Livres ouverts en géométrie de contact [d'après Emmanuel Giroux]
Séminaire Bourbaki - Volume 2006/2007 - Exposés 967-981, Astérisque, no. 317 (2008), Talk no. 969, 27 p.
@incollection{AST_2008__317__91_0,
     author = {Colin, Vincent},
     title = {Livres ouverts en g\'eom\'etrie de contact [d'apr\`es {Emmanuel} {Giroux]}},
     booktitle = {S\'eminaire Bourbaki - Volume 2006/2007  - Expos\'es 967-981},
     author = {Collectif},
     series = {Ast\'erisque},
     note = {talk:969},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {317},
     year = {2008},
     zbl = {1156.57020},
     mrnumber = {2487731},
     language = {fr},
     url = {http://www.numdam.org/item/AST_2008__317__91_0/}
}
TY  - CHAP
AU  - Colin, Vincent
TI  - Livres ouverts en géométrie de contact [d'après Emmanuel Giroux]
BT  - Séminaire Bourbaki - Volume 2006/2007  - Exposés 967-981
AU  - Collectif
T3  - Astérisque
N1  - talk:969
PY  - 2008
DA  - 2008///
IS  - 317
PB  - Société mathématique de France
UR  - http://www.numdam.org/item/AST_2008__317__91_0/
UR  - https://zbmath.org/?q=an%3A1156.57020
UR  - https://www.ams.org/mathscinet-getitem?mr=2487731
LA  - fr
ID  - AST_2008__317__91_0
ER  - 
%0 Book Section
%A Colin, Vincent
%T Livres ouverts en géométrie de contact [d'après Emmanuel Giroux]
%B Séminaire Bourbaki - Volume 2006/2007  - Exposés 967-981
%A Collectif
%S Astérisque
%Z talk:969
%D 2008
%N 317
%I Société mathématique de France
%G fr
%F AST_2008__317__91_0
Colin, Vincent. Livres ouverts en géométrie de contact [d'après Emmanuel Giroux], in Séminaire Bourbaki - Volume 2006/2007  - Exposés 967-981, Astérisque, no. 317 (2008), Talk no. 969, 27 p. http://www.numdam.org/item/AST_2008__317__91_0/

[1] C. Abbas, K. Cieliebak & H. Hofer - The Weinstein conjecture for planar contact structures in dimension three, Comment. Math. Helv. 80 (2005), p. 771-793. | DOI | MR | Zbl

[2] V. I. Arnol'D - Some remarks on symplectic monodromy of Milnor fibrations, in The Floer mémorial volume, Progr. Math., vol. 133, Birkhäuser, 1995, p. 99-103. | DOI | MR | Zbl

[3] D. Bennequin - Entrelacements et équations de Pfaff, in Third Schnepfenried geometry conférence 1982, Vol. 1, Astérisque, vol. 107, Soc. Math. France, 1983, p. 87-161. | Numdam | MR | Zbl

[4] F. A. Bogomolov & B. De Oliveira - Stein small déformations of strictly pseudoconvex surfaces, in Birational algebraic geometry (Baltimore, MD, 1996), Contemp. Math., vol. 207, Amer. Math. Soc., 1997, p. 25-41. | DOI | MR | Zbl

[5] F. Bourgeois - Odd dimensional tori are contact manifolds, Int. Math. Res. Not. 30 (2002), p. 1571-1574. | DOI | MR | Zbl

[6] C. Caubel, A. Némethi & P. Popescu-Pampu - Milnor open books and Milnor fillable contact 3-manifolds, Topology 45 (2006), p. 673-689. | DOI | MR | Zbl

[7] V. Colin - Chirurgies d'indice un et isotopies de sphères dans les variétés de contact tendues, C. R. Acad. Sci. Paris Sér. I Math. 324 (1997), p. 659-663. | DOI | MR | Zbl

[8] V. Colin, Recollement de variétés de contact tendues, Bull. Soc. Math. France 127 (1999), p. 43-69. | DOI | EuDML | Numdam | MR | Zbl

[9] V. Colin, Sur la torsion des structures de contact tendues, Ann. Sci. École Norm. Sup. (4) 34 (2001), p. 267-286. | DOI | EuDML | Numdam | MR | Zbl

[10] V. Colin, Une infinité de structures de contact tendues sur les variétés toroïdales, Comment. Math. Helv. 76 (2001), p. 353-372. | DOI | MR | Zbl

[11] V. Colin, E. Giroux & K. Honda - Finitude homotopique et isotopique des structures de contact tendues, en préparation. | DOI | Numdam | Zbl

[12] V. Colin, E. Giroux & K. Honda, On the coarse classification of tight contact structures, in Topology and geometry of manifolds (Athens, GA, 2001), Proc. Sympos. Pure Math., vol. 71, Amer. Math. Soc., 2003, p. 109-120. | DOI | MR | Zbl

[13] V. Colin & K. Honda - Reeb vector fields and open book décompositions, en préparation. | DOI | Zbl

[14] S. K. Donaldson - Symplectic submanifolds and almost-complex geometry, J. Differential Geom. 44 (1996), p. 666-705. | DOI | MR | Zbl

[15] S. K. Donaldson, Lefschetz pencils on symplectic manifolds, J. Differential Geom. 53 (1999), p. 205-236. | DOI | MR | Zbl

[16] Y. Eliashberg - Classification of overtwisted contact structures on 3-manifolds, Invent. Math. 98 (1989), p. 623-637. | DOI | EuDML | MR | Zbl

[17] Y. Eliashberg, Filling by holomorphic discs and its applications, in Geometry of lowdimensional manifolds, 2 (Durham, 1989), London Math. Soc. Lecture Note Ser., vol. 151, Cambridge Univ. Press, 1990, p. 45-67. | MR | Zbl

[18] Y. Eliashberg, Topological characterization of Stein manifolds of dimension >2, Internat. J. Math. 1 (1990), p. 29-46. | DOI | MR | Zbl

[19] Y. Eliashberg, Contact 3-manifolds twenty years since J. Martinet's work, Ann. Inst. Fourier (Grenoble) 42 (1992), p. 165-192. | DOI | EuDML | Numdam | MR | Zbl

[20] Y. Eliashberg, A few remarks about symplectic filling, Geom. Topol. 8 (2004), p. 277-293. | DOI | EuDML | MR | Zbl

[21] Y. Eliashberg & M. Gromov - Convex symplectic manifolds, in Several complex variables and complex geometry, Part 2 (Santa Cruz, CA, 1989), Proc. Sympos. Pure Math., vol. 52, Amer. Math. Soc., 1991, p. 135-162. | DOI | MR | Zbl

[22] Y. Eliashberg & W. Thurston - Confoliations, University Lecture Series, vol. 13, American Mathematical Society, 1998. | MR | Zbl

[23] J. B. Etnyre - On symplectic fillings, Algebr. Geom. Topol. 4 (2004), p. 73-80. | DOI | EuDML | MR | Zbl

[24] J. B. Etnyre, Planar open book decompositions and contact structures, Int. Math. Res. Not. 79 (2004), p. 4255-4267. | DOI | MR | Zbl

[25] J. B. Etnyre & K. Honda - On the nonexistence of tight contact structures, Ann. of Math. (2) 153 (2001), p. 749-766. | DOI | MR | Zbl

[26] J. B. Etnyre & K. Honda, Tight contact structures with no symplectic fillings, Invent. Math. 148 (2002), p. 609-626. | DOI | MR | Zbl

[27] E. Giroux - Structures de contact, livres ouverts et tresses, en préparation.

[28] E. Giroux, Convexité en topologie de contact, Comment. Math. Helv. 66 (1991), p. 637-677. | DOI | EuDML | MR | Zbl

[29] E. Giroux, Topologie de contact en dimension 3 (autour des travaux de Yakov Eliashberg), Séminaire Bourbaki (1992/93), exposé n°760, Astérisque 216 (1993), p. 7-33. | EuDML | Numdam | MR | Zbl

[30] E. Giroux, Une infinité de structures de contact tendues sur une infinité de variétés, Invent. Math. 135 (1999), p. 789-802. | DOI | MR | Zbl

[31] E. Giroux, Structures de contact en dimension trois et bifurcations des feuilletages de surfaces, Invent. Math. 141 (2000), p. 615-689. | DOI | MR | Zbl

[32] E. Giroux, Structures de contact sur les variétés fibrées en cercles audessus d'une surface, Comment. Math. Helv. 76 (2001), p. 218-262. | DOI | MR | Zbl

[33] E. Giroux, Géométrie de contact : de la dimension trois vers les dimensions supérieures, in Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), Higher Ed. Press, 2002, p. 405-414. | MR | Zbl

[34] E. Giroux & N. Goodman - On the stable equivalence of open books in three-manifolds, Geom. Topol. 10 (2006), p. 97-114. | DOI | EuDML | MR | Zbl

[35] E. Giroux & J.-P. Mohsen - Structures de contact et fibrations symplectiques au-dessus du cercle, en préparation, corrigendum.

[36] N. Goodman - Overtwisted open books from sobering arcs, Algebr. Geom. Topol. 5 (2005), p. 1173-1195. | DOI | EuDML | MR | Zbl

[37] H. Grauert - On Levi's problem and the imbedding of real-analytic manifolds, Ann. of Math. (2) 68 (1958), p. 460-472. | DOI | MR | Zbl

[38] J. W. Gray - Some global properties of contact structures, Ann. of Math. (2) 69 (1959), p. 421-450. | DOI | MR | Zbl

[39] M. Gromov - Pseudo holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), p. 307-347. | DOI | EuDML | MR | Zbl

[40] K. Honda - On the classification of tight contact structures. I, Geom. Topol. 4 (2000), p. 309-368. | DOI | EuDML | MR | Zbl

[41] K. Honda, On the classification of tight contact structures. II, J. Differential Geom. 55 (2000), p. 83-143. | DOI | MR | Zbl

[42] K. Honda, Gluing tight contact structures, Duke Math. J. 115 (2002), p. 435-478. | DOI | MR | Zbl

[43] K. Honda, W. H. Kazez & G. Matić - Convex decomposition theory, Int. Math. Res. Not. 2 (2002), p. 55-88. | DOI | MR | Zbl

[44] K. Honda, W. H. Kazez & G. Matić, Right-veering diffeomorphisms of compact surfaces with boundary, Invent. Math. 169 (2007), p. 427-449. | DOI | MR | Zbl

[45] A. Ibort, D. Martinez-Torres & F. Presas - On the construction of contact submanifolds with prescribed topology, J. Differential Geom. 56 (2000), p. 235-283. | DOI | MR | Zbl

[46] P. Kronheimer & T. Mrowka - Witten's conjecture and property P, Geom. Topol. 8 (2004), p. 295-310. | DOI | EuDML | MR | Zbl

[47] P. Kronheimer, T. Mrowka, P. Ozsváth & Z. Szabó - Monopoles and lens space surgeries, Ann. Math. 165 (2007), p. 457-546. | DOI | MR | Zbl

[48] A. Loi & R. Piergallini - Compact Stein surfaces with boundary as branched covers of B 4 , Invent. Math. 143 (2001), p. 325-348. | DOI | MR | Zbl

[49] J. Milnor - Morse theory, Based on lecture notes by M. Spivak and R. Wells. Annals of Mathematics Studies, No. 51, Princeton University Press, 1963. | MR | Zbl

[50] J. Milnor, Singular points of complex hypersurfaces, Annals of Mathematics Studies, No. 61, Princeton University Press, 1968. | MR | Zbl

[51] W. Neumann & L. Rudolph - Unfoldings in knot theory, Math. Ann. 278 (1987), p. 409-439. | DOI | EuDML | MR | Zbl

[52] P. Ozsváth & Z. Szabó - Heegaard Floer homology and contact structures, Duke Math. J. 129 (2005), p. 39-61. | DOI | MR | Zbl

[53] F. Quinn - Open book decompositions, and the bordism of automorphisms, Topology 18 (1979), p. 55-73. | DOI | MR | Zbl

[54] L. Siebenmann - Les bissections expliquent le théorème de Reidemeister-Singer, prépublication (Orsay), 1979.

[55] J. Stallings - On flbering certain 3-manifolds, in Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961), Prentice-Hall, 1962, p. 95-100. | MR | Zbl

[56] W. Thurston & H. E. Winkelnkemper - On the existence of contact forms, Proc. Amer. Math. Soc. 52 (1975), p. 345-347. | DOI | MR | Zbl

[57] I. Torisu - Convex contact structures and fibered links in 3-manifolds, Internat. Math. Res. Notices 9 (2000), p. 441-454. | DOI | MR | Zbl