hL,hE,gTX descend to hL°, hE°, gTX°. 

We can construct the corresponding spinc Dirac operator DG:P on XG. 
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Let PG,P be the orthogonal projection from O 0 , *(XG<, LP

G 0 EG) on Ker DG,p, and 
let PG.P{X, xf) be the smooth kernel of PG,P with respect to the Riemannian volume 
form dvxG {%')' 

The purpose of this paper is to study the asymptotic expansion of P^(x. xf) when 
p —> oo, and we will relate it to the asymptotic expansion of the Bergman kernel PG,P 
on XG-

2.4. Localization of the problem and proof of Theorem 0.1 

Let ax be the injectivity radius of (X, # T X ) , and e G ]0,a x /4[ . If x G X, Z G 
TXX, let M 3 u xu = expx (uZ) G X be the geodesic in (X, gTX)1 such that 

X0 = X, dxu 

du u=0 — Z. 
For x G X, we denote by Bx{x.e) and BTjX(01£) the open balls in X and T X X 

with center x and radius £. respectively. The map TXX 3 Z —> exp^(Z) G X is a 
diffeomorphism from P T ' ' x ( 0 , e ) on Bx(x,s) for e $J a x . 

From now on, we identify P T ; r X ( 0 , e ) with P x ( x , e ) for e ^ a x /4 . 
Let / : R —> [0, 1] be a smooth even function such that 

(2.30) f{v) = 
1 for \v\ ̂  e/2, 
0 for I'L'I ^ £. 

Set 

(2.31) F(a) = 
+oo 

J — oc 
f(v)dv 

-1 +oo 

/ — oo 
elvaf(v)dv. 

Then F(a) is an even function and lies in the Schwartz space S(R) and F(0) = 1. 
Let F be the holomorphic function on C such that F(a2) = F(a). The restriction 

of F to R lies in the Schwartz space <S(R). 
Let F(£p)(x.x') be the smooth kernel of F(CP) with respect to the volume form 

dvx {%')• 

Proposition 2.6. — For any Lm G N, there exists Ci,7ri > 0 such that for p ^ CL/V, 

(2.32) \F{Cp){x,x') - Pp

G{x,xr)\^HXxX) ^ Cly71lp-1. 

Here the ̂ m norm is induced by V L , VE, V c l l f f

; hL, hE and gTX. 

Proof. — For a G R, set 

(2.33) (pp(a) = l [ p i , i _ h o o [(a)F(a) . 

Then by Theorem 2.5, for p > CL/V, 

(2.34) F ( £ p ) - P p

G = ^ ( £ p ) . 

By (2.31), for any m G N there exists C m > 0 such that 

(2.35) snp\ar\F(a)\^Cm. 
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As X is compact, there exist {xl}
r

l=\ C X such that {U{ = Bx(xl: £)K=i is a 
covering of X. We identify BTxix(0,e) with Bx(xi.e) by geodesies as above. 

We identify (Ep)z for Z E i?7-^ x (0. 5 ) to (Ep)Xi by parallel transport with respect 
to the connection VEp along the curve 7^ : [0, 1] 3 u —> exp x ( ^ Z ) . 

Let { e a } 2 ™ x be an orthonormal basis of TXiX. Let ea(Z) be the parallel transport 
of e a with respect to V T X along the above curve. 

Let r^, F L , L c l l f f be the corresponding connection forms of V ^ , V L and \7 C h f f with 
respect to any fixed frame for E, L, A ( T * ^ 0 , 1 ^ X ) which is parallel along the curve 
under the trivialization on Ul. Then F L is a usual 1-form. 

Denote by V^Y the ordinary differentiation operator on TXiX in the direction U. 
Then 

(2.36) V^p = V 4-pTL + F c l i f f + VE. Dp= c(ej) VEpe!i 

Let {ft} be a partition of unity subordinate to {Ut}. 
For Z € N, we define a Sobolev norm on the Z-th Sobolev space Hl(X, Ep) by 

(2.37) I I * = 
P 

/ 2n 

I K=0 I\ ,...,ifc = l 
| | V e ! i • • • V e ! > i . s ) | | | 2 

Then by (2.36), there exist C, C',C" > 0 such that for p ^ 1, s E fl"2(^T, £ P ) , 

(2.38) C ' | | D ^ | | L 2 - C V | | s | | L 2 < \\s\\Hl < C ( | | D ^ | | i 2 + p 2 | k | | L 2 ) . 

Observe that D p commutes with the G-action, thus 

(2.39) [Dp,LKj]=Q. 

By (2.24), (2.39), and the facts that DP is self-adjoint and LK3 is skew-adjoint, we 
know 

(2.40) \\CPs\\l2^\\Dls\\l2+p2\ 
3 

]LKjLKjsfL2 -2pRe 
3 

(D2

ps,LKiLKjs) 

= 1 1 ^ * + P 2 ! ! 
3 

LKJLKJS\\2

L2 + 2p 

3 

||LKJLKJS\\2

L2 

From (2.38) and (2.40), there exists C > 0 such that 

(2.41) 11*11*2 ^C(\\£ps\\L2+p2\\s\\L2). 

Let Q be a differential operator of order m E N with scalar principal symbol and 
with compact support in I7j, then 

(2.42) [CPIQ] = [D2

P,Q]-pYJ[LK3LKJ,Q] 

3 

is a differential operator of order m + 1. Moreover, by (2.23), (2.36), the leading term 
of order m — 1 differential operator in [LKjLKr, Q] is p2[((TL — 2TT\^1/JJ)(KJ))

2 , Q). 
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Thus by (2.41) and (2.42), 

(2.43) \\Qs\\H2 ^C(\\£pQs\\L2+p2\\Qs\\L2) 

^ C(\\QCpS\\L2 +p\\s\\Hrn + l +p2\\s\\Hrrl +p^\\s\\Hrr^l). 

This means 

(2.44) \\s\\H*M+2 ^Cmp
2^2 

m+l 

3=0 
l l a l l i -

Moreover, from 

{Cp

n'èp{Cp)Qs,s') = (s,Q*<f>p(£p)£?'s'), 

(2.33) and (2.35), we know that for any L m' G N, there exists C/,m/ > 0 such that for 
p > 1 

(2.45) \\C'^p{Cp)Qs\\L, ^ C z , m . p - ' + m | | s | | L 2 . 

We deduce from (2.44) and (2.45) that if Qi, Q2 are differential operators of order 
m,mf with compact support in £/2, U3 respectively, then for any / > 0, there exists 
C\ > 0 such that for p ^ 1, 

(2.46) \\Qi(pp{Cp)Q2s\\L2 <c dp l\\s\\L2. 

On Ui x Uj, by using Sobolev inequality and (2.34), we get Proposition 2.6. • 

Observe that KX are vector fields along the orbits of the G-action, thus the contri
bution of pLxJLKJ in the wave operator cos^^/Z^) will propagate along the G-orbits, 
and the principal symbol of Cv is given by 

<KA>)(0 = K l 2 + p > Z ( K ? f o r £ € T*X. 
3 

By the finite propagation speed for solutions of hyperbolic equations [16, §7.8], 
[41, §4.4], [42, I. §2.6, §2.8], [31, Append. D.2], F(Cp)(x,x') only depends on the 
restriction of Cp to G • Bx(x, e) and 

(2.47) F ( £ p ) ( x , x ' ) = 0, i f d x ( G ^ x ' ) ^ 5. 

(When we apply the proof of [42, §2.6, §2.8], [31, Append. D.2], we need to suppose 
that Ei, S2 therein are G-space-like surfaces for the operator J -̂ + D2). 

Combining with Proposition 2.6, we know that the asymptotic of Pp(x,x') as 
p —» 00 is localized on a neighborhood of Gx. 

Proof of Theorem 0.1. — From Proposition 2.6 and (2.47), we get (0.7) for any 
x,x' G X, dx(Gx,x') ^ e0. Now we will establish (0.7) for x, x' G X \ U. 

Recall that U is a G-open neighborhood of P — / i - 1 ( 0 ) . 
As 0 is a regular value of /1, there exists 60 > 0 such that \i : X2eo — 

}i~l(B® (0, 2e 0)) —• (0, 2e0) is a submersion, X 2 e o is a G-open subset of X. 
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Fix e^eo > 0 small enough such that AT 2 E O

 C U, and dx(x, y) > 4s for any x G X€Q, 
y £ X \ U. Then Veo — X \ X€o is a smooth G-manifold with boundary dVeQ. 

Consider the operator CP on Ve{) with the Dirichlet boundary condition. We denote 
it by CP^D- Note that CP^D is self-adjoint. 

Still from [42, §2.6, §2.8], [31, Append. D.2], the wave operator cos(ty/CP^D) 
is well defined and cos(ta/Z^D)(.T, X/) only depends on the restriction of CP to 
G • Bx(x,t) N Y £ ( ) ) and is zero \idx{Gx,x') ^ t. Thus, by (2 .31) , 

(2.48) F(Cp)(x,x') = F(CPiD){x,x'), \ix,x' eX\U. 

Now for s G ^ 0 °°(V r

e o , P p ) , after taking an integration over G, we can get the 
decomposition s = si + s2 with ,st G fi°-#(A, L p (8) £ ) G , s2 G ( f i ° '* (X,L p 0 P ) 0 ) ^ 
and supp(sz) C Veo \ dVeo. 

Since Ylt=i ° LK.LKL commutes with the G-action, Cps\ G Q°-*(X: LP ® P ) G , 
Cps2 G ( ( ^ ( X L ^ ^ ) 1 and, by (2.24), (2.28), 

(2.49) (Cps, s) = (Cpsusi) + (£ p s 2 , 5 2) 

= ||Pp52||l2 -p(p(Cas)s 2,5 2) + (D^si,si> 

^ P^l|| S2 | | |2 - (Disusi). 

To estimate the term (D^si, si), we will use the Lichnerowicz formula. 
Recall that the Bochner-Laplacian AEP on Ep is defined by (1.21). 
Let rx be the Riemarmian scalar curvature of (TX, gTX). 
Let {wa} be an orthonormal frame of (T^1^X, gTX). Set 

(2.50) 

wd = -
a,b 

RL(wa,wh)w
b A iWii . 

t(x) = 
a 

RL{wa,Wa) , Ri = E 
a 

RE(wa,wa) , 

c(R) = 

a<b 

'RE + ITt[RT(1J"X] (ea,eb)c(ea)c(eb) . 

The Lichnerowicz formula [1. Theorem 3.52] (cf. [27, Theorem 2.2]) for D2 is 

(2.51) D2

p = AE" - 2pcod -pT+ \rx + c(R). 

Especially, as supp(sj) C V€o \ dVeo, from (2.51), we get 

(2.52) (D2

psuSl) = I I V ^ s i H ^ -p((2ud + T)Sl,Sl) + ((\rx +c(R))Sl,Sl). 

Since si € il°-m(X, U> <g> E)G, from (1.13), for any Keg, 

(2.53) VEpKxS1= (LK +fME"(K))SL =nE>'(K)SL. 
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From (2.23) and (2.53), there exist C, C > 0 such that 

(2.54) \\VEpsl\\
2

L2^C 

j 

\WE

K"xSi\\h = c 

j 

IIM""(^) S I||Ì 2 

>Cp2\\\tx\s1\\l3-C'\\s1\\l2 ZCeffîMh-C'Ml,. 

From (2.49)-(2.54), for p large enough, 

(2.55) (Cps,s)^piy1\\s2\\l2^Cp2\\s1\\
2

L2. 

Thus there are C, C > 0 such that for p ̂  1, 

(2.56) Spec(Cp^D) C [Cp — C, OC[. 

Now as Kx\oveo E TdVeo for any thus preserves the Dirichlet boundary 
condition. We get for l G N, 

(2.57) LK.J<I>P(£P,D) -= <PP(£P,D)LKJ , (£p,D)l(i)p(£p,D) = 0P(£>P,D)(£P,D)1 • 

Thus from (2.24), (2.39) and (2.57), 

(2.58) Dp,D ^ ¿p,D, 

and for / G N, (Dp D ) 1 commutes with the operator 4>P(CP,D)-
Let (PP(CP.D)(%I be the smooth kernel of 0 p ( £ p , D ) with respect to dvx(xf). 
Then from the above argument we get that (D2

x)
l(D2

 x,)
k(j)p(£Pir))(x, xr) verifies 

the Dirichlet boundary condition for x, x' respectively for any l, k G N. 
By (2.36) and the elliptic estimate for Laplacian with Dirichlet boundary condition 

[42, Theorem 5.1.3]. there exists C > 0 such that for s G H2m+2(X, Ep)nHl{X, Ep), 
p G N,we have 

(2.59) \\s\\Hr+, ^ C(\\D¡s\\Hr, +p2\\s\\Hr+i). 

Thus if Qi, Q2 are differential operators of order 2m, 2m' with compact support in 
U%, U3 respectively, by (2.59) and (2.58), as in (2.44), we get for s G ̂ (V€o, Ep), 

(2.60) \\QMCP,D)Q2S\\L, < Cp4m+4m 

rn m' 

j 1 = 0 h = o 
\\(D;,D)n<¡>p(Cp,D){DlDy*S\\L* 

< p 4m+4m' 
m m' 

jl=0J2=0 
\\(CP,D)jlM£p,D)(CP,D)hs\\L*. 

From (2.56), (2.60), as in (2.46), we get 

(2.61) | |QI0P(£P, J D)Q 2 S| | J L2 ^ Cip l\\s\\L2. 

By using Sobolev inequality as in the proof of Proposition 2.6, from (2.32), (2.48) 
and (2.61), we get Theorem 0.1. • 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2008 



32 CHAPTER 2. G-INVARIANT BERGMAN KERNELS 

2.5. Induced operator on U/G 

Let U be a G-neighborhood of P = ^ _ 1 ( 0 ) in X such that G acts freely on U, the 
closure of U. We will use the notation as in Introduction and Sections 1.1, 1.2 with 
X therein replaced by /7, especially B = U/G. 

Let 7T : U —• S be the natural projection with fiber Y . Let T Y be the sub-bundle 
of TU generated by the G-action, let gTY. gTP be the metrics on T Y , TP induced 
by gTX. 

Let THU, THP be the orthogonal complements of T Y in TU, (TP,gTP). Let 
gTHu k e ^ n e m e t r i c on THU induced by g T ^ , and it induces naturally a Riemannian 
metric gTB on B. 

Let be the Riemannian volume form on (B,gTB). 
Recall that in (1.20), we defined the isometry 

<S> = hnG: ( ^ ( L / , T P ) G , ( , ) ) - > (V*(B,EP,B),(, » • 

By (1.14), /i^p defines a G-invariant section fxEp of T Y ® End(T p) on t/. 
Remark that CĴ , T, c(i?) in (2.50) are G-invariant. We still denote by cdd, T, c(i?) 

the induced sections on B. 
As a direct corollary of Theorem 1.3 and (2.51), we get the following result, 

Proposition 2.7. — As an operator on (B, EP^B), 

(2.62) Ф£РФ~1 = ФВ^Ф'1 

= AEp'B - (JlEp,JlEP)GTY 1 
h 

ABh - 2pud ~pr + \rx + c(R). 

From Theorem 0.1, Prop. 2.6 and (2.47), modulo ^ ( J J " 0 0 ) , Pp

3(xJjJ) depends only 
the restriction of Cp on U. 

To get a complete picture on P^{x,x'), we explain now that modulo ^(p~°°) , 
Pp(x,x') depends only on the restriction of QCpQ~l on any neighborhood of XG 

in B. 
As in the proof of Theorem 0.1, we will fix eo > 0 small enough such that X2e{) — 

(Bg* (0, 2e 0 ))c [/, and the constant s > 0 verifying that dx(x,y) > 4s: for any 
x G XeoLy eX\U. Set Beo = n(X€Q). 

Let F($£p$-1)(x,x') (x,xf G B€Q) be the smooth kernel of F^Cp®'1) with 
respect to dvs(x')- We will also view F(QCpQ~l) as a G x G-invariant section of 
pr*Tp <g) pr^T; on A e o x A e o . 

Theorem 2.8. — Tor any l,m G N, £/iere ezzste G/ > m > 0 s?ic/i that for p ^ 1, 
3v , 3y Gl -̂ "̂g Q J 

(2.63) \h{x)h(x')P?{x,x') - F ( $ £ p < K - 1 ) ( ^ ( . T ) . 7 r ( x ' ) ) | ^ m ( A . £ o X X f ( ) ) < ChmP-
1. 
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Proof. — Let Q : r ^°° (X, Ep) —* C&°°(X, EP)
G be the orthogonal projection and 

Q± = I d - Q . Then F>p, £ p commute with Q, Q x , thus 

(2.64) F{£p) = F(£P)Q + F{£P)Q
±. 

Let (F(Cp)Q)(x. x'): (F(£P)Q-L)(x,x') be the Schwartz kernel of the operators 
F(£P)Q, F(£P)Q^ with respect to dvx{xr). 

Now, by (2.4), (2.24), on I m ^ ) , Spec(£p) c [pi/i,+oo[. As £ p commutes 
with by the same argument as in (2.32), (2.46), we get for any /, m G N, there 
exists Ci,ni > 0 such that for p ^ 1, 

(2.65) \{F{Cp)Q ){X; x ' )k .» (x f ( 1 xx ( ( 1 ) < Ci,mp~l 

Let dB(. , .) be the Riemannian distance on 13. 
By (2.62) and the finite propagation speed for solutions of hyperbolic equations 

[16, §7.8], [41, §4.4] (cf. [31, Append. D]), F(®£p$-1)(x, x') only depends on the 
restriction of &£ p &~ 1 to BB(x,s) and 

(2.66) F(®Cp<$>-l)(x,x') = 0, if dB{x,x') ^ e. 

Now by (2.47), (2.66) and the isometry $ in (1.20), we get 

(2.67) ^(F(Cp)Q)^-1
 = F ( * £ P $ " 1 ) . 

From (2.67), for x,x' G Xfn, we have 

(2.68) h(x)h(x')(F(£p)Q)(x, xf) = F ( $ £ P $ - 1 ) ( T T ( x ) , TT(:Z')). 

In fact, by (0.10) and (2.67), for any s G ^ ( 5 £ ( > , F P I G ) , 

( F ( * £ P * - 1 ) S ) ( T T ( X ) ) = ( $ ( F ( ^ ) Q ) $ - ^ № ) ) 

(2.69) = h(x) 
X 

(F(£p)Q)(x,x,)h-l(x/)s(x/)dvx(x
/) 

= /i(x) 
B* 0 

( F ( £ P ) Q ) ( x , 2 /

/ ) ^ ( l / / ) 5 ( 2 / / ) ^ ( ^ ) -

From (2.32), (2.64), (2.65) and (2.68), we get (2.63). • 

Theorem 2.8 and (2.66) help us to understand that the asymptotic behavior 
of Pp(x, x/) is local near XG. In the rest, we will not use directly Theorem 2.8. 

2.6. Rescaling and a Taylor expansion of the operator &£p&
 1 

Recall that NG is the normal bundle of XG in B. and we identify NG as the 
orthogonal complement of TXG in (TB\xG, gTB)-

Let pTXG pNG | 3 e £ n e orthogonal projection from Ti? |x G

 o n TXG, NG. 

Recall that V A G , 0 V are connections on NGL TB on XG, and A is the associated 
second fundamental form defined in (0.9). 

We fix x 0 G XG. 
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If W G TX0XG: let R 3 t ^ xt = exp^ G (£VL) G X G be the geodesic in XG such 
that Xt\t=0 = XQ, %j\t=0 = W. 

If W G TrnXG, \W\ ^ e, V G NGxn, let r ^ V G NG,EXP ^ G , T , M be the natural 

parallel transport of V with respect to the connection VNG along the curve [0, 1] 3 
£- . exp^(£VL) . 

If Z G TX0B, Z = Z° + Z \ Z° G T ^ X G , Z^ G X G , X ( ) , I ^ M ^ I < e, we 
identify Z with exp B

 x ( T ^ o Z 1 ) . This identification is a diffeomorphism from 
exp:E()° (Z°) 

BEX° (0, s) x i ^ G ( 0 , £ ) into an open neighborhood ^ ( x o ) of Xo in We denote 
it by and ^ ( x 0 ) N I G = B J Q

X G ( 0 , £ : ) X { 0 } . 

From now on, we use indifferently the notation BEXG (0, e) x (0, e) or ^ (xo), 
x 0 or 0, . . . . 

We identify {LB)z,{EB)z and (EP:B)z to (LB)X{}, (EB)XQ and (Ep,B)x0 by using 
parallel transport with respect to VLn, V ^ 5 and VEp-B along the curve 7^ : [0, 1] 3 
w —+ ?xZ. 

Recall that THU C T X is the horizontal bundle for TT : U B defined in Sec
tion 2.5. 

Let PT u be the orthogonal projection from TX onto THU. 
For VL G TB, let WH G THU be the horizontal lift of VL. 
For yo G 7r _ 1(xo), we define the curve j u : [0. 1] —• X to be the lift of the curve 7^ 

with 70 = yo and G THU. Then on n^1 (BTB (0. £)), we use the parallel transport 
with respect to V L , and along the curve 7 U to trivialize the corresponding 
bundles. By (1.17), the previous trivialization is naturally induced by this one. 

This also gives a trivialization of TT"1 (BTB (0, e)) as GxBTB (0, e), and the G-action 
on G x BTB(0,e) induced from its action on TT"'1 (BTB (0, £)) is 
(2.70) 0 ( 1 , Z ) = (<7,Z) . 

Let { e ^ } be orthonormal basis of TX()XG: NG,X(n then {e^} = {e^,e^-} is 
an orthonormal basis of TXOB. Let {e1} be its dual basis. We will also denote 
\I/*(e^), *&*(ej-) by e®,ej-. Thus in our coordinates, 

(2 .71) dz(l ( ' ' e = eL 
ezj j 

In wThat follows, for e > 0 small enough, we will extend the geometric objects 
on BTB(x0,s) to R 2 "-"" ~ TX{)B (here we identify ( Z x , . . . , Z2n-n{)) € ^2n~n° to 

Z-Lei G TX()B) such that T>p will become the restriction of a spinc Dirac operator 
on G x R 2 n - n o associated to a Hermitian line bundle with positive curvature. In this 
way, we can replace X by G x M 2 n _ n ° . 

First of all, we denote by LQ ; ^0 the trivial bundles L\Gy{), E\Gy{), lifted on X ô = 
G x R 2 n ~ n ° , and we still denote by V L , V ^ , /?L. etc. the connections and metrics 
on L 0 , ^0 on 7r~1(BTx"B(0, 4s)) induced by the above identification. Then hL, hE is 
identified with the constant metrics /?L° = /iLy<>. hE{] — hEy". 
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Set 

(2.72) RL = E Zjej =Zl тг° = V Z°e° = Z°, TZ = TZ1- + TZ° = z. 

Then K is the radial vector field on M 2 n - n ° . 
Let e > 0 with e < SQ/2. Let Lp : IR. — » [0, 1] be a smooth even function such that 

(2.73) p(v) = 1 if H < 2; p(v) - 0 if H > 4. 

Let p>£ : X 0 —> Xo be the map defined by <p£(g,Z) = (g, ip(\Z\/e)Z) for (g,Z) G 
G x M 2 n - n < \ 

Let gTX°(g, Z) = gTX (ip£(g, Z)), Jo(<7, Z) — J(p£(g: Z)) be the metric and almost-
complex structure on Xo-

Let V E o = (^*V E , then is the extension of on TT" 1 (BT*OB(Q, 
Let V L ( ) be the Hermitian connection on (L 0 , hL°) on G x R 2 n - n « defined by that 

for Z G R2N~N", 

(2.74) 

У 1 » = ^ * V L + (1 - <P№))RÏ0{KH,PIY-) + ^ ( 1 - ^ ) ) < ( ^ < ^ - ) . 

We calculate directly that its curvature RL° — ( V L ° ) 2 is 

(2.75) 

RL

Z« = r£R
L + D((I - ^ ( ^ ) X ( Z , P £ Y . ) + i ( I - *> 2 ( lf ) ) / # 0 ( Z , P ^ ' ) ) 

+ )(^.(z,-^)(^ ^.^yo 

+ ^ 2 ( i f ) K l ( z ) - 0 ^ r t / - ^ r c / - ) 

+ ) ( ^ . ( z , - ^ ) ( ^ ^ . ^ y o 
- Q' (Z/e) z* 

e\Z\ ^[Ri(z,PlY-)-Ri(Z)(z,P^-)\ 

- (QQ') |z| 
e 

Z* 

e|Z[ 
^[Ri(z,PlY-) Ri(Z)(z,P^-)\ 

Here Z* G T*0B is the dual of Z G T : c oi3 with respect to the metric gTxoB. 
From (2.75), one deduces that RL{) is positive in the sense of (2.10) for e small 

enough, and the corresponding constant i/Q for RL° is bigger than uniformly for 

From now on, we fix e as above. 
Now G acts naturally on Xo by (2.70), and under our identification, the G-action 

on L, E on G x BTx"B(0, e) is exactly the G-action on L\cy(}, E\cyi)• 
We define a G-action on Lo, £o by its G-action on Gyo, then it extends the G-action 

on L,E on G x B T -o B (0,£) to X 0 . 
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By (2.17), for any K S g, W G TP on P = / x _ 1 (0 ) ; we have 

(2.76) 
RL{W,KX) = -2ir>/-iu}(W,Kx) = 27TVrzÏW{n(K)) = 0, 

R^Z0)(K
H,KX) = R^zn)({n^)H,Kx). 

Observe that for (1,Z) e G x R 2 " _ n » , by (2.70), tpe*Kx°z) = Kx for K G by 
(2.16), the moment map fixti '• XQ —»• g* of the G-act ion on XQ is given by 

(2.77) 2 f ^ ï № o ( A ' ) ( l z ) = (1 - p(&))Rf;0(nH.Kx) + 2ny/=ïvL(K)^(ltZ). 

Now from the choice of our coordinate, we know that /ix„ = 0 on G x R2n 2 n ° x { 0 } . 
Moreover, 

(2.78) 2n^ïn(K)vAUZ) = RfltZ)(ip№)(K^)H, Kx) + 0(v(%\Z\\Z^\). 

From our construction, (2.77) and (2.78). we know that 

(2.79) ¿¿-1(0) = G x R2"-2«o x { o } . 

By (2.76) and (2.77), for Z € TX„B, \Z\ ^ 4c, 

(2.80) 2n^lj,Xii{K){l.z) = r!jcr- . " . / V . , Y ) . 

Let Dx° be the Dirac operator on XQ associated to the above data by the construc
tion in Section 2.2. By the argument in [27, p. 656-657] and the proof of Theorem 
2.5, we know the analogue of Theorems 2.2, 2.5 still holds for Dx°. Let CXl) be the 
operator on XQ defined as in (2.24). Then there exists C > 0 such that for p ^ 1, 

(2.81) Spec (£x") C {0} U [pu - C. +oc[. 

Set 

(2.82) EQ,P = A(T^°^XQ) (g) Lg<g> EQ. 

Let gTB° be the metric on B0 = №?N~NI> induced by gTX[\ and let dvB{) be the 
Riemannian volume form on (BQ, gTB°). 

The operator ^ J C * 0 * " 1 is also well-defined on TXOB ~ R2n-n». 
Let P X ( ) i P be the orthogonal projection from L 2 ( R 2 N " N ° , (E0,P)BL)) onto K e r ( $ £ ^ ° $ - 1 ) 

on R 2 n - n " . Let PX{UP(Z, Z') (Z,ZR G R2n-'l°) be the smooth kernel of PX{UP with 
respect to dvB(]{ZR). As before, we view P X T ) . P as a G x G-invariant section of 
prï(£o,p) <8> pr2(Fo,p)* on X 0 X XQ. 

Let PQP be the orthogonal projection from Q°'*(XQ. LQ^EQ) onto (Ker DX°)G, and 

let PQP(X, X') be the smooth kernel of PQP with respect to the volume form dvx()(x
f). 

Note that $ in (1.20) defines an isometry from (Ker DX°)G = Ker CXl) onto 
K e r ^ / : * 0 * - 1 ) , as in (2.68), we get 

(2.83) h(x)/l(x/)P{

(

];f)(x.X/) = PXli.p(7r(x),7T(x')). 

ASTÉRISQUE 318 



2.6. R E S C A L I N G A N D A T A Y L O R E X P A N S I O N O F T H E O P E R A T O R t'C^-1 37 

Proposition 2.9. — For any Lm E N, there exists C/. Jn > 0 such that for x,x' € 
G x BT'oB(Q,e). 

(2.84) £^')(x,a-/) (x, x') ^ Q,mP-
1. 

Proof. - By the analogue of Theorems 2.2, 2.5, we know that for x, x' G G x 
B r 'o B (0 ,e ) , P 0

G

p - F(C£°) verifies also (2.32), and for x,x' e G x P r ' o B (0 . e ) , 

F(£^ ' ) (x ,a- / ) = F(£ p )(x.a: / ) 

by finite propagation speed. Thus we get (2.84). 

Let T*( 0 , 1 )Xo be the anti-holomorphic cotangent bundle of (Xo,Jo). Since 

Jo(g,Z) = J(<p£(g,Z)), Tz^Jo)xo i s naturally identified with T ^ ^ ^ I o -
Let V c l i f f o be the Clifford connection on A(T*^°^X0) induced by the Levi-Civita 

connection V T X ° on (X0,g
TX°). Let RE°, RTX°, RcliHo be the corresponding curva

tures on Eq.TXo and A(T^°^X0) (cf. (2.12)). 

We identify A(T^°^X0)(g.z) with A ( T * ;

( J )

1 ) X ) by identifying first A ( T * ( 0 - 1 ) X 0 ) ( y , z ) 

with A(T*^J~^ jXq), which in turn is identified with A(Tgy\^X) by using parallel 

transport along u —• uip£(g, Z) with respect to V c l i f f ° . We also trivialize A ( T * ( 0 ' 1 ) X 0 ) 

in this way. 
Let SL be a G-invariant unit section of L\cy{)> Using SL and the above discussion, 

we get an isometry 
(A(T*^X)®E)\OLpo O Eo = (A(T*^X)®E)\^Í(XI]) - • Е|тг-1(а'о)-

For any 1 ^ i ^ 2n — no, let e^(Z) be the parallel transport of el with respect 
to the connection 0 V T j B along [0,1] 3 u —• nZ°, and with respect to the connection 
VTD along [1. 2] 3 n - » Z° + (7I - 1)Z-L. 

Recall that A, ̂  have been defined in (0.9), (2.72). 
The following Lemma extends [1, Prop. 1.28] (cf. also [17, Lemma 4.5]). 

Lemma 2.10. The Taylor expansion ofei(Z) with respect to the basis {eh} to order 
r is a polynomial of the Taylor expansion of the curvature coefficients of RTB to order 
r — 2 and A to order r — 1. 

Proof - Let di = V e . be the partial derivatives along ez. 
Let TTB be the connection form of VTB with respect to the frame {et} of TB. By 

the definition of our fixed frame, we have Î R i r T B = 0. As in [1. (1.12)], 

(2.85) Ln,TTB = [iK,,4RTB = in,(aTTB + F ™ A F ™ ) = i K ± R T B . 

Let 0 ( Z ) = (6)(Z)) 2n — ri() be the (2n — no) x (2n — no)-matrix such that 

(2.86) e i ^ ^ ^ ( Z ) o ( Z ) . e3{Z) = ( B ( Z ) - 1 ) ^ , . 
.1 
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Set &>(Z) = T,i0Ji(z)el a n d 

(2.87) 0 = eJ ® e3 • = (Pêj €T*B® TB. 
i J 

As VTB is torsion free, VTB6 = 0. Thus the M2"-""-valued one-form 9 = (9j(Z)) 
satisfies the structure equation, 

(2.88) dO + TTB
 A 6 = 0. 

By the same proof of [1, Prop. 1.27], we have 

(2.89) RL = Y,ZJ-ef=Z±. 
J 

in-8 = Y,ZJ-ef=Z±. 

J 
Here under our trivialization by { e ^ } , we consider Z± — (0, Z^, . . . , ̂ j~ 0) as a R 2 N N ° -
valued function. 

Substituting (2.89) and (Ln± - l)Z± = 0 into the identity (dO + TTB A 0) = 0, 
we obtain 

(2.90) 
(L^ - 1)Lk±9 - ( L ^ - l ) ( d Z x + T T B Z ± ) = ( L ^ r T B ) Z x = ^ i ? T B ) Z ± . 

Here we consider RTB as a matrix of 2-forms, so that RTB Z± is a vector of 2-forms, 
and 6 is a R 2 ™ 0 - v a l u e d 1-form. 

By (2.89) and (2.90), we get 

(2.91) iEJ(LN± - l)Ln^{Z) = (RTB(n±,eJ)7Z±

1et) ( Z ) . 

We will denote by , <9° the partial derivatives along No, TXc respectively. Then 
we have the following Taylor expansions of (2.91): for j G {2(n — n 0 ) +1 , . . . , 2n — no}, 
i.e., ej G NG, by Ln±eJ = eJ. we have 

(2.92) 
\a±\^l 

{\a^\2 + \a^\){{d^6)){Z0) 
( Z ^ 

aL! (RTB(TZ^:e3)n
±,èl)(Z). 

and for j G { 1 , . . . , 2(n — no)}, i.e., e3 e T X G , by L K i c J = 0, we have 

(2.93) 
L«-H>i 

( | a - L | 2 - | a ± | ) ( ( ô - L r - L ^ ) ( Z ° ) 
(Z-L)"" 

a x ! 
( i ? T B ( ^ \ e j ) ^ U e A ( Z ) . 

From (2.92), (2.93), we still need to obtain the Taylor expansions for 9){Z°), 
(1 < i, j < 2n - n 0 ) and ( d ^ ) ( Z ° ) , (1 < j < 2(n - n 0 ) ) . 

By our construction, we know that for i or j G {2(n — no) + I,... ,2n — no}, 

(2.94) êt(Z°) = ei(Z°), 9){Z°)=5t.r 
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By [1, (1.21)] (cf. [17, (4.35)]), we know that on R2n-2n 0 x j o } , for ij G 

{ l , . . . , 2 ( r c - n 0 ) } , 

Oij(0) = si,j, 

(2.95) 

|a°|^l 
( |a° | 2 + | a 0 | ) ( ( ô ° r 0 e } ) ( 0 ) 

(Z°) Q " 
a 0! 

< i ? T X G ( 7 e 0 , e / ) ^ ° . ^ ) ( z 0 ) , 

while by (0.9), (2.86), and [e^ef] = 0 (cf. (2.71)), we get 

(2.96) (die)){Z°) = e¿<4e?)(Z°) <V£? e°,ê?)(Z 0) 

= < V £ 4 , ê ? > ( Z ° ) : - < V ^ , e ^ ) ( Z ° ) = 
:J 

V£?e°,ê?)(Z0) 

Let RTXA, RNC be the curvatures of V T A V ; , V N ° . By (0.9), 

(2.97) RTX° + RNG +A2+ °VTBA = RTB\xG € A'2(TXG) ® End(TS). 

For 1 sC j < 2 (n -n 0 ) , 2(ra-n 0) + l < i ^ 2n-n0, i' = i - 2 ( n - n 0 ) , by [e^,e°] = 0, 
as in (2.96), we get 

(2.98) (djteI

J)(Z
0)=eUe°j,ê,)(Z°) = V£?e°,ê?)(Z0) V£?e°,ê?)(Z0) 

By [1, Prop. 1.18] (cf. (2.103)) and (2.98), the Taylor expansion of (6\F 0)){ZQ) at 0 
to order r only determines by those of RN° to order r — 1. 

Now by (2.86), (2.92)-(2.98) determine the Taylor expansion of 6){Z) to order m 
in terms of the Taylor expansion of the curvature coefficients of RTB to order m — 2 
and A to order m — 1. 

By (2.86), we get Lemma 2.10. • 

Let (1/vtb be the Riemannian volume form on (TXoB, gTB). 
Let AS(Z) ( Z G M 2 n ~ 7 1 ( ) ) be the smooth positive function defined by the equation 

(2.99) dvBo(Z) = K(Z)dvTB(Z), 

with K(0) = 1. 
For s G V; x (R 2 " """.E.,,,) and Z G M 2 n " n < \ for /; = -^=, set 

(2.100) 
Sts){Z) := s(Z/t), Vt •= S^1tK12^E>^oK-ist 

JSF2* := S r 1 ^ ^ * ^ 0 ' 2 * " 1 ^ " ^ * . 

As in (1.18), we denote by RLB . REB , RCUFÏB the curvatures on LB,EBL 

A(T^°^X)B induced by V L . V ^ . V 0 1 1 3 on X. 
As in (1.14), /ï G T L . /7^ G T F ® End(£), M C l i f f G T L § E n d ( A ( r ( ° ^ A ) ) are 

sections induced by fi^iE, ficm in (2.17), (2.23). 
Denote by V\/ the ordinary differentiation operator on TX[)B in the direction V. 
Denote by {dARLB)XO the tensor (dARLB)Xo{euej) := dCY{RLB(el.jeJ))X(). 
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Theorem 2.11. — There exist Ai,j,r (resp. £>2.r? Cr) (r G N, z,j G { 1 , . . . , 2n — n 0 } ) 
polynomials in Z, and Aij.r is a homogeneous polynomial in Z with degree r, the 
degree on Z of Bi,r is ^ r + 1 (resp. Cr is ^ r + 2), and ftas £/ze same parity with 
r — 1 (resp. r), with the following properties: 

- the coefficients of AiJiT are polynomials in RTB (resp. A) and their derivatives 
at XQ to order r — 2 (resp. r — 1); 

the coefficients of Bi^r are polynomials in R T B , R C H ^ B , REb, (resp. A, R L B ) 

and their derivatives at XQ to order r — 2 (resp. r — 1, r); 
- the coefficients of Cr are polynomials in RTB, i ? c l i f f c , REb , r x , T r [ i ? T ( 1 ' ° , x ] , 

RE (resp. A, JJLE, / i C l l f f ; resp. h, R L , RLN: resp. ¡1) and their derivatives at XQ to 
order r — 2 (resp. r — 1; resp. r; resp. r + 1). 

- z/ denote by 

(2.101) 

Or = Ai,j,r Vej + Bi,rVei + Cr 

L2= -
2n —no 

J=I 

(Vej + 1 
2 
/>!'•'IT?.,..7 - 2 ^ , x o - r X ( ) + 4tt2\PTYJX07Z\2, 

then 

(2.102) C/A cM) _|_ 
m 

r=l 

trOr + û{tm + 1). 

Moreover, there exists m! G N s^c/i that for any k G N . £ ̂  1, ^ £/ze derivatives 
of order ^ k of the coefficients of the operator 0(trn+l) are dominated by C t m + 1 ( l + 
| z | ) < 

Proo/. — Let r^ B , T L s and TCL[^B be the connection forms of VEB , V L i 3 and V c l i f f s 

with respect to any fixed frames for EB>, LB and A(T*^ 1 0^J\")B which are parallel along 
the curve 7^ : [0, 1] 3 u —> under our trivialization on BTjr-nB (0, e). Then TEB is 
a End(C d i m £ ;)-valued 1-form on R 2 ™" n « and YLB is a 1-form on R 2 n ~ n ( \ 

Now for T # = T E B S L D or T c l i f f B and R* = REB,RLB or i? c l i f f * respectively, by 
the definition of our fixed frame and [1, Proposition 1.18] (cf. also [31, Prop. 1.2.4]), 
the Taylor coefficients of Tm(ej)(Z) at XQ to order r only determines by those of R* 
to order r — 1, and 

(2.103) 
|a|=r 

(d^)Xo(e3) 
ZCY 

12 
1 

r + 1 
|a|=r-l 

(d^)Xo(R,e3j) 
Za 

A! 

Especially, 

(2.104) 1 % ) = 
1 
2 

R : 0 ( ^ , e j - ) + ^ ( | Z | 2 ) . 

By (2.100), for t = 1/y^p, if \Z\ ^ y^c, then 

(2.105) V t - « * ( t z ) ( v + ( t r c l l f f B + + - j - r L * ) ( t Z ) ) ^ ( £ Z ) . 
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Moreover, set 

(2.106) (VTBei,ej)(Z) = rkij^(Z) gij(Z)=gTB(ei,ej)(Z) = 0^(Z), 

then Y\- is the connection form of VTB with respect to the frame { e ^ } . 
Let (gtj) be the inverse matrix of (gtJ), then 

(2.107) AEp.B = -
i,j 

u" V7 Ер. в V7 Ер. в "р к i-i Ер. в 

and by (1.1), (2.99), 

(2.108) 
K(Z) = (detg1,)1/2(Z), 

i] 2 0¡(j¡¡ + djgu - diga). 

By (2.62), (2.100) and (2.107), 

(2.109) jSf2'(Z) = - ^ ( í Z ) ( V , e i V , e / / r! ; ( i /Z;V ; . . , ! - {tpE^tJiB")gTv{tZ) 

-2ujd{tZ) -r{tZ) +t2 y + c ( f i ) - - A ß ( 1 / / ( Í Z ) . 

By (2.23), 

(2.110) 

(tJiE-,tfiE")GTY = - 4 7 T 2 | - A 1 | 2 T V . + ^ v ^ T / i + i 2 № C , i f f + M S ) , / ï C l i f f + ïiE)GTV . 

By (2.6), (2.17), and fiyo = 0, for y0 e P, 7r(y0) = xo, we get for K e g, 

(2.111) -<Jef 1K
x)ya = u(Kx,e?) = V eH (p(K)) = (V^T / i , Kx)yo, 

thus 

(2.112) I M I ^ V ( Z ) = | v r ? lpTv + ^ ( | z | 3 ) = I P T y J , , ( ) ^ | 2 + ^ ( | z | 3 ) . 

By Lemma 2.10, (2.103), (2.105), (2.109) and (2.112), we know that ^ has the 
expansion (2.102), in particular, we get the formula Jz?® m (2.101). 

By (2.97), (2.103) and (2.109), we get the properties on A,j,r, #z,r-
By (2.97), (2.109) and (2.110), we get the properties on Cr. 
The proof of Theorem 2.11 is complete. • 

2.7. Uniform estimate on the G-invariant Bergman kernel 

Recall that the operators J&?2*, V; were defined in (2.100), and E 0 = A(T*(°^X0)® 
EQ. We have trivialized the bundle E 0 , B 0 to Es,X ( ) in Section 2.6. We still denote by 
/ i E ( ) £ ? O the metric on the trivial bundle Es ) X ( ) on H^2n~nu induced by the correspond
ing metric on Eo,j30. By our trivialization, (£^o,z?5 ^

E ° " B ( ) ) is identified to the trivial 
Hermitian vector bundle (Es,x{)• •,r° )• 

We also denote by ( , ) 0 L 2 and || | |O.L 2 the scalar product and the L2 norm on 
^ ° ° ( T X o B , E B < X o ) induced by gT*oD as in (1.19). 
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Let /ix 0 , jiEop be the G-invariant sections of TY, TY <g) End(Eo,p) on X 0 induced 
by /i^°- p as in (1.14). 

Let { / / } be a G-invariant orthonormal frame of TY on n~l (BB{XQ, e)), then 
(foj)z — (fi)cp£(z) is a G-invariant orthonormal frame of TYQ on J\o-

Definition 2.12. — Set 

(2.113) Vt = { V , . , , . 1 ^ i <: 2n - rz0; j(Jix0,fci){tZ), 1 ^ / ^ n 0 } . 

For k G N * , let V\ be the family of operators acting on {TX()B, E # , X ( ) ) which can 
be written in the form Q = Qi • • • QL G XV 

For s G r ^7; r : , / ) ' . I0 / ; . ,„i . A- . • 1. set 

(2.114) 
INI?,o = lR2n-,H) 

\S(Z)\2

H*B.XO

DVT.H)B{Z), 

I N I ^ H N I ? , o + 
A: 

1 = 1 QeTyi 
\\Q4lo-

We denote by (s',s)t0 the inner product on C^?^C(TXOB,1EB,X{)) corresponding to 
II ll?,o-

Let H™ be the Sobolev space of order rn with norm || H*,™- Let Ht

 1 be the 
Sobolev space of order —1 and let || be the norm on H^1 defined by ||s||£>_i = 
sup0^s/€HJ I ,o l / l l s ' l k i -

If A G 3?{H™,H™') ( / / / . / / / ' G Z ) , we denote by ||.4||; n 'm ' the norm of A with 
respect to the norms || | | ^ m

 a n d || \\t,™/-
Then i s a formally self-adjoint elliptic operator with respect to || | | 2

0 , and is 
a smooth family of operators with respect to the parameter xq G Xq. 

Theorem 2.13. — There exist constants C1.C2, G3 > 0 such that for t G]0, 1] and any 
s,s' G Cg°(R2n-NO,EB.J;O); 

(2.115) 
{^8^)1Л>"с,ы\и-сМ10, 

{^8^)1Л < C 3 N U | s ' k i . 

Proof. —- By (2.80) and our construction for Lo, £o on XQ, we know for Z G TX(tB, 
\Z\ > Ae, 

(2.116) >iE>'-->(K){hZ)=pR^((K^)HJ<*). 

Thus from (2.109) and (2.114), 

(2.117) {#¿8, s) = \\Vts\\l0 - * 2 , JiE"")grr (tZ)s, S)tQ 

+ ( ( - 2Sf1u;d - S r V + ^ S f 1 ^ * + c(R) - jABllh))s. s)f q . 
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From (2.77), (2.110), (2.116), and our construction on V E ° , 

(2.118) 

- t 2 < ( ^ O • ^ ^ 0 • / , ) ^ ( ^ ) ^ 5 > T L 0 s ^ 2 

no 

1=1 
)(íixa,fo,i){tZ)s 2 - С ф | | ? , 0 . 
t t.o 

From (2.117) and (2.118), we get (2.115). 

Recall that v is the constant in (2.25). 
Let S be the counterclockwise oriented circle in C of center 0 and radius z//4, and 

let A be the oriented path in C which goes parallel to the real axis from +oo + i 
to v/2 + i then parallel to the imaginary axis to v¡2 — i and the parallel to the real 
axis to +oc — i. 

A 

ô 

v/4~ v/2 

Theorems 2.14 2.16 are the analogues of [17, Theorems 4.8-4.10] (cf. also [31, 
Theorems 4.1.10 4.1.12]). Especially, the proofs of Theorems 2.14, 2.16 are exactly 
the same as the proof of [17, Theorems 4.8, 4.10], we include the proofs for the sake 
of completeness. 

Theorem 2.14. — There exist to > 0, C > 0 such that for t G]0,£o]; A G 5 U A and 
XQ G XG, (A — Ji?2 ) ~ 1 exists and 

(2.119) 
I K A - j ^ ) - 1 ! ! ? ' 0 ^ 

||(A - J2f2*J"1 H,"1'1 ^ C(l + |A|2). 

Proof. — By (2.25), (2.62) for £>^°, and (2.100), there exists t0 > 0 such that for 

t e]0,to], 

(2.120) Spec (j£f2*) C {0} U [i/,+oo[. 

Thus (A - J ^ * ) " 1 exists for A G d U A. 
The first inequality of (2.119) is from (2.120). 
By (2.115), for A 0 G M, A 0 ^ -2c72, (A 0 --Lt2)-1 exists, and we have ||(A 0 -

^ 2 ) _ 1 l l í < ¿ 7 - Now, 

(2.121) (A - J&f*)-1 = (A 0 - J ^ T ' - (A - A 0)(A - JSf^-^Ao - J ^ ) " 1 . 
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Thus for A E S U A, from (2.121), we get 

(2.122) I K A - J ^ ) - 1 ! ! , " 1 ' 0 ^ 
1 

1 + - | A - A 0 | Y 
v / 

Now we change the last two factors in (2.121). and apply (2.122), we get 

(2.123) I K A - ^ r ' l i r < 
1 
C1 + 

A - A o l 

C1

2 ' l + - | A - A 0 f 

^ C ( 1 + | A | 2 ) . 

The proof of our Theorem is complete. 

Proposition 2.15. — Take m G N*. There exists Cm > 0 such that for t G ]0,1], 
Q i , . . . , Q m 6 Vt U { Z J 2 ™ and s, s' G ^ 0 ~ ( R 2 n - ^ E B , X 0 ) , 

(2.124) {[Qu[Q2,.....[Q,n,J%]...]]s,s')tJÌ - Cm\\s\U,l\\s'\\t,l-

Proo/. — Note that [Vt,ei,Zj] = 8lJ. By (2.109). we know that [Zj,3?£] verifies 
(2.124). 

Recall that by (2.77) and (2.80). (V e , ; ( / / X o . fo.i))(tZ) is uniformly bounded with 
its derivatives for t G [0, 1] and 

(2.125) Ve,(Mx 0,/o,z) = (ei(/xx(,,/o5z))xf, = ^(/o,/,e,). x- 0 

for |Z| ^ 4e. Thus [7(/ïx 0 </o,z>(^),^2] a k o verifies (2.124). 
Note that by (2.100), 

(2.126) [ V É > e i , V É > e , ] - (RL,) >'•<> (tZ) + / * / ? E » . » « . ( / Z ) ) (e,7 , - , - ) . 

Thus from (2.109), (2.125) and (2.126). we know that [ V t . e , , i ^ ] has the same struc
ture as ^?J> for t G]0, 1], i.e.. [Vt,ek L2t] nas tne tyPe as 

(2.127) 
ij 

\ / , , ( 7 . / Z ) V , . f , V , . r / + 
j 

cdt.tZ)Vt.e, 

+ [4(t.,tZ)j{/lXll.f0j)(tZ) +d\-triXi)\
2

gTY(tZ)] • rü.lZ;. 

where d G C; al3 (£, Z ) , c%(t, Z ) , (£, Z ) , c(£, Z) and their derivatives on Z are uniformly 
bounded for Z e R2n-n",t e [0,1] ; moreover, they are polynomials in t. In fact, for 
[Vt,ek,S%], d = 0 in (2.127). 

Let (Vt, e ,-)* be the adjoint of Vt.e, with respect to { , ) t 0 , then by (2.114). 

(2.128) ( V t , e , . ) * = - V t , e , -tik^V^k^Z). 

the last term of (2.128) and its derivatives in Z are uniformly bounded in Z G 
M 2 n - n V G [0, 1]. 

By (2.127) and (2.128). (2.124) is verified for m = 1. 
By iteration, we know that [Q\. [Q2. . • •. [ Q m , JSF̂ ] • • • ]] nas ine same structure 

(2.127) as J^J. By (2.128). we get Proposition 2.15. • 
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Theorem 2.16. — For any t e]0,£0], A £ *UA 7 m G N, ifte resolvent ( A - ^ ) _ 1 maps 
i/J71 m£o Moreover for any a G N 2 n - T l ( ) , tfiere ezwtf N G N, C a , m > 0 such 
thai for / G|()./,)l A G 5U A, s G ^ ( R 2 7 1 " 7 1 0 , E B,:r„), 

(2.129) | |Z a (A - J ^ T ^ I k m + i ^ C a , m ( l + \ * ? ) N 

a ' ̂  a 
||£a's|km. 

Proo/. For Q[Q2, • • • [Qmf, (A —J£F2*) x] . . . ]G { ^ i } i = i n ° , we can express 
Qi • • • Q M + I a | ( A — JSF^)-1 as a nnear combination of operators of the type 

(2.130) [Ql, [Q 2 , • • • [Cm', (A - J ^ T 1 ] • • • ]]Qm' + l ' • • Qm+|ah ™' ̂  ™ + |a|. 

Let ^ be the family of operators 

m = {[Qh,[Qh,---lQjn3%]---]]h 

Clearly, any commutator [Qi, [Q 2 , • • • [Qmf, (A —J£F2*) x ] . . . ]] is a linear combination 
of operators of the form 

(2.131) (A - j g f ^ - ^ i C A - &})-1R2 • • • itW(A - J ^ ) " 1 

with . . . . Rm' € &t-
By Proposition 2.15, the norm || | |* ' _ 1 of the operators Rj G Mt is uniformly 

bound by C. 
By Theorem 2.14, we find that there exist C > 0. TV G N such that the norm 

|| y?"1 of operators (2.131) is dominated by C(l + | A | 2 ) j V . • 

Let TTB ' TB x # TB —> B be the natural projection from the fiberwise product of 
TB on B. 

Let (Z, Z ' ) . ( J è f j e - ^ )(Z. Z ' ) be the smooth kernels of the operators e~u^ , 
g>te-u&* with respect to dvTj:oB(Z'). 

Note that are families of differential operators with coefficients in End(E# 5 X ( )) = 
End(A(T*(° a )X) <8>£)B,*(). Thus we can view e~u^(Z, Zr), (j2f 2*e- t t^)(Z, Z') as 
smooth sections of TT*B(End(A(T^0-1)X) ® E 1)^) on TB xBTB. 

Let v E n d ( E e ) be the connection on End(A(r<°-^X) ^ ^ ) B induced by V c l i f f s and 
\7Ed . And v E n d ^ E c \ hE and g T X induce naturally a ^m-norm for the parameter 
x0 G 

As in Introduction, for Z G TXQB, we will write Z = Z° + Z^, with Z° G TXQXG, 
Zx € 7VG.;i,,. 

In the following result, we adapt [17, Theorem 4.11] to the present situation. The 
new point is that the kernels here have the fast decay estimate along the normal 
direction NG,XO-
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Theorem 2.17. — There exists C" > 0 such that for any m,m!\m"\r G N, > 0, 
there exists C > 0 such that for t E]0,£o]7 u ^ uq, Z, Z' G TXQB, 

(2 .132) 

sup 
LAJ-F-LA'L^M 

( l + iz^i + i z ^ i ) ^ 
0|«| + |A'| 

dZadZ,oc' dtr 
- U J Z F 2 (Z,Z') 

V"1' (Xa) 

^ C ( l + + | Z ' 0 | ) 2 ( n+ r + M ' + L) + M E X P — vu 
,2 

2 C " 

u 
Z - Z ' | 2 ) . 

sup 
LAJ-F-LA'L^M 

(l + + i z ^ i ) 7 " " 
0|« | + |A' | 

dZadZ'a' dtr 
&e-uSe*)(Z. Z') 

< C( l + |Z° | + | z / 0 | ) 2 ( n + r + m ' + 1 > + m exp 
1 

—-vu-
4 

2C" 

u 
Z -Z'\2 

where ctom (Xg) is the <é'm norm for the parameter xq G Xq. 

Proof. By (2.120), for any k G N*, 

(2.133) 

e- uLt2 = -l)k~l{k - 1)! 
1ixiuk 1 

/SUA 
e~uX(X -&%)-kd\, 

L2te- uLt2 = ~l)k-l(k - 1)! 
2Triuk 1 A 

e-u\ A(A - Lt2)-k -- (A - ^)-k+Ad\. 

From Theorem 2.16, we deduce that if Q G U ^ P j , there are JVeN, C m > 0 such 
that for any A G (5 U A, 

(2.134) | | Q ( A - ^ ) - m | | ? ' 0 < C m ( l + | A | 2 ) N . 

Recall that JZFT

2 is self-adjoint with respect to || ||T,o- After taking the adjoint of 
(2.134), we get 

(2.135) I K A - J ^ ) — QW^0 4 Cm(l + \X\2)N. 

From (2.133), (2.134) and (2.135), we get if Q,Q' G U ^ X ^ , 

(2.136) 
| | Q e - ^ Q ' ! | ° - 0 ^ C m e ^ " , 

\\Q(JzftE-
U^)Q'\\0

T-
0 4: Cme-i»u. 

Let | \ m be the usual Sobolev norm on (tooc(R2n ™ ° , E B ] X o ) induced by hEB-x° = 

h(A(T*<°-1>x)®E)B,X0 and the voiume form dvTx()B(Z) as in (2.114). 

Observe that by (2.105), (2.114), there exists C > 0 such that for s G 
tf™(TX0B,EB,X0), supp(s) C BT*<>B(0,q), rn ^ 0, 

(2.137) 
1 

C 
(1 + 9 ) - m | | s | | t . m < |s | m C( l + q)m\\s\\Um. 

Now (2 .136) , (2.137) together with Sobolev's inequalities imply that if Q,QR G 
UTl.Vl for /Cu(jSf2*) = e - T ^ e - ^ 2 or e ^ u ^ e ~ u ^ , we have 

(2.138) sup 
\Z\,\Z'\^q 

QzQ'z>>Cu№)(Z, Z')\ < C( l + g ) 2 n + 2 . 
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By (2.77), (2.78) and (2.80), 

(2.139) 
n0 

/=1 

1 
t 

~ 2 
[/j,x0,fo,i)(tZ) --\^Xo\2

gTY(tZ)^C\Z^\2. 

Thus by (2.105), (2.138), (2.139), we derive (2.132) with the exponentials e^uu, 
e~h"u for the case when r — m' — 0 and Cn — 0, i.e., 

(2.140) sup 
I a I +1 a:' I 

( l + iz^i + i z ^ i ) 7 7 1 " 
^lal + lck'l 

<9ZQ<3Z'T T 
/ Q i v j ^ ) ( Z , z ' ) 

^ C(L + | Z ° | + | Z / 0 | ) 2 ™ + W + 2 . 

To obtain (2.132) in general, we proceed as in the proof of [4, Theorem 11.14]. 
Note that the function / is defined in (2.30). For g > 1, put 

(2.141) Ku,p(a) = +oo 

— oo 
ex.p(ivV2ua) exp( 

v2 

2 i - / 
1 
Q /2uv) dv 

V2TT 

Then there exist Cr. CI > 0 such that for any c > 0, M , ra' G N , there is C > 0 such 
that for u > tio, a G C, |Im(a)| ^ c, £ > 1, we have 

(2.142) | аГ |А ' , < -> (а ) | < C e x p . 2 Cl 2 

C C U £ 

v U 
For any c > 0, let Vc be the image of {À G C, |Im(A)| ^ c} by the map A —» A 2 . 

Then 

T/c = {A G C,Re(A) > - ^ L m ( A ) 2 - c 2 } , 

and S U A C Vc for c large enough. 
Let Ku,e be the holomorphic function such that Ku,e(a

2) = KUiQ(a). By (2.142), 
for A G 

(2.143) | A | m | ^ , ) ( A ) | sgCexp C'C2U-^Q2 

u 
Using finite propagation speed of solutions of hyperbolic equations (cf. [41, §4.4], 

[31, Append. D]) and (2.141), we find that there exists a fixed constant (which 
depends on e) c' > 0 such that 

(2.144) KUiQ{^)(Z,Z') = e - " - s f 2 ( Z , Z / ) if | Z - Z ' | ^ eg. 

By (2.143), we see that given k G N , there is a unique holomorphic function 
Ku.Q,k{^) defined on a neighborhood of Vc such that it verifies the same estimates 
as Ku_g in (2.143) and Ktug:k(/^) —> 0 as A —> +oo; moreover 

(2.145) <^ f c

1 ) (A) / ( f c - l ) ! = ifu,e(A). 
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Thus as in (2.133), 

(2.146) 
Ku,Q(L2t) = 

1 
2T7Î UA 

Ku,e,k{\) [A(A - 3?*)-kdA 

<^2 ^U,Q(^2^) ~ 
1 

2TTZ ' A 
Ku,e,k{\) [ A ( A - 3?*)-k - (A - J ^ ) - f e + 1 j d\. 

By (2.134), (2.135)^and by proceeding as in (2.136)-(2.138), we find that for 
Ku(a) = KUie{a) or aKu,e(a), for |Z|, \Z'\ ^ q, 

(2.147) sup 
I et I + \OCR J ̂ m 

(1 + |^-L| + | Z '±|)2n + m + m" + 2 \a\ + \a.f\ra 

<9z«<9Z'Q' 
K U ( J ^ ) ( Z , Z ' ) 

s$ C( l + 9 ) 2 " + 2 + T O exp(C"c2u -
Ci 

1£ 
E2) 

Setting £ € N*, |g - ^-|Z - Z'\\ < 1 in (2.147), we get for a, a' verifying 
\a\ + \a.f\ ^ ra, 

(2.148) (l + i z ^ + i z ' ^ i ) ™ " 
£|a| + |a'| 

<9Z A <9Z / Q ' 
K u ( ^ f 2 * ) ( z , z ' ) 

^ C( l + |Z° | + | z ' ° | ) 2 n + m + 2 exp(C7/c2îi -
Ci 

2c / 2îi 
z - z ' | 2 ) , 

Take 5i = 
C'c2 + 1/4 v 

C'c2 + ^i/' 
from (2.140)ö lx (2.148) 1- 0 1 and (2.144), we get (2.132) for 

r = rn' — 0. 
To get (2.132) for r > 1, note that from (2.133), for k > 1 

(2.149) 
er 

o r 
e-uL2 ( - l ) f e - i ( f c - l ) ! 

2TTiuk-1 I <5uA 

e-uA e 

etr 
;A - . ^ ) AV/A. 

We have the similar equation for e 
etr 

(,JSF2TE-^2) 

Set 

(2.150) h,r - { (k .r ) = ( Â w , ) | 
V • 

i=0 

h — k + j . 
j 

7=1 

ri = r, ki, ri G N* 

Then there exist G K such that 

(2.151) 
AÏ{\,t) = (\-SFTRKO 

er Lt2 
etr1 ( A - J É f * ) " * ' 

er Lt2 

etr1 
(A-JÉf*)"*' 

er 

etr 
( A - ^ ) " f c = 

(k.r)e/t.., 
a£A$(\.t). 

We claim that ^4k(A, t) is well defined and for any m G N, k > 2(m + r + 1), 
<2, <3' 6 UYL{D\., there exist C > 0. JV e N such that for Ae<5uA, 

(2.152) \\QA*(\,t)Q's\\t.0 ^ C( l + | A | ) A r 

|.'3K2r 
\\Z0s\\t.o. 
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In fact, by (2.109), er/etr Lt2 is a combination of 

er1 

dtr± 
glJ(tz)) 

QT2 
Kdtr* 

V t , e , ) 
gr3 

dtr* 
ÍQitZ)), 

gr4 

dtr± 
W^"JoAtz))), 

where q runs over the functions r x , etc., appearing in (2.109). Now §^(q{tZ)) (resp. 
•^k(t(JiEo^jQtl)(tZ)), j f ^ V ^ , ) (n ^ 1) are functions of the type as qf{tZ)Z^ 
\[3\ ^ ri (resp. r\ + 1) (where q1, as q, runs over the functions r x , etc., appearing in 
(2.109)), with q'(Z) and its derivatives on Z being bounded smooth functions on Z. 

Let be the family of operators of the type 

= {!/,-. Qh, \fn Qn[fn Qn-^i •••}}} 

with fj. smooth bounded (with its derivatives) functions and Qjt G Vt U {Z3}^7l^n°• 
Now for the operator Aj?(A, we will move first all the term Zf3 in q'(tZ)Z3 as 

above to the right hand side of this operator, to do so, we always use the commutator 
trick, i.e., each time, we consider only the commutation for ZZJ not for Z@ with > 1. 

Then Aj?(A, t)Q' is as the form X)|/?|^2r LpQpZP, and is obtained from Q' and 
its commutation with Z^. 

Now we move all the terms Vt, e . ? (y/L foj){tZ) in d t o the right hand side of 
the operator L^. 

Then as in the proof of Theorem 2.16, we get finally that QA*{\,t)Qf is as the 
form Ylg-^pZP where JSFJ is a linear combination of operators of the form 

(2.153) Q(A - ^y^R^X - 3f£)-kiR2 • • • Ri>{\ - JSF 2

t)- f cî'Q / / /Q , ,

î 

with RU...,RV G Q / r / G U 2 ! ^ , Q" G U ^ ^ , |/?| ^ 2r, and Q" is obtained 
from Qf and its commutation with Z@. 

By the argument as in (2.134) and (2.135), as k > 2(rn + r + 1), we can split the 
above operator to two parts 

Q(X - Sfjr^R^X - ^2

tyk''R2 '-Ri{\- ,21) A' ;': 

(A - .Z:l)-{k'-kï] •••Rl,(X- 3%)-k'i'Q"'Q", 

and the || ||°'°-norm of each part is bounded by C( l + | A | 2 ) v V . 
Thus the proof of (2.152) is complete. 
By (2.149), (2.151) and (2.152), we get the similar estimates (2.140), (2.148) for 

&_e-u^ ^ d_(j^te-u^2) w i tL the exponential 2n + m + 2r -H 2 instead of 2n + m + 2 
therein. 

Thus we get (2.132) for m' = 0. 
Finally, for U G TXG a vector on Xq, 

(2.154) V U END (EB)E -UL2~~ 
(-ly-Hk-iv. 

2ixiuk 1 

/<5uA 
E - w A V ^ E n d ( E f l ) ( A - J S F 2 * ) - f c d A . 
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Now, by using the similar formula (2.151) for V^* K n d ^ B \ \ _ ^yk b y r e p l a c i n g 

by V ^ E n d ( E ß ) J ^ , and remark that V^* E n d ( E ß ) ^ is a differential operator 
on TXoB with the same structure as jSf̂ -

Then by the above argument, we get (2.132) for mr ^ 1. • 

Let Pcu be the orthogonal projection from <^DC(TXoB, Eß ) X f ) ) to the kernel of jSfrf 
with respect to ( , } t 0 . Set 

er1 L1 
at"i 

(2.155) F M ( ^ 2 ) — 1 
2тгг A 

e ~ u A ( A - ^ ) ~ ^ А . 

By (2.120), 

(2.156) FU(JSF2*) = E " U ^ - P 0 , T = 
r + oc 

Ju 
(JSF2*) =E"U^DU 

Let P 0 ,*(^, Z'), Fu(Jf£)(Z, Z') be the smooth kernels of Po,t,Fu(&%) with respect 
to dvTxoB(Z

;). 

Corollary 2.18. — With the notation in Theorem 2.17, 

(2.157) sup 
I a I +1 ce' j ̂ rr. 

( i + |z- L | + | z ' J - | ) m ' 
Q\a\ + \a'\ Qr 

dZadZ'a' dV 
Fu(JfÌ){Z,Z') , 

«c C(l + \Z°\ + | Z , 0 | ) 2 n + m + 2 m ' + 2 r + 2 e x p ( - - i / « - VC^\Z - Z'\). 
8 

Proof. — Note that \i/u + 2c"/u|Z - Z ' | 2 > VC^lZ - Zf\, thus 

(2.158) 
/• + 00 

u 
e 4 "i 1 1 аил < e- Vc"v|Z-Z'| +oo 

u 
e-1/8vu1 du 

= 8 e-1/8vu-Vc"v/Z-Z'| 
v 

By (2.132), (2.156) and (2.158), we get (2.157). 

For к large enough, set 

(2.159) 

rr — ( - l ) * - 1 ^ - 1)! 
2iri r\uk~l 

í e-uX 

JA (k,r)e/fc.r 

a*A*(A,0)dA, 

Jr,u = (-l)*-1^ - 1)! 
2nir\uk 1 

I SUA 
e-u\ 

(k,r)e/fc,. 
a ^ ( A , 0 ) d A , 

-^r,u,t — 
1 дг 

r! dtr 

Fu (Lt2) - -^r,u, Jr,u,t 
1 dr 

R! dtr 
e-Lt2 - -^r,u, 

Certainly, as t —-> 0, the limit of || | | t . m exists, and wTe denote it by || ||o,m-
Theorems 2.19, 2.20 are the analogues of [17, Theorems 4.14, 4.15], we include the 

proofs for the sake of completeness. 
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Theorem 2.19. — For any r ^ 0, A: > 0, there exist C > 0, TV £ N such that for 
t e [o, t 0 ] , A G Sua, 

(2.160) 
er Lt2 
etr 

er Lt2 

etr T=O/ t,-l 
^ Ct 

|a|<r+3 
l l ^ l l o . l , 

| | ( ^ - ^ ) - f c -
(k,r)G/A,f 

a ^ ( A , 0 ) J 5 
10,0 

<C*(1 + | A | 2 ) " 
|a|̂ 4r + 3 

||Za s||0,0|| 

Proof — Note that by (2.105), (2.114), for ¿ € [ 0 , 1 ] , ^ ! 

(2.161) I N k o < C||s||0,o, INko < C 

a<k 
\\Zas\\Qik. 

An application of Taylor expansion for (2.109) leads to the following inequality, if s, sf 

have compact support, 

(2.162) 
V dP ~~ dP e=0 

)s,s') 
I 0,0 

^ Ct\\s'\\tA 

|Q|<r + 3 
l l ^ l k i -

Thus we get the first inequality of (2.160). 
Note that 

(2.163) (A - J ^ ) " 1 - (A - JÈ?")-1 = (A -Lt2)-1(Lt2-- J^ })(A - ^ 2 ° ) ~ 1 . 

Now from (2.119), (2.162) and (2.163), 

(2.164) | | ( ( A - ^ 2

( ) - 1 - ( A - ^ 2 ° ) - 1 ) s | | 0 0 ^ C t ( l + | A | ) N l i ^ l k o -
|Q:|^3 

After taking the limit, we know that Theorems 2.14-2.16 still hold for t = 0. 
Note that V 0 , e j - = V e j . + \R^(lZ,e3) by (2.105). 
If we denote by Jzf\,£ = A — Ĵ 2S th e n 

(2.165) A?(\,t) - А*(А,0) : 
i=l 

LA,t-k0 
er Lt2 

dtr-

er Lt2 

dtr< t = Q. 
C/9 — KI C/)~K3 

3 

z=0 

c/y — ko 
°̂ A,£ (C/9 — KI C/)~K3) 

eri+1 Lt2 

etri+1 lt=o °̂ A,0 • 

Now from the first inequality of (2.160), (2.119), (2.151), (2.164) and (2.165), we 
get (2.160). • 

Theorem 2.20. — There exist C > 0, N e N such that for t E]0,£ 0], u ^ ^o, 
Z,Z'eTX0B, \Z\,\Z'\^q, 

(2.166) Fr,u,t(Z, Z') l 
J Ct2rt"no + 1 

{l + q)Ne-^u 

I Jr,u,t{Z. Zf)I l 
J Ct2rt"no + 1 

l + q)Ne^u 
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Proof. — Let j£ o q be the vector space of square integrable sections of E ^ ^ over 
{ZGTXoB,\Z\ <¿q+l}. 

If s G J%0ig, put ||.s|¡2

g ) = JlzKq+1\s\2

hEBX[)dvTB(Z). Let ||A||(q) be the operator 

norm of A G jSf(J°0 ) with respect to || 
By (2.149), (2.159) and (2.160), we get: there exist C > 0, N G N such that for 

t G ]0,to],u > u0, 

(2.167) l l a l l í , ) 4Ct(l+q)Ne-^u, 

\\Jr.u.t\\(4} ^Ct(l+q)Nei™. 

Let <j> : IR 2 n n ° —> [0, 1] be a smooth function with compact support, equal 1 near 0, 
such that fT B 4>{Z)(Ivtxob(Z) — 1-

Take c G ]0, 1]. 
By the proof of Theorem 2.17, Fru verifies the similar inequality as in (2.157). 

Thus by (2.157), there exists C > 0 such that if \Z'\ ^ q. U, Uf E E 5 ) 3 ; ( ) J 

(2.168) 
(Fr,u,t{Z -W,Z' -W')U, Uf) 

Itxobxt,i:ob 
(Fr,u,t{Z -W,Z' -W')U, Uf) 

1 
ç4n — 2no 

-ф{\У/с)ф(\¥'/ç)dvT B(W)dvTxnB(W') ^ Cç(l+q)Ne-^u\U\\U'\. 

On the other hand, by (2.167), 

(2.169) Txo BxTxo B <^r,«,t(^ - W, Z' - И/")£Д u') 
1 

ç4n —2rio 

O (^)^ГГОВO (И7') 

^ 0 В ( ^ ) ^ Г Г О В ( И 7 ' ) SC Ct 
1 

с2л — ио (l + ^ e - ^ I C / l l C / ' l . 

By taking ç = ¿i/(2n-n0 + i)^ we get (2.166). 

In the same way, we get (2.166) for Jr.u.t-

Theorem 2.21. — There exists C" > 0 such that for any k,m,m!,m" E N, there 
exist N G N, C > 0 sucft, t/iat i / t G }0.to},u ^ u 0 ? Z, Z' G T^f7, a, a G Z 2 n ~ n ° , 
|a| + |a71 ^ m, 

(2.170) 

( i + Iz^i + i z ^ i ) ^ 
0|a| + |<*'| 

eZaeZ'a 
Fu (Lt1) 

к 

r = 0 

F fr (Z,Z') 
\<<?™'{Xa) 

^ Ctk+l(l + + | Z ' ° | ) 2 ( n + f c + m ' + 2 ) + m e x p 
1 

" 8 
vu — Vc^\z - z'\) 

( l + |Z^ | + | Z ^ | ) m " 
0|a| + |<*'| 

I dZadZ'a' 
Fu (Lt2) 

к 

r=0 
Jr,utR)(Z:ZF) T 

^ Ctk+1 (1 + \Z°\ + | Z/0|)2(n + fc+m'+2)+m ^ ( 
1 
2 vu -

2C" 
и 

Z - Z'\2 
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Proof. ~ By (2.159) and (2.166), 

(2.171) 
1 
R 

dr 

atr Fu{^2)\t=o — Fr^u, 
1 dr 

r\ dtr e - (¿=0 — Jr,u-

Now by Theorem 2.17 and (2.159), Jr.u, Fr^u have the same estimates as J^E N J ^ 2 , 
^F u(JSf 2*) in (2.132), (2.157). 

Again from (2.132), (2.157), (2.159), (2.166), and the Taylor expansion 

(2.172) G{t)-
k 

r = 0 

l drG 
r\ dt1 

[0)f = 
1 
fc! 

rt 

Jo 
(t-t0)

k 

ek+1 G 

dtk+l (t0)dto, 

we get (2.170). 

2.8. Evaluation of JrjU 

For u > 0, wre will write uAj for the rescaled simplex { (u i , . . ., uj)\ 0 ^ u\ ^ u2 ^ 
• • • ̂  Uj ^ u). 

Let e~u^(Z, Z') be the smooth kernel of e - ^ 2 with respect to dvTXQB{Zf). 
Recall that the O r 's have been defined in (2.101). 

Theorem 2.22. — For r ^ 0, we have 

(2.173) Jr,u = 

Ei=1 ri=r 
Г.;>1 

I-iy 
fuA3 

e-(u-uj )^ 2° Q e-(uj-uj-г )Ĵ 2

(: 

• • - Orie~UlJ*2dui -"duJ: 

where the product in the integrand is the convolution product. Moreover, 

(2.174) J r , u (Z, Z') = (-iyjr,u{-z,-zf). 

Proof. — We introduce an even extra-variable a such that a r + 1 = 0. 
Set [ ]M the coefficient of a r, = + Y?j=i °3(j3 • 
From (2.159), (2.171), we know 

(2.175) JriU(Z, Z') = 1 <9R 

r\ dtr e-u*t(Z, Z') 
e=0 

= [e-u^p(Z,Zf). 

Now from (2.175) and the Volterra expansion of e~uSâer (cf. [1, §2.4]), we get 
(2.173). 

We prove (2.174) by iteration. 
By (1.18), for xo eXG, L\,U2 e TX0B, R^(UUU2) = RL(U^U?). From (2.6), 

(2.101), we get 

(2.176) 

°̂ 2 ~ 
2n — no 

.7 = 1 
( V E , ) 2 ^ 2 [((PtHu3PT"U)2 + 4PTHUJPTYJPT"U)X0K.K) 

+ 27T\/r^ÏV pTHUjpTHUn — 2u)d,x0 — TXO. 
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Here the matrix ( ( P T ^ J P T ^ ) 2 + 4 P T ^ J P T Y JPTHU)XO need not commute with 
pTHuJpT

Hu T h u g (6.37), (6.38)] does not apply directly here, and we could not 
get a precise formula for e~u^ as in [17, (4.106)]. 

By the uniqueness of the solution of heat equations and (2.176), we know 

(2.177) e~u^(Z, Z')=e-U*?(-Z,-Z'). 

By (2.173), 

(2.178) JoAZ, Z') = e-uJ*?(Z, Z'). 

Thus we get (2.174) for r = 0. 
If (2.174) holds for r ^ fc, then by (2.173), (2.178), 

(2.179) Jk+l,u — 
k • ! 

j=1 

1 

Jo 
e- (u-u1)Lt2 OjJk+i-j,Uldui. 

By the iteration, Theorem 2.11 and (2.178), and note that VGi in Oj will change 
the parity of the polynomials we obtained, we get (2.174) for r = k + 1. • 

2.9. Proof of Theorem 0.2 

By (2.156) and (2.170), for any u > 0 fixed, there exists Cu > 0 such that for 
£ = Z,Z' G r i 0 S , x 0 G X G , a, a' e Z 2 n " n » , |a| + |a7| ^ m, we have 

(2.180) 
( i + | z x | + | z ^ | ) m / / 

e|a|+|a'| 

dZ*dZ,cy (Po.t ~ 
k 

r=0 

]tr(Jr,u-Fr,u))(Z, Z') 
W'(XG) 

^ Cut
k+1{l + \Z°\ + | Z / 0 | ) 2 ( n + f c + m / + 2 ) + m e x p ( - v / C 7 V | Z - Z ' | ) . 

Set 

(2.181) PO") — / _ rr 

Then P ^ does not depend on u > 0 by (2.180), as Po,t does not depend on u. 
Moreover, by taking the limit of (2.157) as t —> 0, 

(2.182) ( i + | ^ | + | ^ | ) m > r , w ( z , z ' ) | ^ ( X o ) 

< C( l + |Z° | + | Z ' ° | ) 2 n + 2 r + 2 m ' + 2 e x p 
1 

z//i — 
8 

/C^V|Z - Z ' | Y 

Thus 

(2.183) J r > u (Z, Z') = P^(Z, Z ' ) + F r , u (Z , Z ' ) - p ^ ( z , Z ' ) + ©(e"*™) , 

uniformly on any compact set of TXQB x TXi)B. 
Especially, from (2.174), (2.183), we get 

(2.184) p{r\z, z') = ( - i ) r p ( r > ( - z , - z ' ) . 
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By (2.100), for Z, Z' G TX0B, 

(2.185) PX0,p{Z,Z')=pn-VK-l(Z)PQ,t(Z/t,Z'/t)K-*(Z'). 
We note in passing that, as a consequence of (2.180) and (2.185), we obtain the 

following estimate. 

Theorem 2.23. — For any k,m, m',m" G N, there exists C > 0 such that for Z, Z' G 
TX0B7 \Z\.\Z'\ ^e7 xoGXo, 

(2.186) sup 
|CK| + |a'|̂ m 

(l + y/piz^ + y/piz'^r" 
Q\a\ + \a'\ 

dZ^dZfCX' 

(P-n^pX[UP{z,zf)-
k 

r=0 
PÍr)(y/pZ, y/pZ')K-* (Z')p-r/2) 

"üf'"'(XG) 

< c 7 p - ( f c + 1 - m ) / 2 ( l + VP\Z°\ + v ^ l ^ , 0 l ) 2 ( n + f c + m + 2 ) + m e x P ( - y/C^y/ptf - ^ D -

From (2.83), (2.84), (2.108) and (2.186), we get Theorem 0.2 without knowing the 
properties (0.12), (0.13) for ? W . 

To prove the uniformity part of Theorem 0.2, we notice that in the proof of Theo
rem 2.17, we only use the derivatives of the coefficients of «̂ F2* with order < 2n -j- m + 
m! + r + 2. Thus the constants in Theorems 2.17 and 2.20, (resp. Theorem 2.21) are 
uniformly bounded, if with respect to a fixed metric g^*, the < ^ 2 n + m + m ( r e S p . 
^2n+m+m'+fc+5)_ norms on X of the data (gTX, / i L , V L , V ^ , J) are bounded 
(as by (2.109), the coefficients of J&FRF a r e functions of gTX (resp. V L , V ^ ) and their 
derivatives with order ^ 2 (resp. 1)), and gTX is bounded below. 

Moreover, taking derivatives with respect to the parameters we obtain a similar 
equation as (2.154), where XQ G XQ plays now a role of a parameter. Thus the ciorn 

norm in (2.186) can also include the parameters if the ^ m - norms (with respect to 
the parameter XQ G XG) of the derivatives of above data with order ^ 2n + k + m + 5 
are bounded. 

Thus we can take Ckj in (0.10) independent of gTX under our condition. 
This achieves the proof of Theorem 0.2 except (0.12) and (0.13) which will be 

proved in Theorem 3.2 under the condition in Theorem 0.2. 
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CHAPTER 3 

EVALUATION OF P(r) 

In this Chapter, inspired by the method in [28, §1.4, 1.5], we develop a direct and 
effective method to compute P^'K In particular, we get (0.12) and (0.13) under the 
condition in Theorem 0.2. 

This section is organized as follows. In Section 3.1, we study the spectrum of 
the limiting operator J ^ 2 ° I n Section 3.2, we get a direct method to evaluate P^ 
in (0.12), especially, we prove (0.12) and (0.13). In Section 3.3, we compute explicitly 
Oi in (2.102), and get a general formula for P^ by using the operators 0 i , 02. 
In Section 3.4, we compute explicitly an interesting example: the line bundle 0(2) on 
(CP 1 . 2 UJFS)- We verify that Theorem 0.2 coincides with our computation here if 0 
is a regular value of the moment map but it does not hold if 0 is a singular value. 

We use the notations in Section 2.6. and we suppose that (3.2) is verified. 

3.1. Spectrum of L2D 

Recall that THP is the orthogonal complement of TY in (TP, gTP). Note that 
by (2.6) and (2.17). we have the following orthogonal splitting of vector bundles on 
P = / i " 1 (0 ) , 

(3.1) TP = THP © TY, TX = THP © TY © 3TY. 

In the rest of this Chapter, we suppose that on P 

(3.2) j 2 T y = Ty 

(2.8) and (3.2) imply that - JJ preserves TY and STY. Especially if J = J on P, 
then (3.2) holds. 

By (2.8) , (2.17) and (3.1) , the condition (3.2) implies 

(3.3) J TY = J TY, J THP = THP = J THP. 
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Thus (JTY)B\XG is the orthogonal complement of TXQ in T P , and J induces nat
urally Je £ End(TXc). We will identify (3TY)B\XG to the normal bundle of XG 
in B. 

For U,V e TXOB, x0 G XG, by (3.2), we have 

(3.4) u{UH,VH) =uG(P
TXGU, PTXGV). 

From the above discussion, for xo £ XG, we can choose { ^ } ™ = 1

n ° , { e ^ L } ^ 1 or

thonormal basis of TXI'0^XG, {JTY)B,X0 C such that 

(3.5) 'TR0 A g 

V-1 
2TT diag(ai, . . . , a n _ n o ) G End(TJ 1 , 0 ) X G ) , 

J2\(JTY)B — 
-1 
4^2 rdiag(a^ 2 , .. ., < ; 2 ) G E n d ( ( j r y ) B , * 0 ) , 

with a3,a\ > 0, and let {w0^}^0, {e±j}^i b e their dual basis, then 

po - 1 

72 
(wo + w-o) 
j j 

and po = 
2j 

V-1 

V2 
(wo + w-o) 
j j 

j = 1, . . . , n — rio , form an orthonormal basis of TXQXG-
From now on, we use the coordinate in Section 2.6 induced by the above basis. 
Denote by Z° = ( Z ° , . . . . Z ° n _ 2 n „ ) > Z1- = ( Z j S . . . , Z ^ ) , then Z = (Z° , Z ^ ) . 
In what follows we will use the complex coordinates z° = (z®, . . . , z®-ni)), thus 

Z° = Z° + and = V2-£o, ^ - J O , and 

(3.6) e2i-i - dzo -T- ^ O , e 2 i — v H ^ O d-o)-

We will also identify z° to JT ^0^fry and Z° to zi~^ when we consider Z° and z° 
as vector fields. Remark that 

(3.7) JL.2 = J ^ 2

 = I 
a^1 «9«° 2 ' so that \z°\2 = \z°\2 = i | Z ° | 2 . 

It is very useful to rewrite Jzf® by using the creation and annihilation operators. 
Set 

(3.8) 

uu !'>/.&;; o.aizi 
b+ - 2-2- 4- -a z° b= (h,..., bn-no) ; 

uu !'>/.&;; o.aizj uu !'>/.&;; o.aiz b= (h,..., bn-no) ;aiz 

Then for any polynomial g(Z°, Z±) on Z° and Z^, 

(3.9) 

[bi,bf] = bib; -1>-1>, = •_'</.-\,. 
[0,6,] = 2^, 
[bi,bf] = bib; -1>-1>, = •_'</.-\,. 
uu !'>/.&;; = 2^,[0,6,] 

uu !'>/.&;; . o. 
[0,6,] = 2^, 
uu !'>/.&;; o.= 2 
uu !'>/.&;; o.= 2 
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Set 

(3.10) L= 
n — no 

j=1 
bjbf. 

LT = n() 

j=1 
bLjbLj+ Vo,. = v . + ^ ^ , f ( 7 e , - ) . 

From (0.1), (1.18) and (3.4), for U, V € TX{IB, we get 

(3.11) Rx? (U, V) = -27rv/-f (3PTXGU. PTXCV) . 

By (2.50), (3.5), (3.8), (3.10) and (3.11), we have 

(3.12) 

6i = - 2 V « , 6 t = 2 V _a_, V 0 i e x = V e x , 

Txo = Eaj + Eaj 
j j 

From (2.101), (3.10) and (3.12), we get 

(3.13) 
L0 = 
2 

2n — 2n0 

¿ = 1 
V 0 , c o ) 2 

n 0 

j=1 
({Vef)

2-\afzf\2) ~ 2üjd,X0 - rX0 

= L + L| - 2wd,xo. 

By [42, §8.6], [28, Theorem 1.15] (cf. [31, Theorems 4.1.20, E. l . l ] ) , we know 

Theorem 3.1. — The spectrum of the restriction of 5£ on L 2 ( M 2 n _ 2 n n ) is given by 

(3.14) Spec (jz^| L2 ( R2„-2„ 0 )) = 
n — 7l[] 

2=1 
ocïai : a 0 = ( f t î , . . , a 0

n _ n o ) € N - » » } , 

and an orthogonal basis of the eigenspace o/ 2 X ^ L i " 0 a ? a i ^ given by 

(3.15) 6 a ° ( (2 0 ) ö exp 
( - ï £ < * 0 ' ! ) ) 

with ß G N " - n o . 

The spectrum of the restriction of J?1- on L2(Kn") is given by 

(3.16) Spec ( ^ ± | L 2 ( K n ( ) ) ) = 
n0 

i=l 
at at- : « + = (a+, . . . , < ) G N"» 

and £fte eigenspace of 2 ^ ^ af- is one dimensional and an orthonormal basis is 
given by 

(3.17) 
n0 

¿=1 «t 
[2atrUatl)) 

-1/2 
(b±)a± exp 

(-ï£<*0'!)) 
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Especially, the orthonormal basis of Ker(jS?|z /

2(R 2 r i- 2 no)); Ker(^- L | J L
2 (R n o)) are 

(3.18) 

a n — no 1 
( or -j-R Oi\2 
\21/31/?! i l 2tt/ 

'(z<Y exp 
n —n0 

- £ 
.7=1 

aj|zj|2 ß e N n _ n ° ; 

G X ( Z X ) = 
n0 

¿=1 

aiL 

7T 

1 
l' exp 

1 
~ 2 

n0 

¿=1 

aj|zj|2 

Let Psf Z '° ) , P^x ( Z U Z ' - 1 ) , P(Z, Z ' ) be the kernels of the orthogonal projec
tions Pjf, P ^ , P from L 2 ( M 2 " - 2 r i « » ) , L 2 ( R n ° ) , L 2 ( R 2 " - " ° ) onto Ker(^f), K e r ^ - 1 - ) , 
Ker(Jzf + Jzf x) respectively. 

From (3.18), we get 

(3.19) 

P H z ° , z ' ° ) 
n — no 

( I I £ ) 
¿=1 

exp 
n-n0 

4 ^ 
2=1 

a,( |z° | 2 + | z f | 2 - 2 z ^ 0 ) ) , 

P^(Z±,Z'±) = 
no I T 

( n ^ ) 

2=1 

exp 
2 = 1 

; i z ^ | 2 + | z ^ | 2 ) ) , 

P ( Z , Z ' ) ^ P j ^ ^ Z ' ^ P - ^ Z U Z ' ^ ) . 

Let PN be the orthogonal projection from L 2 (M 2 ™- n ° . (A(T*^°^X) ® £ ) X o ) onto 
N = Ker(j2?2°). Let PN(Z, Z') be the associated kernel. 

Recall that the projection Ic®EB from (A(T*(° ' 1 )X) 0 P ) B onto C <g> P ß is defined 
in Introduction. 

By (2.8), (2.10), (2.50) and (3.5), 

(3.20) -Ud,xa > "0 on A>°(T*^X), 

thus 

(3.21) PN(Z, Z') = P(Z, Z')Iczeb. 

If J = J on P, then by (3.19) and (3.21), 

(3.22) 
PN{Z, Z') = exp 

' 7T 
, ~ 2 

n — no 

2=1 
(k? | 2 + | ^ | 2 - 2 z W ) 

x 2 2° exp ( - 7 r ( | Z Y + | Z ^ | 2 ) ) w B , 

P 7 V ( (0 , Z - 1 ) , (0, Z x ) ) = 2 ^ exp ( - 2 7 r | Z ± | 2 ) w B . 

3.2. Evaluation of P ( r ) : a proof of (0.12) and (0.13) 

Recall that 5 is the counterclockwise oriented circle in C of center 0 and radius v/A. 
By (2.120), 

(3.23) Po,t = 
1 

2ni 
/ ( A - ^ y l d \ . 
Is 

ASTÉRISQUE 318 



3.2. EVALUATION OF P < R ) : A PROOF OF (0.12) AND (0.13) 61 

Let f(X,t) be a formal power series with values in End(L 2 (R 2 n - " ° , (A(T*(°^)X) <g> 

E)b,X0)) 

(3.24) /(A,*) = 
oo 

r=0 

«r/r(A), / r ( A ) e End(L 2 (M 2 " -"° , (A(T*(° ' 1 )X)® £ ) B , * 0 ) ) . 

By (2.102), consider the equation of formal power series for A E <5, 

(3.25) ( A - ^ 2 ° -
OC' 

7-1 

trOr)f(X,t) = Id (R2"-"°,(A(T*(°'1)X)® £)B,*0)). 

Let TV1- be the orthogonal space of TV in L 2 ( R 2 n " n ° , (A(T^°^X) 0 E)BiXo), and 

PN± be the orthogonal projection from L2(R2n~n», (A(T*(°^X) ® E)B,Xo) onto N±-
We decompose/(A, £) according to the splitting L 2 ( M 2 n - n o , ( A ( r * ( ° ' 1 ) X ) ® E)BiXQ) = 

TV0TV x , 

(3.26) gr(X) = PNfr(\), / r

x(A) = PN± Mo

using Theorem 3.1, (3.13), (3.20), (3.26) and identifying the powers of t in (3.25), 
we find that 

(3.27) 

90(A) = 
1 
x 

pN f0

±(\) = ( \ - ^ 2 ° r 1 p N \ 

/^(A) = (A - ^ 2

0 ) - 1 ] T P l V Ojfr-j(X). 

grA) = 1 
x 

r 

j=1 
/ - v O , / r _ , y ( A ) 

Recall that P< r) (r E N) is defined in (2.181) and (2.186). 

Theorem 3.2. — There exist JR(Z,ZF) polynomials in Z^Z' with the same parity as 
r7 and deg JR{Z, Z') ^ 3r, whose coefficients are polynomials in R T B , RCH^B

 Y R E D , 

r x , Tr[i? T ( 1 AY)X], RE {resp. A, /uE, / i C l i f f ; resp. h, R L , RLb; resp. //) and their 
derivatives at XQ up to order r — 2 (resp. r — 1; resp. r; resp. r + 1), and in the 
inverses of the linear combination of the eigenvalues of J at XQ , such that 

(3.28) P ( r ) ( Z , ZR) = J r (Z, Z')P(Z, ZF). 

Moreover, 

(3.29) P(°>(Z, Z') = PN(Z, Z')=P(Z, Z')IC®EB. 

Proof — By (3.23), for a > 0, by combining Theorems 2.13-2.16 and the argument 
as in [28, §1.3], we get another proof of the existence of the asymptotic expansion of 
P0,t(Z, Zf) for |Z|, |Z' | <C a when t 0. 
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By (2.83). (2.84) and (2.185), this gives another proof of Theorems 0.2, 2.23 
for |Z|, \Z'\ ^ a/y/p. Moreover, by (2.149), (2.159) and (3.26), 

(3.30) p(r) = 
1 

27T2 / 9rWdX 
Is 

1 
27T2 / /r

x(A)dA. 
'5 

From (3.27), (3.30), we get (3.29). 
Generally, from Theorems 2.11, 3.1, (3.9), (3.27), (3.30) and the residue formula, 

we conclude Theorem 3.2. • 

Proof of (0.12) and (0.13). — As J = J on /i - 1(°)> the condition (3.2) is verified. 
From Theorem 3.2, (3.22), we get (0.12) and (0.13). • 

From Theorem 3.1, (3.27), (3.30), and the residue formula, we can get P^ by 
using the operators (J^ 0)" 1. PN,PN±,Ok (k ^ r). 

This gives us a direct method to compute p( r) in view of Theorem 3.1. In partic
ular, 

(3.31) pd) = - P^0IPN±(^)-1PN± - PN±(^r1pN±o1PN, 

and 
(3.32) 

p(2) = 

1 
2ttz Is 

'(X - ^2

0rlPN±(O1f1 + 02/o)(A) + ^P"(0i / i + O2fo)(\)]d\ 
1 

~27TZ [s (A - ^ 2 ) ' l P N ± [Oi ((A - y 2 ° ) - 1 P j V l 0 i + \ p N ( D l ) + ° 2 

+ \PN 

X Oy ((A - ^rLPN^Ol + \PN0^ + 02] } (A -^ 2 ° ) - 1 dA 

={^)-1PN±Ol{^)~1PN^01PN - PN±(Jif°y201PN01PN 

+ ( ^ ) r 1 p N ± o 1 p N o 1 ( ^ r 1 p N ± - (^r1pN±o2pN 

+ PNOl (jS?2°)-1 PN~Ox(^2°)-1PN" - PNOl(J^2°)-'2PN±01 PN 

- PNO1PNO1(^)-'2PN± - PNO2(Jz?°)-1PN±. 

In the next Section we will prove PN0\PN = 0, thus the second and seventh terms 
in (3.32) are zero. 

3.3. A formula for Ox 

We will use the notation in Chapter 1. All tensors in this Section will be evaluated 
at the base point XQ <G XQ-

For ip a tensor on X, we denote by \7xip its covariant derivative induced by V T X . 
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If vj\ is a G-equivariant tensor, then we can consider it as a tensor on B = U/G 
with the covariant derivative VB^i , we will denote by 

(VBVBtfi)(c.e,,ciefc) := C j 4 ( V B Vffc^)xo, 

etc. 
We denote by {ea} an orthonormal basis of (TX,gTX). 
To simplify the notation, we often denote by U the lift UH £ THX of U € TB. 
Recall that ft G TY is defined by (1.14) and the moment map \i (2.16), and that A 

is the second fundamental form of XQ defined by (0.10). 

Lemma 3.3. — The following identities hold, 

(3.33) 

((v£o JU)xo = -JRL, 

VTJ'WTeXß = -PTy(Vf„ J)ef - P^JV^efZjZi 

= -PTY ((v£o J)(n° + 27ex) + (V^x J ) 7 ^ ) 

- Jv4(^°)^° - ^ T ( ^ ° , J ^ ° ) t T ^ 1 , J7^ ) . 

Proof. — Recall that pTY pTHx are the orthogonal projections from TX onto 
TY, THX defined in Section 1.1. Note that on P, by (3.3), 

(3.34) j (jGeo}H e€ r y (jGeo}H e Jeo.H = (jGeo}H e 

By (1.14) and (2.17), for K e g, 

(3.35) (V^PTYW. Y) = ef (lY, Y) -= (PTr W, VTjY) + (PTr W, VTjY) 

From (1.4), (1.5), (1.6) and (3.35), 

(3.36) 
(V^PTYW. Y) = Pef J(lY, Y) - 1/2(PTr W =, PTYVTjJHY) - T(eiH,u) 

From (3.36) and the fact that \i = 0 on P, one gets the first equation in (3.33). 
Now for W (resp. Y ) a smooth section of TX (resp. T Y ) , by (1.8), 

(3.37) (V^PTYW. Y) = e f (lY, Y ) - (PTr W, VTjY) 

= ( V j / 1 Y , Y ) + 
l 
2 

( T ( e f , P T H x W ) , y > . 

By (3.37), 

(3.38) VTYpTYw = pTYvTXw . ±r(eï,PT"xW). 

By (3.36) and (3.38), 

(3.39) VTJ'WTeXß = - P T y ( V f „ J)ef - P ^ J V ^ e f 

- i r ( e f , projet) - \<yïXa$)ï ~ lù^VqfV, 
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By (1.3) and (1.7), for UUU2 sections of TB on B, 

(3.40) 
(V^e^U = (VU^)X() = A1/2T(UHC,?UH1)., 

By the definition of our basis {e^, e j - } in Section 2.6, 

(3.41) 
(V^e^U = (VU^)X()  

( V ^ e ^ U = ( V U ^ ) X ( ) = A( C ?) e +, ( V Ç V ) X 0 = 0. 

Thus by (1.6), (3.2), (3.36), (3.39), (3.40), (3.41) and the facts that A exchanges NG 

and TXq on Xq, and that j2 = 0 on P, we get 

(3.42) 

( v T y v T y Â ï ) ( K , K ) = - p T y ( v £ j ) ^ - JA(n°)K° - \t{tz, jk°) + T(n,m^). 

We use the closeness of lo to complete the proof of (3.33). 
From (0.2). for U, V, W € TX, 

(3.43) ((V$J)V,W) = (V$u){V,W), 

thus 

(3.44) ((V#3)V, W) + ( (V£j )VK, U) + ({V^J)U, V) = du(U, V, W) = 0. 

By (1.3), (1.7), (3.34) and (3.44) for F a smooth section of TV, at x0, 

( J V U S W ) = -(Vlxe^3ei) = -<T(e° , J e ^) ,F> 

and 

(3.45) 

<T (e ,UJe° ) ,F) = - 2 < V ™ ( J e ° ) , ^ > 

= - 2 ( ( V ^ J ) e J

0 , e ^ + 2 ( P (e ° ,Je , ± ) . F ) 

= 2<(Vf„3)ei, Y) - 2<(V* J)e°, F ) + 2<T( e°, Je^), F ) . 

From (3.42), (3.45), we get the second equation of (3.33). 

The following formula extends [29, Theorem 2.2] to the group action case. 

Theorem 3.4. — The following identity holds, 

(3.46) Ox =-
2 
3 

( ô J P
L c ) X u ( 7 e , e î ) Z J V 0 , e l - UdlR

LB)X()(TZ,el) 

- 2 (A(e°)e°, 7 ^ ) V 0 , e ? V 0 , e « . - TTX/^T <(V£ J)e a , eb) c{ea) c(eb) 

+ 4TT2 <(VfoJ)(7e 0 +21l±) + ( V ^ ^ J ) ^ X - T ( ^ X . J ^ - L ) , J ^ ) 

+ 47T2(Jyl(^0)7e0 + l r ( ^ ° , Jft°), J7Z±) 

+ 47T2(Jyl(^0)7e0 + UE^°, Jft°), J7Z±) 
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Proof. — For i/> e (T*X 0 End(A(T<°^X)))B ~ (T*X 0 (C(TX) ^ M C ) ) B , where 
C(TX) is the Clifford algebra bundle of TX, we denote by VXY the covariant deriva
tive of -0 induced by V T X . 

From [V^JLFF, c(ea)] = c(Vj^ea) (cf. also [31, Prop. 1.3.1]), we observe that for 
W G TB, 

(3.47) Vw№(ea)c(ea)) = ( V ^ ) ( e a ) c ( e a ) + ^ ( V ^ e a ) c ( e a ) + ^ ( e a ) c ( V ^ e a ) 

= ( V & ^ ) ( E A ) C ( E A ) . 

Thus by (2.50) and (3.47), for fc ^ 2, 

(3.48) - (2wd + r)(*Z) = - ( P L ( e a , e b ) c(e a ) c(e b)) (tZ) 

_ 1 
~~ 2 

+1 

r = 0 

<9r 

etr 
\RL{eaieb)c{ea)c{eh)){tZ)] 

¿=0 R 

tr 
+ Q (tk+1) 

= I ( i # 0 + t(V*RL)X0) (e a , Е Ь ) C(E A ) c(e 6) + ^ ( t 2 ) . 

By Lemma 3.3 and (2.110), we have 

(3.49) -t2(jiE\jlE»)(tZ) = 4тг2 

3 

fe=2 

1 <9fe 

k!qtk ( l M l ^ v ( * Z ) ) | t = o * f c - 2 

+ 4тг\/=Тг (Jlcm + JLe,зп^-) +0{t2). 

The following two formulas are clear, 

(3.50) 

1 a 2 

2 dt 2 
№\2gry(tZ) 

I t=o 

1 
2 

(vVV|^-(^)(RRR)| z=0 =|VTY U|2 

î д3 

3! ìfifgTY (tZ) 
t = 0 

1 
6 ( v V V | ^ - ( ^ ) ( R R R ) | z = 0 

< ( ^ У ^ ) ( 7 д а У Ц Д ) . |VTY U|2 

From Lemma 3.3, (3.49) and (3.50), we see that the contribution from —t2{fjiEp,fjLEl>){tZ) 
forms the last three terms of (3.46). 

By (2.103), (2.105) and (3.10), we have 

(3.51) V M i - V 0,e, + Ud3RL*)X()Z3(n, a) - U-VEIK){tZ) + &(t2). 
О Z К, 

By QaiZ) = 6HZ)9kAZ) and (2.94W2.96), we know 

(3.52) 
9ij{Z) = « Sij - 2 (A(e°)e% K^) + ^ ( | Z | 2 ) for 1 < г, j ^ 2(n - n 0 ) : 

&7- + Û(\Z\2) otherwise: 

K(Z) = d e t ( ^ ( Z ) ) 1 / 2 = i _ ( А ( е о ) е о ? ? г ± ) + ^ ( | Z | 2 ) > 

From (3.41), (3.51) and (3.52), the first three terms of the right hand side of (3.46) 
is the coefficient t1 of the Taylor expansion of —gZJ(tZ)(\/t,el^/t,eJ - t V ^ v T B

e j ( t z ) ) -
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By (2.109), (3.43), (3.48) and the above argument, the proof of Theorem 3.4 is 
complete. • 

Theorem 3.5. — We have the relation 

(3.53) pN0ipN = Q 

Proof. By (3.8) and (3.19), 

(3.54) 
b+PN =b^+PN = 0 , (b±PN)(Z, Z') = 2a^Z7

±PN(Z, Z'), 

(biPN)(Z, Z') = ai(zoi- -zf)PN{Z, Zf). 

We learn from (3.54) that for any polynomial g{Zx) in Z x , we can write 
g(ZJL)PN(Z, Z') as sums of g0± (b±y3±PN(Z, Z') with constants g0±. By Theorem 
3.1, 

(3.55) P^(bxr±g(Z±)PN = 0 , for (a-11 > 0. 

Let {wa} be an orthonormal basis of (T^ '^X, gTX). 
Note that if f, a are two C-linear forms, then 

f{ea)g{ea) = f(wa)g(wa) + f{wa)g(wa). 

Thus by Theorem 3.1, (2.9), (3.21) and (3.54). 

(3.56) PN ((V%J)ea,eb) c(ea)c(eb)P
N = -2PN <(V*3)wa, Wa) PN 

= -2PN ((V£0J)wa,wa) PN = V^lPNTv\TX[J(Vx

0J)]PN. 

By (3.8), (3.12), (3.21), (3.46), (3.54) (3.56), we get 

(3.57) PN 0\PN = PN •2 
.3 

(deoRLB)Xn{K,e<l) 
ezoi 

1 
3 

(deoRLB)Xn{K,e<l) 

1 
+ 3 dizRLB)X0 

{n,ef)bf 
1 

" 3 
(deoRLB)Xn{R,e<l) 

+ 7rTr|TA-[J(V^oJ)] +8TT2 ((V£oJ)^U J7^> JPN. 

By (3.9), (3.54) and (3.55), 

(3.58) PNZfZ^PN = 
1 

2«^ 
•PNZHiPN 1 

1< 
83kP

N. 

For vb a tensor on XQ, let VXgvj be the covariant derivative of vb induced by the 
Levi-Civita connection VTXG . 

For U,V,W G TX0XGL by (3.2), (3.3) and (3.11), we have 

(3.59) (duRL*)X0(V,W) = - 2 ^ V / Z T ( ( V ^ G J G ) F , W) = -2nV^Ï((VxJ)V,W) . 

From (2.8), (3.2), (3.5), we know that 

(3.60) JeL 
j 

aj JeL 
2TT j 
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By Theorem 3.1, (1.18), (2.8), (3.9), (3.44) and (3.54)-(3.60), we get 

(3.61) PNO\PN = PN 47TV

/ZÎ 
3 

' ^ ( V ^ o J ) ^ , ^ ) yXa W0>é*) 

- ( ( V ^ J ) T ^ ) + 7rTr|rx[J(V£„J)] + 27r<(V£0J)ej-, Jef) }PN 

= 7rP J V [ -4v^î((V^oJ)^ > J Ô ) 

+ Tr \TX [J(V*0 J)] - 2 < J(V£o3)ef, ef) ] PN = 0. 

The proof of Theorem 3.5 is complete. • 

From (3.32) and Theorem 3.5, we get the following general formula which will be 
used in Chapter 5, 

(3.62) 

p<2> =(^r1pN'ol(^)-lpN^o1p
N - (j?2°rlpN±o2p

N 

+ pNol{^ylpN~ol(^)-lpN± -pNo2(j?2°r1pN± 

+ (^)-1pN±o1p
No1(^

?

2r
lPN± -pNo1(j?2°r2pN±o1p

N. 

3.4. Example ( C P \ 2 c j F 5 ) 

Let ujfs be the Kahler form associated to the Fubini-Study metric # F § P on C P 1 . 
We will use the metric gTCpl = 2 g^%P on C P 1 in this Section. 

Let L be the holomorphic line bundle 0(2) on C P 1 . Recall that O(-l) is the 
tautological line bundle of C P 1 . 

We will use the homogeneous coordinate (z 0, z\) G C 2 for C P 1 ~ ( C 2 \ { 0 } ) / C * . 
Denote by U = {[z 0 , zi] G C P 1 ; ^ / 0}, (i = 0, 1), the open subsets of C P 1 , and 

the two coordinate charts are defined by fa : Ul ~ C, fa([zo, zi]) — j ^ i. 
For any io, ii G N, ZQ° z[l is naturally identified to a holomorphic section of 

0( — io — i\Y O N C P 1 . For any k G N, we have 

(3.63) H0(CP\O(k)) = C{sk,i0 := ^ z j 1 , io + ii = fc, and i 0,H G N}. 

On C/i, the trivialization of the line bundle L is defined by L 3 s —> 5/2?, here z 2 

is considered as a holomorphic section of 0(2). 
In the following, we will work on C by using fa : Uo C Then for z G C, 

(3.64) ^FS(2) = 
V-1 

2TT 
aaiogrri + b i 2 ) - 1 ) 

v7—T dz A dz 
2^ (l + | z | 2 ) 2 ' 

Let hL be the smooth Hermitian metric on L on C P 1 defined by for z G C, 

(3.65) l ^ o | ^ W = (i + N 2 r 2 . 

Let V L be the holomorphic Hermitian connection of (L, hL) with its curvature RL. 
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By (3.64) and (3.65), under our trivialization on C 

(3.66) v L = 9 + a + aiog(|S 2,OL^), 

V-1 
2TT 

RL V-1 
2TT 

a aiog(|S2,OL^)| = 2WFS =: W. 

Let if be the canonical basis of Lie S1 = M, i.e., for tGM, exp(£if ) = e2TTV-1t G 5*1 
We define an S -̂action on CP 1 by g • [ZQ,Z\] = [zo.gzi] for g £ S1. 
On our local coordinate Uo, g • z = gz, and the vector field i f C P on CP 1 induced 

by K is 

(3.67) Kcpl (z) := §-t exp(-tK) • z\t=0 = ~2n^ ^ dz ^ dz 
Set 

»(K)([z0,Zl]) = 
2\z0\

2 

| z 0 |
2 + M 2 

- 1. 

Then, on C, 

(3.68) /z(/0 = 2|*| 2(l + W 2 ) - 1 - l . 
By (3.64), (3.67) and (3.68), we verify easily that ¡1 is a moment map associated 

to the ^-action on (CP 1 , ^ ) in the sense of (2.17). 
The Lie S -̂action on the sections of L defined by (2.16) induces a holomorphical 

S1-action on L. In particular, from (3.66)-(3.68), 

(3.69) ^exp(tif) • s2j\t=o ='• LK$2,3 = 2?rv / : rî(l -j)s2j-

By (3.69), the ^-invariant sub-space of P°(CP 1 . LP) and FI~L(0) are 

(3.70) H°(CP\L*>)SL = C 5 2 p , p . / i - ^ O ) = {z e C,\z\ = 1} , 

and S1 acts freely on / i _ 1 ( ° ) . thus (CP x ) s i = {pt}. 
Under our trivialization of L, 52«,7 G H°(CP1, LP) is the function z-7, and from 

(3.65), 

(3.71) ll52p,j 111,2 = • l*L2I 

k ( i + № ) 2 * 
2wFS = 

'OC' 

'0 

2^ di 
(1 + t)2p+2 

2j! (2p- j ) ! 
(2p+l)! 

Thus (2p+l)!xi/2  

- 2(p!)2 ^ 52P,p is an orthonormal basis of H°(CP1, L P ) S . 
—Lp* —Lp 

Let 9 be the formal adjoint of the Dolbeault operator d . For p ^ 1, the spinc 

Dirac operator Dv in (2.14) and its kernel are given by 
(3.72) DP = V2(ALP +ALP*) KERDN = H°(CP\LP). 

Finally, by Def. 2.3, for p ^ 1, we get 

(3.73) 
P°(z,z) = (2p+ 1)! 

2(p!)2 &2p,p 
(z) g) s2p.P(z )*, 

P°(z,z) = (2p+l)! 
2 (p!)2 |*'2p.p|ftLP (z) (2p+l)! 

2(p!)2 
M 2 p 

(1 + |2| 2)2P 
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Note that our trivialization by ,S2,o is not unitary, thus we do not see directly the 
off-diagonal decay (0.14) from (3.73). 

Here we will only verify that (3.73) is compatible with (0.13), (0.15) and (0.16). 
Recall that Stirling's formula [42, Chap. 3, (A.40)] tells us that as p —> +oc, 

(3.74) p\ = (27rp) 1 /Ve" p 1 + Û 
'1^ 

By (3.74), 

(3.75) (2p+l)! 
2(p!)2 

VP 
VTTe 

2 2 p ( l + 
1 
2p 

2p 
'l + û (i) 

P 

VP22p 
TT 

(1 + Q(1)). 
P 

Now, C* is an open neighborhood of (j, 1(0) and B = C* / S1 ~ R + by mapping 
z £ C* to r = \z\ € M+. 

By (3.64), the metrics on = r} = { r e 2 ^ ^ 7 1 0 ; ^ e M/Z}, Z? ~ E + induced by 
= 2 tops is 

(3.76) 87rr2 (1 + r 2 ) " 2 d0®d0, GTB = £ ^ + R 2 ) - 2 D R ( G ) D R _ 
7T 

From (3.76). the fiberwise volume function h2(r) in (0.10) on R + is 

(3.77) /i 2(r) = V8^r(l + r 2 ) - 1 . 

From (3.73), (3.75) and (3.77), we get for |z| = r. 
(3.78) 

h2(r)Pp

G(2,z) = v ^ -
(2p+l)! 
2 (p!)2 

r 
K 1 + r2 / 

2p+l V2P 2r 
a + r2. 

2p+l 
1 + 6 

\pJ 
When \z\ = 1, from (3.78), we re-find (0.15) and (0.16). 
From (3.76), \J~2i\^ is an orthonormal basis of (B,gTB) at r = 1, thus the normal 

coordinate Z x has the form r - 1 = N / ^ Z - 1 + ^ ( l ^ - 1 ! 2 ) . Thus 
(3.79) (2r ( 1 + r 2 ) " 1 ) 2 p " f l = e(2p+1)1°g(1-7r(^"L)2+^(lzXl : i)) = e-27TP(z

x)2

 H  

This means that (3.78), (3.79) are compatible with (0.13) and (3.22). 
If we consider the sub-space H°(CP\LP)P of H0(£P\LP) with the weight p of 

S1-action, then by (2.16) as in (3.69), and (3.71), \JP + \ s2P.o is an orthonormal 
basis of H°(CP\Lp)p. 

Thus the smooth kernel Pp{z, zf) of the orthogonal projection from ^ ^(CP 1 , Lp) 
onto H°(CP\Lp)p is 

(3.80) 
Pp(z, zf) = (p + s2p,o(2) <8> 5 2 p,o(^)% 

P ; ( . . z ) = ( ^ + i ) ( l + |z| 2)- 2^. 

Note that p~l( — 1) = {0}, i.e., —1 is a singular value of 
Let pi be the moment map defined by fii(K) = fi(K) + 1, then H°(CP1, Lp)p 

is the corresponding ^-invariant holomorphic sections of Lp with respect to the 
corresponding 51-action. 
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Thus 0 is a singular value of /ii and this explains why we have a factor p in (3.80) 
instead of p 1/ 2 in (3.78). 
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CHAPTER 4 

APPLICATIONS 

This Chapter is organized as follows. In Section 4.1, we explain Theorem 4.1, the 
version of Theorem 0.2 when we only assume that ii is regular at 0. In Section 4.2, we 
explain how to handle the weight Bergman kernel. In Section 4.3, we deduce (0.15), 
and (0.16) from [17, Theorem 4.18']. In Section 4.4, we review the characterization 
of the Toeplitz operators established in [30], and only Lemma 4.6 is new. In Sec
tion 4.5, we explain Theorem 0.2 implies Toeplitz operator type properties on XG- In 
Section 4.6, we extend our results for non-compact manifolds and for covering spaces. 
In Section 4.7, we explain that the relation on the G-invariant Bergman kernel on X 
and the Bergman kernel on XG-

We use the notation in Introduction. 

4.1. Orbifold case 

We will use the notation for the orbifold as in [26, §1], [17, §4.2], [31, §5.4] and we 
recall briefly here. 

Let M be an orbifold, by definition, there exist a connected open covering {U} of AI 
and a ramified covering TJJ : U —* U which is Hy-equivariant and induces a homeo-
morphism U ~ U/1 HJJ , here HJJ is a finite group acting effectively on the connected 
smooth manifold U, moreover, these ramified coverings are compatible. Especially, for 
any x G AI, there exist a small neighborhood UX C AI, a finite group Hx acting linearly 
and effectively on WN and Ûx C M m an Hx-open set such that Ux ^> Ux/Hx = Ux 

and {0} = r-^x) G Ûx. 
Any additional structure on M is induced by a corresponding Hx-invariant struc

ture on Ux. In this wray, we can define an oriented, Riemannian, almost-complex or 
complex structure on AI. 

An orbifold vector bundle S over AI is an orbifold defined by an i/f-equivariant 
(here H% is a finite group) vector bundle £JJX on Ux such that Hx = H^/K^, here 
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iff = {g G H^g acts on Lr

x as Id}, and (H%,£Ux) —> £ux/H^ defines the orbifold 
structure on If iff = {e} for any x G X, then we call £ a proper orbifold 
vector bundle. Let <f̂ r be the maximal iff-invariant sub-bundle of E\jx on Ux, then 

(Gt/ x ,£^) defines a proper orbifold vector bundle on X, denote it by £pT. 
Now we go back to the hypotheses in the Introduction. In this Section, we only 

suppose that 0 G 0* is a regular value of /i, then G acts only infinitesimal freely on 
P — / i _ 1 (0) , thus XQ — P/G is a compact symplectic orbifold. 

Let G° = {g£G,g-x = x for anyx G P } , then G° is a finite normal sub-group 
of G and the group G/Go acts effectively on P. 

Let ¿7 be a G-neighborhood of P = / / - 1 (0) in X such that G acts infinitesimal 
freely on U, the closure of U. From the construction in Section 1.2, any G-equivariant 
vector bundle F on U induces an orbifold vector bundle FB on the orbifold B = U/G. 

The function h in (0.10) is only on the regular part of the orbifold P, and we 
extend continuously h to U/G from its regular part, which is C^?CX) and we denote it 
by h, then h is also on U. 

As we work on P in Sections 2.4, 2.5, we need not to modify this part. Especially, 
Theorem 0.1 still holds. 

We need to modify Section 2.6 as follows. 
Observe first that the construction in Section 1.1 works well if we only assume 

that G acts locally freely on X therein. 
We identify the normal bundle N of P in U, to the orthogonal complement of TP. 

Denote by V T u the connection on THU as in Section 1.1, and on P, let VN, V T p 

be the connections on N, THP in Section 2.5 as in (0.9), and let °VTHU = VN(&VTHP 

be the connection on THU = N 0 THP. 
For 2/0 e P, W G THU (resp. THP). we define M 3 t x t - exp^^ t lF) G /7 

(resp. exp^o"
p(tW0 G P) the curve such that xt\t=o = 2/o, |t=o = W, £ THU1 

V ' ^ r f = 0 (resp. § G T H P , V ^ p f = 0). 
<i t d, t ^ 
By proceeding as in Section 2.6, we identify BT u(y^.e) to a subset of U as fol

lowing, for Z G BTHu(y0,£), Z = Z° + Z° G P^P, G Nyi„ we identify Z 
with e x p ^ p ^ o ^ r z o Z 1 ) . 

Set G^ = G G,gy0 = Vo}, then G • BTHu{y^e) = G xGyQ BTHu(y0,s) is a 
G-neighborhood of Gyo, and (G y c n P

T u(yo,e)) is a local coordinate of B. 
As the construction in Section 2.6 is Gyo-equi variant, we extend the geometric 

objects on G xGy{) BTHu(y0,e) to G x G y f j = X0. 
Thus we get the corresponding geometric objects on G x M 2 n ~ n ° by using the 

covering G x №.2n~ni) —> G * G v o M 2 r i _ n o , especially, (where we use the ^notation 
to indicate the modification) is defined similarly on G x ] R 2 n _ n ° , and Theorem 2.5 
holds for . 
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Let ttq : G x R2n~no _> j^n-no be the natural projection and as in (1.20), (2.82), 
we define 

Q = hTTG : Coo (GX-"«,(£o,p)R*»-«o), ̂ • r » ( R 2 n - " « , ( £ o , p ) R * » - « o ) , 

then the operator Sr* 0 *" 1 is well-defined on T^£7 ~ R 2 n " n ° . 
Let g T x ° be the metric on R 2 N ~ N » induced by gTXo, and let dvTHXQ be the 

Riemannian volume form on (M2n~n°, gT A°). 
Let P Y O ? P be the orthogonal projection from L 2 ( M 2 ' l - n ° , (A(T* ( 0 ' 1 ) X) ® LP ® E)YO) 

onto Ker($£^$~ 1 ) on R 2"-"o. Let P y n , p (Z, Z') (Z,Zf G R 2 n " n ° ) be the smooth 
kernel of Pyo,p with respect to dvTHX{)(Z'). 

Let P 0

G

P be the orthogonal projection from Çl°>9(X0, LQ ® Po) on (Ker DX°)G, and 
let PQ^,(X,X /) be the smooth kernel of P$ with respect to the Riemannian volume 
form dvx() 

V / G 

Let Pp

 0 / (y.yr) (y,y' G XQ/G) be the smooth kernel associated to the operator 
on X0/G induced by ^CX^~L as PXiuP in (2.83). 

Note that our trivialization of the restriction of L on BtH v (yo, s) as in Section 2.6 
is not GV()-invariant, except that GYO acts trivially on LYO. 

For x.x' G XQ, with their representatives x,x' G R 2 N ~ N ° , we have 
(4.1) !,:.rlhur', 11-,:./) = P^'G{n{x),n{x')) = 

1 
|Go| gEGvo 

(gA)-P.m,p(g-lx,x'). 

Here |G°| is the cardinal of G°. The second equation of (4.1) is from direct compu
tation (cf. [17, (5.19)], [31, (5.4.17)]). 

As we work on G x R 2 N ~ N ° , for the operator $£^°$> - 1, Proposition 2.9 and Sec
tions 2.7-2.9 still hold. 

From Theorem 2.23 for Pyo.p and (4.1), we get 

Theorem 4.1. Theorem 0.1 still hold. 
Under the same notation in Theorems 0.2, 2.23, for a, A' G N 2 n ~ n ° , |a|H-|a'| ^ m, 

we have 

(4.2) 

(i + V p | ^ l + ^ ' x l ) m " 
0|a| + |a'l 

0ZadZ'a' 
(p-n+^(hK*){Z)(hK?)(Z')pG o^>(Z. Z') 

1 
|Go| 

k 

r = 0geGm) 

(gA)-P^(g-l^>Z^Z')p-ï) t 

< C'p-(k+1-m)/2(l + v^|Z° | + v^|z/0|)2(™ + fc + m' + 2)+m 

x exp ( - y/C"vp inf \g~lZ - Z'\)+û(p-°°). 
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If Z = Z' — Z°, then for g G Gm, such that gZ° = Z°, we use Theorem 2.23 
for Z = Zf — 0 with the base point Z°, and for the rest element in G y o , we use 
Theorem 2.23 for Z = Z' = Z° with the base point yo, then we get 

(4.3) p~n+^(h2K)(Z°)pC o *(Z°,Z°) 
p 

1 
|G0| 

A; 

r = 0geGyo,gZ0=Z0 
( ^ i ) . p g r ) ( o , o ) P - r 

1 

W\ 

2k 

r=0geGyi),gZ»^ZO 
(g,l) - PtiHg-iy/pZOïy/pZ^p-ï 

^ Cp-{2k+l^2(l + (1 + y^\Z°\)2^2k+2^ e x p ( - v / C ^ | Z ° | ) ) . 

Note that if g G G y o acts as the multiplication by el6 on Lyo, then (g, 1) • Pyl\ 
(<7, 1) • P^o in (4.3) have a factor el0p which depends on p. 

Of course, after replacing L by some power of L, we can assume that Gyo acts as 
identity on L for any y0 G P, in this case, (g, 1) • P^J(g~lZ°, Z°), (#, 1) • ^^ (0 ,0 ) 
do not depend on p. 

From Theorem 3.2 and (4.3), if the singular set of XQ is not empty, analogous 
to the usual orbifold case [17, (5.27)], p~n+^ Pp

G(yo,yo), (yo G P) does not have a 
uniform asymptotic expansion in the form YL^Lo cr(yo)p~r> 

4.2. weight Bergman kernel on X 

In this section, we assume that G acts on P — /i~1(0) freely. 
Let V be a finite dimensional irreducible representation of G, we denote it by 

pv : G End(V). Let i? be the highest weight of the representation V. Let V* be 
the trivial vector bundle on X with G-action pv induced by pv. 

Let PY be the orthogonal projection from Q°'*(X, Lp 0 E) on HomcfV, Ker Dp) 0 
V C Ker D p . Let PY(x,xf), (x,x' G X), be the smooth kernel of PY with respect 
to dvx{x'). 

We call Pp(x, xf) the d-weight Bergman kernel of Dp. 
We explain now the asymptotic expansion of P^{x.x') as p —> oo. 
We will consider the corresponding objects in Chapters 1-3 by replacing E by 

E 0 V*. Especially, we denote by DY the corresponding spinc Dirac operator asso
ciated to the bundle Lp (g) E <g) V*. 

Certainly, all results in Chapters 13 still hold for the bundle E CBD V*. 
Let Pp be the orthogonal projection from %^(X. Ep <g) V*) onto (Ker D^* ) G . and 

Pp(x,x'), (x.x/ G X) the smooth kernel of P^ with respect to dvx(oiJ). 
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As V is an irreducible representation of G, we get 

(4.4) KerD^' = (KER£>P) ® V*, (KerD^')G = HomG(V.KerD p). 

Let {t'i} be an orthonormal basis of V with respect to a G-invariant metric on V 
and {v*} the corresponding dual basis. 

Let dg be a Haar measure on G. By Schur Lemma, 

(4.5) / g - (vj 0 v*)dg = 
1 

dime V 
-Sij Idy. 

Thus if W is a finite dimensional representation of G with the highest weight then 
for any s G IT, we have 

(4.6) s = y^(dim c V) j g • (s 0 v*)dg^ ® vl e HOIN G (V, W) 0 V = W. 

From (4.6) and the G X G-invariance of the kernel Pp(x,xf), we get 

(4.7) 
/',!':•'•• •'•') = (dimev) VJ(/- '; ,-. , ' ir;.r,). 

/^(.r..r) = (dimcV) Try* i^F(IR,X) GEnd(A(T* ( o ' 1 ) X)0P) J : . 

In fact, let {t/jj} be an orthonormal basis of (Ker Dp ) G , then Pp(x, xf) — Ylj ipj(x)® 
^•(x')*, and for any j fixed, in view of the second equality in (4.4), one sees that 

(4.8) •0*^ e EndG(V) and T H # * ^ ] = M'jWh = 1. 

Thus by Schur Lemma, 

(4.9) I * / 1 
dime V 

Idy 

and {(dime V ) ^ ^ ' ^ } is a n orthonormal basis of HoniG<(V, Ker Dp) 0 V C Ker Dp. 
Let £/ be a G-neighborhood of P = / i _ 1 (0) as in Theorem 0.2. P^ is viewed as a 

smooth section of prl(Ep ®V*)B ® pr^Ep 0 V*)^ on B X B, or as a G X G-invariant 
smooth section of pr^E^ 0 V*) 0 pr^Ep 0 V*)* on [/ x U. 

Moreover, T>* are smooth (not G-invariant) sections of U X V, £/ X V* on LT 
Thus from (4.7), Pp is not a G X G-invariant section of prl(Ep) ^pr^E*) on U X ¿7. 

Now (2.83), (2.84), (2.108) and (2.186) (cf. also Theorem 0.2) apply well to the 
bundle E (g) V*. thus we get the asymptotic expansion of P^(x,xr) as p —> +oo, and 
the leading term in the expansion of 

p-n+y(hKÌ)(x)(hKì)(x')P£(x,x') is P(^/pZ, y/pZ')Ic®(E®V)B-

By (4.7), the leading term of the asymptotic expansion of 

(4.10) p-n+^(h^)(x)(hKÌ)(x')P^(x,x') is (dimcV)2 P(^Z,^Z')ImEB. 
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Let O be the curvature of P —* as in Section 1.1. Let p^* denote the differential 
of pv*. By (1.18), 

(4.11) R(EOV*)G = REG +PV* (O) 

In the same way, we can define Ĵ p

v a section of End(A(T*^°'1^X) & E)B on XQ 
by (0.17) for P p

v. From (0.25) (which will be proved in Chapter 5), (4.7), (4.10) and 
(4.11), we get 

Theorem 4.2. — Under the condition of Theorem 0.6, the first coefficients of the 
asymptotic expansion of ^ G Yj\\q\[Eq) in (0.20) is 

(4.12) $o = (dimcV)2, 

<U 1 
8^ 

;dimc V) 2 (r* G + 6A X f ; log h + 4R^(wlw°^ 

1 
+ 2~, 

;dimcV) Tr v, [ Pr(0)(U;°.wJ J

0)' 

4.3. Averaging the Bergman kernel: a direct proof of (0.15) and (0.16) 

We use the same assumption and notation as in Theorem 0.2. 
Let Pp(x,x') be the smooth kernel of the orthogonal projection Pp from 

Q°'#(X, Lp 0 E) onto Ker £>p with respect to dvx(x
f). Then Pp(x,x') is the 

usual Bergman kernel associated to Dp. 
Let dg be a Haar measure on G. By Schur Lemma. 

(4.13) rl:(-r.x>) , / ((gA)-Pp)(x.xf)d<j^ 
FG 

/ (g.\). Pp(g
 ]x.x')dg. 

IG 

One possible wray to get Theorem 0.2 is to apply the full off-diagonal expansion 
[17, Theorem 4.18'] to (4.13). 

Unfortunately, we do not know how to get the full off-diagonal expansion, especially 
the fast decay along NG in (0-14) in this way. 

However, it is easy to get (0.15) and (0.16) as direct consequences of [17, Theorem 
4.18/] and (4.13). 

As in Section 2.5, we denote by TY the sub-bundle of TX on a neighborhood of 
P — /i" x(0) generated by the G-action and by THP the orthogonal complement of 
TY\p in (TP,gTP). 

Take y0 e P. Let {ei}^[~n"), {fi}^ be orthonormal basis oiT^P, Tyi)Y. Then 

{ e « } 2 £ n r n o ) u JvoMZi is an orthonormal basis of Ty„X. We use this orthonormal 
basis to get a local coordinate of X by using the exponential map exp^. 

We identify BTvvx(0,s) to Bx(y{),e) by the exponential map Z —* exp^(TiZ). 
Let V c l l f f 0 £ ; be the connection on A ( T * ( a l ) A ) 0 E induced by V c l i f f and VE. 
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For Z G BT"o*(0,e), we identify L z , (A(T^°^X) ® E)z, (Ep)z to Lyo, 
(A(T*(0,1}X) 0 E)yo, (Ep)yo by parallel transport with respect to the connections 
V L , V C L I F F ® £ , VEP along the curve *yz : [0,,1]E u -> WZ. 

Under this identification, for Z, Z7 G P T y « x ( 0 , e ) , one has 

P P(Z, Z 7) G End(A(T*^0,1^X) 0 P)^ 0 . 

Let K\(Z) be the function on BTy°x(Q,e) defined by 

(4.14) dvx(Z) = K1(Z)dvTxox-

By [17, Theorem 4.187] (i.e., Theorem 0.2 for G = {1}) , there exist J r(Z 7) G 
End(A(T*^0,1^X) <g) P%(), polynomials in Z' with the same parity as r, such that for 
any fc, m7 G N, there exist G, M > 0 such that for Z7 G T^()X, |Z7| ^ e, 

(4.15) 
1 
Pr Pp(Z',0) Y^Jr{^Z')K-l(Z')e-bAz'\\p--2 

r=0 <é""'(P) 
< Cp-(k+1)/2 (1+VP|Z'|) M exp (-VC"voVP|Z'|) + Q (p-oo) 

and 

(4.16) J 0 ( Z ) — Ic®E-

For Keg, \K\ small, eK maps (A(T*( 0- 1)X) 0 E)e-Kyo, L e - * y o to ( A ( T * ( C U ) X ) <g> 
E)y{), Lyo, and under our identification, we denote these maps by 

(4.17) fE(K) G End(A(T*^A) 0 E)yo, fL(K) G End(L,()) ~ C. 

As the G-action preserves /zL and V L , we knoŵ  \fL(K)\ = 1 and fE(K) is also an 
isometry. 

For K G g, let ad be the adjoint representation defined by (adA")A^7 = [K, K'} 
for A^7 G g. By [1, Prop. 5.1], if we denote by 

(4.18) J o ( K ) = d e t 9 
1 - e-adK 

adK 
for .A G a, then in exponential coordinates of G, 

(4.19) d(eK)=j9(K)dK. 

As the G-action preserves all metrics and connections, thus for any smooth kernel 
= 0{p~°°), we have (g, 1) • ^p{g~lx,x') = <ff(p~°°) for any g G G. 

By [17, Prop. 4.1] (i.e., Theorem 0.1 for G = { ! } ) , (4.13), as G acts freely on P, 
we know 

(4.20) P7?(yo,yo) = 
KEg, |K|<E 

f E (K)( f L (K))PP p (e- K

y o ,y 0 ) J g (K)dK + O (p-00) . 

Let SL be the section of L on BTyox (0, e) obtained by parallel transport of a unit 
vector of Lyi) with respect to the connection V L along the curve 7^. Let T L be the 
connection form of L with respect to this trivialization. 
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Recall that for Keg, the corresponding vector field Kx on X is defined in 
Section 1.1. Recall that {Ki} is a basis of g. 

By (2.104), for Keg, 

(4.21) 
(eK • SL)(0) = eK • SL(e-Kyo) = fL(K)SL(0), with fL(0) = 1, 

TL

z(K
x) = ^o(Z,Kx) + û(\Z\2). 

By (2.16), (2.17), (4.21) and = 0 on P. we get 

(4.22) (LKi(LKiS
L))(0) = (VL

K?{VL

KxSL - 27r^I^Kl)S
L))(0) 

= -R^{KX,KX)SL(Q) = n^ï(dn(Kt),K
x)SL(0) = 0. 

By (2.16), (4.21), (4.22), fi = 0 on P and Kx G TY on P, we get 

(4.23) 

efL 
dKl 

;0)5L(0) = (LKiS
L)(0) = (VL

K,S
L)(0) = 0, 

Q2fL 
OKidKj (0)SL(0) 

d2 

dtidt2 

{etlK,+t.2Kj . 5 L ) ( 0 ) | T I = T 2 = 0 

= (LKj(LKiS
L) + LKl(LKjS

L))(0) = 0. 

Thus from (4.23), 

(4.24) (fL(K))» = (i + ff(\K\3yr. 

Moreover, from (2.95), (2.106), (2.108) (for G = {!}), 

(4.25) 
fE{K) = I d ( A ( T „ „ . 1 ) X ) , ; E ) j . n + ff{\K\), 

Kl(Z) = l + Û'(\Z\2). 

Let dvy be the Riemannian volume form on (TY,gTY). Observe also that if we 
denote by iyo : G —» Gyo the map defined by iyo(g) = gyo, then 

(4.26) 1 
h2(y) 

dvy(y) = (iy^)*dg, 

which gives us a factor h 2 ^ ^ when we take the integral on g instead on the normal 
coordinates on X. 

By (4.13), (4.15), (4.20), (4.24)-(4.26) and the Taylor expansion for KU fE, fL, as 
in [1, Theorems 5.8, 5.9], we know that there exist Jf

r(Z) polynomials in Z with same 
parity on r, and Jq = Ic®E, such that 

(4.27) P?(yo,Vo)~Pn 
1 

h2(y0) Ke&,\K\^e 
e-TT/2p|K|2 OO 

r = 0 
J'r{VpI<)P~r/2dK. 

Recall that 

(4.28) 
KEg 

e-TT/2p|K|2 dK = 2no/2 p-no/2. 

After taking the integral on g, from (4.27) and (4.28), we get (0.15) and (0.16). 
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By (4.7), (4.27) and (4.28), we get also the asymptotic expansion for Pp(yo,yo), 
yo e P. 

4.4. Berezin-Toeplitz quantization 

Let (X,UJ) be a compact symplectic manifold of real dimension 2n. Let (L, hL) be 
a Hermitian line bundle over X endowed with a Hermitian connection V L such that 
(0.1) holds. 

Let (E, hE) be a Hermitian vector bundle on X with Hermitian connection VE. 
Let gTX be a Riemannian metric on X and let J be an almost complex structure 

such that (0.3) holds and that LJ(-,J-) defines a metric on TX. 
Let Pp(x,xf) be the smooth kernel of the orthogonal projection Pp from 

O0,,(AT, Lp C8 E) onto Ker Dp with respect to the Riemannian volume form dvx(%')-
Then Pp(x, x') is the usual Bergman kernel associated to Dp. 

Definition 4.3. A family of operators TP : Ker Dp —» Ker Dp is a Toeplitz operator 
if there exists a sequence of smooth sections g\ G ^ ^ ( X , End(E)) with an asymptotic 
expansion g(..p) of the form J2^10p~~lgi(x) such that for any k ^ 0, there exists 
C > 0 such that for any pGN, 

(4.29) \\TP-PP 

k 

1=0 
p-lgl(x)PPt°^Cp-k-1. 

Here || | | 0 , 0 is the operator norm with respect to the norm || ||̂ 2. We call go(x) the 
principal symbol of TP. If TP is self-adjoint, then we call TP is a self-adjoint Toeplitz 
operator. 

We express (4.29) symbolically by 

(4.30) 
k 

TP = Pp(Y,P~l9i)Pv + 0(p-k~l). 
1=0 

If (4.29) holds for any k G N, then we write 

(4.31) т — Р 
р р 

ОС 

4 /=0 
Р l9i \Рр + 0(р-°°). 

The map wmich associates to a section f G ^ ^ ( X , End(E)) the bounded operator 

(4.32) r f > p = PpfPp : L2(X,Ep) — > L 2 ( X , £ P ) , withEp := A(T* ( 0 ' 1 } X) <g> L p ® E, 

is called the Berezin-Toeplitz quantization. 
Recall that a x is the injectivity radius of (X,gTX). In what follows, we fix e G 

]0, a x/4[. For x G A, we identify B T x ' x (0, 4e) with Bx(x, 4e) by using the exponential 
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map. Let dvxx be- the Riemannian volume form on (TXoX, gTxox) for xo G X. Let 
KXQ be a smooth positive function on TXoX with KX ( J(0) = 1 defined by 

(4.33) dvx(Z) = KXo(Z)dvTx(Z). 

We denote by detc for the determinant function on the complex bundle T^^X. Set 
J G ^°°(X,End(TX)) as in (0.2), and |JXo| = ( - J ^ ) 1 ^ S e t ^>(Z,Z'), (Z,Z; G 
TXoX) be the analogue of in (3.19), 
(4.34) 

&>(Z, Z') = detcdJ^, I) exp ( - | (\JXu\(Z - Z'), (Z - Z')) - ir^ï (3XoZ, Z') ) . 

We trivialize L, E and Ep over BTxX(0,4e) by using the parallel transport with 
respect to V^, and \7Ep along the curves jz(u) = uZ. 

Let 7T : TX xx TX —> X be the natural projection from the fiberwise product of 
TX on X. 

Let {E!p}pGN be a sequence of linear operators Sp : L2(X,Ep) > T 2 (X, Ep) with 
smooth kernel Sp(x,y) with respect to dvx(y)> Then under the above trivialization, 
ELp(x,y) induces a smooth section !Ep ? : E o(Z, Zr) of 7r* (End(A(T*( 0 , 1)X) 0 E)) over 
TX xx TX with Z, Z' G TX[)X, |Z|, |Z'| < 4̂  which depends smoothly on x0. 

We will denote 

(4.35) p-"E p , X 0(Z, Z') = 
k 

r = 0 
(Qr,xoPxo) (VPZ,VpZ') p '2 + O(p-k+1) 

2 

if 
{Q r , , , , € End(A(T*(°-1)X) ® S ) x „ [ Z , Z ' ] } 0 ^ f c i X n e X 

is a smooth family of polynomials on Z. Z' with respect to the parameter xo G X, 
such that there exist constants e( E]0, 4s] and Co > 0 with the following property: 
for every I G N, there exist Ck,i > 0, M > 0 such that for x 0 G X, Z, Z' G T X o X, 
|Z|, |Z'| < and p G N the following estimate holds: ^ 

(4.36) 
^ s p , x o ( z , z o ^ / 2 ( z ) 4 / 2 ( z 0 -

k 

r=0 

(Qr,xoPxo) (VPZ,VpZ') V '2 

Wl(X) 

^Ckllp-h$L{l + VÏ>\Z\ + ̂ \Zf\)AI e x p ( - x / Ô ^ | Z - Z / | ) + ^ ( p - ^ ) . 

(̂ By Theorems 0.1, 0.2 for G = {1} (or [31, Theorem 4.2.1]) , if Sp = PpEpPp, then (4.36) is 
equivalent to: for any l,m G N, there exist C > 0, M > 0 such that for XQ G X, \Z\,\Z'\ < 
|a | 4- |a'| ^ m and p G N, the following estimate holds : 

<9l«l + l«'l 
\dZ^dZra 

[p-nBp. х „ (Z, Z')KÌ/

0

2(Z)K1

X

/

(;
2(Z') -

A; 

7~0 

(Qr,xoPxo) (VPZ,VpZ') p '2 

Li(x) 

^ C p - ^ ± V I i ( l 4- y/p\Z\ + ̂ \Z'\)M exp(-y/Co~p\Z - Z'\) + ̂ (p" 0 0) . 
Even (4.36) holds for any / <E N, in the proof of Theorem 4.4 (i.e., [30, Theorem 4.9]), we only use 
I = 0. 
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In [30, Theorem 4.9] (cf. also [31, Theorem 7.3.1]), Ma and Marinescu established 
a useful criterion which ensures that a given family is a Toeplitz operator. 

Theorem 4.4. — Let {T p : L 2{X,E P) > L 2 ( X , E p ) } be a family of bounded linear 
operators which satisfies the following three conditions: 

(i) For any p e N , P p T p Pp = T p . 

(ii) For any £o > 0 and any I G N, there exists C\ > 0 such that for all p ^ 1 and 

all (x,xf) G X x X with d(x,xf) > £q, 
(4.37) \TP(x,x')\ ^ d p ~ l . 

(iii) There exist a family of polynomials {Q r ,x 0 £ finci(A(T*(0^ X)®E)X ( ) [Z, Z f }} X o e x 
such that: 

(a) each Q r,x 0 has the same parity as r, 

(b) the family is smooth in Xq G X and 

(c) there exists 0 < e' < e such that for any xq G X and Z , Z ' G TX ( )X, 
|Z | , \Z'\ < e', in the sense of (4.35) and (4.36), we have 

(4.38) p-nTp,X0(Z,Z') = 
k 

7- = 0 

0,., / ' , nSQR/. VPZ')P-^ + 0{P-^). 

Then {Tp} is a Toeplitz operator. 

By the asymptotic expansion of Pv as p —* oo (Theorems 0.1, 0.2 for G = {1}) , for 
any f G ^°°(X, End(E')), the Toeplitz operator Tfp verifies the conditions in Theorem 
4.4. 

Moreover, from the proof of Theorem 4.4, in fact 

(4.39) Q ( ).,„(Z. Z') - Q„.,,,(().()). for x 0 G X , 

and we set 

(4.40) So(*o) = Qo.x 0(0,0)|c^ GEnd(J5X()), 

then 

(4.41) p - " ( T p - r f f 0 . p ) X l ) ( Z , Z') ^OIP-1), 

which implies 

(4.42) Tp = Ppg0Pp + O(p-1). 

And by recurrence as in (4.40), we find gL G ^°°(X, End(£*)) such that (4.29) holds. 

The Poisson bracket { , } on (X, 2ttuj) is defined by: for #1,̂ 2 £ ^ ° ° ( A ) , if £92 is 
the Hamiltonian vector field generated by g2 which is defined by 2ni^(J2u = dg2-, then 

(4.43) {9L,G2} = -£GA{DGI). 

As a corollary of Theorem 4.4, we get the following result [30, Theorem 1.1] (cf. 
also [31, Theorems 7.4.1 and 8.1.10]), 
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Theorem 4.5. — Let f,g G ^ ^ ( X , End(E)). Then the product of the Toeplitz oper

ators Tf^p and Tg^p is a Toeplitz operator, more precisely, it admits an asymptotic 

expansion in the sense of (4.31): 

(4.44) Pf, V Tg, p — 
oc 

r=0 

P-rTCr(f,g).p + O(p-oo), 

where Cr are bidifferential operators such that Cr(f,g) G ^°°(X, End(-E)) and 
C0(f,g) = fg. 

If f,g e^°°{X), we have 

(4.45) Ci ( / , g) - Ci ( 5 , / ) = v ^ î { / . 5 } Id £ , 

and therefore 

(4.46) [Tf,P >T9,p} = 

V-1 

P 
T{f^}.P^O{p-2) 

In conclusion, the set of Toeplitz operators forms an algebra. In particular, when 
(X, J, a;) is a compact Kahler manifold and E = C, gTX — u(-, J-), Theorem 4.5 
recovers the result in [9] (cf. also [39, 23], [20]) where the theory of Toeplitz structures 
by Boutet de Monvel and Guillemin [11] is used. Some related results were also 
announced in [10]. 

Lemma 4.6. — Let 

T — 
Lp — 

OG 

¿ = 0 
Pp9W~lPp + ^ ( P _ 0 ° ) : KerDp -, Ker Dp 

be a Toeplitz operator with principal symbol go G ( X . 'End(E)). Then 

i) If go is invertible, then T~x is a Toeplitz operator with principal symbol g^1. 

ii) If go — 9^-à-E with g G ^ ^ ( X ) . g > 0, and Tp is self-adjoint, then for any 

q G N * ; Tp^q is a self-adjoint Toeplitz operator with principal symbol glj/qldE-

Proof - We only prove i i ) , the proof of i) is similar and simpler. 

As g > 0, there exist CO, C\ > 0 such that CO < g < C I . Thus for any s G K e r D p . 

(4.47) (Tps, s) = (g08, s) + Û ' Г 
\\4h > Co + Û 1 

p 
||s||2L2. 

Thus for p large enough, T^Jq : Ker Dp —» Ker Dp is well defined. (In the case i), we 
get T~x : Кет Dp —• Ker Dp is well defined for p large enough.) 

Let Si be a smooth bounded closed counterclockwise oriented contour on 
{A G С, Re(A) > 0 } such that [\Co* 2CI] is in the interior domain got by ô±. 

As in the proof of Theorem 4.4, by recurrence, we will find f\ G ^°°(X, End(is)) 
such that 

(4.48) p~n(Tp - (Tk,p)<*) = 0(р-к-г) with Tk,p = 
к 

1=0 
PpfiP~lPp. 
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Then for p large enough, 

(4.49) Tp

1/q - TKp = 
1 

2ni fAe<5i 

A^(A - Tp)"1^ - (TfcjP)*)(A - {Tk,PY)-ld\. 

1 
2m >\<ESi 

A ^ ( A - T p ) " 1 ^ - (T f c j P)*)(A - {Tk,PY)-ld\. 

If (4.48) holds, then by (4.49) we know that in the sense of the operator norm, 

(4.50) TV* -TktP = o(P-
k-1). 

To complete the proof of Lemma 4.6, it remains to establish (4.48). 
As explained after Theorem 4.4, there exist Qo:V G End(A(T*(0,1)X) 0 E)X() such 

that in the sense of (4.35), 

(4.51) p-nTp{Z. Z') ^ 
CO 

r=0 

(Qo,rP) (VPZ,VpZ')P-r/2 + O(p-oo). 

We will prove by recurrence that there exist // G Loo (X, End(E')) self-adjoint such 
that for any k G N, 

(4.52) \p-n+n"(TP - (Tk,p)*)(y/pZ, JpZ')\ 

^ p-(2fe+i)/2(1 + ^p-\Z\ + y/p\Z'\)M exp ( - y/C^Jp\Z - Z'\) + 0(p-°°). 

Set /o = g1/qldE. Then 

(4.53) 
CO 

p~n(Tp - (To.pr)(Z, Z') - y j ( (Q 0 i I . - Q ° j r ) ^ ) ( v ^ Z , VpZ')P-
r/2-

r = 0 
Now as Qo,o = Qo,o = <7ld#, by (4.41), we know 

(4.54) Qo,i — Qo,i — 0-

Thus (4.48) is verified for k = 0. 
Assume that for k $J m, we have found // such that (4.48) holds. If we denote the 

expansion of (TnitP)
q in the sense of (4.35), 

(4.55) p-"(Tm.py'(Z. Z1) -
CO 

r=C 
(Q%r&)(y/pZ, VpZ')p~r/2 + 0(p-^). 

By (4.48), 

(4.56) p-n(Tp-(Tm,p)*)(Z, Z') = 
CO1 

r = 2ra+2 
((Qo.r - Q £ r ) ^ ) ( v ^ , y/pZ')p-r'2. 

By (4.39), (4.40), we set 

(4.57) /m+l(#o) 
1 
"0 
<2 

"^(Qo,2^ + 2-Qa2m +2)(0,0). 
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Then by (4.56) and (4.57), 

(4.58) p-n(Tp-(Tm+liP)*)(Z, Zf) -
oo 

r=2m+3 
((Qo.r - Qiïïx)&)WvZ, y/pZ')P-

r'2. 

By (4.40), (4.41) and (4.58), we know 

(4.59) (Qo,2m + 3-QS:2m + 3)(0,0) = 0. 

Thus (4.48) holds for k = m + 1. 
By the above argument, we have established (4.48), thus Lemma 4.6. • 

Assume now that (AT, a;) is a compact symplectic orbifold and L, E are proper 
orbifold vector bundles verifying the conditions of the beginning of this section. Oth
erwise, as explained in [31, Remark 5.4.5]), we are working on the proper orbifold 
sub-bundle £ , p r of E. 

We can still define the spinc Dirac operator Dp : ^°'*(X, LP®E) f2 0 #(X, LP®E). 
The orthogonal projection Pp : L2{X,EP) —> Ker £>p with £ p := A(T<0-V X)®LP®E 
is called the Bergman projection. A Toeplitz operator is a family of linear operator 
Tp : Ker Dp —• Ker£>p verifying (4.29). 

We need to introduce the correct analogue of (4.35) in the orbifold case, in order 
to take into account the group action associated to an orbifold chart. Let { S p } p e ^ 
be a sequence of linear operators £ p : L2(X.Ep) > L2(X,Ep) with smooth kernel 
Sp(x,y) with respect to dvx(y)-

Let k G N, we write 

(4.60) p-"£ P ï a : o (Z, Z') = 
k 

r = 0 
; Q r , * o ^ : „ ) ( v ^ y/pZ') \P 2 + 0(p—s"), 

if for every open set U GlA and every orbifold chart (Hu,U) U, there exists a 
sequence of kernels {HPi<y(x, x')}P<en and a family 

{ Q r , , 0 } o « M o G X G End(A(T*^X)®E)X0[Z1 Z'\ 

smooth with respect to the parameter XQ G X such that for every fixed e" > 0 and 
every x, x' G U the following hold 

(4.61) 

{9A)z<p,u{g 1x,x') = {l,g 1)^pM(x:gxf) for any g G HJJ 

S p ,^(x,x / ) = ^ ( p - ° c ) for dix. xr) > e", 

=Lp[x,x) = 

gtHu 

(g, 1) Sp,^(x,x/) + ^(p-°c) 

and moreover, for every relatively compact open subset V C U, the relation 
(4.62) 

p-n~p,UA)(Z,Z') *é 
k 

r = 0 
(Qr,x0^0)(VpZ^z>: )p 2 •̂+1 Ч 

+ 0(p—5-) 
for XQ G V, 
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holds in the sense of (4.35). 
Note that although the notation (4.60) and (4.35) are formally similar, they have 

different meaning. 
Then in [30, §6], we find the following analogue of Theorem 4.4. 

Theorem 4.7. — Let { T p : L 2{X 1E p) > L 2 ( X , E p ) } be a family of bounded linear 
operators which satisfies i), ii) of Theorem 4-4 and (4.60). Then {T p} is a Toeplitz 
operator. 

From Theorem 4.7, we extend also Theorem 4.5 to the orbifold ease, for more 
details, see [30, §6]. 

4.5. Toeplitz operators on XG 

In this Section, we suppose that (X,u>) is a Kahler manifold, J = J, and L, E are 
holomorphic vector bundles with holomorphic Hermitian connections V L , VE. Let G 
be a compact connected Lie group acting holomorphically on X.L.E which preserves 
hL and hE. 

We suppose that G acts freely on P = /j,~1(0). Then (XG,WG) is Kahler and 
LG.EG are holomorphic on XG-

In this case, there exists a natural isomorphism from (Ker D P ) G onto KerD^p-
At the end of this Section, we will explain the corresponding result in the symplectic 

case, especially, for p ^> 1, we construct a natural isomorphism from (Ker D P ) G onto 
Ker DG,P-

In the current situation, the spinc Dirac operator DP was given by (0.21) and D2 

preserves the Z-grading of n 0 , #(A", LV 0 E). Similar properties hold for DG,P-
As in Section 2.3, let PG.P be the orthogonal projection from VL°'9{XG,LP

G cg> EG) 
onto Ker DG,P, and let PG,P(X, x') be the corresponding smooth kernel. 

By the Kodaira vanishing theorem, for p large enough, 

(4.63) (KerD p ) G = H°(X,Lp® E)G, Ker £>G,p = H°{XG,LP

G ®EG). 

As D2

p,DGv preserve the Z-gradings of №m(X,U> ® E), n°-'(XG,LG <g> EG) re
spectively, we only need to take care of their restrictions on cé'00(X.Lp <g> E) and 
^ ° ° ( X G . Lp

G(g>EG). In this way, 

(4.64) 
Pp{x,x') e <&°°(X x X,pr*1(Lp ® E)<E)Py*2(LP ® E)*), 
PG,P(x0,x'0) e ^°°{XG x XGlpr{(Lp

G <g> EG) <g> pr*2(LG ® EG)*)-

Recall that the morphism ap : H°(X, Lp <g> E)G - » H°(XG,LG <g> EG) was denned 
in (0.27). Set 

(4.65) aG = av o PG : <g°°(X, Lp ® E) H°(XG,LP

G ® EG). 
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Let dp* be the adjoint of aG with respect to the natural inner products (cf. (1.19)) 
on LP ® E), ^{XG-. LP

G ® EG). Set 

(4.66) PXG := p-no oG o OG* 
p 2 p p 

Let {sp^i}^! be an orthonormal basis of H°(X, Lp'&E)G. For y0 G Xq, x, x' G X, 
one verifies 

(4.67) 
PG(x,x') = 

dp 

i=l 
Sp,i(X) ® spAx'Y • 

aG(y0,x) = PG(y0,x), aG*(x.y0) = PG(x,y0), 

where by PG(yo,x) (resp. PG(x.yo)) we mean PG(y.x) (resp. PG{x,y)) for any 
y G TÏQl{yo), which is well-defined by the G-invariance of P G . 

From (0.27), we know that VpG commutes with the operator Pg.p and 

(4.68) VpG =PG,PPP

XGPG,P-

Let PG\p be the restriction of the smooth kernel PG{x,x') on P x P. Then 

Pp

G|p(x, x() G r ( P x P, pr*(Lp <g) E) ® pr*(Lp <g) £ ) * ) 

is G x G-invariant. By composing with ttg, 

(TTG O PP

3\p)(xo, xf

0) G ^ ( X G x XG, VA{LPg ® eg) ® wl(Lp

G 0 EG)*). 

We denote by 7Tg°PP

G\p the operator defined by the smooth kernel (7TG°Pp \p)(xo, xr

0) 
and the Riemannian volume form dvxG(

xo)- Then from (4.67), we verify that 

(4.69) P P

X G ( X O , X 0 ) = p 2 ° P P

G ( X 0 , X 0 ) = p 2° O P p

G | p ( X 0 , X 0 ) . 

Recall that h is the fiberwise volume function defined by (0.10). 
Let dg be a Haar measure on G. 
The main result of this Section is the following result. 

Theorem 4.8. — Let f be a smooth section of End(E) on X . Let fG G ^ x ( X g , 

End(i^g)) be the G-invariant part of f on P defined by fG{x) — f G g- f(g~1x)dg. 

Then T j i P — p~~§~aGfcrG* is a Toeplitz operator with principal symbol 2~§~ j^t(x). In 

particular V p G is a Toeplitz operator with principal symbol /h2(x). 

Proof — We need to find a family of sections g\ G ( 1 g , End(P ,c)) such that for 
any 777 ^ 1, 

(4.70) Tf,p = 
m 

/=0 
PG,Pgip-1 P G , P + 0(p-m~1)-

By Theorem 0.1, (4.65), (4.67), we know for s > 0, and any I G N, there exists 
Ci > 0 such that for all p ^ 1 and all (x.x1) G Xg X Xg with d(x, xr) > £0? 

(4.71) \Tf,p(x,x')\ < ClP~
l. 
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We still need to verify the condition iii) of Theorem 4.4. 
Let U be a (̂ -neighborhood of P = / i _ 1 (0) as in Theorem 0.2. 
Let rjj be a G-invariant function on X such that ip = 1 on an open neighborhood 

of P and supp(^) C {y G X , d(y, P) < £0/2} n E/. 
Write 

(4.72) oGfoG* = oGWfoG* 
p p p p 

+ oG(1 - W)foG*. 
p p 

For xq,x'0 E X G . let x,x' E P such that tt(x) = xq, tt(x') = x'0. By (4.67), 

(4.73) (oG ((1-W)(f)oG*)(x0,xo) = 
p p Jx 

P^(x,y){{l~^)f)(y)P^{y,x')dvx(y). 

From Theorem 0.1, (4.73) and supp((l — ib)f) Pi P = 0 , we know that for any 
Z, m G N, there exists C^m > 0 such that for any p G N, XQ, x 0 G XG, 

(4.74) -4>)f)crp*){x0,x'0)\^,u(XGXXG) <: C/,mp '. 

We define fB E cto°°{B, End(i?e)) by 

(4.75) fB (xo) = / g-(4>f)(g-lx)dg 
G 

for xq E B.x EU such that TT(X) — XQ- Clearly, if xq E P, as tp\p = 1, one gets 

(4.76) fB(xo)=fG(x0). 

From (4.75), for xo, x'0 E B, x, x' E U such that n(x) = xq, tt(x') = x'0, one gets 

(4.77) ^xpfa^ixo.x'o) = I If(x,yWfWPfiy,x')dvx(y) 
u 

= / Pp

G{xo,yo)fB(yo)Pp(yo^f

0)h
2(y0)diJB(y0). 

JB 
For xo G XQ, we wrill work on the normal coordinates of XQ with center xo as in 

Theorem 0.2. 
Recall that Pj?(Z°, Z / 0 ) was defined by (3.19) with at = af~ = 2TT therein. 
By (4.72), (4.74) and (4.77), for \Z%\Z'°\ < e0/2, 

(4.78) Tf,p(Z0 ,Z'0) - P-no/2 
WGTXQB 

P p

G (Z^W)(/ 5 / i 2 ) (W)P p

G (W,Z , 0 )di ;B(W) 

= O(p-oo). 

By Theorem 0.2, (4.78) and the Taylor expansion of fs, there exist Qo,r ^ 
End(E,G,x0) polynomials on Z° ,Z / 0 with same parity on r such that the following 
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formula, obtained through compositions, holds, 

(4.79) 

P - ^ T / , p ( Z 0 , Z / 0 ) K ^ ( x o , Z ° ) K ^ ( x o , Z / 0 ) -
k 

r=0 

p\Z'°\)M exp(~VC^^\Z) Cm' (XG) 

< Cp'{k+1)/2(l + y/p\Z°\ + ^p\Z'°\)M exp(~VC^^\Z0 - Z'°\) + Û(p-°°). 

Moreover, by (0.13), (4.75) and (4.78), 

(4.80) (Q0,oPj?)(Z°,Z'°) = P<e(Z0,Z'°) f° 
h2 

(x0)2
n» 

Rno 
exp{~2TT\W±\2)dWx 

fG 

h2 
(xo)2N^2P^(Z0,Z'°: 

By Theorem 4.4, (4.71) and (4.79), there exist gt e ^ ( X G , End (£<;)) such that 
(4.70) holds, and by (4.40) and (4.42), 

(4.81) 7},p = 2N»/2PG,pÇpG,P + Oip-1). 

The proof of Theorem 4.8 is complete. 

Corollary 4.9. For /1, / 2 E ^°°(X)? we have 

(4.82) |Tf1,p, Tf2,p] 2 N ° J^l 

P 
PG,p 

fG FG 
1 2 h2 ' h2 

PG,p + Q(p-2) 

Here { , } is the Poisson bracket on (Xg< 2ttlug)-

Proof. — By Theorems 4.5, 4.8, we get immediately (4.82). 

Since the isomorphism ap : H°(X, LP&E)G —> H°(XG, LG®EG) is not an isometry, 
we define the associated unitary operator, 

(4.83) ^P = <7p*(<rp 0 °p*yl/2 - HQ(XG, LP

G ® EG) H°(X: LP 0 E)G. 

Theorem 4.10. — Let f be a "io00 section o/End(E') on X. Then 

(4.84) T?P = E*/S p : H°(XG, LP

G 0 EG) - H°(XG, LG <g> EG) 

is a Toeplitz operator on XG- Its principal symbol is fG <G (XG: End(E^;)) • 

Proof — By (4.68) and (4.83), 

(4.85) T^p = (v^)-iTfìP(vP

XG)-^ 

By Theorem 4.8, (4.66), VP

G = p~^o~G o c^*, TF:P are Toeplitz operators on XG 

with principal symbols 2no/f2 / h2 (x). 2n°^2 ̂ (x) respectively. 
By Lemma 4.6, we know that ( P P

G ) ~ ^ is a Toeplitz operator on XG with principal 
symbol 2" n°/ 4/i(x). 
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By Theorem 4.5, we then know that Tfp is a Toeplitz operator and its principal 
symbol is fG[x). • 

Remark 4.11. —- i) When E — C, and / — 1, from Theorem 4.8, Vp

G is an elliptic 
(i.e., its principal symbol is invertible) Toeplitz operator. This is the analytic core 
result claimed in [37, §8]. 

ii) When E = C and G is the torus T n ° , Theorem 4.10 is one of the main results 
of Charles [15, Theorem 1.2], and in [15, §5.6], he knew also that Vp

G is an elliptic 
Toeplitz operator. Moreover, he established the corresponding version when XQ is an 
orbifold. 

If X is only symplectic and J = J, then as the argument in [44, §3e)], J induces 
an almost complex structure JQ on (TX)B, and JQ preserves NQ,J = NG © JG^G 
and TXQ- Thus one can construct canonically the Hermitian vector bundles N^'y* 
etc, which further give the canonical identification of Hermitian vector bundles 

(4.86) A ( T . ( o . i ) x ) s | A V ; = A ^ y ^ g A ^ 0 ' 1 ' ^ ) . 

Let q be the canonical orthogonal projection 

(4.87) q : A ( A ^ (

)

O ; 1 ) ) 0 A ( T * ( O - 1 ) A G ) ® LP

G ® EG —^ A(T*^XG) ® LP

G ® EG 

which acts as identity on A ( T * ^ ° ' ^ X G ) ® LP

G ® EG and maps each 

Ai(N£0j1))®A(T*WxG) ® LPQ g) EG, i > 1, to zero. 

We define 

(4.88) ap := PG,pqnGi*pC : (KevDpf —> KerD G p . 

Certainly in the Kahler case, ap coincides with (0.27). 
By using Theorems 0.1, 0.2 as in the proof of Theorem 4.8, we get 

Theorem 4.12. ----- Let f be a smooth section of End(P) on X , then Tf̂ p = 

p~n°/2cTpfcr* : Ker Dg, p —* Ker Dg. p is a Toeplitz operator with principal symbol 
2 n ^ 2 ^ ( x ) g End(£ G ) . 

Corollary 4.13. — For p large enough, ap in (4.88) is an isomorphism. Thus o~p de
fines a natural identification for 'quantization commutes with reduction in the (asymp
totic) symplectic case. 

Proof. — From Theorem 4.12 for /' = 1. we get 

(4.89) p-no/2<TP<r; = 2no/2PG,Ph-2PG,P + O ( i ) . 

Thus for p large enough, is an isomorphism. Thus ap is surjective. 
In view of (0.6), GV in (4.88) is an isomorphism. 
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Remark 4.14. — If we replace the condition J = J by (3.2), then the canonical map 
o~p in (4.88) is still well defined. From the argument here, we still know that ap is an 
isomorphism for p large enough. 

Now, we relax further our condition. As in Section 4.1, we only suppose that 0 G g* 
is a regular value of /i, then the symplectic reduction XG is a compact symplectic 
orbifold. Then (4.86)-(4.88) are still well defined. 

As explained in Theorem 4.1, Theorem 0.1 still holds. 
From Theorem 4.7, (4.1) and the proof of Theorem 4.8, we get 

Theorem 4.15. — If f e ^ ( A , End(£)) ; then T f ) P = p~ n ( ) / 2 cr p f (7*p : Ker Dg, p -> 

Ker D g i p is a Toeplitz operator with principal symbol 2n 0 / / 2i^j(x) G End(_Ec)-

For p large enough, o~p in (4.88) is an isomorphism. 

4.6. Generalization to non-compact manifolds 

In this Section, let (X,LJ) be a symplectic manifold, and (L, V L ) (resp. (P, V ^ ) ) be 
Hermitian line (vector) bundle, with Hermitian connections, on A, and the compact 
connected Lie group G acts on X as in Introduction, especially, UJ — RL'. But we 
only suppose that (X,gTX) is a complete Riemannian manifold. 

If G — 1, these kind results were studied in [28, §3.5]. 
By the argument in Section 2.3, if the square of the spinc Dirac operator Dp has 

a spectral gap as in (2.15), then we can localize our problem and get a version of 
Theorems 0.1, 0.2 from Section 2.6. In particular, if the geometric data on X verify 
the bounded geometry, then D2 verify the spectral gap (2.15). 

We explain in more details now. 
We suppose 
i) The tensors RE, rx, Tr[RTl '°)x] are uniformly bounded with respect on 

: . v . . , ' A ) . 
ii) There exists c > 0 such that 

(4.90) ^ÏRL(.,J.) ^cgTX(.,.). 

Lp0£" LPiS)E * 
Remark 4.16. — For the operator Dp = y2(d -f d ) in the holomorphic 
case, the above condition i) can be replaced by [28, (3.39)]: 
(4.91) V^ï(RDET + RE) ^ - c e i d p , \de\9Tx <c. 

Here Rdet is the curvature of the holomorphic Hermitian connection on det(T^1,0^ A ) , 
9 = gTX{J. , •)• For two (1, l)-forms Q and ft' we write Q > Q' if (ft - ft')(- , J-) ^ °-

Then by the argument in [27, p. 656] (cf. [28. §3.5]), we know that Theorem 2.2 
still holds. Thus Theorem 2.5 still holds. 
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Let PG be the orthogonal projection from L 2 ( X , EP) onto (Ker Dp)
G, and PGxf) 

{x^x1 G X ) be its kernel as in Def. 2.3. 
Note that Ker Dp and (KerZ) p)

G need not be finite dimensional. 
By the proof of Prop. 2.6, we know that for any compact subset K C X , /, m G N, 

there exists Ci,m(K) > 0 such that for p ^ Cx/V, 

(4.92) |F(£ p)(x,.r/) - ^ G > , ^ U ( K x K ) < Clim(K)p-K 

By the proof of Theorem 0.1, we get 

Theorem 4.17. —- For an?/ compact subset K C X , 0 < €o ^ ¿0, Z,m G N, £ft,ere exists 

Cî m > 0 (depending on K, e) such that for p > 1, x,x' G K , d x { G x , x ' ) ^ £0 or 

G ( X \ X 2 £ ( ) ) n K , 

(4.93) |P p

G (x ,x ' ) | ^ m ^ G.,„/> /. 

From Section 2.6, wTe get Theorem 0.2, but now the norm ^ m {XQ) in (0.14) 
should be replaced by ̂ m (K) for the compact subset К С XG-

One interesting case of the above discussion is when P — / i - 1 (0) is compact, by 
the same argument as in Theorems 4.8, 4.12, we can prove a version of Section 4.5. 
Especially, the map ap : (Ker Dp)G Ker DG,P in (0.27), (4.88) is still well defined. 
Thus we get the following extension of Theorems 4.8, 4.12, 4.15: 

Theorem 4.18. — Under the assumption i), ii), if P — / / _ 1 ( 0 ) is compact and 0 G 3* 
is a regular value of fi, then for f G ^ ^ П 5 Д Х , End(F)), the algebra of smooth 
sections of X which are a constant map {i.e. CTd^) outside a compact set, then 
Tf i P — p~ r i o j / 2 o- p fa* : Ker Dg, p Ker D g i P is a Toeplitz operator with principal 
symbol 2 r i ^ 2 j ^ ( x ) G End(F G ) . 

In fact, when X = C N , G = T N ° , the torus, L is the trivial line bundle with 
the metric \l\HB(Z) = e~l2' , the Toeplitz operator type properties was studied by 
Charles [15]. 

Another interesting case is a version of Theorem 0.2 for covering manifolds. 
Let X be a para-compact smooth manifold, such that there is a discrete group Г 

acting freely on X with a compact quotient X = Х / Г . 
Let 7Гг : X —> X be the projection. Assume that all the above geometric data 

on X can be lift on X . We denote by J, gTX, cD, J, L, E the pull-back of the 
corresponding objects in Introduction by the projection тгр : X —> X , moreover, we 
assume that the G-action and the Г-action on them commute. 

By the above arguments (cf. [27, Theorems 4.4 and 4.6]), there exists a spectral 
gap for the square of the spinc Dirac operator Dp on X . 

By the finite propagation speed of solutions of hyperbolic equations (2.66), we get 
an extension of [28, Theorem 3.14] where G = 1. 
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Theorem 4.19. — We fix 0 < £o < ynix^x{injectivity radius of x}. For any fc,leN, 
there exists Ck,i > 0 such that for x, x' E l , pG N, 

(4.94) 
|P p

G(:r,x') -P p

G(7r r(x),7rr(x ,)) |^ ^ a , , / , A 1 . if ^ / A ' ( . / ' . . / ) < e0, 

P p

G(x,x')|^z ^ U P " " " 1 , if d X (x ? * ' ) ^£ 0 . 

Especially, P p {x, x) has the same asymptotic expansion as P G (7Vr(x), TCr(x)) in Corol
lary 0.4 on X . 

4.7. Relation on the Bergman kernel on XQ 

From (2.62), if the operator 4>£p^>_1 has the form DQ + AN + 47r|//|2p2 - 27rn0p 
under the splitting (4.86), then we will find the full asymptotic expansion of the 
Bergman kernel on XG from Pp

G{x,xf). 
In this Section, we suppose that X is compact and G is a torus T N ° = M N ° / Z N ° . 

Let 0 : TP —>• g be a connection form for the G-principal bundle n : P = / i _ 1 (0) —> 
X G with curvature 6. Let P^P = Ker<9 C TP. 

Set Af = P x g*, q : A/ —» g* be the natural projection and 

(4.95) c A / = ttV'g + d<q, = tt-wg + (q, 6) + (f/q, 0> 

By the normal crossing formula [22. Prop. 40.1], we know there exists a symplectic 
diffeomorphism such that on a neighborhood U of P. 

(4.96) >!'.„.,, : (A\w) ~ i.\l.^u;. 

and under this identification, the moment map fi (cf. (2.16)) is defined by —q. 
From now on, we use this neighborhood of P and wTe will choose metrics and 

connections. 
Let gg be the metric on g induced by the canonical flat metric on WN°, and {Ki\ 

be the canonical unitary basis of W10. 
Now we choose J an almost -complex structure on PA compatible with LU such 

that on THP on [/, J is induced by an almost-complex structure on TXG which is 
compatible with UJG, and on g 0 g*, for K G g, JK £ g* is defined by (JK,K/) — 
(K,Kf)Q for Kf e g. 

We also suppose G is J-invariant. 
Let gTX be a J-invariant metric on TX such that 

(4.97) gTX = 7T*gTXG 0 £G 0 £9* OH P. 

As is a constant metric on TY = g, V r r is the trivial connection on TY. By (1.3), 
on P, 

(4.98) V ^ = V ^ + V ^ + 5 ( P f ) . 
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Let V A ( 7 V g ( 0 / 1 ) ) be the trivial connection on the trivial bundle A(7V (^ ( 0

/

1 )) (cf. (4.86)) 
on U, and V c l i f f x G be the Clifford connection on A(T^°^XG). 

By (1.7), (4.98), under the identification (4.86), on U, we have 

(4.99) V ^ ^ V ^ ^ I d + I d ^ V ^ V ( N * G ( 0 . 1 ) + 
1 <S(eH)eH, Kl>c((eH)c(Kl) 
2 i j j 

= v ^ 0 i d + i d ^ v r - r ) + 
e" e" 

1 <O(eH)eH, Kl>c((eH)c(Kl) 
2 i j j 

However, the last term does not preserve A ( r * ( 0 ' 1 ) X G ) and A(NG

{0j }). 
From (2.62) and (4.99), in general, ^ p * - 1 will not preserve A(T*<°'1>XG) and 

A(A r

G

( ° ' 1 ) ) if 9 is not null. 
Now, we suppose that O = 0 on XG. 
In this situation, on B = U/G C XG x g*, by (2.62), we have 

(4.100) QLpQ-1 = D2G,p -
E 

I 
( v f ' V + ^ l q l V - S n o ^ . 

By Theorem 0.2, Section 3.2 and (3.19), we know that the asymptotic expansion of 
the Bergman kernel has the following relation for (x, Z±) G NG,x, Z'1-) G NG,X', 
(4.101) Pp

G((x.Z±).(x',Z'±)) = PG,P(x-x')Pn"/2P^-(VpZ±-VPZ!±) + 0(p-°c). 
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CHAPTER 5 

COMPUTING THE COEFFICIENT Φ1 

In this Chapter, (X,OJ,J) is a compact Kàhler manifold, gTX is a G-invariant 
Riemannian metric on TX which is compatible with J. (E,hE), (L,hL) are holo
morphic Hermitian vector bundles on X, and V^, V L are the holomorphic Hermitian 
connections on (E,hE), (L,/z L ) . Moreover, 

V-1 
2тг 

RL = ÜJ. 

The action of G is holomorphic and G acts freely on P — / i _ 1 (0) . Thus 
(XG.LJG* JG) is a compact Kàhler manifold. 

In Sections 5.1 5.4, we suppose that in (0.2), J = J on a G-neighborhood U of 
P = M - 1 ( 0 ) . 

The main purpose here is to compute the coefficient $i in (0.20). 
By (0.19) (cf. also Theorem 2.23), 

(5.1) $i(x'o) = 
zeNGtX0 

pW{Z,Z)dvNa(Z). 

We will first compute explicitly the terms 0\ and O2 involved in P^ in (3.32), 
(3.62), and then compute the integration of P^ along the normal spaces to XG-

Sometimes the computations seem to be long and tedious, involving many subtle 
relations between metrics, connections and curvatures near XG, but fortunately the 
final result on $1 is still of a simple form, as expected. 

Throughout the computations below, a key idea is to rewrite all operators by using 
the creation and annihilation operators bi,bf, 6^,6^+, then under the help of (3.9) 
and Theorem 3.1, we can do the operations and obtain the crucial Lemmas 5.9, 5.11. 

To get the final simple formula (0.25), we still need to prove a highly non-trivial 
identity (5.131). 

In the usual case, i.e., G = {1}, Ma-Marinescu have used the similar formula (3.62) 
to compute the coefficients in varies generalities. In the Kahler case (cf. [31, §4.1.8]), 
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the computation is quite easy as 0\ = 0. In the symplectic case [28, §2], 0\ 7̂  0, 
but the contribution from 0\ is zero at (0. 0) and in the spinc Dirac operator case 
[29, §2], 0\ 0, and the contribution from 0\ is non zero at (0, 0). 

This Chapter is organized as follows. In Section 5.1, we explain various relations 
of the curvature of the fibration P —> XG and the second fundamental form of P. In 
Section 5.2, we obtain the explicit formulas for the operators 0\. O2- In Section 5.3, 
we apply the formulas in Section 5.2 and (5.1) to (3.62), and we get a formula for the 
coefficient <E>i. In Section 5.4, we compute finally $i, thus proving Theorem 0.6. In 
Section 5.5, we explain how to reduce the general case to the case J = J which has 
been worked out in Sections 5.1-5.4. 

In the whole Chapter, if there is no other specific notification, when we meet the 
operation | | 2 , we will first do this operation, then take the sum of the indices. 

5.1. The second fundamental form of P 

We use the notations in Sections 2.2, 2.3. Then the normal bundle NG of XG in 
U/G is (JTY)G. 

Let i : XG —> U/G be the natural embedding. 
We will apply the notation in Section 1.1 to B = U/G. 
Let V T X G , VNG be connections on TXG-NG induced by projections of the 

Levi-Civita connection VTB on TB. Then \7TXg is the Levi-Civita connection on 
(TXG,gTX°). 

Let 

(5.2) "v": = V 7 V " © V v " 

be the connection on TB on XQ induced by V T X A , X7Ng with curvature °RTB. 
Set 

(5.3) a = v t b \ X g - ° v t b . 

Then A is a 1-form on XG taking values in the skew-adjoint endomorphisms of 
(TB)\xG which exchange TXG and NG-

We recall the following properties of RTB, the curvature of VTB: for U, V. W, W2 G 
TB, 

(5.4) 
(RTB{U,V)W,W2) = (RTB(W,W2)U,V) . 

RTB{U.V)W + RTB{V,W)U + RTB{W,U)V = 0. 

On XG, let {e®} be an orthonormal frame of TXG- let {ef} be an orthonormal 
frame of NG, then {e^} = {e^, ej-} is an orthonormal frame of TB. 

The following result gives detail informations on the torsion T of the fibration, as 
well as the second fundamental form A. 
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Theorem 5.1. — On P, the restriction of the tensor (JT(-, J-). •) on (No)®3 is sym
metric, and 

(5.5a) 

(5.5b) 

(5.5c) 

(5.5d) 

(5.5e) 

H ( e ? ) e ? ) " = ì j T ( e ^ , j e ; - " ) , 

T{4M.e°<H) ^niJceVf AJGe°)H), 

T(e°rH .efM) = 2Т{(.]ае»)н ,Jef'H). 
T(efH,ef-H)=2T((JGe°)H,Jef>H),Jef'H){(.]ае»)Jef'H). 
E{(.]ае»)н,Jef'H).=0{(.]ае»)н,Jef'H). 
k 

Proof. •-— Observe first that we have 
(5.6a) 
(5.6b) 

VTXJ = 0: 
(JGe?)" = Je°-" on P. 

Let Z be a smooth section of TY, then by (3.1), JZ G JTY C THX on P, by 
(1.3), (1.7), (3.1) and (5.6a), on P. we have 

(5.7) (j(A(e°)e»)».Z) = -{vffie°<H,JZ) = - < V ^ e ° ^ , JZ) 

• <V™ ( J e ^ ) , Z ) = < S(eO,H)JeO,H, Z> = -1/2\(T^",Je^),Z). 

Thus we get (5.5a), as A(e°)e° e A G = (JTY)G on X G . 
Note that [Z,ef] e TY, by (1.3), (1.7) and (5.6a), 

(5.8) (T(ef ,ef ).Z> = 2 T ^ , ; ' ; = 2<V^ef ,ef > = 2 ( V ^ ( Jef ) , Jef >. 
From (5.6b) and (5.8), we get (5.5b). 
From (1.3), (1.7). (5.8) and JefH,Jef'H € TY on P, we get 

(5.9) (T(e°M, efM), Z) - 2(S(Z)(Je°< / /), . / , / " > = 2 ; 7 !./, . / , ; •"; . Z). 
Thus we get (5.5c). By (1.6). (5.9), we get 
(5.10) 

(T(e°-«.ef>H). Jef) = 2 (T(Je°>H, Jef<»), Jef) = ('J !':,'*". < ,•! !. J' j '" ') • 

Thus we get (5.5d). By (1.3), (1.7), (5.6a) and Je+'H G TY on P, 

(5.11) Irp, L.H ±,Hs j ±.H\ n/v7TY I t ±-,H, j ±.H\ 
{T{et ,e} ),Jek ) = 2(VJex.« ( Je,: ' ),Je} ). /yiTX I T„±.H\ ±.H\ /YJTX ±.H j ±.H\ /rp/ X,H j J_.H\ 7 ±,tf\ 

By (1.7) and (5.11), {JT(-, J-), •) is symmetric on the horizontal lift of Af 3 . 
Note that {Jep } is a G-invariant orthonormal frame of TY on P, by (5.8), 

(5.12) Irp, L.H ±,Hs j ±.H\ n/v7TY I t ±-,H, j ±.H\ 
{T{et ,e} ),Jek ) = 2(V J e x.« ( Je,: ' ),Je} ) . 
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By (1.9) and (5.12), we get (5.5e). The proof of Theorem 5.1 is complete. • 

Remark 5.2. — From (1.6) and (5.5b), Q\xG is a (1, l)-form on XQ- Especially, f )r 
any complex representation F of G, P XQ F is a holomorphic vector bundle on X,?. 
Moreover, by (5.5a), for U £ TXG, V £ NG, we have at x0, 

(5.13) A(U)V = (A(U)V, e°) e°j = - (V, A(U)e°j) e° = \ (T(U, Je% JV) ef 

For xo £ XG, if {ef} is a fixed orthonormal basis of NG,XO as above, then for U £ 
TXNXG, we will denote by 

(5.14) 
Tijk = (JT(ef,Jef),ef) , Tijk = < JT(ef, ef), ef) , 

Tjk(U) = (JT(U,ef),ei). 

By Theorem 5.1, %jk is symmetric on z,j, k and Tjk £ T*QXG is symmetric on fc, 
7 ^ is anti-symmetric on Moreover, as functions along the fiber GXQ, %jk, Tjk, 
Tijk are constant. 

Remark 5.3. — From Remark 1.2 and (5.12), wre know that (JT(. , . ) , . ) is anti
symmetric on (NG)®3 if gTY is induced by a family of Ad-invariant metric on g. If 
G is abelian, then by (1.12), (5.12), T ( . , . ) = 0 on ( N G ) ® 2 , thus %JK = 0. 

5.2. The operators Ou C2 in (2.102) 

We use the notations in Sections 2.6, 3.1, and all tensors will be evaluated at 
x0 £ XG. 

Recall that (AT,cj) is Kahler and J = J on a G-neighborhood U of P = / i - 1 (0 ) , 
then in (3.5) 

(5.15) ai = aL = 2TT 
j 

Clearly, on [7, the Levi-Civita connection V T X preserves T^1,0^X and T^0,1^A", 
and V T ( 1 °)X — Pt(IA))XXJTXpT(l'0)x i s the holomorphic Hermitian connection on 
T ^ ° ) X , while the Clifford connection V c l i f f on A(T^°^)X) is V A < T * ( ° ' 1 ) x \ the nat
ural connection induced by V T ( ) X . 

Let d ® ' be the canonical formal adjoint of the Dolbeault operator d on 
n°'#(f7, Lp ®E). Then the operator Dp in (2.14) is 

(5.16) Dp = yft(dLP*E + dLP*E'*) 

Note that D2 preserves the Z-grading of fì°'*(C7, Lp ® E). 
Set 

(5.17) D2 = D2|A°,1 (U,Lp Q E) 
p,i p 
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Let ALP®E be the Laplacian on Lp O E associated to X7LP®E. Then by (2.51) (cf. 
also [31, (1.4.31)]) , as J = J on U, we have 

(5.18) Dl0 = AL"®E -RE- 2Trnp on U. 

Since V c l i f f preserves the Z-grading of A ( T * ( ° ^ A ) , the operator Jẑ * in (2.100) 
also preserves the Z-grading on A(T*^°' 1)Xo). Moreover, J2?2*

 1S invertible on 
©™ = 1 f t 0 ' q (X 0 , Lp

0 <g> EQ) for t small enough (cf. Theorem 2.2 or [31, Theorem 1.5.5]). 
From Section 3.2, for in (0.12), 

(5.19) P(r) =Ic®EGP
ir)Ic®EG. 

Thus we only need to do the computation for D2

0. 
In what follows, we compute everything on ^°° (L/ , LP ® E). 
Take XQ G XG-
If Z G TX0B, Z = Z° + Z- 1, Z° e T X 0 X G , Z 1- G i V G j X o , | ^ ° | , |ZL|< e, as 

in Section 2.6, we identify Z with exp B

 x r z o(Z" L ) . This identification is a 
expX0°(Zu) 

diffeomorphism from B^XG (0, e) x BXG (0, s) into an open neighborhood (x0) of x0 

in 5, we denote it by Then ^ ( x 0 ) n I G = B^G(0,e) x { 0 } . 
In what follows, we use indifferently the notation B E X G (0, e) x (0, e) or ^(x0): 

xo or 0, . . .. 
From now on, we replace U/G by M 2 n~ n(> ~ T ^ B as in Section 2.6, and we use 

the notation therein. Especially, 
(5.20) vt = tsr1K1/2v<LP*E)BK-1/2su 

and Or in (2.102) takes value in End(EB). 
Let { e ^ } , {ej-} be orthonormal basis of T X ( ) X G , NG,XO respectively. We will also 

denote #*(e°), ^*(ef) by e°, e | . 
Let {e^} denote the basis {e^, ej-}. Thus in our coordinates, 

(5.21) -2- = ex 

dzf j ' 
- 2 - = e x 

dzf j ' 

We denote by (gij(Z)) the inverse of the matrix (gZJ(Z)) = (gJ3

B(Z)) (cf. (2.106)). 
Recall that T\- is the connection form of V T B , with respect to the frame { e ^ } , 

defined in (2.106). Also recall that 11, 71° and TZ1- are defined in (2.72). 
As in (1.14), the moment map ¡1 induces a G-invariant section Jl of TY on U. 
Note also that by (2.50), RE G End(£) defines a section of End(£ s ) on B = Z7/G. 

Recall that h(x) = \/vol(Gx) is defined in (0.10). 
Set 

(5.22) JSf3*(Z) = - ^ ( t Z ) ( V É , C i V * , C j . - * r£ . (*Z)V t , e f c ) 

+ * 2 ( ^ i j " ( V e i V c , f c - TK

L3Vekh)YtZ) - t2RE(tZ) - 27m. 
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By (2.62), (2.100) and (5.22), we can reformulate (2.101), (2.109), in using the 
notations in (3.10), as follows, 

(5.23) 

Vo, = V. + \R^{U, •) = V. - тт^ (JXQZ°, .)XQ , 

^2° = 
n —По 

3 = 1 
b3b+ + 

n0 

j=1 
b3b+ = -

3 
;Vo:ej)2+47T2|Z±|2-2^n, 

&%{Z) = JSf3*(Z) + 4тг2 2 (tZ) - (4тгч/^Т/1 + t 2 ^ , TV (tZ). 
t GTY 9 

If there is no other specification, we will evaluate our tensors at xo, and most of 
time, we will omit the subscript x$. 

Set ho = hX{) := h(xo), and for U G TXoB, set 

(5.24) 

B(Z,U) = 1 
2 E 

n| = 2 

{daRLB)xn^r(n,U), 

h = ((1д^(7г°,е°)7г0 + У^(Л(е°)7г^),е°) 

h = ( ( 1 д ^ ( 7 г ° , е ° ) 7 г 0 + У ^ ( Л ( е ° ) 7 г ^ ) , е ° ) 

+ (e° , V ^ 0 4 ( e ° ) 7 ^ ) ) - 3 <.4(e°)7U, A(e°)7U) 

+ l-(RTB(n^,EF-)n\EF)V0.e^0.ef. 

+ ( (RN-(7Z°. Е°)П\ EI ) + \(RTB{n^. е° )7г \ e^) ) V0,e, V0,e„ 

+ l-(RTB(n^,EF-)n\EF)V0.e^0.ef. 

Recall that the operator Jz? has been defined in (3.10). 
Set also 

(5.25) 

ггг(7г) = 
2 
3 

(7г°, e°)e° + У£?(Л(е°)е°) + RTB(7Z\ e°)e° 

+ А(е?)А(еР)7гх + V™G(A(e°)7U) - Л(7г°)Л(е°)е^ 

^2(7г) = î 
з 

(ДГХс(7г0,е?)7г0,е?) + ( я т в ( 7 г \ е ° ) 7 г \ е ° ) 

1 
3 

( ДГВ (7гх, EI)К\ EI ) + 2 ( £ <Л(е°)е?, ^ > ) 2 
г 

- |Л(е°)7гх I2 + 2 ( v ™ G (Л(е?)7гх), е ° ) . 
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Lemma 5.4. — There exist second order differential operators 0'R as in Theorem 2.11 
such that for \t\ ^ 1, 

(5.26) Lt = L0 + 
3 3 

m 

r = l 
f o ; + ^ ( r + 1 ) , 

with 
(5.27) 

L0 = L-
3 

no 

3=1 
V J . ) 2 - 271710 = L 2 - 4 T V 2 \ Z ± \ 2 , 

o[=-
2 
3 

, ) , / ; < - : ) , . i ^ . < . . z , v „ , 
l 

~ 3 ( 3 f i ? i B ) X 0 ( ^ , e i ) 

- 2 ( A ( e ° ) e ° , 7 ^ ) V 0 , e o V 0 , e o , 

C2 =h +h + 
•1 
.4 

K2(R) 
8 1 

E 
1 ( ^ ( e ° ) e ? , ^ > ) 2 

^2 

-2(A(e9)e0

j.H±) 
•2 
3 

: 5 f c i ? i B ) 1 . 0 ( ^ , e ° ) z , . v 0 , e o + 1 
3 

5fci?iB)1.0(^,e°) 

H- (1^(7^ ,6 , ) Vo.e., -
1 
2 < .4 ( e 0)e« ,^> V 4 ( e « ) e o + 2 < A ( e ° ) e j

0 , 7 ^ ) V A ( e o ) e o 

2 
+ 3 ( i ? T B ( ^ . ^ ) e ^ e j > V o . e j -R^(7Z,et)V0,ei• - RE%0 

1 
' 9 E 

i 
E 
.7 

: ^ / 1

, / " : , . ( / C . ( . ) Z , " 2 1 
h0 

(V, V. h-V .„•!,) . 

Proof. By (2.103) and (5.20), 

(5.28) V*, e / - K1/2(tZ)(vei + 1 
,2 X(j 3 

(^e):) + ^3)xo Zx 

t2 

f 4 |a|=2 

(^e):) + ^3)xo 
"of 2 

H x 0 
( ^ e ) : ) + ^ 3 ) ) « - 1 / 2 ( ^ ) . 

To get (5.27), we could use (2.92)-(2.96), while here we will get it directly from the 
local computation. 

By [1, Prop. 1.28] (cf. [28. (1.31)]) and (2.103), 

(5.29) 
<e° , e ° ) z 0 =6l3 + 1 

3 
< ^ ( ^ 0 , e ? ) ^ , e J

0 ) X O + ^ ( | Z 0 | ^ ) , 

V$BV$BXo = 
ek eoi 

1 
2 

<^(^0,e?)eL 
xo k i j 

Moreover, for W,V G NG^X{), js(t) — (Z°,t(W + sV)) is a family of geodesies fron: 
(Z°,0) in B. Set Y = J ^ M - *(7*(*)) = ^7s(*) = ^ . 

Since V ^ B y = 0, VlBX - VX

BY = [Y, X] = Y* [e/et, §-] = 0, we get 

(5.30) 0 - VT

x

BVlBY = V$BV$BX - RTB(Y, X)Y. 
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Take V = , we get at s = t = 0, 

(5.31) V^w v w et )zo : ^ V £ B V P V £ B X = ±RTB{W,eï)W. 

Under our coordinates, we have 

(5.32) 

( V 2 V ) X 0 = ( V ™ ° e ? ) X o = ( V ^ e ^ 0 = 0, (V2V)X0 = (V™°e?)Xo 

(V^e^Jxo = (V*fef)X0 = AX0(e?)ef, 

(VlBel)z=0., 

( ^ f e i ) z o = ( v ! ^ e i ) z o = 0 . = 0 = 0 

Moreover, by (5.4), (5.29), (5.31) and (5.32) (comparing with [28, (1.31)]), as [e*,ej] = 
0 by (5.21), we have at XQ that 

(5.33) 

V e i V e x ej - —it (e f c , Je, + -K (e f e , )eJ-

VjfVlFef = 0, 
yrjTByryTB ± _ yrjTByryTB ± _ yrjTByryTB ± _ 

yTßyTß 0 TT/TBTJTB 1 

= V^V^fef + A(e°k)A(e°)ef + V™* (A(ef)ef) 

= ±RN°(el e?)e+ + A{et)A{e°)ej + V ™ « (A(e°)e+; 

fV;B№î)e») = 
EJ EK ie 

fV;B№î)e») 
j k i 

+fV;B№î)e») 
eko j j 

V ^ V ^ e ? = V ™ ° V ™ ° e ° + V ^ ( A ( e ° ) e ° ) 
k 3 k i k 

=1/3 lRTX°{ele<j)e°i Ì A r ^ ( e 2 , e ? ) e 5 h j s j f j l j l fV;B№î)e»ghbh) 

In the following, for a tensor ip and the covariant derivative VB acting on ip induced 
by V T B , we denote by 

( V S V B V ) ( C , e , , < . e f c ) = cjCfk(Vf.Vf^)X0. 
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From (5.33), we get at XQ the following formula which will be used in (5.38), (5.39), 
(5.56), (5.57) and (6.26), 

(5.34) 

(T-JTBT-JTB 0\ (R0,R0)_ 1 
3 

R T X - ( ^ 0 , e ^ ° + V^(^(eJ°)eO)ZJ0, 

(V V eI (R0,RL~ 
1 
2 

RNG(n°,e°l)lZ1- + A(^°)J4(e°)^± + V™G 04(e°)7^), 

{vTBvTBe0)(n±jz±) = RTB{n±^eo)n± 

(VTBVTBef){n0,n0) = A(K0)A(K°)ef + V ™ ° (A(e0k)ef)Z°k, 

{VTBVTBef)(1za^) =0, 

VTBVTBef)(1za^) = 1RTB (RL,eL)RL,,^ + RTB{U^ 
3 j 
( V ^ V ^ e , ) ^ . ^ = ( V ^ V ^ e , ) ^ , , ^ + RTB{U^ ,-RP)eâ. 

Note that by (5.32), V^B(AXn(e°)e°) = A(^°)AXo(e?)e?. From (5.32), (5.33), we 
get 

(5.35) 

( V £ V ) Z = V B ( 7 ^ , e ^ + ^(|Z|2), 

(V5Be?)z = - W ' M ' + V™(V§Be? - ^0(e?)e?) + ^(|Z|2) 

(V5Be?)z = -W'M' + V™(V§Be? - ^0(e?)e?) + ^(R°, e°)E)I 

+ V£?(A(e°)e°) + A(e°)A(e°)7^ 

+ V^A'G(A(e?)7e±) + i?TS(7?.\ e°)e° + ^(|Z|2) 

= ^x„(e°)e° + rit(^) + €?(|Z|2). 

Thus by (5.32), (5.33) and (5.34), at x0, 

(5.36) + ^ ((V^V^e^^e,) + \ <e„ (V^V^ej)(^,^)> + ^(eL, VTBVTBeOi). 

= i ( i ^ ( 7 ^ . e ° ) 7 ^ , 4 ) . 

On the other hand, we have the following expansion for (e7, ez)z, 

(5.37) 

(el,eJ)z = (ez,ej)z0 + (Vn± {el,eJ))zo + 
1 
2 

i<e.t,(V^V^ej)(^,^)> + ^(l^|3). 

(el,eJ)z = (ez,ej)z0 + (Vn± {el,eJ))zo +(VR°VRL<ei,ej>+ (V^V^ej)(^,^)xo 

1 
+ 2 

<(VrBVrBeO(Wx,wi),ej-> + i < e . t , ( V ^ V ^ e j ) ( ^ , ^ ) > + ^(l^|3). 
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Thus by (5.4), (5.29), (5.32), (5.34) and (5.36)-(5.37). 

(5.38) (e0

i,e0

j)z = 6IJ-2(AXo(e?)e°J,N±) + 
1 
3 (R

TX°(K0,e°)n°,e°) 

+ ( v ^ ( A ( e ° ) 7 U ) . e ° ) + (e?. V^(A(e^)) 

+ <A(e°)^ x , Aie^K^) + (RTB(TZ±, e ° ) ^ \ e°) + ^ ( | Z | 3 ) . 
and 

(5.39) 
{elef)z = \ (RN-(-R°,e»)K\ef) + \ (RTB(TZ\ e ° ) f c \ ef) + ^ ( | Z | 3 

(ei,ef)z = Stj + \ {RTB{n\ei)n^,ef) + Gi\Zf). 

Note that det(<5;j + a^) = 1 + J2i au + Eiaii+Ei<j(aiiajj-- </,,</,. i H . From (5.25), 
(5.38) and (5.39), we get 
(5.40) 

det9lJ(Z) = 1-2 <A, ( )(e?)e»,7U) + K2(TZ) + ^ ( | Z | 3 ) , 
k1/2 (tZ) = (dei g^^itZ) 

= l-|<A(e?)c?,7e-L> 3^ 
8 VJ <A(e°)e°.7U) ) ' + j*T 2 ( f t ) + ^ ( i 3 ) , 

2 

« - i ( t Z ) = l + |<A( e°)e? sW- L> + 5^ 
8 

(E <A(e°)e°, RL)2 
i i i 

e2 K2(R) + Q (t3) 
4 

Moreover, as a 2(n — no) X 2(n — no)-matrix, we have 

(5.41) ((SIJ-2(AX(,(e°i)e°j!n±))) (SIJ+2(AX0(e9)e°j,n±)) 

+ 4((AX0(e°L)LL±.AXll(e°)K^) ) + ^ ( | Z | 3 ) 

Note that from (3.9), (5.23), 
(5.42) [ (A(e?)e?, 7^> , JS?°] = 2(A(e°)el 4 > V 0 , e x . 

Thus from (5.25), (5.28), (5.35), (5.38)-(5.40), the coefficients off, t2 in the expansion 
ofVM/Z)/r!'.(//iV,.. ; = t ^ ( ^ ) V t . ( V T B e j ) ( t Z ) are 

(5.43) {A{et)etei)V0^-

2 {A{eçi)e%n^) V. 4 ( eo ) eo + (RU(K), EJ) V 0 , e j + 2 
3 [R

TBVlJ-,ei-)ei;ei)V0,ej 

1A{eçi)e%n^) V.4(eo)eo + (RU(K), EJ) V0,ej 

2 
1 
3 

;ö f c J R L -) X ü Z f c (^.^(e°)e°) 

By (5.22), (5.28) and (5.38)-(5.43), the coefficient of / in the expansion of is 0[ 
in (5.27). 

We denote by [A, B}+ = AB + B i . 
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By (5.22), (5.28), (5.35) and (5.38)-(5.41), the coefficient of t2 in the expansion 
nï.y* ^ • / r J - l /Z iV , . . , is 

(5.44) h-2{A{e°)e%ll^) '\v0.eo{dkR
LB)Xo(K,e<$)Zk 

+ \(dkR
L°)X0(K^)ZkV0^ - i [<A( e ° ) e ? ,7 i ± ) ,V 0 , e . ,Vo . c o]" 

+ /i + 1/2 (Aie^elTZ^) ,à(dkR
LB)Xl)(n,el)Zk,V(,.ei} + 

'\v0.eo{dkR
LB)Xo(K,e<$)Z h-2{A{e°)e%ll^), L°2 

1 
~ 4 

<.4( e ?)e« .^ J -> .^ 2 ° ] < A ( e 2 ) e ^ . , ^ > - ^ f ( ^ . e 7 ; ) V o . e , 

1 
~ 9 E 

2 
E 
J 

(QjRLB)xo (R,ei) Zj]2 RE + 1 (Vej Vej h - VA(eo)eoh)xo. 
t,xo ho i i 

Here /2 i« from the coefficient of £2 in the expansion of glJ, the second term is the 
product of the coefficients of t1 in the expansion of g2J and Vt, e iVt. e.. ; /1 is from the 
coefficient of t2 in the expansion of RLB , the fourth term is from the product of the 
coefficients of t 1 in K 1 / 2 ^ " 1 / 2 and in K " 1 / 2 V f . e , : V;, e , K 1 / 2 (cf. (5.28)). the fifth and 
sixth terms are from the coefficients of t2 in the expansions of K 1 / / 2 . A C _ 1 / / 2 and the 
product of the coefficients of t1 in the expansions of K1^2 and K~XI2\ the seventh term 
is from REB , and the eighth term is from the product of the coefficients of t1 in the 
expansion of RLB . 

Certainly, 

(5.45) 

1 
6 (A ( e? )e? ,7e ± >, [ (a f c i ? L f i ) X o (W,e i )^ ,V 0 ,e i ] + ; 

1 
~3 

( ô f c ^ ) X 0 ( 7 J , ^ ( C ? ) e ? ) Z f c . 

By (5.42) (5.45) and by the fact that A(e®)e® is symmetric on i, j , we see that the 
coefficient of t2 in the expansion of j£f3

f is (92 in (5.27). • 

To simplify the notation, we will often denote by e% the lift of e*. 
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Lemma 5.5. — The following identities hold, 

(5.46a) ( 0 * Ä L B ) * O ( ^ ) ^ = - 3 v / ZI ^ < J T ( ^ , e O - JT(R?,PTXGei),n^) , 

(5.46b) 
V-1 

TT B(Z,e°) = 
1 
6 

{RTXg(71°, J7l°)K^e°) 5 
~ 4 

( j ^ , V ^ ( T ( e 2 , e ? ) ) Z , > 

1 
+ 2 ( 2 V ^ G {A{e°l)ef)Zf + RTB(K^, e^ll1- + RTB{n±, П°)е^ JTZ°\ 

1 
~ 2 

(T(TZ°,n^),T(e?,Jn0)) 2д т в (7г ± , 7 г 0 ) т г ± , j e ? \ 

1 
~ 2 

( i t > T f î ( ^ \ ^ ° ) ^ ° , Je?) 

1 
f 2 

/ , /7г х ,т(7г° - J r c ,e ° ) < J ^ . r ( e o , , / e ? ) > 

1 
+ 8 

(T(TZ°,n^),T(e?,Jn0)) 1 
" 8 

(T(1l0.JK0):T(ll±,e'ì)) 

1 
~ 8 

(T(TZ±,JTZ0),T(7Z1e^)) 
1 

- - ( 
2 

т{п^,.т^),т{Т1,е!)\ 

- - {.JT{el Ж0), ef) < Jf t x , Т ( Я \ е+)> 

Proo/. — By (1.6), (1.14), (1.18) and (2.16), 

(5.47) 
V-1 

2TT 
RLB(ek,ei) = <Je^,ef /> + M (e) (e f c , eO 

= <Je^,ef/> += <Je^,ef/> 

Thus by (3.33), (5.5a), (5.6a) and J = J , we get at XQ the following formulas which 
will be used in (5.62), 

(5.48) V-xo = 0, ( V £ V ' M ) X 0 = -JK^, ( V T V ' V T y ' / 7 ) ( K ^ ) = T ( ^ , JTZL). 

By (3.36) and ¡1 = 0 on P, we have at XQ, 

(5.49) (V e , : < £ , r ( e f e , e , ) » * „ ( v ^ J / z , T(e f c , e , ) ) + ( M , V ^ J ( T ( e f e , e , ) ) \ 

= <JT(e f e ,e , ) ,e ,>. 

By (3.40), (5.6a) and (5.32), we have 

(5.50) ( V e f í (Je^ef1))^ + (jef,V^ef EhL)XO 
+ ( j e f , V ^ e f EhL)XO 

1 
_ ~2 

(JT(el, e/e), e/) 
1 

~ 2 
(Je f c ,T(e , , eO) 

+ ( J A ( P T X g

e i ) ^ G e f c + JA(PTXgeK)P
NGez, PTXget) 

+ < JPTXGeklA(PTXGe%)P
NGet + A ( P T X G e L ) P N G e l ) , 
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By (5.5a), (5.47), (5.49) and (5.50), for U e TXoB, 

(5.51) 

V-1 
2TT 

duRLB)X0(U,ei) 3 
" 2 (JT([/, ei),U) - 2 (A(PTXGU)PNGU, JPTXgeL) 

+ (JPTXGU, A(PTXCU)PNGei + A ( P T X G e z ) P 7 V G L / > 

= |<JT(t/,e z) - JT{PTXGU1PTXGeL),U). 

Note that (JTY)G = NG on X G , by (5.51), we get (5.46a). 
By (5.24) and (5.47), one gets at XQ, 

(5.52) 
V-1 

7T 
B(Z,el)= 1 

: 2 (VV ( Je*, e,) + VV (ju, T(ek, et)) ) ZK. 

From (5.6a) we have 

(5.53) ( w < J e f , e f > ) ZK = (JTZ, (VTXVTXeH){^1z)) 
{71,11) 

f <J(V™V™ef ) № ef >Zfe + 2{ J V ^ e f , V ^ e f >Zfe. 
From (1.2), (5.32), one finds at XQ that 

(5.54) 
JTZ1- e TY, JTZ0 e TXG, 

VlBe9 = A(e9)K, V £ V = ^ ° ) e x , 

( V ^ x e f ) Z î Z J = ,V," ;-,l"Z..Z, = 2A(7e°)^ x + .4(^°)^° 

Now by (3.40), 

(5.55) 

- \ (J1Z^,T{1Z,A{ef)1Z)) - \ {JTZ, V^Y(T(eÎ,E0))Z,;> ,+3JV^°(A(e?)e+)ZPz/,C?) ., JTZ0) 

By (5.34). we get 

(5.56) (J(VTXVTXe»)(n.Tl),e
0'H)Zk = (2JRTB(JZ±,7Z°)7Z±+JRTB(JZ±,TZ°)TZ°,e^ 

+ 3 V ^ ( A ( e ° ) , ^ - ) Z ° + 2 i ? T B ( / ^ ± , ^ ° ) ^ ± + RTB(K^,K°)1l0, 

From (5.34), (5.54), (5.55), (5.56), the anti-symmetric property of the torsion ten
sor T and the fact that A exchanges TXG and No, we get 
(5.57) 

W ( V r x v r x e o , * W ) ) = \RTX-{TZ0,e°)TZ0 + V£f (A(e°)e°)Z7

0, JTZ0 

+ (2VT

n

XG(A(e°i)ef)Zf + i 2 T B ( f t \ e ? ) ^ + RTB ,TZ°)e°, JTZ0) 

- \ (J1Z^,T{1Z,A{ef)1Z)) - \ {JTZ, V^ Y(T(e Î , E0))Z,;> , 

(J(VTXVTXe»)(n.Tl),e
0'H)Zk = (2JRTB(JZ±,7Z°)7Z±+JRTB(JZ±,TZ°)TZ°,e^ 

+ (,JV^(A(e0)e0)Z0Z0 +3JV^°(A( e ?)e+)ZPz/, C ?) . 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2008 



108 CHAPTER 5. COMPUTING THE COEFFICIENT <ï>! 

Note that from (1.8), (5.3), (5.5a), (5.54) and A exchanges TXG and NG: 

(5.58) { JU, V ^ ( T ( e „ e?))Z,> = < Jf t \ V£y (T(e,, ef))Zt) 

1 
+ 2 

(T(n,jn°),T{n,e?)) . 

(J^lB(A(e°s)e9)Z9z?,ef) = - (A(7l0)A(1l0)Tl0,Je^ 

1 
~ ~4 

(T(K° . .m0).T(R° ,él)), 

<V^f(A(ej0)eö), J7EU> = - (i(e.0)e»,i(K0)JK°) = 0. 

By (3.40), (5.6a). (5.13), (5.54) and the fact that A exchanges TXG and NG, at x0, 

(5.59) I(Г(7г0,J7г0),Г(7г,EL)))^ Zk = (jVlBek,A(e°)K-^T(K,ef))zk 

= (jA(n0)TZ0,-^T(n,e\))) + 2(JA(lZ°)K^,A{é})ll^) 

= I(Г(7г0,J7г0),Г(7г,EL)))^ \(JH±,T(H0,e0j))(jn±,T{elJe°j)) 
By (5.53), (5.57)-(5.59), at x0, 

(5.60) +• ì ( jn-L, Т(П, e°)) ( jnx, T(e°, Je°)) 1 
3 

(7^. e(/)7^ + ßTß(^x. ^°)e°, Jft°) 

+ (2V^G(A(e?)ex)Zx + i ?Tß(7^ . e(/)7^ + ßTß(^x. ^°)e°, Jft°) 

- {2RTB(TZ^,n°)n^ + RTB(TZ^,n°)Tl0 + 3V™G (A(e°)ef)Z?Zf, J e t y 

1 
~ 2 

< J 7 ^ , T(K, A(e?+ V£y (T(ei. e°))Zt ) 1 
+ 4 

(T{n0,Jn°),T{TZ^,e(i)) 

1 
" 4 

<T(^X,./^°),R(^, e?)> + {JTZ^^TCR0^0^) (JTZ^.Tiefjef)) 

Observe that A ( e ^ ° e JVG, A^Tl1- G TXG. By (5.5a), (5.5b), (5.5d) and 
(5.13), 

(5.61) (JK±,T(R.,A(e?)1l)) = {Jn^.T{n. A{ef)n0)) + {.m^,T{1Z, A(ef)TZL)) 

_ 1 
~ 2 

(jT(ef,J-R°).ef) (jTZ^,T{n,ef)) + (J7Z±, T(K, A ( e ? ) 7 ^ ) ) 

1 
' ~2 ' 

(T(e(i,.m0),T(TZ0,n±)) + I (JT(e^,Jn°),ef) ( J ^ , T ( f t \ e+)> 

+• ì ( jn-L, Т(П, e°)) ( jnx, T(e°, Je°)) 

From (5.48), at XQ, 

(5.62) (VV <£,T(efc,e,)))(TC,TC) 

= ((V^VRyM)(WlW), T(ek, eO) + 2 <v£y£, V^(T(efc) e,))> 

= (T(Tl±,JK±),T(ek,el))-2(V'gr(T(ek,el)),J1l±) 
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Finally, by (5.4), (5.52), (5.60), (5.61) and (5.62), we get (5.46b). 

We now examine the coefficients in the expansion of terms involving the moment 
map Ji. 

Set 

(5.63) O" = -
2 

1 
3 

(^TYgTY){n,n)Jn±,Jn±)-
1 

" 6 
<V^(r(ei,JXoe?)),J7e-L>ZJZ? 

1 
+ 3 

(v#? (A(eQ)e°)Z°Z? + RTB('R,±,n0)'R.0,n±) 

1 
~ Ï2 

i 
(T(TZ, ei). J7Z±)2 + 

1 
4 

('R,±,n0)'R.0,(R°,Rl) 

+ ^-\T(7Z±,.m±)\2 + \ (T(K°, JTl^),T{Tl\ JK^)) 

Lemma 5.6. — For \t\ ^ 1. we have 

(5.64) \-/l\2gTY (tZ) = \ZX\2 ~t(T(TZ\ JKX), jn±)+t2o'^ + û{t3). 

(jî,jîE)gTY(tz) = -t(jn±,^0) 

+ t2{\{T(n\jnx)^EXu)-{jn\y^r)X0) + ^tn 

Proof. — By (3.36), (3.38), (3.39), (5.6a), (5.54), J = J and ¡1 = 0 on P, we get, at 
XQ, 

(5.65) (VJJV^ VTJT,)X„ = -PTYJV^xVTexeB - ±T(eH,PT"xJVT?eH) 

- i v ^ ( T ( e f . P ^ - J e f ) ) 12;V7,; V.',) (V,',) 
2V7,; V.',) (V,', 

12;V7,; V.',) (V,',) 
2 V7,; V.',) (V,', 

12;V7,; V.',) (V,',) 
2 V7,; V.',) (V,', 

From (3.40), (5.48). (5.54), (5.55), (5.56) and (5.65), we have 

(5.66) iV:M VVVVM//;. ( V . : = ;V7,; V.',) V,',)//i,„Z,Z;Z, 

= -JV^(A(e^)e?)Z?ZP - 3.M(^°).4(^°)^J- - 2PTY J RT B {Tlx, K^Tl1 

- PTYJRTB{Kx,n0)n0 - T(n,JA(K°)n^) 

1 
~ 2 V F ( r ( e f ,PT"XJeB))ZjZl + , V . ' V ) ( R , R ) J R . - ^(T(TZ\ J7^)) 
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Now by (3.50), (5.48), and Ji = 0 on P, we have 

(5.67) \jß\2gTv(tZ) = 
4 

fc=2 

1 dfe 
kl dtk '|/x|2TV(tZ))|t=0ifc-2 + ^(t3) 

= |VTY u|2xo(VTy VFV^iu)^.^), V^?>in 

/2 
+ 4! (8 <(VTy V F V ^ i u ) ^ . ^ ) , V^?>in + 6|(VFVryjEE)(WlW)ß0) + €?(f3). 

By (5.5c), 

(5.68) T{nQ.,JTZx) = ^ t^-U/ tz0) . 

From (1.6), (5.13), (5.48), (5.66), (5.67) and (5.68), we get the coefficients oft0,/1 
in the expansion of \jjl\2TY (tZ) in (5.64), and the coefficient of t2 is 

(5.69) 
1 
3 

'jV^iAie^e^Z^Z? + 3JA(ft°)A(ft°)7^ + JRTD (TZX ,TZ°)7Z°, jnx) 

F J (2JRTB(R±,n°)TZJ- +T(n..JA(n°)K±),Jn±) 
Ó 1 

~ 3 
jV^iAie^e^Z^Z? + 3JA(ft°)A(ft°)7^ + JRTD (TZX ,TZ°)7Z°, jnx) 
jV^iAie^e^Z^Z? + 3JA(ft°)A(ft°)7^ + JRTD (TZX ,TZ°)7Z°, jnx) 

1 
+ 3 

[T(TZ, J^X),T(^-L, J^-1)) + J T(n±,JR±) 2 

_ 1 
~ ~3 <(VTy5TV')(TC,TC)JW-L,J^> + 1 

6 
(T(^°,e°), JR^f + i (T(n.e°J),Jn± 
T(n.e°J),Jn±) (T(R°, e°), JR±) 

1 
+ 3 

y^iAie^e^ZVZ? + RTB(R±, lZQ)n°, Ux) 

4 ^ 
i 

(T(^°,e°), JR^f + i (T(n.e°J),Jn±) (T(R°, e°), JR±) 

7 
+ Ï2 

T(7Z±,J7Z±) 2 -f 
1 
3 

T(n.e°J),Jn±) (T(R°, e°), JR±) 
T(n.e°J),Jn±) (T(R°, e°), JR±) 

To get (5.64) from (5.69), we need to compute VTJ'(T(ef, PT*'xJef )) . 
For IF a section of TX, U a section of TB, we have by (1.7), 

(5.70) (VT»XPT»XWMH\ - eH (W,UH) - (PT"XW,^UH) 

= (pT"xVTE?W, ^ + (PTYW^ X7™UH) 

From (1.7), (5.70), we get at XQ, 

(5.71) VU XPT XTF = PT xvT£w -VU XPT XTF = PT xvT£ 
1 
2 

( T ( e f , e f ) , P ^ i y > e f . 

Remark that Je,±,/f G TT, Je° G T ^ X only hold on P. 
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From (3.40), (5.5b), (5.6a), (5.13), (5.32) and (5.71), 
(5.72) 

{vTjxPT«xJe±M)x> = JA{pTXaek)e± _ l-JT{ek,ei) - \ <T(efc, e,), Jef) e, 

= -\jT{ek, ef) - \ (T(ek, et) - T(PTXGek, PTXGel), Jef) eu 

( v T » * p T « x J e o ) r o = F T » , J V T X e o , H = JA{eo)pNGek _ 1 JT^O) 

= -\jT(ek,e?) + \ (JPN°ek,T(ele°))e», 

(VlBJx0eï)X0 = . U . / , , < : ' : « „ = -±JT(PTX°ek,e<l) + \ ( J ^ E T ! T ( e » , e ? ) ) e » . 

From (5.72), we get at xn that 

(5.73) 
= (T (n,-^JT(Tl,n^) - i (T(Tl,ei) -T(1l0,PTXGei),J1l^)eiJ , JftM (jn±,v¥tE)) 
= (T (n,-^JT(Tl,n^) - i (T(Tl,ei) -T(1l0,PTXGei),J1l^)eiJ , JftM (jn±,v¥tE)) 

= (T{e,.^XPT"XJe^ - Vl"x(JX0P
TX-elf)ZJZl, J7^) 

= (T (n,-^JT(Tl,n^) - i (T(Tl,ei) -T(1l0,PTXGei),J1l^)eiJ , JftM 

(T ( C i , - ± j r ( e f c , e ? ) + i j T ( P ^ e , , e ° ) ) Z^Z^JTZ^ 

= --(T (K, (T(TZ, et) - T(TZ°, PTXGet), JTZ^) a) , JTZ^) 

= -L-YJ{T(n:el),JTZ^)2 + 
i 

^<Г(7г,е?)^7гх)<Т(7г°,е1 ,),,/7г±> 

From (5.69) and (5.73), is the coefficient of t2 in the expansion of \\fi\2

gTY{tZ). 
By (5.48), we get also the second equation of (5.64). 
The proof of Lemma 5.6 is complete. • 

The following is the main result of this Section. 
Theorem 5.7. — The following identities hold, 

(5.74) 

Ox =2ir\f^l (JTiTZ^, e°), TZ^) V 0 i 6 o + 2TT\/^Ï (JT(R, e^-),1ZJ-)V0^± 

+ T T ^ T < JT{1Z\ eï), et) ~ ( JT(e°, Je% 1ZX) V 0 , e o V 0 , E « 

+ TT^T < JT{1Z\ eï), et) ~ ( JT(e°, Je% 1ZX) 
+ TT^T < JT{1Z\ eï), et) ~ ( JT(e°, Je% 1ZX) 

o2 =OF

2 + A^O'2> - AK^I(\ < T ( ^ x , j t ^ ) , a l ) - (jn±,v¥tE)) 

_ \Mx0' Vxo/gTY • 

Proof. — By (5.5e), at XQ 

(5.75) {JT{n,ei),ei) = (JT(K°,ei),ei). 
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By (5.46a), (5.51) and (5.75), 

(5.76) 

- i (c),PLß )I0 (TZ. e%) (TZ. e%) 
- i (c),PLß )I0 (TZ. e%) (TZ. e%) 

= 27TV/^I( (JTiTZ1. e°). TZX) V0. eo + ( JT(^, e^). TZX) V 0, ex ) , 

- i (c),P L ß ) I 0 (TZ. e%) = TTv^T < JT(K°. ei ) . ef ) . 

From (5.5a), (5.23), (5.27), (5.64) and (5.76), we get (5.74). 

5.3. Computation of the coefficient «3?! 

Recall that the operator «if2° is defined in (5.23). P^± is the orthogonal projection 
from L2(W°) onto Ker«if^ and Peg is the orthogonal projection from L2(M.2n~2n") 
onto Ker Jz? as in (3.19). 

For Z x e M"», set 

(5.77) 

* 1 , i ( Z ± ) = ( ( ^ 2 ° ) - 1 P A r " o 1 ( j S f ° ) - i p ^ o 1 P ^ ((O.Z^),(0,Z^)). 

* i . 2 (Z- ) = - {{^)-'pN± 02PN) ((0. Z x ) . (0. Zx)) . 

* i ! 3 ( ^ ) = ( ( ^ r 1 P w l 0 1 i " ' 0 1 ( y 2 V 1 P ' v i ) ((0,Z^).(0.Z^)) , 

# 1 , 4 ^ ) = ( p " ö 1 ( ^ 2

0 ) - 2 P A " O 1 P < v ) ( ( 0 . Z ^ ) , ( 0 , Z x ) ) , 

* i , i (Z - L )= ((^r'P^'P^O^r'P^O^) („I .Z ,.;0.Z ,)• 

* i , 2 ( z x ) = - ( ( J ^ r ^ p ^ o ^ ) ( ( a z ^ M o . z ^ ) ) . 

Ql,i = 
Rno 

*i . î (Z- L )dvv G (Z ± ) . for ; 1.2.3.1. 

Proposition 5.8. — The following two identities hold for i = 1, 2, 

(5.78) 
JRno 

*1.i(Z±)dvNc(Z±) = $1,i. 

Proof. — In fact, in our case, by (3.21). PN = P^ 0 P^x <g> Id E . 
By (3.18) and (3.19). 

(5.79) ( ( ^ 2

0 ) - 1 p N " e>2 p A r ) ( Z, (0, Z / X ) ) 
= ( ( i f 2 ° ) - 1 P j V i O 2 P ^ ( - , 0 ) G ± ) ( Z ) G ± ( Z , ± ) . 
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From Theorem 3.1 and (5.79), 

(5.80) Ф1<2 = <(-(jSf2°)-1PJV"C72Ps?(-,0)G-L)(0,Z-L)1G-L(Z-L)>L2fR„01 

Ф1<2 = <(-(jSf2°)-1PJV"C72Ps?(-,0)G-L)(0,Z-L)1G-L(Z-L)>L2fR„01 

= / *i,2(Z±)di;JvG(Z-L; 

In the same way, we get (5.78) for i = 1. 

Note that the restriction of ||.||É)0 in (2.114) on ^̂ (M271"710, PG,X()) does not depend 
on t and we denote it by ||.||o-

Since Jz?2 m (5.23) is a self-adjoint elliptic operator with respect to || • ||o as we 
conjugated the operator with AC1//2, f̂2° and ®r are also formally self-adjoint with 
respect to ||.||o- Thus in the right hand side of (3.62), the third and fourth terms are 
the adjoints of the first two terms. 

From (3.62). (5.1) and (5.77). we get 

(5.81) $1 = $1,1 + $1,2 + ($1.1 + $1.2)* + $1.3 - $1,4-

From (5.77), (5.78). (5.81). we learn that in order to compute $1, we only need to 
evaluate ^1,1- î.2? $1.3 and $1,4. 

Lemma 5.9. — The following identity holds. 

(5.82) w1.1(ZL) = - 1 
8TT 

T(e , eL) 
ezj k 

2p^,(z±,z±). 

Proof. — Recall that the operators bi, 6,+ , bj and bj+ have been defined in (3.8). In 
particular, by (5.15), one has for / € T* XG, 

(5.83) 
4nZJ = bj + bj+. V0.ei = = 1/2 (-bj+-- bj). 

/(e°)V0.eo = -f(^)bi + f(^)bt t 

By (3.8), (3.9) and (5.83), set 

(5.84) 
Bjk = (4n)2ZJZJ = bf+bi+ + bjbj+ + bjbj+ + bjbj + Aiz5jk, 

= btbfbi + :>>b; h; h.; ' + 3bjbj+bj + + bj+bj+bj+. 

If dijk is symmetric on i.j.k, then by (3.8), (3.9), (5.83) and (5.84), one verifies 

(5.85) a.^ìzSZ, Z; Zk = « / ; , , / , ' , ; , + 12-,/,,,.;/-; + bj+). 
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By (3.9), (5.5e), (5.14), (5.83), (5.84) and the fact that T(, ) is anti-symmetric, 
we get 

(5.86) 2n(JT(K±,e±),'Jl±)V0^ = 1 
167T TJlkBfk{bf+-bi) 

_ 1 
16TT TJIK [(bfbf+ + bfbf)bf+ - (bf+bf+ + bfbf+ + bfbi+)bi] 

~ 8TT L 3 K 
[bfbf+ + bfbi)bf+. 

By Theorem 5.1, Remark 5.2, (3.9), (3.12), (5.14), (5.74), (5.84)-(5.86), we can 
reformulate 0\ as follows by using the creation and annihilation operators introduced 
in (3.8), 

(5.87) OX = -
V-1 

8TT 
pT{^,ef),ei)Bfkbt + h 

V-1 
8TT 

( djo, ef ) , ef \ Bfk 

V-1 
4 {JT{n\ef),ef)(b^bf + -bfbf)-

8TT 
TIjk(bfbk

L+ + bfbk

L)bf+ 

-V1 
4TT 

+ y/=l(Jef,nZ) (bf+ + bf) - ^Q- (JT(éi' ä%),4) (ht+ + bf)(2bJbT + 4TT<%) 
+ y/=l(Jef,nZ) (bf+ + bf) - ^Q- (JT(éi' ä%),4) (ht+ + bf)(2bJbT + 4TT<%) 

+ j - - (JT(ef, Jef), ei) [Bfk + 12n6tk(bf+ + bf)] 

= -^rjk(^)Bfkbt + ^QrMéj^Bf, + ^Tl3{n°)(bi+bf+ - bfbf) 

+ y/=l(Jef,nZ) (bf+ + bf) - ^Q- (JT(éi' ä%),4) (ht+ + bf)(2bJbT + 4TT<%) 

- ^rijk(bfb^+ + bfbi)bf+ + -±-%jk[Bfjk + 12nólk(bf+ + bf)]. 

From Theorem 3.1, (3.54), (5.84), (5.87) and en = of = 2ir, we get 

(5.88) (№)-*OXPN) (Z,Z') = ^i[h.TKK{^) + (Jet, fig) g 

- ( ^ ( ^ , J Ô W ) b± 
47T 

bfbi 
32TT 

Tkl(zQ + z'°) 

V-1 
16TT TFCLM 

•bfbfbi 
12TT 

+ 3biSlm~\}pN(Z, Z'). 
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By Theorem 3.1, (3.55), (5.84) and (5.87), 

(5.89) PN±Pjg±01 = y^ÎPN Pjg, -l-T 
2 3 3 

(e)bi+ 
ezi 

l Tjj (a)bi 
2 azi 

+ (Jef^Q)bf+-
1 

4-7T 
JT (e , e ), eL, 
ezi ezj j 

bf,+(2b3bt +47r^) 

1 
f 4 i Ti i1 CR, ) Tjjt 

e bj 
zei 2TT 

+Tjj a bi 
2ezi 2TT 

eL +bL + 
J J 

V-1 
16TT 

Tljr[bi+bf+bf,+ + 127rStfbi+}. 

In the following equation, by (3.9), (3.54), (3.55), we only need to pair the terms 
in (5.88) and (5.89) which have the same length on b^+ and bj~, and the total degree 
on bi,bf,z°,z° should not be zero. Thus by (3.9), (3.54), (5.88) and (5.89), 

(5.90) 

( p ^ p ^ o ^ r ^ p ^ i z , ( o , ^ ) ) = {PN± 
1 

16TT 

E bi Tjj ( e ))2 
ij ezoi 

1 
1287T 

(Tjj, (R°)+ bi Tjj' ( e ) 
2TT AZI 

bfnj+.btbiTH{z«)]pN}(Zl ( 0 , ^ ) ) . 

From (3.9), (3.54), (5.5d), (5.14), (5.90) and az = a+ = 2TT, one gets 

(5.91) 

27T JT(TZ°, et) + biJT^et), JT(z°, e^))~ pN1- 1 
16TT E ^ ( a | ) ) 2 

1 
h 8 

(27T JT(TZ°, et) + biJT^et), JT(z°, e^))~ pN (Z, (0,ZF±)). 

Set Pj£ = IdL2(M2„-2rl()-, — Peg. 
Let hi(Z°) (resp. F(Z 0 ) ) be polynomials in Z° with degree 1 (resp. 2) and a y £ C. 
By Theorem 3.1, (3.9) and (3.54), 

(5.92) (F(Z°)F^)(Z°,0) 

-I a 2F 
2 a^o^o 

6 j 

z°z° -
d2F 

dzfdz0, 
1 J 

-z° 
BJ 

qj 
1 d2F bibj 
2 dz°dz° aia3 

PMZ°,o). 
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By Theorem 3.1, (3.8), (3.9), (3.19), (3.54), (5.92) and a3 = 2vr, we have 

(5.93) 

(P^FP^)(0,0) = 1 d2F 
TT dzfd-z0 

{•y • l'y <i,,l),hj / ' / ) (0,0) = (L--1Pj^hiPse) (0,0) = 0. 

{X-^P^hibiPce) (0,0) = (L--1 P^bihiP*) (0,0) 1 òhi 
2tt dz*? ' 

(JZ-ip^FP*) (0,0) = 
1 

4tt2 
c»2F 

dzföTz0 

(sf-ip^biFbjPj?) (o.o) - - ( y - ' ^ M / ^ ) (0,0) = 
1 

2TT 

d2F 
dz?dz° 

(Sf^P^FbibjPsf) (0.0) = 
3 

2TT 

d2F 
dzfdz0 ' 

(^-1Pi(y^6!;/ ï î)2p^)(0,0) 
2 

1 
2^ 

dzfdz0 
dzfdz0 ( E § ) 2 ) 

2 1 
Finally by (5.78), (5.91), (5.93) and JS?2° = jSf + JS?1- , we get (5.82). 

Lemma 5.10. — The following identity holds, 

(5.94) $1,3 = $1,4-

Proof. — Let T<2 <E T*()XG with values in real polynomials on Z1- with even degree, 
T\ G iV^ Xq (g)End(-E/G,x0)5 r̂3(̂ "1) a polynomial on with odd degree, be defined by 

(5.95) 

F1(eL) = < JeL, u E > -
K K XO 

V-1 JT д д 
^ dz? ' dz1/ 

eL 
K 

+ 3 Tuk, 
4 

J='2(-:Z±)PN(Z, Z1) - (Tk,l(.) bj bk 
32TT 

PN)(Z, Z'), 

T3(Z±)PN(Z, Z') = 1 
16TT 

Tklm bmbjbk 
127T 

PN)(Z, Z'). 

Then from (3.54), (5.88) and (5.95), 

(5.96) ((^20)-1O1PN) (Z, Z') = 
V-1 

4 
Tkk(z° - z'°) - v^ï^2(z° + z'°. ZX) 

+ (F1+F3)(Z±)S)PN(Z, Z') 

Observe that TT{ZX)* = T,{ZX) for i = 1. 3. thus from (5.96). 

(5.97) (PN01(^2r1) (Z'^Z) = {{{^2)~lOiPN) (Z.Z')Y 

= ( - V-1 Tkk (z° - z'°) + 
4 sf~lP2(z° + z/0.Z±)+ (T1+T-Ì){ZX)^PN{Z',Z). 
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For hi(z°), h2(z°) two linear functions on z°, z°, by Theorem 3.1, (3.9) and (3.54), 

(5.98) ( P ^ M ^ > 2 ^ ° ^ ) ( 0 , 0 ) = 'PMz0) dh2 
dhi 

bi 
2TT 

PJS?)(0,0) 1 dhi dh2 
TT dz? d1°t 

From (3.19), (5.77) and (5.96)-(5.98), 
(5.99) 

* i , 3 ( ^ ) - ( ( ^ 1 + ^ 3 ) ( ^ ) ) 2 -
1 
7T 

1 
4 k 

; T „ ( J 7 ) + ^2(J? ,Z^) |2 ]G-L(Z-L)2 . 

By Theorem 3.1, (3.18), (5.95), T3G^ (j = 1,3), T2{ Jcr, 0 ^ are eigenfunctions 
of Jzf1- with eigenvalues 47rj, 8TT, thus they are orthogonal to each other. 

From (5.77), (5.96)-(5.98), we have 

(5.100) Ф, 4(ZX) = G±(Z±)'2 
Rno 

{ ( ( J - 1 G ± ) ( Z ' - L ) ) 2 + ( № C 7 ± ) ( Z ^ ) ) 2 

1 
+ Î67T 

\2^Tkk(^)G±\\z'±) + ^2(^r)G±\\z,±)}dvNa(Z'x). 

From (3.18), (5.77), (5.99), (5.100) and the above discussion, we get (5.94). • 

Now we need to compute the contribution from — (Jf®)-1 PN±02PN. 
Recall that we denote by ( ) the C-bilinear form on TB (g)̂  C induced by gTB. 

Lemma 5Al. — The following identity holds, 

(5.101) ^ i , 2 ( Z X ) = 
{ 2TT (RTXG ( 4 ' 4 } 4 - 4 ) + 48^ (RTB(e*> 4 4 ) 

+1 T(e, e)|2 
96TT azi azj 

V 3 ! 
167T 

T(eï,Jei),T a a -
az°j az°j 

13 
192TT 

T (eL 
k 

a 
dz® 

|2 

V-1 
96TT 

11 V TY 
A az°j 

T (eL 
k 

e 
az°j 

+ 4V7! 
95» 

(T(eL ) 
M 

a 
â ° -

+ 7V^7(T a a ^ 
â » ' â o 

Jekl 

2 
3TT 

V a v d 
3 3 

log h + 
1 

2TT 
REB a a 

dz°1 a^} 
PLl (ZL , Z l ) 

Proo/. — By (3.9), (3.12), (3.54), (5.24) and (5.83), 

(5.102) 

hPN = lb±B(Z,^) + bjB(Z,^) + 7j^ B(Z, a ) 
az°j 

J ô ( / i ( z . ^ ) ) } p \ 

By (3.55) and (5.102), 

(5.103) PL[I1PN = PL[ b3B(Z, a 
dzo 

a 
dz<3 

B(Z a 
az°j 

a 
â y 

B(Z, a 
az°j 

PN 

By (5.46b), and observe that from Theorem 3.1, only the monomials which have 
even degree on Z± and Vex, and which have also strictly positive degree on Z° and 

j 
V0,eo, have contributions in PN Pc£±I\PN. 
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By Remark 5.2, (3.55) and (5.46b), 

(5.104) PN±P^ d 
d7J 

(B(Z, * ) ) _ а (B(Z, * ))PN -TTV-1PNL PL[ 

(RTX-(K°, JTl0)K0, J . ) - (RTX°(K°, jn°)n°, ^ ) }PN 

= - 1 P ^ ^ 2 j R T X G ( A - 0 ) _ | + RTXG{J^N0)Z0 + RTXG(_^-0)N0^ A/AZ°JpN 

By (5.23), (5.93) and (5.104), 

(5.105) 
- {{j^r'P^P^ ( a l ( B ( Z , J , ) ) - 4*(B(Z, -£ô)))PN) ( (0 ,Z X ) , (0 ,Z X ) ) 

_ 1 / r>TxG( a a \ a , r>TxGf a d \ a a \ P /7J_ 7J_\ 
-Ì (JT( Jo, J^°),eX) <J7e±,r(^,eX)>]pAR| ((0,ZX), (0,Z,±))eX)>]pAR| ((0,ZX), (0,Z,±)). 

Observe that if Q is an odd degree monomial on bj. bf, z°, then 

(5.106) (QPN) ( ( 0 , Z x ) , ( 0 , Z , ± ) ) =0. 

By using this observation, (5.4) and (5.46b), we get 

(5.107) - ((^)-1pN^b3B(z, S°)pN) ( ( o , Z X ) , (0 ,Z R ± ) ) 

= 7rV-~ïl(^r1PN±bJ (RTXC{K0, JR°)n°, J* ) 

- I ( v ^ ( T ( e x , ^))Zf + v £ (T(Cg, ^ ) ) Z g , JTZX) 

+ QRTB(n±,JR°)R1- + V~~lRTB(n±,n°)R±,^ 

- ^ < J 7 e \ T ( ^ , e 0 ) > (jR\T(e°, J , ) ) 

- ì (T(7e x , J f t ° ) , T ( f t \ ^ ) ) + \ (T{nX,JTZX),T{R\ J * ) ) 

- Ì (JT( Jo, J ^ ° ) , e x ) < J 7 e ± , r ( ^ , e x ) > ] p A r | ( (0 ,Z X ) , (0 ,Z , ± ) ) . 

From (3.6), (3.54), (5.5b) and (5.84), we have 

(5.108a) (T (Jo ,e 0 ) ,T(e 0 , J ô ) ) = 
(T(Jo,e0),T(e0, Jô)) = 

(5.108b) PL[ ZL ZL PL[ 
K L 

Ski p 
4 ^ -
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By (3.54), (5.5e), (5.93), (5.107), (5.108a) and (5.108b), 

(5.109) ((L0)-1 PNL PLLbjB (Z; 
2 d ^ pN ( ( 0 , Z ^ ) , ( 0 , ^ ) ) 

= {(L0)-1 PNL bj 
2 

~7T 
-3 'RTX°(z0,z°)K0, 

5V-1 
16 

<VTY (T(eL, e)) 
R° k ezj 

<VTY (T(eL, e)) Z°i , JeL> 
R° k ezj 

i 
f 8 

V-1RTB (eL,JR°)eL 
k k 

-2RTB (eL, R°)eL , e > 
k ezj 

3 
32 

T(TZ°,ef),T(el^j) V-1 
32 

[T(ei,JK0),T(e£, a 
ekj 

V-1 
8 

fT{ei,Jei),T{n\^)) pN ((0, ZL),(0,ZL)) 

1 
12TT 

<RTXG a a \ a 
^ a ŷ ' a ^ / a ^ 

RTXG a a \ a a 
•дzf, off'O?7' d¥> 

5 v ^ T 
32TT 

vV a 
ezo 
j 

T(eL ,e) ) 
k ezoj 

- V - ( T a a > 
a ^ ' di{> 

,JeL 
k 

3 
16TT 

RTB et a 
a ^ 

eL 
k 

a 
EZJ 

3 
32TTI 

T a a 
a^(; ' a-1; -

I2 

1 
64TT 

T(eL 
k 

a 
a ^ 

l2 V-1 

16TT 
F(eL, JeL),T 
k k 

a a 
â (; ' a-1; -

PL (ZL. ZL) 

For G\(Z) (resp. G2(Z)) polynomials on Z with degree 1 (resp. 2) and F £ 
r T * o X G ®T x * o X G , by Theorem 3.1, (3.9), (3.12), (3.19), (3.54) and (3.55), for any k,l, 
k',V, 

(5.110) 

V0,efPN = -27TZ^PN, 

PN±P^iG^bi + G2{Z)bibt + Zi,bv)P
N = 0, 

l(RTB(K\et)K\ ef ) V 0, ex V 0 , e , PN 

= -^(RTB(n±,ef)HJ-,ef)PN, 

F(e°,e°)V 0 , e oV 0 , e oF w = [ F ( ^ , ^)6 i 6 j : - 4 T T F ( ^ , Jo)] P i V . 
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By (5.24) and (5.110), we get 

(5.111) 

hPN = • - з ( A ( ^ )TZ\ A ( )?гЛ + ( , v™c (A( )тг^ ) ) ) 

- з ( A ( ̂  )TZ\ A ( )?гЛ + ( , v ™ c (A( )тг^ ) ) ) ъгъ, 
- з ( A ( ^ )TZ\ A ( )?гЛ + ( , v™c (A( )тг^ ) ) ) ъгъ, 

- з ( A ( ^ )TZ\ A ( )?гЛ + ( , v™c (A( )тг^ ) ) ) ъгъ, 

Observe that as A(ef)e® e NG: we have at XQ, 

(5.112) <V£f(.4(e°)e°),e°> = (A(R°)A(e№,e°). 

Thus by (3.12), (3.54), (3.55), (5.25), (5.108b), (5.110)-(5.112), a3 = af = 2n, and 
the arguments above (5.104), 

(5.113a) PN±P^, < r ^ ) , e ; ) V0,e,PA' = ~\PN± {RTXG{'R0,e0l)el,^)b]PN, 

(5.113b) *N± p^i2PN = PN±{((\ RTXG . J ô ) K ° , é ) 
- з ( A ( ^ )TZ\ A ( )?гЛ + ( , v™c (A( ) 

- з ( A ( ^ )TZ\ A ( )?гЛ + ( 

By (3.6), (5.4), (5.93), (5.113a), (5.113b) and the fact that RTXG(, ) is a (1,1)-
form, we get 

(5.114) • PNXP#± (h + (T^U), EI) Vo.e, )PN) ((0, ZX), (0, Z^)) 

- — i -X I F>T* G I _d_ _d_ n _d_ , r>TXG I _d_ _d_\_d_ d \ 
- 671T \ \ dz«' dz° I dz° 11 \ dz'p dz<l> dz° ' dz<> j 

- 2 (R™°{L°,,E№ 4- RTXG{^, (E E) E E>J.) }p^(^, Z-) 

EZJEZJEZJ EZJ = (PTXG(Jo, 9=ô)âfô, J ö ) Pj^^(^±-, z^). 

Now by (5.25), (5.46a), (5.84), (5.108b) and (5.110), 

(5.115) 

-pN±P^lzZ [ZW^MEAZ^P* = ^ | r ( 7 ^ ) | V , 

- \(^rlpN'P^[K2(K),2$]PN = \PN±P^,K2{U)PN 

= _Lp^x (RTXG(TZ°.e^n0.e^)PN. 
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By (5.13), (5.47), (5.49) and (5.50), as T(., .) € TY, we get 

(5.116) V-1 
2тг ;9°i? L ß k,(^.e°) = -\ (JTZ\T(elet)) + (jA(e°)KX,EI) = 0. 

Thus by (3.9), (5.27), (5.46a), (5.115) and (5.116), we get 

(5.117) -PN±P^O'2PN = PN±P#±{ -h - ( / 2 + (r„(^ ,e , )Vo,e , ) 

-\[K2(K).^} -RE°{K, 4j)b3 - ^\T(n°,eir)\2}pN. 

Note that RTXG(.,.) is a (1, l)-form, by (3.54), (5.4), (5.93), (5.103), (5.105), 
(5.109), (5.114) and (5.117), 

(5.118) - ((^)-1PN±P^O'2PN) ((0,Z±),(0.Z±)) 

= - (i,^2°)-lPN±P^^ (h +h + (TuCR.), ei) V o . e , ) ^ ) ((0, Zx), (0. Z x ) ) 
1 
2TT 

REB (e , eL 
ezj i 

1 
3 ' 

f>TXG(_d_ 0\ о 
1 1 Удг°'ег)ег^ d~z° / 

1 
4 

T(e , eL 
ezj i 

}PLL(ZL ,ZL) 

г 1 

12тг 
lRTXG д д \ д д 

azoj azoj azoj azoj 
3 

16тГ 
RTB (eL , 
k 

_¿L eL 
k 35? / 

3 . 2 

+ 3 2 7 r ( ^ ? ' ^ ) 

V-1 
16тГ T{eï,Jeï),T д д 

dz1] 5 dTj > 
7 

64тг 
T (eL , a ) 
k azoj 

I 2 

5V-1 
32тг 

VTY 
a ezo 
j 

(T EL, 
k 

д 
щ 

+ VTY 
eLk 

д д 
dza. ' 02° 

JeL 
K 

+ è i ? £ B ( 4 ' ^ ) } p ^ ( z ± ' z ± ) -

By (3.54), (5.63), (5.84), (5.108b), (5.110) and the arguments above (5.104), 

(5.119) ^PN±Pce,0'iPN = 4^PN±P^{- \ {{VTYgTY)(no,nQ)Jn±..Jn±) 

+ I (V%(T{ef, JXoe°))ZJ-Z° + v £ (T(e°, JXoe9))Z9Z°, JKX) 

+ \ ( i ? r B ( ^ ± , ^ ° ) ^ ° , ^ ± ) - i - V (T(n°,ei), mx)2 }PN 

I 

= lpN±{\(v%(T(et, JXoe?))Z? + V£'(T(e°, JXoe?))Z?Z°, Jef) 

~ {(V^g^^^yJei.Jei) + (RTB(et,7l0)n°.eï) -\\T(R°. e^P». 

Let { / / } be an orthonormal frame of TY on X. 
As VTY preserves the metric gTY, by (1.4), (1.24), 

(5.120) ((^g^)fiji) = Veo ( ^ ;

V / / . / / ) = 4VeoVeo log/i. 
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Now {Je^} is an orthonormal basis of TY along the fiber YXi) and {e/} = {e^} U 

By (3.54), (5.93), (5.108a), (5.119) and (5.120), 

(5.121) - V ( ( ^ 2

0 ) - 1 p n 1 ^ i O 2 P ^ ) ((0, Z 1 ) , (0, Z 1 ) ) 
_ 1 

47Г 
V-1 

6 
- V 7 ! (Т(е£, + V^J (T(et gf* )) ~ 2 V ^ ( T ( ^ . J , ) ) , Je^) 

7)77 J Ш 3 к j j I 

2AXG log h + |T(4, Jrr)|2 + ^ (T(e^, JejÉ"), T(^, J,)) . 

{2(v^(T(e^, JJ)),Je^)-(T(^ô^T{2(v^(T(e^ 

By (5.74), (5.77), (5.118) and (5.121), we get (5.101). The proof of Lemma 5.11 is 
complete. • 

5.4. Final computations: the proof of Theorem 0.6 

By (3.40), (5.3), (5.5a), (5.6a) and (5.32), as Jej: e TY on P, we get at x0, 

(5.122) 
SJlÏJei = PTY^Jei = PTYJVjfei = 0, 

V£BJe° = V ^ J e ° + Л(е?)Je? = JT(e°, e°) = V, ' ."- : . /„ / , ' ) . 

By (1.6), (1.24), (5.5c) and (5.122), as in (5.120), at x0, 

(5.123) <V^(T(e^ ,e° ) ) , Jei)xo = - 2 < V ^ ( T ( Je°, Je^)), Je^> 
= -{(VlfgtyJetJei-) = - 4V e oV J i o < 5 o log/г. 

By (1.21) and (5.123), we get 

(5.124) 

V-1 {2(v^(T(e^, JJ)),Je^)-(T(^ -4V a V a log h = AXG log /г, 
Щ Щ 

= V^T{2(v^(T(e^, JJ)),Je^)-(T(^ô,Je^),T(e^, 

Note that T(et, e3) = -[ef, ej*], as [e i ; ej] = 0. By (1.4), (1.6) and the Jacobi identity 

(5.125) V7TV (rni 0,H 0,H\\ Г -J-.-tf Г 0,Я 0,Яц I TV -L,H <-p,S>,H 0,Д\\ 

= Le».H(T(ek> ,e3 )) - Leo.H(T(ek' ,e{' ))+T(ek ,Т{е{ ,ej )) 
x-iTY irrt ±,H 0.H\\ rvTY /TV -L,H О.Нчч ^/ O.H гГ,±,Н 0,Н\\ 

+ Т{е0 ,Т(ек .ег- ))+Т{ек' ,Т(ег' ,ej )). 
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Thus by Theorem 5.1, (5.124) and (5.125), 

(5.126) v ^ î ( v ^ ( T ( ^ , ^ ) ) , J e - ) e ^ ) , T ( e ^ , J o ) ) 

= V ^ T { 2 ( v ^ ( T ( e ^ , J J ) ) , J e ^ ) - ( T ( ^ ô , J e ^ ) , T ( e ^ , J o ) ) 

+ ^T{2(v^(T(e^, JJ)),Je^)-(T(^ô,Je^),T(e^, Jo))} 

= 2AXG log h + | T ( 4 , Jrr)|2 + ^ (T(e^, JejÉ"), T ( ^ , J , ) ) . 

By T(e z ,e J ) = - [ e f ,ef ], (3.40), (5.6a) and (5.55), we have 

(5.127) pTX/ H H\ H -rjTXrjTX H irjTXrjTX H yjTX H 
3 J K 1 K j J 

= RTB(ek,eJ)el - l-T{ek, V ^ e J + ^ ( e , , V ^ e , ) 

RTB(ek,eJ)el -
 l-T{ek, V^eJ + ^(e,, V^e,) 

( ^ ( e ^ , e r ) ( ^ o e i

0 ) w , J » 0 e ^ ) = ( i i T X ( e ^ , e ; ' " ) e ; ^ , e ^ ) . 

By (5.5a), (5.6a), (5.13), (5.32), (5.122) and T(e^,e°) e TY, at x0, (JXoei)H = Je? 
on P, we get 

(5.128) 
V^(J . „e° ) = 0, Vy(Jx 0e5) = i<r ( e ° , e ?) , J e ^> e ? , 

-iv^(T(e°, Jaoe°)) + iv^(r(ex, JXoe°)), 

We apply now the first equation of (5.127) into the second equation of (5.127), by 
using (1.8) and (5.128) and T{, ) is a (1, l)-form, we get at XQ, 

(5.129) \\T(efe°)\2 + - i v ^ ( T ( e ° , Jaoe°)) + i v ^ ( r ( e x , JXoe°)), JeA 

= <i?^( E F C \ E 0)e°, e

x > + 1 ( v ^ ( T ( e x , e ° ) ) , e x ) 

= < ^ ( ^ , e ° ) e j ° , e x > - i | r ( 4 , e ° ) | 2 . 

Finally, from (3.6), (5.124), (5.126) and (5.129) and T( , ) is a (1, l)-form, we get 

(5.130) 4(R™(ei,^,eï) = 2^(v:r(T(^,^)),Jeï) 

- 2 v ^ T ( v ^ I (T{ei, J*)), Jet) + \T(ei, ^r)\2 + 2 T(£,, J , ) " 

= 2AXG log h + 3\T(ei, ^ ) | 2 + 2JT( Jo, Jo ) f 

+ 2 v ^ ( r ( 4 , J e x ) , T ( B f o , B § ô ) ) . 
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From (5.124)-(5.130), 

(5.131) 
V-1 
96TT 

' l l V T J (T(ei, J^)) + 4 V T X ( n 4 , ^ )) + 7 V J 7 ( T ( ^ , J^)) , J e A 

1 
48^ 

(r(4,Jex),T(Bfo,B§ô) V-1 
16TT 

(r(4,Jex),T(Bfo,B§ô) 

(Bfo,B§ô))) 11 
1927T 

± a 2 1 a a 2 ADAD 

By (3.19), (5.77), (5.82), (5.101) and (5.131), 

(5.132) *1,1 + $1.2 = 
1 

2^ 

1 -pTXcu d _d_\_d_ d \ 
AZOJ AZA AZO ZEE 

(r(4,Jex),T(Bfo,B§ô)4,Jex), 

1 ^ 1 
= r

X c 4- - A y loe:/i4- ~—REG(W° W°) 

From Lemma 5.10, (5.81) and (5.132), we get (0.25). 
Recall that we compute everything on ^^{X, Lp <g) E). 
From (5.18), (5.19), (5.22), (5.23), comparing to (2.109), we know that in (0.20), 

&r(xo) £ End(^ ) a : o , and the term r x , RDET will not appear here, and r = 27m, thus 
we get the remainder part of Theorem 0.6 from Corollary 0.4. 

The proof of Theorem 0.6 is complete. 

5.5. Coefficient <3>i: general case 

We use the general assumption at the beginning of this Chapter, but we do not 
suppose that J = J in (0.2). 

Let d ' be the formal adjoint of the Dolbeault operator d yft(dLP on the Dol
beault complex fi°'*(X, Lp 0 E) with the scalar product ( ) induced by gTX, hL, ^ 
as in Section 2.2. Set 

(5.133) Dp = yft(dLP*E + dLP*E>*) 

Then 

(5.134) Dp = 2{o yft(dLP a + a a yft(dLP ) 

preserves the Z-grading of r i 0 , *(X, Lp & E). 
For p large enough, 

(5.135) Ker D>p = Ker D2

p = H°(X, Lp ® E). 

Here Dp need not be a spinc Dirac operator on Q°'9(X, Lp 0 E). 
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Let Pp(x,xf) (x,xf G X) be the smooth kernel of the orthogonal projection Pp 

from (^°°(X, LP <g> E), ( )) onto (Ker D 2

P ) G with respect to the Riemannian volume 
form dvx{%r) for p large enough. 

We explain now how to reduce the study of the asymptotic expansion of Pp(x, xr) 
to the J = J case. 

Let g^x(. 5 .) := cj(. , J.) be the metric on TX induced by UJ. J. We will use a sub
script UJ to indicate the objects corresponding to g^x

 5 especially r̂ f is the scalar cur
vature of (TX, g^x), and AxG,u> is the Bochner-Laplace operator on XQ as in (1.21) 
associated to g^Xc • 

Let detc denote the determinant function on the complex bundle T^^X, and 
|J| = ( -J 2 )" 1 / 2 . 

Let hE : — (detc)J\)~1hE define a metric on E. Let RE be the curvature associated 
to the holomorphic Hermitian connection on (E, hE). 

Let ( ) u j be the Hermitian product on ^°°(X7 Lp 0 E) induced by g^x, hL, hE as 
in (1.19), then 

(5.136) ( ' ^ ( A ' . P : E).( ) J = (^°°(X,TP ®E),{ >), dvx,„ = (detc\3\)dvx. 

Observe that H°(X, Lp <g> E) does not depend on gTX ,hL, hE. 
Let P^p(x,x/) (x,xf G X) be the smooth kernel of the orthogonal projection P^p 

from (^(X, LP 0 £"), ( ) J onto H°(X, LP <g> E)G with respect to r/rA_.(.r). 
By (5.136), 

(5.137) P?{x,x') = (detc\J\)(xf)PG

p(x,x'). 

We will use the trivialization in Introduction corresponding to gEX. 
Since g^x{. , •) = , J.) is a Kahler metric on TX, A^p is a Dirac operator (cf. 

Def. 2.1). Thus Theorems 0.1, 0.2 hold for PG

p(x,x'). 
Let dvB be the volume form on B induced by gTX as in Introduction. 
As in (0.11), let K e ^°°(TB\XGJR) be defined by for Z € TXOB, x0 e XG, 

(5.138) dvB(x0,Z) = Kl(x0IZ)dvxG,Lj(xo)dvNGuJXQ. 

As in (0.17), we introduce J^p(xo) a section of End(£,c) on XQ, 

(5.139) J?p(x0) = 
yft(dLP 

|Z| E o 

h2(x(h Z)PP° o ((x 0. Z), (rc0, Z))K(X0, Z)drxi:^. r{]. 

Then the analogue of (0.18) is 

dim(Ker£L)G = 
' XG 

((x0. Z), (rc0, Z))K(X0, Z)drxi:^. r{] 

Summarizing, we have the following result. 

Theorem 5.12. — The smooth kernel Pp' (x, x'') has a full off-diagonal asymptotic ex

pansion analogous to (0.14) with Qo = (detc |J|) I d # G as p ~^ oo. There exist 

$ r ( x 0 ) G E n d ( E G ) x 0 polynomials in A „ , R^B, R E b , \ i E R E (resp. h„, RLB; 
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resp. ji) and their derivatives at xo to order 2r — 1 (resp. 2r, resp. 2r + 1)7 and 
3>0 = Id-EG such that (0.25) holds for J?p. Moreover 
(5.140) 

Q1 (xo) = 1 
8TT 

r*G +6A X G , c , l og (^ | X G ) -2A X G , u ; ( l og (de t c | J | ) ) + AREg.w%J . 

Here {wuj} is an orthogonal basis of (T^ 1 ' 0)XQ, 9^Xg)• 

Proof — By (5.136), detc \3\h2dvB = dvB^hl. Thus by (5.139), 

(5.141) P1 (xo) = 

\Z\^e0 

hi(x0, Z)P^p o * w ( ( x 0 , Z), (x 0, Z ) ) ^ ( x 0 , Z ) ^ G ^ ( Z ) . 

From the above discussion, only (5.140) reminds to be proved. But 

(5.142) REG = REG - do log (detc|J|), 

Thus 

(5.143) ïR^tâjtâj) = 2REG(WZJÌV^JJ) - AxG,clog(detc|J|), 
and (5.140) is from (0.7) and (5.141). 
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CHAPTER 6 

THE COEFFICIENT P 2)(0 70) 

The main purpose in this Chapter is to compute P( 2 )(0,0) in (0.16). The formula 
for p( 2 )(0,0) in Theorem 0.7 is quite complicate, it involves /i, the volume function 
of the orbit and the curvature for the principal bundle P —» XQ-

This Chapter is organized as follows. In Section 6.1, we compute the contribution 
of ^1,1, ^1,3, ^1,4 in (5.77) for p( 2 )(0, 0). In Section 6.2, we compute the contribution 
of ^i 52 in (5.77) for P( 2 )(0,0) . In Section 6.3, we prove Theorem 0.7. 

In this Chapter, we use the same notations and assumption as in Sections 5.1 
and 5.2. 

6.1. The terms ^1,1,^1,3,^1,4 

As in (5.81), we have 

(6.1) P ( 2 ) (0 ,0 ) = ( * M + * i , 2 ) (0 ) + (*i, i + * i , 2 )*(0) + ( * i , 3 ~ * M ) ( 0 ) . 

For k £ N, let Hk{x) be the Hermite polynomial, 

(6.2) Hk(x) = 
lk/2\ 

J = 0 
(L1)j k\ (2x)k-2i 

k\ (2x)k-2i 

Here [k/2\ is the integer part of k/2. 
By [42, §8.6] (cf. [31, Append. E]), (3.8) and aj~ = 2TT, we have 

(6.3) {bt)ke-^\2 = {2ir)k'2Hk{^Zt)e-^\ 

Especially, for I fixed, i G N, 

(6.4) 

( ( ^ ) 2 , : + 1 e - 7 r l z " l 2 ) ( 0 ) - 0 , 

( ( & j L ) 2

e - ' l ^ l 2 ) ( 0 ) = -47R> ( ( ^ ) 4 e - 7 r | ^ ! 2 ) ( 0 ) = 3.(4 7 r) 2 , 

( (6 j L ) 6 e - ' r | z ' J ' | 2 ) (0 ) = 15 • (-4TT) 3 
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Recall that when we meet the operation | |2, we will first do this operation, then 
take the sum of the indices. Thus \%jk\2 means X ĵ/c \^jk\2 ̂  etc. 

By (3.22), (5.95) and (6.4), 

(6.5) ^2(. ,0) = 1T . PN(0,0) = 2no/2. 

By (5.99), (6.4) and (6.5), we know 

(6.6) #i,3(0) = 
2no/2 

7T 
1 
4 k 

;rfc,(jô) + ^2(jô.o) |2 
2̂ o/2 
64TT E 

k 
Tkk{-Q=ô) • 

From (3.17), (3.18), (3.54), (5.100) and ajr = 2TT, 

(6.7) *M(0) = G±(0)2 1 
4TT E 

k 

F1(eLK)2 + 
1 k 

6 • (4tt)3 
(192TT2)2 TKLM\2 

1 
+ ÎÔTT E 

Tkk ( A ) 2 
2 • (4TT)2 

7T • (32TT)2 I 
Tkk(A)2 

2no/2 
47T E 

/e 
^ ) 2 + 

;rfc,(jô) + ^2(jô.o)|2 + |^2(jô.o)|2 

Lemma 6.1. — The following identity holds, 

(6.8) *i,i(0) = 
19 

26 • 3TT l ^ ( ^ ) | 2 ' 
11 

27 -3TT 
•T2 + 

1 
287T 1~kkm Tllm 

- 2 ^ ; ( * № * ( * ) " ^ E ^ ( ^ ) 2 " ¿ ^ № ^ " ( 0 , 0 ) . 

Proof - Recall that G XQ 0 End(i£G,x0) was defined in (5.95). Set 

(6.9) 
V=î(^( Jô)6^ + l^(^)^ + ^+ " W)) bf) + TIN, 3k) 
V=î(^( Jô)6^ + l^(^)^ + ^+ " W)) bf) + TIN, 3k) 

V-1(jô) + 5(o)|2 
32TT 

*2 = V = î ( ^ ( J ô ) 6 ^ + l ^ ( ^ ) ^ + ̂ + " W ) ) -V - 1 = ^ t , ( , > ^ 

= -ÇR.jAbfb^ + b f b f ^ ^ e ^ + T ^ ÇR.jAbfb^ + bfbf^^e^+T^ 
=^t,(,>^ 

1927T2 
Observe that by (5.93), when we evaluate #1,1 in (5.77), in each monomial, if the 

total degree of 6;, z° is not as same as the total degree of 6;+, z°, then the contribution 
of this term is 0. Thus by (3.9), (3.54), (5.77), (5.84), (5.87), (5.88), (5.95) and (6.9), 

(6.10) #i , i(Zx) = [(^)-1PN±[l1+l2+T3 

+ (^(ef)(bf+ + bf) + TIN, 3 k ) (^{ei)b± + TKLM 

=^t,(,> 

192TT2 
\^PNj(Z±,Z±). 
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By (3.8), (3.19) and (6.4), 

(6.11) (bjzfPN){0,0) = - 2 5 ^ ( 0 , 0 ) , (b£bj-bjZ?PN)(0,0) = 8nSijSkiP
N(0,0). 

From Theorem 3.1, (3.9), (3.54), (6.4), (6.9) and (6.11), 

(6.12) ( (^ ,

2

0 ) - 1 P A ' i XiP A r ) (0 ,0 ) 

1 
~ 32tt 

(J$)-1PNXTkk(^)(4TjJ,(7^)bfbf, + blbfbf,Tjf(z°))pN} (0,0) 

— 1 t ( d \ 
32TT 

Tjj' (a) 
ezoj 

bfbf, 
2ir 

7^)bfbf, 

12tt 
Tn,(z°))pN}(0,0) 

(PN^I2P
N)(Z, (o,^)) = ^{p^t-hJô) 

By (3.9), (3.54), (5.5d), (5.14), (5.84) and (6.9), 

(6.13) (PN^I2P
N)(Z, (o ,^) ) = ^ { p ^ t - h J ô ) 

'hTkl{z°)Bff +(bf + bf,+-bfbj-^z^bib^P^iZ, ( 0 , ^ ) ) 

= ^ ^ ' ( J ? ) { f 7 V ± [ № ( Z ° ) ( 2 ^ + ^ + + 2 6 ^ + +47TV) 

+ 2Tkl{^){bf+bfl

+ -bfbf,)]bibfPN\(Z, (O.Z'-L)) 

= ^2^'(afo ){^(647r 2 7] T (^) + 167r7jy^°)&+# + 47r^TH(2°)&£&jL) 

-2Tkl(^)bfbf,b^PN}(Z, (O.Z' 1 )) . 

If Ojj', /3,t; S C for j , j ' , fc, Z G { 1 , . . . , no} and /3̂ / is symmetric on k, I, then by (3.22) 
and (6.4), 

(6.14) (a3ff3klbfbj,bibi-PN)(0,0) 

= { [ J2 [2akil3ki + akkf3u) (bi)2(btf + "uAK&r)4] PN}(0,0) 
k^l 

(4tt)2 (^T{2akl(3kl + akk0u) + 3^/3«) P w (0 , 0) 
kM 

= (4ir)2(2aklf3kl + akk(3ll)P
N'(0,0). 
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Thus by Theorem 3.1, (3.8), (6.4), (6.11), (6.13) and (6.14), we get 

(6.15) ( ( ^ 2 ° ) - 1 P 7 v i r 2 P
A r ) ( 0 , 0 ) : ••^rjr(-^)[(l6nbiTjj,(z°) 

+ ±biTkr{z°)bfbi + UjrbMz°)bibl- - l-Tkl{^)bfbf,bibt)pN^ (0,0) 

1 [ 6 4 7 F |-r f_2_M2 _l ËZIt. f-9_\T I à • 
~ 287T2 3 jj,y-dz°" ^ 3 In{-d-z0

t)-
lkky-dz°-

- 2 7 r ( 2 | ^ ( J ? ) | 2 + ^ ( J ô ) T f c f e ( J ? ) ) ] P"(0,0) 

1 
" 28 • 3TT 

- 7 6 | ^ ( J 7 ) | 2 + 2 T J J ( J 7 ) T f c f c ( ^ ) ] F w(0,0) 

By (3.9), (3.54) and (6.9), we get 

(6.16) I3P
N = 

V-1 

8TT 
Tijr hjbf.Fxieï) + Tumbfbf, 

V-1 

16n 
+ 1-Turbfbr]pN. 

By (5.5e), (5.14), (6.4), (6.14) and (6.16), we get 

(6.17) ((JSf 2

0)- 1P J V" LX 3P
A f) (o,o) = 

V-1 
64?r 

TijrTijrP
N (0,0) =0, 

as Tijji is anti-symmetric on i,j and T^y is symmetric on i.j. 
By Theorem 3.1, (3.9), (3.54) and (6.4), 

(6.18) {{^)^PN±^ef)(bf++bf)^(ei)^PN)(0,0) 

= l b (r^tmfP") (0. °) = ~i £ * K X ) 2 ^(0, 0). 
.7 

Recall that T^im is symmetric on /c,Z,m. 
By Theorem 3.1, (3.9), (3.54), (5.84) and (6.4), 

(6.19) 

{(J?2

0)-lPN± (^f)(bf+ + bf)Tklm 

bïbfbi 

192TT2 

+ Tjjj 
R-L 

64TT2 
^(ei)bi)pN}(0,0) 

= {{^rlPN±T1(ef){bfTklm 

bïbfbi 

48n2 
+ Tjjj bfbi 

4/T 
F A ' } (0 ,0) 

1 
32TT2 

{F1 Tjimbfb^ bfbibfb^ 

24TT 
+ Tjimbfb^ 1^1(0,0) 

1 
32TT2 

{F1(eL) (E Tjll 
l#j 

{bjfibff 

8TT 
+ Tjjj ibfY 

24ir 
f TjU(br)2)PN}(0,0) 

=-f TjU(br)2)PN}(0,0) 
16TT 
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As Tkim is symmetric on /c, /, m, we know that 

(6.20) t2 a ST T2 -u ̂  t2 -4- T2 
xklm / j x kirn ' ° / ^ ^kkm ' ^ m mm ' fc</<m kj^rn 
k̂krn̂ llrn — ^ ^ ^kkm l̂lm ~t~ ^ ^ (̂ k̂krnPrnrnrn "t~ ̂ kkrn) r̂nrnrri' 

ky^l^m^k k =̂  m 

From (6.4) and (6.20), we get 

(6.21) (Tiij,Tklmbtbfbf,bkLbi-b^PN){Q,0) = {(36 
k<l<m 

^m(tf)2(*r)2№2 

+ 9 
k#1#m#k 

TkkmTllm(bi)2(bh2(bi)2 + 6 
k^m 

P'kkmPrnrnrnipk ) (^m) 

k^m 
TmmkTmmk(bif(bir + T^mm(bif)pN}(0,0) 

= (-4tt)3(36 Tfc2m + 9 ^ rfefem7ï/m 
k<l<rri k^él^érriy^k 

H~ 3 ^ ^ {^^kkrn^rnrnra + QTrnrnkPrnrnk) ~t~ ^ ^ m m m j ^ 
v(o,o) k^m 

= (-4TT)3 • 3(2Tfc2TO + 3Tfcfcm7I,m)PjV(0,0). 

By (3.9), (3.54) and (5.84), we have also 

(6.22) PN±TtjfBijJ,Tklmbib^biPN = (TijrTklmbibfbj,bkLbibt 

+ Z^TijmTkimbibfbibi + 36TT • %ir%imTklmbibiXPN. 

Thus from Theorem 3.1, (6.14), (6.21) and (6.22), 

(6.23) { ( ( ^ 0 ) " l F W ± ï i ^ ' ^ ' T ^ { ( ( ^ 0 ) " l F W ± ï i ^ ' ^ ' T 
bLbLbL 
k l m 

192TT2 
|P"}(0 ,0) 

1 
210 • 3TT3 

1 
,24TT 

Tl33,Tklmbibjbj,bibtbi + -TljmTklmbibfbibt 

+MirTllmTklmblbt)pN} (0,0) 

1 
210 • 3n 

{-8(2Tfc2m + 3TkkmTllm) + 36(2Tfe2m + TkkmTUm) - 1447jgm} Pw(0,0) 

1 
28 • 3TT 

-22Tfc2;m + 3TkkmTllm) PN(0, 0). 
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From (6.10), (6.12), (6.15), (6.17), (6.18), (6.19) and (6.23), we get 

(6.24) 

*i,i(0) = 
1 

. 28 • 3TT 
1 

24TT' 
.Fi(e+)7^}p"(0,0). 1 

8TT j 

F1(eL)2 -
j 

1 
16TT 

.Fi(e+)7^}p"(0,0). 

From (6.24) we get (6.8). 

6.2. The term *i,2 

Recall that B(Z,ejL) was defined in (5.24). 

Lemma 6.2. — XTie following identity holds. 

(6.25) 
V-1 

7T 

B(Z,eL) = 
l 

(^°, e°), Jer> (T(ftx - ft0, Je°), 

(^°, e°), Jer> (T(ftx - ft0, Je°), JTZ^) 

+ \ (T(R0,JR°),T{TZ±

:ef)) - I (T(^,e±),r(7e±, JTZ0)) 

f ì <r(^° , e°), Je r> (T( f t x - ft0, Je°), JTZ^) 

+ 1 < T ( ^ X , e% Jet) {T(K°, Je% J7^> 

+ \ (T(R0,JR°),T{TZ±

:ef)) - I ( T ( ^ , e ± ) , r ( 7 e ± , JTZ0)) 
8 8 

+ - (T(Rx,JT(K0,J'R?)),Jer) + - (T(7e-L, JR±),T(R, ef)) 
8 2 

Proo/. — By (5.34), (5.55) and A{R°)A{R°)et e NG, as A exchanges TXG and ;VG, 
we get 

(6.26) 

< j r c , ( v ™ v T V , f l W > > = 
1 

~2 
( J7e. T(ft, V ™ e x ) + V ™ (T(ef, e x ))Z> > 

+ (T(Rx,JT(K0,J'R?)),Jer) + - (T(7e-L, JR±),T(R, ef)) 

By (1.8), (5.13), (5.54), we have at x0, 

(6.27) 
1 

~ 2 < j ^ , t ( ^ , v ^ V ) > = 
1 
4 

< Je^, r(7fc°, e°)) (J7Z±,T(7Z, Je°)> , 

1 
~ 2 

( j ^ , V ^ ( T ( e f , e ^ ^ ) ) Z , > 1 
~ ~4 

(T{K,ei),T(K, JTZ0)). 
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By (5.5a), (5.5d), (5.13), (5.54), (5.55) and (T(ef, ef ))ZtZk = 0, we have 

(6.28) 

(J(VTXVTXe»){7Z^hel)Zk = l- (T(n,VlBek),Jei-)Zk 

= ^ (Till, 2A('R0)K± + A(K°)K°), Jei) 

= \ (T{K, e% Jei) (T(1Z°, Je?), J7^> 

- X- (T(n°, e z

x), T(K°, J7ZG)) + i < T ( ^ \ JT(^°, J^ 0 ) ) , Je^> . 

From (3.40). (5.5a), (5.13), (5.54) and the fact that A exchanges TXG and 7VG, we 
get 

(6.29) / jy-jTX H T-JTX±M\ y _ 
\ J v n ek , el J Zk -

(^JVlBek,A(K°)el- - ^ T ^ e ^ Zk 

= /jA(n°)7Z°, -\T(11, ei)\ + 2 (jA{n®)U^, A(U°)et) . 

- i <T(^°, J^°), T(tt, e^)) - ^ (Jef,T(RP, e°)) ( (jA{n® T(7^°, Je£)) . 

From (5.52), (5.53), (5.62), (6.26)-(6.29), we get 

(6.30) 
V-1 

7T 

- 1 <J^, V^'(T(eî,e,-L))Zl) - 1 {T{n,et),T{n, JTZ0)) 

- 1 < J ^ , V^'(T(e î ,e ,- L ))Z l ) - 1 {T{n,et),T{n, JTZ0)) 

+ 1\ (T{K. e°). Je/-) (T{1Z°, Je% JTZ^) - \ (T(K°, e^), T(7l°, J^°)> 
2 

+ \ (T{K. e°). Je/-) (T{1Z°, Je% JTZ^) - \ (T(K°, e^), T(7l°, J^°)> 
4 8 

+ 1 <r(7e-L, JT(^°, JTe0)), Je/-) + 7 ( T ( ^ ° , JK°), T(K, e/-)) 
8 4 

- i ( J e ^ , r ( ^ , e j

0 ) > ( J ^ , r ( ^ , J e 5 ) > 

+ i < T ( ^ , Jft x ) , T(K, ei)) - <V£ y (T(e f c, e^)), JTZ1-) Zk. 

From (6.30) we get (6.25). 

Now ŵe need to compute the contribution from — (J2f2°)
 1 P N 0 2 P X - Recall that 

Ii was defined in (5.24). 
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Lemma 6.3. We have the following identity, 

(6.31) - ((.Sí?)- 1 P ^ / x P " ) ( 0 , 0 ) f L / D T X G (_д_ _д_\_д_JL' az aze 

7 rb^/^-L 
+ 6L 25тг 

(.Sí?)-1 P^/xP")(0,0 
ek eza eza 

1 P^/xP")(0,0 
ek eza eza 

S í?)-1 P^/xP")(0,0 
16TT ek eza eza 

1 P^/xP")(0,0 
ek eza eza 

-¿I^,jo)l2 

26TT 
16тг T(e¿-, Je¿-), Г ( ^ т , gfcr)) Р^(0 ,0) . 

Proof. — From Theorem 3.1, (5.15), (5.84) and (6.4), 

(6.32) ({<$)-lpNXz£ztPN) (o,o) = 

1 P^/xP")(0,0 
ek eza eza 

32TT2 1 ' 

Set 

(6.33) 14 = - z£ztPN) P N ± (£j(B(Z. J O ) ) - g*(B(Z, £j)))PN} (0,0). 

At first, if Q is a monomial on bi,bf, bj~, bj~~^~, Zi and the total degree of bi^bf, or 
bj,bf+, Zf is odd, then by Theorem 3.1, 

(6.34) ((^y1PN±QPN) (0,0) = 0. 

By (6.34), only the monomials of B(Z, e®) with odd degree on Z° have contributions 
for X4. 

If we denote by Bzi^) the odd degree component on Z° of the difference of 
B{Z,ef) and of the sum of the first two and the last terms of B(Z,e®) in (5.46b), 
then by (5.46b) we know that Bz(e®) is a linear function on Z° and ^ z ( ^ f o ) ^ 

and -^|o {BZ{^S)) are equal. 

Moreover, by T(Jo, J^j) = T(^,J^) (or by (5.5e), (6.32)), we know the 

contribution of the last term of B(Z, e^) in (5.46b) is zero in T 4. 
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Thus by Remark 5.2, (5.4), (5.46b) and (6.33), 

(6.35) V^(T(^,Jô)) V^(T(^,Jô)) 
V^(T(^,Jô)) 

l a 
EZY 

(i?T^(7e0,./7e°)7e0,^) 

6^o (i?T^(7e0,./7e°)7e0,^) 

- ^ J ^ , 2 V ^ ( T ( ^ , J ô ) ) v a 
VTY 

V^(T(^,Jô)) VTYa 
8z° 

{T{ei,^))Zf) 

(z°z°3PNKZ,0) = (z^PN)(Z,0) V-1 
4 

+ 2ôtj)PN)(Z,0), 2V^(T(^,J,)) 

4 Jex,2V^(T(^,J,))4 
V^(T(^,Jô)) - ( t ( t ^ , m ^ n - g c , J * ) ) ] PN} (o,o) 

By (5.93), (5.108a), (6.32) and (6.35), comparing with (5.104) and (5.105), we get 

(6.36) Î4 = 
1 

6ir 
l-DTXC(_d_ d \ d i TfTXgj d _d_\_d_ d \ \ N ^2J '92»^Z)" TXL dz° ' 9z? I dz° • 92« j 

5V^Î 
277T J e x , 2 V ^ ( T ( ^ , J , ) ) 4 X7TY V^(T(^,J,) V^( V^(T(^,J,) 

3 
+ 32^ 

l-DTXC(_d_ d \ d i TfTXgj d _d_ 
\N ^2J'92»^Z)" TXL 

l-DTXC(_d_ d \ d i TfTXgj d _d_\_d_ d \ 
\N ^2J'92»^Z)" TXL dz° ' 9z? I dz° • 92« j 

By (3.9), (3.54) and (5.84), 

(6.37) 

(z°z°3PNKZ,0) = (z^PN)(Z,0) = ±-((bjZ° + 2ôtj)PN)(Z,0),. 

ZfZfPN = ^(bibt + 4n6ki)PN, 

{^)\zt)APN = ((6X)4 + iMbtf + 3 • (4TT)2) Pw. 
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From Theorem 3.1, (3.9), (3.54), (5.93), (6.4), (6.11) and (6.37), 

(6.38) 

(pN±z£ztPN№0) = 
l 

16tt2 (b^PN)(0,0) = -^PN(0,0), 

Uj%)-ipN%z»ztztPN) (0,0; 
l 

16TT2 

1 
12tt 

bibj-bjZ? + 6klbjZ?)pN}(0,0) 1 
127T2 

5tJ6klPN (0,0), 

((^r^ziz^3PN) (0,0)^ 1 
8TT2 

bLbK 
t k 

bj 
A2tt 

zi + 2 
8TT eij PN\ (0,0) 

= - ¿ 2 ^ - ^ ^ ( 0 , 0 ) , 

U<$)-ipN±ztztz^pN) (0,0) 

1 
4tt 

(^2°)-1^X(^^ + 6kl)z?^PN} (0,0) = 
-7 

96tt3 ^•r)A,7-v(0.0). 

By (5.5e), (5.107), (5.108a), (6.38) and comparing with (5.109), we get 

(6.39) -({^)-lPN±bjB(Z^)PN) (0,0) 

1 
12tt 

'f?TXG(_d_ d \ d • pTXG 
( d _d_\_d_ Ô \ 
V dz9 ' dz°t f dz°3 • dz° j 

V-1 
48tt 

/т-jTY 
\ A 

T(eLk, e ) 
ezj 

• ^ ( r ( ^ , ^ ) ) , J c ^ ) 

1 
8TT 

1 « 2 

16tt K9zfdz(;' 
1 « 2 

16tt K9zfdz(;' 
1 

~ 96tt 
^Xn^^Je")^^) 

24tt ; r ( e ^ J e ^ ) , T ( ^ 7 , ^ ) ) } p ( 0 , 0 ) . 

From (6.25) and (6.34), 

(6.40) {№)-lbJ:B{z,et)PN) (0,0) = -irV^ïi^r'bl 

"1 (RTB(R.±,K°)ei-,jn0) J < V ^ ( T ( e ^ ) ) , J 7 ^ ) ^ 

- ^ < V ^ ( r ( e ° , e ^ ) ) , J ^ ) Z f c ° - ^ ( n ^ . e ^ ^ e ^ X n ^ ^ J e " ) ^ ^ ) 

+ i < T ( ^ 0 , J ^ ° ) , r ( ^ , e , x ) > -
O 

1 (T(n0,e^),T(n±,J7Z0)) 
8 

+ - (T(7^ , JT(7?°, J7£0)), J e r ) 8 
• 1 {Till1- , J7^ ), TiTZ1-, e/- ) > ] PN } (0, 0). 
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As T is anti-symmetric, from (3.9), (3.54), we get 

(6.41) 

f) + T{ef, JTZx),T{TZA-,ef))PN. 

- ( j r ( V ^ ( r ( e ^ e f ) ) , J ^ ) ) 2 ^ № 

bf (T(K±,JK±),T(K±,et))PN 

= - <T(ft\ Jef) + T{ef, JTZx),T{TZA-,ef))PN. 

From (5.5e), (5.124), (6.32), (6.38), (6.40), (6.41) and the anti-symmetric property 
of T, we get 

(6.42) 1 
2 [(JZÏr^BfreÏÏP") (0,0) 

V-1 
2TT 

5 
27 (v%(T(et eft), Jet) + ( v ^ ( T ( e ^ e^)). Jet) ) 

5 
f 96 

V^(T(3FFF,E
X)).JEA V ^ ( T ( 3 F F F , E X ) ) . J E A 

+ <T(e x, Je x ) + r ( e r , Je x ) , T{ef. ef)) j PA'(0,0) = 0. 

By (5.102), (5.124), (6.33), (6.36), (6.39), (6.42) and since RTXG{.,.) is a (1,1)-
form, comparing with (5.105) and (5.109), we get (6.31). • 

We compute * 1,2(0) now. 

Lemma 6.4. — The following identity holds, 

(6.43) *1,2(0) = \ 
1 

Î67T ' x0 

1 

271 
^ G ( Â F Ô 1 J Ô ) + ¿ A X G l o g / , 

29 
25 -37T 

\T(et J Ô ) | 2 -
V-1 

16TT 
( T ( e ^ J e ^ ) , T ( J Ô , J , ) ) 

1 

" 4^ 
¿9 d 2 

AZAZ ZEE 
1 

32TT E^ ( AL? )|2 

+ -r=-Tijk(Tkji + Tijk) -f 
2' 7T 

7 
287T 

(T(e^Je^),T(JÔ, J,)) 

1 
~~ 2 ^ 

(jef^lir) (e- ,Cj+ ) ̂  + 2 ( V T Y g T Y ) { e f t e i } Jef, Je£ ) 

V-1 

16TT 
( < T ( ^ , Je+), - 2 (jef^lir) ) } P N (0 , 0). 
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Proof. — Recall that from (3.6), (5.5a), (5.5b) and (5.13), 

(6.44) 

\A(e°)ei\2 = 4\A(^)ei\2 = \T(^, Je°)| 2 = 2 | T ( ^ , J^) | 2 . 

^(e°)e?,A(eO) eo> = 4 | ^ r ( J f , z | ô ) 2 , 
i 

|A(e?)e?|2 = i|T(c?,Je?)| 2 = |T(^ô,Je?)| 2 = 2 | T ( J ? , z | ô ) | 2 . 

From (5.93), (5.111), (6.32), (6.44) and since RTXG(. , .) is a (1, l)-form (comparing 
with (5.113b), (5.114)) (note that in each monomial, if the total degree of 6/, z° is not 
as same as the total degree of , z°, then the contribution of this term is 0 at (0, 0)), 
we get 

(6.45) - [{se^p^hP^ (o,o) = 
4 

3^ 
/pTX G / d _d_\_d_ d \ 

TJ^|T(5f?,^)|2}p'v(o,o). i 
48TT 

{RTB(ei,ef)ei,ef) 

+ T J ^ | T ( 5 f ? , ^ ) | 2 } p ' v ( o , o ) . 

By (3.6), (3.54), (5.25), (5.83), (5.93), (5.112), (6.32), (6.44) and since RTXG(.,.) 
is a (1, l)-form (comparing with (5.113a)), we get 

(6.46) ({^)-lPN± ( r t l W , e i } V o , e , P N ) (0,0) 

(rtlW,ei}Vo,e,PN) -2 
,3 

f87r|r(^°'4o)|2J 

+ \(RTB(K\ e°)e° + A(e°)A(e°)ll\ eft bj:)pN\(0,0) 

1 
3TT 

( * ™ 0 ( ^ c o ) c o a \ 1 
16TT 

<flT f l(C^,e?)c?,c^> + 
1 

Ï67T' 
A ( e ? ) 4 | 2 } p ^ ( 0 , 0 ) 

2 
~3^ 

R T I g 87r|r('4)|2 

87r|r('4)|2 

1 
47T 

r>TB/„± d \__L 0 \ 
f 8 7 r | r ( ^ ° ' 4 o ) | 2 J 

P 7 V(0,0). 
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By &%PN = 0, (5.25), (5.93), (6.38), (6.44) and since RTXG(.:.) is a (1, l)-form 
(comparing with (5.115)), we get 

(6.47) {(JSf K 2 (K ) [ \ к 2 (П) - | ( Y: {A{el)el 7 ^ ) )\*°] PN}(0, 0) 

- - { P N ± [ \ K 2 ( K ) - 3 
8 I 

;^? ie? ,^>) 2 ]p»} (0 ,0 ) 

-IK{PNM (^RTXG(71°, é¡)TZ° + RTB{K^, е?)7гх, e?) 

+ l(RTB{7l±e±)n±e±y Ь ^ ( Л ( е » ) е » , ^ ) ) 2 - |A(e°)7^| 2 ]P N }(0,0) 

Y: {A{el)el 7^) )\*°] PN}(0, 0) 1 
Ï6^ 

<A™(e¿-,e?)e¿-,e?) 

1 
" 48TT 

^(e?)ei|2)p^(0,0) 
^(e?)ei|2)p^(0,0) 

1 
32TT £ ^ ? ) e ? | 2 

2 

1 
" Te>7r 

^ (e? )e i | 2 )p^ (0 ,0 ) , 

— ( — / -rTXG ( JL_ _d_\_d_ d \ 
_ V37T \ ^ dz°j ' d^ } dz° ' ^ / 

1 
47T 

<i2rfl(e^e+)^,e+>) 

1 
~ 8^ 

^(e?)ei|2)p^(0,0) 
^(e?)ei|2)p^(0,0) ¿ 1 

{PN±[\K2(K) 1 
" 48TT <i2 r f l (e^ e +)^,e+>)^(0 > 0) . 

By (3.12), (3.54), (5.83), (5.93), (6.32) and (6.44), 

(6.48) 
rfl(e^e+) 1 

~ 2 
<yl(e | ) )e°,^>V / 1 ( e o ) e „ +2<^(e°)e J °,^>V / , ( e o ) e o 

+ I (RTB(TZ\ei)ei,e,)V0,ej)p
N}(0,0) 

1 
~ ~Î6TT > 2l ^ 

A(e°)e°\2 ±2\A(e°)e°f + ? (RTB{ef,ei)ei,ef))pN(Q,0) 

V8TTI ^ 
' d d \ 2 

ezaiu ezai 
1 

47T 
d d \ 2 

ezaiu ezai 

1 
+ 24^ 

(RTB(ei,ef)etef))pN(0,0), 

- {^2°r1PN±(-REB(^el))Vo^PN}(0,0) = 1 
2^ 

(ei,ef)etef))pN(0,0) 
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For Fij;kl E C, from Theorem 3.1, (5.15), (6.4), (6.37) and comparing with (6.14), 
we get 

(6.49) { ( Jg?2° ) - 1 P N " Ft3, k l Zi Zf Zjt Zt P N } ( 0, 0 ) 

= {(^yipN-
j#k 

(^.;:A-A- ^ ^ A" ) ( ̂ / ) 2 C ̂  ) 2 ^ Fkk:kk (Z > )>] P* } ((). ()) 

= ^-(pN± 

287T4 I 
j#k 

Fjj\kk + Fkj-kj + Fkj;jk)\ 
+ ibk1)2) 

16TT 
-hbff + ibk1)2)) 

+ Fkk;kk 
V-1 

16TT 
f 3 ( ^ ) 2 ) ] p w } ( 0 , 0 ) 

-3 
287T3 

nRLB)X0 (7Z, ez)]
2 = -n2J2 

By (5.46a), 

(6.50) 
1 
9 i 

[{dnRLB)X0 (7Z, ez)]
2 = -n2J2 (JT^, e°), K^f 

n2J2 (JT^, e°), K^f 

By (3.6), (5.14), (6.49) and Tki{e°) is symmetric on k,l, we get 

(6.51) •7T2 Y,((^2)~lPN± (JTi^.e0,).^)2 PN) (0,0) 
i 

= -7T 2 ( ( ^ 2 ° ) - 1 P ^ ^ y ( e ° ) T f c ? ( e ? ) Z / Z i V Z ^ ^ P w ) (0,0) 

3 
287T 

(2^ (e? ) 2 +^(eP )7 i . , ( e?) )p A r (0 ,0 ) 

3 
267T 

(2 | r (e^. 5 | f f ) | 2 4-
¿1 ^ 
3 

T , ; ( , ^ : f ) / ^ i 0 . 0 ) . 

In the same way, by (5.5e), (5.14), (6.49), we get 

(6.52) - T T 2 ^ ^ 0 ) - 1 ^ {JTin^.ef)^)2 PN) (0,0) 

3 
287T 

X>'IX.a • •7}-;;.i/'Al0."S. 

By (5.14) and (6.38), 

(6.53) ^2Y,{(^2)'1PN± (JT(TZ\ef).nL)2 PN) (0,0) 
j 

7 
48TT 

| T „ ( J 7 ) | 2 P w ( 0 , 0 ) = 
7 

48TT 
\T(ei, ^ ) | 2 P " ( 0 , 0 ) . 
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By (5.46a) and (5.116), the total degree of Z°, V 0 eo in the fourth term of 
0'2 in (5.27) is 1, thus the contribution of the fourth term of 0'2 in (5.27) 
for ~((3?$)-LPN±O'2P

N)(0,Q) is zero. By (5.27), (6.31), (6.45)-(6.48) and (6.50)-
(6.53), comparing with (5.118), we get 

(6.54) - ([^)-LPN±0'2P
N^ (0,0) -

1 
.2TT 

' pTXG( d d \ a d \ 
PN±0'2P

N^ (0,0 
7 ¡b^/~^ï 
6 L 257T 

^ V ^ ( T ( ^ . J , ) ) f v l ( r ( 4 , ^ ) ) ) 

3 
16TT 

JTe-1-)!^^! 3 
32TT 

^ ( â f ô ^ ) l 2 

1 
267T 

r ( 4 , ^ r ) | 2 -
V-1 
1671 

W ^ e ^ . n ^ , ^ ) ) " 
\ J j I A 3 

v32TT 
7 

48TT, 
(4,^r)|2 1 

8TT 
fvl(r(4,^))) 

3 
16TT 

(4,^r)|2 3 
64TTI 

+T^|r(7i-L, 

W^e^.n^,^))" 1 
2̂ r ^

G ( J ô , Jô)}P^(0,0) . 

By (5.63) and (6.34), 

(6.55) - 4TT2 ( ( J ^ 0 ) - 1 ^ ^ ^ ^ ) (0,0) - -4TT2 {(Sf°)-LPN± 

\ - \ {^TY9TY\^)Jn^ + {VTYgTY){n,^ym\jn^) 

+- £ <V^(T(e4-, J^VZJ-Z? + V £ (T(e°, J*0e?))Z?Z?, J7^> 

\{RTB{K±,n0)K*,K±) 1 
12 £<r(ft°,ez), J ^ > 2 

z 
1JTe-1-)!^^!(4,| 

+ T^|r(7i- L, JTe- 1 - ) !^^! (o.o). 

Now{e,} = { e ° } u { e ^ } . 
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By Theorem 5.1, (5.108a), (5.120), (5.124), (6.38), (6.49), (6.51), (6.52), (6.55) and 
comparing with (5.121), 

(6.56) - 4TT2
 ( ( ^ ) ~ L P N ± O ^ P N ) (0, 0) = 

7 

124TT - | v ^ _ V _ ^ _ log h 

à dz°3 dz°j V-1 

3 
- V ^ C T ( e £ , Jrr)) - V f ( r ( ^ , ^ ) ) , J e £ ) 

a °̂ J
 3 3 i 

1 

~ 3 
T í - Д т -Ar) - lT(4^)|2 2(V^V^)(e^) Je^, Jet) 

1 

2 67T ( ( V T ^ ^ ( e ^ ) + 2 ( V ^ V ^ ) ( e ^ ) J e ^ , Jet) 

1 

287T ' 8 | T ( e - , J ô ) | 2 + 4 $Z ̂  ( al° ) 
j 

^ijki^ijk H- ^kji)\ 

7 

2 87T ' 
^ f e m + 7 ; - J - m T f e f c m ) } p A r ( o , o ) 

By (5.74), (5.77), (6.32), (6.54) and (6.56), comparing with (5.101), we have 

(6.57) * i , 2 ( 0 ) = - ( ( ^ ) - 1 P N ± ( O F

2 +4TT20^)PN) ( 0 , 0 ) 

V-1 
16TT ((T(ef,Jef),JiE) - 2 { J e f ^ T J ] l E ) ) P N ^ ) 

f 1 

12TT 
'pTXG( d _d_\^_ _d_\ , J _ f > E G ( _ d _ a x 

^ a*° ' dz° ) a*° ' 9 ^ / 2 1 1 d z ( 3 ' 

+ - 1 " — 
6 L67T 

A X G log /l + 
1 

48TT 
Tl№M,)). 1 

96TT I |n4,a%)|2 

6TT 
16TT 

(27^|m + TjjmTkkm) 13 

192TT |n4,a%)|2 

96TT 
96TT vTl№M,)). 

a*? J 

^)-1PN±(OF

2 +4TT20^)PN) 

1 

16TT lT(4^)|2 1 

8TT 
Tl№M,)). 3 

16TT lT(4^)|2 

1 

32TT lT(4^)|2 1 

2 77T 
27^|m + TjjmTkkm) 7 

287T 
( 2 7 ^ | m + TjjmTkkm) 

1 

267T 
< ( V r y f f T y ) ( c x | C x } Jet + 2(VTYfjTy){vj .v.ylcj. Je^> 

V-1 
16TT 

VryffTy)(cx|Cx} Jet + 2(VTYfjTy){v.v.ylcj(O,0) 

By (5.124), (5.131), the term £[•••] hi (6.57) is l(£AxG l o g J ô ) | 2 ) . 
By (5.130) and (6.57), we get (6.43). 
The proof of Lemma 6.4 is complete. 

ASTÉRISQUE 318 



6.2. THE TERM * L I 2 143 

Lemma 6.5. — The following identity holds, 

(6.58) 

{(V^gJ[)Je^Jel

L) = 4 V e i V c i log/i: 

UvTJgTJ)Je^Jei) ^4V ex V cx log h + 2 lT(4^)|2 

-2lT(4^)|2{(V^gJ[)Je^Jel

L) 
-2lT(4^)|2{(V^gJ[)Je^Jel

L) 

Proof. — By using the same argument as in (5.120), we get the first equation of 
(6.58). 

Recall that pTHx pTY a r e t h e p r oj ections from TX = THX(&TY onto THX,TY. 
By (1.3), (1.7), (3.1), (3.40) and (3.41) (cf. also (5.32)), 

(6.59a) (PTHxJe^H)\,-H0) = 0, (Je^H)X0 e TY, 

(6.59b) ( V ^ e ^ 0 = - Ì T ( e - , e ^ ) , 

vVeo el ) X o 

(V^e^0 = -ÌT(e-,e^), 

(6.59c) ( V ™ . „ e f ) X o = 1 
2 

T(e,, e j ) , Jet) ef + (T{ek, Jet), Jef) Jef. 

From (6.59a), we get 

(6.60) Veo P JeL = V i l f f P Jel =0. 

By (3.40), (5.14), (5.72) and (6.59b), we get at x0, 

(6.61) vTXHpT"xJe^H = vT»XpT»XJe^H 
ek ek 

1 
"2 

JT{ei,et)+l-(JT{ej:,e3),et)e3 

1 
2 

( T W - T fe i l)e+ Hh ì (JT(ei, e% e^) e]. 

By (5.6a), (6.59b), (6.60) and (6.61), at x0i 

(6.62) 

VT

0

x„PTYJet'H = JVToX

Het>H = 
e, 1 e,. 1 

JA(e°)et - l j T ( e j ° , e r ) , 

VT?HP
TYJetM = 

ek 1 

JVTlx

HefH - VT*HP
THxJet'H 

ek ek 
1 

~2 
VT

0

x„PTYJet'H = JVToX

Het>H  JVTlx

HefH - VT*HP
THxJet'H 

e k ek 

Thus by (6.62), at XQ, 

(6.63) VTY

HP
TY Jet'" = PTYVTlx„PTYJetM = 0. 

ek ek 
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By (1.3), (1.6), (1.7) and (6.63), at xQ. 

(6.64) ((VfïgfpJe^Jef) eUgJIPTYJe^P^JeA 

2ei(vT

p^Y]etet1P
TYJej:) 

- 2ei (vT

p

x

Yje±ef. Jei) - 2ef ( v ™ J e ^ , PT"x Jef) . 

By (5.5e), (5.14), (6.59a), (6.59c) and (6.61). at x0, we have 

(6.65) <2eUv™Yj,ei.pTH\Jei) ---2{v™Yjeteir^?PTHxJei) 

= ~\(T(ei,ej).Jei) (JTie-t.e^.e-f) = \Tu{é])Tkk{é]). 

Now by (5.6a), 

(6.66) 4 (^T

PTvJetet,Jei) = -e-t (v™YJefJej-,ei) 

- -p1- / \ 7 T X T f c / j , T ^ ( e ° ) P T Y Je1- 4- V T X T f c / j , T^(e°)pT"X j I J. \ 

Observe that for any Y G ^(X.TY), [efM. Y] G TY. Thus 

(6.67) [ek

LM,PTYJetM]eTY. 

From (6.59a) and (6.67), at J;Q, 

(6.68) X7IX pTH X j \ _ Q 
[ek ,P / y Je, ] f 

And by (5.5d), (6.59a)-(6.59c), (6.60) and (6.61), as T f c / j, T^(e°) are constant func
tions along the fiber GXQ, at XQ, 

(6.69) ((X?T

eIg
T

er)Jet,Jei) 

4 (^T

PTvJetet,Jei) = -e-t (v™YJefJej-,ei) (v™YJefJej-,ei 

((X?T

eIg
T

er)Jet,Jei) = 4VexVex log/ (v™YJefJej-,ei 

= --(Tktj - Tkji)Tjki -\\T(ei,e^. 

Finally, by (1.4), (1.7), (1.24) and (6.63), as in (5.120), 

(6.70) -2ej;{V™YjK,P
TYJei-,ei) = 2ei (T(etPTYJethPTYJef) 

((X?T

eIg
T

er)Jet,Jei) = 4V exV ex log/ 

ASTÉRISQUE 318 



6.3. PROOF OF THEOREM 0.7 145 

Thus by (6.64)-(6.70), 

(6.71) 4 (^T

PTvJetet,Jei) = -e-t (v™YJefJej-,ei) 
1 
2 

T{ei,eQ

3)\
2 -l-(Tkl3 -Tkjl)Tjkl. 

From (3.6), (5.14) and (6.71), we get (6.58). 

6.3. Proof of Theorem 0.7 

By (5.14), (5.95), 

(6.72) 

7E, |v/=ÏT(er, Jef) + 2T(^, £,)) ^7E, | v /= ÏT(e r , Jef) + 2 T ( ^ , £ , ) ) 

-2lT(4^)|27E, |v/=Ï 
7E, |v/=ÏT(er, 

9 
16 

lllmlkkm 
3V-1 

2 

^7E, |v/=ÏT(er, Jef) + 2T(^ 

^ ( e i ) T , „ = -y/^ï(T(et,Jet),îlE +T(^j, Jo)) ^ J-llm 1 kkrn • 

By (5.14), (6.6), (6.7), (6.8) and (6.72), we have 

(6.73) (#1,1 + #ï.i + #i,3 - #i, 4)(0) = E^fc(Jf)|
2}pjV(o,o)^T^(Jô) ] 

11 
48TT 

lT(4^)|2 13 
26 • 3TT 

r 2 1 
277T I~kkrnlllm 

l 
8TT 

E ^ f c ( J f ) | 2 } p j V ( o , o ) 

=-2lT(4^)|2+1/TTÏT(er, Jef 
7E, |v/=ÏT(er, Jef > ^ ^ T ( e r , J e r ) + r ( ^ , ^ ) ) 

1 
~ 2TT J2T 

d d \ 2  

<9z° ' dz° > 
7V^Î 

87T (T(et,Jet),T(£;,^)) 
47 
277T 

Ik km I~llrn 

11 
48TT 

T(4^)|2 13 
26 • 3rr 

T 2 

-'tarn 

1 
8TT ^ T ^ ( J ô ) ] P ^ O ) . 
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By (6.43) and (6.58), we get 

(6.74) #1,2(0) + #l, 2(0)* = 
1 

8TT 
rXG 
xo 

1 
7T 

2^fcm + TjjmTkkm) 1 
7T 

AXG log h 

3 
8TT 

V e i V e i log ft + 
35 
48TT 

|T(e£, J Ô ) | 2 4 
V1 

8TT 
),liE)-2(jei,V™JiE)) 

1 
" 2tt v2lT(4^) 1 

16TT I 
-2lT(4^) 

1 
267T 

Tijk(Tkji -\- Tljk) "T" ^(Tjki ~~\~ Tijk)Tijk 7 
277T 

2^fcm + TjjmTkkm) 

V-1 
8TT 

\{T(et,Jet),liE)-2(jei,V™JiE)) PN(0,0). 

Thus by (6.1), (6.73) and (6.74), as 7 ^ is anti-symmetric on i, j , we get 

(6.75) P ( 2 ) (0,0) = 
1 

[STT 
R

XG 
Xq 

1 
7T 

reg c) d \ 1 
7T 

3 
log h - — Ve± Ve± log h 

1 
2TT r ( ^ s % ) l 2 

1 
2TT 

<9 <9 2 

EZOI EZOI 
1 

2t7 -2lT(4^)|2 

V-1 

7T 
T{et:Jet) =2(Vex log/i)Je£, 3 

16TT 
-2lT(4^)| J _ t 2 

24tt H m 

_ _5_ 
~ 16TT 

r(^s%)l2 1 
267T 

%jk(—Tkji + 3Tijk) + 1 
2TT 

r(^s%)l2 

1 
7T 

uE 3 T{et:Jet) =2(Vex log/i)Je£, V-1 

4rr 
J e ^ , V ^ ) } ^ ( 0 , 0 ) . 

By Theorem 5.1, (1.4), (1.24), (5.5c) and (5.14), as same as in (5.120), we get for 
U € TX0XG, 

(6.76) 

Tum = -(T(ei,Jet),Jet) = -2V ex log ft, 

T{et:Jet) =2(V e x log/i)Je£, 

Tkk{U) = -2 (T(JU, Je£), Jei) = - (g^Je^Jei) = -AV J V log ft. 

By (6.5), (6.75) and (6.76), we get Theorem 0.7. 
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CHAPTER 7 

BERGMAN KERNEL AND 
GEOMETRIC QUANTIZATION 

In this Chapter, we prove Theorems 0.10, 0.12. 

Proof of Theorem 0.10. — We use the notations in Section 4.5. 
rig i 

By Lemma 4.6 and Theorem 4.8, we know that p~~ (o-poo-*)? is a Toeplitz operator 
with principal symbol (2~^/h(xo)) IC\EG in the sense of Definition 4.3, and its kernel 
has an expansion analogous to (4.79) and Qo,o therein is 2^/h(xo). 

We claim that 
(7.1) Tp=p-^(apoa;)ih2(apoa;)i 

is a Toeplitz operator with principal symbol 2"^ Id^G. 
Indeed, when E — C, this is a consequence of [9] on the composition of the Toeplitz 

operators. 
To get the above claim for general E, we need just keep in mind that the kernel 

Tp(x io,^o) °f with respect dvxG(x$) has the expansion analogous to (4.79) and 
Qo,o therein is 2 ^ 1&EG-

By Theorem 4.4, our claim then follows from the composition of the expansion of 
the kernel of p~^(crp o a*)i, as well as the Taylor expansion of h2 (cf. also [31, 
Chap. 7]). 

Now we still denote by ( , ) the L2-scalar product on ^ ( X G , L P

G 0 EG) induced 
by hLo: hEa, gTXc as in (1.19). 

Let {sf} be an orthonormal basis of (H°(X, LP 0 E)G, ( , ) ) , then 

p ( *\ — -k v 

is an orthonormal basis of (H°(XG7 L P

G <g) EG), (, ))• 
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From Definition 4.3, (0.28), (1.19) and (7.1), we get 

(7.2) tin 
( 2 p ) - -

(Tp^,^> = iy + ^(i) [ (°> ° <?"p ) ^ Vi\ (o-p o a* ) 2 <pP ̂  

= 2 - H P ( T p ^ , ^ > = iy + ^ ( i ) . 

The proof of Theorem 0.10 is complete. 

In the symplectic case, we use (4.88) to define ap : (ker,Dp)G —> kerDc7,p which 
is an isomorphism for p large enough. Now by Theorems 4.4, 4.12, Corollary 4.13 
as the above argument, we know (2p)~ri°^ap is an asymptotic isometry is the sense 
of (0.29). 

Proof of Theorem 0.12. — Set 

hEG =h2hEG. 

Then P^G i s the orthogonal projection from ^ X ( 1 G , LP

G&EG) onto H°(X, LP

G®EG), 
associated to the Hermitian product on ¥ X ( I G , L Q eg) EG) induced by the metrics 
/ I L G , hE^, gTXa as in (1.19). 

Let P*£ (XQ, xf

0) be the smooth kernel of P P

G with respect to dvxG(
xo)' Then 

(7.3) P£S(xo,x'Q) = h2(x'0)P?G(x0,x'0). 

Let VE° be the Hermitian holomorphic connection on (EG,IIEG) with curvature 
RE°. Then 

(7.4) VEo = VEG +d\og(h2). REG = REa + 2dd\ogh. 

Thus from (7.4), 

(7.5) R^iuPj.w0:) = 2REa 9 d \ 
dz« • dz° > 

REg{uP}.1^) + ò.Xg log/i. 

By (5.19), (7.3) and (7.5), Theorem 0.12 is a direct consequence of [17, Theorem 
1.3] (or Theorem 0.6 with G = {1}) for P*S Oo-x 0). • 
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