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GROUPES ENGENDRES PAR LES AUTOMATES

par Andrzej ZUK

INTRODUCTION

La classe des groupes d’automates contient plusieurs groupes infinis de type fini
remarquables. Leur étude a permis de résoudre des probléemes importants de théorie
des groupes. Des applications récentes s’étendent a l’algebre, la géométrie, I’analyse
et les probabilités.

Avec les groupes arithmétiques [24] et hyperboliques [19], les groupes d’automates
dominent actuellement notre vision de la théorie des groupes infinis.

Les groupes présentés dans ce texte pourraient étre rassemblés sous d’autres noms,
comme groupes branchés ou groupes auto-similaires (les définitions précises de ces
deux classes sont données plus loin). Nous avons choisi le nom « groupes d’auto-
mates » pour souligner I'importance de cette construction, qui produit des groupes
aux propriétés intéressantes.

Comme exemples d’application de cette théorie, nous avons choisi les probleémes
suivants.

— Probléme de Burnside. Groupes infinis de type fini de torsion.

— Probleme de Milnor. Constructions de groupes a croissance intermédiaire.

— Probléme d’Atiyah. Calculs de nombres de Betti L2.

— Probleme de Day. Nouveaux exemples de groupes moyennables.

- Probleme de Gromov. Groupes sans croissance uniforme.

Pour chacun d’entre eux, nous avons choisi les premiers exemples historiques de
groupes d’automates considérés pour résoudre ces problemes. Il s’agit du groupe d’Ale-
shin, du groupe d’allumeur de réverberes (qui peut étre engendré par un automate &
deux états), du groupe de Wilson et d’un groupe engendré par un automate & trois

états.
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142 A. ZUK

Nous avons le sentiment que la classe des groupes d’automates est tres riche et
qu’on est loin d’une compréhension compléte de ces groupes qui défient souvent notre
intuition.

Nous espérons que cette introduction au monde des groupes engendrés par les
automates pourrait stimuler les développements futurs.

1. GROUPES D’AUTOMATES

1.1. Définition du groupe engendré par un automate

Les automates qui nous intéressent sont finis, inversibles, avec le méme alphabet a
Uentrée et & la sortie, disons D = {0,1,...,d — 1} pour un certain entier d > 1. A un
tel automate A sont associés un ensemble fini d’états @), une fonction de transition
¢:Q x D — @ et une fonction de sortie : ¢ : @ x D — D ;Pautomate A est caractérisé
par le quadruplet (D, Q, ¢, ).

L’automate A est dit inversible si, pour chaque g € @, la fonction ¥(gq, ) : D — D
est une bijection. Dans ce cas, (g, -) peut étre identifiée avec 1’élément correspondant
04 du groupe symétrique Sy sur d = |D| symboles.

Il existe un moyen convenable de représenter un automate fini par un graphe mar-
qué T'(A) dont les sommets correspondent aux éléments de (). Deux états ¢,s € Q
sont liés par une arcéte orientée étiquetée par ¢ € D si ¢(q,i) = s; chaque sommet
q € Q est étiqueté par I’élément correspondant o, du groupe symétrique.

Les automates que 'on vient de définir sont les automates non initiaux. Pour les
rendre initiaux, on doit pointer un état ¢ € (Q comme état initial. L’automate initial
A, = (D,Q,0,v,q) agit a droite sur les suites finies et infinies sur D de la maniere
suivante. Pour chaque symbole z € D, 'automate donne immédiatement la sortie
y = (g, z) et change son état initial en ¢(q,x).

En joignant la sortie de A, avec I'entrée d’un autre automate B, = (5, , 3, s), on
obtient une application qui correspond & un automate appelé la composition de A, et
B, et désigné par A, x B,.

Cet automate est formellement décrit comme 'automate dont I’ensemble des états
est Q X S et les fonctions de transition et de sortie @, ¥ sont définies par

((z,y),4) = (¢(z,1), a(y, ¥(z,7))),
Y((z,y),1) = By, ¥(z, 1))

et avec I'état initial (g, s).
La composition A x B de deux automates non initiaux est définie par les mémes
formules pour les fonctions d’entrée et de sortie mais sans indiquer I’état initial.
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Deux automates initiaux sont dits équivalents s’ils déterminent la méme application
sur 'ensemble des états. Il existe un algorithme pour minimiser le nombre d’états.

L’automate qui produit ’application identité sur I’ensemble des suites est appelé
trivial. Si A est un automate inversible, alors pour chaque état ¢ 'automate A, admet
un automate inverse A; ! tel que A;xA; !, A x A, soient équivalents & 'automate tri-
vial. L’automate inverse peut formellement étre décrit comme ’automate (@, ¢7, 1;, q)
ou <;~5(s,7',) = ¢(s,04(1)), {/;(s,i) = o 1(i) pour s € Q. Les classes d’équivalence d’au-
tomates finis inversibles sur un alphabet D constituent un groupe qui est appelé le
groupe des automates finis; il dépend de D. Chaque ensemble d’automates initiaux
engendre un sous-groupe de ce groupe.

Soit maintenant A un automate inversible non initial. Soit @ = {¢1,...,q:} len-
semble des états de A et soit A, ,..
peut obtenir & partir de A. Le groupe G(A) = (A,,,...,A4,,) est appelé le groupe

., Aq, Vensemble des automates initiaux que I’on

déterminé ou engendré par A.

1.2. Groupes d’automates et produits en couronne

Il existe une relation entre les groupes d’automates et les produits en couronne.
Pour un groupe de la forme G(A), on a interprétation suivante.

Soit ¢ € Q un état de A et soit o, € Sy la permutation associée & cet état. Pour
chaque symbole ¢ € D, on note A,; 'automate initial ayant pour état initial ¢(g, )
(alors A, ; pour i =0,1,...,d—1 parcourt l’ensemble des automates initiaux qui sont
les voisins de A, i.e. tels que le graphe I'(A) admette une aréte de A; a A4, ;).

Soient G et I des groupes de type fini tels que F' soit un groupe de permutations
d’un ensemble X (nous nous intéressons au cas ou F' est le groupe symétrique Sy et
X est U'ensemble {0,1,...,d — 1}). On définit le produit en couronne G F' de ces
groupes comme suit. Les éléments de G ! F' sont les couples (g,v) ot g : X — G est
une fonction telle que g(z) soit différente de I’élément neutre de G, noté Id, seulement
pour un nombre fini d’éléments x de X, et o1 ¥ est un élément de F. La multiplication
dans G F' est définie par :

(913’71)(92772) = (g3, 7172)

ou

93(z) = g1(2)g2(77 ' (z)) pourz € X.
On écrira les éléments du groupe GUS, sous la forme (ag, ...,aq_1)0, 001 ag,...,aq_1 €
GetoelSy.

Le groupe G = G(A) admet un plongement dans le produit en couronne G5y via
I’application
Aq - (Aqf)v ey A(Ld—] )O-qa
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144 A. ZUK

ou g € Q. L'expression a droite est appelée décomposition en couronne de A. On
écrira ainsi dans le texte A, = (Ag,0,...,Aq,d-1)04-

Pour simplifier, on note a le générateur A, du groupe engendré par I’automate A.

1.3. Action sur un arbre

Les suites finies sur ’alphabet D = {0,...,d—1} sont en bijection avec les sommets
d’un arbre enraciné T, de degré d (dont la racine correspond a la suite vide).

Un automate initial A, agit sur les suites sur D et agit aussi sur Ty par automor-
phismes. Ainsi pour chaque groupe engendré par un automate, en particulier pour un
groupe de forme G(A), il existe une action canonique correspondante sur un arbre
(pour la théorie des actions sur les arbres sans racine, voir [30]).

Soit maintenant G un groupe agissant sur un arbre enraciné T'. Le bord 9T, consti-
tué des rayons géodésiques infinis issus de la racine, admet une topologie naturelle qui
le rend homéomorphe & ’ensemble de Cantor.

L’action de G sur T induit une action sur 97 par homéomorphismes et admet une
mesure canonique invariante p sur 9T qui est la mesure de Bernoulli sur DY donnée
par la distribution {%, ey 5}

Il existe un moyen canonique d’associer une représentation unitaire & un systeme
dynamique muni d’une mesure invariante. Dans notre cas, on obtient la représentation
réguliere 7 sur L2(OT, i), définie par (w(g)f)(z) = f(g~'z).

1.4. Projections de stabilisateurs

Pour un groupe G = G(A) agissant par automorphismes sur 7', on note Stg(n) le
sous-groupe de G constitué des éléments de G qui agissent trivialement sur le niveau
n de 'arbre T. D’une maniére analogue, pour un sommet u € 7', on note St (u) le
sous-groupe de G constitué des éléments fixant u. Le plongement de G dans le produit
en couronne G S, induit un plongement ¢ : Stg(1) — G? dans le groupe de base
du produit en couronne. Celui-ci définit les projections canoniques ; : Stg(l) — G
(i=1,...,d) données par ¥;(g) = ¢(g)|; pour g € St (1).

1.5. Groupes branchés et fractals

Le stabilisateur Stg(n) du n-iéme niveau est l'intersection des stabilisateurs de
tous les sommets de ce niveau. Pour tout sommet u € T, on peut définir la projection
Yy : Stg(u) — G.

DEFINITION 1.1. — Un groupe G est dit fractal si pour chaque sommet u, on a
Y. (Sta(u)) = G aprés identification de Uarbre T avec le sous-arbre T, issu de la
racine u.
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Le stabilisateur rigide du sommet u est le sous-groupe, noté Ristg(u), des auto-
morphismes de GG qui agissent trivialement sur le sous-arbre T;,. Le stabilisateur rigide
du n-iéme niveau Ristg(n) est le groupe engendré par les stabilisateurs rigides des
sommets sur ce niveau.

Un groupe G agissant sur un arbre enraciné 7" est dit sphériquement transitif s’il
agit transitivement sur chaque niveau. Un groupe sphériquement transitif G C Aut(7")
est dit branché si Ristg(n) est un sous-groupe d’indice fini pour chaque n € N. Un
groupe sphériquement transitif G C Aut(T') est dit faiblement branché si |[Ristg(n)| =
oo pour chaque n € N.

S’il n'y a pas de risque de confusion, on omettra l'indice G dans les notations
Ste(u), Ristg(u), ete.

Le plongement G — G 1S4, g — (9o, -.,94—1)0 définit la restriction g; de g au
sommet ¢ du premier niveau. L’itération de cette procédure conduit & une notion de
restriction g, de g a un sommet u.

DEFINITION 1.2. — On dit que le groupe G est réguliérement faiblement branché sur
un sous-groupe K # {1} si K O K x --- x K (produit direct de d facteurs, chacun
d’entre euz agissant sur le sous-arbre correspondant T, |u| = 1).

1 1

xy, [r,y] = 7'y~ lzy et on note (X)V la cléture

normale de X dans Y. La longueur d’un mot w et d’un élément g est notée |w| et |g|

On utilise les notations z¥ = y~

respectivement.

1.6. Le probleme des mots

Le probleme des mots a une solution pour chaque groupe engendré par un automate,
grace a l'algorithme presenté ci-dessous :

PROPOSITION 1.3. — Le probléme des mots est résoluble pour les groupes d’auto-
mates.
Preuve. — Soit w un mot sur 'alphabet consistant en les étiquettes des états de

l'automate et leurs inverses.

1. Vérifier si w € St (1) (sinon w # 1 dans G).

2. Calculer w = (wg, ..., wq_1). Alors
w=1
dans G si et seulement si w; = 1 dans G pouri =0,...,d—1. Aller & 1.en remplacant

w par w; et procéder avec chaque w; comme avec w.

Si, dans une étape, on obtient un mot qui n’est pas dans St(1), alors w # 1 dans
G. Si dans une étape tous les mots w;,, ..., w;, sont déja apparus dans I’algorithme,
alors w = 1 dans G.
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Cet algorithme converge car les longueurs de wy, ..., wg—1 sont au plus la longueur
de w et, apres suffisamment d’étapes, les mots se répétent.

1.7. Classification des groupes d’automates & deux états
sur l’alphabet {0,1}

Pour 'alphabet a deux lettres, les automates a un état produisent seulement le
groupe trivial et le groupe d’ordre deux.

Certains automates a deux états sont déja intéressants, par exemple le groupe
d’allumeur de réverberes.

On se propose maintenant d’analyser tous les groupes engendrés par les automates
a deux états avec un alphabet a deux lettres.

En plus du groupe d’allumeur de réverberes engendré par ’automate de la figure 2,
il y a cing autres groupes engendrés par les automates de la figure 1 (on note 1 ou Id
I'identité de So et e I’élément non trivial de Sa).

Les deux premiers automates engendrent le groupe trivial et le groupe d’ordre 2. Le
groupe donné par le troisieme automate est isomorphe au groupe de Klein (Z/2Z) &
(Z/2Z). Le quatrieme automate définit le groupe diédral D,. Le dernier automate
définit le groupe cyclique infini.

Ce sont les seules possibilités [15].

THEOREME 1.4. — Les seuls groupes engendrés par les automates & deux états sur
un alphabet a deuz lettres sont :

— le groupe trivial;

— le groupe d’ordre deuz /27 ;

— le groupe de Klein (Z/27) ® (Z/2Z)

- le groupe cyclique inifini Z ;

— le groupe diédral infini D ;

le groupe d’allumeur de réverbéres (BzZ/2Z) x 7.

Preuve. — On note a et b les deux états de 'automate. Si les deux sont étiquetés par
I'identité ou les deux par e, alors le groupe engendré par un tel automate est trivial
ou bien Z/27Z.

Donc on peut supposer qu'un état, disons a, est étiqueté par l'identité et 'autre
par e. En échangeant si nécessaire 0 avec 1, on peut supposer que a = (a,a) ou
a = (b,b) ou a = (a,b).

(i) Cas a = (a.a).

Dans ce cas, a correspond & l'identité dans le groupe. L’échange de 0 et 1 (cela ne
change pas a) réduit b & trois possibilités : b = (b, b)e, b = (a,b)e ou b = (a, a)e.

Le premier cas correspond & Z/27Z, le second & Z et le troisieme & Z/27.
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0.1 @ 0.1
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0.1

0.1
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SERCIRONNG

FiGure 1. Les automates qui engendrent le groupe trivial, le groupe
d’ordre deux, le groupe de Klein, le groupe diédral et le groupe cyclique

infini.

(ii) Cas a = (b, b).
L’échange de 0 et 1 (cela ne change pas a) réduit b a trois possibilités : b = (b, b)e,
b= (b,b)e ou b= (a,b)e.

Les deux premieres possibilités correspondent au groupe de Klein Z/27 ¢ 7./27.

En effet a et b sont d’ordre deux et commutent.

Le troisieme cas correspond au groupe cyclique infini. En effet on a

ab = (ba,b?)e,

ba = (ab,b?)e,

donc a et b commutent. Deuxiemement,

ba = (b%a, b*a),

ce qui implique la trivialité de b%a. Alors le groupe est cyclique. La relation précédente

assure que l'ordre de a est deux fois ’ordre de b. Mais a et b ont le méme ordre d’apres
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|
)
a 0 ’

FIGURE 2. L’automate qui engendre le groupe d’allumeur de réverbeéres

la relation a = (b,b). Comme a et b sont non triviaux, ceci implique que le groupe
est Z.

(iii) Cas a = (a, b).

En considérant si nécessaire ’automate inverse (qui engendre le méme groupe et ne
change pas a) on peut supposer que b satisfait une des trois possibilités : b = (b, b)e,
b = (a,b)e ou bien b = (a,a)e.

Dans le premier cas, b2 = (b, b?) donc b est d’ordre 2. Comme a? = (a?,b?), a aussi
est d’ordre deux. La relation a='b = (a7 'b,1)e et (a~'b)? = (a~*b,a~'b) implique
que a~'b est d’ordre infini. Donc il s’agit du groupe diédral infini D.

Le second cas correspond au groupe d’allumeur de réverberes (voir la section sui-
vante).

Le troisiéme cas peut étre analysé d’une maniere similaire.

1.8. Exemples importants

Dans les sections suivantes, on présente les exemples importants de groupes engen-
drés par les automates. Il s’agit du groupe d’allumeur de réverberes (qui peut étre
engendré par un automate a deux états), du groupe d’Aleshin, d’un groupe engendré
par un automate a trois états et du groupe de Wilson.

Il existe d’autres groupes d’automates dont ’étude a été importante pour le dé-
veloppement de la théorie. Mentionnons ici le groupe de Fabrykowski-Gupta [9], le
groupe de Sushchansky [31] et le groupe de Gupta-Sidki [20].

Pour une théorie générale des automates et des groupes d’automates, on peut
consulter [11], [22] et [34].
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2. LE GROUPE D’ALLUMEUR DE REVERBERES COMME
GROUPE D’AUTOMATE

L’automate de la figure 2 engendre le groupe d’allumeur de réverbeéres [15]. Ce
groupe peut étre défini comme le produit en couronne (Z/2717Z) ou comme le produit
semi-direct (®zZ/27) x Z avec action de Z sur ©z(Z/2Z) par translation.

Soient a et b les générateurs du groupe d’allumeur de réverberes (©zZ/27Z) x Z tels
que a = (fa,9a), b= (fv,95), OU go = gp € Z est un générateur de Z, f, € ®z(Z/27Z)
est I'identité et fp = (...,0,0,1,0,0,...) € ®z(Z/27) est tel que 1 soit en position 1.
Il existe un isomorphisme entre ce groupe et le groupe engendré par ’automate de la
figure 2, ou a et b correspondent aux états de cet automate.

L’étude de ce groupe, et de son action sur ’arbre enraciné de degré 2 correspondant
a l'automate, a permis de répondre a une question d’Atiyah.

2.1. Récurrence d’opérateurs

Soit maintenant G le groupe engendré par 'automate de la figure 2. On note
0T = FEy U FE4 la partition du bord 8T associée aux sous-arbres Ty et Ty issus de
chacun des deux sommets du premier niveau. On a un isomorphisme L2(9T, p) =~
L2(Ey, po) ® L?(Ey1, 1) ot p; est la restriction de p & E;, ainsi qu’un isomorphisme
L2(0T, ) ~ L?*(E;, u;), pour i = 0,1, provenant de T =~ Tj.

On obtient ainsi un isomorphisme entre H et H ® H, ot H est un espace de Hilbert
de dimension infinie. Grace & cet isomorphisme, les opérateurs m(a), w(b) (encore
notés a et b, respectivement), ol 7 est une représentation comme dans la section 1.3,
satisfont les relations d’opérateurs suivantes :

~(05) (0 0)

qui correspondent aux relations de type produit en couronne : a = (a,b)e et b = (a, b).

Soit 7, une représentation par permutations du groupe G provenant de ’action de
G sur le niveau n de l'arbre associé et soit H,, 1’espace des fonctions sur le n-ieme
niveau. Soient a,, et b, les matrices correspondant aux générateurs pour la représen-
tation 7,. Alors ag = bg = 1 et

0 An—1 Ap—1 0
1 = , by =
( ) n ( bn—l 0 ) ( 0 bn—l >

en tenant compte de I’isomorphisme naturel H,, ~ H,,—1 ® Hp_1.
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2.2. Le groupe d’allumeur de réverbeéeres et sa mesure spectrale

On s’intéresse au spectre et a la mesure spectrale correspondant a ’opérateur de
Markov pour le groupe d’allumeur de réverberes.

Pour une partie génératrice .S finie et symétrique (S = S~1), on considere la marche
aléatoire simple sur le graphe de Cayley Cay(G, S). Alors 'opérateur de marche aléa-
toire A : £2(G) — €2(G) est défini par

Af@) = 15 & O f(s9)

seS
ou f € 3(G)et geG.

Comme l'opérateur A est borné (on a ||A]| < 1) et auto-adjoint, il admet une

1
A:/_lAdE()\)

olt E est une mesure spectrale. Cette mesure est définie sur les sous-ensembles boré-

décomposition spectrale

liens de lintervalle [—1,1] et est & valeurs dans I’espace des projecteurs de 1’espace de
Hilbert ¢2(G). La mesure spectrale de Kesten p sur lintervalle [—1, 1] est définie par

u(B) = (E(B)d1a, 614),

oll B est un sous-ensemble borélien de [—1,1] et 614 € £2(G) est une fonction égale
a 1 sur I’élément neutre et & 0 ailleurs.

Pour un sous-espace fermé et G-invariant H de £2(G), on définit sa dimension de
von Neumann dim(H) comme étant

dim(H) = <PI‘(H)(5M, 61d>,
ot Pr(H) est une projection de ¢2(G) sur H.

Pour le groupe d’allumeur de réverbéres, on peut expliciter cette mesure [15] :

THEOREME 2.1. — Soit G le groupe défini par l’automate de la figure 2, de généra-
teurs a et b. L’opérateur de marche aléatoire A sur £2(G) posséde les valeurs propres

(i)
cos| -7
q
otq=2,3,4,... etl=1,...,q— 1.

La dimension de von Neumann du sous-espace propre correspondant est égale a

dim (ker (A ~ cos (é”))) _ qu_ :

sutvantes :

ot (I,q) =1.

ASTERISQUE 317



(971) GROUPES D’AUTOMATES 151
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FIGURE 3. L’histogramme du spectre de an + a,;' + b, + b} pour n = 10

Pour démontrer ce théoreme, on utilise les approximations de dimension finie 7,
décrites précédemment.

Le calcul de la mesure spectrale a plusieurs applications aux marches aléatoires.
Dans la section suivante, on présente une application de ce calcul & la conjecture
d’Atiyah sur les nombres de Betti L? de variétés fermées.

2.3. Une question d’Atiyah

En 1976, Atiyah [2] a défini les nombres de Betti L? des variétés fermées. Il a conclu
son article par une question concernant les valeurs de ces nombres. Plus tard cette
question a donné lieu & une conjecture, dite d’Atiyah.

Pour un groupe I" on note ﬁIfl(F) le sous-groupe de Q engendré par les inverses
des ordres des sous-groupes finis de I". Pour une variété fermée M, on désigne par
bl(»z)(]M) son i-ieme nombre de Betti L2.

Conjecture. — Soit M une variété fermée dont le groupe fondamental w1 (M) est
isomorphe a I'. Alors on a

b (M) e in~'(I)
pour tout nombre entier 1.

Il existe plusieurs textes présentant les résultats obtenus sur cette conjecture, le plus
récent étant un livre de Liick [23]. Plusieurs résultats confirment différentes formes
de la conjecture d’Atiyah. On montre cependant que la version forte formulée ici est
fausse [14].
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THEOREME 2.2. — Soit G le groupe donné par la présentation
G ={a,t,s|a®>=1,[t,s] =1,[t 'at,a] = 1,s 'as = at " at).

Chaque sous-groupe fini de G est un 2-groupe abélien élémentaire, en particulier l’ordre
de chaque sous-groupe fini de G est une puissance de 2. Il existe une variété rieman-
nienne fermée (M, g) de dimension 7 telle que m1(M) = G pour laquelle le troisiéme

nombre de Betti L? est égal d

1

La preuve du théoreme 2.2 repose sur les résultats décrits précédemment, sur le
spectre et la mesure spectrale de 'opérateur de Markov A de la marche aléatoire
simple sur le groupe de 'allumeur de réverberes, dont G est une extension HNN. Les

résultats impliquent que
1

dim(ker(A)) =3
mais le dénominateur 3 ne divise pas les puissances de 2, qui sont les ordres des
sous-groupes finis du groupe de ’allumeur de réverberes.

La conjecture d’Atiyah peut étre formulée d’une maniere équivalente en termes de
dimension de sous-espaces propres des opérateurs dans Z[G| agissant sur 22(G) ou
G = m(M). Si G est un groupe de présentation finie et A un opérateur de marche
aléatoire sur G, il existe une construction d’une variété fermée M dont le groupe
fondamental est G et telle que le troisitme nombre de Betti L? de M soit égal &
la dimension de von Neumann du noyau de 'opérateur A. Le groupe d’allumeur de

réverberes n’est pas de présentation finie.

3. LE GROUPE D’ALESHIN

Considérons I'automate fini inversible représenté par la figure 4. Le groupe d’Ale-
shin [1] est le groupe G engendré par U et V.

Son étude a permis de donner une réponse particulierement simple au probleme de
Burnside et de résoudre un probleme de Milnor.

3.1. Une réponse au probléme de Burnside

En 1902, Burnside a demandé s’il existe des groupes de type fini qui sont infinis
et tels que chaque élément soit d’ordre fini. Le résultat le plus important concernant
I’existence de tels groupes est le théoréme d’Adyan-Novikov [28]. Le groupe d’Aleshin
donne une réponse tres simple a ce probleme méme si, contrairement aux groupes
d’Adyan-Novikov, l'ordre des éléments n’est pas uniformément borné. Aleshin [1]
démontre :
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FIGURE 4. L’automate d’Aleshin de 1972

THEOREME 3.1. — Le groupe G = (U, V) est de torsion et infini.

Bien qu’il y ait des preuves plus directes de ce théoréme, nous présentons la dé-
monstration originale car elle permet la construction d’une quantité non dénombrable
de p-groupes infinis pour tout nombre premier p.

Le groupe d’Aleshin est par définition de type fini. Les prochaines sous-sections

donnent la preuve des deux assertions du théoréme.

Préliminaires. —
Soit A un automate fini, § un mot et ¢ un état de I'(A). On note ¢[d] la permutation
que porte le sommet d’arrivée du chemin de I'(A) partant de ¢ et suivant 4.

On constate :

PROPOSITION 3.2. — Soit § un mot de longueur [.
i) sil >3, alors V[6] =1d;
it) siU[8] = e, alors1 > 3 et § est de la forme £,1,1,...,1,0 avec £ € {0,1};
i11) plus précisément,

m = 011...10, U[m] = e si et seulement si m est de longueur | = 0 ou 2 modulo 3

m = 111...10, U[m] = e si et seulement si m est de longueur | =1 ou 2 modulo 3.

LEMME 3.3. — Les générateurs sont d’ordre fini :
i) U est d’ordre 2.
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1) V est d’ordre 4 et agit transitivement sur les 2 premiéres lettres des suites de
{0,1} et uniquement celles-ci.

Preuve. — i) Soit § un mot. Le second point de la proposition précédente indique que
seule la lettre suivant un éventuel préfixe de § de la forme &£,0,0,...,0,1 pourra étre
modifiée sous l'action de U. Il en va de méme pour l'action de U sur la suite U(d) et
donc U?%(8) = 4.

ii) Utilisons I'image de V dans le produit en couronne : V = (Id,a)e. Donc
V2 = (a,a). Or a = (Id,Id)e et donc a® = (Id,Id) = Id,a # Id. Finalement, V
est exactement d’ordre 4.

Comme il n’y que 4 mots a 2 lettres, V' agit bien transitivement sur les mots &
2 lettres. Le premier point de la proposition 3.2 acheve la preuve de ce lemme.

Puisque U et V sont d’ordre fini, tout élément de G s’écrit X = X, X;pn—1 ... X1,
X; = U ou V. Pour tout mot §, on note alors

X[(S] = X'm[Xm——l X1(5)]

Nous allons associer & tout élément X = X,,...X; € G, avec X; = U ou V, une
fonction

Ry : {mots de longueur [ > 3} — N.

Soit donc ¢ un mot de longueur I > 3. Soit d le plus petit entier tel que X () = 4
(il existe car I'ensemble {X(d), i € N} est fini).
On pose TY(X,8) = 65,68, .,0% 1,02,...,0% _1,...,0%

{0,....,m —2} et pouri e {1,....d — 1}

avec pour j €

5 =9, 6ty = X;41(8)), STt = X (85,_1)-

J m—1

On note I'*(X, §) la sous-suite de I'' (X, §) qui consiste en les &} vérifiant

- X,11 =U (les mots 6; en entrée de l'opérateur U)

- 6; est de la forme £,1,1,...,1,v avec £ et v égaux a 0 ou 1.

Dans cette suite, on remplace chaque 6;- par 0 s’il finit par 0 et par 1 sinon. On
obtient ainsi une suite de la forme

01 0 1
0°11%10%2...1°%

0

7 > 0 sauf peut-étre pour sj ou 5},.

avec sj

On remplace maintenant, pour = 0 ou 1, chaque z® par z (la suite obtenue com-

mence par 0 si s{ > 0 et par 1 sinon; de méme, elle finit par 1 si et seulement si
1

s > 0).

Cette suite est notée I'*( X, §).
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DEFINITION 3.4. — On pose
Rx(6) = {

max(kg, k1) si ko et k1 sont non nuls
0 sinon

ot ko et ky sont respectivement le nombre de 0 et de 1 dans I'*(X,4).

Rx (9) est en fait le nombre d’alternances dans la suite ['*(X, §).

Le groupe G est de torsion. —

Soit X = X,,...X; € G. 1l nous faut montrer I’existence de D tel que XP = 1.

LEMME 3.5. — Soit § un mot de longueur | > 3 et d tel que X4(8) = 6.
Si Rx(8) = 0, alors pour tout mot n, X2%(5n) = 7.

Preuyve. — Supposons que Rx(§) = 0. On distingue alors 3 cas :

1. T3(X,8) = 2.
Dans ce cas, la suite T''(X, ) ne possede pas de mot de la forme £11...0 et donc,
d’apres la proposition 3.2, pour toute lettre x, on a X¢(6z) = éz. Comme I''(X,d)
ne contient pas non plus de mot de la forme £11...1, I'3(X, §z) = @ et ce premier cas
est traité.

2. T3(X,6) =0.
Etant donné une lettre x, on a toujours X27(6z) = X24(6)(X?[])2(z) = 6z (car
1d® = e? = 1d). De plus, par hypothese, la suite T'' (X, ) ne contient pas de mots de
la forme £11...1 et ainsi la suite I'*(X, §z) est vide : on est ramené au premier cas.

3. I%(X,6) = 1.

On a X?[§] = Id et donc, pour tout z, X4(6x) = §z. De plus, ['' (X, dz) est alors
obtenu en ajoutant z & la fin de chaque mot de I''(X, ) et donc I'*(X, §x) est égal
a:

i) 0 si et seulement si z = 0. On est ramené au deuxiéme cas et donc, pour tout 7,

X2d(5xn) = dxn.

ii) 1 sinon. On applique le raisonnement du troisieme point & dz, jusqu’a ce que

lon soit dans le cas i) précédent.

LEMME 3.6. — La fonction Rx est décroissante pour l’ordre partiel habituel sur les
mots, i.e.
De plus, si d est le plus petit entier vérifiant X4(8) = &, alors

X6] =1d et Rx(6) > 0 implique Rx (6z) < Rx(d).
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Preuve. — Le cas Rx(6) = 0 a été traité dans la preuve du lemme précédent. On
suppose donc Rx (§) > 0.

i) Cas X%[6] = Id. La suite I'' (X, dz) est donc aussi de longueur md. De plus, les
mots de la suite I'?(X, §x) proviennent des mots de I'?(X,d) de la forme £11...1 et le
nombre d’alternances entre les mots de I'(X, x) finissant par 0 et ceux finissant par
1 est inférieur au nombre de 0 dans I'*(X, ) (car seul un mot de la forme £11...0 de
I'?(X,d) peut générer la permutation e). Finalement les nombres de 0 et de 1 dans la
suite I'3(X, ) sont strictement plus petits que le maximum des nombres de 0 et de
1 dans I'3(X,6) : on a bien Rx(dzx) < Rx(d).

ii) Cas X?[4] = e. Ici la suite '} (X, dx) est de longueur 2md. Si on note I'' (X, §) =

TR T LA, - SO AP 54, alors T'(X,dz) =
S Stxl . 8L _qxl 82x2 .. 8% _ 22, e 02 2d
boe(x) bie(zy) ... 6h_se(zp,_y) Ofe(zd) .. 672n—1e(1‘2n~1) 57dn—1€($gn—1) '

En raisonnant comme dans le premier cas, on voit que les mots de la suite I'2(X, §x)
proviennent des mots de T'?(X,6) de la forme £11...1 mais, cette fois-ci, sur les deux
copies de T'!'(X,6) correspondant aux deux lignes de la matrice ci-dessus. Donc la
longueur de la suite ['3(X,dz) n’est pas plus grande que deux fois le nombre de 1
dans T'3(X, §), ce nombre étant lui-méme < Rx(J). On remarque de plus que dans
I'?(X,éz) on a autant de mots finissant par 0 que de mots finissant par 1. On a bien

LEMME 3.7. — Soit § un mot de longueur ! > 2. Alors Rx(8) = Rx(X(9)).

Preuve. — Il faut juste remarquer que la suite I'' (X, X (§)) est obtenue en mettant
les m premiers mots de T''(X,§) & sa fin.

LEMME 3.8. — Il existe tx > 3 tel que pour tout 6 mot de longueur | > tx et toute
suite (finie ou infinie) n
Rx(6) = Rx(on).

Preuve. — L’élément X agit sur I'’ensemble des mots a 3 lettres. Considérons alors
une orbite B & laquelle nous pouvons d’apres le lemme précédent associer un entier
Rx(B) = Rx(4), pour tout § € B. Supposons ce nombre non nul.

Regardons alors 1’ensemble B’! des mots de 4 lettres dont les 3 premitres forment
un mot de B. Soit nx € B'', n € B, x = 0 ou 1. Son orbite est nécessairement incluse
dans B’ et deux cas se distinguent alors :

1. X[n] = e et dans ce cas 'orbite de nz est B'L.

2. X[n] = Id et dans ce cas B! est la réunion disjointe B} U B} de deux orbites
sur les mots & 4 lettres. Mais ici, d’apres le lemme 3.6, Rx(B}) et Rx(B3) sont
strictement inférieurs & Rx(B).
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Les descendants de B sont donc réunis en « blocs » BY (correspondant a certaines
orbites) que 'on peut représenter par les sommets d’un arbre enraciné tel que chaque
sommet possede 1 ou 2 fils; & chacun de ces blocs est associé un nombre Rx (B%) qui
est strictement plus petit que celui du pere de B? si celui-ci a deux fils.

Le nombre de sommets ayant deux fils est donc nécessairement fini et il existe un
niveau p tel que, pour tout bloc BY, les blocs fils de BY aient tous la méme étiquette
Rx(BY).

La preuve est achevée une fois remarqué qu’il n’existe qu'un nombre fini d’orbites
B sur '’ensemble des mots a 3 lettres.

Nous allons maintenant montrer que, pour tout d de longueur au moins
tx, Rx(6) =0.

DEFINITION 3.9. — Soit § un mot de longueur l > 3. Notons ag le nombre d’occur-
rences du mot £11...10 dans ['?(X,§). Soit A un sous-alphabet de {0,1}. On dit que
[2(X,6) admet le type A si Y ¢c 4 ae est pair.

Remarque 3.10. — Soit un des ag est pair, soit c’est leur somme et donc I'*(X,4)

admet au moins un type.

LEMME 3.11. — Supposons l’existence d’un mot § et de deuz lettres x1 et xo tels que
Rx(5) = Rx((sml) = Rx(dzlxg) 75 0.
Alors les suites T2(X,8z1) et [2(X,8z122) admettent les mémes types.

Preuve. — Nécessairement, X[§] = e. La preuve du lemme 3.6 indique alors que, si
la suite I'2(X, §z) contient le mot 70, elle contient aussi le mot nl et donc les ag de
I'?(X, 6z1) peuvent se lire aussi sur les mots de la forme £11...11, lesquels vont donner
les mots définissant les types de I'*(X, §z1z3).

En effet, X[6z1] = e et I'’ensemble des mots de I'>(X, 6x,25) de la forme £11...10 est en
bijection avec I’ensemble des mots de la forme £11...11 (on modifie la derniere lettre),
eux-mémes en bijection avec 'ensemble des mots de la forme £11...1 dans T'2(X, ;)
(on ote la derniere lettre).

Ainsi les valeurs des a¢ sont identiques dans I'*(X,dx;) et dans I'?(X,dz122) et le
lemme est prouvé.

LEMME 3.12. — Soit § de longueur tx. Alors Rx () = 0.

Preuve. — Raisonnons par ’absurde. Nous sommes alors dans les conditions du lemme
précédent et les types admis par les suites ['?(X, §x1), T?(X, §z122),....[ 2(X, 01 25...2%)
sont les mémes. Soit donc A un tel type (qui existe grace & la remarque 3.10). Il
résulte du dernier point de la proposition 3.2 qu’il existe une longueur [ > tx telle
que les mots 7 de longueur ! vérifiant U[n] = e soient exactement ceux de la forme
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£11...10 pour ¢ € A. Mais alors pour le mot m = §11...1 de longueur ! et d tel que
X4(m) =m,

Xd[m] - eZEEAaf =1d
et donc Rx(ml) < Rx(m) ce qui contredit la propriété de tx.

Soit maintenant
D = ppcem{cardinal de 'orbite de 4|6 de longueur tx}.

Par définition de D, pour tout mot 7 de longueur au plus tx, X2 (n) = n. D’apres
le lemme précédent, pour tout mot 7 de longueur tx, on a Rx(n) = 0 et donc pour
toute suite v finie ou infinie, X2P(ny) = 7y (lemme 3.5). Finalement, X2P = 1 et
donc le groupe G est de torsion.

G est infini. —

LEMME 3.13. — Pour tout k > 0, pour tout § € {0,1}, il existe Xy ¢ € G et il existe
z1,Z2,Y1,Y2 € {0,1} tels que, pour tout mot vy, on ait

Xie(Ti22 wﬁ’Y) =11920..07.
k k+1
Preuve. — Par récurrence sur k.
Pour k = 0. On voit que U%(00&v) = 00e?(&)~. Ici, (x1,22,y1,y2) = (0,0,0,0)
convient. Xoo =1Id et Xo; =U.
Supposons le résultat vrai pour tout k& < K. Nous partons de xlng\..’.g&y et allons
K+1
essayer d’arriver a y;ys 0\’97
K+2
Tout d’abord, une remarque : le lemme 3.3 nous indique que, en utilisant une
puissance appropriée de V', on peut faire apparaitre les deux premieres lettres que 'on
souhaite sur n’importe quel mot, sans modifier le reste de celui-ci. Cela est notamment
utile pour utiliser les X ¢ sur des mots dont les deux premicres lettres ne sont pas
celles requises par les hypotheses de récurrence.
Par hypothese de récurrence, il existe X 11 tel que
X1, (W1950..007") = 21250..0107".
K K—1
On pose v = £v et on utilise une bonne puissance de V' ; on obtient ainsi 'existence
de Ty tel que :

Ti(z1220...0&y) = 2725 0...0 10&7.
K+1 K-1
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s 14 . . —~1 -1 -1
On itere ce procédé en utilisant successivement X~ , ,, XK_M,...,XQ1 et les bonnes
puissances de V pour enfin obtenir un élément Tk vérifiant :

Tk (z1220..087) = y1y2 1...10&.
K+1 K
D’aprés le dernier point de la proposition 3.2, il existe o € {0,1} tel que
Ulo 11..10] = e. On pose alors
——
K+1

T = UV'Tk ol i est tel que V' (y y2) = ol.

Cet élément vérifie
T(z122 0\../._957) = 01\..}007.
K+1 K+1
Maintenant on utilise successivement X 1, X1 1,...,XK—1,1 et les puissances appro-
priées de V pour, a chaque étape, faire apparaitre les deux premieres lettres requises
a l'utilisation de X; 1. On obtient alors la suite d’égalités

! —
T{(x1220..06y) = x%0]1....100y
K+1 K-1
Ti(z1220...06y) = *%001..1 00y
K+1 K—2
T (z1220..087) = **0........... 0y
K+1 K+2

ce qui acheve la preuve de ’hérédité et donc celle du lemme.
Le lemme précédent exhibe alors pour tout k € N des éléments Z; de G vérifiant

Zr(1...1111...) = 0.0 111...
k k

(on utilise les X} ; multipliés a droite et & gauche par des puissances adéquates de
V).
Ces Z\, sont tous distincts et donc le groupe G est infini.

On remercie Jean-Frangois Planchat qui nous a expliqué la preuve d’Aleshin [29].

3.2. Croissance

Pour un groupe G engendré par une partie S, finie et symétrique (i.e. telle que
S = S~1), on note |g|s le nombre minimal de générateurs requis pour représenter g.
La croissance du groupe G décrit le comportement asymptotique de la fonction

ba(n) =[{g € G :|g|ls < n}|
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Ce type de croissance est indépendant de la partie génératrice. Par exemple, pour
les groupes nilpotents, elle est polynomiale et, pour un groupe qui contient un sous-
groupe ou méme un semi-groupe libre, elle est exponentielle. Pour ’histoire de cette
notion, voir [18]. Dans [25] il a été demandé s’il existe d’autres types de croissance.
On présente la réponse donnée par Grigorchuk dans [13].

Soit G le groupe engendré par les états a, b, ¢ et d de 'automate de la figure 4. 11
est facile de voir que ce groupe est commensurable au groupe engendré par les états
U et V et au groupe engendré par tous les états de cet automate (i.e. ces groupes ont
des sous-groupes d’indice fini isomorphes).

PROPOSITION 3.14. — Le groupe G n’est pas a croissance polynomiale.

Preuve. — Un groupe a croissance polynomiale contient un sous-groupe d’indice fini
nilpotent (Gromov) qui contient un sous-groupe d’indice fini sans torsion (Malcev). Or
le théoréeme d’Aleshin (voir la section précédente) affirme que G est infini de torsion.
On peut aussi vérifier cette proposition par un calcul simple.

Montrons que le groupe d’Aleshin est & croissance sous-exponentielle.
Nous avons les relations :

a=(1,1)e
b = (a,c¢)
(2) ¢ = (a,d)
d = (1,b)
et aussi
aba = (c,a)
(3) aca = (d,a)
ada = (b,1).
LEMME 3.15. — Le groupe engendré par b, c et d est isomorphe au groupe de Klein
Z/27 & L[2Z.
Preuve. — Il s’agit d’une vérification simple.

Soit I' = St (3). Alors [G : T < oc.

LEMME 3.16. — Considérons pour g € T son image dans G®; on note g =
(91,---,9s). Alors

8
3
1 < - 8,
@) > lad < glal+

pour la longueur par rapport auzr générateurs a, b, ¢ et d.
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Preuve. — Sachant que a est d’ordre 2 et que b, ¢ et d sont les éléments du groupe
de Klein, chaque élément g € G s’écrit :

g = akiaksa . .. ak,a,

ou k; € {b,c,d} et le premier et le dernier a, notés @, n’apparaissent pas forcément.
Considérons un bloc v = k;ak;11a ou v = ak;ak;;1. Grace aux relations (2) et (3)
son image v = (y1,72) dans G x G vérifie

vl + vzl < vl

Si k; ou ki1 est égal & d, cette inégalité devient
3
(5) [v1] + 2l < Zhl'

Les relations (2) et (3) montrent que l'image de k; ou ak;a dans G x G donne c si
k; = b et donne d si k; = ¢. Donc en itérant cette procédure 3 fois, on est siir de se
retrouver dans la situation (5). D’ou I'inégalité (4) (le terme 8 est di au fait que la
longueur de |g| n’est pas forcément divisible par 8).

PROPOSITION 3.17. — Le groupe d’Aleshin est a croissance sous-exponentielle.
Preuve. — L’inégalité (4) nous montre que
(6) lor (k)| < > b (k1)| x - -+ x |bg (ks)]-

kit-+ks<3k+8

Il est important de calculer la longueur des éléments par rapport aux générateurs a,

b, c et d méme si a n’appartient pas & I'. Comme T" est d’indice fini dans G, on a
(7) dim {/bg(n)| = lim {/[br(n)| = o
Pour chaque € > 0, il existe ¢ > 0 tel que, pour n suffisamment grand, on ait
b (n)] < (o + €)™
La majoration (6) assure alors qu’il existe ¢’ tel que
lbr(n)] < c'n®(a + &) inFe,
Donc lim, o {/]br(n)] < ai ce qui, avec (7), implique

lim {/|bg(n)| = 1.

n—oo

Le groupe d’Aleshin est donc a croissance sous-exponentielle.

On ne connait pas le comportement exact de la fonction de croissance du groupe
d’Aleshin. Pour de meilleures estimations, voir [5].
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FIGURE 5. L’automate a trois états
4. GROUPE ENGENDRE PAR UN AUTOMATE A TROIS ETATS

On s’intéresse au groupe engendré par l'automate de la figure 5 introduit dans
[16]. Ce groupe apparait aussi comme le groupe de Galois des itérations du polynéme
x2 — 1 sur les corps finis (Pink) et comme le groupe de monodromie du revétement
ramifié de la sphere de Riemann donné par le polynéme 2% — 1 (voir [26]).

Une des propriétés les plus remarquables de ce groupe est liée a la notion de moyen-

nabilité.

4.1. Propriétés algébriques de G

THEOREME 4.1 ([16]). — Soit G le groupe engendré par l’automate de la figure 5.
Le groupe G posséde les propriétés suivantes.
a) Il est fractal;
b) il est réguliéerement faiblement branché sur G';
¢) il est sans torsion;
d) le semi-groupe engendré par a et b est libre;
e) il admet la présentation :

G = (a,blo(0™([a,a’])) = 1,m =0,1,...,e = 0,1),
Ja — b g. la ab’+1
7 1b — b

On présente ici les démonstrations de quelques propriétés algébriques de G men-
tionnées dans le théoreme 4.1.
Pour G = (a,b), on a les relations a = (1,b) et b = (1,a)e.
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PROPOSITION 4.2. — Le groupe G est fractal.

Preuve. — Nous avons
Ste(1) = (a, a®, b2).

Mais
= (l’b)
(8) a® = e(1,a7Y)(1,b)(1,a)e = (b2, 1)
> = (a,a),

et chacune des images des deux projections de Stg(1) est G, i.e. G est fractal.

PROPOSITION 4.3. — Le groupe G est réguliérement faiblement branché sur G', i.e.
G >0 xG.

Preuve. — En effet, comme

[a,b%] = (1, b, a)),
en utilisant la fractalité de G, on obtient G’ > ([a,b*])¢ > 1 x ([b,a])¢ = 1 x G’
et (1 x G')? = G' x 1. Donc G’ contient G’ x G’ et comme G’ # 1 le groupe G est
régulierement faiblement branché sur G'.

LEMME 4.4. — Le semi-groupe engendré par a et b est libre.

Preuve. — Considérons deux mots différents U(a,b) et V(a,b) qui représentent le
méme élément et tels que p = max{|U|,|V|} soit minimal. Une vérification directe
montre que p ne peut valoir ni 0 ni 1.

Supposons que |Uly, le nombre d’occurrences de b dans U, est pair (et donc |V|,
également). Si ce n’est pas le cas, on peut considérer les mots bU et bV augmentant
ainsi p par 1.

Maintenant U et V sont les produits de

am — (l,b‘ln)

et de
ba™b = (1,a)e(1,6™)(1,a)e = (b™a,a).

Si, dans un de ces mots, il n’y a pas b, disons U = a™, apres avoir projeté U et
V sur la premiere coordonnée, on obtient 1 = Vj ou la projection Vj est un mot non
vide vérifiant |Vy| < |V] < p. Ceci contredit la minimalité de U et V.

On considére maintenant la situation ou b apparait dans les deux mots au moins
deux fois. Si le nombre d’occurrences de b dans U et V était un, alors par minimalité
ils doivent étre égaux a ba™ et a™b. Mais ba™ = (b™,a)e et a™b = (1,b™a)e, ce qui
montre que, si ces mots sont différents, ils représentent des éléments différents.
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Donc les deux mots contiennent deux b et |U|, |V | < p, ou 'un d’entre eux contient
au moins quatre b et |U|,|[V] < p+ 1.

Si on considere les projections de U et V sur la seconde coordonnée, on obtient
deux mots différents (& cause de la minimalité de U et V, ils doivent finir avec des
lettres différentes) et de longueur strictement plus petite. Ceci contredit la minimalité
de p.

LEMME 4.5. — Nous avons la relation suivante :
73(G) = (13(G) x v3(G)) x ([[a, b], b])
ou v3(G) = [[G,G],G].
Preuve. — On part des relations
13(G) = ([[a, b], al, [[a, 8], 0]),
([a, b, a] = [(6%,671), (1,b)] = 1,

(9) [[a,b],b] = (b7, b)e(1,a™ 1) (b%, b 1) (1,a)e = (b~ b) (b, b%) = (b~ 2%, bb®).
Les deux premieres nous permettent de conclure que
73(G) = ([[av b]7 bDG
Gréace a la relation
[a» bz] = (1, [a’ b])
on a
[[a7 b2]v a] = [(15 [a7 b])> (17 b)] = (1? [[a’ b]v b])

Soit ¢ = [[a,b],b]. Des calculs directs montrent que ga, g0 gb e € (€) mod
v3(G) x v3(G) et (£) N (73(G) x v3(G)) = 1 & cause de (9) et du fait que (bb*)" € G’
si et seulement si n =0 et v3(G) < G'.

LEMME 4.6. — On a la relation suivante :
G" = v3(G) x v3(G).
Preuve. — Soit f = (1,¢) € G ot ¢ = [a,b]. On a pour d = (b,b"') € ¢

[f,d™"] =11, [a,b]), (67", b)] = (1, [[a, b], b]) € G".

Ceci implique que G” 2 1 X v3(G) et alors G” 2 v3(G) X v3(G). Comme G” C v3(G),
d’apres le lemme 4.5, il suffit de démontrer que (§) N G"” = 1.
Il est facile de démontrer que

(10) G = (G xG") x(c).
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En utilisant la relation (9) et la relation (10), on a
G" = ([e, f)°.
Mais
e, f1=1(6%671), (1, 0] = [, [a, b]]] € 1 x 73(G).
Cela finit la démonstration.

Voici encore une propriété générale des groupes faiblement régulierement branchés
qui est facile & démontrer.

PROPOSITION 4.7. — Soit G un groupe faiblement réguliérement branché sur K.
Alors, pour tout sous-groupe distingué N <G, il existe n tel que

K, <N

ou K, = K x---x K (produit direct de d" facteurs, chacun agissant sur le sous-arbre
correspondant).

4.2. Moyennabilité

En 1929, von Neumann [27] a défini la notion de moyennablité qui est devenue
fondamentale.

DEFINITION 4.8. — Le groupe G est dit moyennable s’il existe une mesure u définie
sur toutes les parties de G telle que

- (@) =1

- p(AUB) = pu(A) + u(B) — u(AN B) pour tous A,B C G

- p(gA) = u(A) pour tout g € G et tout A C G.

Il découle des travaux de von Neumann [27] que les groupes & croissance sous-
exponentielle sont moyennables et que cette classe est fermée par rapport aux opé-
rations élémentaires : extensions, quotients, sous-groupes et limites directes. Avant
la construction du groupe engendré par ’automate de la figure 5, tous les groupes
moyennables connus pouvaient étre obtenus a partir de groupes a croissance sous-
exponentielle en utilisant les opérations élémentaires décrites ci-dessus. Pour ’histoire
des différentes conjectures concernant la classe des groupes moyennables, voir [17], la
premiere référence étant l’article de Day [6].

Soit SGy la classe des groupes dont tous les sous-groupes de type fini sont & crois-
sance sous-exponentielle. Supposons que « > 0 est un ordinal et qu’on a défini SG3
pour chaque ordinal 3 < a. Alors, si a est un ordinal limite, soit

SGa = | J SGs.

B<a
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Si a n’est pas un ordinal limite, soit SG, la classe des groupes qui peuvent étre
obtenus a partir des groupes dans SG,_; en utilisant soit des extensions soit des
limites directes. Soit

SG =|JSG..

«

Les groupes de cette classe sont dits sous-exponentiellement moyennables.

SG est la plus petite classe des groupes qui contient les groupes a croissance sous-
exponentielle et qui est fermée par rapport aux opérations élémentaires. Les classes
SG,, sont fermées par rapport aux sous-groupes et aux quotients.

PROPOSITION 4.9 ([16]). — Le groupe G n'est pas sous-exponentiellement moyen-
nable, i.e. G &€ SG.

Preuve. — On commence par les lemmes suivants :
LEMME 4.10. — Nous avons la relation
1 (13(G)) = (1(G), b*).
Preuve. — C’est une conséquence du lemme 4.5 et de la relation (9).
LEMME 4.11. — On a
P1((1(G),0°%)) = (13(G), b**, a).
Preuve. — Ceci est une conséquence du lemme précédent et de la relation b** = (a, a®).
LEMME 4.12. — Pour la projection sur la seconde coordonnée, nous avons :
P2((13(G), >, a)) = G.
Preuve. — Ceci découle du lemme 4.5 et des relations b%® = (a,a®) et a = (1,b).

On peut maintenant démontrer la proposition 4.9. Supposons que G € SG, pour
o minimal. Alors a ne peut pas étre 0 puisque G est a croissance exponentielle (le
semi-groupe engendré par a et b est libre d’aprés le lemme 4.4). En outre, o n’est pas
un ordinal limite car, si G € SG, pour un ordinal limite, alors G € SG3 pour un
ordinal 8 < a. De plus G n’est pas limite directe (d’une suite croissante de groupes)
car il est de type fini. Donc il existe N, H € SG,_; tels que la suite suivante soit
exacte :

1-N—-G—-H—-1.

Grace a la proposition 4.7, il existe n tel que N > (Ristg(n)) > G’ x --- x G”
(2" fois). Donc G” € SGq—1 et alors v3(G) € SG4—1 d’apres le lemme 4.6. Chaque
classe SG, est fermée par rapport aux quotients et passages aux sous-groupes. D’apres
les lemmes 4.10, 4.11, 4.12 on déduit que G € SG,_1. Contradiction.
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Pour démontrer la moyennabilité de G, on utilise un critere dii & Kesten [21]
utilisant les marches aléatoires sur G.

Soit p une mesure de probabilité symétrique dont le support est une partie gé-
nératrice symétrique S de G, i.e. G = (S), u(s) = u(s™!) pour chaque s € S et
u(S) =1.

Soit p, la probabilité de retour a 'identité aprés n pas pour la marche aléatoire
donnée par p, i.e.

pn(1d,1d) = p™"(1d)

ou p*™ est la n-iéme puissance de convolution de y sur G.

THEOREME 4.13 (Kesten [21]). — Le groupe G est moyennable si et seulement si
lim */p2,(1d,Id) = 1.
n—0C

La moyennabilité de G a été démontrée par Virag [32]. Cette preuve a été publiée
dans [3].
Sur G, considérons la marche aléatoire Z,, suivant la mesure symétrique p sur
= {a,a”1,b,b7'} avec les poids {1,1,r,7}, i.e. u(a™!) = p(a) = ﬁ, w(b™t) =
1) = 37
L’image de Z,, par le plongement de G dans G ! Ss est notée :
Zn = (Xnayn)sn

ou X,,Y, € Gete, € 5.
On définit les temps d’arréts o et 7 :

oc(0) = 0

om+1) = min{n >o(m):e, =1,Xpn # Xo(m)}
7(0) = min{n>0:¢, =e}

T(m+1) = min{n>7(m): e, =€, Y, # Y}

Un calcul simple montre :

LEMME 4.14. — X,(m) et Yr(m) sont des marches aléatoires simples sur G suivant

1

la distribution u'(a™!) = p'(a) = Tl (b1 = u'(b) = B

On remarque que, pour r = v/2, on obtient la méme distribution sur Z,, Xo(n) €t

Yi(n)-
On vérifie aussi

LEMME 4.15. — Presque sirement
m 2+r 1

= li B e —
e (m) e 7(m) At dr - 2
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Pour conclure nous devons modifier la distance sur G, afin de pouvoir controéler la
norme de Z,, par les normes de X,, et Y,.

Soit T3, le sous-arbre fini & n niveaux de T sur lequel agit G. Pour g € G, on définit

-z, par :
g lllr, = > (g1 +1) - 1.
~EBT,
Finalement on définit la distance ||| ||| sur G :
g 1ll = min il g liz,.

On vérifie que pour g = (go, g1)e"?

Hgolll + g Il < Mgl < golll + galll + 1

et que la croissance par rapport & la métrique ||| - ||| est au plus exponentielle, i.e. il
existe a > 1 tel que

(11) g : llglll < n}| < a™

Nous avons

PROPOSITION 4.16. — Presque stirement
. Z
o WZalll
n— oo n
Preuve. — L’existence de cette limite, qu’on note s, est une conséquence du théoreme

ergodique de Kingman. Maintenant
Z X Y 1

n n n n
Mais X ¥
K Xl el n
n—oo N n—oo  o(n) n—oo n n—oo o(n)
et similairement pour Y,. Donc pour r = v/2 si s > 0, d’apres le lemme (4.15),

s < s% + s% = 5. Cette contradiction signifie que s = 0.

PROPOSITION 4.17. — La probabilité p(Zs, = Id) ne décroit pas exponentiellement.
Preuve. — Pour chaque € > 0, on a
Pl Zenll en) = > p(Zan =g) < p(Z2n = 1d) x |{g € G;|||g]l| < en}|.

9€G.|llgll|<en
Donc d’apres (11)

p(ZQn — Id) Z p<|||ZTZlH| < 6) . a—sn‘

D’apres la proposition 4.16 et le critére de Kesten, le groupe engendré par 1’auto-
mate de la figure 5 est donc moyennable.
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En utilisant des extensions HNN du groupe G, on peut construire des groupes
moyennables de présentation finie qui ne sont pas sous-exponentiellement moyen-
nables. Dans [17] on démontre que le groupe

G = (b,t|[b®,b"] = 1,b"" = b2)

a ces propriétés.

5. GROUPE DE WILSON

On présente ici le groupe que Wilson a construit pour répondre & un probléme
de Gromov. Pour le définir, on utilise le langage des produits en couronne (voir la
section 1.2).

5.1. Probléme de Gromov

Pour les groupes a croissance exponentielle, la fonction de croissance dépend for-
tement de la partie génératrice. Il est naturel de demander si on peut associer un
invariant lié & la croissance qui soit indépendant de la partie génératrice. Plus préci-
sément, pour un groupe G engendré par une partie finie S, on définit

WG, S) = lim §/l{g € G:lgls <n}|

L’entropie du groupe G est alors

MG) = _inf h(G.S).

3

En 1981, Gromov [18] a demandé si pour chaque G & croissance exponentielle
h(G) > 1,

i.e. s'il est a croissance exponentielle uniforme, ce qui signifie qu’il existe a > 1 tel
que pour chaque partie génératrice

{g€G:lgls <n}| >a™

La réponse est positive pour plusieurs classes de groupes comme les groupes hy-
perboliques ou linéaires de type fini [4], [8].

Le premier groupe sans croissance exponentielle uniforme a été construit par Wilson
en 2003 [33].
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5.2. Construction de Wilson

Désignons par As; le sous-groupe alterné du groupe symétrique a 31 éléments.

THEOREME 5.1. — Soit H un groupe parfait de type fini vérifiant la propriété H ~
HAsy. Alors il existe une suite (x,,) d’éléments d’ordre 2 et une suite (y,) d’éléments
d’ordre 3 tels que

1. (n,yn) = H pour chaque n;
2. limy,— o0 h(H,{Zn,yn}) = 1.

Construction de H. —

Soit T3; un arbre enraciné de degré 31. Soit z € Aut(731) qui agit non trivialement
seulement sur le premier niveau. On définit T € Aut(T3;) par son image dans le
produit en couronne

z = (z,7,1d,...,Id).
Et finalement soit
H = (z,7|x € As;).

Le groupe H est de type fini et H est parfait car Az; Dest.

PROPOSITION 5.2. — On a

Preuve. — Soit ¢ = (2,3,4), p = (1,3,2) € Ajz;; considérons z,y € Asz;. Alors
Z,09] = (z,y],1d,...,Id). Comme H est parfait ceci montre que, pour chaque = €
Asj, on a (z,1d,...,Id) € H. Ensuite p(z,Id,...,Id)"'z = (z,1d,...,Id). Donc H
contient {(h,1d,...,Id)|h € H} e,t en utilisant € A3;, on a H1A3; C H.

Maintenant on va expliquer quelles sont les propriétés du groupe As; dont on a
besoin.

PROPOSITION 5.3. — Le groupe A3z, peut étre engendré par un élément d’ordre 2 et
un élément d’ordre 3.

Comme H ~ H ! Az, et H est parfait, ceci implique qu’il existe u,v € H tel que
u? =v®=1Id et H = (u,v).

PROPOSITION 5.4. — Soit H ~ H ! A3 un groupe parfait engendré par u et v tels

que u? = v® = id. Alors il existe x,y € A3, tel que

- il existe a,B € {1,...,31}, a #

z(a)

y(6)

2¥(a) = «

g
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- les élements
z = (..,u,...)z
gy = (..,v,...)y,
ot u est en position « et v en position (3, satisfassent T2 = §° = id et (Z,7) = H.

Preuve. — On vérifie facilement cette proposition avec z, y, a et 3 explicites [33].

Maintenant soient

Y(n) = HweH:|wgs <n}
() = Hwe H:|wlu. <n}l.

PROPOSITION 5.5. — Si on note lim {/y(n) = c et lim {/+/(n) = ¢, alors pour
n—o0 n— oo

s>3ona
¢ < max (73, (1+2/5)(s +2)%/7).

Preuve. — Commengons par expliquer le second terme. Considérons Z/3Z * Z/27Z.
Soient
pn = {w € /3L * L/2Z; |w|(z,y < et | {zy 'zy € w} |< [n/s]}.
Alors lim /pn < (14 2/s)(s +2)2/°.
n—00
Maintenant soient

B(n) = {we(#,y);|w| <n}
Bi(n) = {we B(n);| {272y € w} |< [n/s]}
B_(n) = B(n)\B.(n).
On a
g lzgz=(1,..., v, 0)zy ey

ol v~1! est en position zyz(B), u est en yx(a) et v en ().
Si w € By (n), alors | {Zy~'ZyZ} | est au moins }[n/s] = r. Donc

31
|B(n)| < [Asi] Z H v(ng) < K(n)(c+ €)% = K(n)(c + &)"(1=1/25)

ny+--+nz; <n—2r j=1
ou K (n) est un polynéme en n. On obtient donc I’estimation de la proposition.
La preuve du théoréme se rameéne donc a celle du lemme élémentaire :

LEMME 5.6. — Ii existe une suite s,, — oo telle que

cn — 1
1

1—5—
ol ¢; =2 et ¢, = max (c (1 +2/sn)(sn + 2)2/5") pour n > 2.

n—1
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Finalement pour démontrer que H est a croissance exponentielle, on prouve qu’il

admet un semi-groupe libre.

[1]

2]

(8]

[9)

[10]

(11]

(12]

REFERENCES

S. V. ALESIN - Finite automata and the Burnside problem for periodic groups,
Mat. Zametki 11 (1972), p. 319-328.

M. F. AtivaH — Elliptic operators, discrete groups and von Neumann algebras,
in Colloque “Analyse et Topologie” en ’honneur de Henri Cartan (Orsay, 1974),
Soc. Math. France, 1976, p. 43-72. Astérisque, No. 32-33.

L. BARTHOLDI & B. VIRAG — Amenability via random walks, Duke Math. J.
130 (2005), p. 39-56.

E. BREUILLARD & T. GELANDER — Cheeger constant and algebraic entropy of
linear groups, International Mathematical Research Notices 56 (2005), p. 3511-
3523.

J. BRIEUSSEL — Croissance et moyennabilité de certains groupes d’automor-
phismes d’un arbre enraciné, These, Université Paris 7, 2008.

M. M. DAY - Amenable semigroups, Illinois J. Math. 1 (1957), p. 509-544.

W. Dicks & T. ScHICK — The spectral measure of certain elements of the
complex group ring of a wreath product, Geom. Dedicata 93 (2002), p. 121-137.

A. EskIN, S. Mozes & H. OH — On uniform exponential growth for linear
groups, Invent. Math. 160 (2005), p. 1-30.

J. FABRYKOWSKI & N. GUPTA — On groups with sub-exponential growth func-
tions, J. Indian Math. Soc. (N.S.) 49 (1985), p. 249-256 (1987).

, On groups with sub-exponential growth functions. II, J. Indian Math.
Soc. (N.S.) 56 (1991), p. 217-228.

F. GECSEG & 1. PEAK — Algebraic theory of automata, Akadémiai Kiadé, 1972,
Disquisitiones Mathematicae Hungaricae, 2.

Y. GLASNER & S. MOZES — Automata and square complexes, Geom. Dedicata
111 (2005), p. 43-64.

R. GRIGORCHUK — Degrees of growth of finitely generated groups and the theory
of invariant means, Izv. Akad. Nauk SSSR Ser. Mat. 48 (1984), p. 939-985.

ASTERISQUE 317



[14]

[15]

[16]

[20]

[21]

[22]

[23]

(24]

(25]

[26]

[27]

(971) GROUPES D’AUTOMATES 173

R. GRIGORCHUK, P. LINNELL, T. ScHICK & A. ZUK — On a question of Atiyah,
C. R. Acad. Sci. Paris Sér. I Math. 331 (2000), p. 663-668.

R. GRIGORCHUK & A. ZUK — The lamplighter group as a group generated by a
2-state automaton, and its spectrum, Geom. Dedicata 87 (2001), p. 209-244.

, On a torsion-free weakly branch group defined by a three state auto-
maton, Internat. J. Algebra Comput. 12 (2002), p. 223-246, International Confe-
rence on Geometric and Combinatorial Methods in Group Theory and Semigroup
Theory (Lincoln, NE, 2000).

, Spectral properties of a torsion-free weakly branch group defined by a

three state automaton, in Computational and statistical group theory (Las Vegas,
NV/Hoboken, NJ, 2001), Contemp. Math., vol. 298, Amer. Math. Soc., 2002,
p. 57-82.

M. GROMOV — Structures métriques pour les variétés riemanniennes, Textes
Mathématiques, vol. 1, CEDIC, 1981, Edited by J. Lafontaine and P. Pansu.

, Hyperbolic groups, in Essays in group theory, Math. Sci. Res. Inst. Publ.,
vol. 8, Springer, 1987, p. 75-263.

N. Gupra & S. SIDKI — Some infinite p-groups, Algebra i Logika 22 (1983),
p. 584-589.

H. KESTEN — Full Banach mean values on countable groups, Math. Scand. 7
(1959), p. 146-156.

V. B. KUDRYAVTSEV, S. V. ALESHIN & A. S. PODKOLZIN — Baedenue 8 meo-
puto asmomamos (Introduction to automata theory), “Nauka”, 1985.

W. LUCK — L%-invariants : theory and applications to geometry and K -theory,
Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, vol. 44, Springer,
2002.

G. A. MARGULIS — Discrete subgroups of semisimple Lie groups, Ergebnisse der
Mathematik und ihrer Grenzgebiete. 3. Folge, vol. 17, Springer, 1991.

J. MILNOR — Problems and Solutions : Advanced Problems : 5600-5609, Amer.
Math. Monthly 75 (1968), p. 685-687.

V. NEKRASHEVYCH - Self-similar groups, Mathematical Surveys and Mono-
graphs, vol. 117, American Mathematical Society, 2005.

J. VON NEUMANN — Zur allgemeinen Theorie des Mafles, Fundamenta Mathema-
tica 13 (1929), p. 73-116.

SOCIETE MATHEMATIQUE DE FRANCE 2008



174 A. ZUK

[28] P. S. Novikov & S. I. ApJAN - Infinite periodic groups. I, Izv. Akad. Nauk
SSSR Ser. Mat. 32 (1968), p. 212-244, 251-524, 709-731.

[29] J.-F. PLANCHAT — Groupe d’Aleshin, mémoire de DEA, Paris VII, 2005.

[30] J-P. SERRE — Arbres, amalgames, SLy, Société Mathématique de France, 1977,
Astérisque, No. 46.

[31] V. I. SUSCANS'KIT — Periodic p-groups of permutations and the unrestricted
Burnside problem, Dokl. Akad. Nauk SSSR 247 (1979), p. 557-561.

[32] B. VIRAG — Self-similar walk on a self-similar group, prépublication, 2003.

[33] J. S. WILSON — On exponential growth and uniformly exponential growth for
groups, Invent. Math. 155 (2004), p. 287-303.

[34] A. ZUK — Automata groups, livre & paraitre.

Andrzej ZUK

Université Paris VII

Institut de Mathématiques de Jussieu
UMR 7586 du CNRS

Boite 7012

2 place Jussieu

75251 Paris Cedex 05

E-mail : zuk@math. jussieu.fr

ASTERISQUE 317


http://zukOmath.jussieu.fr

