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THE MINIMAL ENTROPY PROBLEM FOR 3-MANIFOLDS 
WITH ZERO SIMPLICIAL VOLUME 

by 

James W. Anderson & Gabriel P. Paternain 

Dedicated to Jacob Palis on his sixtieth birthday 
Abstract. — In this note, we consider the minimal entropy problem, namely the 
question of whether there exists a smooth metric of minimal (topological) entropy, 
for certain classes of closed 3-manifolds. Specifically, we prove the following two 
results. 
Theorem A. Let AI be a closed orientable irreducible 3-manifold whose fundamental 
group contains a Z © Z subgroup. The following are equivalent: 
(1) the simplicial volume \\M\\ of M is zero and the minimal entropy problem for M 
can be solved; 
(2) M admits a geometric structure modelled on E3 or Nil: 
(3) M admits a smooth metric g with htopCg) — 0. 
Theorem B. Let AI be a closed orientable geometrizable 3-manifold. The following 
are equivalent: 
(1) the simplicial volume \\M\\ of M is zero and the minimal entropy problem for M 
can be solved; 
(2) M admits a geometric structure modelled on S3, S 2 X R, E3, or Nil; 
(3) AI admits a smooth metric g with htop(.g) — 0. 

1. Introduction and statement of results 

Let Mn be a closed orientable n-dimensional manifold. For a smooth Riemannian 
metric g on M, let Vol(M, g) denote the volume of M calculated with respect to g. 

Let htop(g) be the topological entropy of the geodesic flow of g, as defined in Sec
tion 2.6. Set the minimal entropy of M to be 

h(M) := inf{ht0p(#) | 9 is a smooth metric on M with Vol (A/, g) = 1}. 

A smooth metric g0 with Vol(Af, go) = 1 is entropy minimizing if 

htopteo) = h ( M ) . 
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64 J.W. ANDERSON & G.P. PATERNAIN 

The minimal entropy problem for M is whether or not there exists an entropy 
minimizing metric on M. Say that the minimal entropy problem can be solved for 
M if there exists an entropy minimizing metric on M. Smooth manifolds are hence 
naturally divided into two classes: those for which the minimal entropy problem can 
be solved and those for which it cannot. 

There are a number of classes of manifolds for which the minimal entropy problem 
can be solved. For instance, the minimal entropy problem can always be solved for a 
closed orientable surface M. For the 2-sphere and the 2-torus, this follows from the 
fact that both a metric with constant positive curvature and a flat metric have zero 
topological entropy. For surfaces of higher genus, A. Katok [11] proved that each 
metric of constant negative curvature minimizes topological entropy, and conversely 
that any metric that minimizes topological entropy has constant negative curvature. 

This result of Katok has been generalized to higher dimensions by Besson, Courtois, 
and Gallot [1], as follows. Suppose that Mn (n ^ 3) admits a locally symmetric metric 
go of negative curvature, normalized so that Vol(M, go) = 1. Then go is the unique 
entropy minimizing metric up to isometry. Unlike the case of a surface, a locally 
symmetric metric of negative curvature on a closed orientable n-manifold (n ^ 3) is 
unique up to isometry, by the rigidity theorem of Mostow [18]. 

The result of Besson, Courtois, and Gallot [1] has itself been generalized by Connell 
and Farb [4] to n-manifolds that admit a complete, finite-volume metric which is 
locally isometric to a product of negatively curved (rank 1) symmetric spaces of 
dimension at least 3. 

A positive solution to the minimal entropy problem appears to single out manifolds 
that have either a high degree of symmetry or a low topological complexity. What this 
means in the context of 3-manifolds will become apparent below. A similar phenomena 
is observed for closed simply connected manifolds of dimensions 4 and 5: there are 
essentially only nine manifolds for which the minimal entropy problem can be solved 
and they can be explicitly listed. These nine manifolds share the property that their 
loop space homology grows polynomially for any coefficient field, see Paternain and 
Petean [21]. 

The goal of this note is to classify those closed orientable geometrizable 3-manifolds 
with zero simplicial volume for which the minimal entropy problem can be solved. 
Specifically, in Section 4, we prove: 

Theorem A. — Let M be a closed orientable irreducible 3-manifold whose fundamental 
group contains aTL^dlj subgroup. The following are equivalent: 

(1) the simplicial volume ||M|| of M is zero and the minimal entropy problem for 
M can be solved; 

(2) M admits a geometric structure modelled on E3 or Nil; 
(3) M admits a smooth metric g with htop(g) = 0. 
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MINIMAL ENTROPY FOR 3-MANIFOLDS 65 

In Section 5 we prove: 

Theorem B. — Let M be a closed orientable geometrizable 3-manifold. The following 
are equivalent: 

(1) the simplicial volume ||A/|| of M is zero and the minimal entropy problem for 
M can be solved; 

(2) M admits a geometric structure modelled on §'\ S2 x R, E3, or Nil; 
(3) Af admits a smooth metric g with h.top(g) = 0. 

Recall that the simplicial volume of a closed orientable manifold Af is defined as 
the infimum of Ylt \ri\ where the rl are the coefficients of a real cycle that repre
sents the fundamental class of Af. For 3-manifolds, the positivity of the simplicial 
volume (which is a homotopy invariant) is closely related to the existence of compact 
hyperbolizable submanifolds in Af. This is described in more detail in Section 2.5. 

We close the introduction by describing some of the elements of the proofs of 
Theorems A and B, and by describing a conjectural picture. We will see in Section 2 
that a closed orientable geometrizable 3-manifold Af has zero simplicial volume if and 
only if Af has zero minimal entropy. Therefore, the minimal entropy problem can 
be solved if and only if Af admits a smooth metric with zero topological entropy. 
This in turn forces the fundamental group of Af to have subexponential growth. 
We end up showing that this can occur only if Af admits one of the four geometric 
structures listed in the statement of Theorem B. On the other hand, it is a calculation 
that the manifolds in the statement of Theorem B carry a metric of zero entropy. 
The proof of Theorem A follows a similar line, and makes use of the remarkable 
theorem, due essentially to Thurston, that a manifold satisfying the hypothesis of 
the theorem is geometrizable. The precise definition of geometrizable manifold is 
given in Subsection 2.4. Thurston's geometrization conjecture states that every closed 
orientable 3-manifold is geometrizable. 

From this discussion and the above mentioned result of Besson, Courtois and Gallot 
it seems quite reasonable to speculate that the following statement holds: 

Let AI be a closed orientable geometrizable 3-manifold. Then, the minimal entropy 
problem for M can be solved if and only if Af admits a geometric structure modelled 
on S3, S2 x R, E3, Nil, ortf.(1) 

Indeed, suppose that the simplicial volume of Af were not zero. This would imply that 
Af contains a disjoint collection Hi,..., Hp of compact submanifolds whose interiors 
each admit a complete hyperbolic structure of finite volume. In particular, it should be 
that the minimal entropy of Af is the maximum of the minimal entropies of the H A . It 

(̂ Note added in proof: J. Souto (Geometric structures on 3-manifolds and their deformations. 
Dissertation, Rheinische Friedrich-Wilhelms-Universitât Bonn 2001) has proven this conjecture for 
all geometrizable prime 3-manifolds 
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66 J.W. ANDERSON & G.P. PATERNAIN 

would then seem reasonable that an entropy minimizing metric on M would try to be 
as hyperbolic as possible on the interiors of the Hk and would try as much as possible 
to be one of the other seven standard 3-dimensional geometries on the components 
of M — (Hi U • • • U Hp). However, it would seem that the minimizer would have to 
be singular along the dH^, and so there should be no metric of minimal entropy. 
Unfortunately, we do not yet know how to make this argument rigorous. 

We would like to thank the referees for their careful reading of this note. 

2. Preliminaries 

The purpose of this Section is to present some of the basic material from 3-manifold 
theory that we will need. We refer the interested reader to Hempel [8] for a more 
detailed introduction to 3-manifold topology. For a more detailed description of Seifert 
fibered spaces, and of the torus decomposition and the geometrization of 3-manifolds, 
we also refer the interested reader to the survey articles of Scott [26] and Bonahon 
[2], and the references contained therein. 

2.1. 3-manifold basics. — We begin with some basic definitions. A 3-manifold is 
closed if it is compact with empty boundary. 

An embedded 2-sphere §2 in a 3-manifold M is essential if M does not bound a 
closed 3-ball in AI. A 3-manifold is irreducible if it contains no essential 2-sphere. 

A 3-manifold is prime if it cannot be decomposed as a non-trivial connected sum. 
That is, M is prime if for every decomposition M = Mi#M2 of M as a connected sum, 
one of Mi or AI2 is homeomorphic to the standard 3-sphere §'*. Every irreducible 3-
manifold is prime, but the converse does not hold. However, the only closed orientable 
3-manifold that is prime but not irreducible is S2 x S1. 

We note here that if the closed orientable 3-manifold M contains a non-separating 
essential 2-sphere, then AI can be expressed as the connected sum AI = P#(S2 x S1) 
for some 3-manifold P. Hence, in what follows, we need only consider separating 
essential 2-spheres in 3-manifolds. 

There is an inverse to the operation of connected sum for 3-manifolds, called the 
prime decomposition. The following statement is adapted from Bonahon [2], and 
follows from work of Kneser [12] and Milnor [16]. 

Let AI be a closed orientable 3-manifold. Then, there exists a compact 2-
submanifold E of M, unique up to isotopy, so that two conditions hold. First, each 
component of E is an embedded essential separating 2-sphere, and the 2-spheres 
in E are pairwise non-parallel, in that no two 2-spheres in E bound an embedded 
S2 x [0,1] in AI. Second, if AIQ, Afi,..., AIp are the closures of the components of 
AI — E, then Mo is homeomorphic to the 3-sphere S3 minus finitely many disjoint 
open 3-balls; while for k ^ 1, each M^ contains a unique component of E, and every 
separating essential 2-sphere in AIk is parallel to BAIk-
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MINIMAL ENTROPY FOR 3-MANIFOLDS 67 

The prime decomposition of AI is the collection of 3-manifolds that results by 
taking the complements of the 2-submanifold E in AI as just described, and filling 
in each 2-sphere boundary component of A/(), A/i,..., AIV with a 3-ball. Each of the 
resulting 3-manifolds is then prime. (Note that both §'* and S2 x S1 have trivial 
prime decompositions, as they do not contain a separating essential 2-sphere.) The 
prime decomposition is one of two standard decompositions of a closed orientable 
3-manifold, the other being the torus decomposition, which is discussed in detail in 
Section 2.3. 

In general, a closed orientable embedded surface S in a 3-manifold AI is 2-sided if 
there exists an embedding / of S x [—1,1] into AI so that f(S x {0}) = S. A closed 
orientable embedded surface S in a 3-manifold AI is incompressible if the fundamental 
group of S is infinite and if the inclusion S AI induces an injection on fundamental 
groups. An incompressible surface S is essential if S is not homotopic into OAI. 

A compact orientable irreducible 3-manifold M is sufficiently large if it contains a 
2-sided incompressible surface. Sufficiently large 3-manifolds are also known as Haken 
3-manifolds. 

2.2. Seifert fibered spaces. — A Seifert fibration of a 3-manifold AI is a decom
position of AI into disjoint simple closed curves, called the fibers of the fibration, so 
that each fiber c has a neighborhood U in 71/ of the following form: U is diffeomorphic 
to the quotient of S1 x B2 by the free action of a finite group respecting the product 
structure, where the fibers of the fibration correspond to the curves {x} x B2 for 
x G S1. (In this note, we only consider Seifert fibrations of closed 3-manifolds and of 
3-manifolds without boundary that are homeomorphic to the interior of a compact 
3-manifold with 2-torus boundary components.) 

Since we are considering only orientable 3-manifolds in this note, the group of 
covering transformations of S1 x B2 in the above definition is generated by rJKq for 
some pair (p, q) of relatively prime integers, where 

V,7 (e 'Ve*) = 'j(<p + 2Tr/p) rJ(e + 2nq/p)\ 

A fiber is a regular fiber if it has a neighborhood diffeomorphic to S1 x B2, and is 
a singular fiber otherwise. Note that the singular fibers of a Seifert fibration are 
necessarily isolated. 

Let S be the space of fibers of a Seifert fibration of a 3-manifold Ai", equipped with 
the quotient topology coming from the projection map p : AI —>• S. We often refer 
to S as the 6a.se orbifold of the Seifert fibered space M. Using the neighborhoods of 
the fibers in AL we see that S is an orientable surface with one cone point for each 
singular fiber. 

Let pi , . . . ,p,s be the cone points on 5, and let n3 be the order at the cone point pv 
so that a neighbhorhood of pj is diffeomorphic to the quotient B2/Z7,., where Z.„. 
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acts by rotation. The orbifold Euler characteristic x(S) °f S is the quantity 

X(S) - 2 - 2 genusfSO -
dvr 

1 - 1 
vrd 

(This discussion is also valid in the case that M is a 3-manifold without boundary 
that is homeomorphic to the interior of a compact 3-manifold with 2-torus boundary 
components. In this case, the base orbifold has punctures as well as cone points, and 
we view each puncture as a cone point of infinite order.) 

There are two cases of particular interest. In the case that x{&) < 0? $ nas a 
hyperbolic structure, so that we can express S as the quotient S — H2/F, where H2 is 
the hyperbolic plane and V is a discrete subgroup of Isom(IHI2), where the fixed points 
of the action of non-trivial elements of V descend to the cone points on S. We refer 
to T as the orbifold fundamental group of S. In this case, we have that F contains a 
free subgroup of rank 2, and in particular T contains an element of infinite order. 

In the case that x(S) = 0, S has a Euclidean structure, so that we can express S as 
the quotient S = E2/F, where E2 is the Euclidean plane and T is a discrete subgroup 
of Isom(E2), where the fixed points of the action of non-trivial elements of T descend 
to the cone points on S. As above, we refer to T as the orbifold fundamental group 
of S. In this case, we have that F contains an element of infinite order, but not a free 
subgroup of rank two. 

In both of these cases, the orbifold fundamental group of the base orbifold S of 
the Seifert fibered space M is a subgroup of TTI(M). In fact, there is a short exact 
sequence 

1 > Z > 7Ti(M) > 7Ti(5) > 1, 
where 7Ti(S) is the orbifold fundamental group of S and where Z is generated by any 
regular fiber of the Seifert fibration. 

The following follows immediately from this discussion. 

Lemma 2.1. — Let M be a Seifert fibered space as above with base orbifold S. If 
x(S) ^ 0? then n\{M) contains a Z 0 Z subgroup. 

Proof. — The proof of Lemma 2.1 is standard, but we sketch it here for the sake of 
completeness. Let p : M —» S be the quotient map. Since x(S) ^ 0, there is a closed 
curve c, not necessarily simple, on S that represents an infinite order element of the 
orbifold fundamental group of S. Let T = p~l (c) in M be the subset of M that consists 
of all the fibers in M corresponding to points of c. Then, T is an incompressible 2-
torus in AI, though not necessarily embedded. However, this is sufficient to guarantee 
that there exists a Z0Z subgroup of TTI(A/), namely the fundamental group of T. • 

2.3. The torus decomposition. — Let M be a closed orientable irreducible 3-
manifold with infinite fundamental group. There is then a canonical decomposition of 
Af along embedded essential 2-tori, due to Jaco and Shalen [9] and Johannson [10]. 
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(Note that the restriction to irreducible 3-manifolds causes no loss of generality, as 
we may first apply the prime decomposition to Af, as described in Section 2.1. Also, 
we tend to not take the torus decomposition of S2 x S1.) The statement given below 
is adapted from Theorem 3.4 of Bonahon [2]. 

Theorem 2.2 ([2]). — Let M be a closed orientable irreducible 3-manifold. Then, up 
to isotopy, there is a unique compact 2-subrnanifold T of M such that: 

(1) every component of T is a 2-sided essential 2-torus; 
(2) every component of M — T either contains no essential embedded 2-torus or 

Klein bottle, or else admits a Seifert fibration (or possibly both); 
(3) property (2) fails when any component of T is removed. 

We refer to this 2-submanifold T as the torus decomposition of Af. Note that 
condition (3) implies that no two of the 2-tori in the torus decomposition are isotopic. 

Let Af be a compact orientable 3-manifold, and let Afo, M\,..., MP be the compo
nents of its prime decomposition. Let Tk be the torus decomposition of Af̂ . Say that 
Af is a graph manifold if, for each 1 ^ k ^ p, every component of M\~ — Tk admits 
a Seifert fibration. Clearly, every Seifert fibered space is trivially a graph manifold. 
Also, every 2-torus bundle over S1 is a graph manifold. 

Theorem 2.2 is a small part of the machinary of the characteristic submanifold of a 
3-manifold developed by Jaco and Shalen and by Johannson. Note that this discussion 
includes the possibility that the torus decomposition T is empty, even though TI\(M) 
may contain a Z 0 Z subgroup. 

A closely related result is the following torus theorem. For a discussion and proof 
of this result, see Scott [27]. 

Theorem 2.3 ([27]). — Let M be a closed orientable irreducible 3-manifold whose fun
damental group contains a Z(&Z subgroup. Then, either M contains an incompressible 
embedded 2-torus or Af is a Seifert fibered space. 

2.4. Geometric structures and geometrization. — A 3-dimensional geome
try is a pair (X, G), where X is a simply connected Riemannian 3-manifold with a 
complete homogeneous metric and G is a maximal transitive group of orientation-
preserving isometries of X, with the proviso that there exists a subgroup H oî G 
with compact quotient X/H. Note that since G is a maximal group of isometries, it 
suffices to specify X and set G = Isom(AT). 

It is a result of Thurston that there exist exactly eight 3-dimensional geometries, 
namely E3, S3, HI3, S2 x 1, I2 x M, SL2, Nil, and Sol, with their respective groups of 
(orientation preserving) isometries. (A proof of this result, and a detailed description 
of the eight geometries, is given in Scott [26].) 

Let Af be an orientable 3-manifold that is homeomorphic to the interior of a com
pact 3-manifold with 2-torus boundary components. (This includes the possibility 
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70 J.W. ANDERSON & G.P. PATERNAIN 

that AI is closed.) Say that AI admits a geometric structure modelled on X if M is 
diffeomorphic to the quotient X/T, where X is one of the eight 3-dimensional geome
tries and T is a fixed point free subgroup of Isom(X). It is known that if a 3-manifold 
admits a geometric structure, then it admits a unique geometric structure. 

More generally, let AI be a closed orientable irreducible 3-manifold with torus 
decomposition T. Say that M is geometrizable if each component of AI — T admits a 
geometric structure. (Note that we do not require that different components of AI — T 
admit the same geometric structure.) 

Finally, say that a closed orientable 3-manifold is geometrizable if every component 
of its prime decomposition is geometrizable. (This causes no difficulties, as S2 xS1, 
which may arise as a component of the prime decomposition but is not irreducible, 
admits a geometric structure modelled on S2 x E.) 

Thurston's geometrization conjecture states that every closed orientable 3-manifold 
is geometrizable. For a more complete discussion of the geometrization conjecture, 
see Scott [26], Bonahon [2], or Thurston [30]. 

There are a number of manifolds for which the geometrization conjecture is known 
to be true. If M is a closed orientable irreducible sufficiently large 3-manifold, then 
M is geometrizable; this is Thurston's geometrization theorem; see Morgan [17] or 
Otal [19] for a discussion of this theorem. 

In particular, if M has a non-empty torus decomposition, then it is geometrizable. 
In this case, each component of the complement of the torus decomposition of AI 
either is a Seifert fibered space or admits a hyperbolic structure, that is the geometric 
structure modelled on HI3. We encode in the following theorem the parts of this 
discussion we make the most use of. 

Theorem 2.4. — Let AI be a closed orientable irreducible sufficiently large 3-manifold. 
Then, M admits a torus decomposition T. Moreover, each component of AI — T either 
is a Seifert fibered space or admits a hyperbolic structure. 

Additionally, the geometrization of Seifert fibered spaces, and in fact of irreducible 
graph manifolds, is completely understood. 

Theorem 2.5 ([26, Theorem 5.3]). — Let AI be a closed orientable 3-manifold. Then, 
(1) AI possesses a geometric structure modelled on Sol if and only if AI is finitely 

covered by a 2-torus bundle over S1 with hyperbolic glueing map; 
(2) AI possesses a geometric structure modelled on one ofS3, E3, S2 x R, H2 x R, 

SL>2? or Nil if and only if AI is a Seifert fibered space. 

We note here that the two unresolved cases of the geometrization conjecture are 
that the fundamental group of AI is finite, in which case AI should admit a geometric 
structure modelled on S3 [the Poincaré conjecture and the spherical space form prob
lem], and that the fundamental group of AI is infinite, does not contain Z 0 Z, and 
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does not contain a normal cyclic subgroup, in which case M should admit a geometric 
structure modelled on H3 [the hyperbolization conjecture]. 

2.5. Simplicial volume. — Let M be a closed manifold. Denote by C* the real 
chain complex of M : a chain c G C* is a finite linear combination ^ • r%0{ of singular 
simplices al in M with real coefficients rt. Define the simplicial £l-norm in C* by set
ting \c\ — \ri\. This norm gives rise to a pseudo-norm on the homology H*(M,M) 
by setting 

Ifall - inf{|z| : z G C* and \z] = \a}\. 

When M is orientable, define the simplicial volume of M, denoted ||M||, to be the sim
plicial norm of the fundamental class. The simplicial volume is also called Gromov1 s 
invariant, since it was first introduced by Gromov [7]. 

The following lower bound on ||M|| is due to Thurston [29]. 

Theorem 2.6 ([29, Theorem 6.5.5]). — Suppose that M is a closed orientable 3-manifold 
and that H C M is a 3-dimensional submanifold whose interior admits a complete 
hyperbolic structure of finite volume. Suppose further that H is embedded in M and 
that dH is incompressible in M. Then, 

\\M\\ > Vol (H) 
V3 

> o, 

where v% is the volume of the regular ideal tetrahedron in H3. 

The next theorem follows immediately from Theorems 2.6, 2.4, and 2.5. 

Theorem 2.7. — Let AI be a closed orientable geometrizable 3-manifold. Suppose that 
||M|| = 0. Then M is a graph manifold. 

Proof. — The proof of Theorem 2.7 is essentially contained in Soma [28]; we include 
it here solely for the sake of completeness. 

We begin by considering the prime decomposition of AI. That is, write M as the 
connected sum M — Afo# * * • #AIp, where each Mi is a prime 3-manifold. (Note that 
we are including in this discussion the case that M is itself prime, and so has trivial 
prime decomposition.) 

Since simplicial volume behaves additively with respect to connected sums 
(cf. Gromov [7]), the hypothesis that M has zero simplicial volume implies that each 
Mi has zero simplicial volume as well. Since the connected sum of graph manifolds 
is again a graph manifold (cf. Soma [28]), it suffices to show that each AIj is a graph 
manifold. Since each Mt is prime, it is either irreducible or diffeomorphic to §2 xS1, 
which is a Seifert fibered space. So, we may assume without loss of generality that 
M is irreducible. 

Let T be the torus decomposition of M. Recall that M is assumed to be geometriz
able. If T is empty, then M admits a geometric structure other than the one modelled 
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on H3 (which is excluded by the assumption on the simplicial volume of M), and so 
M is a graph manifold, by Theorem 2.5. 

If T is non-empty, then M is sufficiently large, and so Thurston's geometrization 
conjecture holds for M. Since ||M|| =0 , each component of M — T is a Seifert fibered 
space, as no piece can be hyperbolic, by Theorem 2.6. It follows that M must be a 
graph manifold. • 

2.6. Topological entropy. — We recall in this subsection the definition of the 
topological entropy of the geodesic flow of a smooth Riemannian metric ^ona closed 
manifold M. For a more detailed discussion, we refer the interested reader to Pater-
nain [20]. 

The geodesic flow of g is a flow qbt that acts on SM, the unit sphere bundle of M, 
which is a closed hypersurface of the tangent bundle of M. Let d be any distance 
function compatible with the topology of SM. For each T > 0 we define a new 
distance function 

OIT(X,V) := max d(ô+(x),(bt(v)). 
<<<+<1< 

Since S M is compact, we can consider the minimal number of balls of radius s > 0 in 
the metric dr that are necessary to cover SM. Let us denote this number by N(e,T). 
We define 

h(0, e) := lim sup 
T-+OG 

1 
T 

logTV(^r). 

Observe now that the function e i—» h(0, e) is monotone decreasing and therefore the 
following limit exists: 

nRnAi))M+ 1+x1x+xoslo 
The number htop(g) thus defined is the topological entropy of the geodesic flow of g. 
Intuitively, this number is a measure of the orbit complexity of the flow. The positivity 
of ntop((/)) indicates complexity or 'chaos' of some kind in the dynamics of (fit-

There is a formula, known as Mane's formula, that gives a nice alternative descrip
tion of htop(p). Given points p and q in M and T > 0, define nr{p,q) to be the 
number of geodesic arcs joining p and q with length ^ T. Mane [14] showed that 

htoP(#) = lim 
T—>oo 

1 
T log 

JMxM 
TIT(p, q) dpdq. 

Finally we note that entropy behaves well under scaling of the metric. Namely, if 
c is any positive constant, then htop(cg) = htop(g)/\/c. 

2.7. Minimal volume and collapsing. — The minimal volume MinVol(M) of a 
Riemannian manifold M is defined to be the infimum of Vol(M, g) over all smooth 
metrics g such that the sectional curvature Kg of g satisfies \Kg\ ̂  1. This differential 
invariant was introduced by M. Gromov in [7]. 

We shall need the following result, see Cheeger and Gromov [3, Example 0.2 and 
Theorem 3.1] and Rong [23]. 

\STERISQUE 286 

file:///STERISQUE


MINIMAL ENTROPY FOR 3-MANIFOLDS 73 

Proposition 2.8. — Let M be a closed orientable 3-manifold. If M is a graph manifold, 
then M admits a polarized F-structure, and hence MinVol(Af ) = 0. 

We will not give here the precise definition of a polarized F-structure, because it 
is too technical. Instead we give an informal description, and we refer the interested 
reader to Cheeger and Gromov [3] for a more detailed discussion. 

An F-structure on a manifold Af is a natural generalization of a torus action on Af. 
Different tori, possibly of different dimensions, act on subsets of Af in such a way that 
Af is partioned into disjoint orbits. The F-structure is said to be polarized if the local 
actions are locally free. 

Consider the following example of a polarized F-structure on a graph manifold. 
Take a compact surface S with non-empty connected boundary, and consider two 
copies of S x S1, each of which has a 2-torus boundary. Fixing an identification of dS 
with S1, glue the boundaries of two copies of S x S1 by a map that interchanges the 
S1 factors, so that (x,z) G dS x S1 on one copy is glued to (z,x) G dS x S1 on the 
other copy. 

The resulting manifold admits a free circle action on each copy of int(S') x S1, but 
at their common boundary the actions do not agree. However, they do generate a 2-
torus action which acts locally near their common boundary, thus defining a polarized 
F-structure on the whole manifold. 

2.8. An important chain of inequalities. — Let M be a closed Riemannian 
manifold with smooth metric g, and let Af be its universal covering endowed with the 
induced metric. For each x G Af, let V(x,r) be the volume of the ball with center x 
and radius r. Set 

X(q) := lim 
r—>-\-oc 

1 
r 

log V(x, r). 

Manning [13] showed that this limit exists and is independent of x. 
Set 

A(Af) :— inf{À(<?) | g is a smooth metric on Af with Vol(Af, g) = 1}. 
It is well known, see Milnor [15], that \{g) is positive if and only if 7Ti(Af) has 

exponential growth. Manning's inequality [13] asserts that for any metric g, 

(1) M a) ^ htoo(a). 

In particular, it follows that if 7Ti(Af) has exponential growth, then htop(g) is positive 
for any metric g. (This fact was first observed by Dinaburg [5]). Gromov [7] showed 
that if Vol(Af, q) = 1, then 

(2) 1 
Cn n\ ' \M\\ ^ [\{g)T, 

where 
cn = r i TV 

^ 2 ; 
d+d1r 'n + l\ 

2 
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Finally it was observed by Paternain [20] that 

(3) [h(M)]n ^ (n - l)nMinVol(Af ). 

Combining equations (1), (2), and (3), we obtain the following chain of inequalities: 

(4) 
1 

Cnn 
||M|| ^ [A(M)]n ^ [h(M)]n ^ (n- l)nMinVol(Af ). 

We note here that the only known 3-manifolds with h(M) > 0 are those with 
||M|| 0. In fact it follows from Theorem 2.7, Proposition 2.8, and the chain of 
inequalities (4) that if M is a closed orientable geometrizable 3-manifold, then the 
vanishing of the simplicial volume implies that h(AI) = 0. 

We encode this information in the following theorem. 

Theorem 2.9. — Let M a closed orientable geometrizable 3-manifold. Then the fol
lowing are equivalent: 

(1) the minimal volume MinVol(M) of M vanishes; 
(2) the minimal entropy h(M) of M vanishes; 
(3) the simplicial volume \\M\\ of M vanishes; 
(4) M is a graph manifold. 

3. Geometric structures and the minimal entropy problem 

In this section, we consider the minimal entropy problem for those 3-manifolds that 
admit a single geometric structure. Namely, we prove the following. 

Proposition 3.1. — Let M be a closed orientable 3-manifold. Suppose that M admits 
a geometric structure. Then, the minimal entropy problem for M can be solved if 
and only if M admits a geometric structure modelled on S3, E3, S2 x R, Nil, or H3. 
Moreover, if M admits a geometric structure modelled on S3, E3, S2 x R, or Nil, then 
M admMs a smooth metric g with htop(g) = 0. 

Proof. — We start by showing that if M admits a geometric structure modelled on 
one of these 5 geometries, then the minimal entropy problem for M can be solved. 
Observe first that if M admits a geometric structure modelled on H3, then the minimal 
entropy problem can be solved by the results of Besson, Courtois and Gallot [1]. 

It follows immediately from Theorem 2.5 that if M admits a geometric stucture 
modelled on one of the seven geometries S3, E3, S2 x R, H2 x R, SL2, Nil, or Sol, then 
M is a graph manifold. Hence by Proposition 2.8 and the chain of inequalities (4), 
we have that for such an M, the minimal entropy satisfies h(M) = 0. 

We now show that if M admits a geometric structure modelled on one of S3, E3, 
S2 x R, or Nil, then the minimal entropy problem for M can be solved. To do this, 
we need to show that M admits a smooth metric g with htop(g) — 0. 
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(1) S3, E3, S2 x E: All the Jacobi fields in these geometries grow at most linearly 
(in the case of S3 they are actually bounded), and hence all the Liapunov exponents 
of every geodesic in M are zero. It follows from Ruelle's inequality [24] that all 
the measure entropies are zero. Hence, by the variational principle, the topological 
entropy of the geodesic flow of M must be zero. 

(2) Nil: This geometry can be described as M3 with the metric 

ds2 = dx2 + dy2 + (dz - xdy)2. 

Here, not all the Jacobi fields grow linearly, but they certainly grow polynomially. 
Again this implies that all the Liapunov exponents of every geodesic in M are zero 
and hence the topological entropy of the geodesic flow of M must be zero. 

Since we have assumed that M admits a geometric structure, we complete the 
proof by showing that if 71/ admits a geometric structure modelled on one of the 
remaining geometries, namely H2 x R, SL2, and Sol, then M cannot admit a metric 
of zero topological entropy. To do this, we use the next lemma, together with the fact 
described in Subsection 2.8, that if TTI(M) grows exponentially, then htop(g) > 0 for 
any smooth metric g on AI. 

Lemma 3.2. — Let M be a closed orientable 3-manifold, and suppose that M admits 
a geometric structure modelled on one of M2 x M, SL2, or Sol. Then TTI(M) grows 
exponentially. 

Proof. — In the case that M admits a geometric structure modelled on H2 x M or 
SL2, we start by recalling from Theorem 2.5 that M is then a Seifert fibered space. 
The base orbifold of the Seifert fiber space admits a hyperbolic structure, and so the 
orbifold fundamental group of the base orbifold contains a free subgroup of rank 2, 
and hence so does 7Ti(A/). Hence, 7Ti(A/) grows exponentially. 

In the case that M admits a geometric structure modelled on Sol, we have that M 
is finitely covered by the mapping torus N of a hyperbolic automorphism of a 2-torus. 
Note that a hyperbolic automorphism of a 2-torus is an Anosov diffeomorphism, and 
so the suspension flow on TV is an Anosov flow. It is known that the fundamental 
group of a 3-manifold with an Anosov flow has exponential growth (see for example 
Plante and Thurston [22]). • 

This completes the proof of Proposition 3.1. • 

4. Proof of Theorem A 

Up to this point, we have been considering the minimal entropy problem for closed 
3-manifolds that admit a single geometric structure. In this section, we consider a 
more general geometrizable 3-manifold. 
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Theorem A. — Let M be a closed orientable irreducible 3-manifold whose fundamental 
group contains a Z ® Z subgroup. The following are equivalent: 

(1) the simplicial volume \\M\\ of M is zero and the minimal entropy problem for 
M can be solved; 

(2) M admits a geometric structure modelled on E3 or Nil; 
(3) M admits a smooth metric g with htop(g) = 0. 

Proof — Let us show that item 1 implies item 2. Suppose then that M has zero 
simplicial volume and that the minimal entropy problem for M can be solved. We 
show that M must then admit a geometric structure modelled on either E3 or Nil. 
Since the fundamental group of M contains a Z © Z subgroup, Theorem 2.3 ensures 
that either M contains an incompressible embedded 2-torus or M is a Seifert fibered 
space. We now split the proof into two cases: 

- Suppose first that M contains an incompressible embedded 2-torus, and so is 
sufficiently large. Since we have assumed that \\M|| =0 , Theorem 2.7 yields that M 
is a graph manifold. Hence, by Theorem 2.9, we have that h(M) = 0. 

However, using work of Evans and Moser [6], specifically Theorem 4.2 and Corollary 
4.10 in [6], we see that either n\(M) contains a free subgroup of rank 2 or M is finitely 
covered by a 2-torus bundle over S1. In the former case, JTI(M) grows exponentially 
and therefore the minimal entropy problem cannot be solved for M. 

In the latter case, M admits a geometric structure modelled on one of E3, Nil, or 
Sol (cf. Theorem 5.5 of Scott [26]). However, in the case that M admits a geometric 
structure modelled on Sol, we know from Proposition 3.1 that the minimal entropy 
problem cannot be solved for M. 

Hence, if the minimal entropy problem can be solved for M and if M contains an 
incompressible embedded 2-torus, then M admits a geometric structure modelled on 
either E3 or Nil. 

- The other case is that M is a Seifert fibered space. Here, Theorem 2.5 ensures 
that M possesses a geometric structure modelled on one of S3, E3, S2 x R, H2 x R, 
SL2 or Nil. 

Since the fundamental group of M admits a Z®Z subgroup, the geometric structure 
on M cannot be modelled on §3 or S2 x R. Since we have assumed that the minimal 
entropy problem can be solved for M, Proposition 3.1 yields that M must admit a 
geometric structure modelled on either E3 or Nil, as desired. 

To see that item 2 implies item 3, recall from Proposition 3.1 that if M admits a 
geometric structure modelled on E3 or Nil, then M admits a smooth metric g with 
htop(flO = °-

Finally to prove that item 3 implies item 1, observe that if M admits a smooth 
metric g with ht0p(g) = 0 it then follows from inequalities (1) and (2) that M has 
zero simplicial volume. 

This completes the proof of Theorem A. • 
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5. Proof of Theorem B 
We are now ready to consider the minimal entropy problem for a general geometriz

able 3-manifold with zero simplicial volume. 

Theorem B. — Let M be a closed orientable geometrizable 3-manifold. The following 
are equivalent: 

(1) the simplicial volume \\M\\ of M is zero and the minimal entropy problem for 
M can be solved; 

(2) Af admits a geometric structure modelled on S3; S2 x IR, E3, or Nil; 
(3) Af admits a smooth metric g with ht0p(#) = 0. 

Proof. — Let us prove that item 1 implies item 2. Suppose that Af has zero simplicial 
volume and that the minimal entropy problem for Af can be solved. Since Af is 
geometrizable and its simplicial volume vanishes, Theorem 2.7 tells us that Af is a 
graph manifold. Hence, by Theorem 2.9, Af has zero minimal entropy. 

Since we are assuming that the minimal entropy problem can be solved for Af, the 
fact that Af has zero minimal entropy in turn implies there exists a smooth metric on 
Af with zero topological entropy. This in turn implies, by the discussion in Section 2.8, 
that 7Ti(M) does not have exponential growth. 

However, it is a fact from combinatorial group theory (which follows immediately 
from the existence of normal forms for free products, for instance) that if A and B are 
two finitely generated groups, then the free product A * B contains a free subgroup 
of rank two unless A is trivial or B is trivial, or A and B are both of order two. Since 
the fundamental group of a connected sum is the free product of the fundamental 
groups of the summands. we conclude that either the prime decomposition is trivial 
or there are only two summands both of which have fundamental group Z2. 

In the former case, it follows that Af must be either irreducible or S2 x S1, while 
in the latter case Af must be P3#P3, where P3 is the 3-dimensional real projective 
space. Since S2 x S1 and P3#P3 both admit a geometric structure modelled on S2xIR, 
we may assume from now on that Af is irreducible. 

There are now several cases, depending on TT\(M). Suppose first that 7T\(M) is 
finite. Since Af is geometrizable, we have that Af admits a geometric structure mod
elled on §3. 

In the case that TTI(M) is infinite and contains a Z 0 Z subgroup, the assumption 
that the simplicial volume of Af is zero, together with the fact that the minimal 
entropy problem can be solved for AI, allows us to apply Theorem A to see that AI 
admits a geometric structure modelled on E3 or Nil. 

The remaining case is that 7Ti (Af ) is infinite and does not contain a Z0Z subgroup. 
Since Af is geometrizable, either Af admits a hyperbolic structure or Af is Seifert 
fibered. (Since TT\ (Af ) does not contain a Z0Z subgroup, Af cannot admit a geometric 
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structure modelled on Sol, as Sol manifolds are finitely covered by 2-torus bundles 
over the circle.) However, since ||A/|| = 0, M cannot admit a hyperbolic structure. 

Note though that M cannot admit a geometric structure modelled on H2 x M, E3, 
SL2, or Nil, as such manifolds always have a Z ® Z in their fundamental groups, by 
Lemma 2.1. Hence, the only possibilities remaining are that M admits a geometric 
structure modelled on either x l or §3, as desired. 

To see that item 2 implies item 3, recall from Proposition 3.1 that if 71/ admits 
a geometric structure modelled on S3. S2 x R, E3, or Nil, then M admits a smooth 
metric g with htop(g) = 0. 

Finally to prove that item 3 implies item 1. observe that if M admits a smooth 
metric g with htop(g) = 0, it then follows from inequalities (1) and (2) that M has 
zero simplicial volume. 

This completes the proof of Theorem B. • 
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