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Séminaire BOURBAKI 

59e année, 2006-2007, n° 971, p. 141 à 174 

Novembre 2006 

GROUPES ENGENDRÉS PAR LES AUTOMATES 

par Andrzej ZUK 

INTRODUCTION 

La classe des groupes d'automates contient plusieurs groupes infinis de type fini 

remarquables. Leur étude a permis de résoudre des problèmes importants de théorie 

des groupes. Des applications récentes s'étendent à l'algèbre, la géométrie, l'analyse 

et les probabilités. 

Avec les groupes arithmétiques [24] et hyperboliques [19], les groupes d'automates 

dominent actuellement notre vision de la théorie des groupes infinis. 

Les groupes présentés dans ce texte pourraient être rassemblés sous d'autres noms, 

comme groupes branchés ou groupes auto-similaires (les définitions précises de ces 

deux classes sont données plus loin). Nous avons choisi le nom « groupes d'auto­

mates » pour souligner l'importance de cette construction, qui produit des groupes 

aux propriétés intéressantes. 

Comme exemples d'application de cette théorie, nous avons choisi les problèmes 

suivants. 

- Problème de Burnside. Groupes infinis de type fini de torsion. 

- Problème de Milnor. Constructions de groupes à croissance intermédiaire. 

- Problème d'Atiyah. Calculs de nombres de Betti L2. 

- Problème de Day. Nouveaux exemples de groupes moyennables. 

- Problème de Gromov. Groupes sans croissance uniforme. 

Pour chacun d'entre eux, nous avons choisi les premiers exemples historiques de 

groupes d'automates considérés pour résoudre ces problèmes. Il s'agit du groupe d'Ale-

shin, du groupe d'allumeur de réverbères (qui peut être engendré par un automate à 

deux états), du groupe de Wilson et d'un groupe engendré par un automate à trois 

états. 
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142 A. ZUK 

Nous avons le sentiment que la classe des groupes d'automates est très riche et 

qu'on est loin d'une compréhension complète de ces groupes qui défient souvent notre 

intuition. 

Nous espérons que cette introduction au monde des groupes engendrés par les 

automates pourrait stimuler les développements futurs. 

1. GROUPES D'AUTOMATES 

1.1. Définition du groupe engendré par un automate 

Les automates qui nous intéressent sont finis, inversibles, avec le même alphabet à 

l'entrée et à la sortie, disons D = { 0 , 1 , . . . , d — 1} pour un certain entier d > 1. A un 

tel automate A sont associés un ensemble fini d'états Q, une fonction de transition 

(j) : Q x D —• Q et une fonction de sortie : ip : QxD —> D ; l'automate A est caractérisé 

par le quadruplet (D, Q, 0 , ijj). 

L'automate A est dit inversible si, pour chaque q G Q, la fonction ip(q, •) : D —> D 

est une bijection. Dans ce cas, i/j(q, •) peut être identifiée avec l'élément correspondant 

aq du groupe symétrique Sd sur d = \D\ symboles. 

Il existe un moyen convenable de représenter un automate fini par un graphe mar­

qué r (A) dont les sommets correspondent aux éléments de Q. Deux états q,s e Q 

sont liés par une arête orientée étiquetée par i € D si <p(q, i) = s ; chaque sommet 

q G Q est étiqueté par l'élément correspondant <7Q du groupe symétrique. 

Les automates que l'on vient de définir sont les automates non initiaux. Pour les 

rendre initiaux, on doit pointer un état q G Q comme état initial. L'automate initial 

Aq = (D, Q, 0 , ^ , q) agit à droite sur les suites finies et infinies sur D de la manière 

suivante. Pour chaque symbole x G D, l'automate donne immédiatement la sortie 

y = il)(q,x) et change son état initial en (p(q,x). 

En joignant la sortie de Aq avec l'entrée d'un autre automate Bs — (S, a, f3, s), on 

obtient une application qui correspond à un automate appelé la composition de Aq et 

Bs et désigné par Aq • Bs. 

Cet automate est formellement décrit comme l'automate dont l'ensemble des états 

est Q x 5 et les fonctions de transition et de sortie <È, ̂  sont définies par 

$((x,y),i) = (</>(x,i),a(y,ip(x,i))), 

V((x,y),i) - P(y,ib(x,i)) 

et avec l'état initial (q,s). 

La composition A • B de deux automates non initiaux est définie par les mêmes 

formules pour les fonctions d'entrée et de sortie mais sans indiquer l'état initial. 
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Deux automates initiaux sont dits équivalents s'ils déterminent la même application 

sur l'ensemble des états. Il existe un algorithme pour minimiser le nombre d'états. 

L'automate qui produit l'application identité sur l'ensemble des suites est appelé 

trivial. Si A est un automate inversible, alors pour chaque état q l'automate Aq admet 

un automate inverse A~l tel que Aq*A~l, A~l*Aq soient équivalents à l'automate tri­

vial. L'automate inverse peut formellement être décrit comme l'automate (Q, <fi, I/J, q) 

où 4>(s,i) = (f>(s,crs(i)), ip(s,i) = cr~l(i) pour s £ Q. Les classes d'équivalence d'au­

tomates finis inversibles sur un alphabet D constituent un groupe qui est appelé le 

groupe des automates finis ; il dépend de D. Chaque ensemble d'automates initiaux 

engendre un sous-groupe de ce groupe. 

Soit maintenant A un automate inversible non initial. Soit Q = {qi,.. . ,qt} l'en­

semble des états de A et soit Aqi,. . . , Aqt l'ensemble des automates initiaux que l'on 

peut obtenir à partir de A. Le groupe G (A) = (Aqi,. .., Aqt ) est appelé le groupe 

déterminé ou engendré par A. 

1.2. Groupes d'automates et produits en couronne 

Il existe une relation entre les groupes d'automates et les produits en couronne. 

Pour un groupe de la forme G (A), on a l'interprétation suivante. 

Soit q G Q un état de A et soit aq G Sd la permutation associée à cet état. Pour 

chaque symbole i G D, on note Aq^ l'automate initial ayant pour état initial i) 

(alors Aq^ pour i = 0,1, . . . , d — 1 parcourt l'ensemble des automates initiaux qui sont 

les voisins de Aqi i.e. tels que le graphe T(A) admette une arête de Aq à Aq^). 

Soient G et F des groupes de type fini tels que F soit un groupe de permutations 

d'un ensemble X (nous nous intéressons au cas où F est le groupe symétrique Sd et 

X est l'ensemble { 0 , 1 , . . . , d — 1}) . On définit le produit en couronne G l F de ces 

groupes comme suit. Les éléments de G l F sont les couples (g, 7) où g : X —> G est 

une fonction telle que g(x) soit différente de l'élément neutre de G, noté Id, seulement 

pour un nombre fini d'éléments x de X , et où 7 est un élément de F. La multiplication 

dans G l F est définie par : 

(0i,7i)(02,72) = (03,7i72) 

où 

g3{x) = gi(x)g2{j1 X(x)) pour x 6 X. 

On écrira les éléments du groupe GlSd sous la forme (a0,. . . , a^_i)cr, où a0,. . . , ctd-i G 

G et a G Sd-

Le groupe G = G (A) admet un plongement dans le produit en couronne G l Sd via 

l'application 

Aq —• (AQ,Q, . . . , Aq,d-l)cTq, 
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où q G Q. L'expression à droite est appelée décomposition en couronne de A. On 

écrira ainsi dans le texte Aq = (Aq$,... , Aq^-\)oq. 

Pour simplifier, on note a le générateur Aa du groupe engendré par l'automate A. 

1.3. Action sur un arbre 

Les suites finies sur l'alphabet D — { 0 , . . . , d— 1} sont en bijection avec les sommets 

d'un arbre enraciné Tj de degré d (dont la racine correspond à la suite vide). 

Un automate initial Aq agit sur les suites sur D et agit aussi sur par automor-

phismes. Ainsi pour chaque groupe engendré par un automate, en particulier pour un 

groupe de forme G (A), il existe une action canonique correspondante sur un arbre 

(pour la théorie des actions sur les arbres sans racine, voir [30]). 
Soit maintenant G un groupe agissant sur un arbre enraciné T. Le bord dT, consti­

tué des rayons géodésiques infinis issus de la racine, admet une topologie naturelle qui 

le rend homéomorphe à l'ensemble de Cantor. 

L'action de G sur T induit une action sur dT par homéomorphismes et admet une 

mesure canonique invariante a sur dT qui est la mesure de Bernoulli sur DN donnée 

par la distributior i 
d 

i 
d 

Il existe un moyen canonique d'associer une représentation unitaire à un système 

dynamique muni d'une mesure invariante. Dans notre cas, on obtient la représentation 

régulière TT sur L2(<9T, /x), définie par (ir(g)f)(x) — f(g~1x). 

1.4. Projections de stabilisateurs 

Pour un groupe G = G (A) agissant par automorphismes sur T, on note Stc(n) le 

sous-groupe de G constitué des éléments de G qui agissent trivialement sur le niveau 

n de l'arbre T. D'une manière analogue, pour un sommet u G T, on note Sto(?i) le 

sous-groupe de G constitué des éléments fixant u. Le plongement de G dans le produit 

en couronne G l Sd induit un plongement (p : Stc( l ) —• Gd dans le groupe de base 

du produit en couronne. Celui-ci définit les projections canoniques ^ : Stc( l ) —* G 

(i = l,...,d) données par ip{(g) = (p(g)\i pour g G StG(l). 

1.5. Groupes branchés et fractals 

Le stabilisateur Stc(^) du n-ième niveau est l'intersection des stabilisateurs de 

tous les sommets de ce niveau. Pour tout sommet u G T, on peut définir la projection 

ipu : StG(u) -> G. 

DÉFINITION 1.1. — Un groupe G est dit fractal si pour chaque sommet u, on a 

^Tx(Stc(iO) — ^ après identification de l'arbre T avec le sous-arbre Tu issu de la 

racine u. 
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Le stabilisateur rigide du sommet u est le sous-groupe, noté Ristc(îx), des auto-

morphismes de G qui agissent trivialement sur le sous-arbre Tu. Le stabilisateur rigide 

du n-ième niveau Ristc(^) est le groupe engendré par les stabilisateurs rigides des 

sommets sur ce niveau. 

Un groupe G agissant sur un arbre enraciné T est dit sphériquement transitif s'il 

agit transitivement sur chaque niveau. Un groupe sphériquement transitif G Ç Aut(T) 

est dit branché si Ristc?(n) est un sous-groupe d'indice fini pour chaque n G N. Un 

groupe sphériquement transitif G Ç Aut(T) est dit faiblement branché si |Ristc7(^)| = 

oo pour chaque n G N. 

S'il n'y a pas de risque de confusion, on omettra l'indice G dans les notations 

Stc(^), Ristc(^), etc. 

Le plongement G G l Sd, g —» (go, • . . , gd-i)o~ définit la restriction gi de g au 

sommet i du premier niveau. L'itération de cette procédure conduit à une notion de 

restriction gu de g à un sommet u. 

DÉFINITION 1.2. — On dit que le groupe G est régulièrement faiblement branché sur 

un sous-groupe K ^ {1} si K D K x • • • x K (produit direct de d facteurs, chacun 

d'entre eux agissant sur le sous-arbre correspondant Tu, \u\ — 1). 

On utilise les notations xy = y~1xy, [x,y] — x~1y~1xy et on note (X)Y la clôture 

normale de X dans Y. La longueur d'un mot w et d'un élément g est notée \w\ et \g\ 

respectivement. 

1.6. Le problème des mots 

Le problème des mots a une solution pour chaque groupe engendré par un automate, 
grâce à l'algorithme présenté ci-dessous : 

PROPOSITION 1.3. — Le problème des mots est résoluble pour les groupes d'auto­

mates. 

Preuve. — Soit w un mot sur l'alphabet consistant en les étiquettes des états de 

l'automate et leurs inverses. 

1. Vérifier si w G Stc( l ) (sinon w ^ 1 dans G). 

2. Calculer w = (w0,..., Wd-i). Alors 

w — 1 

dans G si et seulement si Wi = 1 dans G pour i = 0,. . . , d — 1. Aller à l.en remplaçant 

w par Wi et procéder avec chaque Wi comme avec w. 

Si, dans une étape, on obtient un mot qui n'est pas dans S t ^ l ) , alors w ^ 1 dans 

G. Si dans une étape tous les mots wil,. . . , Win sont déjà apparus dans l'algorithme, 

alors w = 1 dans G. 
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Cet algorithme converge car les longueurs de w0, . . ., Wd-i sont au plus la longueur 

de w et, après suffisamment d'étapes, les mots se répètent. 

1.7. Classification des groupes d'automates à deux états 
sur l'alphabet {0 ,1} 

Pour l'alphabet à deux lettres, les automates à un état produisent seulement le 

groupe trivial et le groupe d'ordre deux. 

Certains automates à deux états sont déjà intéressants, par exemple le groupe 

d'allumeur de réverbères. 

On se propose maintenant d'analyser tous les groupes engendrés par les automates 

à deux états avec un alphabet à deux lettres. 

En plus du groupe d'allumeur de réverbères engendré par l'automate de la figure 2, 

il y a cinq autres groupes engendrés par les automates de la figure 1 (on note 1 ou Id 

l'identité de S2 et e l'élément non trivial de 52). 

Les deux premiers automates engendrent le groupe trivial et le groupe d'ordre 2. Le 

groupe donné par le troisième automate est isomorphe au groupe de Klein (Z/2Z) 0 

(Z/2Z) . Le quatrième automate définit le groupe diédral D ^ . Le dernier automate 

définit le groupe cyclique infini. 

Ce sont les seules possibilités [15]. 

THÉORÈME 1.4. — Les seuls groupes engendrés par les automates à deux états sur 
un alphabet à deux lettres sont : 

- le groupe trivial; 

- le groupe d'ordre deuxrL/2rL] 

- le groupe de Klein (Z/2Z) 0 (Z/2Z) ; 

- le groupe cyclique inifini Z ; 

- le groupe diédral infini ; 

- le groupe d'allumeur de réverbères (0^Z/2Z) x Z. 

Preuve. — On note a et b les deux états de l'automate. Si les deux sont étiquetés par 

l'identité ou les deux par e, alors le groupe engendré par un tel automate est trivial 

ou bien Z/2Z. 

Donc on peut supposer qu'un état, disons a, est étiqueté par l'identité et l'autre 

par e. En échangeant si nécessaire 0 avec 1, on peut supposer que a = (a, a) ou 

a = (6, b) ou a = (a, b). 

(i) Cas a = (a, a). 

Dans ce cas, a correspond à l'identité dans le groupe. L'échange de 0 et 1 (cela ne 

change pas a) réduit b à trois possibilités : b = (b, 6)e, b — (a, b)e ou b = (a, a)e. 

Le premier cas correspond à Z/2Z, le second à Z et le troisième à Z/2Z. 
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1(1 o.i 0.1 

0.1 
0.1 1(1 

0.1 1 1(1 
0 

1 
0 1(1 0.1 

FIGURE 1. Les automates qui engendrent le groupe trivial, le groupe 
d'ordre deux, le groupe de Klein, le groupe diédral et le groupe cyclique 
infini. 

(ii) Cas a = (b, b). 

L'échange de 0 et 1 (cela ne change pas a) réduit b à trois possibilités : b = (b, 6)e, 

b — (6, b)e ou b = (a, b)e. 

Les deux premières possibilités correspondent au groupe de Klein Z/2Z 0 Z/2Z. 

En effet a et b sont d'ordre deux et commutent. 

Le troisième cas correspond au groupe cyclique infini. En effet on a 

ab = (ba, 62)e, 

ba = (ab, 62)e, 

donc a et b commutent. Deuxièmement, 

b2a = (62a,62a), 

ce qui implique la trivialité de b2a. Alors le groupe est cyclique. La relation précédente 

assure que l'ordre de a est deux fois l'ordre de b. Mais a et b ont le même ordre d'après 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2008 



148 A. ZUK 

() e 1(1 

l 

7 

a 0 b 

FIGURE 2. L'automate qui engendre le groupe d'allumeur de réverbères 

la relation a — (b,b). Comme a et b sont non triviaux, ceci implique que le groupe 

est Z. 

(iii) Cas a = (a, b). 

En considérant si nécessaire l'automate inverse (qui engendre le même groupe et ne 

change pas a) on peut supposer que b satisfait une des trois possibilités : b = (6, 6)e, 

b = (a, b)e ou bien b = (a, a)e. 

Dans le premier cas, b2 = (62, b2) donc 6 est d'ordre 2. Comme a2 = (a2, 62), a aussi 

est d'ordre deux. La relation a~xb = (a_16, l)e et (a_16)2 = (a~lb1a~lb) implique 

que a~lb est d'ordre infini. Donc il s'agit du groupe diédral infini Doo-

Le second cas correspond au groupe d'allumeur de réverbères (voir la section sui­

vante) . 

Le troisième cas peut être analysé d'une manière similaire. 

1.8. Exemples importants 

Dans les sections suivantes, on présente les exemples importants de groupes engen­

drés par les automates. Il s'agit du groupe d'allumeur de réverbères (qui peut être 

engendré par un automate à deux états), du groupe d'Aleshin, d'un groupe engendré 

par un automate à trois états et du groupe de Wilson. 

Il existe d'autres groupes d'automates dont l'étude a été importante pour le dé­

veloppement de la théorie. Mentionnons ici le groupe de Fabrykowski-Gupta [9], le 

groupe de Sushchansky [31] et le groupe de Gupta-Sidki [20]. 

Pour une théorie générale des automates et des groupes d'automates, on peut 

consulter [11], [22] et [34]. 
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2. LE GROUPE D'ALLUMEUR DE RÉVERBÈRES C O M M E 
GROUPE D'AUTOMATE 

L'automate de la figure 2 engendre le groupe d'allumeur de réverbères [15]. Ce 

groupe peut être défini comme le produit en couronne (Z/2Z?Z) ou comme le produit 

semi-direct (0^Z/2Z) x Z avec l'action de Z sur 0^(Z/2Z) par translation. 

Soient a et b les générateurs du groupe d'allumeur de réverbères (0^Z/2Z) x\ Z tels 

que a = (fa,ga), b = (/&,£&), où ga = gb G Z est un générateur de Z, fa G 0z (Z /2Z) 

est l'identité et fb = ( . . . , 0, 0,1,0, 0 , . . . ) G 0z (Z /2Z) est tel que 1 soit en position 1. 

Il existe un isomorphisme entre ce groupe et le groupe engendré par l'automate de la 

figure 2, où a et b correspondent aux états de cet automate. 

L'étude de ce groupe, et de son action sur l'arbre enraciné de degré 2 correspondant 

à l'automate, a permis de répondre à une question d'Atiyah. 

2.1. Récurrence d'opérateurs 

Soit maintenant G le groupe engendré par l'automate de la figure 2. On note 

dT — EQ U E\ la partition du bord dT associée aux sous-arbres T0 et T\ issus de 

chacun des deux sommets du premier niveau. On a un isomorphisme L2(dT, fi) ~ 

L2(EQ,{1O) 0 L2(Ei, fi\) où fa est la restriction de \i à Ei, ainsi qu'un isomorphisme 

L2(dT, fi) ~ L2(Ei, Hi), pour i — 0,1, provenant de T ~ T{. 

On obtient ainsi un isomorphisme entre 7i et 7Y07Y, où H est un espace de Hilbert 
de dimension infinie. Grâce à cet isomorphisme, les opérateurs n(a), n(b) (encore 
notés a et b, respectivement), où ix est une représentation comme dans la section 1.3, 
satisfont les relations d'opérateurs suivantes : 

a = 
0 

b 
a 
0 

b = a 
0 

0 

b 

qui correspondent aux relations de type produit en couronne : a = (a, 6)e et b = (a, b). 

Soit 7rn une représentation par permutations du groupe G provenant de l'action de 

G sur le niveau n de l'arbre associé et soit Hn l'espace des fonctions sur le n-ième 

niveau. Soient an et bn les matrices correspondant aux générateurs pour la représen­

tation 7rn. Alors an = bn = 1 et 

(1) un = 
0 

bn-1 

an-l 

0 
K = 

an-1 
0 

0 

bn-l 

en tenant compte de l'isomorphisme naturel 7in ~ Wn-i © 7in-i-
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2.2. Le groupe d'allumeur de réverbères et sa mesure spectrale 

On s'intéresse au spectre et à la mesure spectrale correspondant à l'opérateur de 
Markov pour le groupe d'allumeur de réverbères. 

Pour une partie génératrice S finie et symétrique (S = S~l), on considère la marche 
aléatoire simple sur le graphe de Cayley Cay(G?, S). Alors l'opérateur de marche aléa­
toire A : £2(G) £2(G) est défini par 

Af(g) = r^J2f(s9)i 
1*1 ses 

où f e £2{G) et g G G. 
Comme l'opérateur A est borné (on a ||A|| < 1) et auto-adjoint, il admet une 

décomposition spectrale 

A = J XdE(X), 

où E est une mesure spectrale. Cette mesure est définie sur les sous-ensembles boré-
liens de l'intervalle [—1,1] et est à valeurs dans l'espace des projecteurs de l'espace de 
Hilbert £2(G). La mesure spectrale de Kesten /i sur l'intervalle [—1,1] est définie par 

fi(B) = (E(B)ôId,ôId), 

où B est un sous-ensemble borélien de [—1,1] et ÔM G £2(G) est une fonction égale 
à 1 sur l'élément neutre et à 0 ailleurs. 

Pour un sous-espace fermé et G-invariant H de £2(G), on définit sa dimension de 
von Neumann dim(iJ) comme étant 

dim(if) = <Pr(iJ)<Wid}, 

où Pr(H) est une projection de £2(G) sur H. 

Pour le groupe d'allumeur de réverbères, on peut expliciter cette mesure [15] : 

THÉORÈME 2.1. — Soit G le groupe défini par Vautomate de la figure 2, de généra­
teurs a et b. L'opérateur de marche aléatoire A sur £2(G) possède les valeurs propres 
suivantes : 

fl 

COS I -7T 
où q = 2,3,4,... et l = 1,.. . , q - 1. 

La dimension de von Neumann du sous-espace propre correspondant est égale à 

S- (A (L ^ 1 

dim ker A — cos -n .q J J J 2<i - 1 

où (/, q) = 1. 
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10 

FIGURE 3. L'histogramme du spectre de an + an 1 + bn + bn 1 pour n = 10 

Pour démontrer ce théorème, on utilise les approximations de dimension finie 7r7l 

décrites précédemment. 

Le calcul de la mesure spectrale a plusieurs applications aux marches aléatoires. 

Dans la section suivante, on présente une application de ce calcul à la conjecture 

d'Atiyah sur les nombres de Betti L2 de variétés fermées. 

2.3. Une question d'Atiyah 

En 1976, Atiyah [2] a défini les nombres de Betti L2 des variétés fermées. Il a conclu 

son article par une question concernant les valeurs de ces nombres. Plus tard cette 

question a donné lieu à une conjecture, dite d'Atiyah. 

Pour un groupe F on note fin_1(r) le sous-groupe de Q engendré par les inverses 

des ordres des sous-groupes finis de F. Pour une variété fermée M, on désigne par 

b[2\M) son i-ième nombre de Betti L2. 

Conjecture. — Soit M une variété fermée dont le groupe fondamental ni(M) est 

isomorphe à F. Alors on a 

b^(M) €ûn-\r) 

pour tout nombre entier z. 

Il existe plusieurs textes présentant les résultats obtenus sur cette conjecture, le plus 

récent étant un livre de Lûck [23]. Plusieurs résultats confirment différentes formes 

de la conjecture d'Atiyah. On montre cependant que la version forte formulée ici est 

fausse [14]. 
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THÉORÈME 2.2. — Soit G le groupe donné par la présentation 

G = (a,t,s | a2 = 1, [t,s] 1, [t 1at,a] = l,s 1as = at lat). 

Chaque sous-groupe fini de G est un 2-groupe abélien élémentaire, en particulier l'ordre 

de chaque sous-groupe fini de G est une puissance de 2. Il existe une variété rieman-

nienne fermée (M, g) de dimension 7 telle que TTI(M) = G pour laquelle le troisième 

nombre de Betti L2 est éqal à 

bi2)(M,g) 
1 

3' 

La preuve du théorème 2.2 repose sur les résultats décrits précédemment, sur le 

spectre et la mesure spectrale de l'opérateur de Markov A de la marche aléatoire 

simple sur le groupe de l'allumeur de réverbères, dont G est une extension HNN. Les 

résultats impliquent que 

dim(kerM)) 1 
3' 

mais le dénominateur 3 ne divise pas les puissances de 2, qui sont les ordres des 

sous-groupes finis du groupe de l'allumeur de réverbères. 

La conjecture d'Atiyah peut être formulée d'une manière équivalente en termes de 

dimension de sous-espaces propres des opérateurs dans Z[G] agissant sur £2(G) où 

G = 7Ti(M). Si G est un groupe de présentation finie et A un opérateur de marche 

aléatoire sur G, il existe une construction d'une variété fermée M dont le groupe 

fondamental est G et telle que le troisième nombre de Betti L2 de M soit égal à 

la dimension de von Neumann du noyau de l'opérateur A. Le groupe d'allumeur de 

réverbères n'est pas de présentation finie. 

3. LE GROUPE D'ALESHIN 

Considérons l'automate fini inversible représenté par la figure 4. Le groupe d'Ale-

shin [1] est le groupe G engendré par U et V. 

Son étude a permis de donner une réponse particulièrement simple au problème de 

Burnside et de résoudre un problème de Milnor. 

3.1. Une réponse au problème de Burnside 

En 1902, Burnside a demandé s'il existe des groupes de type fini qui sont infinis 

et tels que chaque élément soit d'ordre fini. Le résultat le plus important concernant 

l'existence de tels groupes est le théorème d'Adyan-Novikov [28]. Le groupe d'Aleshin 

donne une réponse très simple à ce problème même si, contrairement aux groupes 

d'Adyan-Novikov, l'ordre des éléments n'est pas uniformément borné. Aleshin [1] 

démontre : 
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b 1 
1 

d 1 

1 1 

0 

0 
1 0 

1 

a 

0.1 1 0.1 

n V 1 0 

u 
1 

1 
1 

FIGURE 4. L'automate d'Aleshin de 1972 

THÉORÈME 3 . 1 . — Le groupe G — (U,V) est de torsion et infini. 

Bien qu'il y ait des preuves plus directes de ce théorème, nous présentons la d 

monstration originale car elle permet la construction d'une quantité non dénombrab 

de p-groupes infinis pour tout nombre premier p. 

Le groupe d'Aleshin est par définition de type fini. Les prochaines sous-sectio] 

donnent la preuve des deux assertions du théorème. 

Préliminaires. — 

Soit A un automate fini, ô un mot et q un état de T(A). On note q[ô] la permutation 

que porte le sommet d'arrivée du chemin de T(A) partant de q et suivant ô. 

On constate : 

PROPOSITION 3 . 2 . — Soit ô un mot de lonaueur l. 

i) si l > 3, alors V[S] = Id ; 

ii) si U[ô] = e, alors l > 3 et ô est de la forme £, 1 , 1 , 1 , 0 avec £ G { 0 , 1 } ; 

iii) plus précisément, 

m = 011. . . 10; U[m] = e si et seulement si m est de longueur 1 = 0 ou 2 modulo 3 

m = 111. . .10, U[m] = e si et seulement si m est de longueur 1 = 1 ou 2 modulo 3. 

LEMME 3 .3 . — Les générateurs sont d'ordre fini : 

i) U est d'ordre 2. 
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ii) V est d'ordre 4 et agit transitivement sur les 2 premières lettres des suites de 

{0 ,1} et uniquement celles-ci. 

Preuve. — i) Soit ô un mot. Le second point de la proposition précédente indique que 

seule la lettre suivant un éventuel préfixe de ô de la forme £,0,0, -.-,0,1 pourra être 

modifiée sous l'action de U. Il en va de même pour l'action de U sur la suite U(ô) et 

donc U2(6) = S. 

ii) Utilisons l'image de V dans le produit en couronne : V = (Id, a)e. Donc 

V2 = (a, a). Or a = (Id,Id)e et donc a2 = (Id, Id) = Id, a ^ Id. Finalement, V 

est exactement d'ordre 4. 

Comme il n'y que 4 mots à 2 lettres, V agit bien transitivement sur les mots à 

2 lettres. Le premier point de la proposition 3.2 achève la preuve de ce lemme. 

Puisque U et V sont d'ordre fini, tout élément de G s'écrit X — XmXm_i . . . X\, 

Xi = U ou V. Pour tout mot S, on note alors 

X[S] = Xm[Xm_!. . .Xi (<*)]. 

Nous allons associer à tout élément X — Xm...Xi G G, avec Xi = U ou V, une 

fonction 

Rx : {mots de longueur l > 3} > N . 

Soit donc S un mot de longueur l > 3. Soit d le plus petit entier tel que Xd(ô) = ô 

(il existe car l'ensemble {X*(£), i G N } est fini). 

On pose T1 (X.G) SLSÎ, <^-iA2, G2m=1 Gdm=1 avec pour j G 

0, ...,ra - 2 et pour z G l,....,d-1 

g1=B 3+i = ^•+i(<*j) °0 Xrn(6lrn_1). 

On note r2(X, ô) la sous-suite de rx(X, ô) qui consiste en les ôj vérifiant 

- Xj+i = U (les mots ô1- en entrée de l'opérateur U) 

- ô1- est de la forme £, 1 , 1 , 1 , v avec £ et i/ égaux à 0 ou 1. 

Dans cette suite, on remplace chaque 6%- par 0 s'il finit par 0 et par 1 sinon. On 

obtient ainsi une suite de la forme 

Os?isîos2...isfc 

avec s™ > 0 sauf peut-être pour ou s^. 

On remplace maintenant, pour x = 0 ou 1, chaque xsï par x (la suite obtenue com­

mence par 0 si > 0 et par 1 sinon ; de même, elle finit par 1 si et seulement si 

4 > o)-
Cette suite est notée r3(X, S). 
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DÉFINITION 3 .4 . — On pose 

Rx(S) = 
max(/c0, ki) 
0 

si k0 et ki sont non nuls 

sinon 

où ko et ki sont respectivement le nombre de 0 et de 1 dans r3(X, ô). 

Rx(ô) est en fait le nombre d'alternances dans la suite T3(X,Ô). 

Le groupe G est de torsion. — 

Soit X = Xm...Xi G G. Il nous faut montrer l'existence de D tel que XD = 1. 

LEMME 3 . 5 . — Soit ô un mot de longueur l > 3 et d tel que Xd(ô) — ô. 

Si Rx(ô) = 0, alors pour tout mot r\, X2d(ôr]) = ôrj. 

Preuve. — Supposons que Rx(à) = 0. On distingue alors 3 cas : 

i. r3(x,ô) = 0 . 
Dans ce cas, la suite r1(X, ô) ne possède pas de mot de la forme £11...0 et donc, 

d'après la proposition 3.2, pour toute lettre x, on a Xd(ôx) = Sx. Comme P1(X, ô) 

ne contient pas non plus de mot de la forme £11... 1, r3(X, Sx) = 0 et ce premier cas 

est traité. 

2. r3 (x ,£ ) = o. 

Étant donné une lettre x, on a toujours X2d(Sx) = X2d(ô)(Xd[ô])2(x) = ôx (car 

Id2 = e2 = Id). De plus, par hypothèse, la suite rx(X, ô) ne contient pas de mots de 

la forme £11... 1 et ainsi la suite T3(X,Sx) est vide : on est ramené au premier cas. 

3. r3 (x ,ô) = i . 

On a Xd[6] = Id et donc, pour tout x, Xd(ôx) = ôx. De plus, rx(X, ôx) est alors 

obtenu en ajoutant x à la fin de chaque mot de rx(X,ô) et donc F3(X,ôx) est égal 

à : 

i) 0 si et seulement si x = 0. On est ramené au deuxième cas et donc, pour tout 77, 
X2d(ôxn) = ôxn. 

ii) 1 sinon. On applique le raisonnement du troisième point à ôx, jusqu'à ce que 

l'on soit dans le cas i) précédent. 

LEMME 3.G. — La fonction Rx est décroissante pour l'ordre partiel habituel sur les 

mots, i.e. 

Rx(5x) < Rx(6). 

De plus, si d est le plus petit entier vérifiant Xd(ô) = ô, alors 

Xd[ô] = I d et Rx{ô) > 0 implique Rx{ôx) < Rx(â) 
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Preuve. — Le cas Rx(à) = 0 a été traité dans la preuve du lemme précédent. On 

suppose donc Rx(à) > 0. 

i) Cas = Id. La suite T1(X, ôx) est donc aussi de longueur md. De plus, les 

mots de la suite T2(X,ôx) proviennent des mots de T2(X,Ô) de la forme £11...1 et le 

nombre d'alternances entre les mots de T2(X, Sx) finissant par 0 et ceux finissant par 

1 est inférieur au nombre de 0 dans F3(X, ô) (car seul un mot de la forme £11...0 de 

T2(X, ô) peut générer la permutation e). Finalement les nombres de 0 et de 1 dans la 

suite T3(X, Ôx) sont strictement plus petits que le maximum des nombres de 0 et de 

1 dans T3(X,Ô) : on a bien Rx(Sx) < Rx(ô). 

ii) Cas Xd[ô] = e. Ici la suite T1(X, ôx) est de longueur 2md. Si on note T1(X, ô) = 

ô10,âl...,51m_1,âl...,ôl^.....ôl-1 alors T1(X,fe) = 

5kx 5}x\ 

ôle(x\) 
JÇl ~i 

Sm-le(xm-l) 

£2 2 
ô20e(x20) 

X2 2 
°m-lxm-l 

^m-le(*m-l) 
^m-1^-1 

^m-ie(^m-l) 

En raisonnant comme dans le premier cas, on voit que les mots de la suite T2(X, ôx) 

proviennent des mots de T2(X, ô) de la forme £11...1 mais, cette fois-ci, sur les deux 

copies de r1(X, ô) correspondant aux deux lignes de la matrice ci-dessus. Donc la 

longueur de la suite T3(X, ôx) n'est pas plus grande que deux fois le nombre de 1 

dans r3(X, J), ce nombre étant lui-même < Rx(ô). On remarque de plus que dans 

T2(X, ôx) on a autant de mots finissant par 0 que de mots finissant par 1. On a bien 

Rx(ôx) < Rx(ô). 

LEMME 3.7. — Soit ô un mot de longueur l > 2. Alors Rx(ô) = Rx{X(ô)). 

Preuve. — Il faut juste remarquer que la suite rx(X, X(ô)) est obtenue en mettant 

les m premiers mots de r1(X, ô) à sa fin. 

LEMME 3 .8 . — Il existe tx > 3 tel que pour tout ô mot de longueur l > tx et toute 

suite (finie ou infinie) r\ 

Rx(ô) = Rx(6ri). 

Preuve. — L'élément X agit sur l'ensemble des mots à 3 lettres. Considérons alors 

une orbite B à laquelle nous pouvons d'après le lemme précédent associer un entier 

RX(B) = Rx(ô), pour tout ô G B. Supposons ce nombre non nul. 

Regardons alors l'ensemble B'1 des mots de 4 lettres dont les 3 premières forment 

un mot de B. Soit r\x G B'1, 77GJB,x = O o u l . Son orbite est nécessairement incluse 

dans B'1 et deux cas se distinguent alors : 

1. X[rj] = e et dans ce cas l'orbite de r\x est B'1. 

2. X[rj] = Id et dans ce cas B'1 est la réunion disjointe B\ U B\ de deux orbites 

sur les mots à 4 lettres. Mais ici, d'après le lemme 3.6, Rx(B\) et Rx(B\) sont 

strictement inférieurs à Rx(B). 
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Les descendants de B sont donc réunis en « blocs » B% (correspondant à certaines 

orbites) que l'on peut représenter par les sommets d'un arbre enraciné tel que chaque 

sommet possède 1 ou 2 fils ; à chacun de ces blocs est associé un nombre Rx{B^) qui 

est strictement plus petit que celui du père de B% si celui-ci a deux fils. 

Le nombre de sommets ayant deux fils est donc nécessairement fini et il existe un 

niveau p tel que, pour tout bloc Bvq, les blocs fils de Bvq aient tous la même étiquette 

Rx(BP). 

La preuve est achevée une fois remarqué qu'il n'existe qu'un nombre fini d'orbites 

B sur l'ensemble des mots à 3 lettres. 

Nous allons maintenant montrer que, pour tout 6 de longueur au moins 

tx, Rx(S) = 0. 

DÉFINITION 3.9. — Soit 6 un mot de longueur l > 3. Notons aç le nombre d'occur­

rences du mot £11...10 dans T2(X,<5). Soit A un sous-alphabet de { 0 , 1 } . On dit que 

r2(X, 6) admet le type A si X^e„4 a£ es^ Pa^r-

Remarque 3.10. — Soit un des est pair, soit c'est leur somme et donc r2(X, 6) 

admet au moins un type. 

LEMME 3.11. — Supposons l'existence d'un mot 6 et de deux lettres x\ et x2 tels que 

Rx(ô) = Rx{6x{) = Rx(Sxix2) ï 0. 

Alors les suites T2(X,6xi) et r2(X, 6xix2) admettent les mêmes types. 

Preuve. — Nécessairement, X[ô] = e. La preuve du lemme 3.6 indique alors que, si 

la suite r2(X, ôxi) contient le mot r/0, elle contient aussi le mot 771 et donc les de 

r2(X, ÔXi) peuvent se lire aussi sur les mots de la forme £l l . . . l l , lesquels vont donner 

les mots définissant les types de T2(X, 6x1X2)-

En effet, = e et l'ensemble des mots de T2(X, ÔX1X2) de la forme £11...10 est en 

bijection avec l'ensemble des mots de la forme £11... 11 (on modifie la dernière lettre), 

eux-mêmes en bijection avec l'ensemble des mots de la forme £11... 1 dans T2(X, 6x1) 

(on ôte la dernière lettre). 

Ainsi les valeurs des sont identiques dans T2(X, ôx\) et dans r2(A, 6x\X2) et le 

lemme est prouvé. 

LEMME 3.12. — Soit 6 de longueur tx- Alors Rx(à) = 0. 

Preuve. — Raisonnons par l'absurde. Nous sommes alors dans les conditions du lemme 

précédent et les types admis par les suites T2(A, 6x1), T2(X, ÔX1X2),...,r2(X, 6xiX2---Xk) 

sont les mêmes. Soit donc A un tel type (qui existe grâce à la remarque 3.10). Il 

résulte du dernier point de la proposition 3.2 qu'il existe une longueur / > tx telle 

que les mots 77 de longueur Z vérifiant U[rj] = e soient exactement ceux de la forme 
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£11... 10 pour £ G A. Mais alors pour le mot m — £11... 1 de longueur / et d tel que 

Xd(m) = m, 

Xd[m] e ee A an Id 

et donc Rx(ml) < Rx(m) ce qui contredit la propriété de tx-

Soit maintenant 

D = ppcm{cardinal de l'orbite de ô\ô de longueur tx}-

Par définition de pour tout mot rj de longueur au plus tx, X2D(rj) — 77. D'après 

le lemme précédent, pour tout mot 77 de longueur tx, on a RX(TJ) = 0 et donc pour 

toute suite 7 finie ou infinie, X2jD(t77) = 777 (lemme 3.5). Finalement, X2D = 1 et 

donc le groupe G est de torsion. 

G est infini. — 

LEMME 3.13. — Pour tout k > 0, pour tout £ G { 0 , 1 } , il existe Xk,ç G G et il existe 

£1, #2,2/1,2/2 ^ (0> 1} ^s Que? Pour tout mot 7, on ait 

A/c,e(x1x20...0£7) 

k 

yiV2 0...0 7. 

fc+i 

Preuve. — Par récurrence sur k. 

Pour /c = 0. On voit que Ud(00Çj) = 00efi(£)7. Ici, (x1, x2, yi, y2) = (0,0,0,0) 

convient. X0,o = Id et X0,i = t/. 

Supposons le résultat vrai pour tout k < K. Nous partons de x\x2 0...0£7 et allons 

K+1 
essaver d'arriver à Î/1W9O...O7. 

K+2 

Tout d'abord, une remarque : le lemme 3.3 nous indique que, en utilisant 1; 

puissance appropriée de V', on peut faire apparaître les deux premières lettres que Y 

souhaite sur n'importe quel mot, sans modifier le reste de celui-ci. Cela est notamm( 

utile pour utiliser les X^^ sur des mots dont les deux premières lettres ne sont \ 

celles requises par les hypothèses de récurrence. 

Par hypothèse de récurrence, il existe XK-I 1 tel que 

XZL, i(y\v'ip...007'; 

K 

x/1x/20...0107/. 

K-l 

On pose 7' = £7 et on utilise une bonne puissance de V ; on obtient ainsi l'existence 

de T\ tel que : 

r1(x1x2o...o£7) 

K + l 

•• x/1x20...010£7 

K -1 
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On itère ce procédé en utilisant successivement XK\2 1? XK1_3 lv..,X0 \ et les bonnes 

puissances de V pour enfin obtenir un élément TK vérifiant : 

TK(x1x2p...0ej) 

K+l 

2/12/2 I — 

K 

D'après le dernier point de la proposition 3.2, il existe A G {0 ,1} tel que 

U\<J 11.. 1 01 = e. On pose alors 

K + l 

T = UV^K où i est tel que 1^(2/12/2) = <rl. 

Cet élément vérifie 

T(x1x20..:0e7) 

K+l 

(7l...l00'V. 
K + l 

Maintenant on utilise successivement X0,1, X1,1....,XK-1,1 et les puissances appro­

priées de y pour, à chaque étape, faire apparaître les deux premières lettres requises 

à l'utilisation de ^ 1. On obtient alors la suite d'égalités 

T{(x1x2Q...OJ>y] 

K+l 

**01 IOO7 

K-l 
r^(x1x2p...0£7) 

K+l 

* * 00 1..1 OO7 

K-2 

T'fc(x1x20...0£'y) 
K + l 

* * 0 0 T 

K+2 

ce qui achève la preuve de l'hérédité et donc celle du lemme. 

Le lemme précédent exhibe alors pour tout K E N des éléments Zk de G vérifiant 

Zfc(l . . . l l l l . . . ) 

k 

0...0111... 

k 

(on utilise les Xk,i multipliés à droite et à gauche par des puissances adéquates de 

V). 

Ces Zk sont tous distincts et donc le groupe G est infini. 

On remercie Jean-François Planchât qui nous a expliqué la preuve d'Aleshin [29]. 

3.2. Croissance 

Pour un groupe G engendré par une partie 5, finie et symétrique (i.e. telle que 

S = S~1), on note \g\s le nombre minimal de générateurs requis pour représenter g. 

La croissance du groupe G décrit le comportement asymptotique de la fonction 

bG(n) = \{g e G : \g\s < n}\. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2008 



160 A. ZUK 

Ce type de croissance est indépendant de la partie génératrice. Par exemple, pour 

les groupes nilpotents, elle est polynomiale et, pour un groupe qui contient un sous-

groupe ou même un semi-groupe libre, elle est exponentielle. Pour l'histoire de cette 

notion, voir [18]. Dans [25] il a été demandé s'il existe d'autres types de croissance. 

On présente la réponse donnée par Grigorchuk dans [13]. 

Soit G le groupe engendré par les états a, 6, c et d de l'automate de la figure 4. I] 

est facile de voir que ce groupe est commensurable au groupe engendré par les états 

U et V et au groupe engendré par tous les états de cet automate (i.e. ces groupes ont 

des sous-groupes d'indice fini isomorphes). 

PROPOSITION 3 . 1 4 . — Le groupe G n'est pas à croissance polynomiale. 

Preuve. — Un groupe à croissance polynomiale contient un sous-groupe d'indice fin: 

nilpotent (Gromov) qui contient un sous-groupe d'indice fini sans torsion (Malcev). Oi 

le théorème d'Aleshin (voir la section précédente) affirme que G est infini de torsion 

On peut aussi vérifier cette proposition par un calcul simple. 

Montrons que le groupe d'Aleshin est à croissance sous-exponentielle. 

Nous avons les relations : 

a = ( l , l ) e 

b = (a, c) 

(2) c = (a,d) 

d = (1,6) 

et aussi 

(3) 

aba = (c, a) 

aca = (d, a) 

ada — (&,1) . 

LEMME 3 . 1 5 . — Le groupe engendré par b, c et d est isomorphe au groupe de Klein 

Z / 2 Z 0 Z / 2 Z . 

Preuve. — Il s'agit d'une vérification simple. 

Soit T = StG(3). Alors [G : T] < oc. 

LEMME 3 . 1 6 . — Considérons pour g e T son image dans G8 ; on note g = 

(9i, • • • ,9s)- Alors 

(4) 

8 

i=l 
9i 

3 

4 
9 + 8, 

pour la longueur par rapport aux générateurs a, b, c et d. 
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Preuve. — Sachant que a est d'ordre 2 et que 6, c et d sont les éléments du groupe 

de Klein, chaque élément g G G s'écrit : 

g — ak±ak2a . . . akna, 

où ki £ {b, c, d} et le premier et le dernier a, notés a, n'apparaissent pas forcément. 

Considérons un bloc 7 = kiaki+ia ou 7 = akidki+i. Grâce aux relations (2) et (3) 

son image 7 = (71,72) dans G x G vérifie 

I71I + I72I < M-

Si ki ou est égal à d, cette inégalité devient 

(5) L U I + I 7 2 I 
3 
4' 7 

Les relations (2) et (3) montrent que l'image de ki ou akia dans G x G donne c si 

ki — b et donne d si ki — c. Donc en itérant cette procédure 3 fois, on est sûr de se 

retrouver dans la situation (5). D'où l'inégalité (4) (le terme 8 est dû au fait que la 

longueur de Id n'est pas forcément divisible par 8). 

PROPOSITION 3.17. — Le groupe d'Aleshin est à croissance sous-exponentielle. 

Preuve. — L'inégalité (4) nous montre que 

(6) |6r(*)| 
FCI+---+fc8<f fc+8 

bG(ki M * * ) | -

Il est important de calculer la longueur des éléments par rapport aux générateurs a, 

6, c et d même si a n'appartient pas à T. Comme T est d'indice fini dans G, on a 

(7) lim 
n—>oo 

bG(n) lim 
n—>oo 

br^(n) — a. 

Pour chaque e > 0, il existe c > 0 tel que, pour n suffisamment grand, on ait 

\bG(n)\ <c(a + e)n. 

La majoration (6) assure alors qu'il existe cf tel que 

|&r(n)| en8 (a + s) fn+8 

Donc limn^oc br(n) 3 
q;4 

ce qui, avec (7), implique 

lim 
n—>oo 

bG(ri) 1 

Le groupe d'Aleshin est donc à croissance sous-exponentielle. 

On ne connaît pas le comportement exact de la fonction de croissance du groupe 

d'Aleshin. Pour de meilleures estimations, voir [5]. 
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b 

1 1 

0 

1 0.1 

1 

0 

FIGURE 5. L'automate à trois états 

4. GROUPE ENGENDRÉ PAR UN A U T O M A T E À TROIS ÉTATS 

On s'intéresse au groupe engendré par l'automate de la figure 5 introduit dans 

[16]. Ce groupe apparaît aussi comme le groupe de Galois des itérations du polynôme 

x2 — 1 sur les corps finis (Pink) et comme le groupe de monodromie du revêtement 

ramifié de la sphère de Riemann donné par le polynôme z2 — 1 (voir [26]). 
Une des propriétés les plus remarquables de ce groupe est liée à la notion de moyen-

nabilité. 

4.1. Propriétés algébriques de G 

THÉORÈME 4.1 ([16]). — Soit G le groupe engendré par l'automate de la figure 5. 

Le groupe G possède les propriétés suivantes. 

a) // est fractal ; 

b) il est régulièrement faiblement branché sur G' ; 

c) il est sans torsion; 

d) le semi-groupe engendré par a et b est libre ; 

e) il admet la vrésentation : 

G=(a,b\ae(6m([a,ab})) l,ra = 0 , l , . . . , e = 0,1), 

où 

a a 
b 

b2 

a 
0 

a 

b 

«b2 + ! 

b. 

On présente ici les démonstrations de quelques propriétés algébriques de G men­

tionnées dans le théorème 4.1. 

Pour G = (a, b), on a les relations a = (1, b) et b = (1, a)e. 

ASTÉRISQUE 317 



(971) GROUPES D'AUTOMATES 163 

PROPOSITION 4.2. — Le groupe G est fracial. 

Preuve. — Nous avons 
StG(l) = {a,a\b2). 

Mais 

(8) 

a - (1,6) 

ah = e( l ,a-1)( l ,6)( l ,a)e = (6a,l) 

b2 = (a, a), 

et chacune des images des deux projections de Stc( l ) est G, i.e. G est fractal. 

PROPOSITION 4.3. — Le groupe G est régulièrement faiblement branché sur G', i.e. 

G' >G' x G'. 

Preuve. — En effet, comme 

[a,62] = (1 , [MD, 

en utilisant la fractalité de G, on obtient G' > ([a,b2])G > 1 x ([b,a])G = l x f f 

et (1 x G')b = G' x 1. Donc G' contient G' x G' et comme G' ^ 1 le groupe G est 

régulièrement faiblement branché sur G'. 

LEMME 4.4. — Le semi-groupe engendré par a et b est libre. 

Preuve. — Considérons deux mots différents U(a,b) et V(a,b) qui représentent le 

même élément et tels que p = max{|C/|, |V | } soit minimal. Une vérification directe 

montre que p ne peut valoir ni 0 ni 1. 

Supposons que \U\b, le nombre d'occurrences de b dans est pair (et donc \V\b 

également). Si ce n'est pas le cas, on peut considérer les mots bU et bV augmentant 

ainsi p par 1. 

Maintenant U et V sont les produits de 

2m = (lhm> 

et de 

ba7nb = (1, a)e(l, bm)(l, a)e = (6ma, a). 

Si, dans un de ces mots, il n'y a pas 6, disons U = am, après avoir projeté U et 

V sur la première coordonnée, on obtient 1 = Vb où la projection Vo est un mot non 

vide vérifiant |Vo| < |V| < p. Ceci contredit la minimalité de U et V. 

On considère maintenant la situation où b apparaît dans les deux mots au moins 

deux fois. Si le nombre d'occurrences de b dans U et V était un, alors par minimalité 

ils doivent être égaux à ban et amb. Mais ban — (bn,a)e et am6 = (l,6ma)e, ce qui 

montre que, si ces mots sont différents, ils représentent des éléments différents. 
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Donc les deux mots contiennent deux b et \U\, \ V\ < p, ou l'un d'entre eux contient 

au moins quatre b et \U\, \ V\ < p + 1. 

Si on considère les projections de U et V sur la seconde coordonnée, on obtient 

deux mots différents (à cause de la minimalité de U et V, ils doivent finir avec des 

lettres différentes) et de longueur strictement plus petite. Ceci contredit la minimalité 

de p. 

LEMME 4.5. — Nous avons la relation suivante : 

73(G) = (73(G)x73(G))>4<[[a, &],&]> 

oùl3(G) = \\G,G],G}. 

Preuve. — On part des relations 

-Y3(G) = {[[a,b],a],[[a,b],b])G, 

[[a,b],a} = [(ba,b-1),(l,b)} = l, 

(9) [[a,b],b] (b-a,b)e(l,a-1)(ba,b-1)(l,a)e (b-a,b)(b-a,ba) (b-2a,bba). 

Les deux premières nous permettent de conclure que 

73(G) = <[[a,6],6])G. 

Grâce à la relation 

[a,b2] = ( 1 ,M]) 

on a 
[[a,b%a] ( 1 , [a, &]),(!, b) • (! ,[[«, 6], b}). 

Soit £ = [[a, 6], b]. Des calculs directs montrent que £a,£a 1,$6,<?6 1 G (C) mod 

73(<3) x 73(<3) et (£) n (73(G) x 73(6?)) = 1 à cause de (9) et du fait que (bba)n G G' 

si et seulement si n = 0 et 73(G) < G'. 

LEMME 4.6. — On a la relation suivante : 

G" = 73 (G) x73(G). 

Preuve. — Soit / = (1, c) € G où c = [a, 61. On a pour d = (b, b l) e G' 

f,d-v (l ,[a,6]),(6-\6); (l,[[a,ft],fe])eG". 

Ceci implique que G" D 1 x 73(G) et alors G" D 73(G) x 73(G). Comme G" Ç 73(G), 

d'après le lemme 4.5, il suffit de démontrer que (£) n G" = 1. 

Il est facile de démontrer que 

( 1 0 ) G' = (G' x G') x (c). 
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En utilisant la relation (9) et la relation (10), on a 

G" = ([cJ])G 

Mais 

[c,f] = [(ba,b-1),(l,c)} [ l , [ 6 - \ [ a , & ] ] ] e l x 7 3 ( G ) . 

Cela finit la démonstration. 

Voici encore une propriété générale des groupes faiblement régulièrement branchés 

qui est facile à démontrer. 

PROPOSITION 4.7. — Soit G un groupe faiblement régulièrement branché sur K. 

Alors, pour tout sous-qroupe distingué N <G, il existe n tel que 

K'n<N 

où Kn — K x • • • x K (produit direct de dn facteurs, chacun agissant sur le sous-arbre 

correspondant). 

4.2. Moyennabilite 

En 1929, von Neumann [27] a défini la notion de moyennablité qui est devenue 

fondamentale. 

DÉFINITION 4 . 8 . — Le groupe G est dit moyennable s'il existe une mesure \x définie 

sur toutes les parties de G telle que 

- MG) = 1 
- p(A U B) = n(A) + (i(B) - n(A H B) pour tous A,BcG 
- fi(gA) = /JL(A) pour tout g G G et tout A G G. 

Il découle des travaux de von Neumann [27] que les groupes à croissance sous-

exponentielle sont moyennables et que cette classe est fermée par rapport aux opé­

rations élémentaires : extensions, quotients, sous-groupes et limites directes. Avant 

la construction du groupe engendré par l'automate de la figure 5, tous les groupes 

moyennables connus pouvaient être obtenus à partir de groupes à croissance sous-

exponentielle en utilisant les opérations élémentaires décrites ci-dessus. Pour l'histoire 

des différentes conjectures concernant la classe des groupes moyennables, voir [17], la 

première référence étant l'article de Day [6]. 

Soit SGo la classe des groupes dont tous les sous-groupes de type fini sont à crois­

sance sous-exponentielle. Supposons que a > 0 est un ordinal et qu'on a défini SGp 

pour chaque ordinal f3 < a. Alors, si a est un ordinal limite, soit 

SGQ, 

0<a 
SGs. 
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Si a n'est pas un ordinal limite, soit SGa la classe des groupes qui peuvent être 
obtenus à partir des groupes dans SGa-\ en utilisant soit des extensions soit des 
limites directes. Soit 

SG 
oc 

SGa. 

Les groupes de cette classe sont dits sous-exponentiellement moyennables. 

SG est la plus petite classe des groupes qui contient les groupes à croissance sous-

exponentielle et qui est fermée par rapport aux opérations élémentaires. Les classes 

SGa sont fermées par rapport aux sous-groupes et aux quotients. 

PROPOSITION 4.9 ([16]). — Le groupe G n'est pas sous-exponentiellement moyen-

nable, i.e. G SG. 

Preuve. — On commence par les lemmes suivants 

LEMME 4.10. — Nous avons la relation 

^i(73(G)) = (73(G),&2°). 

Preuve. — C'est une conséquence du lemme 4.5 et de la relation (9). 

LEMME 4.11. — On a 

M(K(G),b2a)) = (K(G),b2a,a). 

Preuve. — Ceci est une conséquence du lemme précédent et de la relation b2a = (a, ab). 

LEMME 4.12. — Pour la projection sur la seconde coordonnée, nous avons : 

M(-ï3(G),b2a,a)) = G. 

Preuve. — Ceci découle du lemme 4.5 et des relations b2a = (a, a6) et a = (1,6). 

On peut maintenant démontrer la proposition 4.9. Supposons que G G SGa pour 

a minimal. Alors a ne peut pas être 0 puisque G est à croissance exponentielle (le 

semi-groupe engendré par a et b est libre d'après le lemme 4.4). En outre, a n'est pas 

un ordinal limite car, si G G SGa pour un ordinal limite, alors G G SGp pour un 

ordinal j3 < a. De plus G n'est pas limite directe (d'une suite croissante de groupes) 

car il est de type fini. Donc il existe N, H G SGa-\ tels que la suite suivante soit 

exacte : 

l - + J V - > G - > # - > l . 

Grâce à la proposition 4.7, il existe n tel que N > (R i s t c^ ) ) ' > G" x • • • x G" 

(2n fois). Donc G" G SGa-i et alors 73(G) G SGa-i d'après le lemme 4.6. Chaque 

classe SGa est fermée par rapport aux quotients et passages aux sous-groupes. D'après 

les lemmes 4.10, 4.11, 4.12 on déduit que G G SGa-i. Contradiction. 
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Pour démontrer la moyennabilité de G, on utilise un critère dû à Kesten [21] 
utilisant les marches aléatoires sur G. 

Soit p une mesure de probabilité symétrique dont le support est une partie gé­

nératrice symétrique S de G, i.e. G = (S), p(s) = //(«s-1) pour chaque s E S et 

/x(S) = 1. 

Soit pn la probabilité de retour à l'identité après n pas pour la marche aléatoire 

donnée par /x, i.e. 

pn(Id,Id) = A**n(Id) 

où /i*n est la n-ième puissance de convolution de p sur G. 

THÉORÈME 4 . 1 3 (Kesten [211). — Le groupe G est moyennable si et seulement si 

lim 
n—>oc 

2TJ P2n(Id,Id) - 1. 

La moyennabilité de G a été démontrée par Virag [32]. Cette preuve a été publiée 

dans [3]. 

Sur G, considérons la marche aléatoire Zn suivant la mesure symétrique a sur 
S = {a,a-l,b,b-1} avec les poids {1,1 , r , r} , i.e. p(a x) = p(a) i 

2r+2 M O = 
u(b) r 

2r+2 ' 
L'image de Zn par le plongement de G dans G l S2 est notée : 

— (Xn, Yn)sn 

où Xn, Yn e G et sn G 5 2 . 

On définit les temps d'arrêts a et r : 

"(0) 0 

crfra + 1) minjn > cr(ra) En l,Xn / ^ (m)} 

r(0) min{n > 0 : en = e} 

r(m + 1) min{n > r(m) : £n = 7̂  ̂ r(m)} 

Un calcul simple montre : 

LEMME 4 . 1 4 . — -Xa(m) et Yr(m) son~t> des marches aléatoires simples sur G suivant 

la distribution u! {a 1) M'(a) r 
2r+4 > 

u'(6-1) = u'(6) 1 
r+2 

On remarque que, pour r = \ /2, on obtient la même distribution sur Zn, X^r^^ et 
Yr(n) 

On vérifie aussi 

LEMME 4 . 1 5 . — Presque sûrement 

lim 
m—>oc 

m 
a (m) 

lim 
ra—>oo 

m 

r(m) 

2 + r 
4 + 4r 

1 

2 
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Pour conclure nous devons modifier la distance sur G, afin de pouvoir contrôler la 

norme de Zn par les normes de Xn et Yn. 

Soit Tn le sous-arbre fini à n niveaux de T sur lequel agit G. Pour g G G, on définit 

I I I * \\\TN par : 

I I I 9 \ \\rn 
yegT 

h J + i - i . 

Finalement on définit la distance ||| ||| sur G : 

I I I p I I I = min m g \ \\Tn. 
n 

On vérifie que pour g = (go,gi)e0,1 

|||ffo||| + |||9i|||<lllslll<IIMII + | | M I + l 

et que la croissance par rapport à la métrique ||| • ||| est au plus exponentielle, i.e. il 

existe a > 1 tel que 

( n ) | { f f : | | | 3 | | | < n } | < a n . 

Nous avons 

PROPOSITION 4.16. — Presque sûrement 

lim 
n—>oc 

Zn 

n 
0. 

Preuve. — L'existence de cette limite, qu'on note s, est une conséquence du théorème 
ergodique de Kingman. Maintenant 

Zn 

n 

Xn 

n 

Yn 

n 

1 

n 
Mais 

lim 
n—>oc 

Xn 
n 

lim 
n—•oo 

Xa(n) 

a(n) 
lim 

n—»oc 

Xa(n) 

n 
lim 

n—>oc 

n 

a(n) 

et similairement nonr "K,. Donc oour r 2 si s 0, d'après le lemme (4.15), 

s s i 
2 

s i 
2 

5 Cette contradiction signifie que s = 0. 

PROPOSITION 4.17. — La probabilité p(Z2n = Id) ne décroît pas exponentiellement. 

Preuve. — Pour chaque £ > 0, on a 

p(|||Z2n||| < e n ) 
GEG,\\\G\\\<sn 

p(z2n = g) < p(z2n = id) {geG;\\\g\\\<en} 

Donc d'après (11) 

p(Z2n - Id) P 
Zn 

n 
E a -en 

D'après la proposition 4.16 et le critère de Kesten, le groupe engendré par l'auto­

mate de la figure 5 est donc moyennable. 
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En utilisant des extensions HNN du groupe G, on peut construire des groupes 

moyennables de présentation finie qui ne sont pas sous-exponentiellement moyen­

nables. Dans [17] on démontre que le groupe 

G = <6,t|[6t6,6*] - l,bt2 =b2) 

a ces propriétés. 

5. GROUPE DE WILSON 

On présente ici le groupe que Wilson a construit pour répondre à un problème 

de Gromov. Pour le définir, on utilise le langage des produits en couronne (voir la 

section 1.2). 

5.1. Problème de Gromov 

Pour les groupes à croissance exponentielle, la fonction de croissance dépend for­

tement de la partie génératrice. Il est naturel de demander si on peut associer un 

invariant lié à la croissance qui soit indépendant de la partie génératrice. Plus préci­

sément, pour un groupe G engendré par une partie finie 5, on définit 

h(G,S) lim 
n—>oo 

g E G : \g\s < n 

L'entropie du groupe G est alors 

KG) inf 
S;(S)=G 

h(G,S). 

En 1981, Gromov [18] a demandé si pour chaque G à croissance exponentielle 

h(G) > 1, 

i.e. s'il est à croissance exponentielle uniforme, ce qui signifie qu'il existe a > 1 tel 

que pour chaque partie génératrice 

\{geG:\g\s<n}\>an. 

La réponse est positive pour plusieurs classes de groupes comme les groupes hy­

perboliques ou linéaires de type fini [4], [8]. 

Le premier groupe sans croissance exponentielle uniforme a été construit par Wilson 
en 2003 [33]. 
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5.2. Construction de Wilson 

Désignons par A31 le sous-groupe alterné du groupe symétrique à 31 éléments. 

THÉORÈME 5.1. — Soit H un groupe parfait de type fini vérifiant la propriété H ~ 

HlAsi- Alors il existe une suite (xn) d'éléments d'ordre 2 et une suite (yn) d'éléments 

d'ordre 3 tels que 

1. (xn, yn) = H pour chaque n ; 

2. limn_oo h(H, {xn,yn}) = 1. 

Construction de H. — 

Soit T31 un arbre enraciné de degré 31. Soit x G Aut(T3i) qui agit non trivialement 

seulement sur le premier niveau. On définit x G Aut(T3i) par son image dans le 

nrodiiit, en couronne 

x = (x, x, Id,.. . , Id). 

Et finalement soit 

H = (x, x\x G A3i) 

Le groupe H est de type fini et H est parfait car A3i l'est. 

PROPOSITION 5.2. — On a 

H~HlA31. 

Preuve. — boit a = (z,c5,4j, p = {l,Ô,Z) G A31 ; considérons x,y e ^31. Alors 
[x, o~y] = ([x,y],Id,... ,Id). Comme H est parfait ceci montre que, pour chaque x G 

A31, on a (x, Id , . . . , Id) G H. Ensuite p(x, Id, . . . , Id)_1x = (x, Id,. . . , Id). Donc H 

contient { ( / i , I d , . . . ,Id)|/i G H} e,t en utilisant x G A31, on a H l A31 Ç H. 

Maintenant on va expliquer quelles sont les propriétés du groupe A31 dont on a 

besoin. 

PROPOSITION 5.3. — Le groupe A31 peut être engendré par un élément d'ordre 2 et 

un élément d'ordre 3. 

Comme H c± H l A31 et H est parfait, ceci implique qu'il existe u,v G H tel que 

u2 = 1;3 = Id et H = (u, v). 

PROPOSITION 5.4. — Soit H ~ H l A3i un groupe parfait engendré par u et v tels 

que u2 = v3 = id. Alors il existe x, y G A3\ tel que 

- il existe a, /3 G { 1 , . . . , 31}, a ^ /3 

t.( RV\ — XY(RV\ — RV 

y(P) = /3 
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- les éléments 

x = (..., u,... )x 

y = ( . . . , v , . . . ) î / , 

où u est en position a et v en position (3, satisfassent x2 = y3 = id et (x, y) = H. 

Preuve. — On vérifie facilement cette proposition avec x, y, a et (3 explicites [33]. 

Maintenant soient 

V(n) = \{weH: \w\7? < n } | , 

lin) = \{w G H : M<u,t;> < ™}|-

PROPOSITION 5.5. — Si on note lim 
n—•oo 

7(n) — c et lim 
n—>oc 

7'(n] = cr, alors pour 

s > 3 on a 
cf < max c 1 - A , ( l + 2/s)(s + 2 ) 2 ^ 

Preuve. — Commençons par expliquer le second terme. Considérons Z/3Z * Z /2Z 

Soient 

Pn = w G Z/3Z*Z/2Z;H(a;jy) < n et {xy xxy G w} n/s] 

Alors lim 
n—+oc 

Pn 1 + 2/'s 5 + 2 2/5 

Maintenant soient 

B(n) = ^ G (x, 5); |w| < n 

B+(n) = w G 1xv G w [n/s] 

B_(n) = B(n)\B+(n). 

On a 

xy lxyx = 1,. i,ir\ u v xy xxyx 

où v 1 est en position xvx(d), u est en vx(a) et î; en x(/3) 

Si u> G B.i-(n)i alors xy xxyx est au moins i 
2 ni s = r. Donc 

\B+(n)\ < \A31\ 

ni H hn3i <n — 2ri — l 

31 
7fa») < tf(ra)(c + e) n — 2r K{n){c + e) n(l-l/2s) 

où -ftT(n) est un polynôme en n. On obtient donc l'estimation de la proposition. 

La preuve du théorème se ramène donc à celle du lemme élémentaire : 

LEMME 5.6. — // existe une suite sn —> oo telle que 

n 1 

où ci = 2 et cn = max 1 _ 2sn Cn-1 (l + 2/sn)(sn + 2) 2/Sn pcmr n > 2. 
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Finalement pour démontrer que H est à croissance exponentielle, on prouve qu'il 

admet un semi-groupe libre. 
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