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ON THE MATHEMATICAL CONTRIBUTIONS OF 
JACOB PALIS 

by 

Sheldon Newhouse 

Abstract. — A Conference on Dynamical Systems celebrating the 60th birthday of 
Jacob Palis was held at IMPA (Instituto de Matemática Pura e Aplicada) in Rio 
de Janeiro from July 19-28, 2000. This article is a revised and expanded version of 
a lecture I gave at the Conference. Many additions, including the list of references 
and the entire sections below on Homoclinic Bifurcations, Cantor Sets and Fractal 
Invariants, Non-Hyperbolic Systems, and A Unifying View of Dynamics, were made 
later by Marcelo Viana. It wras decided to preserve the flavor of the lecture by keeping 
the narrative in the first person. I am grateful to Marcelo for his contributions to this 
paper. In my opinion, they greatly improved the presentation of the mathematical 
scope and influence of Jacob Palis. 

Introduction 

Let me begin just by saying that Jacob has made many, many contributions to 
Mathematics. I will not talk about all of them because, in fact, in one hour it's 
impossible to discuss in any detail all of them. I pick some of what I consider to be 
the main contributions, and there will be relatively little that is new for experts, but 
I hope you will be reminded of many experiences during the last thirty or some years 
of the development of Dynamical Systems. 

First, to my mind his primary mathematical contributions fit into three categories: 
- global stability related to the concepts of structural stability and ^-stability; 
- bifurcation theory, which is how systems depending on parameters change, how 

their structure changes. 
- formulation of some general ideas and conjectures, that motivated several very 

interesting recent results in this field. 
I will talk about these aspects of his work a little bit later. Besides these types of 
subjects there are many other ancillary results, many interesting kinds of things. 
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2 S. NEWHOUSE 

But, together with the mathematical contributions that he has been making, one 
has to appreciate and understand the overview and direction of research that Jacob 
is responsible for. At the present time he is at 

- 35 graduate students, and some 30 grand-students, originating from 10 different 
countries mainly in Latin America, as you can see in his academic tree (attached to 
this paper). 
Some of these students have become main figures in the whole theory of Dynamical 
Systems, in fact in the world of Mathematics. You know who they are as well as I do, 
I don't need to mention names. It's a testimony to his vision, his generosity, and 
the freedom of ideas that he's encouraged, that he is such an inspiration to so many 
people. 

In addition, I think it's really fair to say that in our time Jacob Palis has been 
one of the main figures responsible for the development of Mathematics and Science, 
primarily in Latin America(1) and, in fact, in many other places, through his 

organization of meetings, symposia, workshops, and the support of sciences and 
Mathematics in developing countries, most notably, that I'm familiar with, in Trieste. 
He has facilitated the contacts between scientists who have had great difficulty in 
traveling to the west for political or other reasons. They were able to establish contacts 
with western mathematicians in the settings of meetings, workshops, and schools 
where one can get to meet many people. I myself met a number of people from 
mainland China in Trieste, at a time when it was extremely difficult for them to travel 
to Western Europe. Jacob has been one of the primary organizers and supporters of 
such occasions. 

Moreover, he has been responsible, in great measure, for 
- the tremendous growth of IMPA, this wonderful institute, as a researcher and, 

more recently, also as the Director. 
I think it's fair to say that IMPA has become the principal center for Mathematics in 
Latin America and, certainly, one of the world centers for Dynamical Systems. In no 
small measure is this due to his efforts and, again, his vision. 

I want to go now toward some of the mathematical developments Jacob has ac­
companied in his many years of activity. 

Structural Stability 

Let me go back to 1960. Let M be a compact connected smooth manifold without 
boundary, and let us consider the space Vr(M) of Cr diffeomorphisms on M, and the 

(^The impact of Jacob Palis's work throughout Latin America was the subject of another lecture at 
the Conference, by Alberto Verjovsky. 
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space XR(M) of C vector fields on M, as well as certain distinguished well-known 
subsets of these 

Vrss(M) — set of C1 structurally stable diffeomorphisms on A/, 
A's's ( AI ) = set of C1 structurally stable vector fields on M. 

This notion of structural stability means that under any small C1 perturbation, the 
entire orbit structure persists after a global continuous coordinate change. As far as 
I know, it was first presented by Andronov and Pontrjagin in 1937. They introduced 
these systems, that they called rough systems, or coarse systems, and the primary part 
of the paper [2] was to characterize them among vector fields in the two dimensional 
disk which were nowhere tangent to the boundary. And what they described in that 
paper was that a vector field X is structurally stable if and only if 

(a) X has only finitely many critical elements (singular points and periodic orbits), 
all hyperbolic, 

(b) and there are no saddle connections. 
The next principal result connected to structural stability we will mention was 

due to Maurfcio Peixoto in a paper [53] that was published in 1959. There, he 
studied various general properties of structurally stable systems and proved that the 
Andronov-Pontrjagin systems formed an open and dense subset of the set of all vector 
fields on the two dimensional disk which were nowhere tangent to the boundary. Later, 
in [54], in a somewhat surprising way, he proved the following theorem: on a compact 
oriented surface A/2, 

the structurally stable vector fields AJS(A/2) form a dense open set in the space 
XR(M2) and 

- they are completely characterized by the Andronov-Pontrjagin conditions (a) 
and (b), and the additional condition that the a- and cj-limit sets of every point x 
are critical elements. 

As far as I know, originally this paper was thought to prove that the result is true 
for all surfaces (not necessarily orientable), but that's still not known, except in the 
case of genus two, where Carlos Gutierrez [18] proved the general result, and in the 
Cl topology, where it is a consequence of Pugh's closing-lemma [56]. 

This led to two main questions at the time: 
- Is A^S(M) non-empty, that is, do structurally stable systems exist on any mani­

fold? 
Is A^S(A/) always dense in the space XR{M) of all vector fields? 

Also the analogous questions for Cr diffeomorphisms on compact manifolds. 
Well, to some people's disappointment, the second question, the density, has a 

negative answer. That was discovered by Smale around 1964 or 65. He found out 
that on any manifold in dimension bigger than or equal to 4 there were open sets 
of vector fields which were not structurally stable. That dimension was then made 
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4 S. NEWHOUSE 

optimal by Bob Williams in the end of the 60's [68]: he found more detailed versions 
of Smale's theorem, and a counter-example in dimension 3. 

Around the same time, in the 60's, in the Soviet Union, Anosov studied other kinds 
of structurally stable systems. The systems that he called C-diffeomorphisms [3], 
where the entire space had a splitting into two continuous distributions invariant by 
the derivative, one of which was exponentially expanded and the other exponentially 
contracted under iterates. These systems, now well known, were coined the name 
Anosov diffeomorphisms by Smale in his 1967 paper [65] in the Bulletin of the AMS. 
What Anosov was able to to prove for these systems was that 

- they formed an open subset of the set of all C1 diffeomorphisms on a manifold 
- and they were structurally stable systems. 

The methods were related (I don't know, in fact, in which order) to his celebrated 
result that geodesic flows on manifolds with negative curvature were structurally 
stable and had the flow version of these Anosov conditions. 

At this time, in the mid 60's, what was then the status of this kind of mathemat­
ics? We had high dimensional examples of structurally stable systems. They exhibited 
very complicated recurrence, and they were only known in special manifolds. In fact, 
for the Anosov systems the existence of the invariant bundles of course brings with it 
topological obstructions. So, for example on surfaces, Anosov diffeomorphisms only 
exist on the torus. And in higher dimensions, also only on very special manifolds. In 
fact, for a while it was felt that the only manifolds that admitted Anosov diffeomor­
phisms were the tori, of any dimension. Smale found examples using other kinds of 
Lie groups, non-Abelian Lie groups, but still they were very special in the kinds of 
manifolds that can exhibit them. 

What about simple recurrence, that is, systems that don't have complicated recur­
rent orbits? Motivated by gradient systems, which Smale sort of used for going back 
and forward between dynamical systems and topology, a special class of dynamical 
systems, which we now call Morse-Smale systems, was defined. In the diffeomorphism 
case, these are systems where the non-wandering set consists of a finite number of 
hyperbolic periodic orbits, and if you have two such orbits their stable and unstable 
manifolds are transverse. Analogous definitions were given for vector fields, where 
the non-wandering set consists of finitely many critical points and periodic orbits all 
hyperbolic, and with the transversality conditions. 

Smale was able to prove that there was a residual set of gradient systems (a residual 
set of functions) on any compact manifold that were Morse-Smale, and their time-one 
maps were Morse-Smale diffeomorphisms. The easy part of this is to realize that a 
Morse function has only hyperbolic critical points as its non-wandering set. But it's 
not so obvious to get the transversality condition: that is a consequence of a general 
approximation theorem, the Kupka-Smale theorem, which was done in those days. 
And Smale conjectured that, 
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- Morse-Smale systems form an open set in the space of all dynamical systems, 
both Vr(M) and Xr(M) 

- and every Morse-Smale system is structurally stable. 
And then, in a remarkable result in 1967, in his thesis [38] Jacob Palis proved that 
the first statement, the openness statement, held in general. And he proved the 
second statement, that Morse-Smale systems were structurally stable, for any systems, 
diffeomorphisms and vector fields, in dimension less or equal to 3. 

A Geometric Approach 

To indicate some of the difficulties which Jacob had to overcome in proving this 
theorem, let's take a simple example of a Morse-Smale diffeomorphism on the 2-sphere 
as indicated in Figure 1, where we have six fixed points as the non-wondering set. The 

FIGURE 1. Tubular famili 

Pi P2\\ 

circles represent sources and sinks, and we have two saddle points, I denote pi and p2, 
such that the unstable manifold of p\ has some transverse intersection, a heteroclinic 
saddle connection, with the stable manifold of p2-

Well, it was known earlier that there was a local stability phenomenon for hyper­
bolic fixed or periodic points, the Grobman-Hartman theorem. Locally, the system 
can be topologically linearized, that is, on a neighborhood of each periodic point the 
map is topologically conjugate to its derivative at the periodic point. But you need 
to do much more to get a global conjugacy, of course, you have to preserve stable and 
unstable manifolds globally. And orbits near the saddle points in the past go near the 
sources, and in the future go near the sinks. So, to have some conjugacy between a 
system like this and its perturbation it's not enough to look at local pictures, you have 
to glue them together in a special way. And the gluing is not obvious at all, because 
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the local linearizations are very special, so how you glue this in some compatible way 
was a major problem. 

And here there was the first major development that Palis came up with, which 
were the so-called tubular families, or invariant foliations, that I'll describe in some 
detail. They turned out to be very important for many later developments, as we'll see. 
These were invariant foliations defined in a neighborhood of each periodic point, one 
family for the stable direction and another for the unstable direction, and they were 
compatible: if two leaves from diffèrent periodic points intersect, then one contains 
the other. The construction of this is not at all obvious, it's still technically quite 
difficult — a very intricate geometric construction. The tubular families have different 
dimensions, in general. And the intricacies of this construction is what forced the 
restriction to dimension 3 in Jacob's thesis, the higher dimension analogue only came 
later. 

In particular, initially it was thought that topological questions would arise in this 
connection, since one has to extend maps defined on certain subsets to bigger sets. It 
was thought that the annulus conjecture, a major unsolved problem at the time, was 
related to the higher dimension analogue of this tubular families method. Well, I'm 
not sure about the exact details of how these problems were overcome, but together 
with Smale in 1968 or 69, the general construction of tubular families was given, and 
the general structural stability of Morse-Smale systems in any dimension was proved 
[42]. 

It's important to notice that there is a lot of freedom in the construction of these 
tubular families. The conjugacies are not unique. The existence of invariant manifolds 
covering the whole manifold was crucial to Anosov in his treatment of structural 
stability. Those invariant manifolds are unique, and so the conjugacies, if they are 
near the identity, are unique for Anosov systems. Here they are highly non-unique, 
and in fact the flexibility of the choice is very much related to the freedom one has 
in the construction of tubular families. So this was a major breakthrough at the time 
and still is, in my opinion, a major contribution, that came quite early in his career. 

This had two main corollaries. The first one was that 

- an open dense subset of the set of gradient systems on any manifold consists of 
structurally stable vector fields; 

Even more, the time-one maps of such vector fields are structurally stable diffeomor­
phisms. That's much stronger. Indeed, as we know, the usual equivalence relation 
for vector fields is homeomorphisms taking orbits to orbits. A stronger equivalence 
relation is conjugacy, actual one parameter group conjugacy. And structural stabil­
ity for the time-one maps gives stability under this stronger equivalence relation, for 
gradient flows. So, as an extension of this, the problem of the existence of structural 
stability was solved in a very positive way: 

- every manifold has structurally stable vector fields and diffeomorphisms. 
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The Stability Conjectures 
Around this time, in the late 60's, having proved that structurally stable systems 

are not dense, Smale was looking for a more general kind of system, that would still 
have some good structure and have the chance to form a dense subset in the space of 
all dynamical systems. And so he formulated what was called the ^-stability theorem. 

Our system is Q-stable if when you take a C1 perturbation of it you have a con-
jugacy from the non-wandering set of the first system to the non-wandering set of 
the second one (not a global conjugacy on the whole manifold, as in the definition 
of structural stability). He studied special systems, the so-called Axiom A diffeomor­
phisms, where the non-wandering sets are hyperbolic sets, and the periodic points are 
dense in the non-wandering set. He also assumed an additional property, the no-cycle 
property, that gives the ability to construct so-called filtrations for the system, that 
is, to isolate the recurrent orbits in individual indecomposable pieces. And he proved 
the theorem that Axiom A and the no-cycle property implied that the diffeomorphism 
was ^-stable. 

Around the same time, Jacob proved that if you have an Axiom A system and it 
has a cycle, then it is not ^-stable. And that led to the Stability Conjectures, which 
were also present in the Palis and Smale paper of 1969 [42]: 

(1) a diffeomorphism / G Vr{M) is structurally stable if and only if it satisfies 
the Axiom A and the so-called strong transversality condition: stable and unstable 
manifolds are in general position at each point wherever they meet; 

(2) and / G Vr(M) is ^-stable if and only if it satisfies the Axiom A and the 
no-cycle property. 
And they made analogous conjectures for flows. 

Let me mention a little personal anecdote in connection with this theorem and the 
formulation of these conjectures. For those who were around that time, you remember 
that the first formulation of the ^-stability theorem had another stronger condition, 
called Axiom B. Axiom B said that if you have two basic sets and the unstable 
manifold of one accumulates on the other, then there is a periodic point in the first 
whose unstable manifold has a transversal intersection with the stable manifold of the 
other. And the first formulation of the 0,-stability theorem, in fact the formulation 
that is in the Bulletin paper [65], says: Axiom A plus Axiom B implies ^-stability, 
or something to that effect. 

I remember Smale giving a lecture in the seminar in Berkeley in 1966 or maybe 
1967. I was a new graduate student just sort of going to this seminar from time 
to time, but it was a very active and energetic seminar, many questions, comments, 
discussions. I remember Charles Pugh was there, and Mike Shub, Morris Hirsch, 
Jacob Palis. As a young graduate student we look around at all those famous people 
in the room, and just watch what they were doing. Well, Terry Wall had just come 
in from England and was interested, so he went to the seminar. In fact, he was 
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under jet-lag so he was asleep in a large part of the talk. So, Smale was doing the 
construction of the local conjugacy of the fî-stability for the basic sets. Then, with 
Axiom B, he constructed this partial order on the basic sets, and hence a filtration 
to isolate each piece, so that one can get the global conjugacy. And, suddenly, Terry 
woke up and looked and said, quietly: "Is all you need, the partial order relation, in 
order to get the stability?" This was an agitated seminar with many people. Steve 
turned and said: "Well, maybe, I'm not sure about that, I'm not sure." 

At that instant, I didn't know who Jacob Palis was, but he became very animated 
and said: "That's right, that's it, that is all you need!" And the next day, as I recall, 
he proved that if you had a cycle then you had ^-explosions, and so, in fact, this 
no-cycle condition was necessary for stability. Later on, in the paper that actually 
appears in the proceedings of the symposium [42], you see Axiom A and no-cycle 
condition, not Axiom A and Axiom B, Axiom B disappeared. So, as part of this 
discussion, Jacob had a significant part in the formulation of the Q-stability theorem 
as it now sits. 

From Hyperbolicity to Stability 
How does one go beyond toward more general stability theorems and proving these 

conjectures? What did people know at that time? They knew that the Morse-Smale 
systems were structurally stable. They knew that Axiom A and no-cycle property 
implies Sl-stability. How does one to get more general structurally stable systems? 
One idea at the time was to take Jacob's tubular family construction and extend 
it to Axiom A systems. That is, to get an invariant foliation on neighborhoods 
of complicated hyperbolic sets. It turned out to be quite a complicated thing to 
do and, in fact, this is still not known in general, it's not known how to do that 
for high dimensional systems. But that program did succeed for two-dimensional 
diffeomorphisms, with the thesis of Welington de Melo in 1971. 

The next progress came in what might seem a curious way. Jiirgen Moser gave 
a second proof of the stability of Anosov systems, using the so-called infinitesimal 
methods. His idea was the following: you want to solve the equation ho f = g o h for 
a homeomorphism h. You rewrite this as 

f-1 oho f = f~l ogoh. 

Then you take a Riemannian metric on your manifold, and try to find h as the 
exponential of some continuous vector field v, which should be C°-small so that the 
homeomorphism is close to the identity. So, writing h = exp(i>), and also f~~1og = 
exp(w) for a C1-small vector field w, you get 

f~l o exp(i;) o / = exp(w) o exp(v). 
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Linearizing this equation (or using infinitesimal methods, which is the term I use), 
you get 

exp(D/_1 o v o f) = exp(w + v), 

up to a small error. So, taking exp-1 in the previous relation, it becomes 

Df~l ovof + s(v, w) — w + v, 

where s(v,w) is small. Denoting Fv = Df~l o v o / , this may be rewritten as 

(I — F)v = v — Df-1 o v o f = s(v, w) — w. 

So, we know w, which is a C1-small vector field, and we are looking for v, a small 
continuous vector field. Moser realized that if you could invert this operator (I — F) 
on the space of continuous vector fields, then you could solve this functional relation 
for v, using the contraction mapping theorem. And, in fact, the Anosov condition 
was precisely the condition you need to make (I — F) invertible. 

So, he was able to give a new proof of the stability of Anosov systems using vector 
field methods, infinitesimal methods, whereas Anosov's proof made strong use of the 
existence of integral manifolds for the expanding and contracting distributions, the 
stable and unstable manifolds. Well, at the time this was interesting because it made 
Anosov's proof understandable to people in the West, there was no published English 
version of it. And also I think it was thought of as a useful addition, a curious new 
proof of a known result. One thing that came out of it is that you get unique solutions 
near the the identity, which you can also prove by other methods. 

There is an other development that I should mention. In the group of people 
who were in Berkeley and in the West at the time, the way that Moser's methods 
became known was through an implicit function theorem argument that John Mather 
produced. It turned out that, in detail, Mather's argument was actually incorrect, 
because differentiability assumptions were not satisfied. What the method gave you 
was a continuous solution to the functional equation, it didn't prove that the solution 
was a homeomorphism. But the arguments could be fixed up. I think it was Mike 
S hub who observed, and was well-known in the Soviet Union as well, that Anosov 
systems were expansive, and you can use that to show that solutions which are C°-
close to the identity actually have to be one-to-one. So you got the proof anyway, 
even if the implicit function theorem didn't work. 

Far away, in the middle of the United States, Joel Robbin was learning about those 
things, and I think he shocked everybody by announcing that he could prove that, in 
the C2 case, Axiom A diffeomorphisms satisfying the strong transversality condition 
are structurally stable. Well, how did he do it? He used infinitesimal adaptations of 
the tubular families constructions. Basically, the conjugacies were not unique, they 
involved choices, and he used the fact that Moser's transformation (I — F) had a 
continuous right inverse. You can see Jacob's influence again, even at that level: at 
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