Astérisque

YVES LAURENT b-functions and integrable solutions of holonomic \mathcal{D} -module

Astérisque, tome 296 (2004), p. 145-165

http://www.numdam.org/item?id=AST_2004_296_145_0

© Société mathématique de France, 2004, tous droits réservés.

L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

b-FUNCTIONS AND INTEGRABLE SOLUTIONS OF HOLONOMIC *D*-MODULE

by

Yves Laurent

À Jean-Pierre Ramis, à l'occasion de son 60^e anniversaire.

Abstract. — A famous theorem of Harish-Chandra shows that all invariant eigendistributions on a semi-simple Lie group are locally integrable functions. We give here an algebraic version of this theorem in terms of polynomials associated with a holonomic \mathcal{D} -module.

Résumé (b-fonctions et solutions intégrables des modules holonomes). — Un célèbre théorème de Harish-Chandra montre que les distributions invariantes propres sur un groupe de Lie semi-simple sont des fonctions localement intégrables. Nous donnons ici une version algébrique de ce théorème en termes de polynômes associés à un \mathcal{D} -module holonome.

Introduction

Let $G_{\mathbb{R}}$ be a real semisimple Lie group and $\mathfrak{g}_{\mathbb{R}}$ be its Lie algebra. An *invariant eigendistribution* T on $G_{\mathbb{R}}$ is a distribution which is invariant under conjugation by elements of $G_{\mathbb{R}}$ and is an eigenvector of every bi-invariant differential operator on $G_{\mathbb{R}}$. The main examples of such distributions are the characters of irreducible representations of $G_{\mathbb{R}}$. A famous theorem of Harish-Chandra sets that all invariant eigendistributions are L^1_{loc} -functions on $G_{\mathbb{R}}$ [4]. After transfer to the Lie algebra by the exponential map, such a distribution satisfies a system of partial differential equations.

In the language of \mathcal{D} -modules, these equations define a holonomic \mathcal{D} -module on the complexified Lie algebra \mathfrak{g} . We call this module the Hotta-Kashiwara module as it has been defined and studied first in [6]. In [20], J. Sekiguchi extended these results to symmetric pairs. He proved in particular that a condition on the symmetric pair is needed to extend Harish-Chandra theorem. In several papers, Levasseur and Stafford [15, 16, 17] gave an algebraic proof of the main part of Harish-Chandra theorem.

2000 Mathematics Subject Classification. - 35A27, 35D10, 17B15.

Key words and phrases. — Vanishing cycles, D-modules, symmetric pair, b-function.

In [3], we defined a class of holonomic \mathcal{D} -modules, which we called *tame* \mathcal{D} -modules. These \mathcal{D} -modules have no quotients supported by a hypersurface and their distribution solution are locally integrable. We proved in particular that the Hotta-Kashiwara module is tame, recovering Harish-Chandra theorem. The definition of tame is a condition on the roots of the *b*-functions which are polynomials attached to the \mathcal{D} -module and a stratification of the base space. However, the proof of the fact that the Hotta-Kashiwara module is tame involved some non algebraic vector fields.

The first aim of this paper is to give a completely algebraic version of Harish-Chandra theorem. We give a slightly different definition of tame and an algebraic proof of the fact that the Hotta-Kashiwara module is tame. This proof is different from the proof of [3] and gives more precise results on the roots of the *b*-functions. However our first proof was still valid in the case of symmetric pairs while the present proof uses a morphism of Harish-Chandra which does not exist in that case.

Our second aim is to answer to a remark made by Varadarajan during the Ramis congress. He pointed the fact that an invariant eigendistribution, considered as a distribution on the Lie algebra by the exponential map, is not a solution of the Hotta-Kashiwara module. A key point in the original proof of Harish-Chandra is precisely the proof that after multiplication by a function, the eigendistribution is solution of the Hotta-Kashiwara module (see [23]). The study of the Hotta-Kashiwara module did not bypass this difficult step. Here we consider a family of holonomic \mathcal{D} -module, which we call (H-C)-modules; this family includes the Hotta-Kashiwara modules but also the module satisfied directly by an eigendistribution. We prove that these modules are tame and get a direct proof of Harish-Chandra theorem.

1. V-filtration and b-functions

We first recall the definition and a few properties of the classical V-filtration, then we give a new definition of quasi-homogeneous b-functions and of tame \mathcal{D} -modules. We end this section with a result on the inverse image of \mathcal{D} -modules which will be a key point of the proof in the next section.

1.1. Standard V-filtrations. — In this paper, (X, \mathcal{O}_X) is a smooth algebraic variety defined over k, an algebraically closed field of characteristic 0. The sheaf of differential operators with coefficients in \mathcal{O}_X is denoted by \mathcal{D}_X . Results and proofs are still valid if $k = \mathbb{C}$, X is a complex analytic manifold and \mathcal{D}_X is the sheaf of differential operators with holomorphic coefficients.

Let Y be a smooth subvariety of X and \mathcal{I}_Y the ideal of definition of Y. The V-filtration along Y is given by [10]:

$$V_k \mathcal{D}_X = \{ P \in \mathcal{D}_X | _Y \mid \forall l \in \mathbb{Z}, P \mathcal{I}_Y^l \subset \mathcal{I}_Y^{l+k} \}$$

(with $\mathcal{I}_Y^l = \mathcal{O}_X$ if $l \leq 0$).

 $\mathbf{146}$

This filtration has been widely used in the theory of \mathcal{D} -modules, let us recall some of its properties (for the details, we refer to [19], [12], [18], [14]). The associated graded ring $gr_V \mathcal{D}_X$ is the direct image by $p : T_Y X \to X$ of the sheaf $\mathcal{D}_{T_Y X}$ of differential operators on the normal bundle $T_Y X$. If \mathcal{M} is a coherent \mathcal{D}_X -module, a $V\mathcal{D}_X$ -filtration on \mathcal{M} is a good filtration if it is locally finite, *i.e.* if, locally, there are sections (u_1, \ldots, u_N) of \mathcal{M} and integers (k_1, \ldots, k_N) such that $V_k \mathcal{M} = \sum V_{k-k_i} \mathcal{D}_X u_i$.

If \mathcal{M} is a coherent \mathcal{D}_X -module provided with a good V-filtration, the associated graded module is a coherent $\operatorname{gr}_V \mathcal{D}_X$ -module and if \mathcal{N} is a coherent submodule of \mathcal{M} the induced filtration is a good filtration (see [19, Chapter III, Proposition 1.4.3] or [18]).

Let θ_Y be the Euler vector field of the fiber bundle T_YX , that is the vector field verifying $\theta_Y(f) = kf$ when f is a function on T_YX homogeneous of degree k in the fibers of p. A *b*-function along Y for a coherent \mathcal{D}_X -module with a good V-filtration is a polynomial b such that

$$\forall k \in \mathbb{Z}, \qquad b(\theta_Y + k) \operatorname{gr}_Y^k \mathcal{M} = 0$$

If the good V-filtration is replaced by another, the roots of b are translated by integers. Here, we always fix the filtration, in particular, if the \mathcal{D}_X -module is of the type $\mathcal{D}_X/\mathcal{I}$, the good filtration will be induced by the canonical filtration of \mathcal{D}_X .

1.2. Quasi-homogeneous V-filtrations and quasi-b-functions. — Let $\varphi = (\varphi_1, \ldots, \varphi_d)$ be a polynomial map from X to the vector space $W = k^d$ and m_1, \ldots, m_d be strictly positive and relatively prime integers. We define a filtration on \mathcal{O}_X by:

$$V_k^{\varphi} \mathcal{O}_X = \sum_{\langle m, \alpha \rangle = -k} \mathcal{O}_X \varphi^{\alpha}$$

with $\alpha \in \mathbb{N}^d$, $\langle m, \alpha \rangle = \sum m_i \alpha_i$ and $\varphi^{\alpha} = \varphi_1^{\alpha_1} \cdots \varphi_d^{\alpha_d}$. If $k \ge 0$ we set $V_k^{\varphi} \mathcal{O}_X = \mathcal{O}_X$. This filtration extends to \mathcal{D}_X by:

(1)
$$V_k^{\varphi} \mathcal{D}_X = \{ P \in \mathcal{D}_X \mid \forall l \in \mathbb{Z}, PV_l^{\varphi} \mathcal{O}_X \subset V_{l+k}^{\varphi} \mathcal{O}_X \}$$

Definition 1.2.1. A (φ, m) -weighted Euler vector field is a vector field η in $\sum_i \varphi_i \mathcal{V}_X$ such that $\eta(\varphi_i) = m_i \varphi_i$ for $i = 1, \ldots, d$. (\mathcal{V}_X is the sheaf of vector fields on X.)

Lemma 1.2.2. Any (φ, m) -weighted Euler vector field is in $V_0^{\varphi} \mathcal{D}_X$ and if η_1 and η_2 are two (φ, m) -weighted Euler vector fields, $\eta_1 - \eta_2$ is in $V_{-1}^{\varphi} \mathcal{D}_X$.

The map φ may be not defined on X but on an étale covering of X. More precisely, let us consider an étale morphism $\nu : X' \to X$ and a morphism $\varphi : X' \to W = k^d$. If m_1, \ldots, m_d are strictly positive and relatively prime integers, we define $V_k^{\varphi} \mathcal{O}_X$ as the sheaf of functions on X such that $f_0\nu$ is in $V_k^{\varphi}\mathcal{O}_{X'}$. This defines a V-filtration on \mathcal{O}_X and on \mathcal{D}_X by the formula (1). The map $TX' \to TX \times_X X'$ is an isomorphism and a vector field η on X defines a unique vector field $\nu^*(\eta)$ on X'. By definition, a vector field η on X is a (φ, m) -weighted Euler vector field if $\nu^*(\eta)$ is a (φ, m) -weighted Euler vector field on X'.

Definition 1.2.3. Let u be a section of a coherent \mathcal{D}_X -module \mathcal{M} . A polynomial b is a quasi-b-function of type (φ, m) for u if there exist a (φ, m) -weighted Euler vector field η and a differential operator Q in $V_{-1}^{\varphi}\mathcal{D}_X$ such that $(b(\eta) + Q)u = 0$.

The quasi-*b*-function is said regular if the order of Q as a differential operator is less or equal to the order of the polynomial b and monodromic if Q = 0.

The quasi-*b*-function is said *tame* if the roots of *b* are strictly greater than $-\sum m_i$.

These definitions are valid for any map φ but here we always assume that φ is smooth. Then if $Y = \varphi^{-1}(0)$, we say for short that b is a quasi-b-function of total weight $|m| = \sum m_i$ along Y. Remark that lemma 1.2.2 shows that the definition is independent of the (φ, m) -weighted Euler vector field η .

Let \mathcal{M} be a coherent \mathcal{D}_X -module. A $V^{\varphi}\mathcal{D}_X$ -filtration on \mathcal{M} is a good filtration if it is locally finite.

Definition 1.2.4. Let \mathcal{M} be a coherent \mathcal{D}_X -module and $V^{\varphi}\mathcal{M}$ a good $V^{\varphi}\mathcal{D}_X$ filtration. A polynomial b is a quasi-b-function of type (φ, m) for $V^{\varphi}\mathcal{M}$ if, for any $k \in \mathbb{Z}, \ b(\eta + k)V_k^{\varphi}\mathcal{M} \subset V_{k-1}^{\varphi}\mathcal{M}$ where η is a (φ, m) -weighted Euler vector field.
The quasi-b-function is monodromic if $b(\eta + k)V_k^{\varphi}\mathcal{M} = 0$.

Definition 1.2.3 is a special case of definition 1.2.4 if $\mathcal{D}_X u$ is provided with the filtration induced by the canonical filtration of \mathcal{D}_X .

Recall that if \mathcal{M} is a \mathcal{D}_X -module its inverse image by ν is its inverse image as an \mathcal{O}_X -module, that is:

$$\nu^{+}\mathcal{M} = \mathcal{O}_{X'} \otimes_{\nu^{-1}\mathcal{O}_{X}} \nu^{-1}\mathcal{M} = \mathcal{D}_{X' \to X} \otimes_{\nu^{-1}\mathcal{D}_{X}} \nu^{-1}\mathcal{M}$$

where $\mathcal{D}_{X'\to X}$ is the $(\mathcal{D}_{X'}, \nu^{-1}\mathcal{D}_X)$ -bimodule $\mathcal{O}_{X'} \otimes_{\nu^{-1}\mathcal{O}_X} \nu^{-1}\mathcal{D}_X$.

Lemma 1.2.5. — Let $\nu : X' \to X$ be an étale morphism and let φ be a morphism $X' \to W = k^d$. Let \mathcal{M} be a coherent \mathcal{D}_X -module.

The polynomial b is a quasi-b-function of type (φ, m) for a section u of \mathcal{M} if and only if it is a quasi-b-function of type (φ, m) for the section $1 \otimes u$ of $\nu^+ \mathcal{M}$.

Proof. – If $\nu : X' \to X$ is étale, the canonical morphism $\mathcal{D}_{X'} \to \mathcal{D}_{X'-X}$ given by $P \mapsto P(1 \otimes 1)$ is an isomorphism and defines an injective morphism $\nu^* : \nu^{-1}\mathcal{D}_X \to \mathcal{D}_{X'}$.

Conversely, the morphism $\tilde{\nu} : \nu_* \mathcal{O}_{X'} \to \mathcal{O}_X$ given by $\tilde{\nu}(f)(x) = \sum_{y \in \nu^{-1}(x)} f(y)$ extends to a morphism $\nu_* \mathcal{D}_{X'} \to \mathcal{D}_X$.

These two morphism are compatible with the V-filtration defined by φ and, by definition, a vector field η on X is a (φ, m) -weighted Euler vector field if and only if $\nu^*(\eta)$ is a (φ, m) -weighted Euler vector field on X'. If $(b(\eta) + R)u = 0$ we

have $(b(\nu^*\eta) + \nu^*R)(1 \otimes u) = 0$ and conversely, if $(b(\nu^*\eta) + R_1)(1 \otimes u) = 0$ then $(b(\eta) + \nu_*R_1)u = 0$.

Remark 1.2.6. In [3] we gave an other definition of the V^{*}-filtration and quasi-*b*-function. The two definitions are essentially equivalent in the analytic framework but may differ in the algebraic case. More precisely, the filtration in [3] is given by a vector field η which we called positive definite. For a given V^{φ} -filtration, we may find a defining vector field with coefficients in formal power series (or in convergent series if $k = \mathbb{C}$) but in general not in rational functions. The definition of [3] is more intrinsic in the analytic case but not suitable here.

1.3. Tame \mathcal{D} -modules. — Let us recall that a stratification of the manifold X is a union $X = \bigcup_{\alpha} X_{\alpha}$ such that

- For each α , \overline{X}_{α} is an algebraic subset of X and X_{α} is its regular part.
- $\{X_{\alpha}\}_{\alpha}$ is locally finite.
- $-X_{\alpha} \cap X_{\beta} = \emptyset \text{ for } \alpha \neq \beta.$
- If $\overline{X}_{\alpha} \cap X_{\beta} \neq \emptyset$ then $\overline{X}_{\alpha} \supset X_{\beta}$.

If \mathcal{M} is a holonomic \mathcal{D}_X -module, its characteristic variety $Ch(\mathcal{M})$ is a homogeneous lagrangian subvariety of T^*X hence there exists a stratification $X = \bigcup X_{\alpha}$ such that $Ch(\mathcal{M}) \subset \bigcup_{\alpha} \overline{T^*_{X_{\alpha}}X}$ [9, Ch. 5]. The set of points of X where $Ch(\mathcal{M})$ is contained in the zero section of T^*X is a non empty Zarisky open subset of X, its complementary is the singular support of \mathcal{M} .

For the next definition, we consider a cyclic \mathcal{D}_X -module with a canonical generator $\mathcal{M} = \mathcal{D}_X u = \mathcal{D}_X / \mathcal{I}$ where \mathcal{I} is a coherent ideal of \mathcal{D}_X .

Definition 1.3.1. — The cyclic holonomic \mathcal{D}_X -module $\mathcal{M} = \mathcal{D}_X u$ is tame if there is a stratification $X = \bigcup X_{\alpha}$ of X such that $Ch(\mathcal{M}) \subset \bigcup_{\alpha} \overline{T^*_{X_{\alpha}} X}$ and, for each α , a tame quasi-*b*-function associated with X_{α} .

With definition 1.2.3, this means that for each α , there is a smooth map φ_{α} from a Zarisky open set of X to a vector space V such that $X_{\alpha} = \varphi_{\alpha}^{-1}(0)$, positive integers m_1, \ldots, m_d , a (φ, m) -weighted Euler vector field η and a quasi-*b*-function b_{α} for uwith roots $> -\sum m_i$. A subvariety of X is conic for η_{α} if it is invariant under the flow of η_{α} . The module \mathcal{M} is conic tame if it satisfy definition 1.3.1 and if moreover the singular support of \mathcal{M} is conic for each η_{α} .

The following property of a tame \mathcal{D}_X -module has been proved in [3]:

Theorem 1.3.2. If the \mathcal{D}_X -module \mathcal{M} is tame then it has no quotient with support in a hypersurface of X.

If M is a real analytic manifold and X its complexification, we also proved:

Theorem 1.3.3. Let \mathcal{M} be a holonomic and tame \mathcal{D}_X -module, assume that its singular support is the complexification of a real subvariety of \mathcal{M} , then \mathcal{M} has no distribution solution on \mathcal{M} with support in a hypersurface. If \mathcal{M} is conic-tame, its distribution solutions are in L^1_{loc} .

Remark 1.3.4. — It is important to note that the definition of *tame* and the conclusions of theorem 1.3.3 depend of the choice of a generator for \mathcal{M} .

1.4. Inverse image. — Let $\varphi : X \to W$ and $\varphi' : X' \to W'$ be two morphisms from smooth algebraic varieties X and X' to the vector spaces $W = k^d$ and $W' = k^{d'}$, let m_1, \ldots, m_d and $m'_1, \ldots, m'_{d'}$ be strictly positive integers. Let $f : X' \to X$ and $F : W' \to W$ be two morphisms such that $\varphi_{\circ}f = F_{\circ}\varphi'$. We assume that F is quasi-homogeneous, that is $F = (F_1, \ldots, F_d)$ with $F_i(\lambda^{m'_1}x_1, \ldots, \lambda^{m'_{d'}}x_{d'}) = \lambda^{m_i}F(x_1, \ldots, x_{d'})$.

If \mathcal{N} is a \mathcal{D}_X -module its inverse image by f is:

$$f^{+}\mathcal{N} = \mathcal{O}_{X'} \otimes_{f^{-1}\mathcal{O}_{X}} f^{-1}\mathcal{N} = \mathcal{D}_{X' \to X} \otimes_{f^{-1}\mathcal{D}_{X}} f^{-1}\mathcal{N}$$

where $\mathcal{D}_{X'\to X}$ is the $(\mathcal{D}_{X'}, f^{-1}\mathcal{D}_X)$ -bimodule $\mathcal{O}_{X'} \otimes_{f^{-1}\mathcal{O}_X} f^{-1}\mathcal{D}_X$.

We define a filtration on $\mathcal{D}_{X' \to X}$ by

$$V_k^{\varphi'}\mathcal{D}_{X'\to X} = \sum_{i+j=k} V_i^{\varphi'}\mathcal{O}_{X'} \otimes f^{-1}V_j^{\varphi}\mathcal{D}_X$$

By the hypothesis, $g_{\circ}f$ is a section of $V_k^{\varphi'}\mathcal{O}_{X'}$ for any g section of $V_k^{\varphi}\mathcal{O}_X$, hence the filtration on $\mathcal{D}_{X'-X}$ is compatible with the corresponding filtrations on $\mathcal{D}_{X'}$ and \mathcal{D}_X .

If a \mathcal{D}_X -module \mathcal{N} is provided with a V^{φ} -filtration, this defines a $V^{\varphi'}\mathcal{D}_{X'}$ -filtration on $f^+\mathcal{N}$ by

(2)
$$V_k^{\varphi'} f^+ \mathcal{N} = \sum_{i+j=k} V_i^{\varphi'} \mathcal{O}_{X'} \otimes f^{-1} V_j^{\varphi} \mathcal{N} = \sum_{i+j=k} V_i^{\varphi'} \mathcal{D}_{X' \to X} \otimes f^{-1} V_j^{\varphi} \mathcal{N}$$

The V-filtration has not all the good properties of the usual filtration, in particular non-invertible elements may have an invertible principal symbol. In the proof of theorem 1.4.1 we introduce its formal completion given by:

$$\widehat{\mathcal{D}}_{X|Y} = \varinjlim_{k} V_k \widehat{\mathcal{D}}_{X|Y} \quad \text{with} \quad V_k \widehat{\mathcal{D}}_{X|Y} = \varprojlim_{l} V_k \mathcal{D}_X / V_{k-l} \mathcal{D}_X$$

By definition the graded ring of $\widehat{\mathcal{D}}_{X|V}$ is the same than the graded ring of \mathcal{D}_X . If \mathcal{M} is a coherent \mathcal{D}_X -module provided with a good V-filtration, its completion $\widehat{\mathcal{V}}\mathcal{M}$ is defined in the same way and has the same associated graded module than $\mathcal{V}\mathcal{M}$. The following properties may be found in [19] and [14].

The sheaf $\widehat{\mathcal{D}}_{X|Y}$ is a coherent and noetherian, flat over \mathcal{D}_X . We remind that a coherent sheaf of rings \mathcal{A} is noetherian if any increasing sequence of coherent \mathcal{A} -submodules of a coherent \mathcal{A} -module is stationary. The sheaf of rings $V_0 \widehat{\mathcal{D}}_{X|Y}$ is also coherent and noetherian.

If \mathcal{M} is a \mathcal{D}_X -module provided with a good V-filtration, the associated graded module is a coherent $\operatorname{gr}_V \mathcal{D}_X$ -module and if \mathcal{N} is a coherent submodule of \mathcal{M} the induced filtration is a good filtration. If $\kappa : (\widehat{\mathcal{D}}_{X|Y})^N \to \mathcal{M}$ is a filtered morphism which defines a surjective graded morphism $\operatorname{gr}_V (\widehat{\mathcal{D}}_{X|Y})^N \to \operatorname{gr}_V \mathcal{M} \to 0$ then κ is surjective.

As $\widehat{\mathcal{D}}_{X|Y}$ is flat over \mathcal{D}_X , if \mathcal{M} is coherent we have $\widehat{\mathcal{V}}\mathcal{M} = \widehat{\mathcal{D}}_{X|Y} \otimes_{\mathcal{D}_X} \mathcal{M}$. Remark also that $\widehat{\mathcal{V}}\mathcal{O}_X$, the completion of \mathcal{O}_X for the V-filtration, is the formal completion of \mathcal{O}_X along Y usually denoted by $\mathcal{O}_{\widehat{X|Y}}$ and $\widehat{\mathcal{D}}_{X|Y}$ is a $\mathcal{O}_{\widehat{X|Y}}$ -module.

After completion by the V-filtration, we get a similar formula:

(3)
$$\widehat{V}_{k}^{\varphi'}f^{+}\mathcal{N} = \sum_{i+j=k} \widehat{V}_{i}^{\varphi'}\mathcal{O}_{X'} \otimes f^{-1}\widehat{V}_{j}^{\varphi}\mathcal{N}$$

Let $Y = \varphi^{-1}(0)$ and $Y' = \varphi^{'-1}(0)$, let $p: T_Y X \to X$ and $p': T_{Y'} X' \to X'$ be the normal bundles, $\tilde{f}: T_{Y'} X' \to T_Y X$ be the map induced by f,

Theorem 1.4.1. — We assume that φ' is smooth on X'. If \mathcal{N} is a holonomic \mathcal{D}_X module provided with a good $V^{\varphi}\mathcal{D}_X$ -filtration, then $f^+\mathcal{N}$ is holonomic, $p'^{-1}\mathrm{gr}_{V^{\varphi'}}f^+\mathcal{N}$ is equal to $\tilde{f}^+p^{-1}\mathrm{gr}_{V^{\varphi}}\mathcal{N}$ and isomorphic to the graded module associated with a good $V^{\varphi'}\mathcal{D}_{X'}$ -filtration of $f^+\mathcal{N}$.

Proof. — We recall that if \mathcal{N} is coherent, then $f^+\mathcal{N}$ is not coherent in general but if \mathcal{N} is holonomic, then $f^+\mathcal{N}$ is holonomic [8].

The filtration on \mathcal{N} is a good $V^{\varphi}\mathcal{D}_X$ -filtration hence we may assume that there are sections (u_1, \ldots, u_q) of \mathcal{N} and integers (k_1, \ldots, k_q) such that $V_k^{\varphi}\mathcal{N} = \sum V_{k-k_i}^{\varphi}\mathcal{D}_X u_i$. Let $\mathcal{D}_{X' \to X}[N]$ be the sub- $\mathcal{D}_{X'}$ -module of $\mathcal{D}_{X' \to X}$ generated by the sections of \mathcal{D}_X of order less or equal to N. This submodule is finitely generated hence coherent. For each N, (u_1, \ldots, u_q) defines a canonical morphism $(\mathcal{D}_{X' \to X}[N])^q \to f^+\mathcal{N}$ and the family of the images of these morphisms is an increasing sequence of coherent submodules of the coherent $\mathcal{D}_{X'}$ -module $f^+\mathcal{N}$. As $\mathcal{D}_{X'}$ is a noetherian sheaf of rings, this sequence is stationary, hence there is some N_0 such that for each $N > N_0$, the morphism $(\mathcal{D}_{X' \to X}[N])^q \to f^+\mathcal{N}$ is onto. The filtration $V^{\varphi'}\mathcal{D}_{X' \to X}$ induces a good filtration on $\mathcal{D}_{X' \to X}[N]$ hence, for $N > N_0$ a good filtration on $f^+\mathcal{N}$ which is denoted by $V_k^{\varphi'}[N]f^+\mathcal{N}$. To prove the theorem, we will prove that if N is large enough, $\operatorname{gr}_V f^+\mathcal{N}$ is equal to the graded module $\operatorname{gr}_{V[N]} f^+\mathcal{N}$ associated with the good filtration $V_k^{\varphi'}[N]f^+\mathcal{N}$.

We assume first that the integers m'_i are equal to 1, that is that the $V^{\varphi'}$ -filtration is the usual V-filtration on the non singular variety $Y' = \varphi'^{-1}(0)$. For $N > N_0$, $p'^{-1}\operatorname{gr}_{V[N]}f^+\mathcal{N}$ is a coherent $\mathcal{D}_{T_{Y'}X'}$ -module. A direct calculation shows that $p'^{-1}\operatorname{gr}_V f^+\mathcal{N} = \tilde{f}^+p^{-1}\operatorname{gr}_V^{\varphi}\mathcal{N}$. If \mathcal{N} is holonomic then $\operatorname{gr}_V^{\varphi}\mathcal{N}$ is also holonomic [12, Cor 4.1.2.] hence $p'^{-1}\operatorname{gr}_V f^+\mathcal{N}$ is holonomic hence coherent.

Consider the completion $\widehat{V}f^+\mathcal{N}$ of $f^+\mathcal{N}$ for the V-filtration and $\widehat{V}[N]f^+\mathcal{N}$ of $f^+\mathcal{N}$ for the V[N]-filtration. The graded module of $\widehat{V}f^+\mathcal{N}$ is equal to the graded module of $Vf^+\mathcal{N}$ which is coherent. Let u_1, \ldots, u_M be local sections of $\widehat{V}f^+\mathcal{N}$ whose classes generate the graded module, then u_1, \ldots, u_M generate $\widehat{V}f^+\mathcal{N}$ as a filtered $V\widehat{\mathcal{D}}_{X'|Y'}$ module and applying the same result to the kernel of $(V\widehat{\mathcal{D}}_{X'|Y'})^M \to \widehat{V}f^+\mathcal{N}$ we get that $\widehat{V}f^+\mathcal{N}$ admits a filtered presentation

$$(V\widehat{\mathcal{D}}_{X'|Y'})^L \longrightarrow (V\widehat{\mathcal{D}}_{X'|Y'})^M \longrightarrow \widehat{V}f^+\mathcal{N} \longrightarrow 0.$$

This shows in particular that each $\widehat{V}_k f^+ \mathcal{N}$ is a coherent $V_0 \widehat{\mathcal{D}}_{X'|Y'}$ -module. We know that, for any N, $\operatorname{gr}_{V[N]} f^+ \mathcal{N}$ is coherent hence for the same reason, each $\widehat{V}_k[N] f^+ \mathcal{N}$ is a coherent $V_0 \widehat{\mathcal{D}}_{X'|Y'}$ -module.

Consider the family of the images of $\widehat{V}_k[N]f^+\mathcal{N}$ in $\widehat{V}_kf^+\mathcal{N}$, it is an increasing sequence of coherent sub-modules of the coherent $V_0\widehat{\mathcal{D}}_{X'|Y'}$ -module $\widehat{V}_kf^+\mathcal{N}$ hence it is stationary because the sheaf of rings $V_0\widehat{\mathcal{D}}_{X'|Y'}$ is noetherian. Moreover, the filtration $\widehat{V}f^+\mathcal{N}$ is separated hence the maps $\widehat{V}_k[N]f^+\mathcal{N} \to \widehat{V}_kf^+\mathcal{N}$ are injective and the union of the images is all $\widehat{V}_kf^+\mathcal{N}$, so there is some N_0 such that for any $N > N_0$, $\widehat{V}_k[N]f^+\mathcal{N} = \widehat{V}_kf^+\mathcal{N}$. This implies that $\operatorname{gr}_V f^+\mathcal{N} = \operatorname{gr}_{V[N]}f^+\mathcal{N}$ is the graded module associated with a good V-filtration of $f^+\mathcal{N}$.

Assume now that the numbers m'_i are positive integers. Let W'' = W', we define the ramification map $F_m : W'' \to W'$ by $F(s_1, \ldots, s_d) = (s_1^{m'_1}, \ldots, s_d^{m'_d})$ and the corresponding map $f_m : X'' = X' \times_{W'} W'' \to X$. Applying the first part of the proof, we get $\widehat{V}[N]f_m^+f^+\mathcal{N} = \widehat{V}f_m^+f^+\mathcal{N}$ if N is large. The formula (3) shows that

$$\widehat{V}f_m^+f^+\mathcal{N}=\widehat{V}\mathcal{O}_{X''}\otimes_{f^{-1}\widehat{V}\mathcal{O}_{X'}}f^{-1}\widehat{V}_j^{\varphi}\mathcal{N}=\mathcal{O}_{\widehat{W}}\otimes_{\mathcal{O}_{\widehat{V'}}}f^{-1}\widehat{V}_j^{\varphi}\mathcal{N}.$$

Here $\mathcal{O}_{\widehat{W}}$ is the set of formal power series in (s_1, \ldots, s_d) while $\mathcal{O}_{\widehat{V}'}$ is the set of formal power series in $(s_1^{m'_1}, \ldots, s_d^{m'_d})$ hence $\mathcal{O}_{\widehat{W}}$ is a finite free $\mathcal{O}_{\widehat{V}'}$ -module. So, if $M' = \sum m'_i, \widehat{V}f_m^+ f^+ \mathcal{N}$ is isomorphic to $(\widehat{V}f^+ \mathcal{N})^{M'}$ as a $\widehat{V}\mathcal{O}_{X'}$ -module.

In the same way, $\widehat{V}[N]f_m^+f^+\mathcal{N}$ is isomorphic to $(\widehat{V}[N]f^+\mathcal{N})^{M'}$, hence $\widehat{V}[N]f^+\mathcal{N} = \widehat{V}[N]f^+\mathcal{N}$. This shows that $\operatorname{gr}_{V^{\varphi'}}f^+\mathcal{N}$ is the graded module associated with $V^{\varphi'}[N]f^+\mathcal{N}$ which is a good filtration of $f^+\mathcal{N}$.

Remark 1.4.2. — The result was known when f is a submersion, $Y' = f^{-1}(Y)$ and the V-filtrations being the usual V-filtrations along Y and Y' [14]. The introduction of the weights m_i and m'_i allows f to be non submersive and Y' to be a proper subvariety of $f^{-1}(Y)$; the relation between the weights is given by the quasi-homogeneity of F.

Corollary 1.4.3. — Under the hypothesis of theorem 1.4.1, if \mathcal{N} is a holonomic \mathcal{D}_X module provided with a good $V^{\varphi}\mathcal{D}_X$ -filtration, $f^+\mathcal{N}$ is provided with a good $V^{\varphi'}\mathcal{D}_{X'}$ filtration such that a polynomial b is a quasi-b-function of type (φ, m) for the filtration of \mathcal{N} if and only if b is a quasi-b-function of type (φ', m') for the filtration of $f^+\mathcal{N}$.

Proof. — Let η' be a (φ', m') -weighted Euler vector field, then $\eta = f_*\eta'$ is a (φ, m) -weighted Euler vector field. As definition 1.2.4 is independent of the (φ, m) -weighted Euler vector field, we may assume that the quasi-*b*-function for \mathcal{N} is relative to η .

By definition, for any Q in $\mathcal{D}_{X'\to X}$, we have $\eta' Q = Q\eta$ hence for any polynomial $b(\eta')Q = Qb(\eta)$ which shows the corollary.

Corollary 1.4.4. — Under the hypothesis of theorem 1.4.1, if \mathcal{N} is a holonomic \mathcal{D}_X -module and u a section of \mathcal{N} with a quasi-b-function of type (φ, m) , then the section $1_{X' \to X} \otimes u$ of $f^+ \mathcal{N}$ has the same polynomial b as a quasi-b-function of type (φ', m') .

Proof. — Recall that $1_{X'\to X}$ is the canonical section $1 \otimes 1$ in $\mathcal{D}_{X'\to X} = \mathcal{O}_{X'} \otimes_{f^{-1}\mathcal{O}_X} f^{-1}\mathcal{D}_X$. If u is a section of \mathcal{N} , we set on $\mathcal{D}_X u$ the filtration image of the filtration of \mathcal{D}_X . Then, by definition of the filtration $V^{\varphi'}[N]f^+\mathcal{N}$ used in the proof of theorem 1.4.1, $1_{X'\to X} \otimes u$ is of order 0 for this filtration. Then corollary 1.4.4 is a special case of corollary 1.4.3.

2. Reductive Lie algebras

2.1. Statement of the main theorem. — Let G be a connected reductive algebraic group with Lie algebra \mathfrak{g} , let \mathfrak{g}^* be the dual space of \mathfrak{g} . The group G acts on \mathfrak{g} by the adjoint action hence on the symmetric algebra $S(\mathfrak{g})$ identified to the space $\mathcal{O}(\mathfrak{g}^*)$ of polynomial functions on \mathfrak{g}^* . By Chevalley's theorem, the space $\mathcal{O}(\mathfrak{g}^*)^G \simeq S(\mathfrak{g})^G$ of invariant polynomials on \mathfrak{g}^* is equal to a polynomial algebra $k[Q_1, \ldots, Q_l]$ where Q_1, \ldots, Q_l are algebraically independent. These spaces are graded and we denote $S_+(\mathfrak{g})^G = \bigoplus_{k>0} S_k(\mathfrak{g})^G$. It is also the set $\mathcal{O}_+(\mathfrak{g}^*)^G$ of invariant polynomials vanishing at $\{0\}$, their common roots are the nilpotent elements of \mathfrak{g}^* .

The differential of the adjoint action induces a Lie algebra morphism $\tau : \mathfrak{g} \to \text{Der}S(\mathfrak{g}^*)$ by:

$$(\tau(A)f)(x) = \frac{d}{dt}f\left(\exp(-tA) \cdot x\right)|_{t=0} \quad \text{for } A \in \mathfrak{g}, \ f \in S(\mathfrak{g}^*) = \mathcal{O}(\mathfrak{g}), \ x \in \mathfrak{g}$$

i.e. $\tau(A)$ is the vector field on \mathfrak{g} whose value at $x \in \mathfrak{g}$ is [x, A]. We denote by $\tau(\mathfrak{g})$ the set of all vector fields $\tau(A)$ for $A \in \mathfrak{g}$. It generates the set of vector fields on \mathfrak{g} tangent to the orbits of G.

Let $\mathcal{D}_{\mathfrak{g}}^G$ be the sheaf of differential operators on \mathfrak{g} invariant under the adjoint action of G. The principal symbol $\sigma(P)$ of such an operator P is a function on $T^*\mathfrak{g} = \mathfrak{g} \times \mathfrak{g}^*$ invariant under the action of G. Examples of such invariant functions are the elements of $S(\mathfrak{g})^G$ identified to functions on $\mathfrak{g} \times \mathfrak{g}^*$ constant in the variables of \mathfrak{g} . If F is a subsheaf of $\mathcal{D}^G_{\mathfrak{g}}$, we denote by $\sigma(F)$ the sheaf of the principal symbols of all elements of F.

Definition 2.1.1. A subsheaf F of $\mathcal{D}_{\mathfrak{g}}^G$ is of (H-C)-type if $\sigma(F)$ contains a power of $S_+(\mathfrak{g})^G$. An (H-C)-type $\mathcal{D}_{\mathfrak{g}}$ -module is the quotient \mathcal{M}_F of $\mathcal{D}_{\mathfrak{g}}$ by the ideal \mathcal{I}_F generated by $\tau(\mathfrak{g})$ and by F.

The main result of this paper is

Theorem 2.1.2. — Any $\mathcal{D}_{\mathfrak{g}}$ -module of (H-C)-type is holonomic and conic-tame.

Here (H-C) stands for Harish-Chandra. There are two main examples of such $\mathcal{D}_{\mathfrak{g}}$ -modules which we describe now.

Example 2.1.3. — An element A of \mathfrak{g} defines a vector field with constant coefficients on \mathfrak{g} by:

$$(A(D_x)f)(x) = \frac{d}{dt}f(x+tA)|_{t=0} \quad \text{for } f \in S(\mathfrak{g}^*), \ x \in \mathfrak{g}$$

By multiplication, this extends to an injective morphism from $S(\mathfrak{g})$ to the algebra of differential operators with constant coefficients on \mathfrak{g} ; we identify $S(\mathfrak{g})$ with its image and denote by $P(D_x)$ the image of $P \in S(\mathfrak{g})$. If F is a finite codimensional ideal of $S(\mathfrak{g})^G$, its graded ideal contains a power of $S_+(\mathfrak{g})^G$ hence when it is identified to a set of differential operators with constant coefficients, F is a subsheaf of $\mathcal{D}_{\mathfrak{g}}$ of (H-C)-type and \mathcal{M}_F is a $\mathcal{D}_{\mathfrak{g}}$ -module of (H-C)-type. If $\lambda \in \mathfrak{g}^*$, the module \mathcal{M}^F_{λ} defined by Hotta and Kashiwara [6] is the special case where F is the set of polynomials $Q - Q(\lambda)$ for $Q \in S(\mathfrak{g})^G$.

Example 2.1.4. — The enveloping algebra $U(\mathfrak{g})$ is the algebra of left invariant differential operators on G. It is filtered by the order of operators and the associated graded algebra is isomorphic by the symbol map to $S(\mathfrak{g})$. This map is a G-map and defines a morphism from the space of bi-invariant operators on G to the space $S(\mathfrak{g})^G$. This map is a linear isomorphism, its inverse is given by a symmetrization morphism [**22**, Theorem 3.3.4.]. We assume that $k = \mathbb{C}$. Then, through the exponentional map a bi-invariant operator P defines a differential operator \tilde{P} on the Lie algebra \mathfrak{g} which is invariant under the adjoint action of G (because the exponential intertwines the adjoint action on the group and on the algebra) and the principal symbol $\sigma(\tilde{P})$ is equal to $\sigma(P)$.

Let U be an open subset of \mathfrak{g} where the exponential is injective and $U_G = \exp(U)$. Let T be an invariant eigendistribution on U_G and \widetilde{T} the distribution on U given by $\langle T, \varphi \rangle = \langle \widetilde{T}, \varphi_o \exp \rangle$. As T is invariant and eigenvalue of all bi-invariant operators, \widetilde{T} is solution of an (H-C)-type $\mathcal{D}_{\mathfrak{g}}$ -module. As this module is conic-tame by theorem 2.1.2, the results of theorems 1.3.2 and 1.3.3 are true for it, hence \widetilde{T} and T are a L^1_{loc} -function. As \mathfrak{g} is reductive, it is the direct sum $\mathfrak{c} \oplus [\mathfrak{g}, \mathfrak{g}]$ of its center and of the semi-simple Lie algebra $[\mathfrak{g}, \mathfrak{g}]$. We choose a non-degenerate *G*-invariant symmetric bilinear form κ on \mathfrak{g} which extend the Killing form of $[\mathfrak{g}, \mathfrak{g}]$. This defines an isomorphism from \mathfrak{g}^* to \mathfrak{g} and the cotangent bundle $T^*\mathfrak{g} = \mathfrak{g} \times \mathfrak{g}^*$ is identified with $\mathfrak{g} \times \mathfrak{g}$. Then if $\mathcal{N}(\mathfrak{g})$ is the nilpotent cone of \mathfrak{g} , the characteristic variety of an (H-C)-type $\mathcal{D}_{\mathfrak{g}}$ -module is a subset of:

$$\{ (x, y) \in \mathfrak{g} \times \mathfrak{g} \mid [x, y] = 0, y \in \mathcal{N}(\mathfrak{g}) \}$$

so it is a holonomic $\mathcal{D}_{\mathfrak{g}}$ -module [6].

2.2. Stratification of a reductive Lie algebra. — In this section, we define the stratification which will be used to prove that an (H-C)-type module is tame. This stratification is classical (see [1] for example).

The stratification of a reductive Lie algebra is the direct sum of the center by the stratification of the semi-simple part, so we may assume that \mathfrak{g} is semi-simple. An element X of \mathfrak{g} is said to be semisimple (resp. nilpotent) if $\operatorname{ad}(X)$ is semisimple (resp $\operatorname{ad}(X)$ is nilpotent). Any $X \in \mathfrak{g}$ may be decomposed in a unique way as X = S + N where S is semisimple, N is nilpotent and [S, N] = 0 (Jordan decomposition). An element X is said to be regular if the dimension of its centralizer $\mathfrak{g}^X = \{Z \in \mathfrak{g} \mid [X, Z] = 0\}$ is minimal, that is equal to the rank of \mathfrak{g} . The set \mathfrak{g}_{rs} of semisimple regular elements of \mathfrak{g} is Zarisky dense and its complementary \mathfrak{g}' is defined by a G-invariant polynomial equation $\Delta(X) = 0$. The function Δ may be defined from the characteristic polynomial of $\operatorname{ad}(X)$:

$$\det(T \cdot \mathrm{Id} - \mathrm{ad}(X)) = T^n + \sum \lambda_i(X)T^n$$

Here *n* is the dimension of \mathfrak{g} . Then $\lambda_0 \equiv 0$, the rank *l* of \mathfrak{g} is the lowest *i* such that $\lambda_i \neq 0$ and $\Delta(X) = \lambda_l(X)$. This function is homogeneous of degree n - l.

The set $\mathfrak{N}(\mathfrak{g})$ of nilpotent elements of \mathfrak{g} is a cone equal to:

$$\mathfrak{N}(\mathfrak{g}) = \{ X \in \mathfrak{g} \mid \forall P \in \mathcal{O}(\mathfrak{g})^G \ P(X) = P(0) \}$$

and the set of nilpotent orbits is finite and define a stratification of \mathfrak{N} [11, Cor 3.7.].

We fix a Cartan subalgebra \mathfrak{h} of \mathfrak{g} and denote by \mathfrak{W} the Weyl group $\mathfrak{W}(\mathfrak{g},\mathfrak{h})$. Let $\Phi = \Phi(\mathfrak{g},\mathfrak{h})$ be the root system associated with \mathfrak{h} . For each $\alpha \in \Phi$ we denote by \mathfrak{g}_{α} the root subspace corresponding to α and by \mathfrak{h}_{α} the subset $[\mathfrak{g}_{\alpha},\mathfrak{g}_{-\alpha}]$ of \mathfrak{h} (they are all 1-dimensional). Let \mathcal{F} be the set of the subsets P of Φ which are closed and symmetric that is such that $(P+P) \cap \Phi \subset P$ and P = -P. For each $P \in \mathcal{F}$ we define $\mathfrak{h}_{P} = \sum_{\alpha \in P} \mathfrak{h}_{\alpha}, \ \mathfrak{g}_{P} = \sum_{\alpha \in P} \mathfrak{g}_{\alpha}, \ \mathfrak{h}_{P}^{\perp} = \{H \in \mathfrak{h} \mid \alpha(H) = 0 \text{ if } \alpha \in P\}$ and $(\mathfrak{h}_{P}^{\perp})' = \{H \in \mathfrak{h} \mid \alpha(H) = 0 \text{ if } \alpha \in P, \alpha(H) \neq 0 \text{ if } \alpha \notin P\}.$

The following results are well-known (see $[2, Ch. VIII, \S 3]$):

a) $\mathfrak{q}_P = \mathfrak{h}_P + \mathfrak{g}_P$ is a semisimple Lie subalgebra of \mathfrak{g} stable under $\mathrm{ad} \mathfrak{h}$ and \mathfrak{h}_P^{\perp} is an orthocomplement of \mathfrak{h}_P for the Killing form, \mathfrak{h}_P is a Cartan subalgebra of \mathfrak{q}_P . The

Weyl group \mathfrak{W}_P of $(\mathfrak{q}_P, \mathfrak{h}_P)$ is identified to the subgroup \mathfrak{W}' of \mathfrak{W} of elements whose restriction to \mathfrak{h}_P^{\perp} is the identity.

b) $\mathfrak{h} + \mathfrak{g}_P$ is a reductive Lie subalgebra of \mathfrak{g} stable under $\operatorname{ad} \mathfrak{h}$. For any $S \in \mathfrak{h}_P^{\perp}$, $\mathfrak{h} + \mathfrak{g}_P \subset \mathfrak{g}^S$ and $(\mathfrak{h}_P^{\perp})' = \{ S \in \mathfrak{h}_P^{\perp} \mid \mathfrak{g}^S = \mathfrak{h} + \mathfrak{g}_P \}.$

c) Conversely, if $S \in \mathfrak{h}$, there exists a subset P of Φ which is closed and symmetric such that $\mathfrak{g}^S = \mathfrak{h} + \mathfrak{g}_P$. P is unique up to a conjugation by \mathfrak{W} .

To each P of \mathcal{F} and each nilpotent orbit \mathfrak{O} of \mathfrak{q}_P we associate a conic subset of \mathfrak{g}

(4)
$$S_{(P,\mathfrak{O})} = \bigcup_{X \in (\mathfrak{h}_P^{\perp})'} G \cdot (X + \mathfrak{O})$$

where $G \cdot (X + \mathfrak{O})$ is the union of orbits of points $X + \mathfrak{O}$.

If X = S + N is the Jordan decomposition of $X \in \mathfrak{g}$, the semisimple part S belongs to a Cartan subalgebra which we may assume to be \mathfrak{h} because they are all conjugate. Hence there is some P in \mathcal{F} such that $\mathfrak{g}^S = \mathfrak{h} + \mathfrak{g}_P$. Then, if the orbit of N in \mathfrak{q}_P is $\mathfrak{O}, X \in S_{(P,\mathfrak{O})}$. For a detailed proof of the fact that it is a stratification, see [3].

2.3. Polynomials and differentials. — Let us begin with some elementary calculations. If $\beta = (\beta_1, \ldots, \beta_n)$ is a multi-index of \mathbb{N}^n we denote $|\beta| = \sum \beta_i$ and $\beta! = \beta_1! \cdots \beta_n!$, if α is another element of \mathbb{N}^n , we denote by $\alpha \leq \beta$ the relation $\alpha_1 \leq \beta_1, \ldots, \alpha_n \leq \beta_n$.

Lemma 2.3.1. — Let $\beta \in \mathbb{N}^n$ and $M = |\beta|$, let $N \in \mathbb{N}$ such that $N \leq M$, then

$$\sum_{\substack{\alpha \mid = N \\ \alpha \leqslant \beta}} \frac{\beta!}{\alpha! (\beta - \alpha)!} = \frac{M!}{N! (M - N)!}$$

Proof

$$\sum_{\alpha \leqslant \beta} \frac{\beta!}{\alpha!(\beta - \alpha)!} x^{\alpha} = \prod_{i=1}^{n} \sum_{\alpha_i = 0}^{\beta_i} \frac{\beta_i!}{\alpha_i!(\beta_i - \alpha_i)!} x_i^{\alpha_i} = (1 + x_1)^{\beta_1} \cdots (1 + x_n)^{\beta_n}$$

hence if $t = x_1 = \cdots = x_n$ we get:

$$\sum_{\alpha \leqslant \beta} \frac{\beta!}{\alpha!(\beta - \alpha)!} t^{|\alpha|} = (1 + t)^M$$

 \square

and the coefficient of t^N in both side of the equality gives the lemma.

Lemma 2.3.2. — Let us denote $x = (x_1, ..., x_n)$, $D_x = (D_{x_1}, ..., D_{x_n})$, $x^{\alpha} = (x_1^{\alpha_1}, ..., x_n^{\alpha_n})$ and $D_x^{\alpha} = (D_{x_1}^{\alpha_1}, ..., D_{x_n}^{\alpha_n})$, let $\theta = \sum x_i D_{x_i}$, then:

$$\sum_{|\alpha|=N} \frac{N!}{\alpha!} x^{\alpha} D_x^{\alpha} = \theta(\theta - 1) \cdots (\theta - N + 1)$$

ASTÉRISQUE 296

Proof. To prove the equality of the two differential operators we have to show that they give the same result when acting on a monomial x^{β} , so lemma 2.3.1 gives:

$$\sum_{|\alpha|=N} \frac{N!}{\alpha!} x^{\alpha} D_x^{\alpha} x^{\beta} = \sum_{\substack{|\alpha|=N\\\alpha\leqslant\beta}} \frac{N!}{\alpha!} \frac{\beta!}{(\beta-\alpha)!} x^{\beta} = \frac{|\beta|!}{(|\beta|-N)!} x^{\beta} = \theta(\theta-1)\cdots(\theta-N+1)x^{\beta}$$

Proposition 2.3.3. Let $p_1, \ldots, p_n(\xi)$ be homogeneous polynomial on $X = \mathbb{C}^n$ and assume that:

$$\bigcap_{i=1}^{n} \{ p_i(\xi) = 0 \} = \{ 0 \}$$

Let \mathcal{I} be the ideal of \mathcal{D}_X generated by $p_1(D_x), \ldots, p_n(D_x)$ and $\mathcal{M} = \mathcal{D}_X/\mathcal{I}$. The \mathcal{D}_X module \mathcal{M} is holonomic and the b-function of \mathcal{M} relative to $\{0\}$ is equal to

$$b(\theta) = \theta(\theta - 1) \cdots (\theta + n - M)$$

where M is the sum of the degrees of the polynomials p_1, \ldots, p_n and θ the Euler vector field of X. This b-function is monodromic in the canonical coordinates of \mathbb{C}^n .

Proof. The Nullstellensatz shows that there is some integer M_1 such that the monomial ξ^{α} are in the ideal generated by p_1, \ldots, p_n if $|\alpha| > M_1$. In fact it is known that the lowest M_1 is M - n (the proof uses the Hilbert polynomial). Then lemma 2.3.2 shows that the *b*-function of \mathcal{M} divides $\theta \cdots (\theta + n - M)$. It has been proved by T. Torrelli [21] that all integers $0, \ldots, M - n$ appear effectively as roots of *b*.

Proposition 2.3.4. – Let p_1, \ldots, p_n be the same polynomials as in the previous proposition and let P_1, \ldots, P_n be differential operators such that $\sigma(P_i) = p_i$. Let \mathcal{I} be the ideal of \mathcal{D}_X generated by the operators P_1, \ldots, P_n and $\mathcal{M} = \mathcal{D}_X/\mathcal{I}$. The \mathcal{D}_X -module \mathcal{M} is holonomic and the b-function of \mathcal{M} relative to $\{0\}$ is equal to

$$b(\theta) = \theta(\theta - 1) \cdots (\theta + n - M)$$

The b-function of \mathcal{M} along a vector subspace L of \mathbb{C}^n divides the same polynomial b.

Proof. Each function ξ^{α} for $|\alpha| = N = M - n + 1$ is written as $\xi^{\alpha} = \sum q_i^{\alpha}(\xi)p_i(\xi)$ and

$$b(\theta) = \sum_{|\alpha|=N} \frac{N!}{\alpha!} x^{\alpha} D_x^{\alpha} = \sum_{\substack{|\alpha|=N\\i=1,\dots,n}} \frac{N!}{\alpha!} x^{\alpha} q_i^{\alpha}(D_x) p_i(D_x)$$
$$= \sum_{\substack{|\alpha|=N\\i=1,\dots,n}} \frac{N!}{\alpha!} x^{\alpha} q_i^{\alpha}(D_x) P_i(x, D_x) + \sum_{\substack{|\alpha|=N\\i=1,\dots,n}} \frac{N!}{\alpha!} x^{\alpha} q_i^{\alpha}(D_x) (p_i(D_x) - P_i(x, D_x))$$

By definition, the order for the V-filtration along $\{0\}$ is always less than the usual order with equality if the operator has constant coefficients. So the order for the V-filtration of $\sum \frac{N!}{\alpha!} x^{\alpha} q_i^{\alpha}(D_x)(p_i(D_x) - P_i(x, D_x))$ is strictly less than the order

of $\sum \frac{N!}{\alpha!} x^{\alpha} q_i^{\alpha}(D_x) p_i(D_x)$ which is the order of $b(\theta)$, that is 0. On the other hand $\sum \frac{N!}{\alpha!} x^{\alpha} q_i^{\alpha}(D_x) P_i(x, D_x)$ is in the ideal \mathcal{I} hence $b(\theta)$ is a *b*-function.

For the second part, we choose linear coordinates of \mathbb{C}^n such that $L = \{(x, t_1, \ldots, t_d) \in \mathbb{C}^n \mid t = 0\}$ and we write

$$b(\langle t, D_t \rangle) = \sum_{|\beta|=N} \frac{N!}{\beta!} t^{\beta} D_t^{\beta}$$

As all D_t^{β} for $|\beta| = N$ are in the ideal generated by $p_1(D_x, Dt), \dots, p_n(D_x, Dt)$ the proof is the same then before.

2.4. Proof of the main theorem. — Let $\varphi : Y \to X$ be an algebraic map. A vector field u on Y is said to be tangent to the fibers of φ if $u(f \circ \varphi) = 0$ for all f in \mathcal{O}_X . A differential operator P is said to be invariant under φ if there exists a k-endomorphism A of \mathcal{O}_X such that $P(f \circ \varphi) = A(f) \circ \varphi$ for all f in \mathcal{O}_X . If we assume from now that φ is dominant, A is uniquely determined by P and is a differential operator on X. We denote by $A = \varphi_*(P)$ the image of P in \mathcal{D}_X under this ring homomorphism.

We fix a Cartan subalgebra \mathfrak{h} of \mathfrak{g} and denote by \mathfrak{W} the Weyl group $\mathfrak{W}(\mathfrak{g}, \mathfrak{h})$. The Chevalley theorem shows that $\mathcal{O}(\mathfrak{g})^G$ is equal to $k[P_1, \ldots, P_l]$ where (P_1, \ldots, P_l) are algebraically independent invariant polynomials and l is the rank of \mathfrak{g} , that the set of polynomials on \mathfrak{h} invariant under \mathfrak{W} is $\mathcal{O}(\mathfrak{h})^{\mathfrak{M}} = k[p_1, \ldots, p_l]$ where p_j is the restriction to \mathfrak{h} of P_j and that the restriction map $P \mapsto P|_{\mathfrak{h}}$ defines an isomorphism of $\mathcal{O}(\mathfrak{g})^G$ onto $\mathcal{O}(\mathfrak{h})^{\mathfrak{M}}$ [22, §4.9.]. The space $W = \mathfrak{h}/\mathfrak{M}$ is thus isomorphic to k^l and the functions P_1, \ldots, P_l define two morphisms $\psi : \mathfrak{g} \to W$ and $\varphi : \mathfrak{h} \to W$ by $\psi(x) = (P_1(x), \ldots, P_l(x))$ and $\varphi(z) = (p_1(z), \ldots, p_l(z))$.

An operator Q of $\mathcal{D}_{\mathfrak{g}}^G$ transforms invariant functions into invariant functions hence is invariant under ψ and $\psi_*(Q)$ is a differential operator on W. A vector field of $\tau(\mathfrak{g})$ annihilates the functions P_1, \ldots, P_l hence is tangent to the fibers of ψ . In the same way, let $\mathcal{D}_{\mathfrak{h}}^{\mathfrak{W}}$ be the space of differential operators on \mathfrak{h} which are invariant under the action of the Weyl group \mathfrak{W} , they are invariant under φ and define operators on Wthrough φ_* .

Let $\mathcal{D}(\mathfrak{g})^G$ (resp. $\mathcal{D}(\mathfrak{h})^{\mathfrak{W}}$) be the set of global sections of $\mathcal{D}^G_{\mathfrak{g}}$ (resp. of $\mathcal{D}^{\mathfrak{W}}_{\mathfrak{h}}$). The morphism of Harish-Chandra [5] is a morphism of sheaves of rings $\delta : \mathcal{D}(\mathfrak{g})^G \to \mathcal{D}(\mathfrak{h})^{\mathfrak{W}}$ which satisfies the following properties:

(1) If $f \in \mathcal{O}(\mathfrak{g})^G \simeq \mathcal{O}(\mathfrak{h})^{\mathfrak{W}}$ then $\delta(P)(f|_{\mathfrak{h}}) = \Delta^{1/2} P(f) \Delta^{-1/2}|_{\mathfrak{h}}$.

(2) If $f \in \mathcal{O}(\mathfrak{g})^G$, $\delta(f)$ is the restriction of f to \mathfrak{h}

(3) If $f \in S(\mathfrak{g})^G$ and f is considered as a constant coefficients operator, then $\delta(f)$ is the restriction of f to \mathfrak{h}^* .

- (4) The morphism δ is surjective onto $\mathcal{D}(\mathfrak{h})^{\mathfrak{W}}$.
- (5) The kernel of δ is $\mathcal{D}(\mathfrak{g})^G \cap \mathcal{D}(\mathfrak{g})\tau(\mathfrak{g})$.

The last two results have been proved algebraically by Levasseur and Stafford in [15] and [16]. Let *E* be the Euler vector field of \mathfrak{g} and ϑ the Euler vector field of \mathfrak{h} . The function Δ is homogeneous of degree n-l (2.2) hence $\delta(E)$ is equal to $\vartheta - (n-l)/2$.

Let $\mathcal{D}_W[d^{-1}]$ be the sheaf of differential operators on W with poles on $\{d = 0\}$ and $\mathcal{D}(W)[d^{-1}]$ be the ring of its global sections. The function Δ is invariant hence of the form $d(P_1, \ldots, P_l)$ and the formula $Q \mapsto d^{1/2}Qd^{-1/2}$ defines an isomorphism γ of $\mathcal{D}_W[d^{-1}]$. We get a diagram:

(5)
$$\begin{array}{c} \mathcal{D}(\mathfrak{g})^{G} & \xrightarrow{\delta} & \mathcal{D}(\mathfrak{h})^{\mathfrak{W}} \\ \psi_{*} \downarrow & \qquad \qquad \downarrow \varphi_{*} \\ \mathcal{D}(W)[d^{-1}] & \xrightarrow{\gamma} & \mathcal{D}(W)[d^{-1}] \end{array}$$

If f is a polynomial on W and Q an operator of $\mathcal{D}^G_{\mathfrak{g}}$ we have $\varphi_*(\delta(P))(f) = \gamma(\psi_*(P))(f)$ from the definitions hence the diagram is commutative. We can avoid the denominators $[d^{-1}]$ in the diagram because of the following lemma:

Lemma 2.4.1. The morphism γ sends the image of ψ_* into $\mathcal{D}(W)$ while its inverse γ^{-1} sends the image of φ_* into $\mathcal{D}(W)$.

Proof. This commutativity of the diagram shows that if an operator of $\mathcal{D}(W)$ is in the range of ψ_* then its image under γ is in $\mathcal{D}(W)$.

Conversely let us choose a positive system of roots for $(\mathfrak{g}, \mathfrak{h})$ and define a function by $\pi = \prod_{\alpha>0} \alpha$. Then π is a product of distinct linear forms, its square π^2 is equal to the restriction of Δ to \mathfrak{h} and it is changed to $-\pi$ under a reflection of the Weyl group.

Let $P \in \mathcal{D}(\mathfrak{h})^{\mathfrak{W}}$ and $f \in \mathcal{O}_{\mathfrak{h}}^{\mathfrak{W}}$, by definition the function Pf is invariant under \mathfrak{W} while the function $\pi^{-1}P(\pi f)$ is in $\mathcal{O}_{\mathfrak{h}}[\pi^{-1}]$ and is invariant under \mathfrak{W} . Hence the function $\tau = P(\pi f)$ is in $\mathcal{O}_{\mathfrak{h}}$ and changes its sign under the action of reflections.

Let z be a point of $\{\pi = 0\}$, there exists a root α such that $\alpha(z) = 0$. Let s be the reflection which let the hyperplane $\{\alpha = 0\}$ invariant. We have $\tau(z) = \tau(z^s) = -\tau(z)$ hence $\tau(z) = 0$. As τ vanishes on $\{\pi = 0\}$ and π has multiplicity 1, τ is divisible by π and $\pi^{-1}P(\pi f)$ has no denominator.

So the operator $\pi^{-1}P\pi$ is in $\mathcal{D}(\mathfrak{h})^{\mathfrak{W}}[\pi^{-1}]$ but applied to an invariant polynomial it gives a polynomial. Its image under φ_* is thus a differential operator of $\mathcal{D}(W)[d^{-1}]$ which sends any polynomial to a polynomial hence an operator of $\mathcal{D}(W)$.

Let F be an (H-C)-type subsheaf of $\mathcal{D}^G_{\mathfrak{g}}$, we define four \mathcal{D} -modules:

 \mathcal{M}_F is the (H-C)-type $\mathcal{D}_{\mathfrak{g}}$ -module. It is equal to the quotient of $\mathcal{D}_{\mathfrak{g}}$ by the ideal \mathcal{I}_F generated by $\tau(\mathfrak{g})$ and F.

- \mathcal{N}_F is the quotient of \mathcal{D}_W by the ideal generated by $\psi_*(F)$.

- $\mathcal{M}_{F}^{\mathfrak{h}}$ is the quotient of $\mathcal{D}_{\mathfrak{h}}$ by the ideal generated by $\delta(F)$.

 $\mathcal{N}_F^{\mathfrak{h}}$ is the quotient of \mathcal{D}_W by the ideal generated by $\varphi_*(\delta(F))$.

Let $1_{\mathfrak{g}\to W}$ be the canonical generator of $\mathcal{D}_{\mathfrak{g}\to V}$ as defined in the proof of corollary 1.4.4 and $u_{\mathfrak{g}\to W}$ its class in $\psi^+\mathcal{N}_F$. We denote by \mathcal{M}_F^0 the $\mathcal{D}_{\mathfrak{g}}$ -submodule of $\psi^+\mathcal{N}_F$ generated by $u_{\mathfrak{g}\to W}$.

Theorem 2.4.2. — The module \mathcal{M}_F^0 is conic-tame.

In this section we prove this theorem and in the next section we prove that \mathcal{M}_F is isomorphic to \mathcal{M}_F^0 .

Proposition 2.4.3. — Let n be the dimension of \mathfrak{g} , l its rank. Then there exit some positive integer N such that

$$b(T) = (T - N) \cdots T(T + 1) \cdots \left(T + \frac{n - l}{2}\right)$$

is a quasi-b-function of total weight (n+l)/2 for \mathcal{N}_F along $\{0\}$. Moreover, N = 0 if $\sigma(F) = S_+(\mathfrak{g})$.

Proof. — We recall that the rank l of the algebra \mathfrak{g} is the dimension of a Cartan subalgebra and that the degrees n_1, \ldots, n_l of the generators P_1, \ldots, P_l of $\mathcal{O}(\mathfrak{g})^G$ are called the primitive degrees of \mathfrak{g} and that their sum is (n+l)/2 [22]. The map $\psi : \mathfrak{g} \to W$ is defined by (P_1, \ldots, P_l) , hence if $E = \sum x_i D_{x_i}$ is the Euler vector field of $\mathfrak{g}, \eta = \psi_*(E)$ is equal to $\sum n_i t_i D_{t_i}$.

The morphism δ is graded and its restriction to $S(\mathfrak{g})^G$ is the map $Q \mapsto q = Q|_{\mathfrak{h}}$ hence $\sigma(\delta(F))$ the set of principal symbols contains a power of $S_+(\mathfrak{h})^{\mathfrak{W}}$ (and is equal to $S_+(\mathfrak{h})^{\mathfrak{W}}$ if $\sigma(F) = S_+(\mathfrak{g})$). We may then apply proposition 2.3.4 to the module $\mathcal{M}_F^{\mathfrak{h}}$ and we find that its *b*-function is equal to $b_0(\vartheta) = \vartheta(\vartheta - 1) \cdots (\vartheta - M)$ where ϑ is the Euler vector field of \mathfrak{h} and M is a positive integer equal to (n - l)/2 if $\sigma(\delta(F)) = S_+(\mathfrak{h})^{\mathfrak{W}}$. This means that there exist differential operators R, A_1, \ldots, A_l on \mathfrak{h} such that R is of order -1 for the V-filtration in $\{0\}$ and

$$b_0(\vartheta) + R(z, D_z) = A_1(z, D_z)q_1(z, D_z) + \dots + A_l(z, D_z)q_l(z, D_z)$$

The action of \mathfrak{W} on $\mathcal{D}_{\mathfrak{h}}$ does not affect the V-filtration and $b_0(\vartheta)$ and all $q_i(z, D_z)$ are invariant under the Weyl group, so if we take the mean value (that is $\frac{1}{\#\mathfrak{W}} \sum_{w \in \mathfrak{W}} P^w$) we find the same relation with R and all A_i invariant under \mathfrak{W} .

Applying φ_* and γ^{-1} we find

(6)
$$b_0(\gamma^{-1}(\varphi_*(\vartheta))) + \gamma^{-1}(\varphi_*(R)) = B_1\psi_*(Q_1) + \dots + B_l\psi_*(Q_l)$$

with B_1, \ldots, B_l in $\mathcal{D}(W)$ (lemma 2.4.1) and $\gamma^{-1}(\varphi_*(q_i)) = \psi_*(Q_i)$ (the diagram 5 is commutative).

As $\varphi = (p_1, \ldots, p_l)$ and p_i has degree n_i , $\varphi_*(\vartheta)$ is equal to $\eta = \sum n_i t_i D_{t_i}$. We have $\gamma^{-1}(\eta) = d^{-1/2}\varphi_*(\vartheta)d^{1/2} = \varphi_*(\Delta^{-1/2}\vartheta\Delta^{1/2})$ and the function Δ is homogeneous of degree n-l hence $\Delta^{-1/2}\vartheta\Delta^{1/2} = \vartheta + (n-l)/2$ and $\gamma^{-1}(\eta) = \eta + (n-l)/2$.

Proposition 2.4.4. — For each nilpotent orbit S of codimension r. \mathcal{M}_F^0 has a b-function of total weight (n + r)/2 along S equal to

$$b(T) = (T - N) \cdots T(T + 1) \cdots \left(T + \frac{n - l}{2}\right)$$

with N = 0 if $\sigma(F) = S_+(\mathfrak{g})$. Here *n* is the dimension of \mathfrak{g} and *l* its rank. All roots of *b* are strictly greater than -(n+r)/2 hence this *b*-function is tame.

Proof. Let us consider first the null orbit $S = \{0\}$. We apply corollary 1.4.3 to $X' = \mathfrak{g}, X = W, f = \psi, W' = \mathfrak{g}, \varphi'$ is the identity map of \mathfrak{g}, φ the identity map of W and $F : \mathfrak{g}^Y \to W$ is the map ψ . The weights (m'_1, \ldots, m'_n) on \mathfrak{g} are $(1, \ldots, 1)$. that is the V-filtration on \mathfrak{g} is the usual v-filtration relative to $\{0\}$, and the weights (m_1, \ldots, m_l) on W are the primitive degrees considered in the proof of Proposition 2.4.3. Then F is quasi-homogeneous and we get directly the result for $S = \{0\}$.

Consider now the nilpotent orbit S of maximal dimension, then S is the smooth part of the nilpotent cone and $\psi : \mathfrak{g} \to W$ is smooth on S. We apply corollary 1.4.3 to $X' = \mathfrak{g}, X = W, f = \psi, W' = W, \varphi' = \psi, \varphi$ and F are both the identity map of W. The weights on \mathfrak{g} and on W are the weights (m_1, \ldots, m_l) considered on W in the case of the null orbit.

We consider now a non null nilpotent orbit S. Let $X \in S$, by the Jacobson-Morozov theorem, we can find H and Y in \mathfrak{g} such that (H, X, Y) is a \mathfrak{sl}_2 -triple. They generate a Lie algebra isomorphic to \mathfrak{sl}_2 which acts on \mathfrak{g} by the adjoint representation. The theory of \mathfrak{sl}_2 -representations shows \mathfrak{g} splits into a direct sum $\bigoplus_{i=1}^r E(\lambda_i)$ of irreducible submodules. The dimension of $E(\lambda_i)$ is $\lambda_i + 1$ hence $n = \sum (\lambda_i + 1)$. Moreover $\mathfrak{g} = [X, \mathfrak{g}] \oplus \mathfrak{g}^Y$, dim $\mathfrak{g}^Y = r$ and we can select a basis (Y_1, \ldots, Y_r) of \mathfrak{g}^Y such that $[H, Y_i] = -\lambda_i Y_i$. The tangent space to S at X is $[X, \mathfrak{g}]$ hence r is the codimension of S.

The map $\nu: G \times \mathfrak{g}^Y \to \mathfrak{g}$ given by $\nu(g, Z) = g \cdot (X + Z)$ is a submersion because its tangent map is the map $\mathfrak{g} \times \mathfrak{g}^Y \to \mathfrak{g}$ given by $(Z', Z) \mapsto [Z', X] + Z$. Let \mathfrak{g}_1 be a linear subspace of \mathfrak{g} such that $\mathfrak{g} = \mathfrak{g}^X \oplus \mathfrak{g}_1$, we have $[\mathfrak{g}, X] = [\mathfrak{g}_1, X]$. We choose functions $(\alpha_1, \ldots, \alpha_r)$ on G whose differentials at the unit e of G are the equations of \mathfrak{g}_1 in \mathfrak{g} and define $A = \{g \in G \mid \alpha_1(g) = \cdots = \alpha_r(g)\}$. Then there is a Zarisky open subset U of $A \times \mathfrak{g}^Y$ containing (e, 0) which is smooth and such that the map $\nu: U \to \mathfrak{g}$ is étale.

Let (s_1, \ldots, s_r) be the coordinates of \mathfrak{g}^Y associated with the basis (Y_1, \ldots, Y_r) , they define functions (s_1, \ldots, s_r) on U and $\nu(s^{-1}(0))$ is equal to S. Let $\eta_0 = \nu^* E$ on U(E be the Euler vector field of \mathfrak{g}). A standard calculation [23. Part I. §5.6], shows that $\eta_0(s_i) = (\lambda_i/2 + 1)s_i$ hence the map $F_0: \mathfrak{g}^Y \to \mathfrak{g}$ defined by $F_0(Z) = X + Z$ is quasi-homogeneous if the weights on \mathfrak{g}^Y are $m'_i = (\lambda_i/2 + 1)$ for $i = 1, \ldots, r$ and the weights on \mathfrak{g} are $(1, \ldots, 1)$. The map $F: \mathfrak{g}^Y \to W$ defined by $F(Z) = \psi(X + Z)$ is thus quasi-homogeneous with the weights (m'_1, \ldots, m'_r) on \mathfrak{g}^Y and (m_1, \ldots, m_l) on W. Now, we apply corollary 1.4.3 to X' = U, X = W, $f = \psi_0 \nu$, $W' = \mathfrak{g}^Y$, φ' the projection $U \to \mathfrak{g}^Y$ and $F : \mathfrak{g}^Y \to W = k^l$ given by $F(Z) = \psi(X + Z)$. This gives the *b*-function for $\nu^+ \mathcal{M}_F^0$ and thus for \mathcal{M}_F^0 by lemma 1.2.5.

Let us now consider the non-nilpotent strata of the stratification of \mathfrak{g} (§2.2):

Proposition 2.4.5. The module \mathcal{M}_F^0 admits a tame quasi-b-function b_S along each stratum S.

More precisely, if the stratum is $S_{(P,\mathfrak{D})}$ according to definition (4) and \mathfrak{q}_P the associated semi-simple Lie subalgebra of \mathfrak{g} , then

a) b_S depends only on P and its roots are integers greater or equal to -(m-k)/2where m is the dimension of \mathfrak{q}_P and k its rank.

b) The total weight of b_S is equal to (m+r)/2 where r is the codimension of \mathfrak{O} in \mathfrak{q}_P .

In particular, on the stratum of codimension 1 in \mathfrak{g} . the roots of the usual b-function of \mathcal{M}_{F}^{0} are half integers greater or equal to -1/2.

Proof. — We fix a Cartan subalgebra of \mathfrak{g} and a subset P of roots with the notations of §2.2. This define a semi-simple algebra \mathfrak{q}_P to which are associated the maps $\psi_P : \mathfrak{q}_P \to W_P$ and $\varphi_P : \mathfrak{h}_P \to W_P$. Here W_P is a vector space of dimension the rank of \mathfrak{q}_P . The Cartan subalgebra \mathfrak{h} splits into the direct sum $\mathfrak{h} = \mathfrak{h}_P \oplus \mathfrak{h}_P^{\perp}$ and this define a map $\varphi'_P = \varphi_P \otimes 1 : \mathfrak{h} \to W = k^l \oplus \mathfrak{h}_P^{\perp}$.

Let $S \in \mathfrak{h}_{P}^{\perp}$, we know from section 2.2 that $\mathfrak{g}^{S} = \mathfrak{h}_{P}^{\perp} \oplus \mathfrak{q}_{P}$ and as S is semisimple we have $\mathfrak{g} = [\mathfrak{g}, S] \oplus \mathfrak{g}^{S}$. The map $\nu : G \times \mathfrak{g}^{S} \to \mathfrak{g}$ defined by $\nu(g, Z) = g \cdot (Z + S)$ is thus a submersion. Let $(\alpha_{1}, \ldots, \alpha_{r})$ be functions on G whose differentials at e are the equations of $[\mathfrak{g}, S]$ in \mathfrak{g} and define $A = \{g \in G \mid \alpha_{1}(g) = \cdots = \alpha_{r}(g)\}$. Then there is a Zarisky open subset U of $A \times \mathfrak{g}^{S}$ containing (e, 0) which is smooth and such that the map $\nu : U \to \mathfrak{g}$ is étale. Let $\psi' : U \to W$ be defined as the composition of the canonical projection $A \times \mathfrak{g}^{S} \to \mathfrak{g}^{S}$ and of ψ_{P} .

Now we follow the proof of proposition 2.4.3 with the same notations. Applying the second part of proposition 2.3.4 to $L = \{0\} \times (\mathfrak{h}_P^{\perp})'$, we find that \mathcal{N}_F admits a monodromic b-function along L which is equal to $b_0(\vartheta_P) = \vartheta_P(\vartheta_P - 1) \cdots (\vartheta_P - N' + 1)$ $(\vartheta_P - N')$ where ϑ_P is the Euler vector field of \mathfrak{h}_P and N' is less or equal to N = (n-l)/2 with n the dimension of \mathfrak{g} . This means that there exists l differential operators R, A_1, \ldots, A_l on \mathfrak{h} that we may assume invariant under \mathfrak{W}_P , with R of order -1 for the Vfiltration associated with L such that $b_0(\vartheta_P) + R =$ $A_1(z, D_z)q_1(D_z) + \cdots + A_l(z, D_z)q_l(D_z)$. If $\lambda = 0$ we have R = 0.

As these operators are invariant under \mathfrak{W}_P hence under φ' we may apply φ'_* and γ^{-1} and find an equation $b_0(\gamma^{-1}(\eta)) + \gamma^{-1}\varphi_*(R) = B_1\psi_*(Q_1) + \cdots + B_l\psi_*(Q_l)$ with B_1, \ldots, B_l in $\mathcal{D}(W)$ and $\eta = \varphi_*(\vartheta)$. In the coordinates of W defined by the isomorphism $\varphi' : k^l \oplus (\mathfrak{h}_P^{\perp})' \to W$, the vector η is equal to $\sum n_i t_i D_{t_i}$ where the n_i are the primitive degrees of \mathfrak{h}_P , it is associated with the manifold $L' = \varphi'(\{0\} \oplus (\mathfrak{h}_P^{\perp})')$.

As Δ is the product of Δ_P by a function which does not vanish on a neighborhood of L, the function d which defines the morphism γ is the product of the corresponding function d_P associated with \mathfrak{h}_P by a function ϱ which does not vanish in a neighborhood of L'. So we have

$$\gamma^{-1}(\eta) = \varrho^{-1/2} d_P^{-1/2} \eta d_P^{1/2} \varrho^{1/2} = \varrho^{-1/2} \left(\eta + N_P\right) \varrho^{1/2} = (\eta + N_P) + a$$

where N_P is (m-k)/2 (*m* is the dimension of \mathfrak{q}_P , *k* its rank) and *a* is a function which vanishes on *L'* hence of order at most -1 for the V^{η} -filtration. The operator $\gamma^{-1}\varphi_*(R)$ is also of order -1 for the V^{η} -filtration.

We have proved that \mathcal{N}_F admits a $b(\eta)$ -function along L' which is equal to $b(T) = (T - N_P) \cdots (T - N_P + N)$. The end of the proof is the same than to the proof of proposition 2.4.4.

Proposition 2.4.5 shows that \mathcal{M}_{F}^{0} is tame. To prove theorem 2.4.2 we have still to prove that it is conic. This come from the fact that the singular support of \mathcal{M}_{F}^{0} is conic for the Euler vector field of \mathfrak{g} and the vector fields associated with the strata are equal to this Euler vector field modulo vector fields tangent to the orbits.

2.5. Isomorphism with the inverse image. — We recall that \mathcal{M}_F^0 is the submodule of $\psi^+ \mathcal{N}_F$ generated by $u_{\mathfrak{g} \to W}$, it is the image of the morphism $\mathcal{M}_F \to \psi^+ \mathcal{N}_F$.

Theorem 2.5.1. The canonical morphism $\mathcal{M}_F \to \mathcal{M}_F^0$ is an isomorphism.

Proof

Ist step: From semi-simple Lie algebras to reductive algebras. Assume that the result has been proved for semi-simple Lie algebras and let \mathfrak{g} be a reductive algebra, direct sum of its center and a semisimple Lie algebra. By induction, we may assume that $\mathfrak{g} = \mathfrak{c} \oplus \mathfrak{g}'$ with \mathfrak{c} subspace of the center of dimension 1 and \mathfrak{g}' reductive Lie algebra for which the result has been proved.

Let t a coordinate of \mathfrak{c} and τ the corresponding coordinate of the dual space \mathfrak{c}^* . By the hypothesis, there is a differential operator in F whose principal symbol is equal to some power τ^q . This means that $\mathfrak{g}' = \{t = 0\}$ is non-characteristic for \mathcal{M}_F . Let \mathcal{K} be the kernel of $\mathcal{M}_F \to \mathcal{M}_F^0$. We have an exact sequence $0 \to \mathcal{K} \to \mathcal{M}_F \to \mathcal{M}_F^0 \to 0$ of non-characteristic $\mathcal{D}_{\mathfrak{g}}$ -modules. As the inverse image is an exact functor in the non-characteristic case, this gives an exact sequence $0 \to \mathcal{K}/t\mathcal{K} \to \mathcal{M}_F/t\mathcal{M}_F \to \mathcal{M}_F^0/t\mathcal{M}_F^0 \to 0$. If we prove that $\mathcal{K}/t\mathcal{K} = 0$, we will have $\mathcal{K} = 0$ (as \mathcal{K} is noncharacteristic).

So, we have to prove that $\mathcal{M}_F/t\mathcal{M}_F \to \mathcal{M}_F^0/t\mathcal{M}_F^0$ is injective. Here we use the same proof than in [13, Lemma 2.2.3.]. In fact, as $\mathcal{D}_{\mathfrak{g}'}$ -module $\mathcal{M}_F/t\mathcal{M}_F$ is generated by the classes of $1, D_t, \ldots, D_t^{q-1}$ and the submodule generated by D_t^{q-1} is a module on \mathfrak{g}' of the same type than \mathcal{M}_F for which the theorem is true. Then we consider the quotient of $\mathcal{M}_F/t\mathcal{M}_F$ by the module generated by D_t^{q-1} and argue by induction.

2nd step: The result is true at points $X \in \mathfrak{g}$ whose semi-simple part is non zero

By the first step, we may assume that \mathfrak{g} is semisimple. Let S be a non zero semisimple element of \mathfrak{g} , \mathfrak{g}^S its centralizer and G^S the corresponding group. The spaces $\mathcal{O}(\mathfrak{g})^G$ and $\mathcal{O}(\mathfrak{g}^S)^{G^S}$ are isomorphic hence the space W_S associated with \mathfrak{g}^S is equal to W and the map $\psi_S : \mathfrak{g}^S \to W$ is the restriction of $\psi : \mathfrak{g} \to W$. Thus the sheaf of differential operators on \mathfrak{g}^S invariant under the action of G^S is isomorphic to $\mathcal{D}^G_{\mathfrak{g}}$.

By induction on the dimension of \mathfrak{g} , we may assume that the theorem is true for \mathfrak{g}^S hence that the morphism $\mathcal{M}_F^S \to \psi_S^+ \mathcal{N}_F$ is injective. Here \mathcal{M}_F^S is the $\mathcal{D}_{\mathfrak{g}^S}$ module associated with F and \mathcal{N}_F the quotient of \mathcal{D}_W by the ideal generated by F. By definition, the germ at S of $\psi^+ \mathcal{N}_F$ is $(\psi^+ \mathcal{N}_F)_S = \mathcal{O}_{\mathfrak{g},S} \otimes_{\mathcal{O}_{\mathfrak{g}^S,S}} (\psi_S^+ \mathcal{N}_F)_S$. On the other hand, we have $(\mathcal{D}_{\mathfrak{g}}/\mathcal{D}_{\mathfrak{g}}\tau(\mathfrak{g}))_S = \mathcal{O}_{\mathfrak{g},S} \otimes_{\mathcal{O}_{\mathfrak{g}^S,S}} (\mathcal{D}_{\mathfrak{g}^S}/\mathcal{D}_{\mathfrak{g}^S}\tau(\mathfrak{g}^S))_S$ hence $\mathcal{M}_{F,S} =$ $\mathcal{O}_{\mathfrak{g},S} \otimes_{\mathcal{O}_{\mathfrak{g}^S,S}} \mathcal{M}_{F,S}^S$. The morphism $\mathcal{M}_F \to \psi^+ \mathcal{N}_F$ is thus injective at the point Shence at all the orbits whose closure contains S that is in particular at all points Xwhose semisimple part in the Jordan decomposition is S.

3nd step: The case of nilpotent orbits. Let \mathcal{K} be the kernel of $\mathcal{M}_F \to \mathcal{M}_F^0$. By the second step, we may assume that the theorem is true at all non nilpotent points of \mathfrak{g} that is that \mathcal{K} is supported by the nilpotent cone. Let $\mathcal{K}(\mathfrak{g})^G$ be the set of global sections of \mathcal{K} invariant under G, we get an exact sequence

$$0 \longrightarrow \mathcal{K}(\mathfrak{g})^G \longrightarrow \mathcal{M}(\mathfrak{g})^G \longrightarrow \mathcal{M}_0(\mathfrak{g})^G \longrightarrow 0$$

and by [7, lemma 3.2.] we have $\mathcal{M}(\mathfrak{g})^G = \mathcal{M}_0(\mathfrak{g})^G = \mathcal{N}_F$ hence $\mathcal{K}(\mathfrak{g})^G = 0$. Then $\mathcal{K} = 0$ by [17, lemma 3.2.].

Remark that the third step is also a consequence of the property (5) of the Harish-Chandra morphism which has been proved by Levasseur-Stafford [16].

References

- [1] M.F. ATIYAH "Characters of semi-simple Lie groups", Preprint. Oxford, 1976.
- [2] N. BOURBAKI Groupes et algèbres de Lie, Hermann.
- [3] E. GALINA & Y. LAURENT "D-modules and characters of semi-simple Lie groups", Duke Math. J. 123 (2004), no. 2, p. 265–309.
- [4] HARISH-CHANDRA "Invariant distributions on semi-simple Lie groups", Bull. Amer. Math. Soc. 69 (1963), p. 117–123.
- [5] _____, "Invariant differential operators and distributions on a semi-simple Lie algebra", Amer. J. Math. 86 (1964), p. 534–564.
- [6] R. HOTTA & M. KASHIWARA "The invariant holonomic system on a semi-simple Lie algebra". *Invent. Math.* 75 (1984), p. 327–358.
- [7] M. HUNZIKER & G.W. SCHWARZ "A homomorphism of Harish-Chandra and direct images of D-modules", Proc. Amer. Math. Soc. 129 (2001), no. 12, p. 3485–3493.
- [8] M. KASHIWARA "On holonomic systems of differential equations II", Invent. Math. 49 (1978), p. 121–135.

- [9] _____, Systems of microdifferential equations, Progress in Math., vol. 34, Birkhäuser, 1983.
- [10] _____, "Vanishing cycles and holonomic systems of differential equations", in Algebraic geometry (Tokyo/Kyoto, 1982), Lect. Notes in Math., vol. 1016, Springer, 1983, p. 134– 142.
- B. KOSTANT "The principal three-dimensional subgroups...", Amer. J. Math. 81 (1959), p. 973–1032.
- [12] Y. LAURENT "Polygone de Newton et b-fonctions pour les modules microdifférentiels", Ann. scient. Éc. Norm. Sup. 4^e série 20 (1987), p. 391-441.
- [13] _____, "Regularity of *D*-module associated to a symmetric pair", in Autour de l'analyse microlocale. Astérisque, vol. 284, Société Mathématique de France, Paris, 2003.
- [14] Y. LAURENT & B. MALGRANGE "Cycles proches, spécialisation et *D*-modules", Ann. Inst. Fourier (Grenoble) 45 (1995), p. 1353–1405.
- [15] T. LEVASSEUR & J.T. STAFFORD "Invariant differential operators and a homomorphism of Harish-Chandra", J. Amer. Math. Soc. 8 (1995), no. 2, p. 365–372.
- [16] _____, "The kernel of an homomorphism of Harish-Chandra", Ann. scient. Éc. Norm. Sup. 4^e série **29** (1996), p. 385–397.
- [17] _____, "Invariant differential operators on the tangent space of some symmetric spaces", Ann. Inst. Fourier (Grenoble) 49 (1999), no. 6, p. 1711 1741.
- [18] C. SABBAH "D-modules et cycles évanescents", in Conférence de La Rábida 1984, Travaux en cours, vol. 24, Hermann, 1987, p. 53–98.
- P. SCHAPIRA Microdifferential systems in the complex domain, Grundlehren der math. Wiss., vol. 269, Springer. 1985.
- [20] J. SEKIGUCHI "Invariant spherical hyperfunctions on the tangent space of a symmetric space", Advanced Studies in pure mathematics, vol. 6, 1985, p. 83–126.
- [21] T. TORRELLI "Closed formulae for a b-function associated with a weighted homogeneous isolated complete intersection singularity", to appear in J. Algebra.
- [22] V.S. VARADARAJAN Lie groups, Lie algebras and their representations, Prentice-Hall, 1974.
- [23] _____, Harmonic analysis on real reductive groups, Lect. Notes in Math., vol. 576, Springer, 1977.

Y. LAURENT, Institut Fourier Mathématiques, UMR 5582 CNRS/UJF, BP 74, 38402 St Martin d'Hères Cedex
 E-mail: Yves.Laurent@ujf-grenoble.fr
 Url: http://www-fourier.ujf-grenoble.fr/~laurenty