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NILPOTENT ORBITS, ASSOCIATED CYCLES AND
WHITTAKER MODELS FOR HIGHEST WEIGHT
REPRESENTATIONS

Kyo Nishiyama, Hiroyuki Ochiai, Kenji Taniguchi,
Hiroshi Yamashita, Shohei Kato

Abstract. — Let G be a reductive Lie group of Hermitian type. We investigate
irreducible (unitary) highest weight representations of G which are not necessarily in
the holomorphic discrete series. The results of three articles of this volume include
the determination of the associated cycles, the Bernstein degrees, and the generalized
Whittaker models for such representations. We give a convenient description of K-
types by branching rules of representations of classical groups. An integral formula
of the degrees of small nilpotent orbits is established for arbitrary Hermitian Lie
algebras. The generalized Whittaker models for each unitary highest weight module
are specified by means of the principal symbol of a gradient type differential operator,
and also in relation to the multiplicity in the associated cycle. In the text, we also
present some expository introductions of the key notions treated in this volume, such
as associated cycles, Howe correspondence for dual pairs where one member of the
pair is compact, and the realization of highest weight representations on the kernels
of the differential operators of gradient type.
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Résumé (Orbites nilpotentes, cycles associés et modeles de Whittaker pour les représen-
tations de plus haut poids)

Soit G un groupe de Lie réductif de type hermitien. Nous étudions les représenta-
tions irréductibles (unitaires) de G de plus haut poids, qui ne sont pas nécessairement
dans la série discréte holomorphe. Les résultats obtenus dans les trois articles de ce
volume comprennent la détermination des cycles associés, des degrés de Bernstein
et des modéles de Whittaker généralisés de ces représentations. Nous donnons une
description commode des K-types par les régles de branchement des représentations
des groupes classiques. Une formule intégrale pour les degrés des petites orbites nilpo-
tentes est établie pour les algébres de Lie hermitiennes quelconques. Les modéles de
Whittaker généralisés pour chaque module unitaire de plus haut poids sont spécifiés
au moyen du symbole principal d’un opérateur différentiel de type gradient, et égale-
ment en relation avec la multiplicité dans le cycle associé. Le texte comporte aussi des
exposés introductifs concernant les principales notions considérées : cycles associés,
correspondance de Howe dans le cas ou la paire duale contient un membre compact
et réalisation des représentations de plus haut poids dans les noyaux d’opérateurs
différentiels de type gradient.
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INTRODUCTION TO THIS VOLUME

1. Associated cycle

Let G be a reductive group over R, and consider an irreducible admissible rep-
resentation 7w of G. There are many kinds of invariants attached to 7 in order to
study, even classify, such representations. Among these invariants, one of the most
important ones is the global character @, of 7. However, since the global character
determines 7 completely, it is hard to compute ©, explicitly. Besides it, there are
several invariants which are easier to handle; such as the infinitesimal character A,
the Gelfand-Kirillov dimension Dim 7, the Bernstein degree Deg 7, minimal K-types,
etc., where K is a maximal compact subgroup of G. These invariants are “coarse” in
the sense that a single invariant cannot specify 7 by itself. However, they are strong
enough when you use them together to analyze the properties of .

It is Vogan who was first aware of the importance of using the associated variety
AV  of 7 to study admissible representations of a real reductive group G ([18, 19]).
Let gr be the Lie algebra of G, and let U(g) be the universal enveloping algebra of the
complexification g = gr ®g C of gr. The associated variety AV , is defined to be the
support of graded S(g)-module gr X, corresponding to the Harish-Chandra (U(g), K)-
module X, of m, where gr X is defined through a good filtration of X, compatible
with the natural filtration of U(g), and S(g) = gr U(g) denotes the symmetric algebra
of g (see [19] for precise definition). The associated variety is a kind of geometric
counterpart of the purely algebraic notion of primitive ideals. It is not so hard to
compute, but, as an invariant of 7, it contains rich information on 7. Later, Vogan
refined the notion of associated variety to define the associated cycle. Let us see what
is the associated cycle of m briefly (for precise definition, see [19], and also [NOT] in
this volume). Before that, we need some notation.

Fix a maximal compact subgroup K of G. The choice of K determines a complex-
ified Cartan decomposition g = € & p. We denote by K¢ the complexification of K,
which has the Lie algebra ¢. Let A (p) be the nilpotent variety in p. By the adjoint
representation, the group K¢ acts on N (p) with finitely many orbits.



2 INTRODUCTION TO THIS VOLUME

The associated variety of an irreducible admissible representation 7 is a union of
the closure of equi-dimensional nilpotent Kc-orbits in p:

2
AV, = U ﬁia
=1

where {O;}!_, C N(p)/Kc is a family of Kc-orbits which generate the same nilpotent
Gc-orbit OF in g (Gc is a connected Lie group with Lie algebra g). Then, the
associated cycle of 7 is a linear combination of the closure of O;:

!
AC T = Z mz[@L
i=1

where m; is a positive integer called the multiplicity of = at O;. Roughly speaking,
the orbits O; describe the “directions” in which 7 spreads most rapidly (cf. [5]). The
multiplicity m; gives the “rank” of U(g)-module X, localized at O;. Take A € O; and
let Kc(A) be the fixed subgroup of K¢ at A\. Then K¢(A) acts on the space of multi-
plicities, and therefore m; can be interpreted as the dimension of the representation
of K¢(X) (see [19, Definition 2.12]).

The cycle AC , behaves very well as an invariant of 7. For example, the orbits O;
are equi-dimensional, and their complex dimension is equal to the Gelfand-Kirillov
dimension Dim 7. Also the Bernstein degree is expressed as

!
Degn = Z m; deg O;,
i=1
where deg O; denotes the degree of the nilpotent cone O;, and it should be understood
as that of the corresponding projectivised variety in P(p) (cf. [NOT]; see [4, 6] for
the definition of the degree of a projective variety).

The authors of the first article in this volume, namely, Nishiyama, Ochiai and
Taniguchi (abbreviated as NOT in the following), were interested in the computation
of the Bernstein degree Deg 7. It seemed rather hard to compute Deg 7 for a particular
instance of 7. It is directly related to the associated cycle, but only few (non-trivial)
examples were known at that time.

Assume that G/K is an irreducible Hermitian symmetric space, and take an irre-
ducible unitary highest weight representation 7w of G. As a representation of Kc, the
space p decomposes into two irreducible components:

p=ptop .
Then it is well known that AV , is the closure of a single Kc-orbit O, C p*. Hence
the associated cycle can be written as

Acﬂ = mﬂ'[@l"] (m7r (S Z>0)»

where m, is the multiplicity of = at O;.
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1. ASSOCIATED CYCLE 3

In [NOT), NOT derive an explicit K-type formula of 7 via the method of reductive
dual pairs in the stable range, where G is assumed to be classical. The asymptotics of
the K-types implies a formula for Degm = m, deg O,. Further, the multiplicity m,
is interpreted as the dimension of an irreducible finite dimensional representation o of
a compact Lie group G’ which forms a reductive dual pair (G,G') with G. The rep-
resentation o naturally determines m through the Weil (or oscillator) representation,
and vice versa. The correspondence between o and 7 is called the theta correspon-
dence (see below for the precise formulation which requires metaplectic covers). As
a byproduct, NOT also get an integral formula of deg O,, which can be calculated
explicitly.

For any real reductive group G, the author of the second article, Yamashita, has
been interested in the embeddings of irreducible admissible representations 7 into
a series of representations induced from certain nilpotent subgroups of G. Such an
induced module is called a generalized Gelfand-Graev representation of G (cf. [9]).
By construction, it is attached to each nilpotent G-orbit OR in the real Lie algebra
gr through the Dynkin-Kostant theory. We say that m has a generalized Whittaker
model of type OR if there exists an embedding of 7 into the generalized Gelfand-Graev
representation attached to OR.

The existence of generalized Whittaker models (or such vectors) reflects some reg-
ularity of the irreducible representation 7 of G in question. For example, as is shown
by Kostant (for quasi-split groups) and Matumoto (for any real reductive groups), =
has the largest possible Gelfand-Kirillov dimension if and only if the algebraic dual
of the Harish-Chandra module of 7 has nonzero Whittaker vectors attached to the
principal nilpotent orbits (see [NOT, Th.2.4]). Further, Matumoto ([11], [12]) estab-
lished some results of this nature on generalized Whittaker vectors in connection with
the associated variety AV(Anny g Xr) of the primitive ideal Anny (g) Xr, or the wave
front set WF(r) of . For details, we refer to [Y, Introduction]. It is well-known that
AV(Anny ) X7) is the closure of a single nilpotent orbit in g which contains AV.
The wave front set WF () describes the singularity of the distribution character O,
of m, and it is a union of some nilpotent G-orbits in gg. By Rossmann [14], it is
shown that WF(7) coincides with the asymptotic support of 7 introduced in [1]. Re-
cently, Schmid and Vilonen proved that the wave front “cycle”, which is a refinement
of WF(r), corresponds to the associated cycle via Kostant-Sekiguchi correspondence
([16]).

Then, it is natural to ask whether the associated cycle characterizes the generalized
Whittaker models of interest. At first glance, this problem may seem to be more diffi-
cult to handle directly, since the associated cycle lives in A (p), contrary to the above
two invariants AV(Anny g X,) and WF(7) of m. But, in [5], Gyoja and Yamashita
found evidence for a strong relationship between the associated variety AV, and the
embeddings in question. Moreover, for any unitary highest weight representation m
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4 INTRODUCTION TO THIS VOLUME

of the indefinite unitary group G = U(p,q), Tagawa calculated in his master the-
sis [17] the dimension of the space of generalized Whittaker models attached to the
Cayley transform of Oy, by using the realization of 7 in the oscillator representation
of reductive dual pair (G,G') with G' = U(m). It is equal to the dimension of the
corresponding irreducible representation o of G', if the dual pair (G,G') is in the
stable range, i.e., m < min(p, q).

Concerning the irreducible admissible (unitary) highest weight representations m
in Hermitian symmetric case, Yamashita gives in [Y] some structure theorems for
the space Y, of all (g, K)-homomorphisms from the Harish-Chandra module X into
the generalized Gelfand-Graev representation ['(OR). Here, O, € N(p)/Kc and
OR € N(gr)/G are related by the Kostant-Sekiguchi correspondence, and the rep-
resentation ['(OR) is attached to the nilpotent G-orbit OR. It is proved that, if the
representation 7 is unitary, the associated cycle AC, completely characterizes the
generalized Whittaker models of type OR.

In 1998 and 1999, we, NOT and Yamashita, had several occasions to discuss what
is going on, and we gradually had been understanding that some of our results are
very close in terms of associated cycles. For example, it turns out that the dimension
of the vector space YV, and the multiplicity m, in the associated cycle of = coincide
each other; they are both equal to dimo in the stable range case, where o is the
irreducible representation of G’ associated with 7 via theta correspondence.

Both methods have their own advantages.

In [Y], it is shown that the space Y , which characterizes the generalized Whittaker
models, carries a natural K¢ (X )-action, where X € O, and K¢ (X) denotes the fixed
subgroup of X in K¢. As mentioned before, the multiplicity in the associated cycle
is naturally interpreted as the dimension of a certain representation of K¢(X). An
application of such interpretation is given in [Y] by showing that ) is contragredient
to the K¢ (X)-module attached to m by Vogan [19]. Moreover, in view of the work
[16] of Schmid and Vilonen, the result of [Y] naturally gives an interpretation of
the multiplicity in the wave front cycle for unitary highest weight modules. In fact,
Yamashita’s proof uses the Cayley transform (Kostant-Sekiguchi correspondence) es-
sentially. It should be noticed that the work [Y] does not deal with the degree of the
nilpotent orbit, which is the other important quantity in the associated cycle.

On the other hand, in [NOT), their computation also gives the degree deg O, itself
for the representation 7 in the stable range of reductive dual pairs by some definite
integral. Although, the formula of deg O, for such representations 7 is already known
(Giambelli-Thom-Porteous formula, see [NOT]), this seems to be a new proof which is
purely representation theoretic. Also, we can read off the strong relationship between
K-type decomposition 7r|K and Kc-module structure of the regular function ring
C[Oy], which is predicted also by Vogan (cf. [20]).
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2. MAIN RESULTS 5

Later, Kato and Ochiai [KO] obtained a formula for the degree deg O, for irre-
ducible unitary highest weight modules 7 of an arbitrary simple Lie group of Hermi-
tian type, including exceptional groups. Here, we can not use the theory of reductive
dual pairs or classical invariant theory. Instead, we use the structure of root systems
corresponding to the orbits. The same method is applicable for orbits of irreducible
representations with multiplicity-free action. The results in [KO] cover all the irre-
ducible multiplicity-free representation. As an application, we determine the explicit
value of the Bernstein degree and the associated cycle of irreducible unitary high-
est weight representations with scalar extreme K-type. This is a generalization of
[NOT].

After discussing, we, all of five authors of these three articles, finally were led to
an idea that we should publish our results in a unified volume, and here it is.

2. Main results

Up to now, we are concentrated only on the associated cycles. Although each
article contains its own introduction, let us briefly take a look at the other aspects of
the three articles.

2.1. Description of the generalized Whittaker models via gradient type
differential operators. — Let us first explain the results of [Y].

Let 7 be an irreducible admissible representation of G. We denote by 7* the
representation of G contragredient to m. Suppose that the Harish-Chandra module
Xnv = (Xz)* of m* is realized as the K-finite kernel of a certain invariant differential
operator D of gradient type acting on the C'*°-sections of a G-homogeneous vector
bundle over G/K. For example, discrete series representations or derived functor
modules satisfy this assumption, if the infinitesimal character is sufficiently regular.

The main object of the article is a description of generalized Whittaker models
for each representation 7 with highest weight, by using the principal symbol of the
differential operator D.

To be more precise, let G be a connected simple Lie group of Hermitian type.
As a representation, we take an irreducible admissible highest weight representation
7 = mw(7) with extreme K-type 7 € Irr(K). Note that 7 is not necessarily unitary for
a while. We write L(7) = X, (,) for the Harish-Chandra module of 7. It is known
that the dual lowest weight module L(7)* can be realized as the K-finite kernel of a
G-invariant differential operator D« of gradient type (this fact is due to Davidson,
Enright and Stanke; see [Y, Section 2.3] for the definition of D).

Take an arbitrary Kc-orbit O in p*. Let OR denote the nilpotent G-orbit in gg
attached to O by the Kostant-Sekiguchi correspondence. Then, a standard argument
in the Dynkin-Kostant theory on the nilpotent orbit OR allows us to define a nilpo-
tent Lie subalgebra n(OR) of g and its character n(O®). An infinitesimally induced
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6 INTRODUCTION TO THIS VOLUME

representation

T(OF) = Ind §oryn(OF)
is called a generalized Gelfand-Graev representation of G associated to OR. For each
L(7) and each T'(OR), we are concerned with the space

Y(r,0) = Hom g, (L(7),T(O%)),

which describes the generalized Whittaker models for L(7) of type OR.

Let AV, = O, C p* be the associated variety of m, and OR C N(gg) the Cayley
transform of O,.

The following theorem is a consequence of Theorems 4.7 and 4.9 in [Y].

Theorem A
(1) The dimension of the vector space Y(7,0) is given by
0 if dim O > dim O,
dim Y(r,0) =< finite (£0) if O = Oy,
00 if dim O < dim O,.

(2) Let o(D-+) be the principal symbol of the differential operator D,« at the origin
(see [Y, Section 3.3] for the precise definition). Then, the kernel of the linear map
o(D:+)(X, -) does not vanish if the element X lies in O,. For such an X, there exists
a canonical linear embedding of this kernel space into YV, := Y(7,Oxr).

This theorem tells us that the embeddings impose a strict restriction on the associ-
ated variety (cf. [11]). Note that the Kc-orbits in pT are distinguished by their dimen-
sion. In particular, we have O C AV , = O, if and only if dim O < Dim7 = dim O,.

As for the unitary highest weight modules, we get the following neat description
[Y, Theorem 4.8] of generalized Whittaker models.

Theorem B. — Suppose that the representation @ = (1) of G is unitary. Then, the
linear embedding of ker o(D;+)(X, ) into Y, given in Theorem A is surjective, where
X € Ox. Moreover, the common dimension of these two spaces coincides with the
multiplicity m, in the associated cycle, i.e.,

AC ; = (dim Yy) - [Oy] = (dimker o(D;+)(X, -)) - [Ox].

This theorem tells us that the associated cycle gives some control even on the
embeddings of 7 into some kind of representations. We note that the kernel
ker o(D-+)(X, -) has a structure of K¢(X)-module in a natural way, where K¢ (X) is
the fixed subgroup of X in K¢ as before.

As an application of Theorem B, one can compute the multiplicity m, = dim Y,
explicitly, if  is the theta lift of a finite dimensional representation of a compact group
G'. To be more precise, assume that G is a classical group of type AIII, CI or DIII. Let
G' be a compact group dual to G in the sense of Howe’s theory on reductive dual pairs
in the large symplectic group Sp(2N,R). Let Mp(2N,R) be the metaplectic group

ASTERISQUE 273



2. MAIN RESULTS 7

which is the unique non-trivial double cover of Sp(2N,R). We denote by G, K and
G’ the inverse images of G, K and G' by the covering map Mp(2N,R) — Sp(2N, R)
respectively Then, the Weil representation w of Mp(2N,R) restricted to the pair
(G G’) decomposes into a direct sum of irreducible representations of G x G’ without
multiplicity:

w ™~ EB 6(0) & o,

and the assignment o — 6(c) gives a one-one correspondence between a set of (equiv-
alence classes of) irreducible unitary representations of G’ and a set of such represen-
tations of G. Note that o is necessarily finite dimensional since G is compact. The
representation 0(c) of G is called the theta lift of 0. It is well known that 6(c) is

a unitary highest weight representation m = 7(7) for some 7 € Irr(K) (see [10] and
[3]). Although (o) is a genuine representation of the double covering G, after the
twist by an appropriate character, or just taking the connected component, we also
get almost all the unitary highest weight representations of G itself in this way.

By using the above realization of the irreducible representation 7= = 6(0) in w, the
K¢ (X)-module ker o(D,+)(X, -), which is isomorphic to the space YV, of all (g, K)-
homomorphisms from 7 into I'(OX), can be described through some algebraic and
geometric techniques. See Theorems 5.14 and 5.15 (together with the isomorphism
(4.15)) in [Y] for the precise statements. We deduce in particular the following

Theorem C. — Assume that the pair (G,G') is in the stable range with G' the smaller
member. Let m = 6(c) be the theta lift of an irreducible finite dimensional represen-
tation o € Irt(G'). Then we have

AC » = dimo - [Oy],
where O does not depend on the individual m = 6(o), but it depends only on the
group G'.
NOT proved the same statement in a completely different way.
2.2. Asymptotics of K-types and the stable branching coefficients.— Now
let us turn to [NOT].
Let (G, G') be a reductive dual pair of type I which is irreducible. We consider the

case where G’ is a compact group. Then G is necessarily of Hermitian type. Namely,
the pair is one of the following.

(Sp(2n, R), O(m)),
(G,G") =4 Ulpq),U(m)),
(0*(2p), Sp(2m)).

We further assume that the pair is in the stable range with G’ the smaller member.
For ¢ € Irr(G"), there corresponds an irreducible unitary representation 6(¢) € Irr(G)
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8 INTRODUCTION TO THIS VOLUME

called the theta lift of 3. Note that () is possibly zero. We assume that 6(5) does
not vanish in the following. If we twist & by a certain unitary character y of G', then
o =0 ®x~! factors through to the representation of G’. We denote L(c) = 8(0 ® x)
for o € Irr(G') (see [NOT, § 5] for more details). In this case, L(o) is an irreducible
unitary highest weight representation which is singular with few exceptions.

In [NOT], we first study the K-type decomposition L(0)] # Via the branching
coefficients of finite dimensional representations of classical groups. It has a nice K-
type formula. Put m = L(o). Let O, be the open Kc-orbit of the associated variety
of m = L(o) which actually depends only on G’. It is well known among experts
that O, is a geometric quotient of a vector space by a linear action of G¢. From
the description, we can compute the regular function ring C[O;] explicitly. These
considerations are more or less folklore in the representation theory.

The first main result of [NOT] is an integral expression of the degree of nilpotent
orbits. If ¢ = 1¢- is the trivial representation of G’, then its theta lift 7 = L(1g/)
has almost the same K-type structure as C[AV ]. The difference between these
two K-type structures are only a small constant shift in the highest weights. This is
essentially due to Davidson, Enright and Stanke [2]. The coincidence of K-types imply
that the multiplicity of the associated cycle AC  is one, and we have Deg 7 = deg O,.
Thus the calculation of deg O, reduces to that of the Bernstein degree of the theta
lift of the trivial representation. This is a purely representation theoretic problem.

Theorem D. — For the Kc-orbit O, in p*, there exist integers F,m,n and 1 < a < 4
such that

1 (dim Oy )!

F m %

/ | H (i — 93]’)‘&(%1 c )Ty - dEy,

230 1<i<j<m
T1++2zm <1

deg O =

where F,n,m,a are explicitly given in [NOT, §7.6].

The above definite integral can be expressed explicitly in terms of Gamma func-
tions, and it gives Giambelli’s formula.

The second result is a comparison theorem of K-types of 1 = L(o) and those of
C[AV ] for general ¢. If ¢ is not the trivial representation, the description of K-types
L(0)| in terms of C[AV ] requires the notion of stable branching coefficients, which
is first introduced by Sato [15]. Let (L, H) be a spherical pair of reductive algebraic
groups. Let &% be the lattice semigroup consisting of the dominant integral weights
for L. We denote by ® the integral weight lattice generated by ®+. Put

e (H) = {ne @ | (m)" £0},

where 7, denotes an irreducible finite dimensional representation of L with highest
weight n € ®* and (7,)) is the subspace of H-invariants (or H-spherical vectors). Let
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®(H) be the sublattice in ® generated by ®*(H). Sato’s observation is as follows.
Take an irreducible finite dimensional representation o € Irr(H) of H. Then the
branching coefficient m(\, o) (A € %) defined by

T)\lH ~ Ze m(A,0)0
o€lrr(H)
does not depend on a particular A, but only depends on the coset [A\] € &t /®(H) for
sufficiently “large” X. We call the value m(\, o) for a sufficiently large A the stable
branching coefficient and denote it as m([\], o).
Now let us take H = G and L as follows according as the pair (G,G’).

(G,G") (L,H) !

(Sp(2n,R), O(m)) (GLp,,Om) n
U@, 9),U(m)) | (GLm X GLym,GLy) | min(p,q)

(0*(2p), Sp(2m)) (GL2m, Sp2m) p

Note that L is the complexification of a member of “seesaw” dual pairs.
We do not assume that the pair (G,G’) is in the stable range in the following
theorem.

Theorem E. — Fiz | in the above table, and take o € Irr(G') = Irr(H). Then L(o)| 7
is asymptotically a multiple of C[AV ;] (m = L(o) = 0(c ® x)). The multiplicity,
denoted by m,, is given as follows. There are a sublattice A;L C ®* and a dimension
function r([A]) on A} /®(H) such that

me= Y m(N,o)r().

(NeAS /®(H)
Moreover, m, coincides with the multiplicity of O in the associated cycle AC .

If the dual pair (G,G") is in the stable range, then m < [ holds and the above Af
coincides with the whole ®*. In that case, we can use Sato’s summation formula to
deduce that m, = dim o, which will imply Theorem C.

2.3. Degree of nilpotent orbits. — We now explain the paper [KO].

Let G be a simple Lie group of Hermitian type, and consider K-invariant de-
composition g = p~ @ €D pT as above. Then there are precisely r + 1 Kc-orbits
Om (0 <m < r) in pt, where 7 is the real rank of gg.

For three types of groups G in Section 2.2, the degree of the closure of the nilpotent
orbit O,, is given by Giambelli formula. In [NOT], the degree in this case is com-
puted using the explicit Kc-structure of the regular function ring C[O,,] and Weyl’s
dimension formula. The result is expressed by some definite integral over some sim-
plex. The integral can be evaluated explicitly by using the gamma function associated
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to the Hermitian symmetric cone. This gives an alternative, and possibly new, proof
of Giambelli’s formula.

In [KO], we consider the degree of the closure of the nilpotent orbit O,, for a
simple Lie group of Hermitian type. It is significant that the representation of K¢ on
C[p*] is multiplicity-free. In general, let us consider an irreducible representation V'
of a complex reductive algebraic group K whose action on C[V'] is multiplicity-free.
We obtain the integral formula of the degree of the closure of an arbitrary K-orbit in
V.

Let A be the root system of K and define px = %Z aca+ @, the half sum of all
the positive roots. We may assume that there exists Z € Lie(K) which represents the
degree operator for the polynomial ring C[V].

Theorem F. — Let Y be an irreducible closed K-stable subset of V. Then there exist
a set of dominant integral weights {¢1,...,om} and a subset Ay C A such that

m + |AY
dng = l_I( A+I<a pK / I I z—l szz) d:l)l dl‘m,
ae

where the domain D of the integration is given by
D={(z1, . 2m) | 21,2 >0, Ty zii(2) < 1}

In the case of a simple Lie group of Hermitian type, the set of linear functions
{{a, 0, wips) | @ € AT} can be described in terms of the restricted root systems.
Then, we have a unified formula to express the degree of the orbits O,,, which cov-
ers the Giambelli formula in [NOT] as well as that for two exceptional groups of
Hermitian type. We also apply this method to obtain the associated cycles and the
Bernstein degrees of certain unitary highest weight representations of exceptional G,
which are in the Wallach set.
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Abstract. — Let G be the metaplectic double cover of Sp(2n,R), U(p,q) or O*(2p).
we study the Bernstein degrees and the associated cycles of the irreducible unitary
highest weight representations of G, by using the theta correspondence of dual pairs.
The first part of this article is a summary of fundamental properties and known results
of the Bernstein degrees and the associated cycles. Our first result is a comparison
theorem between the K-module structures of the following two spaces; one is the
theta lift of the trivial representation and the other is the ring of regular functions
on its associated variety. Secondarily, we obtain the explicit values of the degrees
of some small nilpotent Kc-orbits by means of representation theory. The main
result of this article is the determination of the associated cycles of singular unitary
highest weight representations, which are the theta lifts of irreducible representations
of certain compact groups. In the proofs of these results, the multiplicity free property
of spherical subgroups and the stability of the branching coefficients play important
roles.

Résumé (Le degré de Bernstein et le cycle associé des modules de Harish-Chandra — le cas
hermitien symétrique)

Soit G le revétement double métaplectique de Sp(2n,R), U(p, q) ou O*(2p). Nous
étudions les degrés de Bernstein et les cycles associés des représentations irréduc-
tibles unitaires de G de plus haut poids, en utilisant la correspondance théta par
paires duales. La premiére partie de cet article est un résumé des propriétés fon-
damentales et des résultats connus concernant les degrés de Bernstein et les cycles
associés. Notre premier résultat est un théoréme de comparaison entre les structures
en tant que K-modules des deux espaces suivants : I'un est le relévement théta de
la représentation évidente, ’autre est I’anneau des fonctions réguliéres sur la variété
associée. Deuxiémement, nous obtenons de maniére explicite les valeurs des degrés de
quelques petites Kc-orbites nilpotentes au moyen de la théorie des représentations.
Le résultat principal de cet article est la détermination des cyles associés aux repré-
sentations singuliéres unitaires de plus haut poids, qui sont les relévements théta des
représentations irréductibles de certains groupes compacts. Dans les démonstrations
de ces résultats, la non-multiplicité des sous-groupes sphériques et la stabilité des
coefficients de branchement jouent des réles importants.
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Key words and phrases. — Hermitian symmetric space, highest weight representation, nilpotent orbit,
associated variety, associated cycle, multiplicity-free action, dual pair correspondence.
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Introduction

Let G be a semisimple (or more generally, reductive) Lie group. For an irreducible
admissible representation m of G, there exist several important invariants such as irre-
ducible characters, primitive ideals, associated varieties, asymptotic supports, Bern-
stein degrees, Gelfand-Kirillov dimensions, etc. They are interrelated with each other,
and intimately related to the geometry of coadjoint orbits.

For example, at least if G is compact and 7 is finite dimensional, the character
of m is the Fourier transform of an orbital integral on a semisimple coadjoint orbit
([29]). This is also the case for a general semisimple G and fairly large family of
the representations (see [41]). This intimate relation between coadjoint orbits and
irreducible representations invokes the philosophy of so-called orbit method, which is
exploited by pioneer works of Kirillov and Kostant, and is now being developed by
many contributors. However, for a general semisimple Lie group G, it seems that the
orbit method still requires much to do. In particular, we should understand some
small representations corresponding to nilpotent coadjoint orbits, which are called
unipotent.

On the other hand, by definition, most of invariants are directly related to nilpotent
coadjoint orbits. In a sense, the corresponding nilpotent orbits represent the leading
term of irreducible characters ([1], [44]). The invariants of large representations
correspond to the largest nilpotent coadjoint orbit, namely, the principal nilpotent
orbit. For large representations, the orbit method seems to behave considerably well.
Therefore we are now interested in ‘small’ representations whose invariants are related
to smaller nilpotent coadjoint orbits.

One extreme case is the case of finite dimensional representations. In this case,
however, the corresponding orbit is zero, and there is not a so much interesting phe-
nomenon. The next to the extreme case is the case of minimal representations, which
corresponds to the minimal nilpotent orbit. The minimal nilpotent orbit is unique in
the sense that it is the only orbit among non-zero nilpotent ones with the smallest
possible dimension. These representations have a simple structure. For example, their
K-type structure is in a ladder form and is multiplicity free ([50]). Against its simple
structure, though, systematic and thorough study of the minimal representations is
still progressing now through the works of Kostant-Brylinski and many other mathe-
maticians. If we turn our attention to the small representations other than minimal
ones, it seems that there is relatively less knowledge on them up to now. In this
paper, we study small representations which are unitary lowest (or highest) weight
representations of G. Such representations exist if and only if G/K enjoys a structure
of Hermitian symmetric space, where K denotes a maximal compact subgroup of G.

To be more specific, let us introduce notations. We assume that the symmetric
space G/K is irreducible and Hermitian. Moreover, we assume that G is classical
other than SO(n,2), i.e., G = Sp(2n,R),U(p,q) or O*(2p). Let go be the Lie algebra
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of G and go = & + po the Cartan decomposition with respect to K. We denote
the complexified decomposition by g = £ + p. Since G/K is an irreducible Hermitian
symmetric space, the induced adjoint representation of K on p breaks up into precisely
two irreducible components p = p+ © p~. Note that, as a representation of K, p~ is
contragredient to p* via the Killing form. We extend this representation of K to the
representation of the complexification K¢ of K holomorphically.

Let L be an irreducible unitary lowest weight module of G. Then it is well-known
that the associated variety of L, denoted by AV (L), is the closure of a single nilpo-
tent Kc-orbit contained in p~ (we choose an appropriate positive system which is
compatible with p*).

Put r = R-rank G, the real rank of G. Then there exist exactly (r+1) nilpotent K¢-
orbits {Og, O1,...,0,} in p~. We choose an indexing of the orbits so that dim 0;_; <
dim O; holds for 1 < 7 < r ; in particular, Og = {0} is the trivial one, and O, is the
open dense orbit. Most of lowest weight representations L correspond to the largest
orbit O,. For example, the associated variety of a holomorphic discrete series (or its
limit) is O, = p~. The invariants of the holomorphic discrete series representations
are completely understood (see [14], [43], [7]; also see §2.4 below). However, for
each orbit O, (0 < m < r), there exists a relatively small family of lowest weight
representations whose associated variety is indeed the closure of the orbit O,,. Thanks
to the theory of reductive dual pairs via the Weil representation of metaplectic groups,
we have a complete knowledge of such a family of lowest weight representations (at
least for classical groups listed above).

Although we can define a specific ‘small’ representations even for the largest orbit
O,, we restrict ourselves to the case O, (m < r) in this introduction. Then there
exists a compact group Gy corresponding to each m (cf. §3, Table 2) such that
(G1,G2) forms a dual pair in a large symplectic group Sp(2N,R). Let Mp(2N,R)
be the metaplectic double cover of Sp(2N,R). We denote by HcM p(2N,R) the
inverse image of a subgroup H C Sp(2N,R) of the covering map.

The family of unitary irreducible lowest weight representations of G whose as-
sociated variety is O,, is parametrized by Irr(Gs), the set of the irreducible finite
dimensional representations of Gs. We denote the lowest weight representation of G
corresponding to o € Irr(G2) by L(o) (see §5 for precise description). Roughly, the
correspondence o — L(o) is the theta lift after twisted by a certain unitary character
of C’;’;

Our first observation is the following.

Theorem A. — Let 1, be the trivial representation of G2 and L(1g,) the unitary
lowest weight representation of G corresponding to 1g,. The Bernstein degree of
L(1g,) coincides with the degree of the closure of the nilpotent orbit O,, (defined in
the sense of algebraic geometry) ;

Deg L(1¢g,) = deg O,y,.

We also get an explicit and computable formula for Deg L(1g,).
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Note that the varieties O,, are determinantal varieties of various type and an
explicit formula of their degree is known as Giambelli-Thom-Porteous formula. Our
representation theoretic proof of the formula seems new, and gives an alternative
proof.

To prove Theorem A, we construct a Kc-equivariant map ¢ : V — O,,, where V
is a certain K¢ X (G2)c-module. This map induces an algebra isomorphism

Y* : C[0,] = C[V*](C2)e,

which means that Op, = V//(G2)c. The map % is closely related to the dual pair
(G,G3), and we call it unfolding of O,,. By this, the proof of Theorem A reduces to
a problem of classical invariant theory.

The ‘smallest’ unipotent representation attached to the orbit O,, should be realized
on the section of a certain line bundle on O,, called half-form bundle ([5], [6], [52]).
We investigate such half-form bundles, and get an evidence of strong relationship
between the space of global sections of the half-form bundles and L(c), where o is a
special one-dimensional character of Gs.

Next, let us consider a general unitary lowest weight module L(o) (o € Irr(G»)).
We describe its K-type decomposition and the Poincaré series in terms of certain
branching coefficient of finite dimensional representations of general linear groups
and G2. Such descriptions are well-known among experts. However, references to
them are scattered in many places, and sometimes their treatments are ad hoc. Since
we need an explicit and unified picture for the K-types of L(c), we reproduce the
decompositions in the sequel.

Now our main theorem says

Theorem B. — Let L(o) be an irreducible unitary lowest weight module of G corre-
sponding to o € Irr(G2). Then its Bernstein degree is given by

Deg L(0) = dim o - deg O,y,.
There is a notion of associated cycle which is a refinement of the notion of associated
variety. Roughly speaking, it expresses associated variety with multiplicity. For a

precise definition, see §§1.1 and 1.3. Then the following is an immediate corollary to
Theorem B.

Theorem C. — The associated cycle of L(c) is given by AC (L(0)) = dim o - [O,,].

The proof of Theorem B is based on the theory of multiplicity free action of alge-
braic groups, which is a subject of § 8. The key ingredients of the proof are multiplic-
ity free property of spherical subgroups and Sato’s summation formula of the stable
branching coefficients.

Lastly, we would like to comment on several aspects of our results.
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First, the Bernstein degree of an irreducible representation 7 is closely related to
the dimension of its “Whittaker vectors”. In fact, for large representations, Matumoto
proved that the Bernstein degree and the dimension of algebraic Whittaker vectors co-
incide (|36]). For ‘small’ representations, we cannot hope the same story, because they
do not have any Whittaker vector in a naive sense. However, for complex semisimple
Lie groups, Matumoto observed that the finite-dimensionality and non-vanishing of
the space of certain degenerate Whittaker vectors determines the wave front set of w
([34], [35]). Recently, Yamashita has found a strong relation between the multiplicity
of associated cycles and the dimension of generalized Whittaker vectors in the case
of unitary highest weight module ([54]).

Second, let us consider the (twisted) theta correspondence (or Howe correspon-
dence, dual pair correspondence, ...) between L(o) € Irr(é) and o € Irr(G3). Since
G4 is compact and ¢ is finite dimensional, its associated cycle is simply given by

C (o) = dimo - [{0}]. Recall AC (L(0)) = dimo - [Op] from Theorem C. These
formulas strongly indicate the following; there should be a correspondence between
nilpotent orbits of the dual pairs, and it induces certain relation between associated
cycles of representations in theta correspondence. An optimistic reflection suggests
that, if L(o) is a theta lift of o, then their associated varieties are related as

AC (L(o)) = Zmz[oz] — AC(0) = Zm,[(’)'

with the same multiplicity, where 0O; + O; indicates the OI'blt correspondence. How-
ever we do not have an intuitive evidence of such a kind of correspondence other than
the cases treated here.

Third, Theorem A (or K-type decompositions) suggests that we should “quantize”
the orbit O,, to get an irreducible unitary representation L(1¢g,), which certainly
should be a unipotent representation. For this, it will be helpful to try the similar
method exploited by Kostant-Brylinski in the case of the minimal orbit. However,
this will require much more than what we have presented in this note.

Now let us explain each section briefly.

In §1, we define the associated cycles and other important invariants of represen-
tations in a general setting. After that, we collect their basic properties which will
be needed later. In particular, in Lemma 1.1 and Theorem 1.4, we clarify the rela-
tionship between the associated cycles and the Bernstein degree (or the degree of the
projectivised nilpotent cone); also, we recall the fact that the associated variety is the
projection of the characteristic variety under the moment map (Lemma 1.6).

In §2, we briefly summarize known facts and examples of associated cycles of
various types of representations. To see what is going on in this paper, §§1.3 and 2.4
will be extremely useful.

In §3, we review the properties of a reductive dual pair which we will need later.
After an explicit description of the Fock realization of the Weil representation in
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§4, §5 is devoted to giving the complete description of the unitary lowest weight
representations of G via theta correspondence.

In §6, we give a formula of K-type decomposition of the unitary lowest weight
representations, using the branching coefficient of finite dimensional representations
of compact groups. These formulas are well-known among experts, however, we need
full detailed formulas in the following sections.

In § 7, we study the geometry of nilpotent orbits in the case of Hermitian symmetric
pair. Take a Kc-orbit O,, in p~ and the unfolding ¢ : V — O,, as above. We use
9 to study the ring of regular functions (C['@;:] on O,,, and clarify its Kc-module
structure. This leads us an identification of deg O,, and the Bernstein degree of one
of the smallest unitary lowest weight module attached to O,,. As a result, Theorem
A is proved. We also study the global sections of the half-form bundle over O,, in
the tame cases.

In §8, we study a general theory of multiplicity free actions of a pair of reductive
algebraic groups. We define the notions of degree and dimension of the space of
covariants. The main result in this section is the formula of the degree and the
dimension of covariants (Theorem 8.6).

In §9, we treat general unitary lowest weight representations of G, which are sin-
gular. By the results of §8, we prove Theorems B and C in this section.

We thank M. Duflo, M. Vergne, J. Faraut, D. Vogan, J. Adams and H. Yamashita
for useful discussions. The first author is grateful to Université Paris VII for the kind
hospitality during his stay in 1998. The preliminary note of this paper was prepared
at that time.

Notation. — We denote the field of real (respectively, complex, quaternionic) num-
bers by R (respectively, C,H). If K is one of these fields, we use the following notation

for subsets of matrices:
M(n,m,K) the set of all n x m matrices,

Sym (n,K) the set of all symmetric matrices of size n,

Alt (n,K)  the set of all alternating matrices of size n.
These subsets are abbreviated as My, m,, Sym ,, Alt ,, respectively, if there is no con-

fusion on the base fields. For K = C or H, we also denote by skew-Her (n, K) the
set of all skew Hermitian matrices of size n. If 7, is an irreducible finite dimensional
representation of GL(m,C) (or U(m)) with highest weight )\, we often write it as
Tim), denoting the rank m of the group explicitly by the superscript.

1. Invariants of representations

1.1. A review on the commutative ring theory. — First of all, we review
well-known results in the commutative ring theory, which we need in the subsequent

ASTERISQUE 273



BERNSTEIN DEGREE AND ASSOCIATED CYCLES 19

sections. For more details of what are discussed here, we refer the readers to textbooks
on the commutative ring theory, for example, [10], [21], [33].

Let V be an n-dimensional vector space over the field C and let A := C[V'] be the
ring of polynomials on V. For a finitely generated A-module M, the support Supp M
of M is defined to be the set of prime ideals p with M, # 0. Since M is finitely
generated, Supp M coincides with the Zariski closure of Ann M := {a € A | aM =0},
which is denoted by V (M). We often identify V (M) with the affine variety

V(M)Nm-SpecA={z €V |p(z) =0 (Vp € Ann M)}.

Let A, be the set of homogeneous polynomials of degree n. By the natural grading
A = &2 A, Ais a graded C-algebra. Let M = ®32 (M, be a finitely generated
graded A-module. As usual, we denote the Poincaré series by P(M;t). It is well-
known that there exists a unique polynomial @(t) and a non-negative integer d such
that

(1.1) P(M;t) = (dim Mp)t" = -% Q) #0.
e (1-1)

It turns out that Q(1) is a positive integer. By the expression (1.1), we know that
dim M, is a polynomial in n for sufficiently large n, and it is written as

dim M,, = ng_(%—!nd_l + (lower order terms of n).
Note that the integer d is the dimension of V (M). The integer @Q(1) is called the
multiplicity of M, and we denote it by m(M).

A prime ideal 8 € Spec A is called an associated prime of M if B is an annihilator
of some non-zero element of M. The set of associated primes is denoted by Ass M.
It is easy to see that Ass M C Supp M. The set of minimal elements of Ass M and
that of Supp M coincide, and they form a finite set. Let {P1,..., B} be the set of
minimal primes in Supp M, and let V (M) = U]_, C; be the corresponding irreducible
decomposition of the variety V (M).

Choose ' € Ass M. Then there exists a submodule M* C M such that M! ~
A/Q'. By induction, there exists a finite sequence 0 = M° C M* Cc ---Cc M!' =M
such that M*/M*-1 ~ A/Q* for some QF € Spec A (k = 1,2,...,1). It is not hard
to check that the integer

multy (M) := #{Q* | Q¥ =P}, P : minimal prime

is independent of the choice of the sequence {M*},. This integer is called the mul-
tiplicity of M at B. Note that multg (M) is reinterpreted as the length of Artinian
Ap-module Myg. By the correspondence of minimal B € Ass M and the irreducible
component C of Y (M), we also denote the multiplicity by multc(M).
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As a refinement of Supp M, we consider the formal linear combination of the
minimal primes P; (or irreducible components C;) with coefficients multsyp, (M) =
multg, (M),

Supp M := Y mults, (M) [B:] = > _ multc, (M) [C].

More generally, let F be a coherent Ox-module on an algebraic variety X. We
can refine Supp F analogously. For any irreducible component C of the support
of F, the rank of the module F at a generic point of C is a well-defined positive
integer multc(F). This is called the multiplicity of C in the support of F. Then
we consider the formal linear combination of the components C of Supp(F) with
coefficients multc (F),

Supp(F) = ), multc(F) [C]-
C

The multiplicity of M can be obtained from Supp M. Let deg C be the degree of
the variety C, i.e. degC = m(A/P) (see, e.g., [16]). Since the Poincaré series is
additive, m(M) is the sum of m(M*/M*-1)’s with dim v (M*/M*~1) = dim y (M).
By the definition of the sequence {M*}, and the multiplicity multe (M), we have

Lemma 1.1. — m(M) = Z multc, (M) deg C;.
dim C;:(;.im V(M)
Remark 1.2. — The notion of degree is usually defined for projective varieties. In

our case, we can projectivise Y (M) and its irreducible components since Ann M is
graded. Then deg C; should be interpreted as the degree of the projectivised variety.

1.2. Invariants of U(g)-modules. — In this subsection, we introduce invariants
of representations of Lie algebras after [49], [51]. These invariants are main objects
of this paper.

Let g be a finite dimensional complex Lie algebra and let U(g) be its universal
enveloping algebra. We denote by U,(g) the finite dimensional subspace of U(g),
spanned by products of at most n-elements of g. Then {Un(g)}3%, is a filtration of
U(g), called the standard filtration. By the Poincaré-Birkhoff-Witt (PBW) theorem,
the associated graded algebra grU(g) = ®324Un(g)/Un-1(g) is isomorphic to the
symmetric algebra S(g).

Let V be a U(g)-module. A chain0=V_; C Vo CV, C--- CV, where the V;,’s
are subspaces of V, is called a filtration of V if it satisfies the following conditions:

o0
U=V Un(8)Vin C Vot dim V,, < .
n=0

By the second condition, the graded object

o0
gV =@QPeraV, graV:=Vo/Vo

n=0
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has the structure of a graded S(g)-module. A filtration is called good if it also satisfies
(1.2) Un(8)Vin = Ve (for all m sufficiently large, all n > 0).

In this case, V is a finitely generated U(g)-module and grV is a finitely generated
S(g)-module. Conversely, if V' is finitely generated, we can construct a good filtration
by choosing a finite dimensional generating subspace Vp and by putting V,, = Un(g)Vo.

Regarding the symmetric algebra A = S(g) as the polynomial ring on the dual
space g*, we define several invariants of V using those defined via commutative ring
theory.

Definition 1.3. — For a finitely generated U(g)-module V, we define the associated
variety AV (V'), the associated cycle AC (V'), the Gelfand-Kirillov dimension Dim V/,
and the Bernstein degree DegV by

AV (V) =V (grV), AC (V) = Supp (grV),
Dim V = dim AV (V), DegV = m(grV)

respectively. They are independent of the choice of good filtrations of V', and therefore
well-defined for V.

For an exact sequence
0->Vio>Vo>V3 20
of finitely generated U(g)-modules, we have Dim V, = max{Dim V;,Dim V3}, and
(1.3) AV (V2) = AV (V1) U AV (V3).

Note that the associated cycle is not additive in general, i.e., AC (V2) # AC (V1) +
AC (V3). If we write

0 ifd>DimV,

then the Bernstein degree becomes additive in the sense that

DegV ifd=DimV,
cd(V)={ &

Deg V2 = cpim v, (V2) = cpim v2 (V1) + cpim v, (V3).
The right hand side is equal to DegV; + Deg V3 if Dim V; = Dim V3.

1.3. The structure of invariants of Harish-Chandra modules. — The asso-
ciated variety of a module (with some assumption, of course) over a reductive Lie
algebra g is contained in the nilpotent cone in g*. Moreover, if it is a Harish-Chandra
(g, K)-module, the associated variety has a Kc-orbit structure. In this subsection, we
shall review these well-known results.

Let G be a connected reductive group over R and gy its Lie algebra. Take a maximal
compact subgroup K C G and let K¢ be its complexification. Denote by go =
to + po a Cartan decomposition associated to K and by g = &+ p its complexification.
For a Harish-Chandra (g, K')-module H, we choose a finite dimensional K-invariant

SOCIETE MATHEMATIQUE DE FRANCE 2001



22 K. NISHIYAMA, H. OCHIAI & K. TANIGUCHI

generating subspace Ho and define a filtration by H, = U,(g)Ho. Then the graded
object gr'H has compatible S(g)- and Kc-actions.

By the compatibility of g- and Kc-actions, AV (H) is invariant under the action of
Kc and € acts on gr# trivially. It follows that AV (H) is a K¢-invariant subvariety
in (g/€)* ~p.

Fix a connected algebraic group G¢ with Lie algebra g. The algebra U(g)c of
Ad (Gc)-invariants in U(g) is isomorphic to the center Z(g) of U(g), since G¢ is con-
nected. Filter the algebra U(g)®c by the standard filtration of U(g), then gr U(g)%c
is isomorphic to S(g)c, the algebra of Ad (G¢)-invariants in S(g). Since any irre-
ducible U(g)-module is annihilated by a maximal ideal in U(g)¢¢, any U(g)-module
of finite length is annihilated by the product of a finite number of maximal ideals in
U(g)%c. Such a product is of finite codimension in U(g)“c. Therefore, the radical of
the graded object of this product is the ideal S*(g)¥¢, the set of invariant polynomials
without constant term. This argument implies that the associated variety AV (H) is
contained in the zero set V (S*(g)“c) of S*(g)¥c. Note that V (S*(g)¥c) coincides
with the set N'* of nilpotent elements in g*, since G¢ is connected.

Consequently, AV (H) is a union of Kc-orbits in N* N (g/€)* ~ N, the set of
nilpotent elements in p. By a theorem of Kostant-Rallis, AV is a finite union of Kc-
orbits. Summarizing the above discussion and the results of many contributors, we
have the following well-known theorem.

Theorem 1.4. — If H is a Harish-Chandra (g, K)-module, then the associated variety
AV (H) is a finite union of nilpotent Kc-orbits in p. Moreover, if H is irreducible,
we have the following.

(1) There exist nilpotent Kc-orbits {C;} C N, with dimension equal to DimH such
that

(1.4) AV (H) =T

(2) Denote the associated cycle as AC (H) = Y, mi[C;]). Then the Bernstein degree
s given by

!
(1.5) DegH = Zmi deg C;.

i=1

(3) Let I = Iy C U(g) be the associated primitive ideal. Then AV (U(g)/I) is the
closure of a single nilpotent Ggc-orbit Cy, and for any i, the Gg-orbit through C;
coincides with Cy. In fact, Cy Np decomposes into a finite union of equidimensional
nilpotent Kc-orbits, and {C;} is a subset of its irreducible components:

(1.6) CynNpDChy,...,C
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Remark 1.5. — Take )\ € C; and denote by K¢()\) the isotropy subgroup of K¢ at A.
The multiplicity m; in (2) can be interpreted as the dimension of a certain represen-
tation of Kc(\). For this, we refer to [51, Definition 2.12].

1.4. Invariants of Dx-modules. — The relation between the associated varieties
(associated cycles) and the characteristic varieties (characteristic cycles) is discussed
in [3]. First, we recall the definition of the characteristic varieties and the charac-
teristic cycles, which is analogous to that of the associated variety and its cycle for
g-module given in §1.2.

Let X be a smooth algebraic variety over an algebraically closed field C. We denote
by Dx the sheaf of (algebraic) differential operators on X. On Dx, we have a natural
increasing filtration by the Ox-submodules Dx(n), the subsheaf of all differential
operators of order < n;

0=Dx(-1) C Dx(0) = Ox C Dx(1) C --- C Dx.
The associated graded sheaf

o0
grDx :@gran, grnDx = Dx(n)/Dx(n—1)
n=0
is naturally identified with the direct image sheaf 7.(Orsx), where 7 : T*X — X is
the cotangent bundle of X, and O~ x is the structure sheaf of T*X.
Let M be a coherent Dx-module. Then there is a good filtration

O0=M_ CMygCM;C---CM.
The corresponding graded module is defined by
ng=®grnMa gr'anMn/Mn—l‘
n=0
Then gr M is coherent over m.(Or=x). The support of gr M as a module on T*X,
more precisely, the support of O+ x ®grpy 8T M, is called the characteristic variety
of M. This is a closed conic algebraic subvariety of the cotangent bundle T* X, which
is usually denoted by
Ch(M) = Supp(gr M).
The variety does not depend on the choice of a good filtration. As a refinement of
Ch(M), we define the characteristic cycle of a coherent Dx-module M by

Ch(M) = Supp(gr M).

The characteristic cycle is also independent of the choice of a good filtration.

From now on in this subsection, let G be a reductive algebraic group over C and
let X be the set of Borel subgroups of G. Then it is known that X is a complete
G-homogeneous variety, and the Lie algebra g of G acts on X by vector fields on X.
This gives a Lie algebra homomorphism

g = D(X),
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where D(X) = I'(X, Dx) denotes the set of all global sections of the sheaf Dx on X.
This map extends to an algebra homomorphism

¥:U(g) = D(X),

which is known to be surjective. With the natural filtrations, gr U(g) is canonically
isomorphic to the symmetric algebra S(g), while gr D(X) to the set of global sections
C[T* X] of (algebraic) holomorphic functions on the cotangent bundle T*X. Since
the map ¢ is compatible with the natural filtrations, we have the associated graded
ring homomorphism
¢ =gry:S(g) - C[T*X].
The map ¢ gives rise to the moment map
uw:T*X - g*,

where g* is the dual vector space of g. It is known that the image of y is normal and
that the map p is birational onto its image. The moment map is the key to give a
relation between the characteristic variety and the associated variety.

Let M be a coherent Dx-module. Then the set of all global sections M = I'(X, M)
is a module over D(X) = I'(X,Dx). Using the algebra homomorphism 1, a D(X)-
module is considered as a g-module. Then M is a finitely generated g-module with
the trivial central character. Conversely, any finitely generated g-module M with the
trivial central character can be obtained in this manner from a coherent Dx-module

M. Indeed, M is obtained by, so called, the localization such as M = Dx ®yg) M
using the homomorphism .

Lemma 1.6. — Let M be a coherent Dx-module. Consider M = I'(X, M) as a g-
module.

(1) The associated variety of M is the image of the characteristic variety of M under
the moment map:

AV (M) = p(Ch(M)).
(2) Suppose, moreover, that M has a good filtration {M;}; such that H*(X, M;) =
0. We denote the direct image under the moment map of the Op« x -module gr M by

px(gr M), which is a coherent Oy« -module. Then the associated cycle is described by
the cycle of this module

AC (M) = Supp(p«(gr M)),
where the definition of the cycle of Og«-module is given in §1.1.
More general statement would be found in Theorem 1.9 and Remark to Lemma 1.6
in [3]. The condition of the vanishing of the first cohomology appearing in (2) of the

lemma holds for sufficiently regular infinitesimal characters, due to a result of Serre.
See Appendix A of [3], for details.
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2. Known results and examples

In this section, we summarize known results and examples of the invariants defined
in §1. Some of them are immediately obtained from the definition, others are non-
trivial.

2.1. Finite dimensional representation. — For a finite dimensional representa-
tion V of a complex Lie algebra g, we may take Vo = V and consequently V,, = V for
all n > 0. Then the Poincaré series is a constant dim V', and we have

DimV =0 and DegV =dimV.

From this, we conclude that the associated variety of V is {0}, and the associated
cycle equals AC (V) = (dim V') - [{0}].

2.2. Generalized Verma module. — Let q = [ + u# be the Levi decomposition
of a parabolic subalgebra q of a complex reductive Lie algebra g, where [ is a Levi
subalgebra and u is the nilpotent radical of q. Denote by u the opposite nilpotent
Lie algebra to u1. Take an irreducible finite dimensional representation 7 of [ with
the highest weight A and extend it to a representation of q trivially. The generalized
Verma module M(]) is defined by M(}) := U(g) ®u(q) Ta-

Proposition 2.1. — The invariants for the generalized Verma module M()\) are
(2.1) Dim M()\) = dimu = dim @1, Deg M(\) = dim 7y,
(2.2) AV(M()\) =% and AC (M()) = (dim 7)[i].

Here, we identified g* with g by the Killing form.

Proof. — By the PBW theorem, M () = U(u) ®c 7 as a vector space and M (), :=
Un(u) ®c 72 (n =0,1,2,...) defines a good filtration of M (\). We denote the asso-
ciated graded module by gr M ()). Since
n+dimu—1
di M(\) = (di
imgr,M()\) = (dim7y) x ( dimu — 1 ) ,
we immediately conclude that Dim M (A) = dimu and Deg M ()\) = dim 7.
Next, we shall calculate AC (M(})). Since q is contained in Ann g(g) gr M ()) and
the intersection S(u)NAnn g(g) gr M (}) is {0}, Ann g4 gr M () coincides with S(g)q.
Then

AV(M(N) ={z € g" | (z,q) ={0}} ~ 1.

Moreover, since #i ~ C4™¥ jg jrreducible and its degree is one, the multiplicity is
dim 75 by Lemma 1.1. O
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2.3. Lowest weight module. — We use the same notation as in the previous
subsection.

Let V be a g-lowest weight U(g)-module, i.e. there exists an irreducible finite
dimensional [-submodule Vj in V' such that u acts trivially on it and V is generated
by it. Let A be the highest weight of V5. By the universality of the generalized Verma
module, there exists a unique surjective U(g)-homomorphism

&: M) —» V.

By this homomorphism, a good filtration on V is induced from that of M()\). By
(1.3) and (2.2), we have

(2.3) AV(V) C i

2.4. Hermitian symmetric case. — Let (G, K) be an irreducible Hermitian sym-
metric pair. We use the notation in §1.3. The adjoint representation of K on p
decomposes into two irreducible components p*. Since q := € 4+ p~ is a maximal
parabolic subalgebra of g, we can apply the results in §§1.3 and 2.2 for a g-lowest
weight module. By (2.3) and Theorem 1.4, the associated variety of a g-lowest weight
(g, K)-module is a finite union of K¢-orbits in p~.

In particular, since the (g, K')-module of the holomorphic discrete series is a gen-
eralized Verma module, the invariants for it are given by (2.1) and (2.2), where 7, is
the minimal K-type and 4 = p~. Namely we have

Proposition 2.2. — Let 7y be a holomorphic discrete series representation of G with
the minimal K -type 7». Then invariants of w\ are given as
1
(2.4) Dimmy =dimp~ = 3 dimG/K, Deg 7y = dim Ty,
(2.5) AV (my) =p~ and AC (my) = (dim7y)[p7].

Let us consider the Poincaré series of a g-lowest weight module V. Let Z be the
center of K and let 3o be its Lie algebra. Under our setting, every element of Z acts
on p* by a non-trivial scalar and it acts on the minimal K-type of V also by a scalar.

Choose a base H of 39 and denote by o the scalar ad (H)|p+. Let h(s) := expsH €
K. The action of h(s) on V gives the Poincaré series of V. More precisely,

Proposition 2.3. — The Poincaré series of a q-lowest weight module V' is
P(grV;t) =t~ (traceh(s)|v),
where t = €*® and ng 1is the scalar by which H acts on the minimal K -type of V.

Proof. — First, we consider the generalized Verma module M ()). The action of h(s)
on M()\), is a scalar e(®t70)2s By the definition of the Poincaré series, we have
P(gr M(\);t) = t=™ (trace h(s)|p(r)). Using the universality of the Verma module,
we obtain the Poincaré series of a lowest weight module V' in the same way. 0O
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2.5. Discrete series of real rank one groups. — For the discrete series repre-
sentations of real rank one groups, the associated cycles are explicitly obtained by
Chang [8].

By many contributors, the associated variety of a discrete series is well-known.
Especially, it is a closure of a single Kc-orbit in p, and irreducible (see Theorem 1.4).
Then the problem reduces to the determination of the multiplicity. Using the relation
between the associated cycle and the characteristic cycle (Lemma 1.6), he calculated
it by investigating the fiber of the moment map.

For the explicit value of the multiplicity, we refer to his paper.

2.6. Large representation. — Let G be a real reductive Lie group and let G =
KAmNp, go =t + am0+nm o be the Iwasawa decomposition of G and go := Lie G,
respectively.

For a Harish-Chandra (g, K)-module V, it is known that the Gelfand-Kirillov di-
mension is at most dim n,, o ([49]). We call V' large if Dim V' = dim n,, ¢. In this case,
V has Whittaker models and the dimension of models coincides with the Bernstein
degree of V.

To state more precisely, we need some notation. Let ¢ : N, - C* be a unitary
character. We denote the differential character of n,, o by the same symbol 3. Then
¢ is identified with an element of v/—1(nm,0/[Mm 0, "m0])*. We call ¥ admissible if
the coadjoint M, Ap,-orbit of 1 is open in (N 0/[Mm,0,"m0])*. Here, My, is the
centralizer of A,, in K. For an admissible ¢, we define the space of dual Whittaker
vectors Why, ., (V) by

Wh* (V):={v* e V' | Xv* =9¢(X)v* (VX €nmpo)},

Nm,0,¥

where V* is the dual space of V.

Theorem 2.4 ([36]). — The space Wh:m,o,d) (V) is not zero if and only if DimV =
dimny, 0. In this case, the dimension of Why ., (V) equals Deg V.

If V is a principal series representation, the dimension of Why o, (V) is obtained
by Kostant (quasi-split case, [30]) and Lynch (non-quasi-split case, [32]). Thus by
the above theorem, we know the Bernstein degree of V':

Theorem 2.5 ([30], [32]). — The principal series representation Ind f,,m A Nom (c®e’®
1) is large, and the Bernstein degree is #W (go,am,0) - dimo, where W(go,amp0) is
the little Weyl group.

Remark 2.6. — The associated variety of a principal series representation is a finite
union of the closure of regular nilpotent Kc-orbits in p. Let {NV],...,N;} C p be the
set of all regular nilpotent Kc-orbits. Then we have

I
Z deg N; = #W (go, m,0)

i=1
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(see [31]). Since deg N; = deg NV, we see that deg V; = #W (go, am.0)/!.

There are explicit calculations of Whittaker models of some low rank groups. For

the following representations, the Whittaker models are explicitly determined.

(1) Large discrete series representations of Sp(2,R) (by Oda [38]).

(2) Large discrete series representations of SU(2,2) (by Yamashita [53] and Hayata-
Oda [19]).

(3) The generalized principal series representation Ind IG,J (c@etrr @1) of G =
Sp(2,R) (by Hayata [18]). Here, Py = M ;A ;N is the Jacobi parabolic subgroup of
G and o is a discrete series representation of My ~ C* x SU(1,1).

(4) Large discrete series representations of SU(n,1) and Spin(2n,1) (by Taniguchi
[46)).

From these calculations, we know their Bernstein degrees. The Bernstein degrees
of (1)—(3) are all four. Those of (4) are twice the multiplicities, which are obtained
by Chang (see §2.5). In other words, the degree of the associated varieties of large
discrete series representations of SU(n,1) and Spin(2n,1) is two (cf. Lemma 1.1).

2.7. Minimal representation. — In this subsection, we will give Bernstein de-
grees of so-called minimal representations. Here we only consider non-Hermitian
symmetric space G/K, though the arguments below equally works well for general
situations.
If G/K is non-Hermitian, G has a minimal representation if and only if G/K is in
the following list.
— Classical case : SO(p,q)/SO(p) x SO(q) where p > ¢ > 3,p+q € 2Z or p €
2Z,q=3.
— Exceptional case : The following 8 cases.
Fia/Sp(3) x SU@Q)  G5/SO(4)  Eea/SU(2) x SU(6) Eos/Sp(4)
E7,4/Spin(12) X SU(Q) E7,7/SU(8) E874/E7 X SU(2) Eg,g/Sp'm(lﬁ)
Take the minimal nilpotent G¢c-orbit Omin C g. Then in this case Opin Np = Y

is a single nilpotent Kc-orbit, which is minimal among non-zero nilpotent Kc-orbits
in p with respect to the closure relation.

Theorem 2.7 (Vogan). — Let mnin be a minimal representation of G. Then there exists
some weight v such that
7rmin|K ~ @ Tmy+v,
m2>0
where v is the highest weight of p (= the highest root), and Tmy+v 15 the irreducible
representation of K with highest weight my + v.

Remark 2.8. — The weight v is the highest weight of the minimal K-type of mmin.
For an explicit description of v, we refer to Table 1 of [5] and the references cited
there.
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Put AF(y) = {a € A} | (¢,a) # 0}, where AT denotes the totality of positive
compact roots. For a € A}, note that (,a) # 0 if and only if 2(y,a)/(¥,¥) =1
([27, Lemma 2.2]).

Proposition 2.9. — With the above notation, we have

Dim (Tmin) = #AF () + 1 = dimc Omin/2 = dimc Y,

e (v, %)
Deg (Tmin) = degY = (#A:—(w))' 11 2(pc, @) ’
a€AZ (Y)

AC (Tmin) = [Y].

Proof. — From the explicit description of v (cf. [5, Table 1]), we conclude that
(v,a) = 0 holds for each positive compact root a &€ A} (). Also we know a good

filtration of (myin, V') is given by
Vn = @ Tmp+v

mg<n
(see [50]). Put d = #AF(¥) + 1. By Weyl’s dimension formula, we calculate the
dimension of gr,V as

. . nYy + v+ pe,
dimgr,V =dim 4, = H M%T)pﬁ___)
CH

acAf

=nd! H (ﬁ&% H (1/(—|-—p;,>oz) + (lower order terms of n)
aeat(y) YO agary O

= (dj 1)! {(d - 1! H M} nd1 4 (lower order terms of n)

acat(p) 2(pc, @)

From the last formula, we can read off the desired formulas of dimension and degree.

On the other hand, since Y is a K¢-orbit through a highest weight vector in p, Y
is a highest weight variety (see [48]). Then the decomposition of the coordinate ring
as a K¢-module becomes

Y] =~ P e
m2=0

with grading given by m. By the same method as above, we conclude that degY is
equal to Deg Tmin Which proves that AC (Tmin) = [Y]. O

3. Reductive dual pair

Let W be a real symplectic space of dimension 2N. We put G = Sp(W) =
Sp(2N,R) and G=M P(2N,R), the metaplectic double cover of G (see [47, §1.2]
for example). A pair of reductive subgroups (G1,Gs) of G is called a reductive dual
pair if they are mutually commutant to each other in G (see [22], for example). We
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denote by (C:':,@;) the inverse image of these subgroups under the covering map
G — G. Then they are also commutant to each other in §

Let us assume that the pair (G1,G2) is irreducible (see [25, §4] for definition).

Then there are two possibilities.

(I) The pair (G1,G2) jointly acts on W. This action is irreducible.

(IT) There exists a maximally totally isotropic space U of W, such that W =U @ U*
gives the irreducible decomposition with respect to the joint action of the pair.

In the following, we only treat the dual pair of type (I), so that we assume that the
joint action of G1 x G2 on W is irreducible. Then, by the irreducibility, there exist
a division algebra D over R and vector spaces V1 /D and D\Vs over D for which the
following two properties hold. First, W is the tensor product of V; and V5 over D :

W =V ®pVa.
Second, G; (¢ = 1,2) acts on V; irreducibly as D-linear transformations. We put
(3.1) 2n =dimg Vi, m =dimp V5,

hence dimgk W = 2N = 2nm. Note that the division algebra is given by D =~
End g, (V1) ~ End g, (V2).

Since W carries a symplectic structure (and (G1,G2) is a pair in the symplectic
group Sp(W)), it produces some additional structure on the vector spaces V; and V.
Namely, we have the following.

First, there exists an involution ¢ of D (possibly trivial). Second, V; (i = 1,2)
carries a sesqui-linear form ( , ); which is invariant under G;. One of the forms,
say (, )1, is skew-Hermitian with respect to the involution ¢ and the other ( , )2 is
Hermitian; and the original symplectic form { , }w on W is given by the product of
these forms:

(, ) w=Re(, 1®D(, )2

Moreover, the group G; is the full isometry group with respect to ( , );. In the
following, we always assume that ( , ); is skew-Hermitian, and ( , )2 is Hermitian.
Here is a table (Table 1) of such pairs borrowed from [25, Table 4.1].

(D,0) g (G1,Gy)

(R,1) Sp(2nm,R) (Sp(2n,R),0(p,q)) m=p+q

(C,1) Sp(4nm,R) (Sp(2n,C),0(m,C))

") Sp@2nm,R) (U(p,q),U(r,s)) n=p+qgm=r+s
(H,”) Sp(2nm,R) (0*(2p),Sp(r,s)) n=2pm=r+s

TaBLE 1. Reductive dual pairs of type (I).
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In this paper, we only treat the case where one of the pair, say G2, is compact.
In fact, we have the following explicit cases in Table 2 in mind. However, we try
to keep general situation whenever possible. In any case, G2 is always assumed to
be compact. Let us specify an explicit embedding of (G1,G>) into G = Sp(2nm, R).

(D,¢) g (G1,G3)
Case (Sp,0) (R,1) Sp(2nm,R) (Sp(2n,R),O(m))
Case (U,U) (C7) Sp@2nm,R) (U(p,q),U(m)) n=p+gq
Case (0*,Sp) (H,”) Sp(2nm,R) (O*(2p),Sp(2m)) n=2p

TABLE 2. Reductive dual pairs (G1,G2) with G2 being compact.

Although our arguments below are fairly general, sometimes it is convenient to use
a concrete realization. In each of three cases, we will give a symplectic vector space
R2"™ endowed with an explicit symplectic form in terms of invariant bilinear forms
of V; and V5. This will determine the group G = Sp(2nm, R).

Case (Sp,0). — Let R*™ be a symplectic vector space with a symplectic form
(3.2) (u,v); = 'uJpv (u,v € R?"), J,= [ 10 ——(}" ] ,

and consider G; = Sp(2n,R) as the isometry group of (R*",(, )1). For G2 = O(m),
we take the standard Euclidean bilinear form (u,v)2 = *uv (u,v € R™), and consider
O(m) = O(R™,(, )2). Then the tensor product W = R?"” @ R™ with a symplectic
form
<7 )W:(v )1®R(, )2
gives the embedding (G1,G2) = G = Sp(W, (, Yw)-
Let us see this embedding infinitesimally. So, first consider sp(2n, R):

sp(2n,R) = {Zegl(2n,R) | 'ZJ, + JnZ =0}

{( X1 X ) | X11 € gl(n, R), }
Xy —'Xn X12, X2 € Sym (n,R) |~

Then it is embedded into larger sp(2nm,R) as

Xn o Xo ), xgm  xgm
Xo —tXyg Xgm —tx,,om

(3.3)

(34) sp(2n,R) > ( ) € sp(2nm, R),

where
X% = diag (X, X,...,X) (m-times).
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Similarly, o(m, R) = Alt (m, R) is embedded into sp(2nm, R) as

o(m,R)aXH(X*I" 0 )

0 Xx*x1,

where

z11d 124 - TimA

leA 11322A e .’l)zmA
(3.5) X+A=

TmiA TmeAd 0 TmmA
Case (U,U). — Consider an indefinite Hermitian form ( , ); on C" of signature
(q) (n=p+q):
(3.6) (o) = v (e, Ig= [ 16’ _(; ] .

q

Then, G; = U(p, q) is the full isometry group of (C*,(, )1). Also we take a definite
Hermitian form ( , )2 on C™ as (u,v)s = ‘uv (u,v € C™). This determines the
unitary group G2 = U(m). Then the tensor product W = C"* @c C™ naturally
inherits a Hermitian form (, ); ®c (, )2. We make use of its imaginary part to define
a symplectic form on W ~ R?"™:

<7)W=Re(\/__1(’ ) ®c(, )2)

The form ( , )w is clearly non-degenerate and it defines the isometry group G =
Sp(W,{, Yw) ~ Sp(2nm, R).
Under our explicit realization of U (p, q), its Lie algebra is given as

u(p,q) ={Z e glip+q,C) | ZI, ¢+ I,,Z =0}

7 7 Z11 € skew-Her (p, C)
(3.7) ={Z= (tZI_l le) | Za2 € skew-Her (¢,C) » .
TR Zi € M(p,q,0)
Let us write Z = X ++/—1Y with X, Y € M(n,R). Then an explicit embedding into
sp(2n, R) is given by
X -YI,,
IpgY IpoXlp,

Now the above embedding composed by the embedding (3.4) will give the desired
realization of u(p, q) in sp(2nm, R).
On the other hand, the compact companion u(m) is embedded into sp(2nm, R) as

u(m) = Alt(m,R) ++v/~1 Sym (m,R) > X +v/-1Y

Xx*x1l, =-Y=xI,,
< YL, Xxl, € sp(2nm, R).

(3.8) up,q) 3 X+V-1Y ( > € sp(2n, R).

(3.9)
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Case (0*,Sp). — Let O(2p,C) be the complex orthogonal group with respect to
the following bilinear form
(u,v) = *uSpw (u,v € C?), Sp,= (0 1”) .
1, 0
We realize G; = O*(2p) as a subgroup of O(2p, C), namely,
(3.10) 0*(2p) = 0(2p, Q) NU(p,p) C M(2p,C),

where U(p, p) is realized in the same way as Case (U,U). Similarly, we realize G3 =
Sp(2m) as a compact subgroup of Sp(2m,C) :

Sp(2m) = Sp(2m,C) NU(2m) C M(2m,C).

First we describe embedding of 0*(2p) into sp(2n,R) (n = 2p). Our realization of
O*(2p) gives its Lie algebra as

0*(2p) = {Z € gl(2p,C) | tZIzw +IppZ =0, tZSp + SpZ = 0}

- {(Jﬁ ‘_Y) | X € skew-Her (p,C), Y € Alt (p, C)} ,
Y X
where I, ;, is given by (3.6).

It is subtle to describe a symplectic form of the larger Sp(2nm, R) (n = 2p) in terms
of the original (skew-)Hermitian forms over H which define O*(2p) and Sp(2m) as
the full isometry groups. Instead, we give here only an explicit embedding of O*(2p)
infinitesimally. Let us write X = X; + v/—1 X, and Y = Y; + v/—1 Y, with real
matrices X;,Y; (¢ = 1,2). Then, the infinitesimal embedding of 0*(2p) into sp(2n, R)
is given by

X1 1| -X2 -Y
X -Y i Xi Y, -Xo
3.11 *(2 = = 2n, R).
e ows (7 ¥ ) | T | <oen®
Y Xo | -"h Xi

This embedding is compatible with the embedding given in Case (U, U), i.e., we have
a sequence of subgroups

0*(2p) = U(p,p) < Sp(2n, R).

The embedding into the larger sp(2nm, R) is given by the composition of (3.4) and
(3.11).

Let us see the embedding of the compact companion sp(2m). Its Lie algebra
becomes

sp(2m) ={Z € gl(2m,C) | *Z+Z =0, 'ZJp+ JnZ =0}

= {Z = (‘;—( _YY) | X € skew-Her (m,C), Y € Sym (m,(C)} .
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If we denote Z = A + v/—1 B with real matrices A and B, then the embedding is
given by

Axl, —Bxl,

5p(2m)9Z=A+\/—1Bo——+(B*1p Ax1,

) € sp(2nm, R).

4. Fock realization of Weil representation

Let w be the Weil representation of Mp(2n,R), the metaplectic double cover of
Sp(2n,R). Weil representation plays central roles in many fields, and a large amount
of results are known. For example, see [24], [25], [28], [47], [40], etc. We introduce
here, among all, explicit realization of Harish-Chandra module of w on a polynomial
ring (e.g., see [25] and [9]). It is called Fock model.

For the time being, we write G = Sp(2n,R) and G = Mp(2n,R). Since we only
consider Harish-Chandra modules, in fact we do not need entire M p(2n, R) but only its
complexified Lie algebra g = sp(2n,C) and a maximal compact subgroup K=U (n)™~
We fix a maximal compact subgroup K ~ U(n) in Sp(2n,R) as follows. Put

Then K is given as
(4.2) K:{(Z _ab)|a,beM(n,IR), a+ib€U(n)}.

We identify K and U(n) as above and sometimes we will write a +ib € K. Let go =
€+ po be the corresponding Cartan decomposition, and g = €+ p its complexification.
Let E;; be the matrix unit, and put

Fij = Eij - Eji, G,’j = E,’j + Eji-

Then it is easy to see that a basis of € is given by

(4.3)
F@'j On . . On “Gij . .
= < i = <1<J < ’
A’L] (On Fz]) (1 g 1 < .7 <X n)v B] (G” On ) (1 ¢ J n)
and that of p is given by
(4.4)
Gij On . On Gjj P
RS <1<7< ij i= <1<7<n).
o= (o0 G,) asico<n pa=(gr Gl) asisi<n

The representation space of w in Fock model is a polynomial ring in n variables.
Here we only give the explicit action of each basis element on the polynomial ring
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Clzy,z2,...,zp):

w(Aij) = 2i0z; — T;04,, w(Bij) = V=1 (2i0z; + 0z, %;),
(4.5)
W(Cij) = 282'.82]. - %xia:j, w(Dij) = —/-1 (289;‘(931 + %J/‘i.’tj).

The action of K on Clzy,...,2z5] is the symmetric tensor product of the natural
representation of U(n) on C" tensored by det /2, which requires the double cover K.
Put H; = —v/—1 B;;/2 and let

n

t= {ZtiHi | t; € C}
i=1

be a Cartan subalgebra of g contained in €. We define ¢; € t* as €;(H;) = d;;. Then

the root system A(g,t) is given by

A(g,t) ={ei—¢j|1<i#j<npU{L(ei+¢5) |1<i<j<n},

where ¢; — ¢ is a compact root while £(g; + €;) is non-compact. We take a positive
system in the standard way :

At(g,t) ={e;—¢j|1<i<j<n}U{ei+e;|1<i<j<n}

Then root vectors X, (a € A(g,t)) and its action on Weil representation are given as

v—1 1
(4.6) H; = —TBii, W(Hi) = xiam,- + 5»
1 . .
(47) XE;'-—E,' = E(Aij -v-1 Bi]') (Z # .7)7 w(XEi_Ej) = xiaa:jv
1 1
(4‘8) X5i+€j = _E(Cij -v-1 Dij)? w(XEi+5j) = §$ix.1'a
1
(49) X—Ed—f«'j = E(Cij +v-1 Dij)a w(X—'€i—€j) = 2azi6zj-
Note that
Xei—e; = xia@j (i #J),
(4.10) t~gl(n,C) 3> E;; & 1
’ H; = x;0,, +3 (i =J).
We write

Af ={ei+ej|1<4,5<n}, Ap=ALu(=4A}),
the set of non-compact roots, and
AZ={€,'—6]'|1<1;<].SN}, Ak=A;c'-U(—A;:-),
the set of compact roots. Then p decomposes up into two K-irreducible components

p* given by
pi = Z 9a>
+acA}
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where g, denotes the roots space corresponding to a. Note that w(p™) is realized
as differential operators of degree two, and that w(p™) is the multiplication by ho-
mogeneous polynomials of degree two. So p* increases/decreases the degree of the
representation space C[z1, 2, ...,2,] by 2, while w(€) keeps the degree stable.

5. Unitary lowest weight representations

Let  be the Weil representation of G = M p(2N,R) (N = nm) and consider
reductive dual pair (G1,G2) of compact type in G = Sp(2N,R). In the following,
we often write G = G; without the subscription 1. In fact, our main concern is
on the irreducible infinite dimensional representations of G = G; which appear in
the restriction of Weil representation {). Moreover, we assume that G is contained
in the specified maximal compact subgroup X ~ U(N) of G given in the former
section (cf. (4.2)). Each of our three cases (and their realization) clearly satisfies this
condition.

For a subgroup H C G, we denote by H the inverse image of H in G of the covering
map G — G, and call it the metaplectic cover of H by abuse of terminology. Since the
metaplectlc covers G, 1 and G2 commute with each other, we have a natural projection
G1 X G2 — G1 G2 (product in g) By this projection, we consider the restriction

Q| G.g, 32 representation of G1 x G5. Then we have a discrete and multiplicity free
decomposmon
® ~
(5.1) Q~ YU LEex )BT
Felr(Ga)

as a representatlon of G1 X G2 Here we denote an irreducible representation of
G = G corresponding to & € Irr(G3) by L(5 ® x~!), where x € Irr(G3) is the unique
one-dimensional character which appears in Q|- g, (cf. Theorem 4.3 in [25]).

To be more specific, we argue like this. The representation space of Q2 is realized
on a polynomial ring of N = nm variables. We consider it as the polynomial ring on
the dual space of n x m matrices M, ,, over C. Since the one-dimensional space of
constant polynomials in C[M}; ,,] is preserved by the action of K, it is also preserved
by G> because of our assumption. Hence it gives the one-dimensional character and
we denote it by x € Irr(é'vz).

The representation L(G ® x ') is possibly zero, and if it is not zero, then the
representation ¢ = & ® Y ! factors through to the representation of Go. Therefore we
write L(o) = L(6 ® x~!) for o € Irr(G2). The decomposition (5.1) can be rewritten
as

(5.2) ax S Lo)B (o).
o€lrr(G2)
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In the following, as explained above, we always twist the representation o € Irr(@) by
X, and consider ¢ = & ® x ™! as the representation of G». This twist might be some-
times misleading, but it reduces considerable amount of untwisting. For example,
under this convention, we have L(1g,) # 0, where 1, denotes the trivial repre-
sentation of G2. This representation turns out to be strongly related to geometric
properties of nilpotent orbits.

It is known that L(o) (o € Irr(G2)) is an irreducible unitary lowest weight module
of G, if it is not zero (cf. Theorem 4.4 in [25]). Every irreducible unitary lowest
weight module of G arises in this manner if G = Sp(2n, R) or U(p, q) and the compact
companion Gy moves all the possible rank. If G is O*(2p), there are other unitary
lowest weight modules which can not be obtained in this manner ([9], [11]).

In our cases, the compact subgroup G2 naturally acts on its defining vector space
Vs keeping the non-degenerate Hermitian form ( , )2 invariant (see §3). Put 2n =
dimg V; and m = dimp V, as in (3.1). Then we can realize G in a smaller symplectic
group: G — Sp(2n, R), putting m = 1.

Let us denote the Weil representation of the smaller group Mp(2n,R) by w. Then,
it is easy to see that Q ~ w®™ as a representation of Mp(2n,R), and the Harish-
Chandra (g, K')-module of the Weil representation 2 (resp. w) is realized on the poly-
nomial ring C[M}; ,,] ~ ®™C[(C")*] over n X m matrices (resp. the polynomial ring
C[(C™)*]). Note that we take a contragredient representation of My ., rather than
My m itself.

Let K C G be a maximal compact subgroup of G which lives in U(n) C Sp(2n, R),
where U(n) is a maximal compact subgroup of Sp(2n,R) (cf. (4.2)). We will explain
briefly how we get K-type decomposition of L(o) for each o € Irr(G2). Note that the
product K - G5 is compact and that it is contained in the maximal compact subgroup
K ~ U(nm) of G = Sp(2nm, R). It is well-known that X-types of  can be described
as

(5.3) Q= Z®r(kw+1/211), I=(1,1,...,1),
k=0

where 1 is the highest weight of the natural (or defining) representation of X ~ U (nm)
on C* and 7(X) is an irreducible finite-dimensional representation of K with highest
weight A. Note that the representation space of 7(ky + 1/2 I) coincides with the
space of homogeneous polynomials of degree k. Decompose 7(ky +1/2 I) by the joint
action of K x 5;:

@ ~ ~
T(k'l,[)+1/21[)l1~(:x6'2= Z mi(n,0)n®e  (6=0®Y).
T1€Irr(1?), g€lrr(G2)
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Note that we again use the projection map K x 5; S5 K- Cﬂr'; C K here. In particular,
the one-dimensional space 7(1/2 I) is decomposed as

7(1/21)|z, 5, = x1 B X
In other words, the multiplicity for £ = 0 has the property
_ 1 T1=X1,0'=1G2
mo(r,0) = { 0 otherwise.

The explicit form of x and x; is given in Section 7 after we fix the embedding K C K.
Since L(o) consists of the space of multiplicities of & in Q, we get K-type decom-
position of L(o) as

(5.4) LOz= 37 S mi(m,0)m,

r1€lrr(K) k=0

where the sum Y 77 my (71, 0) is necessarily finite.
Let k, be the lowest possible degree of G-isotypic component of C[M
define the Poincaré series of L(o) in terms of the multiplicity my(71,0) as

We

ml:

o0
(5.5) P(L(o);t*) =t >~ >~ my(n,0) dimn tF.
k=0 r, elrr(K)

Note that the action of pt increases the degree k by two (cf. (4.8)), so we write
P(L(0);t?) instead of P(L(c);t). We denote the center of K by Z(K). We know
that Z (IE) is isomorphic to U(1) and there exists an element H in the Lie algebra of
Z (IE) such that Q(H) acts on the space of homogeneous polynomials of degree k by
k +nm/2. Indeed, H = Y7 H; with the notation (4.10). The operator Q(H) is
semisimple, and the decomposition into the H-isotypic components is given by (5.3).
Moreover, the natural embedding K C K induces an isomorphism between the Lie
algebra of Z(K) and that of Z(K). We denote the element in the Lie algebra of Z(K)
corresponding to H by H'. Then the formal character of L(o) on the compact Cartan
subgroup restricted to the center of K can be expressed by the Poincaré series:

(5.6) trace p(o)t? = the*"m/2P(L(0); ?).

To get explicit multiplicity formulas, we are involved in case-by-case analysis.

6. Description of K-types of the lowest weight modules

Assume that the pair (G;,G2) is in the stable range where G2 is the smaller mem-
ber. This means that m < R-rank G, where m = dimp V> (cf. §3). Take o € Irr(G2)
for which L(o) is not zero, and put ¢ = o ® x as above. Let us describe K-type
decomposition of L(o) in each explicit cases.
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6.1. Case (Sp,0). — Assume that m < n = R-rank Sp(2n,R). This means the
pair (Sp(2n,R),O(m)) is in the stable range. As before, we shall write G = G; =
Sp(2n,R) and G = Sp(2nm, R).

Let K = U(n) be a maximal compact subgroup of G = Sp(2n, R) which is realized
in the standard way (cf. (4.2)). Let K = U(n x m) C G act on My, = M(n,m,C)
naturally as unitary transformation group. The product group U(n) x O(m) acts on
M, » naturally as

(6.1) (k,h)X = kXth  ((k,h) € U(n) x O(m), X € Mym).

Since the action is also unitary, it induces a map U(n) x O(m) — U(nm) = K. The
image of the above map coincides with K - G2. Note that the kernel of the map is
{(£1n,£1,) € U(n) x O(m)}.

The metaplectic cover K acts on M, m as the composition of the projection K=K
and the natural action of the unitary group KX = U(nm). This action induces the
representation of K on the polynomial ring C[M}; ,.], which is isomorphic to the
symmetric tensor of M, ,. By the formula (4.10), we conclude that the action of
K on C[M;;,,] via Weil representation 2 is twisted by det!/2. We shall denote this
representation by C[M;:,,] ® det'/2. Therefore K acts on C[M} ] as C[M}; ] ®
det™/2 and G, acts as C[M;; ] ® det™?2. So the one-dimensional representation
x1 of K coincides with det ™2, and the one-dimensional representation x € Irr(@;)
coincides with det ™2, However, we should be more precise about x because Gy =
O(m) is not connected.

The metaplectic cover K has a realization

K ={(k,2z) € KxC* |detk = 22}

and the representation det 1/2 of K is given by the map (k, z) — z. Then the subgroup
G4 is realized as

G = {(k,2) € G2 x C* | det "k = 2?}
and its character x = det ™2 is given by x(k,z) = z. The identity component of G»
is
(Ga), = {(k,2) € G2 x C* | detk =1,z = 1} ~ SO(m).
The map (k,z) — (detk,z) induces the isomorphism of the component group
Gz/(G2)0 onto the group

A(G2) = {(t,2) € Zy x C* | t" = 2%}

of order four. Since the one-dimensional character x is trivial on the identity
component (5;)0, it induces the character of the component group A(G2). We
denote it by the same letter x, then x(¢,z) = 2. First, we consider the case
where n is odd. Then A(G2) = {(¢%,¢) | ¢ = £1,+V/-1 } = Z,. If we define
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e = ((diag (1pp-1,-1),v/-1) € G, then ¢ € A(G2) generates the component group
Z4. Then we see that

G2 ~SO(m) xZs  ifnis odd.

The character x satisfies x(¢) = v/—1 , which determines the character x of Zj.
Second, let us consider the case where n is even. In this case,

(6.2) CFJ‘; =G9 X Zs if n is even.

The character x is trivial on G2 = O(m) and is non-trivial on Zs.

By the argument in § 5, we will get K-type decomposition of L(o) if we know the
explicit decomposition of C[M}; ] ® det 1/2 a5 K x Gy-module. We first consider
the space C[M}; ,,,] as the usual symmetric tensor of the natural representation of the
unitary group K = U(n x m), then afterwards we will twist it by det'/? to fit it to
the Weil representation 2.

We extend the U(n) x O(m)-action (6.1) on M, ., naturally to the U(n) x U(m)-
action. It is well known (cf. [23]) that, as U(n) x U(m)-module, C[M}; ,,] decomposes
as o

M gy oimy = 2 740 BT,
AEPm
where P, denotes the set of all partitions of length less than or equal to m. We make
use of this decomposition. We identify K with U(n) above, and consider Go = O(m)
in U(m) in the standard manner, i.e., O(m) = U(m) NGL(m, R). Decompose Tim) €
Irr(U(m)) as O(m)-module:

D
(6.3) m lom = 2 mAo)e.
o€lrr(O(m))

Then we have a joint decomposition

. ) @ n
C[Mn,m”U(n)xO(m) = Z { Z m(\, o) T§ )} X o.

o€lrr(O(m)) \ A€Pm

So we completely know o-isotypic component of C[M}; ,,] in terms of the multiplicity

m(A, o). Twist of this representation by det!/? causes the twist by det™/2

representation of K x G;. Therefore L(a)l 7 decomposes as

XKxasa

(6.4) L(0)|U(n)~ ~ ZGD m(\, o) Tin) ® det™/2,
AEPm
This formula describes the multiplicities of K-types of L(o) in the case of Case (Sp, O).
To describe the lowest weight and the lowest K-type of L(c), we give a classification
of Irr(O(m)) briefly. For more detailed discussion, see [23, §3.6] for example. Let
o(u) be an irreducible representation of SO(m) with highest weight p.

Lemma 6.1. — Let o be an irreducible representation of O(m).
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) If or| SO(m) is irreducible, then o and o @ det are mutually inequivalent.
(2) If o| SO(m) s reducible, then o and o @ det are equivalent. In this case, m is

necessarily even. Moreover, there exist positive integers py > pi2 > -+ 2 fims2 > 0
such that

Ulso(m) ~o(pt) @ a(u),
where pt = (1, p2, . . - my2) and p= = (U1, p2,- -, —fm/2)-

In case (1) in the above lemma, it is subtle to tell the difference between o and
o ®det. However, since the difference causes strong influence on our result, we discuss
this point.

Take a Cartan subalgebra fo in o(m) as

bo = (H = ding (a(0)a(02), ... aBp2).0) | 6: € B, a0)= (5 ).

where the last 0 in the expression of H appears if and only if m is odd. We define
gj € h* as g;(H) = /-1 6; in the above expression. Then, positive roots are given
by
N {eitej|1<i<ji<m/2} if m is even,
AT =
{eite; |1<i<j<[m/2}uU{e; |1<j<[m/2]} if misodd.

Assume that a| S0(m) be irreducible. Write 0| so(m) = o(u) for some highest
weight p = 25142] piej. Let 6 = diag (1pm—1,—1) € O(m)\SO(m). Then, also(m)
is irreducible if and only if the twisted representation o(u)® is equivalent to o(u).
Consequently, the highest weight space of o(u) is preserved by the action of §. In
particular, if m is even, we get p,/2 = 0.

Since 6% = 1,,, its action on the highest weight space is the multiplication by +1.
If it is 1, we will write ¢ = o(u) by abuse of notation; if it is —1, then we denote
o0 = o(u) ®det. Let k = £(u) so that ug > pry1 =0. Weput pt = pif 0 = o(p). If
o =o(p) ®det, we add 1 to p (m — 2k)-times after ug, i.e.,

it = (s oy i 1y, 1) = (1, 172),
The following theorem is due to Kashiwara-Vergne [28] (see also [23, §3.6]).

Theorem 6.2. — Assume that m < n = R-rank Sp(2n,R). Then L(o) is not zero
for any o € Irr(O(m)) and it gives an irreducible unitary lowest weight module of
Sp(2n,R)™. Let u* be as above, and extend ut to the weight of Sp(2n,R) by adding
zero. Then the lowest weight of L(o) is given by

wik (u+ + %H) ,

where wg 1is the longest element of the Weyl group of K =U(n) and I = (1,1,...,1).
Consequently, the lowest K -type of L(o) is T(ut) ® det ™/2.
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From this theorem, we get the Poincaré series of L(o) as
(6.5) P(L(o);t?) =t "1 3" m(\,0) dim 7™ ¢,
AEPm

Consider the special case where o € Irr(O(m)) is the trivial representation 1o(m).

Corollary 6.3. — We have the K -type decomposition of L(1o(m)) as

D (n m
L(lo(m))lU(n).. ~ Z 7'2(/\) ® det /2,

where Py, is the set of all partitions such that ¢(A) < m. The Poincaré series of
L(1o(m)) is given by

(6.6) P(L(om);t) = Y dimry ¢,

Proof. — It is well-known that

1 if X is an even partition,

m(A, 1o(m)) = { 0 otherwise.

Apply this formula to (6.4) and (6.5). |

6.2. Case (U,U). — We consider the pair (G1,G2) = (U(p,q),U(m)). We put
G = G1 = U(p, q) in this subsection. Assume that m < min(p,q) = R-rankU(p, q).
This means that the pair (U(p, ¢q),U(m)) is in the stable range.

A maximal compact subgroup of G is isomorphic to U(p) x U(q), and we realized
it as

6.7) K= {(‘3 g) |AcU®),Be U(q)} C Up,q).

Put n = p+g¢. In this case, K x G2 acts on My, ,, in somewhat distorted manner. Let
us identify My m = Mp m® Mg m. Then the action of diag (a,b) x g € (U(p) x U(q)) x
U(m) is given by

(6.8) Mpm ®Mym 3 X®Y — aX g bY g

This action gives the projection K X Go — K - Go C K = U(nm), where K is the
maximal compact subgroup of G = Sp(2nm,R) (cf. (3.8) and (3.9)). The kernel of
the projection K x G2 = K - Gz is given by {((alp,aly),a 1) | @ € C<,|a| = 1}.

Let us consider the Weil representation Q of G = Mp(2nm, R) on C[M;; ,]. Then
the representation of Q| is isomorphic to C[M; ,,] ® det'/2. If we consider the
underlying space C[M,; .,] as C[M}; ,,] = C[M}; ,,] ® C[M{,m], the above embedding
of K x G5 into K tells us that the representation of U(p) x U(q) is isomorphic to

(6.9) (C[M;,m] ® det m/2) R (C[Mq,m] ® det —m/2) ;
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while that of U(m) is isomorphic to
(6.10)
(CIM; ) @ det P/?) ® (CMq.m] © det -q/2) ~ (M 1] © C[My,m]) © det P=9/2,

Therefore the one-dimensional character x € Irr(@vg) is equal to det ®=9/2 and the
one-dimensional character x1 of K is det ™/2 ® det ~™/2.

Let us first consider the untwisted representation C[M,; ;,] of K. To decompose
the restriction to K x G2, we make use of U(p) x U(m) (or U(q) x U(m)) duality. We
have the decomposition as (U(p) x U(gq)) x U(m)-module

CMy ] = CMy ] © C(My,m]

= ( Ze 7P R r§"‘)) ® ( Z®(T;q>)* b (rgm’)*)

AEPm BEPm
= Ze (T/{p) X (T,(L‘I))*) X (T)(‘m) ® (T,(]"))*) )
AMUPEPm

Therefore, if we define the branching coefficient m(\, y; v) by
@
(6.11) ™ e M)y = 3 mO, pv) ™,

v

we get

* @ @ *
(C[Mnym”KxU(m) = Z { Z m(’\ﬂ?”)T)(\p)g(T‘(f)) }ETﬁm).

v AMUEPm
To get the representation Q| RixGy We should twist the above decomposition by
(det™? ® det™™/?) R detP~9/2. After this twisting, for o = ™ e Irr(U(m)), we
get the K-type decomposition of L(o):

S-]
(6.12) L)z = 37 mO ) (1P © det™?) B (1) @ det™/2)*.
A HEPm

To determine the lowest weight of L(T,Sm)), we prove a lemma.

Lemma 6.4. — Take an arbitrary dominant integral weight v of U(m), and write it as
v= (0,1,0,2,...,(13,0,...,0,—bt,...,—b2,‘—b1),
where
apz2ax>2---2a>0, br 20220 >0,
a;,b; € Z; s,t>20ands+t<m.
Consider a set of pairs of partitions {(A\, ) € Pm X Pm | m(A,u;v) # 0}. Then
partitions
{ A =a:=(a,az,...,as0,...,0) and
M= ,3 = (bl,bz,...,bt,o,...,O)
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minimize the degree |A| + |u| among such pairs. Moreover, (a,3) is a unique pair
which attains the minimal degree. In this case, m(a, B3;v) = 1 holds.

Proof. — Take a sufficiently large | > 0 such that v’ = v + (I,...,l) becomes a
partition. We have

(6.13) m\piv) = dim((nor)er)’™
(6.14) = dim ((mA @ det!) ® (7, ® Tu')*)U(m)
(6.15) = " #0,

where ¢ ; = [r, ® 75 : 7;] denotes the Littlewood-Richardson coefficient. Since c] ; #
0 implies [n| = |y| + |0], we have |A| + ml = |u| + |V/|, or equivalently |A| = |u| + |v|.
Therefore, in order to minimize |A| + |u|, we only have to make |A| minimal. However,
if v/ is not contained in X + (I™), the coefficient c*f;ﬁ"") vanishes. Therefore, A = a is
the smallest possible partition (e.g., see [13, §5.2, Proposition 3]). If we take u = 3,
then it is easy to see that m(a, 8;v) =1 (loc. cit.).

If we denote the highest weight of 7 by

vt = (bl,bz, o e ,bt,O, e ,0, —Qgy...,—0A2, ~a1),
it holds that m(\, u;v) = m(u, A\;v*). By the same argument as above, we conclude
that p = g is the only possibility for m(e, 3;v) # 0. O
Remark 6.5. — If v is also a partition, the above proof tells us that m(\, y; v) = cf;’,,,
where ¢}, , is the Littlewood-Richardson coefficient.

Theorem 6.6. — Assume that m < min(p,q) = R-rankU(p,q). Then L(o) is not

zero for any o = ™ e Irr(U(m)) and it gives an irreducible unitary lowest
weight module of U(p,q)". For v, define a,B as in Lemma 6.4, and put B* =
(0,...,0,—bs,...,—bo,—b1). Then the lowest weight of L(T,Sm)) is given by

wi (a + %11,,, 8 — %uq) ,

where wi is the longest element of the Weyl group of K = U(p) x U(q) and I, =
(1,...,1) = (1). Consequently, the lowest K -type of L(™) is (1) ® det™?) ®
(750 ® det™/?)".

Proof. — It is known that L(o) is an irreducible unitary lowest weight module of the
metaplectic cover U(p, q)”. So we simply have to determine its lowest weight. To do
that, we only need to know the lowest K-type (or harmonic K-type) which is unique.
By Lemma 6.4, we conclude that 7 K T[(,q)* gives such a K-type with a twist by

x1 = det™/2 ® det —™/2, O
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By this theorem, we obtain Poincaré series of L(T,fm)):

P(L({™); 1) t16l Z m(\, p; V) dim'r)(‘p) dimT/(LQ) ¢lel

A p€Pm
= ¢l Z m(\, w; v) dimTip) dim 7{® ¢,
MUEPm

This formula follows from (5.5) after a reflection on degrees. Note that the summation
is taken over (A, p) satisfying |A| — |u| = |v| (see the proof of Lemma 6.4). Hence
the total degree of Tip) R (r39)* is given by |A| + |u| = 2|u| + |v| = 2|A| — |v|, while
lv| = |a| - || and ks = |a] + |B| for o = 7™

Consider the special case where T.(,m) is trivial, i.e., v = 0. Then it is easy to see

that
w1 ifA=p,
m(A 45 0) = { 0 otherwise.

Therefore we get

Corollary 6.7. — We have the K -type decomposition of L(1y(m)) as

®
(6.16) LAve)|zg = O (P @ det™?) B (1 @ det™?)*.
Its Poincaré series becomes
(6.17) P(L(1ymy);t) = Z dimT)(‘p) dimriq) ¢,
AEPm

6.3. Case (O*,Sp). — We consider the pair (G1,G2) = (0*(2p), Sp(2m)) in G =
Sp(2nm, R) (n = 2p), which is in the stable range, i.e., we assume that m < [p/2] =
R-rank O*(2p).

In this case, a maximal compact subgroup K of O*(2p) is isomorphic to U(p). We
realize the isomorphism as

(6.18) 0*(2p) D K = {(’0( %) | X € U(p)} o X eUp).
Then K X G2 is imbedded into X = U(2pm) canonically. To be more precise, this
embedding of K = U(p) and G2 = Sp(2m) = Sp(2m,C) N U(2m) is given by the
action on Mp 2, as

Mpom > X — gXth  ((9,h) € K x Gs).

The action induces a projection K x G2 — K - G C K with kernel {(£1,, +1s,,) €
U(p) x Sp(2m)}.

Let us consider the Weil representation 2. As the representation space of Q, we
take the polynomial ring C[M} ,,,,] as before. Then we know that Q| % is isomorphic
to

CM; 5,,) © det™,
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where C[M,; ,,,,] is considered as the symmetric tensor product of the representation

M, 2m above. On the other hand, we have 5; ~ Sp(2m) x Zs, and the one-dimensional
character x arises as the non-trivial character of Z, as in (6.2). Therefore, we have
Q|é~2 ~ CM; 5] © X

First, let us treat the untwisted symmetric tensor. So we decompose C[M}; ,,,] by
using U(p) x U(2m) duality :

* ~ ® () ..(2m)
ClMm, ,2m]|U(p)xU(2m) = Z U
A€P2m

Take a highest weight A for U(2m) and p for Sp(2m). Let us define the branching
coefficient m (A, ) by

2m &
T,{ )ISp(Zm) = E m(’\v N)aﬂa
"

where o, € Irr(Sp(2m)) is the irreducible representation of Sp(2m) with highest
weight p. We also write m(\, 0,,) instead of m(\, u). With this notation, we can
write down the decomposition :

. ® ®
(C[Mpﬂm]IU(p)xsp(zm) = Z { Z m(A, p) Tip)} Roy.

o €Irr(Sp(2m)) \A€P2m

To get the restricted representation Q| R xg,» We must twist the above representation
by det™ X x. Therefore L(o)| decomposes as

@
(6.19) L ypr= Y m(A, 1) 7P ® det™.
AEP2m
This formula describes the multiplicities of K-types of L(c,) in the case of
Case (O*, Sp).

Theorem 6.8. — Assume that m < [p/2] = R-rank O*(2p). Then L(o) is not zero for
any 0 = o, € Irr(Sp(2m)) and it gives an irreducible unitary lowest weight module of
O*(2p)”. Extend p to the weight of O*(2p) by adding zero. Then the lowest weight of
L(o,) is given by

wi (p+mlyp),

where wk s the longest element of the Weyl group of K = U(p) and I, =(1,...,1) =
(17). Consequently, the lowest K -type of L(o,) is Tf,p ) @ det ™.

Proof. — See [23, §3.8.5]. O

From the above theorem, we obtain the Poincaré series of L(o}):

P(L(0,);t%) = ¢~ lul Z m(A, u) dim Tip) ¢,
AEP2m
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Consider the special case where o, = 1s5p(2m), i-e., p = 0. It is well-known that

1 ifdgj1 =X for1 <i<m,
m( Lspem) = { 0 othe:‘wise. t C

So we get

Corollary 6.9. — We have the K -type decomposition of L(1sp2m)) as

@
(6.20) Ldspom)|z = Y. 78 ®det™,
AEPm
where A* = (A1, A1, A2, \2,...) is a transposed even partition which is obtained by
doubling each row of A. Its Poincaré series is given by

(6.21) P(L(1spamy)it) = 3 dimrs) tA.
AEPm

7. Degree of nilpotent orbits

7.1. Automorphism groups of Hermitian symmetric spaces. — Let G be
one of real reductive Lie groups Sp(2n,R), U(p,q), or O*(2p). These groups appear
as the group G; in Table 2. The division algebra D is specified there. Let K be
a maximal compact subgroup of G specified in §6. In all cases, the corresponding
Riemannian symmetric spaces G/K have G-invariant complex structure. In other
words, the spaces G/K are Hermitian symmetric spaces. For G = Sp(2n,R), U(p, p),
or O*(4k), the corresponding Hermitian symmetric space G/K is of tube type. For
G =U(p,q) with p # ¢, or O*(4k + 2), G/K is not of tube type. For definitions and
properties of symmetric spaces, see [20].

We fix a complexification G¢ of the real Lie group G. Let K¢ be the minimal com-
plex Lie subgroup of G¢ containing K. We list up here (G¢, K¢) for the convenience
of readers.

G Gc Kc

Sp(2n,R) | Sp(2n,C) GL(n,C)

Ulpg) |GL(p+4,C) GL(p,C) x GL(q,C)
0*(2p) | 0(2p, Q) GL(p,C)

TaBLE 3. Complexifications of (G, K).

For real Lie groups such as G and K, we denote the corresponding Lie algebra by
go, Yo, respectively. Its complexification is denoted by g and €. The corresponding
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Cartan decomposition g = € @ p is stable under the restriction of the adjoint action
to Kc. Moreover, in our cases, the subspace p breaks up into the sum of two non-
isomorphic irreducible representations of K¢, say

p=preop .
The representation p~ is the contragredient representation of p+.

Let us describe the pair (p*,p~) and the action of K¢ on them for each case.
Although the action itself is fairly well-known, we need more explicit features in the
following.

For G = Sp(2n,R), we realize it as in (4.1) and a maximal compact subgroup
K ~ U(n) is also specified there (4.2). The complexification G¢ is identified naturally
with Sp(2n,C) with respect to the same symplectic form as G (see (3.2) for the
symplectic form). Then, the decomposition p = p* @ p~ is given by

pt = {(i\/;iA ZF\/f_lA) | A€ Sym(n,(C)} .
Therefore, we can identify the both spaces with the space of symmetric matrices of

size n. To see the action of K¢ ~ GL(n,C), it is more convenient to use the different
realization of Sp(2n,R). Let

_ 1 ln "\/:T ln
T= E (_\/__1 ]-n ]-n ) ’

which is called the Cayley transform. The conjugation of Sp(2n,R) by v pro-
duces a different (but isomorphic) real form of Sp(2n,C), and we denote it by
G7" = Sp(2n,R)?. In G7, the conjugated maximal compact subgroup K" has a

simple diagonal form:
E 0
e={(E 2) ikevm}

The complexification K is also expressed similarly as above, but k belonging to
GL(n,C). Then p7 is represented by off diagonal matrices

w:{(g 0 ) 1B.Cesmm O},
and

p'”’:{(g lg)lBGSym(n,C)}, p“’”={<g g)lCGSym(n,C)}.

We denote the element ( g g > of p” by (B,C). Then the adjoint action of an

element k € K¢ on p? is given by
k(B,C) = (kBtk, tk~1Ck™1).
We sometimes identify the Kc-module p* with Sym (n, C).
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For G = U(p, q), we realized it as the full isometry group of the indefinite Hermitian
form (3.6) (cf. (3.7)), and a maximal compact subgroup K ~ U(p) x U(q) is given in
(6.7). The complexification G¢ is naturally identified with GL(p + ¢,C), and K¢ is
given by

Ke = {k: (’g :) | k1 € GL(p,C), k2 eGL(q,(C)}.
2

The other member of the Cartan decomposition is expressed by off diagonal matrices

p={( & §)1BeMp.00.CcManO)}.

and such an element is denoted by (B, C). Irreducible subspaces p* are given as

w={(§ §)ipemoao}. w={(¢ ;)Icenaro}.

The adjoint action of an element k = (k;,k2) € Kc on p is given by
(k1,k2)(B,C) = (k1 Bky ', ko CkT).

Therefore, the representation pt of K¢ is identified with M(p, q, C).

For G = O*(2p), we gave a realization in (3.10). A maximal compact subgroup
K ~ U(p) is chosen again as diagonal matrices (6.18). The complexified Lie group
G is identified with

(71)  0@2p,C) ={Z € GL(2p,C) | '25,Z = S,}, Sp= (0 1") ,

1, 0
k 0
ke={(5 ,2.) 1kectp0}

We identify K¢ and GL(p, C) in the following, so k € K¢ denotes a matrix in GL(p, C).

Now p becomes
0 B
v={(2 7 ) 1ncempol

0 B
c 0

and

As above, we denote the element ( ) by (B, C). The K¢ stable decomposition

of p is given by

p+:{<8 §)|BeAlt(p,<C)}, p_={(g g)lCeAlt(p,(C)}.

The adjoint action of an element k € K¢ on p is
k(B,C) = (kBtk,'k~1Ck™1).
We identify the Kc-module pt with Alt (p, C).
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7.2. Kostant-Rallis decomposition. — In this subsection, we summarize the
Kc-orbit decomposition of p~. The orbit decomposition of pT is the same. We
denote the real rank of Lie group G by r (cf. §6). Then there are exactly (r + 1)
Kc-orbits in p~ in each of the above three cases. We give a parametrization of these
orbits by (r + 1) integers, 0,1,...,r,

p = II Oj.
j=0

We know that the dimension of the orbits are distinct (see below). We arrange the
numbering of orbits so that an orbit with the larger index has the larger dimension.
With this indexing, the set O, is an open dense subset of p~ in the classical topology
(or, also in Zariski topology). On the contrary, the orbit Oy = {0}. We also know
that the closure in classical topology (or, also in Zariski topology),

m: HOJ

jsm
In other words, the closure relation of the orbits is linear ordering. Each closure is

a Zariski closed subset of the affine space p~, then O,, is an affine algebraic variety.
We denote the defining ideal of these subset O,, by

Im :={p € Clp"] | plo,; = 0}.

This is an ideal of the polynomial ring C[p~] on p~. Then, by definition, the coordinate
ring C[O,,] is isomorphic to the residual ring Clp~]/I,x.

Note that we can identify p* with the dual vector space of p~ via Killing form.
Therefore, by the natural identification, C[p~] = S(p™), where S(p*) denotes the
symmetric algebra. Since p* is an abelian subspace of g, we also identify S(p*) with
the enveloping algebra U(pt). We use these identification freely in the following. In
particular, as a Kc-module, C[0,,] is isomorphic to a quotient module of S(p*).

Let L = L(o) be an irreducible unitary lowest weight module of G treated in
§5. We construct a good filtration of L by taking the lowest K-type as a generating
subspace of L (cf. §1.2). Let M = gr L be the associated graded S(g)-module. Since
the generating subspace is preserved by ¢ and p~, the S(g)-module M is annihilated
by & and p~. Therefore, its associated variety AV (L) is contained in p~, by the
identification above, and is a K¢ stable closed subset. Since the K¢-orbits in p~ has
linear ordering with respect to the closure relation, we can conclude that AV (L) = O,,
for some 0 < m < r.

In the following subsections, we see that there is a strong relationship between
C[0,,] and the K-type decomposition of L(1g,). In fact, they are the same as Kc-
modules up to some character. This relationship is an example of general phenomenon
and is well-known among experts. It is a part of Vogan’s philosophy of orbit method
[52].
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Our main aim of the following subsections is calculation of the Bernstein degree of
L(1g,). Our approach is purely representation theoretic. It turns out that Deg L(1g,)
coincides with the classical degree of the corresponding orbit O, = AV (L(1g,)),
which coincides with determinantal variety of various type (see, e.g, [12] or [16,
Lecture 9]). Hence our calculation here will give a new proof of the formula of deg Oy,
called Giambelli- Thom-Porteous formula ([15], [17]; also see [12, Chapter 14]).

7.3. The case G = Sp(2n,R). — Consider G = Sp(2n, R). In this case, as is given
above, K = U(n), K¢ = GL(n,C), p~ = Sym(n,C). The action of k¥ € K¢ on
A € p~ is given by
(7.2) k-A=t%"1Ak™! (ke GL(n,C),A € Sym(n,C)).
We define a locally closed subset of Sym (n,C) by

Om = {A € Sym (n,C) | rank (A) = m}, (m=0,1,...,n).

By the definition of the action of K¢, it is easy to see that O, is stable under the
action of Kc. Moreover, they classify all the Kc-orbits in p~. The matrix Z;n=1 Ej;
belongs to the orbit On,. Here, E;; is the matrix unit, that is, (7,7)-entry of the
matrix E;; is one and all other entries are zero. The dimension of the orbit Oy, is
given by
dim Oy, =rm — (m — 1)m/2.

For subsets I = {i1,%2,...,im+1} and J = {j1,J2,...,Jm+1} of {1,2,...,n} with the
same cardinality (m + 1), we define the minor

Dyy(A) = det(ai,j,)1<pa<m+1,
where A = (aij)1<i,j<n € Sym (n,C). Then the defining ideal I, of O,, is generated
by these minors
{Dis | I,J C{L,2,...,n},|I|=|J| =m+1}.

Recall the dual pair (Sp(2n,R),O0(m)) in §3. We define an unfolding of the orbit
O by an extra action of O(m), or more precisely, its complexification O(m, C). Let
us consider the space of m x n matrices My, , = M(m,n,C) and define an action of
K¢ x O(m,C) = GL(n,C) x O(m,C) > (k,h) on My, n by

(k,h) - X =hXk™' (X € Mp ).
For X € My, n, we define
Y(X) = tXX € Sym (n,C).

This is a polynomial map of degree two. With the trivial action of O(m,C) on Oy,
the map

P Mm,n - m
is K¢ x O(m,C)-equivariant, that is, ¥(hXk™!) = tk~1y(X)k~! for all k € Kc,
h € O(m,C). We see that the image of 9 coincides with O,,,.
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Lemma 7.1. — The map ¢ above induces the C-algebra isomorphism
$* :C0m] 3 f > fotp € QM 1009 = §(M,, )°™O),

which means that O,, is the geometric quotient My.m//O(m,C). In particular, O,
is a normal variety. Here we consider My, n = My, . as the algebraic dual of My, r,.
Proof. — The induced map ¢* is injective since 1 is surjective. The classical invariant
theory, in the modern reformulation [24, § 3.4], says that every O(m, C)-invariants on
M, n is generated by typical invariants of degree two, which implies the map ¥* is
surjective. O

Now we come back to the dual pair (Sp(2n,R),O(m)) in G = Sp(2nm, R) and the
Weil representation € of G (cf. §3). Let L(1o(m)) be an irreducible unitary lowest
weight module of G which corresponds to the trivial representation of O(m). We
should clarify the relationship between Oy, and the representation L(1o(m))-

Since the associated variety of L(1o(m)) is contained in p~, it is enough to see
the annihilator of gr L(1o(m)) in U(p*). Therefore, let us see the action of the non-
compact root vector X, e, € p* via Q : sp(2nm,R) = End c(C[My,m]),

1 m
U Xeate,) = 3 Z TajTby,
j=1

(see (4.8)). By this formula, we see Q(X._4c,) € C[My, »]°™O . Moreover, we have

2 Q(Xe.,-'rsb) = "pabv

here 14 € (C[Mm,n]o(m*c) is the ab-component of 1. This means that the subspace
spanned by typical invariants 1., coincides with the image Q(p*). Thus, the sub-
algebra of Q(U(p*)) generated by Q(p*) is isomorphic to C[M,, »]°(™©O | which is
generated by typical invariants as is explained above. Let us define the natural good
filtration of L = L(10o(s)) by L = Uk(p*)1, where 1 is the constant polynomial with
value 1. Then we have an isomorphism
L(10(m)) = gr L(Lowm)) = U(@*)/Im

as U(p*)-modules, K¢-modules and filtered modules. The filtration induced by the
degree of polynomials coincides with the natural filtration up to a shift. This implies

Lemma 7.2. — There are algebra isomorphisms
QU(P*)) = C[Mp,n )™ = C[Om] = Clp~]/ I
We have Ann L(1o(m)) = Ann gr L(1o(m)) = Im in U(pt).

Proof. — As is explained above, we have the desired isomorphisms. For the annihi-
lator, note that the representation space (C[M,‘;,m]o(m"c) of L(1o(m)) has the natural
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grading as K-module and p* acts on C[M};,]°™O = C[Mp»]°™O as a homo-
geneous operator of degree two. This means that the annihilator in U(p*) does not
change after taking gradation as a filtered U(g)-module. O

Corollary 7.3. — The representation L(1o(m)) has the following properties.
(1) The associated variety of L(1o(m)) i Om.

(2) As a K-module, L(1o(m)) is isomorphic to C[On] ® det ™/2.

(8) The Bernstein degree of L(1o(m)) coincides with deg Op,.

Proof. — (1) is a direct consequence of the above lemma.

Let us consider (2). By definition, L(1p(m)) is realized on (C[M;';’m]o(m'c) =
C[Mpp 210 O (see §5). Asis explained in § 5, to get K-module structure of L(1o(m)),
we must twist C[M ,]°™O by det ™/2. Therefore, untwisting of L(1o(m)) produces
C[M 2120 itself, and the module structure factors through to that of K.

Since the unfolding map 1 has degree two, it is easy to see the definition of
Deg L(10(m)) and deg Op, coincides, which proves (3). |

Let us calculate Deg L(1o(m)) = deg Op, explicitly. Recall the good filtration
Ly = Uk(p*)1. By (6.6) and the Weyl’s dimension formula, we know

dim Ly = Z dim 7{})

AEPm,|A|<k

_ Z H1<i<j<n(2)\,~ —2); —i+7)
AEPm NIk Mhcicienli =9)
gm(m—1)/24+m(n—m)pm(m—1)/2+m(n—m)+m

= - X

H:7;1(” —)!
m

X / H (xs — x5) H 7" ™Mdxy - de,

0<em<om_1< Koy, 1SISISM =1

21+ +aem<gl
+ (lower order terms of k)
2mn—m(m+1)/2kmn—m(m—1)/2

" X
m! T2, (n —9)!
m
X / H |£L'z - {I:jl HI?_mdwl s dxm
230 1<i<j<m i=1

@1+ tem <l

+ (lower order terms of k)

for sufficiently large k. Here, in the third equality, we devide the formula by a suitable
power of k and interprete the leading term as a Riemann sum for the integral.
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Let us generalize the integral above slightly, and denote it as

(7.3) rem= [ AR T 20" do - de

z; 20,
a1+ Fem<l

where A =[], ¢;cj<m(®i — ;) is the difference product. An explicit formula of this
integral is given by using Gamma function of Hermitian symmetric cone ([37]).

Theorem 7.4. — Let I®(s,m) be as in (7.3). For Res > —1 and a = 1,2,4, we have

H;.nzl FGa/2+1)I(s+ 14+ (j — 1)a/2)

(7.4) I%(s,m) = T(a/2+ 1)m[(sm + N + 1) ’

where N =m + %m(m -1).
Summarizing above, we have the following theorem.

Theorem 7.5. — Assume that m < n = R-rank Sp(2n,R), and consider the reductive
dual pair (Sp(2n, R), O(m)).

(1) The unitarizable lowest weight module L(1o(m)) of Sp(2n,R)” has the lowest
weight 3(1,1,...,1) = 3 S, €. Its associated cycle is multiplicity-free and given
by AC (L(1o(m))) = [Om].

(2) The Gelfand-Kirillov dimension and the Bernstein degree of L(1o(m)) are

_ -1
DimL(1o(m)) = dimOp=m (" - ﬁz—> ’
m—1
o 2 @n—2m )
Deg L(lom)) = degOm L a=mrn

where "' = 1(l — 2)(I — 4) --- 2 for an even integer I, and I!' =1(l —2)(l —4)---1 for
oddl.

Proof. — From the top degree term of dim L; above, we get the Gelfand-Kirillov
dimension )

Dim L(10(m)) = mn — % =:d,
and

gd-mgl
_ HF(J/2+1 (d/m - (G -1)/2)
B 7rm/2m' 'n—j+1)

B "i—I_l_2n—2m+l)"
- M (=m0t
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We close this subsection by giving the relation between the lowest weight module
L(1o(m)) and the half-form bundle on the orbit O,,. We choose a representative

A= Ej; € Op CSym(n,C) =p~
=1
of the orbit O,,. The group K¢ = GL(n,C) acts on Oy, transitively by (7.2). The
stabilizer (K¢)y of A in K¢ is

0
@3 Wn={k=(2 0 )incomo.necim-mo}.
We denote the determinant of the isotropy representation by det(Ad |TA0 )
(Kc)x = C*, where T)\Oy, is the tangent space of Oy, at A. It is written by

det(Ad ITX 0.)= (det g1)" "™ (det g2) ™ = (det g1)"(det k)™,

with the notation (7.5). The cotangent bundle T*Oy, is a Kc-equivariant vector bun-
dle. The line bundle AP = /\dim Om T*O, consisting of volume forms on the orbit
O, is a Kc-equivariant line bundle. Then it corresponds to the one-dimensional rep-
resentation of the isotropy subgroup (Kc¢)x. In this case it is given by the coisotropy
representation

det(Ad*

reo )i (Kc)x 3 ks (detgr) ™ (det k)™ € C,
A m

with the notation (7.5). We introduce the square root of the line bundle A*P, denoted
by £, and consider the set I'(O,, &) of its global sections. We will give the relation
between this line bundle on the orbit O, and the lowest weight representation under
consideration.

In what follows, we assume that n is even. We define the one-dimensional repre-
sentation

€: (Kc)x 3 k> det ™2k € CX.
By the definition, the coisotropy representation is the square of ¢;

det(Ad*| .y ) =det(Ad |, , )71 =€
AYm m

This means that £ corresponds to the half-form bundle on the orbit O,, =

Kc/(Kco)a = I?&/(I?E:),\. The set of global sections I'(O,,,£) has a natural Kc-
module structure.

Proposition 7.6. — For 0 < m < n and n € 2Z, the lowest weight module L(1o()) 45
isomorphic to I'(Op,, £) as K-modules.

Proof. — We denote the complexification of the character x; : K — C* introduced
in Section 6.1 by the same character. To be more explicit, we define the character
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x1: K¢ = C by x1 (k) = det ™/2k. The restriction of x; to the isotropy subgroup
coincides with £. Then, we see that

(O, €) = Ind X2

(o E =0 @Id (2, 1), = x1 © C0n]

(Kc)a
for0<m<nas I’(\'E;—modules. On the other hand, we have seen in Corollary 7.3(2)
that
L(lo(m)) = C[m] ® det ™/2,
Since O,, is normal (cf. Lemma 7.1), and, for m # n, codimg—Op > 2 for m # n,

the restriction map gives a natural isomorphism C[O,,] = C[O,,] (cf. [10, Chapter 11,
§11.2]). This shows the proposition. O

7.4. The case G = U(p,q). — Let G = U(p,q). In this case, K = U(p) x U(q),
K¢ =GL(p,C) x GL(q,C), p~ = M(q,p,C). The action of (k;,ks) € Kcon A€ p~
is given by

(7.6) ko AkT!.

Put 7 = R-rank U(p, ¢) = min(p, g). We define a subset of M, , = M(q,p,C) by
Om ={A € My p | rank (A) = m}, (m=0,1,...,7).

By an argument similar to the case Sp(2n,R), we know that O,, is a Kc-orbit, and
they give a complete classification of Kc-orbits in p~. Note that the matrix 3, ,,, Ej;

is contained in O,,. It is easy to see that

dim O, = (p + ¢)m — m?,

hence all the orbits have different dimensions. The defining ideal I,,, of Oy, is gener-
ated by the minors
{Drs|IC{1,2,...,9},J C{1,2,...,p},|I| =|J| =m+1}.

The affine algebraic variety O,, is called the determinantal variety.

Now recall the dual pair (U(p, ¢),U(m)). Let GL(m,C) be the complexification of
U(m). We consider the natural action of K¢ x GL(m,C) = (GL(p,C) x GL(g,C)) x
GL(m,C) > (k1,ka,h) on (A, B) € My p ® M g ~ My pirq by
(7.7) (*h "' Ak;',hBks),
which comes from (6.8). For (A,B) € My p ® My, 4, we define an unfolding map
by

$(A,B) = ‘BA € Myp.
This is a polynomial map of degree two. Note that ¢(3 ¢, Eu, > ; Eu) =

le j E; € O,,. From this, we see that the image of ¥ coincides with O,,. With
the trivial action of GL(m,C) on O,,, the map

¥ Minptq = Om
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is K¢ x GL(m,C)-equivariant, that is, ¥(th~1Ak; !, hB tky) = kg'l,[)(A,B)kl_l for all
(k1,k2) € K¢, h € GL(m,C). This map induces the C-algebra homomorphism

Y* :ClOp]d f foy € C[Mm,p+q]GL(m’c).

As a summary we have
Lemma 7.7. — There exists a C-algebra isomorphism

$* : ClOm] = C[Mm,p+q]GL(m’C) = S(Mp1qm)?H™9,
which means that O, is the geometric quotient Mpiqm//GL(m,C). In particular,
O, is a normal variety. Here we consider Mpyqm as the contragredient space to
Mm,p+q'
Proof. — 1t is injective since v is surjective. The classical invariant theory also says
that every GL(m, C)-invariants on My, p44 is generated by typical invariants of degree
two, that is, this map ¢* is surjective. O

For the Weil representation of the dual pair (U(p, q),U(m)) € Sp(2nm,R) and the
unitary lowest weight module L(1y(m)), we have expected the same story. Take a
Cartan subalgebra t in € consisting of diagonal matrices

t={H = diag(a1,...,ap,b1,...,bq) | a;,b; € C}.

This is also a Cartan subalgebra of g. We define ¢;,d; € t* by ¢;(H) = a;,6;(H) = b;
for above H € t. Then the set of positive non-compact roots is

At ={e;i-0;|1<i<p1<j<q)
Put

0] 0

Then X, _s, is a non-compact root vector in p*. From the embedding (3.8) and the
Fock realization (4.5) of the Weil representation 2, we conclude that

Xeo—5, = ( 0 Ea > €gllp+4¢,C =g.

m
(7.8) O(-2Xc,-5,) =Yab = »_Tajtp; (1<a<p,1<b<0),

Jj=1
where (waj)lgagp’lgjgm € Mp,m and (ybj)1<b<q,1<j<m € Mq,m. Note that these
quadratics (7.8) generate the full invariants S(Mptq,,)%L(™0 . From this, we get

Lemma 7.8. — There are algebra isomorphisms
QU (PY)) = UM piq] ™0 ~ CO,] = Clp~ )/ Im.
We have Ann L(1y(pm)) = Ann gr L(1y(m)) = Im in U(p™).
Proof. — The proof is similar to that of Lemma 7.2. O
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Corollary 7.9

(1) The associated variety of L(1y(m)) is Op.

(2) Asa K -module, L(1y(m)) is isomorphic to C[0,,] ® (det ™2 ® det —™/2).
(3) Bernstein degree of L(1y(m)) coincides with deg O, .

Proof. — The proof is similar to that of Corollary 7.3. For the K-type decomposition
of L(lu(m)), see (616) O

Let us define the natural filtration of L = L(1y(m)) by Lr = Ux(p*)1, where 1 is
a constant polynomial. By (6.17), we know

dim Ly = Z dim 73(\” ) dim T)(‘Q)

AEPm
1Ak
I M-XN-i+i) T i-i+5) I G-9
1<i<i<m 1igm, m+1<i<j<p
_ Z m+1Lji<p
I[I G-9)
*{ﬁé"‘ 1<i<i<p
I i-X-i+5) T -i+q) II  G-9
1<i<j<m 1<i<m, m+1<i<j<q
y m+1<ji<q
I[I G-9
1€i<j<q

km(m—l)/2 x2+4+m(p+q—2m)+m

ITie, (p — i)!(g — &)!

X / H (z; — x;)? fo""q_zmdxl ...dopy,

0<em<em1< <oy, 1SISISM =1
21+ Fem<1

+ (lower order terms of k)

km(p+g—m)

m
= pe / H 'JJ, - .’l)jl2 H .’I}€+q_2md.’l!1 SN dl’m
m! TT(p—9) (g —1)! e, 1<i<j<m i=1
=1 z1++2m <1

+ (lower order terms of k)

for sufficiently large k.

Theorem 7.10. — Assume that m < min(p,q) = R-rankU(p,q), and consider the
reductive dual pair (U(p,q),U(m)).

(1) The unitarizable lowest weight module L(1y(m)) of U(p,q)” has the lowest weight
m/2lp, = m/2 (Zle €~ 25 5j) , where I, , = (1,...,1,-1,...,—1). Its asso-
ciated cycle is given by AC (L(1y(m))) = O]
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(2) The Gelfand-Kirillov dimension and the Bernstein degree of L(1y(m)) is given by

DimL(ly(m) = dimOp, = m(p +q—-m),
G-D'p+g—m—j)!
Deg L(1y(m)) = degO, =
& L(Lu(m) 8 JHI (p—3)' (g7

Proof. — By the formula of dim L; above, we have

Dim L(1ym)) = m(p+q—m)=:d,
d!
Deg L(1 = I?(p+ q — 2m,m).
stlvm) = G-t
Now apply Theorem 7.4. O

We show that the half-form bundle on O,, is related to some lowest weight repre-
sentation L(o). We put

m
A=) Ej; €O0mnC Myp=p~.
J=1

The group K¢ = GL(p,C) x GL(q,C) acts on O,, by (7.6). The stabilizer (K¢)x of
Ain KC is
0 *

(7.9) (ch),\:{(khkz): << 91 ),( 9 )) GKclgIEGL(m,(C)}.

* g2 0 g3
The determinant of the isotropy representation is

det(Ad |, ,, ) = (det g1)P~%(det k1) ™™ (det k2)™,

and that of the coisotropy representation

det(Ad*| ., )t (Kc)x 3 (ki k2) > (det g1)~ P9 (det ky)™(det ky) ™™ € CX,

with the notation (7.9). We denote the line bundle consisting of volume forms on Oy,
by AP, and its square root by £. Let us clarify the meaning of the square root & of
At°P. We denote the inverse image of the subgroup K¢ C K¢ in ICC by K(c This is
a double covering group of K¢, which is not necessarily connected, with the covering
map I?Tc — K¢. We have an realization

Kc = {(k,2) € K¢ x C* | k = (ky, kp), (det ky )™ (det ko) ™™ = 22}

Through the natural projection, I’(\E also acts on O,,. We denote the isotropy sub-
group at A € Oy, by (Kc)x. This is the inverse image of (K¢)a, that is,
(7.10)

(I?E:)A={((k1,kz),z)€f5clk1=<‘(11 902),1@:(%1 *),gleGL(m,C)}.

g3
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In what follows, we assume that p—q is even and calculate the K-types of I'(Op,, &).
There exists a well-defined character

€1 (Ke)x 3 (ku, ka, 2) = (det 1)~ P~9/2; € CX,

with the notation (7.10). By the construction of £, the coisotropy representation is
the square of &:

det(Ad*

— g2
T;Om)_§ ’

This means that £ determines the half-form bundle vV At°P on the orbit O,,. As a

Kc-module, the set of global sections I'(Op,, £) is isomorphic to the induced module
— Tnd Kc
P(Om,§) =Ind 2 &.
We define a character x; : I?E: — C* by x1(k1,k2,2) = 2z, and &' : (K¢)y — C*
by &'(k1,k2) = ~(det g1)~(®=9/2 in the notation above. The character &’ lifts up to a
character of (K¢), via projection map, and we denote it by the same letter £’ again.
Roughly speaking, x1 equals “det ™/2k; det ’mf ko”. Then, £ is the tensor product of
&' with the restriction of x; to the subgroup (Kc)x. By the reciprocity law,

Ind ¢

(I?Tc)Af =xi®©hd¥e ¢ =y, ®Ind€(I§C)A€'.

(Kc)a

Lemma 7.11. — We assume that m < min(p,q) and p — q € 2Z as before, and that
max(p,q) # m. Then, as a Kc-module, we have an isomorphism

®
Ind {%C)Afl = Z Tatil, R Tx
AEPm
with | = (¢ — p)/2. Here we denote 1,, = (1,...,1,0,...,0), in which 1 appears
m-times.
This shows that
®
L'(Om,&) = Z (Tagil,, @ det ™?) & (1 ® det ™/2)*.
AEPm

On the other hand, by (6.12), the lowest weight module L(x~!) also has the same
K-types. Indeed, the character x of Go = U(m) is detP~9/2 = det ! as is shown in
(6.10). For v = IL,,, we see that the multiplicity m(\, u; v) defined by (6.11) is

L[ 1 ifA=p+v
m(\, pu;v) = { 0 otherwise.

Summarizing above, we have

Proposition 7.12. — Suppose p—q € 27 and 0 < m < min(p,q). Let x = det (P~9/2 pe
the character of Go = U(m) given in (6.10). Then the lowest weight module L(x71)
is isomorphic to T'(Op, &) as a Kc-module.
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7.5. The case G = O*(2p). — Let us consider the case G = O*(2p). In this case
K =U(p), Kc = GL(p,C), p~ = Alt (p,C). The action of k € Kc on A € p~ is given
by tk~1Ak~L.

Put » = R-rank O*(2p) = [p/2], where [z] is the Gauss symbol. We define a subset
of Alt (p,C) by

Oy, = {A € Alt (p,C) | rank (A) = 2m}, (m=0,1,...,7).

Since the rank of alternative matrices is always even, these {Op, Oy, ..., O,} form the
set of all K¢-orbits on Alt (p,C). The matrix Z;nzl (Em+j,j — Ejm+j) is contained in
O The dimension of the orbit is given by '

dim O, = 2pm — m(2m + 1),
and the defining ideal I, of O,, is generated by
{Drs|I,J Cc{1,2,...,2p},|I| = |J| = 2m + 1}.

Recall the dual pair (O*(2p), Sp(2m)). Let Sp(2m,C) be the complexification of
Sp(2m). We define the action of K¢ x Sp(2m,C) on A € May, , by

(k,h)-A=hAk™, for k € GL(p,C) = K¢, h € Sp(2m,C).
We define an unfolding map 3 by
P(A) = TAJ, A for A € Maop p,
where J,, is defined as in (3.2). This is a polynomial map of degree two. Since
(D Ejj) =Y (Emijj — Ejmij) € Om,
is2m Jj=1

we see that the image of ) coincides with O,,. With the trivial action of Sp(2m,C)
on O,,, the map

Y Mamp — Om

is K¢ x Sp(2m, C)-equivariant, that is, ¥(hAk™1) = k=19 (A)k~! for all k € K¢ and
h € Sp(2m,C). This map induces a C-algebra homomorphism

W COm] 3 f > fotp € C[May, ,]572™0)
Lemma 7.13. — We have a C-algebra isomorphism
b* : C[Om] = C[May, p]57™0) |

which means that O, is the geometric quotient Mam p//Sp(2m,C). In particular,

On, is a normal variety.

Proof. — The proof is similar to that of Lemma 7.1. [
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Let us consider the Weil representation of the dual pair (O*(2p), Sp(2m)) €
Sp(2nm,R) (n = 2p) and the unitary lowest weight module L(1sp2m)). Take a
Cartan subalgebra t in € consisting of diagonal matrices

t={H =diag(a1,...,ap,—a1,...,—ap) | a; € C}.

This is also a Cartan subalgebra of g. We define ¢; € t* by ¢;(H) = a; for above
H € t. Then the set of positive non-compact roots is

A:={65+6]‘|1Si<j<p}.

Put

0| E, - E,
X6a+€b=<0 "0 "“)eo(2p,<r:)=g.

Note that the complexification o(2p,C) is given in (7.1), in which we adopt rather
non-standard symmetric bilinear form S,. Then X, ., is a non-compact root vector
in p*. From the embedding (3.11) and the Fock realization (4.5) of 2, we get

(7~11) Q(_2X€a+€b) = ey = Z(zajybj - mbjyaj) (1 <a<bgp),
j=1

where ((J:aj)lgagp,lgjgm,(ybj)lgbgp’lgjgm) eEM 2m = M2*m,p' These quadratics

(7.11) generate the invariants S(Mp g )5PC™O

Lemma 7.14. — There are algebra isomorphisms
QU (™)) = Mz 7™ = CO] = Clp~ ]/ Im.
We have Ann L(1sp(2m)) = Ann gr L(1sp2m)) = Im in U(p™).
Proof. — The proof is similar to that of Lemma 7.2. O

Corollary 7.15

(1) The associated variety of L(1sp2m)) s Om.

(2) As a K-module, C[Or,) is isomorphic to L(1gp(am))-

(3) The Bernstein degree of L(15p2m)) coincides with deg Op,.

Proof. — The proof is similar to that of Corollary 7.3. For the K-type decomposition
of L(ISp(2m))7 see (620) 0O

Let us define the natural filtration of L = L(1sp2m)) by Lx = Uk (p*)1, where 1
is the constant polynomial. By (6.21), we know

dim Ly = Z dim T)(f;)

AEPm
X<k
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/\i—/\~—2i+2j)2((/\i—/\'—2i+2j)2_1)
J J

|§; H (.7_’)
I( E 1<i<j<p
x I -2i+i)-20+1+5) [[ G-9)
2m 1574 2m+1<i<j<p
km(m—l)/2x4+2m(p—2m)+m
I (o — i)

m
X / H (zi — z;)* H x?(p_zm)dxl cedt,
i=1

0€em< gy 1SESISM
214+ +zm<1

+ (lower order terms of k)

km(2p-—2m—1) m —2m
= T / H I:Ei —$j|4H$l?(p 2 )d.’l,‘l d.’L'm
m: ]._.[izl(p - 7’)' i=1

0<=; 1<i<j<m
214+ +zm 1

+ (lower order terms of k)

for sufficiently large k.

Theorem 7.16. — Assume that m < [p/2] = R-rank O*(2p), and consider the reductive
dual pair (O*(2p), Sp(2m)).

(1) The unitarizable lowest weight module L(1sp(2m)) of O*(2p)™ has the lowest weight
m(1,...,1) = mY 7 &, and its associated cycle is given by AC (L(1sp2m))) =
[Om].

(2) The Gelfand-Kirillov dimension and the Bernstein degree of L(1spam)) is given
by

Dim L(1spem)) = dimOp, =m(2p—2m — 1),

,,H 2(.7_1) 2(P m—j))!‘

deg O,, = (2m —
80m = (p—)'®-m-j)

Deg L(15p(2m))
j=1

Proof. — By the formula of dim Ly, we get
Dim L(1sp2m)) = m(2p—2m—1) =:d,

d!
Deg L(1 _—
g ( Sp(?m)) ml Hf;nl (p _ 1,)'

Apply Theorem 7.4 to get the desired formula. O

I*(2p — 4m,m).

We have a relation between the half-form bundle and L(1gp(2m)) similar to that in

Im 0>€Alt(p,(C) witthz( 0 —lm )

Proposition 7.6. We define \ = ( 0 0 L, 0
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The isotropy subgroup of A in K¢ is

(Kon={k= (% )l spem0.m e GLp-2m, 0}

*
Therefore the determinant of the coisotropy representation becomes

det(Ad* 3 Om) = (det k)°™,

and we define its square root by
£:(Kc)xd k> (detk)™ € C*.

Proposition 7.17. — For m < p/2, the set of global section of the half-form bundle
[(Om, &) is isomorphic to L(1sp2m)) as a K-module.

7.6. A unified formula. — Consider the reductive dual pair (G1,G2) C G =
Sp(2nm, R) of compact type. We put G = G1, which is a non-compact companion.
We use the notation in §3 freely in this subsection. In particular, D = R,C,H is a
division algebra over R, and n = 1/2dimg Vi, m = dimp V5. Put r = R-rank G, and
a=dimg D =1,2,4.

Summarizing the above three explicit calculations, we have a unified expression of
the Gelfand-Kirillov dimension and the Bernstein degree of the unitary lowest weight
module L(1g,).

Theorem 7.18. — Assume that the dual pair (G1,G2) is in the stable range, i.e., m <
r. We denote by L(1g,) the irreducible lowest weight module of Gy which is the
(twisted) theta lift of the trivial representation of the compact companion Ga. Then the
associated cycle AC L(1g,) is the closure of the m-th Kc-orbit Oy, in p~. Moreover,
we have

Dim L(1g,) = m(n +1-— %(m + 1)) = dim O,, =: d,

and i
Deg L(1g,) = F_lmla(n —am,m) = deg Oy,

where I*(s,m) is the integral (7.4), and the integer F' is given by
T2, 2 = ) =2""[[L; (n — j)!  Case (Sp,0),
F=4q [IZi(e— ) - ) Case (U,U),
152 (- 5)! Case (0*, Sp).
Remark 7.19. — If G/K is of tube type, we have
[Tje: 2(n =)t =2m"¢][7L, (n — 5)! Case (Sp,0),
F=< [ {(n/a—5)1? Case (U,U),
12 (n/a - j)! Case (0*, Sp).
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8. Multiplicity free action and Poincaré series

In this section, we develop a general theory on Poincaré series of graded mod-
ules which arise from multiplicity free action of reductive groups. All the groups in
this section are complex algebraic groups and irreducible representations are finite
dimensional ones.

8.1. Poincaré series of covariants. — Let G; and G2 be complex reductive groups
and X a vector space on which G; and G, jointly act linearly. We assume that the ac-
tion of Gy x G, is multiplicity free. This means that the polynomial ring C[X] = I'(X)
decomposes, as a G; X Go-module, into irreducible representations with multiplicity
one. Namely, there exists a subset Rx(G1 x G2) C Irr(G1 X G2) such that

[$2)
F(X) = Z 1 Em.
m1®r2€Rx (G1XG2)

We assume further, in the decomposition, the correspondence 7 ¢ 72 is one to one.
Hence, m; determines mo and vice versa.

We choose suitable positive systems of roots for G; and G, and fix them in what
follows. Let A be the highest weight of m; = 71 (A) with respect to the positive system
we chose. Then we will denote the corresponding highest weight of w2 by ¢(\) so that
e = ma(p(N)). Let AT be a lattice semigroup of the highest weights of m; € Irr(G;)
which occur in I'(X). Then we can write the decomposition as

LX) = 37 m() B (p(V):
AEAT
Note that the correspondence AT 3 X -+ () is a semigroup morphism from At into
the dominant weight lattice of Gs, i.e., (A +n) = p(A) + ¢(n).
We consider a (reductive) spherical subgroup H of G;. Since H is spherical, for
any irreducible representation (71, V') of G;, V has at most one-dimensional invariants
under the action of H : dim V¥ < 1. We put

AY(H)={) e AT |dim V¥ =1} c AT,

where V), is a representation space of m;(A). Let A (respectively A(H)) be the lattice
generated by AT (respectively AT(H)). Note that it is not necessary to hold that
At(H) = At N A(H). Since AT is a free abelian semigroup generated by finite
elements (see the argument in [26, §2]), we can extend the correspondence ¢(-) to A
as a group morphism.

The set of H-invariants of I'(X) is denoted by I'(X;1g) = C[X]¥. Then it de-
composes multiplicity freely as a Ga-module

M(Xi1m) =CX1E = 27 mle(V).
AEA+(H)
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Since T'(X;1p) is a finitely generated graded Noetherian algebra, it has a Poincaré
series P(1y;t), where t is an indeterminate. More precisely, we define P(1g;t) in
the following way. If the representation m;(\) ® m3(¢())) occurs in the k-th degree
of the polynomial ring I'(X') = C[X], we write |\| = k. This degree map is obviously
additive |A +n| = |A| + |n]. We put

(8.1) P(g;t)= Y dimma(p(N) M = trace rox;1. (t7),
AEA+(H)

where E denotes the degree operator. Let {ai,...,as} C C[X]¥ be a set of homo-
geneous and algebraically independent elements such that C[X]¥ is integral over a
subalgebra Clay, ..., aq] generated by ay,... ag. Put h; = dega;. Then there exists
a polynomial @(t) such that

Q)
H‘iiZI(]‘ - thi),
and Q(1) gives a positive integer (see, e.g., [45, Theorem 2.5.6]). The integer Q(1)
is independent of the choice of {ai,...,as} above. We call it the degree of C[X]H
and denote Q(1) = DegI'(X;1x). The number d coincides with the transcendental
degree of the quotient field of C[X]¥ | and we denote it by d = DimI'(X;1y), which
is the dimension of the geometric quotient X//H.

More generally, for any o(u) € Irr(H) with highest weight u, we denote o(u)-
covariants of I'(X) by I'(X; o (1)), i.e.,
D(X;0(u)) = (o(u)* ® QXD
The space of covariants I'(X;o(u)) is a finitely generated I'(X; 1x) = C[X]¥ -module
by polynomial multiplication against the second factor (see, e.g., [39]). Note that it

carries also a representation of Go on the second factor.
If we decompose the restriction of 71 (A) to H as

mN]y = 3 mw) o)

W

(8.2) P(lp;t) =

with multiplicity m(\, i), we have the decomposition
®
D(X;o(w) > Y mp) m(p(N),
AEAT
as a Go-module. We define the Poincaré series P(o(u);t) of I'(X;o(u)) by
P(o(u)it) = Y m(A p)dimms(p(N)) t.
AEAT

Since I'(X;0(u)) is a finitely generated graded module over I'(X; 1g), its Poincaré
series has rational expression as

Plo(u);t) = —2TWit)

Hg:l (1 —the)
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with the same d and hy,...,hq as in (8.2). Here, Q(o(u);t) is a polynomial in ¢
and its value at t = 1 gives a non-negative integer, which is independent of the
choice of ay,...,aq again. We call it the degree of covariants I'(X;o(u)) and denote

DegI'(X;0(k)) = Q(o(u); 1).

The purpose of this subsection is to relate the dimension Dim I'(X; o(u)) and the
degree DegI'(X; (1)) to those of invariants.

For “sufficiently large” A, the multiplicity m (A, 1) depends only on the coset [A] =
A+ A(H) € AT/A(H). Here At /A(H) is an abbreviation for (AT + A(H))/A(H). To
be precise, we have

Lemma 8.1 (Sato). — For any A\ € At and o(n) € Irr(H), there exists n™ € AT (H)
which satisfies

mA+nM p) =mA+0M +n,p)  (Vne AT(H)).

The integer m(A+n™, u) does not depend on the choice of ™. We denote this integer
by m([A], u) and call it the stable branching coefficient after F. Sato.

Proof. — Our setting here fits into Sato’s assumption [42]. O

Let AJ be a positive root system of Go. We define a subset AJ (H) C AJ by
(8.3) AT (H) ={a € AF | {p(n),) =0 (Vn€ A(H))},

where (,) denotes the inner product which is invariant under the Weyl group action.
For A € A*, we put

(8.4) o =r@) = ] Ao

acAt (D) (p,a)

where p is the half sum of positive roots in AJ. Note that the right hand side of (8.4)
does not depend on individual A, but depends only on the coset [\] € AT /A(H). By
definition, r([)\]) is a positive quantity.

Proposition 8.2. — We assume that, for any A\ € A, there exists \* € At such that
(8.5) A+ AH)NAT =X + AT(H).

Then, for any u € A*(H), we have

m 2OWD s~ ().

i Pet) e am

Remark 8.3. — Condition (8.5) determines \’* € At uniquely if it exists. Hence, \°
depends only on the coset [A\] = A+ A(H). If we set S = {)\* | A € A*}, this amounts
to

At =S AT (H);
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or, equivalently to say, At is a free A*(H)-module over the base set S. From this
observation, the map

(P AT/AH) S A - AP =N e Sc At

is a well-defined section of the projection map At — A*/A(H).

Corollary 8.4. — Under the same assumption, we have
DegT'(X;0(n)) = DegT(X;1n) > m(\,wr((\).
[AleA+/A(H)

We need a technical lemma to prove the proposition.

Lemma 8.5. — Take arbitrary A € AT.
(1) There exists nx € AT (H) such that

dim 7z (p(X + 1)) < r(A) - dimm2(p(nx +1n))  (Vn € AT(H)).
(2) We have
dimmo(p(A +n)) > r(N) -dimma(p(m) (V0 € A*(H)).
Proof. — By Weyl’s dimension formula, we have

I (A +m) +p )

dim w2 (¢(A + 1)) )

aeaf

’I"(/\) H (‘P(/\+71) +p,0£)'

®6) (p, )

agAY (H)

To prove (1), it is enough to take nx € A*T(H) so that (p()),a) < (¢(m), @) holds
for any o ¢ AF (H). This is certainly possible. Since () is a group homomorphism,
(8.6) becomes

(p(A+1n) +p, @) (p(mr +n) +p, @)
11 e <O I oy
ag A7 (H) ag A7 (H)
Now we are to prove (2). Since (p(A),a) > 0, we get
dimmaeh+m) > 1) [T EDELE ) dimm ().
agatm)

This proves (2). O

Proof of Proposition 8.2. — Let us take arbitrary 0 < ¢t < 1.
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First we note that m(\, p) < m([A], u) for any A (see [42, Corollary 1.2]). There-
fore, we have

P(o(p);t) = Y m(\,p) dimmy(p(A) M
AEAT

< Y m([A, p) dim m(p(N)) ¢
AEAT

(7) = > mw) Y dimm(e(NP +m) N
[(AeAt/A(H) n€EAT(H)

For [A]", take 7y € AT (H) as in Lemma 8.5 (1), and recall the definition of P(1s;1)
from (8.1). Then we can calculate the above formula as

(8.7) < Z ([/\] pw)r ([)\] t|[>‘]| |77[,\]b| Z dim 5 (¢ 77[)\]"+"7)) t|7lmb+7l|

[AleAt/A(H) nEAt(H)
< S m@L ) d el pag;e).
[A]leA+/A(H)

Note that, for fixed u, there are only a finite number of cosets [A] for which m([A], u)
does not vanish ([42, Corollary 2.5 (iii)]).

On the other hand, if we choose n™ € A*(H) large enough, we have that
m(A +nM, ) = m([A], u) by the definition of the stable branching coefficient. We
can take n™ uniformly for A € A*, since there are only a finite number of [A]’s which
count. So, by Lemma 8.5 (2), we get the following inequality:

P(o(u)it) = Y m(\ p)dimm(p(N)) £

AEA+
2> Z m(\ + 0™, p) dim (X + ™)) #lA+n™|
AEA+
= Z m([A], u Z dim 7 (¢ [)\]" + 77 +1)) t|[>\] +n™ 40|
[N eA+/A(H) neA+(H)
2 Z m([A], w)r([]) ¢+ Z dim 72 (¢(n)) 17l
[N eA+/A(H) neA+(H)
= > mL ) N P(1y;t).
[AeA+/A(H)

From these inequalities, we have

Z m([A], )r([A]) £l 1=l |

[MeAt/A(H)

P(a(p);t) by
2 ==t 2 m([A], w)r([A]) ¢+
PQu;t) [AIEA;A(H)
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If we take the limit ¢ 1 1, we get

. P(o(u);t
im % = 3w O
H [AJEA+/A(H)
8.2. Examples of multiplicity free actions and Poincaré series. — We keep

the notation in the former subsection §8.1. So G; x G» acts on X multiplicity freely,
and H is a spherical subgroup of G;.
In many cases, we have an identity
(8.8) Y mL () = dimo(w).
[AleA+/A(H)
It will prove that
(8.9) DegT(X;0(u)) = dimo(p)-DegC[X]7,

under the technical condition (8.5). However, at the same time, there also exist
exceptions to (8.8). In this subsection, we will give three examples in which (8.8) and
hence (8.9) hold. We need these examples later on.

Let B be a Borel subgroup of G; such that HB C G is dense. Such a Borel
subgroup exists since H is spherical. Define a parabolic subgroup P C G; as

P={g€G |HBg=HB}>B.

Then L = PN H is a reductive subgroup which contains the derived group of a
Levi subgroup of P. The identity component of B N H is a Borel subgroup of the
identity component of L. Let B = TU be a Levi decomposition with T being a
Cartan subgroup of G;. We will denote by 71 (A) an irreducible representation of L
with highest weight e*|,_ ..

Let ®* be the semigroup lattice of dominant weights of G; and ® the weight lattice.
We define

ot (H)={)€ & | dim V¥ =1},
and denote by ®(H) a lattice generated by ®*(H) in ®. It is known that
dH)={re® |, =1}
To get the identity (8.8), we use Sato’s formula ([42, Corollary 2.5])

(8.10) > m(,p) dimrp(N) = dimo(u).

[(Nedt/®(H)
However, there are two obstructions to get identity (8.8) by using Sato’s formula
(8.10).

One obstruction is in the range of the summation. The representatives [A] must
move all the coset of dominant weight lattice in Sato’s formula. However, in general,
AT /A(H) is a strict subset of ®*/®(H). This obstruction is serious.

The other obstruction is the difference between 7(A) and dim 77 (A). However, in
most cases, they are identical. We do not know an exception up to now.
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We summarize here desired conditions which enables us to use Sato’s formula.
(S1) Coincidence of coset spaces: At /A(H) = &+ /®(H).
(S2) Coincidence of dimension functions: 7(\) = dim 7 (A) (VA € A').
(S3) Existence of good representatives: for any A € A, there exists \> € AT such
that

(8.11) A+ AH)NAT =X + AT(H).
Condition (S3) is equivalent to the following condition (S3') (see Remark 8.3).
(S3') There is a subset S C AT which satisfies AT = S & AT (H).

If once we check the above conditions, we conclude the formula (8.9).

Theorem 8.6. — If the above three conditions (S1)—(S3) hold, we have
(8.12) DegI'(X;0(n)) = dimo(u)-DegCX]H,
for any o(p) € Irr(H).

In the following, we examine the above three conditions (S1)—(S3) in each case.

Example A. — Let G; = GL(m,C),Gy = GL(n,C) and assume that m < n. This
assumption is essential in the following. We take H = SO(m, C). Therefore (G, H) is
a symmetric pair. We put X = My, ,(C) ~ (C™ ® C*)* and let G; X G2 act naturally
on X as

Mpn(C) 2 A— tgr Agst,  (9i € Givi=1,2).
The decomposition of C[X] is given by

®
CX] = 3 761, (V) B 16, (V),
AEPm
where P, denotes the set of partitions with length at most m. Therefore the action
of G; x Go is multiplicity free, and we have

Since we can naturally identify A € P, with ¢(\) € P,,, we will denote () simply

by the same letter A\. If we denote by P5’¢™ the set of even partitions, then it is
well-known that

AT(H) =P, A(H) = ®(H) ~ (22)™.
In this case, the coset space AT /A(H) = A/A(H) ~ (Z2)™ is a finite set, and it
coincides with ®* /®(H).

We have A (H) = {&e; —¢; | m < i < j < n} in the standard notation. Using this,
one can conclude easily that 7(A) = 1 for any A € P,,,. On the other hand, let B be a
Borel subgroup consisting of upper triangular matrices. Then HB C G, is dense and
P=B. Since L=HNP=HNB ~ (Zy)™ 1, L is a finite abelian group. Hence we
have r(A\) = dim 7 (\) = 1.
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Next we verify the condition (S3), i.e., (8.11). Put
i
wi=Y e =(1...,1,0,...,0) (1<i<m),
k=1

the fundamental weights for GL(m,C). Note that A* has a basis {wy | 1 < k < m}
and A*(H) has a basis {2y | 1 < k < m}. Any A € AT can be expressed as

m
A= anwk (nk € Zxo).
k=1
We put
nk" _ { 0 ifng €22,
1 otherwise
Under the notation above, we define

m
)\b = Z nkl’wk.
k=1

It is a simple task to verify that A° satisfies the condition (8.11), and we have

m
AT = A+(H)€B {anwk | Nk =0,1} .

k=1
From observations above, we conclude Theorem 8.6 holds in this case.

Example B. — Let G; = GL(m,C) x GL(m,C), G2 = GL(p,C) x GL(g,C) and
assume that m < min(p,q). We take H = AGL(m,C) ~ GL(m,C) the diagonal
subgroup. Therefore (G, H) is a symmetric pair. Let n = p + ¢. We put

X =Mmnn(C) = Mpp(C) & Mp (C) 2 (C"0CP) & (C" @C7),
and let ((z1,22), (y1,y2)) € G1 X G2 act naturally on X as
Mpyn(C) 3 (A,B) = (*z7 Ay, 22Btys) (A € Mpmp(C), B € My 4(0)).
Then the action is multiplicity free, and the decomposition of C[X] is given by

axl~ 37 (rar.(w) B1ar, (0)) B (roL, (1) Bar, ()*).
(4sV) EPm XPm

Therefore we have
AT =Py xPpn, A=®~ZMxZ™

Here, to avoid the confusion, we have twisted the second factor of AT by —wyp, where
wo is the longest element in Weyl group. The correspondence between m;(A) and

m2(¢(A)) is given by
A= (V) € P X Py > (X)) = (1, v) € Pp X Py
simply extended by zero. Again, we shall identify ¢()) with A.

ASTERISQUE 273



BERNSTEIN DEGREE AND ASSOCIATED CYCLES 73

Since gL, () R 7G1,, (v)* contains non-trivial H-fixed vector if and only if p = v,
we get
AY(H) = AP, A(H)=®(H)~AZ™
In this case, the coset space At/A(H) = A/A(H) ~ Z™ is an infinite set, and it
coincides with &+ /®(H).
We have
AF(H)={ei—¢jIm<i<j<piu{di—4&;|m<i<j<g}

in the standard notation, which concludes r(A\) = 1. We take a Borel subgroup
B = By x B; C Gy, where B is the standard Borel subgroup of GL(m,C) consisting
of upper triangular matrices and B is its opposite. Then HB C G; is dense. Again,
the parabolic subgroup P coincides with B. Hence L= HNP = HNB = AT is
isomorphic to a maximal torus 7} in GL(m,C). Therefore, we conclude that r(\) =
1=dim 7 (A).

For A = (u,v) € AT, let

m
u—u:anwk (ny € Z),
k=1

where {wy} is the set of fundamental weights of GL(m,C). Put

p = Z max(ng,0)wg, ' = Zmax(—nk, 0)wg,.
k k

If we define A* = (u”, 1), it satisfies the condition (8.11). In this case, we get

m m
AT =AT(H)® { (anwk,anwk) | ngny, =0, ng,nj € Z;o} )

k=1 k=1
Now we conclude that Theorem 8.6 also holds in this case.

Example C. — Let G; = GL(2m,C), G2 = GL(p,C) and assume that 2m < p.
We take H = Sp(2m, C). Therefore (G, H) is a symmetric pair. We realize Sp(2m, C)
as

Sp(2mac) = {g € GL(2m7C) |gdla'g (J27" '7‘]2) tg = dia'g(']27" '7J2)} )

0 -1
= (07
We put X = Map, p(C) ~ (C™ ® CP)* and let G; x G2 act naturally on X as
Momp(C) 3 A ‘g7  Agy,  (0i € Givi=1,2).

The action of G; x G, is multiplicity free, and we have the decomposition of C[X] as

52
CX] =~ Y 7 760, (N) B1ar, (V).
A€P2m

where

SOCIETE MATHEMATIQUE DE FRANCE 2001



74 K. NISHIYAMA, H. OCHIAI & K. TANIGUCHI

Therefore

At =P, A=3~7™
We shall identify A € P, with ¢(A) € Pp. The irreducible representation my(\)
has a non-trivial H-fixed vector if and only if Ag;—; = Ao; (1 <7 < M), ie, A =
S e nok@ak (nak € Zxo). Therefore, we have

m
O(H) =Y Zway ~ L™
k=1

m
AY(H) =) Zyowu, A(H)
k=1

Then it is easy to see that

m

A+/A(H) = (I>+/q>(H) >~ ZZ;O Wak—1-
k=1
For A = Y07 nywy € AT, we define
£\ = Zn2k—1w2k—l-
k=1

Then it is clear that A° satisfies the condition (8.11), hence we get

At = A+(H) D {Z NETWok—1 I ng € Zgo} .

k=1
Take a Borel subgroup of G; consisting of upper triangular matrices. Then HB C
G, is dense and the parabolic subgroup P is given by

P = {diag (p1,p2,.-.,pm) | px € SL(2,C)} - B.
Then we have
L = Hn P = {diag (p1,p2,---,0m) | pxr € SL(2,C)} ~ SL(2,O)™.
Therefore,
TL(A) = TsL, (A1 — A2) B 7s1,(A3 — Ag) B+ - B 751, (A2m—1 — A2m)s
where 75r,(u) is an irreducible representation of SL(2,C) with highest weight u.
Since dim 7s, (1) = p + 1, dim 77, ()) is given by

m

dim 77 ()\) = H()\zlc—1 — Aok +1).
k=1

On the other hand, we have
A;(H)={€2k_1—62k |1<k<m}l_l{s,'—aj|2m<i<j<p}.

Hence we get
m

r(A) = [J Qar-1 = Aok + 1) = dim 71, ().
k=1
Now we conclude that Theorem 8.6 is also valid in this case.
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9. Associated cycle of unitary lowest weight modules

Let (G1,G2) be a reductive dual pair with G being compact. We often write
G = G, without subscription. We treat the three cases given in § 3 ; namely, (G, G2) =
(Sp(2n, R),0(m)), (U(p, q),U(m)), or (O*(2p), Sp(2m)).

In this section, we will prove the following theorem.

Theorem 9.1. — We assume that the pair (G,G2) is in the stable range where G2 is
a smaller member, i.e., m < R-rankG.
Take a finite dimensional irreducible representation o € Irr(G2). Then the cor-

responding representation L(c) € Irt(G) is a unitary lowest weight module of the
metaplectic cover G of G. The associated cycle of L(o) is given by

(9.1) AC L(0) = dimo - [Or,],
where Op, is a nilpotent Kc-orbit in p~ given in §7.

Corollary 9.2. — Let the notation be as above. Then, the Gelfand-Kirillov dimension
and the Bernstein degree of L(o) are given by

Dim L(¢) = dimO,,, DegL(c) = dimo - deg O,.
Explicit formulas for dim O,, and deg O, are given in Theorems 7.5, 7.10 and 7.16.

Let us prove Theorem 9.1 for the pair (Sp(2n,R),O(m)). This pair is the most
complicated one, because O(m) is not connected. The other pairs can be treated
similarly.

Take an irreducible representation o € Irr(O(m)) and consider the lowest weight

module L(o) of G = Sp(2n,R). First, let us recall the Poincaré series (6.5) of L(c)
P(L(0);t?) =t "1 3™ m(),0) dimr{™ ¢,
AEPm
where 73(\") is an irreducible finite dimensional representation of K¢ ~ GL(n,C) with
highest weight A € P,, and P,, is the set of all partitions of length less than or equal
to m.
We consider two cases, according to 0| S0(m) is irreducible or not (see Lemma 6.1).

1) Let us assume that o] s0(m) 18 irreducible. We denote by o(p) € Irr(SO(m))
the restriction, where u is the highest weight. In this case, the branching coefficient
m(\, o) satisfies

m(A, o) + m(A, o @ det) = m(A, p),
where m(\, p) is the branching coefficient with respect to SO(m) , i.e.,

®
W lsom = 2 PO W)
m

SOCIETE MATHEMATIQUE DE FRANCE 2001



76 K. NISHIYAMA, H. OCHIAI & K. TANIGUCHI

This means that

92)  tMP(L(0);#?) + teHm2kP(L(0 @ det); ) = S m(A, 1) dim Mt
AEPm

where 0 = o(u) (with the convention after Lemma 6.1) and k¥ = ¢(u). The right
hand side of (9.2) coincides with the Poincaré series P(o(u);t) of covariants of o ()
defined in §8, if we take G; = GL(m,C) D H = SO(m,C),Gy = GL(n,C), and
X = Mpmn = M, ,, as in Example A there. To distinguish two types of Poincaré
series, we shall write P(I'(X;o(u));t) instead of P(o(u);t) in this section.

Let d = Dim L(1p(m)). Note that the Gelfand-Kirillov dimension of L(co) and
L(o ® det) also coincides with d. Then we have

lim(1 - tz)d{t“"P(L(a); £2) + tl+m=2k p(L (5 @ det); t2)}

(9.3) = DegL(c) + Deg L(o ® det).
This implies that d = DimI'(X; o(u)) and
(9.4) lim(1 — ) P(D(X;0(1); ) = Deg T(X; (1))

Lemma 9.3. — For any o € Irr(O(m)), we have
Deg L(o) = Deg L(o ® det).

Proof. — We denote a subspace of the symmetric algebra S(My n) = C[M; ,,] on
which O(m) acts via o by V,,. Then the representation space of L(o) is identified with
the o-covariants (V, ® 6*)°(™) . In order to get the K-action on it, we must twist it
by (det k)™/? (k € GL(n,C)), though it does not affect on the gradation itself. Since
we only consider the Poincaré series, we simply ignore this twist.

Put

6= det(E,'j) € S(Mn,m)’

where E;; is the matrix unit. Then, clearly § represents det € Irr(O(m)). The
multiplication by d maps V, injectively to Vygdet,

1<i,5<m

0: Vo — Vogdet-
This map increases the degree by degd = m?, and we conclude that
™ P(L(0);t) < P(L(0 ® det); t)
for 0 < t < 1. Since (0 @ det) ® det = o, we finally get
£2m* P(L(0); t) < t™ P(L(o ® det); t) < P(L(c);1).
If we multiply (1 — t)¢ (d = Dim L(c)) and take limit ¢ 1 1, we get
Deg L(0) < Deg L(o ® det) < Deg L(0).
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By Lemma 9.3, formulas (9.3) and (9.4) imply
(9.5) Deg L(0) = Deg L(0 ® det) = 27 Deg I'(X; o (u)).

Consider a special case where 0 = 1g(m), the trivial representation of O(m). Then
the above formula (9.5) becomes

(9.6) Deg L(1o(m)) = Deg L(det) = 27! Deg I'(X; 150(m))-
Theorem 8.6 implies that

DegL(o) = 2 'Degl(X;o(u))
= 27'dimo(u) DegT(X;1s50(m)) = dimo (i) Deg L(1o(m))-

Since the associated cycle of L(o) is a multiple of O,,, the multiplicity is given by
Deg L(c)/ deg O, = Deg L(0)/ Deg L(1o(m)) = dimo(p) = dimo
(cf. Theorems 1.4 and 7.5).

2) Assume that 0|SO(m) =o(pt) ®o(p~) as in Lemma 6.1 (2). Then it is easy
to see that

m(\, o) =m(A pt) =m,pu7).
Therefore we have

1 P(L(0); £2) = Z m(\, pt) dim 7N = P(D(X;0(u™)); t).
AEPm

Multiply (1 — ¢2)¢ both hand sides, and take limit ¢ T 1. Then we get
Deg L(0) = Deg['(X;0(u*)) = dimo(u™) Deg['(X;1s50(m))-
By (9.6), we get
Deg L(c) = 2dimo(p*) Deg L(1o(m)) = dimo Deg L(1o(m)),

which proves (9.1) by the same reasoning as 1). This completes the proof of Theorem
9.1 for the pair (Sp(2n,R), O(m)).

For the other pairs, we use Examples B and C in § 8 instead of Example A. In these
cases, we have

Deg L(o) = DegI'( X ; o)

for appropriate choice of X. This formula and Theorem 8.6 prove the theorem by
almost the same arguments above.
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AND GENERALIZED WHITTAKER MODELS
FOR IRREDUCIBLE HIGHEST WEIGHT MODULES
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Hiroshi Yamashita

Dedicated to Professor Ryoshi Hotta on his siztieth birthday

Abstract. — We study the generalized Whittaker models for irreducible admissible
highest weight modules L(7) for a connected simple Lie group G of Hermitian type,
by using certain invariant differential operators D, of gradient type on the Hermi-
tian symmetric space K\G. It is shown that each L(7) embeds, with nonzero and
finite multiplicity, into the generalized Gelfand-Graev representation I'y,(,y attached
to the unique open orbit O, ;) (through the Kostant-Sekiguchi correspondence) in
the associated variety V(L(7)) of L(7). The embeddings can be intrinsically analyzed
by means of the Cayley transform which carries the bounded realization of K\G to
unbounded one. If L(7) is unitarizable, the space Y(7) of infinitesimal homomor-
phisms from L(7) into Ty, () can be described in terms of the principal symbol at
the origin of the differential operator D,+. For the classical groups G = SU(p,q),
Sp(n,R) and SO*(2n), the space Y(7) is clearly understood through the oscillator
representations of reductive dual pairs.

Résumé (Transformation de Cayley et modéles de Whittaker généralisés pour les modules
irréductibles de plus haut poids)

Soit G un groupe de Lie connexe simple de type hermitien. On considére les G-
modules irréductibles admissibles L(7) de plus haut poids. Dans cet article, nous
étudions les modeéles de Whittaker généralisés pour L(7) en utilisant certains opé-
rateurs différentiels de type gradient D,« sur l’espace hermitien symétrique K\G. 1l
est montré que chaque L(7) apparait, avec une multiplicité finie et non nulle, dans la
représentation de Gelfand-Graev généralisée I';,,(,) qui est attachée a l'unique orbite
ouverte Oy, () (par la correspondance de Kostant-Sekiguchi) dans la variété V(L(7))
associée & L(7). On peut analyser intrinséquement les isomorphismes de L(T) dans
T'yn(-) au moyen de la transformation de Cayley qui donne un rapport entre la réali-
sation de K\G comme domaine borné et celle comme domaine non borné. Si L(7) est
unitarisable, 'espace Y(7) des homomorphismes infinitésimaux de L(7) dans I'y, ()
s’exprime par le symbole principal & 'origine de ’opérateur différentiel D.«. Pour les
groupes classiques G = SU(p, q), Sp(n,R) et SO*(2n), on peut comprendre ’espace
Y(7) en utilisant les représentations oscillateur pour les paires duales réductives.
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Introduction

For a semisimple algebraic group G, the generalized Gelfand-Graev representations
introduced by Kawanaka [14] form a family of representations of G induced from cer-
tain one-dimensional characters of various unipotent subgroups. By construction,
each of these induced G-modules is naturally attached to a nilpotent G-orbit Og in
the Lie algebra through the Dynkin-Kostant theory. The original (non generalized)
Gelfand-Graev representations are induced from nondegenerate characters of a max-
imal unipotent subgroup, and they correspond to the principal nilpotent orbits. We
say that an irreducible representation m of G has a generalized Whittaker model of
type Og if 7 admits an embedding into the generalized Gelfand-Graev representation
attached to Og. The problem of describing the generalized Whittaker models is im-
portant not only in representation theory but also in connection with the theory of
automorphic forms.

Generalized Whittaker models (or vectors) for irreducible representations of G have
been studied by many authors (e.g., [14], [15], [26], [22], [24], [39], etc.). For real or
complex groups, it is Kostant [18] who initiated a systematic study on the existence
of nonzero Whittaker vectors attached to the principal nilpotent orbits of quasi-split
groups, in connection with the primitive ideals of the irreducible representations in
question. Later, some results of Kostant have been extended by Matumoto to those
on generalized Whittaker vectors associated to arbitrary (not necessarily principal)
nilpotent orbits Og. In fact, it is shown in [22] that the Harish-Chandra module of
an irreducible admissible representation m has a nonzero generalized Whittaker vector
of type O¢ only if the nilpotent orbit Og is contained in the associated variety of
the primitive ideal Ann 7 in the universal enveloping algebra. For complex groups G,
one of the main results in [24] tells us that, under certain assumptions on Og and
on 7, the space of C~*-generalized Whittaker vectors of type Og is nonzero and
finite-dimensional if and only if the closure of Og coincides with the wave front set
of 7.

As to p-adic groups, Mceglin and Waldspurger have already established in 1987 a
stronger result of this nature, by showing that the wave front cycle (asymptotic cycle)
of an irreducible representation 7 of G completely controls the spaces of generalized
Whittaker vectors of interest. Namely, it is proved in [26] that, if Og is a nilpotent
orbit which is maximal in the wave front set (asymptotic support) of , the dimension
of the space of generalized Whittaker vectors of type Og is equal to the multiplicity of
Og in the wave front cycle. However, up to this time, the corresponding phenomenon
is not yet fully understood in the case of real groups, except for the representations
with the largest Gelfand-Kirillov dimension (see [23] and [25]).

In this article, we focus our attention on the irreducible admissible (unitary) highest
weight representations of real simple Lie groups. These are representations with rather
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small Gelfand-Kirillov dimensions. We reveal a structure of the spaces of generalized
Whittaker models in relation to the associated cycles of highest weight modules.

Now, let G be a connected simple Lie group with finite center, and let K be
a maximal compact subgroup of G. Assume that K\G is Hermitian symmetric.
The Lie algebras of G and K are denoted by go and &, respectively. We write K¢
(resp. g,t) for the complexifications of K (resp. go,¥) respectively. Let g = €+ p
be a complexified Cartan decomposition of g, and let 6 denote the corresponding
Cartan involution of g. The G-invariant complex structure on K\G gives a triangular
decomposition g = p, + &+ p_ of g. Conventionally, the complexification in g of any
real vector subspace so of go will be denoted by s by dropping the subscript 0. We
write U(m) (resp. S(v)) for the universal enveloping algebra of a Lie algebra m (resp.
the symmetric algebra of a vector space v).

The group G of Hermitian type has a distinguished family of irreducible admissible
Hilbert representations with highest weights. The Harish-Chandra module of such a
G-representation is obtained as the unique simple quotient L(7) of generalized Verma
module induced from an irreducible representation (7,V;) of K. Here 7 is extended
to a representation of the maximal parabolic subalgebra q := & + p4 of g by making
p+ act on V; trivially. We call 7 the extreme K-type of L(7).

The purpose of this paper is to describe the generalized Whittaker models for
irreducible highest weight (g, K)-modules L(7). To be more precise, let {0, | m =
0,...,7} be the totality of nilpotent Kc-orbits in the nilradical p; of q, arranged as
dimOp =0<dimO; < --- < dim O, = dimp,. We write O, for the the nilpotent
G-orbit in gg corresponding to O,, by the Kostant-Sekiguchi bijection. Following the
recipe by Kawanaka [14] (see also [40]), we can construct a generalized Gelfand-Graev
representation 'y, = Indf(m) (nm) (GGGR for short; see Definition 4.3) of G attached
to O!,. On the other hand, it is well-known that the associated variety V(L(7)) of
a highest weight module L(7) is the closure of a single Kc-orbit Op,(;) in p4, where
m(7) depends on 7. Then our aim is to specify the (g, K)-embeddings of L(r) into
these GGGRs I'y, (m = 0,...,r). This is a continuation of our earlier work [41] on
Whittaker models for the holomorphic discrete series.

In order to specify the embeddings, we use the invariant differential operator D, «
on K\G of gradient type associated to the K-representation 7* dual to 7 (Definition
2.3). This operator D, is due to Enright, Davidson and Stanke ([2], [3], [4]). The
K-finite kernel of D, realizes the dual lowest weight module L(7)*. By virtue of the
kernel theorem given as Corollary 1.8, we find that the space Y(r,m) of n,,-covariant
solutions of the differential equation D.«F = 0 is isomorphic to the space of (g, K)-
homomorphisms in question, where 7, is the character of nilpotent Lie subalgebra
n(m) of g that defines I'y,.

The space Y(7,m) can be intrinsically analyzed by means of the unbounded real-
ization of K'\G via the Cayley transform (cf. [32], [9]). Some remarkable results of
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Enright and Joseph [5], Jakobsen [20] on the annihilator ideal of (unitarizable) high-
est weight modules are useful in the course of our study. Also, elementary properties
(cf. Vogan [33, Section 2]) on the associated (characteristic) cycle of Harish-Chandra
modules guarantee that the space )(7,m) does not vanish for the most relevant
m = m(7). As a result, we get the following conclusions (see Theorems 4.7-4.9).

Theorem 1. — L(7) embeds into the GGGR T, with nonzero and finite multiplicity if
and only if the corresponding Oy, is the unique open Kc-orbit O,y in the associated
variety V(L(t)) of L(t). In this case, the space Y(7) := Y(1,m(7)) consists only of
elementary functions on the unbounded domain S (C p_) which realizes K\G.

Theorem 2. — If L(T) is unitarizable, we can specify the space Y (1) in terms of the
principal symbol at the origin Ke of the differential operator D,+. This reveals a
natural action on Y(7) of the isotropy subgroup Kc(X) of K¢ at a certain point
X € Opy(r). Furthermore, we find that the dimension of Y (1), that is, the multiplicity
of embeddings L(1) < D'y, coincides with the multiplicity of the S(p_)-module
L(t) at the defining ideal of V(L(7)).

For the classical groups G = SU(p,q), Sp(2n,R) and SO*(2n), the theory of
reductive dual pair gives explicit realizations of unitarizable highest weight modules
L(7) (cf. [12], [7], [3]). In this setting, it is not difficult to specify the generalized
Whittaker models for such L(7)’s more explicitly by using the oscillator representation
of a pair (G,G') with a compact group G’ dual to G. In fact, this has been done
by Tagawa [31] for the case SU(p,q), motivated by author’s observation in 1997 for
the case Sp(n,R). We include this observation as well as Tagawa’s result at the end
of this paper (see Theorems 5.14 and 5.15 together with the isomorphism (4.15)),
handling all the groups SU(p, ¢), Sp(2n,R) and SO*(2n) in a unified manner.

The last statement in Theorem 2 clarifies the relationship between the generalized
Whittaker models and the multiplicity in the associated cycle AC(L(7)) of unitariz-
able highest weight module L(7). In fact, Y(7) turns to be the dual of the isotropy
representation of K¢(X) attached to AC(L(7)) in the sense of Vogan [33]. We note
that the associated cycle and the Bernstein degree of L(7) have been specified by
Nishiyama, Ochiai and Taniguchi [27] for the above classical groups G through de-
tailed study of K-types of L(7), where L(7) is assumed to be an irreducible constituent
of the oscillator representations of pairs (G,G') in the stable range (with smaller G').
Recently, Kato and Ochiai [13] have generalized the technique in [27] to a large ex-
tent. They established in particular a unified formula for the degrees of nilpotent
orbits O,,, which is valid for any simple Lie group of Hermitian type.

An np,-equivariant linear form on L(7) is called an (algebraic) generalized Whit-
taker vector of type n,,. Each (g, K)-embedding of L(7) into the GGGR T, com-
posed with the evaluation at the identity e € G of functions in I'y,,, naturally gives rise
to a generalized Whittaker vector of type n,, on L(7). We can show that the converse
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is also true for the most relevant case m = m(7). Namely, it turns out that every
generalized Whittaker vector of type 7,, comes from a function in the space Y(7) for
any L(7) (see Proposition 4.19). This allows us to interpret the main results of this
article in terms of algebraic generalized Whittaker vectors associated to irreducible
highest weight (g, K)-modules (Theorem 4.22).

We organize this paper as follows.

Section 1 gives general theory on the embeddings of irreducible (g, K')-modules into
induced G-representations. The kernel theorem (Corollary 1.8) is our main tool for
studying generalized Whittaker models. We introduce in Section 2 the differential
operator D, on K\G of gradient type associated to 7*, after [4]. In addition, the
solutions F' of D« F = 0 of exponential type are specified in Proposition 2.8. Section
3 is devoted to characterizing the associated variety and multiplicity of irreducible
highest weight module L(7) by means of the principal symbol of D+ (Theorem 3.11).
In Section 4 we give our main results (Theorems 4.7-4.9) that describe the generalized
Whittaker models for L(7). Relation to algebraic generalized Whittaker vectors is
also investigated. Last in Section 5, we discuss the case of classical groups SU (p, q),
Sp(2n,R) and SO*(2n) more explicitly.

Acknowledgements. — The author would like to thank Kazuhiko Koike and Ichiro
Shimada for kind communication. He is grateful to Kyo Nishiyama, Hiroyuki Ochiai
and Kenji Taniguchi for useful discussion and comments. He also expresses his grati-
tude to the referee for offering apropos suggestions concerning the original version of
this article.

1. Embeddings of Harish-Chandra modules

This section prepares some generalities about the embeddings of irreducible Harish-
Chandra modules into C*°-induced representations of a semisimple Lie group, by
developing our earlier observation [42, I, §2] for the discrete series in full generality.
The results stated in this section are more or less folklore for the experts, or they are
consequences of some known facts concerning the maximal globalization of Harish-
Chandra modules due to Schmid and Kashiwara (cf. [29], [11]). Nevertheless we
include here the detail with direct proofs in order to keep this paper more accessible
and self-contained. In fact, a kernel theorem, Corollary 1.8, will be essentially used in
the succeeding sections to describe generalized Whittaker models for highest weight
representations.

1.1. A duality of Peter-Weyl type. — Throughout this section, let G be any
connected semisimple Lie group with finite center, and let K be a maximal compact
subgroup of G. We keep the same notation and convention employed at the beginning
of Introduction.
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A U(g)-module X is called a (g, K)-module if the subalgebra U (k) acts on X
locally finitely, and if the #p-action gives rise to a representation of K on X through
exponential map. By a Harish-Chandra module, we mean a (g, K)-module of finite
length as a U(g)-module. By basic results of Harish-Chandra (see e.g., [35, Chap.3]),
any admissible (i.e., K-multiplicity finite) representation of G on a Hilbert space H
yields, through differentiation, a (g, K')-module structure on the subspace H x of all
K-finite vectors in H. The continuous G-module H is irreducible if and only if
the corresponding H g is irreducible as a (g, K)-module. Each irreducible (g, K)-
module X can be extended to an irreducible Hilbert G-module H with K-finite part
Hy = X. Notice that the (g, K)-module corresponding to the irreducible G-module
H™ contragredient to H is isomorphic to the K-finite part of the full dual space
X' = Homg(X,C). We denote this irreducible (g, K)-module by X*, and call it the
dual Harish-Chandra module of X.

We study in this paper the embeddings of irreducible (g, K')-modules X into certain
smoothly induced Fréchet G-modules F'. Such an F has a compatible g and K module
structure through differentiation, and its K-finite part Fg is a (g, K)-module. We
note that the image of X by any g and K homomorphism into F' is necessarily
contained in Fg, i.e., Homg (X, F) = Homg g (X, Fk).

The group G acts on the space C*(G) of all smooth functions on G by left trans-
lation and by right translation as follows:

9" f(x) = f(g7'z), g"f(x):=f(zg) (9€G,z€q,feC™Q)).

These two actions L and R commute with each other. Through differentiation one
gets two U(g)-representations on C*°(G) denoted again by L and R respectively. Let
C#(G) be the space of functions f € C°°(G) which are left K-finite and also right
K-finite. Then C§(G) becomes a (g, K')-module through L or R.

If the group G is compact, i.e., G = K, the regular representation (L&R, CF(G))
of G x G decomposes into irreducibles as

C&(G) ~ @ Vs @ V5 as G x G-modules
seG

by the Peter-Weyl theorem, where G denotes the set of all equivalence classes of
irreducible finite-dimensional representations of G and we write V5 for an irreducible
G-module of class § € G. The following lemma says that we have a similar duality of
Peter-Weyl type for irreducible Harish-Chandra modules of noncompact semisimple
Lie groups.

Lemma 1.1. — Let X be an irreducible (g, K)-module, and let f be in C(G). Then

the (g, K)-module U(g)L f generated by f through the action L is isomorphic to X if
and only if the corresponding U(g)Rf through the action R is isomorphic to X *.
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We give a proof below introducing some important notion which we use throughout
this paper.

Proof of Lemma 1.1. — Let us prove the if part only since the converse can be proved
in the same way. So, assume that U(g)®f ~ X* as (g, K)-modules.

Take a finite-dimensional K-module (7,V;) which is isomorphic to U(¢)Lf. Let
i:Vy =3 U®)Lf denote a K-isomorphism. We define a V;*-valued smooth function
F on G by

(F(g),v) =i(v)(g) (veVr, g€q),
where ( -, - ) denotes the natural dual pairing on V* x V;.. Then it is immediate to
verify that F' lies in the following space:

(L1)  C2(G):={8:G 5V} | d(kg) =7"(k)(9) (9€G, ke K)}.
Here (7*,V.*) denotes the representation of K contragredient to 7. The space C2(G)
has G- and U(g)-module structures through right translation R. The function F is

in the K-finite part, say C%(G)k, of C%(G) since U(E)L f C CE(G). By definition
we see

(1.2) f(9) = (F(9),i7 ().

Now the assignment DEF s DRf = (DRF(.),i"1(f)) (D € U(g)) gives a (g, K)-
homomorphism from U(g)®F onto U(g)®f ~ X*. We see that this homomorphism
is injective. In fact, suppose D®f = 0 for some D € U(g). It then follows that

0= D" f(kg) = (D" F(kg),i™"(f))
= (T*(k)DRF(g),i7'(f)) = (DRF(9),i (k)" f))

for all g € G and all k € K. This implies that D®F = 0 since f is a K-cyclic vector
for U(€)L f ~ V,. Thus we have found a (g, K)-module embedding, say Ao, from X*
into C%(G)k whose image equals U(g)RF.

Let (m, H) be an irreducible admissible G-representation with Harish-Chandra
module X, and let (7*, H*) be the representation of G contragredient to m. We
have Hy = X" as remarked before. By virtue of the Frobenius reciprocity for
smoothly induced representation Ind$ (7*) of G acting on C%(G), one obtains a
linear isomorphism

(1.4) Hompy (X*, V*) ~ Homg x(X*, C2(G)k),

(1.3)

which is given as follows. Take a K-homomorphism T : X* — V;*. Then we can
define A(p) € CX(Q) for every ¢ € X* by

(1.5) Alp)(g) = T(m*(9)p) (9€G).

Here T denotes the unique continuous extension of T : X* — V* to H*. Then, the
assignment 7' — A gives (1.4).
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We now consider our specified embedding 4y : X* ~ U(g)RF — CX(G)k. Let
Ty denote the element of Homg (X ™, V*) corresponding to Ag by (1.5). Set o :=
AZY(F) € X* and v := i~1(f) o To € X. Here v is regarded as an element of
X = ((H™)*)k through

. -
wo: H* 2oy yr 2, ¢
with i71(f) € V; = Hom¢(V;*,C). In view of (1.2) and (1.5) we find

(1.6) F(9) = (7*(9)w0, Yo)H*xH = (w0, m(9) "Yo)a-xH (9 € G).
Finally, (1.6) implies that the map

X 5 Dypo = D" f = {po,m(9) "' Do) € U(g)"f (D € U(g))
gives a (g, K )-isomorphism, i.e., X ~ U(g)’ f as desired. 0O

1.2. Maximal globalization. — Let X be an irreducible (g, K')-module. We fix
once and for all an irreducible finite-dimensional representation (7,V;) of K which
occurs in X, and fix an embedding i, : V; — X as K-modules. Then the adjoint
operator i} of i, gives a surjective K-homomorphism from X* to V,*. We denote
by A:- the (g, K)-embedding from X" into C2(G) (see (1.1)) corresponding to i*
through (1.4) and (1.5).

Equip C22(G) with a Fréchet space topology of compact uniform convergence of
functions on G and each of their derivatives. The following proposition characterizes
the closure A,+(X™)™ of A;.(X™) in CX(G).

Theorem 1.2 (cf. [29], [11]). — Under the above notation, A+ (X ™)™ is a G-submodule
of C22(G), and one gets an isomorphism of G-modules

Homg x(X, C®(G)) 2 W+ F € A+ (X*)™
through

(1.7) (F(g),0) = ((Weoir)(v))(g) (9€CG, veVr).

Here C*(QG) is viewed as a smooth G-module by left translation L, and the right
action R on C*°(G) naturally gives a G-module structure on Homgy x (X, C*(G)).

It follows essentially from [29, page 316] that the G-module A,«(X*)™ gives a
mazimal globalization of the Harish-Chandra module X*. Namely, if a complete,
locally convex Hausdorff topological vector space F' admits a continuous G-action
with underlying Harish-Chandra module X*, then the identity map on X* extends
uniquely to a continuous embedding F — A,«(X™*)™ as G-modules. One can get the
above theorem from the first statement of Theorem 2.8, or equivalently (2.9), in [11].

In what follows, we give a direct proof of the above theorem to keep this article
self-contained. This is done by generalizing our argument in [42, I, §2].
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Proof of Theorem 1.2. — Let W be a (g, K)-embedding of X into C*°(G). Since
Woi,:V, = W(i.(V;)) C C®(G) is a K-isomorphism, we can see just as in the
beginning of the proof of Lemma 1.1 that there exists a unique F' € C22(G) satisfying
(1.7). It is then easy to observe that the map W +— F sets up a G-homomorphism,
say T, from Homgy i (X, C®(G)) to C2(G) and that T is injective because of the
irreducibility of X. Hence we will get the theorem if we can show

(1.8) ImY = A (X*),

where Im T denotes the image of Y.

To prove (1.8) we use the projection to K-isotypic component. Let M be any
smooth Fréchet K-module. For each § € K, the unitary dual of K, the integral
operator ()5 defined by

Qs(v) = (dim 6) - / w00 - kvdk (v e M),
K
gives a continuous K-equivariant projection of M onto its d-isotypic component M.
Here dk denotes the normalized Haar measure on K. By Harish-Chandra, the Fourier
series ) sz Qs(v) converges absolutely to v. (cf. [36, Th.4.4.2.1]).
Now the right hand side of (1.8) is described in terms of the projections Qs as

(1.9)  Ap-(X*)" = {F € C%(G) | F5 := Qs(F) € A,-(X*) forall § € K}.

In reality, the inclusion D is evident since the sum F' = } ;. Fj converges in C%(G).
Conversely assume F be in the closure A+ (X*)~. Then there exists a sequence
{F;}j=1,,. in Ar«(X") such that F = lim;_,o Fj. Since the projection Qs is con-
tinuous, one obtains Fs = lim;_,(F})s for every 6 € K. Noting that (Fj)s lies
in a finite-dimensional (and hence closed) subspace A.+(X")s ~ X35, we find that
F5 € A (X")s.

We are going to show just as in the proof of [42, I, Th.2.4] that Im T coincides
with the right hand side of (1.9) by using Lemma 1.1 instead of [42, I, Lemma 2.5].

Let F' be a nonzero function in C%(G) such that F5 € A,+(X"*) for every 6 € K.
We write Z for the totality of finite subsets S of K consisting of elements § such that
Fs5 #0. Define Fs € A;+(X™) and fs, € C*(G) by

FS:ZF& fS,v=<FS(')7v)
6es

for every S € E and v € V;\{0}. Then, U(g)RFs = A;«(X*) ~ X* as (g, K)-
modules. This implies that U(g)®fs, ~ X* for all S and v (cf. (1.3)). Set Qs :=
Y ses @s and fy := (F(-),v). We now use Lemma 1.1 to deduce

(1.10) QsU(@) f,) =U(@)  fsw~X (S€EE, veV,\{0}),

by noting that s commutes with U(g)-action L. It then follows from the irreducibil-
ity of X that the kernel of projection Qs restricted to U(g)L f, is independent of
a choice of S € E. Indeed, let S; and S; be in Z, and set S’ := S; U Ss. Note
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that Qs, = Qs,Qs' (i = 1,2). One sees from (1.10) that Qg, on U(g)~ fsr, gives a
U (g)-isomorphism from U(g) fs', onto U(g)L fs, » by Schur’s lemma. This implies
that

Ker(Qs,|U(9)" f) = Ker(Qs'|U(9)" fo) = Ker(Qs,|U(9)" f)-

The above kernel space must be {0} since

[ Ker(Qs|U(9)" fo) C [|KerQs = {0},

Sez s
where S in the middle term runs over all finite subsets of K. We thus find an
embedding

X ~U(g)' fo = C*(G)

corresponding to F' through Y.

Conversely, let W : X — C*°(G) be any (g, K)-embedding. Set F := T(W). We
want to prove Fs = Q5(F) € A« (X™) for every 6 € K. To do this, define an element
£e X* by

(§0) = ((Qs o W)(a))(e) (a € X),

where e denotes the identity element of G. It then follows for any D € U(g) and
v € V, that

(DY Fs(e),v) = DX((Qs o W 0 ir)(v))(e)
= ((Qs o W)(Di-(v)))(e)
= (¢, Dir(v)) = (i3 TDE, v),

since DI commutes with Q5 and with W. Here U(g) > D — TD € U(g) denotes the
principal anti-automorphism of U(g) such that 7X = —X if X € g. We thus deduce

(1.11) DL Fs(e) = ix(TD¢) for all D € U(yg).
This yields that
Fs(g) = 13(n*(9)6) = A= ()(9) (9€G)
as desired, because the both functions Fj and A« (§) are real analytic on the connected

Lie group G, and because they have the same Taylor series expansion at e by (1.11).
Thus the theorem has been proved completely. O

1.3. Kernel theorem. — To study the embeddings of X into various induced G-
modules, it is useful to characterize the G-module A,.(X ™)~ as the full kernel space
of a continuous G-homomorphism D defined on C22(G) in the following way.

Theorem 1.3. — Let X be an irreducible (g, K)-module, and let (1,V;) be a K-type
of X. Fiz an embedding i, : V; <= X as K-modules, and write A« for the (g, K)-
embedding X* < CX(G) associated with the adjoint operator it by (1.4) and (1.5).
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If D is any continuous G-homomorphism from the C%2(G) to a smooth Fréchet G-
module M such that

(1.12) A (X)) ={F € CX(Q) | F is right K-finite and DF = 0},

then the full kernel space Ker D of D in CX(G) equals the G-module A.«(X™*)~, the
closure of Ar+(X™) in C2(G). Hence one gets from Theorem 1.2

(1.13) Homg (X, C®(G)) ~KerD = A,-(X")™ as G-modules.

Proof. — We show that KerD = A,.(X*)~. The inclusion D is obvious because
Ker D is a closed subspace of C22(G) by the continuity of D and because A,+(X*) C
KerD by (1.12). Conversely if F € Ker D, then it follows from (1.12) that F; =
Qs(F) € A;+(X*) for every § € K, because DFs = Qs(DF) = 0. Hence we get
F=3%ci Fs € Ar«(X*)~. Now the assertion follows from Theorem 1.2. O

Remark 1.4. — The above proof tells us that the assumption on D can be weakened.
Namely, the theorem is still true for any K-homomorphism D from CX(G) to a
smooth K-module M satisfying (1.12).

Example 1.5. — We mention that an operator D satisfying the requirement in The-
orem 1.3 has been constructed when X* is the (g, K)-module associated with: (a)
discrete series ([28], [10]) more generally Zuckerman cohomologically induced module
([38], [1]), with parameter “far from the walls”, or (b) highest weight representation
([2], [4]; see also Theorem 2.6). In each of these cases, D is given as a G-invariant
differential operator of gradient type acting on C22(G), where 7* is the unique extreme
K-type of X™* which occurs in X™* with multiplicity one.

We conclude this section by giving an application of Theorem 1.3. For this we need

Definition 1.6. — Let n be a complex Lie subalgebra of g, and (1, E) be a representa-
tion of n on a Fréchet space E such that the linear endomorphism 7(Z) is continuous
on E for every Z € n. Then the space

C®(Gin) ={f: G E| ZRf = —n(2)f (Z en)},

endowed with the natural Fréchet space topology, has a structure of smooth G-module
by L. We write I';, for the resulting G-representation on C*°(G;7), and call it the
representation of G induced from n in C*-context.

Remark 1.7. — If n is the complexification of real Lie subalgebra ng of go correspond-
ing to a simply connected analytic subgroup N of G, then C*°(G;n) coincides with
the space of E-valued smooth functions f on G such that

flgn)=n(n)"'f(g) (g€ G, neN),

at least when F is finite-dimensional. Here 7 denotes the well-defined representation
of the group N defined by 7 : ng — E through exponential map.
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Let the notation and assumption be as in Theorem 1.3 and in Definition 1.6. We
write C22(G;n) for the space of C°-functions on G with values in V* ® E satisfying
the following conditions.

ZRF = —(idv» @ n(2))F (Z € n),
K'F = (r* (k') ®idg)F (k€ K),
where idy denotes the identity map on a set V. Let E' be the space of continuous
linear functionals on E equipped with dual U(n)-action. We define a linear map
D(n) : C72(G;n) — Home(E', M)
through D by

(DPMF)() =DUF(),C) (FeCx(Gin), (€ E).

Here (-, - ) stands for the canonical dual pairing on (V,* ® E) x E' with values in V,*.
If n is a one-dimensional n-representation, the above D(n) is naturally identified with
the restriction of D to the subspace C22(G;n) of C2(G).

By using (1.13), we can now deduce the following

Corollary 1.8 (Kernel Theorem). — Under the above notation, assume that the repre-
sentation (n, E) of n is weakly cyclic in the following sense: there exists a (o € E'
such that U(n)(p is dense in E' with respect to the weak *-topology. Then the embed-
dings of irreducible (g, K)-module X into induced module C*®(G;n) are characterized
as

Homg x (X ,C*(G;n)) ~ KerD(n) as vector spaces.
Here the isomorphism is given as in (1.7).
Remark 1.9. — The above kernel thoerem has been proved in our earlier work [42,

I, Th.2.4] in case that X is the (g, K)-module of discrete series and that D is a
differential operator of gradient type (Schmid operator).

Proof of Corollary 1.8. — First, we observe just as in the proof of Theorem 1.2 that
the map

Homg,x (X, C*(G;n) 3 W % F € C2(G;n)
defined as in (1.7) yields an injective linear map. For a nonzero element F' € C22(G;n)

and a nonzero vector v € V;, we put f, := (F(-),v)(vreE)xv, € C®(G;n). Then F
lies in the image of T, if and only if

(1.14) U(g)Lfo ~ X as (g, K)-modules.
It follows from the Hahn-Banach extension theorem that the G-homomorphism
(1.15) C*(G;in) 3 f —> (f(1), Q) ExE € C7(G)

is injective because U(n)(p is weak *-dense in E'. Then (1.14) and (1.15) together
with (1.13) imply that F' € Im T, if and only if (D(n)F)({o) = 0. Since the function
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F is m-covariant, the latter condition is equivalent to (D(n)F)(U(n)¢p) = 0. This
implies D(n)F = 0 (and vice versa) by virtue of the Banach-Steinhaus theorem. O

We will apply the above kernel theorem later in this paper to describe generalized
Whittaker models for irreducible highest weight representations.

2. Differential operators, and lowest or highest weight modules

From now on, we assume that K\G is an irreducible Hermitian symmetric space
with G-invariant complex structure. We consider the irreducible highest weight
(g, K)-modules L(7) with extreme K-types 7. In this section we describe, follow-
ing [4], the differential operators D,« of gradient type on K'\G whose K-finite kernels
realize the dual lowest weight (g, K)-modules L(7)* (Theorem 2.6). This combined
with Theorem 1.3 enables us to identify the maximal globalization of L(7)* with the
full (not necessarily K-finite) kernel space of D,+ (Proposition 2.7). We also specify
for later use the solutions of differential equation D;+«F = 0 of exponential type.

2.1. Simple Lie group of Hermitian type. — We begin with summarizing some
basic facts on fine structure for simple Lie groups of Hermitian type, following the
notation in [41, Part I, §5] and [8, 3.3]. It is known that there exists a unique (up to
sign) central element Zg of &, such that ad Z restricted to po gives an Ad(K)-invariant
complex structure on pg. One gets a triangular decomposition of g as follows:

g=p_PEDp; suchthat

@1) (& ps] Crs, [p+,p-]1CE  [p4,p4] =[p-,p-] = {0},

where p. denotes the eigenspace of ad Zg on g with eigenvalue &1/—1 respectively. We
extend ad Zy on po to a G-invariant complex structure on the Hermitian symmetric
space K\G canonically through the identification po = T'(K'\G) ke, the tangent space
of K\G at the origin Ke.

Let typ be a compact Cartan subalgebra of go contained in €. We write A for the
root system of g with respect to t, and for each v € A the corresponding root subspace
of g will be denoted by g(t;~):

gty)={X€g| (adH)X =y(H)X for all H € t}.
We can choose root vectors X, € g(t;y) (v € A) such that
(2'2) X'r - X—% \Z —1(X7 + X—‘Y) €t + v —1po, [X'YvX—’Y] = H»,,

where H,, is the element of /—1to corresponding the coroot vV := 2v/(y,+) through
the identification t* = t by the Killing form B of g. Let A, (resp. A,) denote the
subset of all compact (resp. noncompact) roots in A.
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Take a positive system At of A compatible with the decomposition (2.1):

Pt = @ gt +y) with A} :=AtNA,,
vead

and fix a lexicographic order on /—1t} which yields A+. Using this order we define
a fundamental sequence (71,72, .. .,7r) of strongly orthogonal (i.e., v; £v; ¢ AU {0}
for 1 # j) noncompact positive roots in such a way that -y, is the maximal element of
A*, which is strongly orthogonal to Yg+1, ..., 7r

Now, put t~ := > _;_, CH,, Ct, and denote by v~ € (t7)* the restriction to t~ of
a linear form 7 € t*. For integers k,! with 1 < ! < k < r, we define subsets Py, Py, Py
of A} and subsets Cki, C,Co of A} respectively by

o\~
(23) Pu:= {’Y eAtly = (152—%) },

24)  Cu:= {7 €Aty = (1“—;1)_}

— A= = () = = (26
(26) PO = {71772""’77’}7 C’0 = {'YEAj|’)’_=O}

By Harish-Chandra the subsets A} and A} are decomposed as

A::( U Pk)UPOU( U Pkl)»

1<kLr 1K<k
st=aU(Ua)U( U o)
1<kgr 1<I<kgr

where the unions are disjoint. Moreover the maps
(2.7) Coyud7v— Y+ E€Py and Crdy+— —y+7% € P

give rise to bijections from Cy; to Py and from Cj to Py respectively. Note that the
subsets Py; and Cy; are always non-empty, and that Py and Cy (1 < k < r) are empty
if and only if the Hermitian symmetric space K\G is analytically equivalent to a tube
domain.

We now introduce a Cayley transform ¢ = Ad(c) on g defined by the following
element of Gg:

(2.8) ¢ = exp (% zr: (Xqye — X—1,) ),
k=1

where G2 denotes a connected Lie group with Lie algebra g. Note that —c? gives the
identity map on t~. It follows that

(2.9) apo = ¢ H(t™ NV=Tty) = c(t™ N V~1to)
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is a maximal abelian subspace of pg, and that the elements
(2.10) Hy:=c'(H,)=—c(Hy)=Xy + Xy, (k=1,2,...,71)

form an orthogonal basis of vector space a, ¢ with respect to the inner product defined
by the Killing form B. This implies in particular that r equals the real rank of G.
The restricted root system of g with respect to a, has been described by Moore in
terms of linear forms 9y := vy o (c|ay) on a, (see e.g., [8, Th.3.5] for the description).

2.2. Generalized Verma module and its maximal submodule. — Let (7, V)
be any irreducible finite-dimensional representation of K with A7 -highest weight
A = A(7). We consider the generalized Verma U (g)-module induced from 7:

M(r) :=U(9) Qu(e+py) Vr-

Here 7 is extended to a representation of the maximal parabolic subalgebra €+ p by
letting p4 act on V; trivially: p, V. = {0}. M(r) has a structure of (g, K)-module
through

D' -(D®v):=D'D®v, k-(D®v):=Adk)D® 7(k)v
for D' € U(g), k € K and D®v € M(r) with D € U(g), v € V;. Let N(1) be
the unique maximal proper (g, K)-submodule of M (7). Then the quotient L(7) :=
M(7)/N(7) gives an irreducible (g, K)-module with A*-highest weight \.

We now summarize for later use some basic known results concerning the structure
of N(7). One finds from the decomposition (2.1) that M(7) = U(p_)V; is canonically
isomorphic to the tensor product S(p-) @ V> = S(p-) ®c V: as a K-module, where
S(p-) (=~ U(p-)) denotes the symmetric algebra of p_ looked upon as a K-module
by the adjoint action. This isomorphism yields a gradation of the K-module M (7):

o0
(2.11) M(r) =@ M;(r) with M;(r) =S (p_)V, ~ S (p_) @ V;.

j=0
Here we write S7(p_) for the K-submodule of S(p_) consisting of all homogeneous
elements of S(p_) of degree j. Note that the submodule N(7) is graded:

(2.12) N(r) = éNj(T) with  N;(7) := N(7) N M;(7),
=0

because N(7) is stable under the action of the central element v/—1Z, € t which gives
the gradation S(p_) = @;’iosj (p=)-

Since M(r) = S(p—)V; is finitely generated over the Noetherian ring S(p_), so is
the submodule N(7), too. This implies that, if N(7) # {0}, there exist finitely many
irreducible K-submodules Wy, ..., W, of N(7) such that

g
(2.13) N(r) = S(p- )W, with W, C S™(p_)V; ~S=(p_) eV,

u=1
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for some positive integers i, (u = 1,...,q) arranged as

(2.14) (1) := 4, = min{j| N;(7) # {0}}.

We call i(7) the level of reduction of M (7).

An irreducible (g, K)-module X is called unitarizable if X is isomorphic to the
Harish-Chandra module H g of an irreducible unitary representation of G on a Hilbert
space H. The unitarizable highest weight (g, K')-modules have been completely clas-
sified by Enright, Howe and Wallach [7]. Note that their work contains case-by-case
analysis, and that it uses some results of former contributors such as [12], [6], etc.
Later, Enright and Joseph [5], and also Jakobsen [20] gave a more intrinsic classifi-
cation.

For unitarizable L(7)’s, [5] gives a simple description of the maximal submodule
N(7) as follows. Assume that L(7) is unitarizable and that N(7) # {0}. Then the
level i(7) of reduction of M (7) is an integer such that 1 < i¢(7) < r, where r is the
real rank of G as in 2.1. Let Q;(,) be the irreducible K-submodule of S (p_) with
lowest weight —y, — -+ —¥,_j(r)41. Then the tensor product Q;(;) ® V; has a unique
irreducible K-submodule Wi, called the Parthasarathy, Rao and Varadarajan com-
ponent (the PRV-component for short), with extreme weight A — vy, — -+ — v, _j(r)41-
Noting that

(2.15) Qiry ® Vr C S* M (p_) @ Vi = My (1),
we regard Wi as a K-submodule of M;(,(7).

Theorem 2.1 ([5, 5.2, 6.5 and 8.3], see also [3, 3.1]). — Keep the above notation. If L(T)
is unitarizable and if the mazimal submodule N(7) of M (T) does not vanish, N(r) is
a highest weight (g, K)-module generated over S(p_) by the PRV-component W1:

N(r) = S(p-)W1.

2.3. A realization of lowest weight module L(7)*. — For each irreducible
representation (7,V;) of K, let L(7)* be the irreducible lowest weight (g, K')-module
which is dual to L(7). This subsection gives after [4] a realization of L(7)* as the
K-finite kernel of a certain G-invariant differential operator of gradient type defined
on the symmetric space K'\G. This together with the kernel theorem (Corollary 1.8)
will tell us how to describe the (g, K)-embeddings of highest weight module L(7) into
various induced G-representations.
Now, let O%.(G) denote the space of functions F' in C22(G) (see (1.1)) satisfying

(2.16) XYF=0 forall X €py.

Then we see that OZ. (G) is a closed G-submodule of C2(G) through right translation
R, and that it is canonically isomorphic to the space of anti-holomorphic sections of
the G-homogeneous vector bundle on K\G associated to the K-module V.
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It is useful to employ another realization of the G-module O}.(G) as a space of
holomorphic V*-valued functions on a bounded domain B of p_. To be more precise,
we take a connected linear Lie group G° with a covering homomorphism

w:G = G°.

Such a G° always exists (we can take G° = Ad(G) for example). Let G denote
the connected complexification of G°. We write K°, K¢ and Py = expp4 for the
connected Lie subgroups of G¢ with Lie algebras €, £ and p., respectively. Note that
the exponential map gives holomorphic diffeomorphisms from p+ onto P,. Consider
an open dense subset Py KGP_ of G¢, which is holomorphically diffeomorphic to
the direct product Py x K¢ x P_ through multiplication. For each x € Py KgP_, let
P+ (), kc(z), and p_ () denote respectively the elements of P, , K¢, and P_ such that
z = piy(x)kc(z)p- (). We set £(x) := log p_(x) € p_. Note that G° C Py KRP-_.
We extend the assignment z — £(z) (z € G°) to a map, denoted again by &(z),
from G to p_ through w. This (extended) £ naturally induces an anti-holomorphic
diffeomorphism, say £, from the symmetric space K \G onto a bounded domain

(2.17) B:={{(z) ep- |z € G}

of p_, where £(Kz) := &(x). (See for example [16, 7.129].) Let K¢ denote the
complexification of K. Then, w restricted to K yields a covering homomorphism
from K¢ to K@, and the map z — kc(z) (z € G°) lifts to a map from G to K¢ which
we denote again by kc(z) (z € G).

Let O(B,V}) be the space of all V*-valued holomorphic functions on B. It is
easily verified that the above & gives rise to a linear isomorphism © from O%.(G) onto
O(B,V}) by

(2.18) (OF)(£(Kx)) := 7" (kc(2)) ' F(z) (v €G)

for F € O%.(G). Then O(B, V) has a G-module structure inherited from (R, O}. (G))
through ©:

(2.19) (9- f)(&(x)) = 7" (kc(exp&(2) 9)) f(€(zg)) (z € G)
for g € G and f € O(B, V). Here one should notice that
exp£(2) g = (p4(2)kc(2) "ag € PLK2G® C PLKEP-
for z,g € G°, and that the map
B xG° > (z,9) — kc(expzg) € K¢

lifts to a map from B x G to K¢ in the canonical way (cf. [4, Prop.4.7]).
By differentiating the G-action (2.19) one obtains a g-module O(B, V;*). We remark
that the action of each element Y in p_ is described simply as

(2.20) (V) = $HE+leo (2 € B)
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An f € O(B,V}) is K-finite if and only if f is a polynomial, because one sees from
(2.19) that

(he - £)(z) = 7 (h) f(eV7H2)
for hy := exptZy € K (t € R), where Zy is the central element of €, defined in
2.1. Hence the K-finite part O}.(G)k of OF.(G) is isomorphic, through O, to the
space P(p—, V) = S(p+) ® V;* of V*-valued polynomial functions on p_. Here we
identify the symmetric algebra S(p+) of p4 with the ring of polynomial functions on
p— through the Killing form B restricted to p4 X p_.
We now define a bilinear form ( -, - ), on O} (G) x (U(g) ®c V;) by

(2.21) (F,D ®v), := (DL F(e),v) = (*D)RF(e),v)

for F € O*(G),D € U(g), and v € V. Here ( -, - ) denotes the dual pairing on
V* x Vi, and D —TD the principal anti-automorphism of U(g), respectively. Then
it is a routine task to verify that ( -, - ), naturally gives rise to a (g, K)-invariant
bilinear form on O*.(G) x M(7), which we denote again by ( -, - ). Note that this
pairing is described through the above isomorphism © as

(F,D®v), = ((TD - £)(0),v) with f:=OF € O(B,V}),

where D € U(p_) = S(p_), v € V;, and 7D - f is defined through the directional
derivative action (2.20). This implies the following

Lemma 2.2 (cf. [3, §2])

(1) The (g, K)-invariant pairing { -, - ), is nondegenerate on O%.(G)kx x M(T).

(2) Let R(*) be the orthogonal of the mazimal submodule N(7) in O%.(G)k ~
P(p—, V) with respect to ( -, - ). Then R(7*) is the unique, nonzero irreducible
(g, K)-submodule of O*.(G)k, and it is isomorphic to the lowest weight module L(7)*
dual to L(t) = M(7)/N (7). The (g, K)-isomorphism A.« from L(7)* onto R(7*) is
given by

(Are(9),w)r = (@, w+ N(T)p(r)exr(r) (w € M(7))

for ¢ € L(7)*.

We are now going to introduce a differential operator of gradient type whose K-
finite kernel characterizes the (g, K)-module R(7*) = A~ (L(7)*). For this, we take
a basis X1,..., X, of the C-vector space p4 such that B(X;, Xx) = ;x (Kronecker’s
5), where X; € p_ denotes the complex conjugate of X; € p; with respect to the real
form go. Set

X=X ... X% eU(py) and X =X, ---X, €Up-)

for every multi-index a = (a4, . .., as) of nonnegative integers ay,...,as;. We denote
by |a| := a1 + -+ + a, the length of a. For each positive integer n we define the
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gradients V™ and V' of order n on C%2(G) as follows.

V@)= Y X0 (X)),

|a|=n
1
V'F(@)= ) SX°e X*)F(z),

le|=n
for z € G and F € C%(G), where a! := a;!---ay!. It is then easy to see that V' F'
and V' F are independent of the choice of a basis X1, ..., X, and that the operators
V™ and V" give continuous G-homomorphisms

"10R(G) 5 CR_y(G), V':CR(G) = CX(1n(G).

Here 7*(+n) denotes the K-representation on the tensor product S™(p+) @ V¥ re-

spectively.

Let W, (u=1,...,q) be, as in (2.13), the irreducible K-submodules of S* (p_)V;
C N(7) which generate N(7) over S(p—) when N(7) # {0}. For each u, the adjoint
operator P, of the embedding

(2:22) Wy = S™(p-)Vr = S™(p-) @ V>
gives a surjective K-homomorphism:
(2.23) P, :S%(py) @V ~ (S™(p-) @ V;)* — W

Definition 2.3. — Under the above notation, let D,» be a G-invariant differential op-
erator from C72(G) to C5°(G) defined by

D, F(z) := V'F(z) ® (&4_, P.(V" F(z)))
for z € G and F € C2(G). Here we write p = p(7*) for the representation of K on
(p— ® V‘r*) 7] (@q=1WJ)7

and D, should be understood as D, = V! if N(r) = {0}, or equivalently M (1) =
L(t). We call D;« the differential operator of gradient type associated to 7*.

Remark 2.4. — A function F' € C2(G) lies in the G-submodule O}.(G) defined by
(2.16) if and only if VIF = 0. Hence we have Ker D+ C O.(G) for every 7*, and
the equality holds if and only if N(7) = {0}.

Remark 2.5. — If L(7) is unitarizable, one sees from Theorem 2.1 that
D=V (P oV

Here i(7) is the level of reduction of M(7), and the K-homomorphism P; is defined
through the PRV-component Wy C S4)(p_) ® V,

The following theorem, equivalent to [4, Prop.7.6] due to Davidson and Stanke,
realizes the lowest weight module L(7)* by means of D,«.
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Theorem 2.6 (cf. [4]). — The image R(7*) of the (g, K)-embedding A+ from L(r)*
into O%.(G)k defined in Lemma 2.2 coincides with the K -finite kernel of the differ-
ential operator D.« of gradient type:

R(t*) = {F € C2(G) | F is right K -finite and D« F = 0}.

2.4. Maximal globalization of L(7)*. — The above theorem together with The-
orem 1.3 implies that the full kernel space Ker D,. gives a maximal globalization of
the lowest weight module L(7)*, as follows.

Proposition 2.7. — (1) The closure R(7*)™ of R(7*) = A+ (L(7)*) in CX(G) coin-
cides with KerD,.. It coincides also with the orthogonal, say R'(7*), of N(7) in the
whole (not necessarily K -finite) space Or.(G) with respect to the paring { -, - ), in
(2.21).
(2) One has an isomorphism of G-modules
Homg i (L(7), C*°(G)) ~ KerD,.(= R(7*)” = R'(1"))

by the correspondence given in Theorem 1.2 through the canonical K -embedding i, of
V; into L(1).

Proof. — The statements except R(7*)~ = R'(7*) follow immediately from Theorems
1.3 and 2.6. The equality R(7*)” = R'(r*) can be shown just as in the proof of
Theorem 1.3, by bearing in mind that R'(7*) is K-stable. |

We end this section by specifying for later use the solutions F' € O%.(G) of expo-
nential type of the differential equation D,+F = 0.

For each X € py and each v* € V¥, let fx,+ =exp X ® v* denote the V*-valued
holomorphic function on p_ defined by

fxo(2) = exp B(X,2) 0" (2 €p_),
We set Fix 4+ := @71 fx »« € OF.(G). Then the function Fx ,+ is described as
(2.24) Fx ,+(z) = exp B(X,&(z)) - 7" (kc(z))v* (2 € G)
by the definition of © (see (2.18)).

Proposition 2.8. — The function Fx .~ satisfies the differential equation D,+F = 0 if
and only if

(2.25) P,(X™*®v*)=0 for u=1,...,q.

Here P, is a K-homomorphism from S* (p) ®@ V¥ onto W defined in (2.22) and in
(2.23).

Proof. — Let D € S(p_). In view of (2.20) we observe that
DEFx . =07Y(D - fxv+) = D(X)Fx v+,
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because fx, o+ is an exponential function defined by X, where D € S(p_) in the right
hand side is looked upon as a polynomial on p; = p*. It then follows that Fx ,« is
orthogonal to N(7) = 31 _, S(p_)W, with respect to the g-invariant pairing ( -, - )-
in (2.21) if and only if

(2.26) (Fx,p«,w)y; =0 forallwe W, (u=1,...,q).

We now express w € Wy as w = Z;\;l Djv; with D; € S*(p_) and v; € V;. Then
the left hand side of (2.26) is calculated as

N
(Fx,pr,w)r = (=1)*™ Z D;j(X)(v*,v5) = (1) (X™ @ v", w),

Jj=1
where ( -, - ) denotes the dual pairing between S® (p,)®V;* and S* (p_)®V;. Hence,
the element Fx ,+ is orthogonal to W, with respect to ( -, - ), if and only if the
linear form X% ® v* on S%(p_) ® V, vanishes on the subspace W,, or equivalently
P,(X%™ ®v*) = 0 by the definition of P,. We thus conclude that (2.25) gives a
necessary and sufficient condition for D;« Fx o+ = 0 by Proposition 2.7 (1). O

In the next section we will study the condition (2.25) in connection with the associated
variety and the multiplicity of highest weight module L().

3. Associated variety and multiplicity of highest weight modules

The purpose of this section is to understand the associated variety and multiplicity
for each irreducible highest weight module L(7) by means of the principal symbol
o of the differential operator D,« of gradient type. The harvest of our discussion
is summarized as Theorem 3.11. The symbol o yields a Kc-homogeneous vector
bundle on the unique open orbit Op,(,y in V(L(7)). The dimension of fibers can be
understood as the multiplicity of S(p_)-module L(7)/Iy;)L(7) at the prime ideal
I,,(-y which defines the variety V(L(7)), and a result of Joseph (cf. Theorem 3.7)
tells us I, -y L(7) = {0}, i.e., L(7)/I;n(r)L(7) = L(7), for unitarizable L(7)’s.

3.1. Kc-orbits O,, in p,. — We keep the notation in 2.1. Let us begin by de-
scribing the Kc-orbit decomposition of the vector space p4 under the adjoint action.
For every integer m such that 0 < m < r = Rrank G, we set

(3.1) Om = Ad(Kc)X (m) with X(m):= Y Xy,

Here X, € g(t;vx) (see (2.2)) is a root vector for noncompact positive root <y, and
X (0) should be understood as 0. It then follows that every X € p, is conjugate to
some X (m) under K¢:

pr=0pU---UO,.
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In reality, there exists an element & € K such that

Ad(R)(X + ) € apo = S R(Xy, + X_oy)

k=1
(see (2.9) and (2.10)), since X + X € po = Ad(K)ay 0. This shows that

Ad(k)X = crX,, with c € R\{0},
kel

for some subset I of {1,...,7}. Note that the complex torus

exp (Z(CH%) C K¢
kel

acts on the set ), ., C* X, transitively, and that }_, ., X,, is conjugate to X (|])
under the action of the Weyl group Nk (ap,0)/Zk (ap,0) of the pair (go, ay,0) (see e.g.,
[41, Prop.5.1(3)]), where |J| denotes the cardinal number of any set J. We thus find
that X € Oy, with m = |I|, and that the elements X (0),..., X (m — 1) are in the
closure of the orbit O,, with respect to the usual topology (or the Zariski topology)
on p4.

One can compute the the dimension of each Kc-orbit O, as follows. In view of
Harish-Chandra’s result (2.3)-(2.7) on the restricted roots, we easily find that the
tangent space Tx (m)(Om) = [¢, X (m)] of Op, at the point X (m) € Oy, is described
as

(3:2) Exm)= P s8t7)
TEA+(m)
with
(3.3) At(m) = {7T7~~-77r—m+1}U( U Pkt) U( U Pk)-
k>l k>r—m
k>r—m

Hence one obtains

dim O, =m + Z | Pyt | + Z | Pr|-

k>l k>r—m
k>r—m

This implies in particular that
dim O, > dimO,_; > --- > dim Oy =0,
and that
dim O — dim Oy = 1+ [Prompa| + D, [Promynyl-
I<r—m+1
Note that the right hand side of the above equality is at least two if either Pr_,+1 # &

(namely, K\G is not of tube-type) or m < 7.
Thus we have proved the following well-known result.
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Proposition 3.1. — The subspace p,. splits into a disjoint union of r + 1 number of
Kc-orbits O, (0 < m 1) py = Hogmgr O, and the closure O, of each orbit O,
is equal to Urgm Oy for every m.

3.2. Associated variety V(L(7)). — Let L(1) = M(7)/N(7) be, as in 2.2, the
irreducible highest weight (g, K')-module with extreme K-type (7,V;). Consider the
annihilator ideal

Anng,_)L(7) :={D € S(p-) | Dw=0 forallwe L(r)}.

of L(7) in S(p—) = U(p-). It should be remarked that an element D € S(p_) belongs
to Anng,_yL(7) if and only if Dv = 0 for all v € V, since L(1) = S(p-)V; with
commutative algebra S(p_).
Definition 3.2. — The affine algebraic variety

V(L(r)) :={X €ps | D(X) =0 forall D€ Anng,_)L(7)} C p+
defined by the ideal Anng(,_)L(7) is called the associated variety of the (g, K')-module

L(7). Here S(p-) is identified with the ring of polynomial functions on p; through
the Killing form B of g.

Remark 3.3. — The notion of the associated variety has been introduced by Vogan
[33] for arbitrary Harish-Chandra modules (see also [44],[8]). As for the highest
weight modules L(7), the above definition of V(L(7)) coincides with Vogan’s original
one. Indeed, let

grL(r): @U Wi [Up-1(8)Vr

be the graded (S(g), K)-module deﬁned through the filtration
{0} :=U_1(g)V: C V; =Up(g)V;r C -+ CUn—1(g)Vr CUn(g)V- C ...,

of L(r). Here U,(g) (n = 0,1,...) denotes the natural increasing filtration of U(g),
and S(g) ~ ®32oUn(g9)/Un—1(g) is the symmetric algebra of g. Then one easily sees
that € + p4 annihilates gr L(7), and that

gr L(r) ~ L(r) as (S(p-), K)-modules

by (2.11) and (2.12). Hence the algebraic variety in g* = g (the identification through
B) defined by the annihilator of gr L(7) in S(g), which is the associated variety by
Vogan, is nothing but V(L(7)).

Since the ideal Anng(,_)L(7) is stable under Ad(Kc), so is the variety V(L(7)).
In view of Proposition 3.1, we see that there exists a unique integer m = m(r)
(0 < m < r) such that

(3.4) V(L(1)) = Op, with O = Ad(K¢)X(m) and m = m(7).
In particular, the variety V(L(7)) is irreducible.
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Now let I, be the prime ideal of S(p_) associated to the irreducible variety O,,
(m=0,...,7):
(8.5) In:={D€eS(p-)| D(X)=0 forall X € 0}
It holds that I, = {0} since O, = p. If m < r, one knows that

(3.6) Im = S(p-)Qm+1

by [5, 8.1] and [21, Prop.2.3], where Q,+1 denotes as in (2.15) the irreducible K-
submodule of S™*1(p_) C S(p_) with lowest weight —y, — - -+ — Yp_m.

By Hilbert’s Nullstellensatz, I, coincides with the radical of the annihilator
ideal Anng(,_)L(7) for every 7. This allows us to deduce the following

Lemma 3.4. — The annihilator in S(p-) of (S(p-), K)-module L(7)/IpL(T) is
equal to Ly (..

Proof. — Since (/Anng(,_)L(T) = Iy, there exists an integer ng > 0 such that
B™ € Anng(,_)L(7) for every B € Qpm(r)+1, the finite-dimensional generating sub-
space of Ip(;). This implies that

(3.7) (Im(,-))no C Anns(p_)L(T).
If D € Anng(p_)(L(7)/Im(r)L(7)), then DL(7) C I+ L(7). Inductively, one gets
(3.8) D"L(1) C (Im())"L(T) (n=1,2,...).

We thus find from (3.7) and (3.8) that D™ € Anng(,_)L(7), and so D € Ip,(;). This
proves the inclusion Anng,_)(L(7)/Im()L(7)) C Ip(;). The converse inclusion is
obvious. O

For each X € p4, let m(X) be the maximal ideal of S(p_) which defines the variety
{X} of one element X:

(3.9) m(X):= Y (Y - B(X,Y))S(p-).
Yep_

We set

(3.10) W(X, 1) := L(7) /m(X)L(7).

Then we see that dim W(X,7) < oo, and that the isotropy subgroup K¢(X) of K¢
at X acts on W(X, 7) naturally. Note that, if J is an ideal of S(p_) that defines the
variety V(L(7)), then

(3.11) mX)>J < XeVILT)=0nm

By applying [33, Cor.2.10 and Def.2.12] in view of Lemma 3.4, we immediately
deduce
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Proposition 3.5. — Assume that X € Oy ;). Then the dimension of Kc(X)-module
W(X,T) coincides with the multiplicity of the S(p_)-module L(7)/Iny)L(T) at the
unique minimal associated prime L, (;y:

dim W(X,7) = multy,, ., (L(7)/I;mr)L(7)) (X € Om(r))-
So in particular, one has W(X, 1) # {0}.

Remark 3.6. — See [33, Section 2| and also [27, 1.1] for the definition and elemen-
tary properties of the multiplicities of finitely generated modules over a commuta-
tive Noetherian ring (in connection with Harish-Chandra modules). The multiplicity
multr,, ., (L(7)) of the whole L(7) at I,(r) is described as

no—l

(3.12) > dim{(In(r)) L(r) /m(X) U L(T)} (X € Omr)),
§=0

through the filtration
L(7) = (Im(r))°L(7) D (I;m()) ' L(7) D -+ D (Im(r))™ L(7) = {0}

of the (S(p-), K)-module L(7). Here nyg is as in (3.7), and the summand at j =0 in
(3.12) is equal to the above dim W(X, 7).

The above proposition will be used in the next subsection to study the associated
variety V(L(7)) in connection with the principal symbol of differential operator D«
of gradient type.

As for the unitarizable highest weight modules, the following remarkable result
of Joseph (due to Davidson, Enright and Stanke [3] for g classical) gives a clearer
understanding of the above proposition.

Theorem 3.7 ([21, Lem.2.4 and Th.5.6]). —  If L(7) is unitarizable, the annihilator
Anng,_yw in S(p-) of any nonzero vector w € L(T) coincides with the prime ideal
Iin(ry- Especially, one has Anng(,_\L(T) = Ipy(r)-

Remark 3.8. — For unitarizable L(7) = M(r)/N(r) with nonzero N(7), the above
theorem together with (3.6) implies the inequality:

i(r) < m(r) + 1,

where i(7) is as in (2.14) the level of reduction of the generalized Verma module M (7).
A description of the number m(7) in terms of ¢(7) has been given in [21].

Corollary 3.9 (to Prop.3.5 and Th.3.7). — One has
dim W(X,7) = multy, ., (L(7)) (X € Op(r))

for every irreducible unitarizable highest weight module L(T).
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For the classical groups Sp(2n,R), U(p,q) and O*(2p), Nishiyama, Ochiai and
Taniguchi [27, Th.7.18 and Th.9.1] have described the associated cycle:

(3.13) AC(L(7)) = multy,, ., (L(T)) - [Om(n)];

and also the Bernstein degree

(3.14) Deg L(7) = multy,, ., (L(7)) - deg(Om(r))

of the unitarizable highest weight module L(7) (our p4 is replaced by p_ in [27])
by using the theory of reductive dual pairs (G,G') with compact G'. They treat the
case where the dual pair (G,G’) is in the stable range with smaller G', and then
the multiplicity mult;, , (L(7)) is specified as the dimension of the corresponding
irreducible representation of G', through detailed study of K-types of L(r). On
the other hand, the above corollary allows us to give another simple proof of this
description of the multiplicity by investigating the K¢(X)-module W(X, 1), where
the dual pairs (G,G’) need not be in the stable range. We will do it later in Section
5 (see Theorems 5.14 and 5.15).

3.3. Principal symbol o and associated cycle. — Let
Dpe =V @ (@1_ P, o V™)

be, as in Definition 2.3, the differential operator of gradient type whose kernel realizes
the maximal globalization of dual lowest weight module L(7)* (see Proposition 2.7).
We put
q

(3.15) o(X,v") =) Pyu(X™ @uv')e W :=al_ W,

u=1
for X € p4 and v* € V¥, where P, : S™(p;) ® V;* — W is the K-homomorphism
in (2.23). Here o should be understood as o (X,v*) = 0 for every X € py and every
v* € V¥, when D,» = V!, or equivalently N(r) = {0}. Note that o is naturally
identified with the principal symbol at the origin Ke of differential operator D,
where the symbol is considered only on py x V* with the anti-holomorphic cotangent
space p4 = p* of K\G at Ke. By abuse of language, we call o the principal symbol
of D, at the origin, since we are concerned mainly with the anti-holomorphic sections
of G-homogeneous vector bundle V* x x G.

We are now going to describe the associated variety V(L(7)) by means of o. To
do this, fix any X € py for a while. Then the map v* — o (X,v*) gives a Kc(X)-
homomorphism o (X, -) from V* to W*. Hence Kero (X, -) is a K¢ (X)-submodule
of V*. By Proposition 2.8 we can describe Kero (X, -) as

Kero(X, ) = {v* € V} | Dy« Fx 4+ =0},

where Fx ,« € C2(G) is the function of exponential type defined by (2.24).
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The following lemma, relates the above kernel with the K¢(X)-module W(X, 7) in
(3.10).

Lemma 3.10. — For each X € p., the natural map

(3.16) Vr < M(1) = L(t) = M(1)/N(1) = W(X,7) = L(1) /m(X)L(7)
from V; onto W(X, 1) induces a Kc(X)-isomorphism

(3.17) WX, 7)* ~Kere(X,-)CV}!

through the contravariant functor Home(-,C).

Proof. — First, the natural map from M (7) to W(X,7) in (3.16) induces a linear
isomorphism from W(X, 7)* onto the space U of all linear forms 3 on M () satisfying

(3.18) oD =D(X)) for DeS(p-)

and

(3.19) Y|N(r) =0 with N(r) = 2‘7: S(p-)W, asin (2.13).
u=1

In view of (3.18), one sees that the second condition (3.19) is equivalent to
YWy =0 foru=1,...,q.

Second, pull back each 1 € U to an element of V* through the embedding V, —
M(t):

(3.20) UsyY o =y|V, eV,

By (3.18), this map is injective. We can show just as in the proof of Proposition
2.8 that an element v* € V* lies in the image of the map (3.20) if and only if
P,(X% ®v*) =0 for u = 1,...,q, or equivalently, v* € Kero (X, -). One thus gets
the linear isomorphism (3.17), which is in fact a K¢ (X )-homomorphism since so is
the map (3.16). O

We are now in a position to give a characterization of the associated variety V(L(7))
of L(r) and the multiplicity multy,, ., (L(7)/Ip(r)L(7)) in terms of the principal sym-
bol o, as follows.

Theorem 3.11. — Let L(7) be any irreducible highest weight (g, K)-module with ez-
treme K -type 7, and let o : py x V¥ = W* be the principal symbol of the differential
operator D« of gradient type associated to 7*. Then it holds that

(3.21) V(L(r) = {X € py | Kera(X, -) # {0}}.

Moreover, if X is an element of the unique open Kc-orbit Op(ry of V(L(T)), the
dimension of vector space Ker o (X, -) coincides with the multiplicity of S(p—)-module
L(7)/Im(r)L(T) at the prime ideal I, () of S(p—) corresponding to the variety V(L(7))

= Om(r)-
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Remark 3.12. — We can get the same kind of characterization of the associated va-
riety and the multiplicity also for irreducible (g, K)-modules of discrete series G-
representations, by using the results of [10] and [44]. We will discuss it elsewhere.

Proof of Theorem 3.11. — We write V' for the set in the right hand side of (3.21).
First, we immediately find that V' is an affine algebraic variety of p, by noting that

Kero(X, ) #{0} <= ranke(X, )<dimV’-1.
Moreover V' is Kc-stable, because one has
Kero(Ad(k)X, -) =7 (k)Kero(X, ) forall k € K¢
by the definition of o.
Second, the inclusion Op,;) C V' and the second assertion of the theorem are

direct consequences of Proposition 3.5 and Lemma 3.10. If X ¢ Opy(r) = V(L(7)), we
get m(X) + Anng(,_yL(7) = S(p-) by (3.11). This implies that

m(X)L(7) = (m(X) + Anng,_yL(7))L(1) = L(7).

So one gets Kero (X, -) ~ W(X,7)* = {0} again by Lemma 3.10. We thus find
Om(ry CV' C Opyry, and so V' = V(L(7)) as desired. O

4. Generalized Whittaker models for highest weight modules

In this section we describe the generalized Whittaker models for irreducible highest
weight modules L(7). The main results are summarized as Theorems 4.7-4.9. We
find that each L(7) embeds, with nonzero and finite multiplicity, into the generalized
Gelfand-Graev representation I',,,(;) attached to the Cayley transform of the open
Kc-orbit Oy, () in the associated variety V(L(7)) of L(7). It is shown that, if L(7) is
unitarizable, the multiplicity of (g, K')-embeddings L(7) < I'p(;) coincides with the
multiplicity of L(7) at the defining prime ideal of V(L(7)).

4.1. Generalized Gelfand-Graev representations. — We keep the notation in
2.1 and 3.1. We begin with introducing in this subsection the generalized Gelfand-
Graev representations of G attached to the Cayley transforms of nilpotent Kc-orbits
Om = Ad(K¢)X(m) in p4, where m ranges over the integers such that 0 < m <r =
R-rank G.

For this, we consider an slz-triple in g:

(41) X(m)= zr: Xy H(m) = zr: Hy,, Y(m):= i Xy

k=r—m+1 k=r—m+1 k=r—m+1
with commutation relation
{ [H(m), X (m)] =2X(m), [H(m),Y(m)]=-2Y(m),
[X(m),Y(m)] = H(m).
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We put

X'(m) = /e (X (m) = Y2 (Him) - X(m) + Y (m),

(4.2) T H'(m):=c Y (H(m)=X(m)+Y(m)= Y  H (cf (2.10)),

k=r—m+1
| V(m) = VT m) =~V (Hm) + X(m) — ¥ (),

where ¢ = Ad(c), with ¢ as in (2.8), is the Cayley transform on g. Then (X'(m),
H'(m),Y'(m)) forms an sly-triple in the real form go of g, since H(m) = —H(m),
X(m) = Y(m) by (2.2). Set O’ := Ad(G)X'(m). We note that the nilpotent G-orbit
O}, in go corresponds to the Kc-orbit Op, in p; C p through the Kostant-Sekiguchi

correspondence (cf. [8, Th.3.1]).

Lemma 4.1 ([8, Lemma 3.2])
(1) The Lie algebra g decomposes into a direct sum of the j-eigensubspaces g;j(m)
for ad H'(m) as
g =g-2(m) ® g—1(m) © go(m) & g1(m) & g2(m).
(2) Let A(m,j) (j =0,£1,+2) be the subsets of the root system A of (g, t) defined
by
A(ma2) = {7r—m+17~~’7r} U ( U Pkl)a

r—-m<I<k

3  amn=( U @uow)U( U ®ucw),

I<r—m<k r—m<k

Atm,0):=CoJfm - m-mtU (U Cn)

r—m<Ii<k

U( U (PklUCkl))U( U (PkUCk)),

I<kgLr—m k<r—-m

(4.4)

(45) A(m,O) = A+(mv 0) U (_A+(m70))7 A(mv _.7) = _A(mvj) (.7 = 1v 2)
Then each subspace c(gj(m)) = Ad(c)g;(m) is described in terms of the root subspaces

a(t;y) as

c(g;(m)) = {EB‘YGA(m,j)g(t; 7) ifj #0,

to (Dream,08(ty)) ifj=0.
Now we set

A~ (m) := (A(m, —2) U A(m, —1)) N Ap = —A*+(m) (cf. (3.3)).
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Let p_(m) and n(m) be nilpotent, abelian Lie subalgebras of g defined respectively
by
(4.6) p-(m):= € o) and n(m):=c(p_(m)).

YEA~(m)

Note that p_(r) = p_. If K\G is of tube type, the Lie subalgebra n(m) is stable
under the complex conjugation of g with respect to go.
We get the following lemma on the structure of these subalgebras p_(m) and n(m).

Lemma 4.2
(1) One has the equality

(4.7) p-(m) = [&,Y (m)).

Namely, p_(m) is canonically isomorphic to the tangent space at the point Y (m) of
Kc-orbit Ad(Kc)Y (m) inp_.
(2) Let o(m) be the subspace of g1(m) such that

o(m) := ¢ (Byez(m)8(t 7))

with

(4.8) S(m) = ( U P,C,) U ( U ck) C A(m, 1).
I<r—m<k k>r—m

Then it holds that

(4.9) n(m) =o(m) ® g2(m) and dimo(m) = %dimgl (m).

Proof. — First, (4.7) is a direct consequence of (3.2). To prove (2), we note that

-
& =Ad(e)? = H Sy, With s, := Ad(exp g(ka -X_)),
k=1
gives rise to an element of the Weyl group of (g, t) such that

Sy =~k €*Cx=-P;,, c*P,=-Cy

for k =1,...,r. In fact, s,, gives the orthogonal reflection with respect to 7%, and
(2.7) implies ¢2Cy, = — P and so ¢2P; = —C}. We thus find that

A~ (m) = A(m,2) UZE(m) (disjoint union),
and correspondingly
n(m) = v(m) & ga(m)
by Lemma 4.1(2). In view of (4.3) and (4.8), one gets the second equality in (4.9). O
Let 7, be the one-dimensional representation (i.e., character) of abelian Lie sub-
algebra n(m) = v(m) @ g2(m) defined by
(4.10)  9n(U) := V=1B(U,0X'(m)) = —v/—1B(U,Y'(m)) for U € n(m).
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Here 6 denotes the complexified Cartan involution of g, and B the Killing form of
g. Then, just as in Definition 1.6 we get a C*-induced G- and (g, K)-representation
'y, ;=T acting on the space

(4.11) C®(G;nm) = {f € C®(G) | URf = —nm(U)f (U € n(m))}
through left translation L. Note that
(412) C*®(G;nr) C C=(G;mr—1) C - -- C C=(G;mo) = C=(G),

since one sees n(m) C n(m') and 7y [n(m) = 9y for m < m'.

Definition 4.3. — We call (I';,, C®°(G; 1)) the generalized Gelfand-Graev represen-
tation (GGGR for short) of G attached to the nilpotent orbit O;, = Ad(G)X'(m) in

do-

Remark 4.4. — The GGGRs attached to arbitrary nilpotent orbits have been con-
structed in full generality by Kawanaka [14] for reductive algebraic groups. See also
[40] for the GGGRs of real semisimple Lie groups.

Remark 4.5. — 1t should be noticed that the above I'y,’s are slightly different from
the C*®-induced GGGRs discussed in [40]. In fact, we extend 7, to a linear form
on the Lie subalgebra gi(m) & g2(m) by (4.10). Let (,, be the irreducible unitary
representation of the nilpotent Lie subgroup

N(m) := exp((g1(m) ® g2(m)) N go)
of G which corresponds to the coadjoint orbit Ad*(N(m))(—v/—=1n,) by the Kirillov
orbit method. In [40, Def.1.11], the C*°-GGGR attached to O;, is defined to be the
representation C”—Indg(m)((m) of G induced from (,,, in C'*°-context.

Nevertheless, we can show just as in [40, Prop.4.10] that n(m) is a totally complex,
positive polarization of the linear form —y/—17,, on the Lie algebra of N(m). This
implies that

C“—Ind%(m)(cm) — Iy, as G-modules,
and the image of this embedding is always dense in I';,,. So we treat I'y, in this paper
instead of Cw—IndIG(,(m)(Cm).

4.2. Generalized Whittaker models. — For any irreducible finite-dimensional
K-module (7,V;), let L(1) = M(7)/N(7) (see 2.2) be the irreducible highest weight
(g, K)-module with extreme K-type 7. Consider the GGGRs (I'y,, C®°(G; ) (m =
0,...,r) induced from the characters 7, : n(m) — C. We say that L(r) has a
generalized Whittaker model of type ny,, if L(r) is isomorphic to a (g, K')-submodule
of C°(G;nm).-

We are going to describe the generalized Whittaker models for L(7) by specifying
the vector space Homg i (L(7), C®(G; nm)) of (g, K)-homomorphisms from L(7) into
C*°(G; nm)- To do this, let D« : CR(G) = C5°(G) be, as in Definition 2.3, the
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G-invariant differential operator of gradient type whose kernel realizes the maximal
globalization of lowest weight module L(7)* (see Proposition 2.7). We set

Y(r,m) := Ker Dy« (ny)

={F€CX(G) | D;+F =0, URF = -, (U)F (U € n(m))}.
Then the kernel theorem (Corollary 1.8) gives a linear isomorphism

(4.14) Homg k (L(7),C®(G; ) =~ Y(1,m)

through the correspondence (1.7).
Now our aim is to describe the space (7, m) for each 7 and m. For this purpose, we

essentially utilize the following unbounded realization of Hermitian symmetric space
K\G.

(4.13)

Proposition 4.6 (cf. [16, page 455], [9], [32]). — Retain the notation at the beginning of
2.3, and consider the open dense subset Py KQP_ of G with P+ = expp4.

(1) One has G°c C Py KgP_, where c is the Cayley element of G2 in (2.8).

(2) Set &'(z) := logp—(zc) € p— (z € G°), where xc = py(zc)kc(zc)p—(zc) with
kc(zc) € K@ and py(xc) € Py. Extend the assignment x — &' (z) (z € G°) to a map
from G to p_ through the covering homomorphism w : G — G°. Then, the extended
€' (z) (x € G) sets up an anti-holomorphic diffeomorphism, say &, from K\G onto
an unbounded domain

S:={(x) | z€ G} Cp-.

Note that the map z — kc(zc) (¢ € G°) lifts to a map from G to K¢ (cf. [32]).
We write kc(z - ¢) (z € G) for this lift.

We are now in a position to state the principal results of this article. Let Oy, () be,
as in (3.4), the unique open Kc-orbit in the associated variety V(L(7)) of L(r). Among
the generalized Whittaker models for L(7), those of type 7,(r) are most important.
We obtain the following theorem on the corresponding linear space Y(r,m) with
m =m(T).

Theorem 4.7. — Let (1,V;) be an irreducible finite-dimensional representation of K.
Set m = m(t) and Y(7) := Y(r,m) for short. Then,

(1) Y(r) is a nonzero, finite-dimensional vector space.

(2) For any F € Y(r), there exists a unique polynomial function ¢ on p_ with
values in V¥ such that

F(z) = exp B(X(m),&'(z))7" (kc(z - 0)p(€'(z)) (z € G).

(3) Let & : py x V¥ — W* be the principal symbol of the differential operator
D« of gradient type, defined by (3.15). Consider the functions Fx(m),,» € C2(G) of
exponential type in Proposition 2.8. Then the assignment

v* — cRFX(m),,,* = Fx(m)u+(- ¢) (v* € Kera(X(m), -))
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yields an injective linear map
x- : Kera(X(m), - ) < V(7).

The linear map - is not surjective in general. In fact, if L(7) is finite-dimensional,
one has Kero(X (m), - ) = V;* since X(m) = X(0) = 0 in this case. However Lemma,
1.1 implies that Y(7) ~ L(7)*.

Nevertheless, we can show the surjectivity of x, for relevant L(7)’s.

Theorem 4.8. — Assume that L(7) is unitarizable. Then the linear embedding x in
Theorem 4.7 is surjective. Hence one gets

(4.15)  Homg x(L(7),C™(G;nm)) ~ V(1) ~ Kera(X(m), - ) @ W(X(m),7)*

as vector spaces, where m = m(t), and W(X(m),7) = L(7)/m(X (m))L(r) is as in
(3.10). Moreover, the dimension of the vector spaces in (4.15) equals the multiplicity
multy  (L(7)) of the S(p—)-module L(r) at the unique associated prime I, C S(p—)
by Corollary 3.9.

Theorem 4.7 for m = m(7) allows us to deduce the following result on the structure
of Y(r,m') for m' # m(r).

Theorem 4.9. — The linear space Y(7,m’) vanishes (resp. is infinite-dimensional) if
m' > m(r) (resp. m' < m(7)).

Remark 4.10. — Theorem 4.8 recovers, to a great extent, our earlier work [41, Part
II] on the generalized Whittaker models for the holomorphic discrete series L(7) =

M(r) =U(g) ®u(etpy) Vr:

Homg x (M (1), C*(G;np)) = V.
Moreover, the above three theorems applied to the special case m(7) = r gives an
answer to Problem 12.7 (for ¢ = 0) posed in [41]. But this answer does not seem to

be new. In fact, D. H. Collingwood kindly informed me in 1992 that he had settled
Problem 12.7.

Remark 4.11. — The vanishing of Y(r,m') (m' > m(7)) in Theorem 4.9 follows also
from a general result of Matumoto [22, Th.2].

The following three subsections 4.3—4.5 will be devoted to proving the above three
theorems.

4.3. Key lemmas. — In this subsection we prepare two lemmas which are crucially

important to prove Theorems 4.7 and 4.8.
The first lemma is the following somewhat surprising result of Jakobsen.
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Lemma 4.12 ([20, Prop.2.9]). — Let g be any element of Gg, and let L(T) be an ir-
reducible highest weight (g, K)-module with extreme K-type 7. Then one has the
equality

Anny(aq(g)p_)L(7) = Ad(g)(Anny,_yL(7))
on the annihilator of L(1) in U(Ad(g)p—) and that in U(p_) = S(p-).

Second, for each integer m = 0,...,r, let J,, denote the ideal of S(p_) generated
by the elements Y — B(X(m),Y) (Y € p_(m)):
(4.16) Jm= 3 (¥ =B(X(m),Y)S(-).
Yep_(m)
A method of Joseph (cf. [5, 2.4]) for describing the lowest weight vector of irreducible
K-module Q41 = I, NS™* 1 (p_) (see (3.6)) can be applied to deduce the following

Lemma 4.13. — It holds that I, + J, = m(X (m)). Here I, (see (3.5)) is the prime
ideal of S(p_) corresponding to the irreducible algebraic variety Op,, and m(X (m))
(see (3.9)) is the mazimal ideal of S(p_) corresponding to X (m) € p,.

Proof — The inclusion I, + J, C m(X(m)) is obvious since any polynomial in I,
or in Jy, vanishes at X (m) by definition. If m = r, the equality I, + J, = m(X(r))
holds since I, = {0} and J, = m(X (r)).

Now we assume that m < r. In order to prove the sum I, + J,,, exhausts the whole
m(X(m)), we consider the subspace

am:= Y,  stE-7) Cp-.
YEALNA+(m,0)

(See (4.4) for the definition of A*(m,0).) Then one gets p_ = p_(m) @ q,, as vector
spaces, and hence

(4.17) m(X(m)) = Jm + amS(p-)
by the definitions of m(X(m)) and J,.
We set
Q(m) := (AN A(m,0)) \ ( U ©uu —Ckl)) (cf. (4.5)),
r—m<I<k

and let &, be the Lie subalgebra of ¢ defined by

by = t® (Dyeam)8(t))-
We write (K¢)., for the analytic subgroup of K¢ with Lie algebra &,. Note that
Qm, Jm and I, are all stable under the adjoint action of (K¢),. Further, by using
(2.7) one easily checks that g,, is an irreducible (K¢)m,-module with lowest weight
vector X_ _ = € qn. This together with (4.17) reduces our task to showing

(4.18) X €I+ I,

which can be done as follows.
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Let Qms1 = I, N S™1(p_) be the irreducible K-submodule of I,,, with lowest
weight —v, — -+ — 7,_m. Take a nonzero lowest weight vector Dypy1 € Qmy1. By
virtue of [5, 2.4(x)], we find that

Dm+1 = CX_%, cee X_»y,,_m mod Jm
for some nonzero constant ¢ € C. This implies that

Dm+1 = {c H B(X'Yk"X—’Yk)} ’ X—’)‘r—m mod Jm‘

k>r—m
Thus we have obtained (4.18) as desired. O

4.4. A role of the Cayley transform. — Keep the notation at the beginning of
2.3. We recall that the bounded realization B = {£(z) | ¢ € G} C p— of K\G gives a
linear isomorphism

0:0%(G) =5 O(B,V?)

by (2.18). Let O(p—, V;*) be the space of all holomorphic functions on the whole p_
with values in V,*. Naturally, we regard O(p_, V) as a subspace of O(B, V). Set

02.(G)o 1= ©720(p_, V;").
Just in the same way, the unbounded realization
S§={¢(z) =&(w(z)c) | 7 € G} Cp-

of K\G in Proposition 4.6 gives a linear isomorphism

0°: 0%.(G) = 0(S, V),
by
(4.19) O°F(¢'(z)) :=7*(kc(z-¢)) " F(z) (xz € G;F € O (Q)).
See also [32, 2.4]. Similarly we put

01.(G) = (8°)20(p_, V;).

Then the composite (©°) =00 induces an isomorphism from O%. (@) onto O%. (G)§
as vector spaces. This is exactly the (well-defined) right translation of functions on
G by the Cayley element c € Gg:

(4.20) 0:.(G)o 3 F — cfF € 01.(G)§,
where
RF(z) = 7*(kc(z - 0))(OF)(¢'(z)) with &'(z) = logp_(w(x)c)

forz € G.
The function cBF = ((©°)~! 0 ©)(F) can be interpreted as follows. First, take
an open neighbourhood U of e (the identity element) in G such that @w : G — G°
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restricted to U gives a diffeomorphism from U onto U° := w(U) (C G°). Define a
V;-valued function F° on U° by setting

(4.21) F°(w(z)) = F(z) (z €U).

One sees that F° extends, in a unique way, to a (multi-valued) complex analytic
function F*° on the open dense subset Py KgP_ of G2, and that F° comes from the
function

(422) Py xKcx P 3 (py,ke,p_) — 7" (kc) (OF)(log p_) € V'

through the covering map from K¢ to K¢. Second, we consider the right translation
cRF° of F° by the Cayley element ¢ € G¢. This is a complex analytic function
defined on Py KgP_c™!. Noting that G° C P K2P_c~! by Proposition 4.6 (1), we
write cRF° for the restriction to G° of cREF°. Then our cBF = ((©°)~1 0 ©)(F) gives
a (single-valued) lift of cRBF° to G.

The following proposition assures that the above right translation c® preserves the
kernel of differential operator D;«.

Proposition 4.14. — Let Dr+ : C22(G) — C°(G) be the differential operator of gradi-
ent type associated to 7*. Then (4.20) yields a linear isomorphism

Ker D, N 0% (G)o ~ Ker D,. N 0% (G)S.

Namely, a function F in OF.(G)o satisfies the differential equation D.«F = 0 if and
only if the corresponding c®F in OF.(G)§ satisfies the same equation.

As shown in the next subsection, this proposition together with two key lemmas
in 4.3 allows us to describe the space Y(r) = Y(r,m(r)) of generalized Whittaker
functions on G associated to the highest weight module L(7).

Proof of Proposition 4.14. — Let F' € O}.(G)o. We employ the interpretation of
clF and also the notation given just before the proposition. Note that D,~ naturally
gives rise to a right Gig-invariant, holomorphic differential operator, say D2, defined
on the complex group G¢.

Now assume that D,.F = 0. Then one finds that D2, F° = 0 on P KgP_. In
reality, D2, F° is the complex analytic extension of D2 F° on U°, and the latter
D2. F° equals zero by assumption (cf. (4.21)). We thus get

D2 (cRF°) = R(D2.F°) =0 on PyKcP_ct.

This implies that D,.(cRBF) = 0, because D,+(cF) is a lift to G of the restriction
(D2. (cRF°))|Ge.

The reverse implication can be proved in the same way by using the inverse Cayley
transform. O
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4.5. Proof of the main theorems. — We are now ready to prove our main
theorems given in 4.2.

Proof of Theorem 4.7. — Let F be any function in Y(7) = Y(r,m) (see (4.13)) with
m =m(7). Set f¢:=O°F € O(S,V}).

STEP 1. We first see that the requirement URF = —5,,(U)F (U € n(m) =
c(p_(m))) for F is equivalent to

(4.23) D, -f¢=0 for Dy €J, (cf (4.16)),
for the corresponding f¢, by noting that
Mm(€Y) = ~V/=1B(Y, e (Y'(m))) = =B(Y,X(m)) (¥ € p_(m)).

Here the action of S(p_) on O(S,V,*) is defined by the directional derivative (2.20).
STEP 2. Consider the point Yy := £'(e) € S (e the identity element of &), which
is expressed as

Yo =logp_(c) = ZX—W

Let Dy be any element of the annihilator 1dea1 Anl’ls(p_)L(T) of L(r) in S(p_) =
U(p-). Then it is standard to verify that

(D2 - ) (Yo) = (c(D2))*F(e) = (e("D2))" F(e).

Here D — TD denotes the principal anti-automorphism of U(g) as in 1.2.
Noting that the ideal Anng,_)L(7) is homogeneous, we can apply Lemma 4.12 to
deduce that ¢(TD) lies in the annihilator of L(7) in U(c(p—)). This implies that

(e("D2))"F =0,
because U(g)X (v*, F(-)) ~ L(7) for every nonzero vector v* € V,;*. We thus conclude
(4.24) (D2 £)(Yo) =0 (Ds € Anng(p_) L(r)).

STEP 3. We are going to specify the function f¢ € O(S,V;*). It follows from
Hilbert’s Nullstellensatz that

\/Anns(p_)L(T) + I = m(X(m)),

since Anng(,_)L(7) + J, defines the variety {X(m)} of one point X(m) in p4 by
virtue of Lemma 4.13. Hence (4.23) and (4.24) imply that there exists a nonnegative
integer N such that

(4.25) (Y = B(X(m),Y))N*. f)(Yy) =0 forallY €p_.

This means that the function f¢ is of the form

(4.26) F(Y) = exp B(X (m),Y)(Y),
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where ¢ is a V*-valued polynomial function on p_ of degree at most N. In particular,
F lies in OF.(G)§ by (4.26), and so one finds that

V(1) C 0% (G)g.

Thus we have proved the claim (2) of Theorem 4.7 as well as the finite-dimensionality
of Y(7) in the assertion (1).

STEP 4. Let v* € V;*. By Proposition 2.8, the function Fx(m) .« € Or.(G)o of
exponential type (see (2.24)) satisfies Dr+ Fx(m),o» = 0 if and only if the vector v*
lies in Keror(X(m), - ). Proposition 4.14 says that the former condition is equivalent
t0 Dy (cBFx(m),,») = 0. Noting that ©°(cEFx(m),-) is of the form (4.26) with
constant function p(Y') = v* (Y € p_), we deduce that cRFx (m) .+ € V() for every
v* € Kero(X(m), - ). This proves the assertion (3). Finally, the vector space Y(7)
does not vanish because

{0} # W(X(m)vT)* = Kera'(X(m), ) ) - y(T)’
thanks to Proposition 3.5 and Lemma 3.10. O

Proof of Theorem 4.8. — Suppose that L(7) is unitarizable. We set m = m(7). Then
one knows that I, = Anng(,_)L(7) by Theorem 3.7. This combined with Lemma
4.12 allows us to refine the discussion in Step 3 of the proof of Theorem 4.7. As a
result, we find that, for any F' € Y(7), the corresponding function f¢ = O°F in (4.26)
is necessarily of exponential type, i.e., f¢(Y) = exp B(X(m),Y)v* (Y € p_) for some
v* € V*. This proves the surjectivity of x, in Theorem 4.7. Now the remainder of
the theorem is a consequence of Corollary 3.9 and Lemma 3.10. O

Proof of Theorem 4.9. — First, assume that m' > m := m(7). Let F be any function
in the space Y(r,m’). By (4.12), F belongs to Y(r) = Y(r,m(7)) also. Hence the
corresponding f¢ := O°F € O(p—,V}) is of the form (4.26). It follows in particular
that
(X)) O =expB(X(m), - )(X—y,_,. ;)" 90) =0

for sufficiently large integers n, because B(X(m),X—_, _ ,,,) = 0 and because ¢ in
(4.26) is a polynomial on p_. On the other hand, since F is in C®°(G; 0y ), we see
just as in Step 1 of the proof of Theorem 4.7 that

(X_7r—m’+1) ’ fc = B(X(ml)’X_’yr—m’-{-l)fc = B(Xpyr—m"l"l ’X_7r—ml+l)fc'

Thus one gets f¢ = 0since B(X,, __, ., X _ ,..)#0. This shows that Y(r,m') =
{0}.

Second, assume that m' < m = m(r). Take a nonzero function F' in Y(r) by
Theorem 4.7 (1). Note that Y(r) C Y(r,m'). For each t € R, we define an element

at € G by
ag ‘= €xp {—t(X%—m+1 + X—7r-m+1)} = exp tc(H’Yr—m+1) (cf. (4.2)).
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Then it is easily checked that
Ad(a)n(m’) = n(m') and e 0 Ad(ar) = v

This implies that the functions (a;)RF still lie in Y(r,m’) for all t € R, by noting
that the differential operator D, is right G-invariant. These vectors (a;)?F (t € R)
in Y(r,m') turn to be linearly independent, because one gets

(C(X‘_'Yr—m-{'l))R((at)RF) = eZt : B(X'Yr—m+1’X_'Yr—m+1) ’ ((at)RF)'
by direct computation. Hence the vector space Y(r,m') in question is infinite-

dimensional if m' < m(7). O

Now we have completely proved the main theorems, Theorems 4.7-4.9.

4.6. Relation to generalized Whittaker vectors. — We end this section by
interpreting our results (Theorems 4.7-4.9) in terms of generalized Whittaker vectors
in the algebraic dual of an irreducible highest weight (g, K')-module. To do this we
prepare the following lemma.

Lemma 4.15. — Set n :=n(r) = c(p-) (cf. (4.6)). Let b be the linear map from n to
p_ defined by
2)=2Z mod &+ py

for Z € n. Then b is a surjective linear isomorphism.

Proof. — Write an element Y € p_ as a linear combination of root vectors:

Y= Z ey X_y with ¢y, €C

yeal

Then it is easy to compute the Cayley transform e(X_.) of X_. for each noncompact
positive root vy (see [32, 2.1 and 2.2] and also [41, 9.1]). As a result, one finds that

c(X_y) = ke Xy mod pi +§,
where k., = 1/2 or 1/1/2 depending on v € A}. This implies that

b(c(Y)) = Z Ky Cy X _y.
yeaf

We thus get the lemma. O

Let L(7) be the irreducible highest weight (g, K)-module with extreme K-type 7.
Let us look upon L(7), by restriction, as a module over U(n) = S(n). (Note that n is
an abelian subalgebra of g.) Then Lemma 4.15 immediately implies the following

Proposition 4.16. — L(t) is finitely generated as a U(n)-module. Moreover, the
Gelfand-Kirillov dimension Dim(n; L(7)) and the Bernstein degree Deg(n; L(T)) of
L(7) as a U(n)-module coincide with those Dim L(7) = Dim(g; L(7)) and Deg L(7) =
Deg(g; L(7)) as a U(g)-module, respectively.

SOCIETE MATHEMATIQUE DE FRANCE 2001



120 H. YAMASHITA

Remark 4.17. — The argument in the proof of Lemma 4.15 allows us to show
ntNV(L(T)) C ntnpy = {0},

where n' denotes the orthogonal of n in g with respect to the Killing form. In view
of this property, we can apply a criterion [43, Th.2.2] for the finiteness of restriction
of U(g)-modules to subalgebras. This gives another proof of the above proposition.

In view of Lemma 4.12, the annihilator ideal of L(7) in U(n) turns to be
(4.27) Anny () L(1) = ¢(Anny,_)L(7)),
and it defines the associated variety
V(; L(7)) = ¢(Om(r))
of U(n)-module L(7), which is an irreducible affine algebraic variety in n* = ¢(p.).
Thus, the associated cycle AC(n; L(7)) of U(n)-module L(7) is of the form
AC(n; L(1)) = multe(r,, ) (05 L(7)) - [e(Om(r))],

where mult.(z,, ) (n; L(7)) denotes the multiplicity of U(n)-module L(7) at the unique
associated prime c¢(Ip,(r)). Further, the Bernstein degree of U(n)-module L(7) is
described as

(4.28) Deg(n; L(7)) = multe(s,, ,,)(n; L(7)) - deg(e(Om(r))),

where deg(c(Om(r))) denotes the degree of the nilpotent cone ¢(Om(ry) (cf. [27,
Lemma 1.1]).

The above discussion tells us the following coincidence of two types of multiplicities
of L(r).

Proposition 4.18. — One has the equality
mUItlm(f) (L(T)) = mu}tc(lm(,.)) (n; L(T)),

where multy, . (L(7)) is the multiplicity in the associated cycle of (g, K )-module L(7)
(cf. (3.13)).

Proof. — The assertion follows from Proposition 4.16 together with the equalities
(3.14) and (4.28), by noting that the degrees of orbits Op,(,;) and ¢(On(r)) coincide
with each other. O

Now, for each m = 0,...,r = R-rank(G), let n,, be the one-dimensional represen-
tation of n(m) = ¢(p—(m)) which induces the GGGR (T';,, C®(G;nm)) (cf. (4.10)
and (4.11)). A linear form v on L(7) is called an (algebraic) generalized Whittaker
vector of type ny, if

Y(Uw) = g (U)¢(w) for all U € n(m) and w € L(7).
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We write Why (L(7)) for the space of such generalized Whittaker vectors. By defi-
nition, one observes that

(4.29) Wh;m (L(1)) ~ (L(T)/C(TJm)L(T))* := Home(L(7)/e( T1.)L(T), ©),

as vector spaces, where J,, is the ideal of S(p_) = U(p—) defined by (4.16), and T
denotes the automorphism of S(p_) such that TY = —Y for Y € p_. Further, every
(g, K)-embedding T from L(7) into C*°(G; 7y, ) yields a generalized Whittaker vector
¥ € Why,_(L(r)) by

P(w) = (Tw)(e) (w € L(r)).

This assignment T' — 1 sets up a linear embedding
(4.30) Homg x (L(7),C*°(G;nm)) < Wh:,m (L(1)).

We can show that this embedding is actually surjective for the most relevant case,
as follows.

Proposition 4.19. — If m = m(r), the map (4.30) is surjective. Namely, every
nonzero generalized Whittaker vector in Why (e )( (1)) gives an embedding of L(T)
into the GGGR C*(G; Nm(r))-

Remark 4.20. — Let L(7)*° denote the smooth G-module consisting of all C*°-vectors
for an irreducible admissible representation of G corresponding to L(7). In view of
the discussion in [41, 12.5], one finds that, if L(7) is a member of holomorphic discrete
series, any vector in Why (e )(L(T)) extends also to a continuous G-isomorphism from
L(7)*> into C*°(G;Nm(r)). This appears to be true for any L(7) not necessarily in
the discrete series, but we do not discuss it here.

Proof of Proposition 4.19. — First, we set M := Anng(,_)L(T) 4+ Jpm(r). By virtue of
Lemma 4.13, @ is an ideal of S(p_) that defines the one point variety {X (m(r))},
and in particular, the codimension of @ in S(p_) is finite. By (4.27), the isomorphism
(4.29) turns out to be

(4.31) Whe (L(r)) ~ (L(r)/e(TR)L(7))".

Mm(r)

Second, we consider the generalized Verma module M (7) = U(g) ®u(e4p,) V- and
its unique maximal submodule N(7). The natural quotient map M(r) — L(r) =
7)/N(7) induces a linear isomorphism

(4.32) L(7)/e(FR)L(r) ~ M(7)/(N(1) + e(Ti) M (1))

in the canonical way. Now let ( -, - ). be the (g, K)-invariant bilinear form on
0:.(G) x M(t) constructed in 2.3. We write £ for the orthogonal of c¢(Tt)M (1)
in O}.(G). Then, the bilinear form ( -, - ), naturally induces a linear embedding

(4.33) E = (M(7)/e(Tw)M(r))*.
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Third, just as in the proof of Theorem 4.7 (see 4.5), one finds that an element
F € O%.(G) belongs to & if and only if

(4.34) D-f(Yo)=0 forall D e,

where Yy = £'(e), and f¢ = (0°)"1F € O(S,V;) as in (4.19). It then follows from
(4.34) that

(4.35) dim &£ = dim V; x dim S(p_)/f.
Since we have
M(T)=Um)V, ~Un) eV,
by Lemma 4.15, the dimension of the quotient space M (7)/c(Tm)M (7) is equal to the
right hand side of (4.35). This shows that the linear isomorphism (4.33) is surjective:

(4.36) &~ (M(r)/e(Tm)M(r))*.
In view of Proposition 2.7 (1), (4.31), (4.32) and (4.36) give rise to isomorphisms
ENKerDye ~ (M(1)/(N(1) + e(T@)M(7)))* ~ Wh}__(L(r))

NMm(r)

as vector spaces, where D;. is the differential operator of gradient-type associated
to 7*. This proves the proposition, because every function in & N KerD,. gives a
(9, K)-embedding of L(7) into C°(G;nm(r)) by virtue of (4.14). a

Proposition 4.21. — If L(t) is unitarizable, one gets

dim Why, - )(L(’T)) = dim L(7) /m(X (m(7))) L(7) = dim L(7)/e(m(—X (m(7)))) L(1),

where m(X) is the mazimal ideal of S(p—) definining a point X € Op(r) (cf. (4.1)).
Moreover, the above dimension is equal to the multiplicity in the associated cycle

AC(L(1)) of L(7).

Proof. — The assertions follow from Theorem 4.8 and Proposition 4.19 by noting the
isomorphism (4.31), where T = m(—X (m(7))) in this case. O

Concerning the spaces of algebraic generalized Whittaker vectors, we are now in a
position to give the following consequence of the main results of this article.

Theorem 4.22. — The dimension of the vector space Why (L(7)) is given as
0 if m > m(r),
dim Wh; (L(7)) = { finite (# 0) if m =m(7),
00 if m < m(t).

Here Op,(;) is the unique open Kc-orbit in the associated variety of L(7). Moreover,
if L(7) is unitarizable, the dimension of Why  (L(7)) coincides with the multiplicity
multy,, . (L(1)).

Mm(r)
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Proof. — The claims for the cases m < m(7) and m = m(7) follow from Theorems 4.7
and 4.8 coupled with (4.30) and Proposition 4.19. The property Why, (L(7)) = {0}
for m > m(r) can be proved by an argument similar to the one given in the proof
of Theorem 4.9, or alternatively, one can apply a general result [22, Corollary 4] of
Matumoto. 0O

5. Case of the classical groups

Hereafter, we assume that G is one of the classical groups SU(p, q) (p = q), Sp(n, R)
or SO*(2n). The theory of reductive dual pairs gives concrete realizations of unita-
rizable highest weight modules L{o] = L(r[o]) for these groups G (see Theorem 5.1),
by decomposing the oscillator representation of the pair (G,G'), where G' = U(k),
O(k), or Sp(k) respectively, and o € G'.

For such L[o]’s, we specify in this section the K¢ (X (m))-modules W(X (m), t[o]) =
L{o]/m(X (m))L[o] (cf. (3.10)) with m = m(7[o]) explicitly by using the Fock model
of the oscillator module (see Theorems 5.14 and 5.15). In view of Theorem 4.8, this
leads us to a clearer understanding of the generalized Whittaker models for L[o].

5.1. Oscillator representation. — We start with constructing the oscillator rep-
resentation of the pair (G,G’), following [3, §7]. First, realize our classical groups G
as

,

SU(p,q) = {96 SL(p+4¢,C) | g (IO" _Olq) 'g= (IO” _OIq)} (p>9),

{ Sp(n,R) = {g € SU(n,n) | tgdng = Jn} with J, := (_OI Ion) ’

| 50°(2n) = {geSU(n,n)] tg (Z Io")g= (Z IO")}

where I,, denotes the identity matrix of size n. The totality of unitary matrices in G
forms a maximal compact subgroup K.

Let M, , denote the space of all complex matrices of size p x g. We write Sym,,
(resp. Alt,,) for the set of all symmetric (resp. alternating) complex matrices of size n.
Then, the real rank r = R-rank G, the complexification K¢ of K, and the irreducible
Kc¢-module pyunder Ad, can be described for each G respectively as in the following
table.

| G || Ke | b |
(5.1) SU@,q) || 9 | S(GL®,C) xGL(g,C) | My

Sp(n,R) || n GL(n,C) Sym,,

S0*(2n) || (2] GL(n,C) Alt,,
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Here the K¢-action on p. is given as
(52) g X=¢Xg;', g=(g1,92) € S(GL(p,C) x GL(q,C)), X € M,
for G = SU(p, q), and

g-X =gX'g, g€GL(n,C), X € Sym, or Alt,

for G = Sp(n,R) or SO*(2n). For this, see also [27, 7.1].
For every positive integer k, we realize the compact group G’ as

U(k) ={9 € GL(k,C) | g'g = It} for G = SU(p,q),
O(k) =U(k) NGL(k,R) for G = Sp(n, R),
Sp(k) = {g € U(2k) | tgJrg = Jx} for G = SO*(2n).

The complexification of G’ will be denoted by G¢, ie., Gz = GL(k,C), O(k,C),
Sp(k,C) respectively. Define a space M of complex matrices by

My (n:=p+gq) for G=SU(p,q),
M:=q My for G = Sp(n, R),
M2k for G = SO*(2n).
For G = SU(p, q), the elements Z € M will be written as

7z = (g) with A€ Mp’k,B € Mgy .

The group K¢ x G acts on M by

1—1
g14g .
(53) (g7gl) 7= ( ,) with 9= (91792)7
92

for G = SU(p, q), and by

(5.4) (9,9') - Z := gZg'""

for G = Sp(n,R) or SO*(2n), where (g,9') € Kc x G and Z € M.
We now prepare some notation to describe the oscillator representation. Let ¢ be
a map from M to py such that

AtB for G = SU(p, q),
(5.5) Y(Z):=¢ 3Z2'Z  for G = Sp(n,R),
12Jx'Z for G = SO*(2n).

Note that ¢ : M — p, is a K¢ X G-equivariant polynomial map of degree two, where
we let Gi act on p, trivially. For each Y € p_, let hy be a polynomial on M defined
by

hy(Z) := B(¥(Z),Y) (B the Killing form of g).
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We set for g € K,
(detg;)~*  for G = SU(p,q),
(5.6) 0k(9) ;=14 (detg)~*/2 for G = Sp(n,R),
(detg)™*  for G = SO*(2n),

where g = (g1,92) as in (5.2) for G = SU(p,q). If G = Sp(n,R), the function J; is
two-valued on K¢ = GL(n,C). We need to go up to the two fold cover of K¢ in order
that 65 determines a genuine character of the group. Hereafter, we replace K and
K¢ by their two fold covering groups when G = Sp(n,R). By abuse of notation, the
latter covering groups will be denoted by K and K¢ again.

Let C[M] denote the ring of polynomial functions on the complex vector space M.
One can define a (g, K)-representation w on C[M] in the following fashion. First, the
p_ action on C[M] is given by multiplication:

(5.7) wY)f(Z) :==hy(2)f(Z), Y €p,
for f € C[M]. Second, p4+ acts by differentiation:
w(X)f(2) := s(hx(0))(Z2), X €ps.

Here h(9) stands for the constant coefficient differential operator on M defined by
the polynomial hw, and the constant x depends only on the Lie algebra go of G.
Third, the complexification K¢ acts on C[M] holomorphically as

w(9)f(Z) = 6k(9)f((g7",€) - 2), g€ Kc.
On the other hand, C[M] has a natural Gg-module structure through

R(¢)f(2Z) = f((e,g'™") 2), ¢ €G¢.

Then it is easily seen that these two representations w and R commute with each
other. The resulting (g, K) x Gg-representation (w, R) on C[M] will be called the
Fock model of the (infinitesimal) oscillator representation of the pair (G,G").

It should be mentioned that the above oscillator representation w of the pair (G, G")
comes from the Weil representation of a metaplectic group. In fact, G x G’ forms a
reductive dual pair in a real symplectic group Sp(V, R). Consider the Weil represen-
tation Q2 (cf. [12]) of the metaplectic group Mp(N, R), which is the two fold cover of
Sp(N,R). Restrict Q to the metaplectic cover G x G of G x G', and then twist it by
a certain one-dimensional character of the compact group G’. One thus gets w.

5.2. Unitarizable highest weight modules L[s]. — Let (o, V;) be an irreducible
(finite-dimensional) unitary representation of the compact group G'. Extend o to a
holomorphic representation of G¢ in the canonical way. We set

(58) L[U] = HomGé:(VU‘)(C[M])a
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which turns to be a (g, K')-module through the representation w on C[M]. Let (k)
denote the totality of equivalence classes of irreducible unitary representations o of
G' such that L[o] # {0}. Note that the G-action on C[M] is locally finite since G
preserves each subspace of homogeneous polynomials of any fixed degree. Then one
gets

(5.9) CM] ~ P Lis]®V, as(g,K) x Gr-modules.
ocecX(k)

The isomorphism is given by
Lo]®Vy 5T Qv +— T(v) € C[M],

on each Gg-isotypic component L{o] @ V.
The following theorem states the celebrated Howe duality correspondence associ-
ated to (G,G").

Theorem 5.1 ([12], [6], [7]; cf. [3, §7])

(1) L[o] is an irreducible unitarizable highest weight (g, K)-module for every o €
(k). In particular, (5.9) gives the irreducible decomposition of the (g, K) x G.-module
C[M].

(2) Let 01,02 € E(k). Then, V,, ~ V;, as Gc-modules if and only if L{o1] ~ L[o>)
as (g, K)-modules.

(3) If G = SU(p, q) or Sp(n,R), any irreducible unitarizable highest weight (g, K)-
module is isomorphic to an L[o], where o € (k) for some positive integer k.

Let 7[o] denote the extreme K-type of highest weight (g, K)-module L[o], i.e.,
L[o] = L(r[o]). We note that the correspondence o +» 7{o] can be explicitly described
in terms of their highest weights. For this, see the articles cited in the above theorem.

It follows from the standard argument in linear algebra that each Kc¢-orbit O,
in p4 (see 3.1) consists of all the matrices in py = M, 4,Sym,, (resp. Alt,) of rank
m (resp. 2m) for G = SU(p,q), Sp(n,R) (resp. SO*(2n)). Let E;4(%,j) denote the
(4, 7)-matrix unit of size s x t whose (k, [)-matrix entry ey, is equal to 1 if (k1) = (4, j);
ex; = 0 otherwise. We put

m
(5.10) Ly(m) =Y Eeu(i,i) € Myy (m=0,...,min(s,t)),

i=1
where I, +(0) := 0. Then, we take an element X (m) € O, explicitly as
Ip,q(m) for G = SU(p, ),
(5.11) X(m):=1Q Inn(m)/2 for G = Sp(n,R),
S (Enn(i,m+14) — Epn(m +1i,i))/2 for G = SO*(2n).

i=1
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Now, it is easily seen that the image (M) of the K¢ x Gg-equivariant map 1 :
M — py in (5.5) is a Kc-stable, irreducible algebraic variety described as
(5.12) Y(M) = Oy, with myg :=min(k,r),

where M and 1 depend on k. By (5.7) and (5.9), the annihilator ideal in S(p_) of
L[o] (¢ € X(k)) consists exactly of all the elements D € S(p_) = C[p, ] vanishing on
¥(M). In this way we have shown the following well-known fact.

Proposition 5.2 (cf. [3, §12]). — For any o € X(k), the associated variety of unita-
rizable highest weight module L[o] is equal to the closure of the Kc-orbit O, =
Ad(Kc¢)X (mg). More precisely, Anng,_yL[o] coincides to the prime ideal I;n, defin-
ing Opm, (cf. Theorem 3.7).

5.3. Variety Vi and ideal w(m)C[M]. — Now we consider the maximal ideal:
m:=m(X(mi)) = ) (¥ = B(X(mg),Y))S(p-) C S(p-) (cf (3.9)),
Yep_
for each positive integer k. For m = 0,...,7, let Kc(m) := Kc(X (m)) be the isotropy
subgroup of K¢ at X(m) € O,,. We want to describe the K¢(my)-modules
Wlo] := W(X (my), [o]) = Llo]/mL[o] (o € X(k)).
In view of (5.8) and (5.9), one gets an isomorphism
(5.13) Wlo] =~ Homg Vs, C[M]/w(m)C[M]) as Kc(mg)-modules.

So, our task is to decompose the quotient C[M]/w(m)C[M] as K¢ (my) X Gg-modules.
To do this, we note that, by virtue of (5.7), w(m)C[M] is equal to the ideal of C[M]
generated by all matrix entries of the following polynomial function of degree two:

(5.14) M>Zvw—(Z)— X(my) € py.
We consider the corresponding affine algebraic variety V, of M:
Vi :={Z € M | $(2) = X(my)} = ¥~ (X (my)),

which is the inverse image of X (my,) by 1. Clearly, the variety V; is stable under the
action of Kc(mg) x G¢. Note that the codimension of V; is given as

dim M — dim Vi, = dim O, = dimp_(my) (cf. Lemma 4.2)

by virtue of (5.12).

Now, let us give the Gg-orbit decomposition of Vj for each group G separately,
where G¢ is identified with the subgroup {e} x G of K¢ x G¢. We define a subgroup
Ge(k —r) (r = RrankG) of G¢ by

{I} (the unit group) ifk<r,

(5.15) Gk —7) := {(IO 2) c ch} if k>,
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for G = SU(p,q), Sp(n,R), and by

(5.16)
{I2} (the unit group) ifk<r,
, I, O O O
GC(k - 1') = O h11 0 h12

0 0 I, O (S Gé: h,‘j € Mk—r,k—r ifk>r,

O hay O hyp

for G = SO*(2n). Note that if k¥ > r, the group G(k — r) is naturally isomorphic
to GL(k —r,C), O(k — r,C) or Sp(k —r,C) according as G = SU(p, q), Sp(n,R) or
SO*(2n) respectively.

First, the following lemma for the case SU(p, q) is due to Tagawa.

Lemma 5.3 ([31, 3.5 and 3.8]). — Assume that G = SU(p,q) (r = ¢, Gt = GL(k,C)).
(1) If k < q, the group G = GL(k,C) acts on Vi, simply transitively. One gets
Ip,k(k)
Iq,k(k)
where the matrices I, x (k), Ik (k) are as in (5.10).

(2) If k > q and p = q, then the G-action on Vi is still transitive, and it holds
that

(5.17) Vi = Gg - < ) ~ G¢  as Gg-sets,

U I k(Q)>
Vi=Gg- | P ~ G¢/Ge(k — as G -sets.
k C (Iq,k(lI) c/Gel( q) (o
Here G¢(k — q) coincides with the isotropy subgroup of G¢ at (?kEg) € Vk.
a0,k

(3) If k > q and p > q, Vi is no longer G-homogeneous. In fact, let ]\;Ip_q,k_q be
the subspace of M defined by

) (L ©
Mygi—q=30=(0 U |UeMp_q,k_q .
I, 0

Then Vy, is decomposed as
(5.18) Ve =Ge - Mp_gi—q =[] Gc- U,
UeA
where A denotes a complete system of representatives in Mp_g x—q of the Ge(k = q)-
orbit space

Mp—q,k—q/G(lC(k —q) = My_gk—q/GL(k — ¢,C).

Second, the structure of G¢-variety Vy, is much simpler for Sp(n, R). This is because
the corresponding Hermitian symmetric space is always of tube type.
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Lemma 5.4. — Assume that G = Sp(n,R) (r = n and G = O(k,C)). Then it holds
that
Vi = Ge * Ink(mi) =~ Ge/Ge(k —n)  as Gi-sets,
Here my, = min(k,n), and the isotropy subgroup of G at I, x(mg) is equal to the
group Ge(k —n) in (5.15).
Third, one obtains the following lemma for SO*(2n).

Lemma 5.5. — Assume that G = SO*(2n) (r = [n/2] and G = Sp(k,C)).
(1) If k <, one has

(5.19) Vi = Gg - In2k(2k) ~ Ge  as Gg-sets.
(2) If k > r = n/2 with even integer n, the variety Vy is described as
— (. ITJC (7') o ~ Y 1 _
(5.20) ve=Ge- (P00 ) = Ge/Getk -,

where Gg(k — 1) ~ Sp(k —r,C) (cf. (5.16)) coincides with the isotropy subgroup of

I, (r) (0] . _
0 Ir,k(’f')) n M = M2r,2k~

(3) If k > r = (n — 1)/2 with odd integer n, Vi consists of two Gg-orbits. In fact,

we set
I, O O O
(Z1,22)~:= O O Ir O

o z 0 22

G at the matrix (

for (21,22) € My g(k—r) = My k—r X M1k—r. Then Vi decomposes as
(5.21) Vi =Ge Migg—r) =G (0...0,0...0)" J[ G¢-(10...0,0...0),
where 1\;[1’2(,6_,) = {(21,22)7 | 21,22 € M1 j—r}.

We give below a proof of Lemma 5.5 for G = SO*(2n). Lemmas 5.3 and 5.4 can
be shown in the same way (so we omit the proofs of these two lemmas).

Proof of Lemma 5.5. — (1) Suppose k < r = [n/2]. In view of (5.5) and (5.11), one
observes that an element

Z = (g) eM with Ce M2k,2k, DeM —2k,2k

belongs to Vy if and only if
CJ'C=1J;, CJ'D=0, and DJy'D =0,

which means that C € Sp(k,C) and D = O. We thus get (5.19).

(2) Consider the case k > r = n/2 with even integer n. Take any matrix Z in
Vi. Let ¢; € Mo = C¥* (i = 1,...,n) denote the i-th row vector of Z. Set
d; := ¢y4i (i = 1,...,7). By the condition ZJy!Z = J, (& ¥(Z) = X(r)), we can
extend {c1,...,¢r,d1,...,d,} to asymplectic basis {ci,...,ck,d1,...,dr} of C** with
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respect to the nondegenerate alternating form defined by Ji. Then, there exists an
element g’ € G¢ = Sp(k,C) such that e;g' = ci,ex+ig’ = di (1 = 1,...,k), where

e1,- .., ez denotes the standard basis of C2*. This implies that
1 (L. x(r) (0
Z —q 1 . ( .k ) .
g O Ii(r)

Furthermore, g’ € G fixes the above matrix if and only if e;g' = e; and ex4ig’ = ex4s
for alli =1,...,7, or equivalently, g’ € G(k —r).

(3) Suppose that £ > r = (n — 1)/2 with odd integer n. Just as in (2), one can
show that any element in V; lies in the G¢-orbit through a matrix Z of the form

()

er
Z = | ept1 for some z € C?*.

Ck+tr
z

Then the condition ¢(Z) = X (r) imposes
eiJk tz = 6k+iJktZ =0 for i= 1,...,7‘.

Hence one finds that Z = (z1,22)” for some (21,22) € My y(k—ry, i-e., Vi = Gg -
M 2(k—r)-

Finally, observe that two matrices (z1,22)” and (z1,24)” in Vi belong to the same
Gg-orbit if and only if the corresponding vectors (21, 22) and (21, 25) in My 5(x—r) are
conjugate under the action of Sp(k — r,C). This yields the second equality in (5.21),
by noting that Sp(k —r,C) acts on M 54—, \{0} transitively. O

The above three lemmas imply in particular the following

Proposition 5.6. — The affine algebraic variety Vi, is irreducible except the case G =
Sp(n,R) with k < n.

Remark 5.7. — If G = Sp(n,R) with k < n, then V; ~ O(k,C) has two irreducible
components according as the coset decomposition O(k,C) = SO(k,C) U ¢'SO(k,C)
with ¢’ € O(k,C)\SO(k, C).

Proof of Proposition 5.6. — Let (G¢)o = GL(k,C), SO(k,C) or Sp(k,C) be the iden-
tity component of the complex classical group G = GL(k,C), O(k,C) or Sp(k,C)
respectively. Under the hypothesis of the proposition, we find from Lemmas 5.3-5.5
that Vj is the image of an irreducible variety (G¢), or (Gg)o X CP (for some p > 0)
by a continuous map (with respect to the Zariski topology) between two affine spaces
over C. This proves the proposition. O
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The next proposition is important to specify our K¢ (mg)-modules W[s].

Proposition 5.8. — The ideal w(m)C[M] of C[M] coincides with the defining ideal of
Vi in C[M]:

(5.22) wm)CM] ={feCM] | f(Z)=0 forall Z € Vi}.
Hence one gets a natural isomorphism
(5.23) CIM]/w(m)C[M] ~ C[Vx] as Kc(myi) x Gp-modules,

where C[Vy]| denotes the affine coordinate ring of Vi consisting of all functions on Vi
giwen by restricting polynomials on M to Vy.

Proof. — We write Zj for the defining ideal of Vi, the right hand side of (5.22).
By definition one has w(m)C[M] C Z;. So we want to show the converse inclusion
T C w(m)C[M].

First, we prove the inclusion in question when the variety Vy is irreducible. Namely,
we exclude the case G = Sp(n,R) with k < n exactly (see Proposition 5.6). Take any
basis Y7,...,Y; of the vector space p_(my) = [¢,Y (my)] (cf. Lemma 4.2). We define

fi,-.o, fe € w(m)C[M] by
fi(Z) == B(p(Z) — X(mx),Y;) for Z e M.
Lemma 4.13 together with (5.9) yields
Vi={ZeM|fi(Z)=0 (i=1,...,t)}

By case-by-case examination, we can find an element Zy € V}, on which the differen-
tials (dfi)z, (¢ =1,...,t) are linearly independent. In fact, the “identitylike” matrices
given in Lemmas 5.3-5.5 satisfy this requirement if Vj is a single G-orbit. Otherwise,
one can choose Z; as

0 € Mp—gk— (SU(p,9), k>4q, p>q),
(0...0,0...0 € My 46—y (SO*(2n),k > (n—1)/2 with odd n).

Thus we get (f1,..., ft) = Ik, by applying Lemma 4 of [17, page 345]. This shows
T C w(m)C[M] as desired.

Second, consider the case G = Sp(n,R) with k¥ < n. Then we know V};, ~ O(k,C)
by Lemma 5.4, and hence the equality w(m)C[M] = Z is an easy consequence of a
classical theorem of Weyl [37, Theorem (5.2.C)].

Now the equality (5.22) and so the isomorphism (5.23) have been proved com-
pletely. 0O
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5.4. Kc(mg)-modules W[o]. — We are now in a position to specify the Kc(my)-
modules Wo] for every o € (k) (k= 1,2,...). First, we prepare some notation to
state the results in a unified form. Let G¢(k—r) (r = R-rank G) be the subgroup of G-
in (5.15) and (5.16). With Lemmas 5.3-5.5 in mind, we introduce a G¢(k — r)-stable
subvariety Uy, of Vi as follows. We set

o LG} <a o k0=

Mp—q,k-q (k>gq and p#q)
for G = SU(p, q), and
Uy .= A{Inr(mr)} (k=1,2,...) for G = Sp(n,R),
where my = min(k,r) as before. The variety U, for G = SO*(2n) is defined to be
[ {In2k(2k)} (k<r=[n/2])

U = ] {(I“’(“)(’") Irf(r))} (k>r=n/2 with n even),

{ ]\7[172(,6_,) (k>r=(n-1)/2 with n odd).

Then, Lemmas 5.3-5.5 imply that

(5.24) Vi = Gp - U,

and that the Gg-orbits X' in V; are in one-one correspondence with the Gi-(k — r)-

orbits X N Uy, in Uy,

Definition 5.9. — We say that the pair (G,G’) is of type (SVT) if the pair (G,G’) is
in the stable range with smaller member G’ (i.e., k < 7), or the symmetric space K\G
is of tube type (i.e., G = SU(p,q) with p = q, Sp(n,R), or SO*(2n) with n even).
This happens exactly when U}, consists of a single G¢(k — r)-fixed point, say Zy. We
call it the case (SVT), too.

Now Proposition 5.8 allows us to deduce the following

Proposition 5.10. — Under the above notation, let ClUy] be the coordinate ring of
G (k —r)-stable variety Uy, viewed as a G(k —1)-module in the canonical way. Then
one has a linear isomorphism

(5.25)  W[o] ~ Homgrc(k—r)(Ver, ClUUs]) = (V @ Cti))C <*=7 (0 € S(k)).
In particular, it holds that
(5.26) W(o] ~ (V})9'c*=") " for the case (SVT).

Here (V* ® Clty])% <*=7) denotes the subspace of V* ® ClUy] of G'c(k — r)-fived
vectors, and the right hand side of (5.26) turns to be V¥ if k < r.
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Proof. — We know the K¢(my)-isomorphism W(o] ~ Homg'.(V,, C[Vx]) thanks to
(5.13) and (5.23). Let T be a Gi-homomorphism from V, to C[Vx]. Set Tp(v) :=
T (v)|Uy, the restriction of T'(v) € C[Vi] to Uy, for each v € V,. Then Ty gives a
homomorphism of G¢(k — r)-modules from V; to C[ix]. By using Lemmas 5.3-5.5
(see also (5.24)), it is standard to verify that the assignment T+ Tj sets up a linear
isomorphism

(5.27) Homg'( Vo, CVi]) ~ Homgr o (k—r) (Vo, ClUk ),

which is a variant of the Frobenius reciprocity. We thus obtain (5.25) (the second
isomorphism is a natural one). (5.26) follows from (5.25) immediately, since C[l] is
the one-dimensional trivial G¢(k — r)-module for the case (SVT). a

Remark 5.11. — For the case G = SU(p, q), the above proposition is due to Tagawa
[31, Th.3.10.1].

Remark 5.12. — The irreducible decomposition of G(k — r)-module Clif;] is well-
known even if Uy, is not a variety of single point. Indeed, C[l4;] is isomorphic to the nat-
ural GL(k — ¢, C)-module C[M,_g x—g] (resp. such Sp(k —r,C)-module C[M; »(x—r)])
when G = SU(p,q) with p > ¢ and k£ > ¢ (resp. G = SO*(2n) with k > (n —1)/2
and n odd). On one hand, the GLp_4 X GLg_4 duality can be used to decompose
C[Mp—q,k—q] into irreducibles. On the other hand, the space S'(Mj (x—r)) of homo-
geneous polynomials on M; s(x—r) of any fixed degree ! turns to be an irreducible
Sp(k — r, C)-module with highest weight ({,0,...,0). This yields the irreducible de-
composition

CMi2(k-r)] = B130S" (M1 2(—r))

as Sp(k — r, C)-modules.

Hence the right hand side of (5.25) can be described concretely by a combinatorial
method, once one knows the branching rule of irreducible representations of G re-
stricted to the subgroup G(k —r) (cf. [19], [30]). Although we do not discuss it in
this paper, the author would like to thank K. Koike for kind communication on the
branching rule of finite-dimensional representations of complex classical groups.

In view of Corollary 3.9, we get a direct consequence of Proposition 5.10 as follows.

Corollary 5.13. — Let o be in £(k). Then, the multiplicity multy,, (L[o]) of irre-
ducible highest weight module L[o] at the defining ideal Ip,, of the associated variety
V(L[o]) coincides with the dimension of vector space (V.* @ ClUy])¢'<*=7) . Especially,
one gets multy,, (L[o]) = dimo if k <r (cf. [27, Th.9.1]).

At the end, we are going to clarify how the isotropy subgroup K¢ (my) acts on the
space W[o] ~ Homg (k—r)(Vo, ClUy]). To do this, we note that the elements g of
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the subgroup K¢(m) (0 < m < r) of K¢ (see Table (5.1)) are written for each group
G = SU(p,q), Sp(n,R) and SO*(2n) respectively as follows.

.
g1 g1z gun O )

) € K th GL(m,C) (SU(p,q)),

<(0 922) <g43 y44>) c with g1 € GL(m,C) (SU(p,q))

g=< <911 912> € K¢ with g1, € O(m,C) (Sp(n, R)),
O g

(gll 912) GKC with g11 € Sp(m’C) (SO*(2TI,)).
L O g2

This enables us to define a group homomorphism

a: Kc(mg) - Ge, g+ a(g)

by
ato) = (% ) for SUG.) or Sp(n, )
and by
P11 0 D12 0]
O L, O 0] . P11 P12
= th = * .
a(g) pm O pm O with g1 (pzl - for SO*(2n)

O O O I,

Here p;; is a matrix of size k, and a(g) should be understood as g11 if £ < r. Note
that the elements of a(Kc(my)) commute with those of the subgroup Gg¢(k — r).
Now we can deduce

Theorem 5.14 (Case (SVT)). — Assume that the pair (G,G") is of type (SVT) in Def-
inition 5.9. Then it holds that

(5.28) Wio] ~ (6 ® (6* 0 ), (V})F<*k=7)) a5 K¢(my)-modules,

where 6y, is the character of K¢ in (5.6). In particular, W]o] is an irreducible K¢(my)-
module if k < r.

Proof. — Let Zy be the unique element of U},. By noting that

9-Zo=0al9)™' - Zo (g€ Kc(my)),

it is a routine task to transfer the K¢(my)-action on Homg . (Vy, C[Vk]) to that on
(V)G ck=7) ~ Homgr(k—r)(Ver, ClUx]) through the isomorphism (5.27). We thus
get (5.28). If k < r, the homomorphism « is surjective. Hence (5.28) implies the
irreducibility of W(o] for k < 7. O
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Next we consider the remaining case, and assume that (G, G") is not of type (SVT).
Then one has k > r and so my = 7. Set l := p—q for G = SU(p,q) (p > ¢), and
Il =1 for G = SO*(2n) (n odd). Then, B(g) := g22 (9 € Kc(r)) defines a group
homomorphism 3 from K¢(r) to GL(l,C). The group K¢(r) acts on

OUe] = My e(h-r)]

naturally through the left multiplication composed with 3, where € := 1 for G =
SU(p,q), and € := 2 for G = SO*(2n). We denote by v the resulting representation
of Kc(r) on C[U]. Note that v as well as 0* o o commutes with the G¢(k —r)-action.

Theorem 5.15 (Non (SVT) case). — Under the above assumption and notation, the re-
ductive part of Kc(r) acts on Wio] ~ (V;* ® ClUy])¥'c*=7) by the representation
o ®(0*oa) Q.

Proof. — This theorem can be proved just as in the proof of Theorem 5.14 by noting
that

g- U= a(g)_l : (ﬂ(g)U)~ (U € Ml,e(k—r))
holds if g € K¢(r) lies in the reductive part of K¢(r), i.e., g12 = 0. We omit the detail
of the proof. O
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THE DEGREES OF ORBITS
OF THE MULTIPLICITY-FREE ACTIONS

by
Shohei Kato & Hiroyuki Ochiai

Abstract. — We give a formula for the degrees of orbits of the irreducible representa-
tions with multiplicity-free action. In particular, we obtain the Bernstein degree and
the associated cycle of the irreducible unitary highest weight modules of the scalar
type for arbitrary hermitian Lie algebras.

Résumé (Degrés des orbites nilpotentes des représentations irréductibles sans multiplicité)

Nous donnons une formule pour les degrés des orbites nilpotentes des représen-
tations irréductibles sans multiplicité. Nous obtenons les degrés de Bernstein et les
cycles associés des représentations irréductibles unitaires de plus haut poids de type
scalaire pour des algébres de Lie hermitiennes.

1. Introduction

Let K be a connected reductive complex algebraic group, and V' an irreducible
representation of K. We assume that the action of K is multiplicity-free; that is,
each irreducible representation of K occurs at most once in the polynomial ring C[V'].
We also assume that the image of K in GL(V') contains all nonzero scalar matrices
C*idy. Such representations have been classified by Kac [10]. There are eight families
and five exceptional representations.

In this paper, we determine the degree of each closed K-stable subset Y of V.
We establish a method by which we can express some asymptotic behavior of the
dimension of the filtered module in terms of a definite integral. This is a generalization
of the technique presented in Ref. [19]. As a corollary, a formula for the degree of
each K-stable closed subset can be obtained (Theorem 2.5). The multiplicity-free
action contains an important family coming from the hermitian symmetric spaces.
Such representations consist of four families and two exceptionals of the classification
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Key words and phrases. — multiplicity-free action, Hermitian symmetric space, highest weight repre-
sentation, nilpotent orbit, associated variety, Bernstein degree .
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140 S. KATO & H. OCHIAI

mentioned above. Using the detailed structure of the restricted root system, we
can obtain a formula in these hermitian symmetric cases that is more concise than
that obtained in the general case (Theorem 3.2). This formula unifies three kinds
(i.e., homomorphism, symmetric endomorphism and skew-symmetric endomorphism)
of Giambelli formulas, as well as the corresponding formula for the exceptional Lie
algebras. The formula for the degree of the closure of the orbit immediately gives
the Bernstein degree of the irreducible unitary highest weight module of the scalar
type(Corollary 4.1). For three families of classical Lie algebras sp(n,R), u(p,q) and
0*(2n), this result is obtained in Section 7 of Ref. [19] through case analysis. In the
final section, we give two examples demonstrating the calculation of the Bernstein
degree of the unitary highest weight modules of the non-scalar type. These are also
derived from Theorem 2.3. In the Appendix, we list the explicit values for the degree
of the closure of the orbits for all thirteen families of multiplicity-free actions, with
some comment on the structure of the orbits.
A part of this paper is taken from the master thesis of the first author [12].

2. Degree of the multiplicity-free action

2.1. Degree. — Let V be a finite-dimensional complex vector space, C[V'] the ring
of polynomials on V', and M a finitely-generated C[V']-module. By a standard pro-
cedure, we can associate two additive, numerical invariants, the dimension and the
multiplicity of M. This procedure is briefly summarized in Section 1 of Ref. [19] in
this volume.

Let Y be a closed conic subvariety of V', and let I(Y) be the defining ideal of Y;

IY)={peC[V]|ply)=0foralyeY}.

We define C[Y] = C[V]/I(Y). Defined in this manner, C[Y] is the coordinate ring
of Y. Since I(Y) is a (reduced) graded ideal of C[V], C[Y] is naturally a graded
C[V]-module. The multiplicity of C[Y] is called the degree of Y, and is denoted by
deg(Y). It is known that the degree of a complete intersection is elementary.

Lemma 2.1

(1) IfY is a complete intersection, then the degree of Y is the product of the degrees
of the defining equations of the irreducible components of Y.
(i) If Y is a hypersurface, then the degree of Y is the degree (as a homogeneous
polynomial) of the defining equation of Y.
(ili) IfY is a linear subspace of V, then the degree of Y is 1.

The assertion (iii) is a special case of (ii), and (ii) is a special case of (i). The
assertion (i) is found in standard textbooks, such as Ref. [4]. On the other hand,
if the variety Y is not a complete intersection, such as a determinantal variety, its
degree is non-trivial, as can be seen from the Giambelli formula.
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2.2. Asymptotic behavior of some graded module. — Let K be a connected
reductive complex algebraic group, and let V' be a finite dimensional representation
of K. Let C[V]* be the set of homogeneous polynomials in C[V] of degree i. We
assume that the image of K in GL(V) contains all nonzero scalar matrices. Then,
there exists an element Z € Lie(K) such that Z -p = ip for all p € C[V]’. This
element is called the degree operator (or Euler operator). We denote the natural
action of K on the graded algebra C[V] by Ad. We call M a (C[V], K)-module if
M is a C[V]-module and is a completely reducible K-module with the compatibility
condition k- (p- (k™ -m)) = (Ad (k)(p)) -m for all k € K, p € C[V] and m € M.
We denote the decomposition into K-isotypic components by M = @&,M,,. Assume
that there exists some isotypic component M) generating M as a C[V']-module. Such
a component is unique if it exists. We define a graded component by M* = C[V ]! M,
for i € Zso. Then M = &;M" is a graded C[V']-module, and each graded component
is given by
Mi={meM|Z m=\Z)+i)m}.
We assume, moreover, that M has a multiplicity-free decomposition

M= & F(A\+y),
PEA(M)

where F'(u) is a (finite-dimensional) irreducible K-module whose highest weight is pu,

and that there exists linearly independent weights ¢4, ..., ¢, such that

A(M) = {n1p1 + -+ Nmpm | n; € Z;O}‘
In this case, the graded component M tis given by
M =&dF\+n1p1 + -+ Nmem),

where the summation is over (n1,...,nm) € ZZ, with n1¢1(2) +- -+ nmpm(2) = i.
We will determine the asymptotic of the dimension of the graded component for
large .

Using the Weyl dimension formula, it can be shown that dim F(A + nyp; + -+ +
Nm®m) is a polynomial in (ni,...,nm,). To be more explicit, let A be the set of
positive roots of the Lie algebra of K, and let px be the half sum of positive roots.
We define

A =Af\{a€e AL | {a,p;)) =0foralli=1,...,m}

and
fonam) = ] 22tex),
acAT\AY, (o, pKc)
H (o, A+ pr) + z1{a, 1) + - + T, Pm)
acA], (%PK)
M
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Then dim F(A+n191 + -+ - + nmpm) = f(n1,...,7m). The degree of the polynomial
f is equal to the number IA"A',Il of roots in A}t,, and the leading term, which we denote
by f, is
= (o, A + pK) z{a, 1) + - + T (@, Pm)
flzy,...;2;m) = AR LT AN ! ’ .
' I oo <1 (o, i)

acAf\AY,
We define a filtered module M; = &!_, M. This {M;}; gives the filtration of M;
and the dimension of the filtered component is

dim M, = Zf(nl,...,nm

where the summation is over n = (ni,...,nm) € ZY,, with ni1(Z2) + --- +
Nmem(Z) < I. We express this condition as |n| < { for short.

+
aEAy,

Lemma 2.2. — Letd=m+|A},|. Then

lim {~¢ Z f(n) = /f(:v Ydzy - - - dXm,

T
where the domain of integration is the simplex
{(@1,-,Zm) ER™ |21 20,...,25 20, 2101(Z) + - + Tmpm(Z) < 1}
Summarizing the above, we have the following theorem:
Theorem 2.3. — Ifl is large, then

dim M; = c-1%/d! + (lower order terms),
where d = m + |A},| and

)\
c=d! H a + PK / H .’1,‘1 ol (Pl <a +)$m(01,(,0m) d171 .o dxmv
acAt\A a€EA, PK

with the domain of integration

{(Z1,...,2m) ER™ |21 20,...,2m 20, 21901(Z) + - + Tmem(Z) < 1}

2.3. Multiplicity-free action. — Let V and K be as in the Introduction. That
is, in addition to the assumption made in the previous subsection, we assume that the
representation V' is irreducible and that C[V] is multiplicity-free. The set of highest
weights of K-types arising in C[V'] is a free semigroup. We denote the set of generators
by PAt(V).

Let Y be a closed irreducible K-stable subset of V. Since V has a finite number
of K-orbits, Y is the closure of a K-orbit on V. We set M = C[Y]. Asin §2.1, M
can naturally be considered the quotient ring of C[V'], and thus it inherits the natural
grading from C[V]. Then the (C[V'], K)-module M satisfies the first assumption in
§2.2, with the weight X taken to be zero.
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Lemma 2.4. — Suppose Y is an irreducible closed K -stable subset of V. Then there
exists a free semigroup A(Y') such that C[Y]| = @yeny) F(p) as a K-module. The
generators of the free semigroup A(Y) form a subset of PA*(V). This subset is
denoted by PAT(Y) Cc PA*T(V).

A proof of this lemma, is given in Ref. [6]. Also appearing there is the explicit form
of the subset generating the subsemigroup, which we use in an application below.

We denote the number of elements of PA*(Y) by m, and we set PAT(Y) =
{p1,.--,pm}. For a weight «, we define the vector (ai,...,am) € R™ by
({a, 1), -, {a,om)). We define

AV ={ae At |(a1,...,am) # 0}

and k; = p;(Z) € Z>o. Then, the K-type F(p;) appears in the homogeneous compo-
nent C[Y']*:. With this notation, we can give the degree of Y.

Theorem 2.5. — The dimension of Y is m + |AY|, and the degree of Y is

AT))!
Mx/ H (ala,'l+"‘+C¥m$m)dx1"'dw’mv
HaeA,t (o, px) N

where the domain of the integration is the simplex
{(xl,...,a:m) e R™ |l‘1 >20,...,2,, 20, Bz + -+ bz, < 1}

Proof. — Applying Theorem 2.3 with

F a1y + -+ ap
e | R S B
aeA,*; ’

we obtain the result. O

3. Hermitian symmetric case

In this section, we consider the subclass of the multiplicity-free actions consisting
of the holomorphic tangent spaces of the hermitian symmetric spaces. In this case,
we can obtain a more sophisticated formula for the degree by using the structure of
the restricted root system.

3.1. Hermitian Lie algebra. — We first recall some standard notation of Lie
algebras, root systems and weights.

Let go be a non-compact real simple Lie algebra. Let go = € @ po be a Cartan
decomposition of go. We assume that the center ¢y of € is non-zero, that is, that go
is of the hermitian type. Then ¢ is one dimensional. Let ty be a Cartan subalgebra
of &. Then ty is a compact Cartan subalgebra of go. Let g, €, p and t denote the
respective complexifications of go, €, po and to. We denote the Killing form by B(:, -).
The restriction of the Killing form on t is a non-degenerate symmetric bilinear form.
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Using this, we identify t with its dual t*, and introduce the non-degenerate symmetric
bilinear form {(-,-) on t*. Let A be the root system of (g,t), and g, the root space
corresponding to the root @ € A. A root a is said to be compact (resp., non-compact)
if go C € (resp., go C p). Let A, (resp., A,) denote the set of all compact (resp.,
non-compact) roots in A. We have the disjoint decomposition A = A, U A,,.

There exists an element Yy € /—1co such that y(Yy) = %1 for any v € A,.
This Y is called the characteristic element. We set AX = {a € A | a(Yy) = £1}.
Then A, = {a € A | a(Yp) = 0}, and we have the disjoint decomposition A =
AYUA.UA;. Then ¢ = t® (Paca. o) gives the root space decomposition, and if
we set pt = @ aeAz o, then we have the triangular decomposition g = pTotop.
We choose an ordering of A such that the set At of all positive roots satisfies the
condition A} C A*. Let AT = AT NA,.

As in Ref. [1], we construct a maximally strongly orthogonal subset {y1,...,7,} C
A7 such that v; is the smallest element of the subset of elements in A}’ orthogonal
to ¥1,...,7%—1. Then v; is the unique simple non-compact root. For a A € t*, we
define H) € t by B(Hx,h) = A(h) for all h € t, or equivalently, A'(H)) = (A, \') for
all N € t*. Let t~ =Y. CH,,. Then {H,,,...,H, } forms a basis of t~. Then,
letting t* = {H € t|v(H)=0foralli=1,...,7}, we have t =t & t~.

We summarize several facts on strongly orthogonal roots (see, e.g., [23], [24]).
Note that the strongly orthogonal roots {;} here are taken from the minimal 7,
while those of [24] in this volume are taken from the maximal .

Lemma 3.1

(1) For1<i<j<r, vy andy; are strongly orthogonal: v; £v; ¢ A.

(2) The number r of mazimally strongly orthogonal roots is equal to the split rank
of go.

(3) If a € A}, then the restriction o~ takes one of the following possible forms:
- —%/2 for somei=1,...,r.
- —(%—M)/2 forsomel<k<ILr.
- 0.

(4) If a € A}, then the restriction |- takes one of the following possible forms:
- /2, 7 for somei=1,...,r.
- (A +%)/2 for some 1 < k<l<r.

(5) The set of non-zero restrictions of A(g,t) to t~ is one of the following two:
- A(g, ) = {7, £( £ M)/2|1<i <1<k <I<r} - type Gy,
- Ag,t7) = {+%/2, 2%, k£ 7) /2|1 <i <1<k <I<r} - type BC,.
The root system is of type C,. if and only if the hermitian Lie algebra go is of
the tube type.

(6) By the Cayley transformation, the toral subalgebra t~ is isomorphic to the com-
plezification of a split Cartan subalgebra of go. This implies that the root system
A(g,t™) coincides with the restricted root system of go.
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(7) The dimension of root spaces has the following properties:
- dim g(t‘,:l:%) =1.
~ The dimension dimg(t~, (7 £ %1)/2) does not depend on k or l.
dimension is called the multiplicity of middle roots.
- The dimension dimg(t~,£%;/2) does not depend on ¢. This dimension is
called the multiplicity of short roots. The multiplicity of short roots is zero if
and only if the Lie algebra go is of the tube type.

(8) The number of compact roots has the following properties:

This

- The cardinality of the set {a € A} | al- = —(Fx — 71)/2} is equal to the
multiplicity of middle roots.
- The cardinality #{a € A}t | al¢- = —7:/2} = #{a € A} | af- = —7/2}

1s equal to half of the multiplicity of short roots.

(9) Let Ag = {a € A | a|- = 0}. Then A¢ is a subset of A, and is the root
system corresponding to the reductive subalgebra Zy(t™) = {X € ¢ | [X,H] =
0, for all H € t™}.

(10) The strongly orthogonal roots v1,...,7vr are long roots and have the same length.

We recall the classification of the hermitian Lie algebra go and some relevant in-
formation which we will use later.

CI AIIT DIII BI, DI EIII EVII

g | sp(n,R) | su(p,q) |s0%(2n) | s0(2,n) | ee—14) | e7(-25)
r n min(p,q) | [n/2] 2 2 3
c 1/2 1 2 |(m-2/2| 3 4
middle 1 2 4 n—2 6 8
short 0 2lp—q| | Oor4 0 8 0

Here, we follow the notation of Ref. [1]. The split rank r of go is denoted by ¢ in
Table 1 of Ref. [2]. The length of the interval c of the Wallach set is given in Table
2.9 of Ref. [1]. It is denoted by € = €4, in Table 1 of Ref. [2]. Then c is equal to half
of the multiplicity of the middle roots. The entries in the row labeled ‘middle’ (resp.
‘short’) are the root multiplicities of the restricted root system of go. These values
are quoted from [5](Table VI, Ch.X). The multiplicity of short roots for type DIII is
zero (resp., four) if n is even (resp., odd).

3.2. Degree of the orbit. — Let G¢ be a connected linear Lie group with Lie
algebra g, and let Gg, K and Kgr be the connected analytic subgroups of G¢ with
Lie algebras go, ¢ and &, respectively. The restriction of the adjoint action of G¢
on g to the subgroup K preserves the subspaces £ and p*. We now recall the orbit
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decomposition of the action of K on p*. (See Section 3.1 of Ref. [24].) In this
decomposition, the closure relation of the orbits is a linear ordering, and the number
of K-orbits on p* is 7 + 1. Then we can enumerate orbits O,, with m = 0,1,...,r so
that the closure is given by O, = O, U---UO; U Q. Any K-stable closed subset of
p* is irreducible and of the form O,,.

We define ¢; = —(y1+- - -+7;). Then, with the notation of Lemma 2.4, PA*+ (V) =
{¢1,...,0r} and PA*(0,,) = {¢1,...,¢m}-

We define the following definite integral:

I%(s,m) = / (x122 - Tp)° H |z; — z;|% dzy - - - dT .
m 1<i<j<m
Here the parameters o and s are positive real numbers, and the domain of the inte-
gration D,, is the simplex
Dy ={(z1,...,2m) ER™ |2; 20, 21+ - + 2, < 1}.
This integral is evaluated in Ref. [11] (see also Example VI.10.7(c) of Ref. [16] and
Theorem 2.2 of Ref. [18]). The result is
Ia(s m) — m! HZL F(ZO(/Q) H;ll F((S + 1) + (Z — 1)@/2)
’ T(a/2)m T +m(s+1)+(m—1)ma/2)
Let s, (resp., ¢) be equal to half of the root multiplicity of the short (resp., middle)

roots of the restricted root system. In particular, s, = 0 for the tube type. For
m=0,...,r, we define s, = s, + 2¢(r —m), dpy, = m(sm + 1) + (m — )me, and

Al ={a€eAf [{a,v)=0foralli=1,...,m}

Theorem 3.2
(1) The dimension of the orbit O, is d,,. This is the homogeneous degree of the
integrand of the integral 1?¢(sm,,m).
(2) The degree of O, is given by

dm—m
deg(Op,) = dp! % (1, 711)/2) X -l—Izc(smvm)'
[lacanaz, o pe) — m!

The explicit values of degrees are given in the Appendix. We remark that the
degrees of almost all orbits in the present case can be obtained without using the above
theorem, as they can be obtained from the previously obtained results appearing in
many detailed works. This theorem, however, gives a unified formula for the degree
in terms of K-types corresponding to the orbits.

3.3. Proof of Theorem 3.2. — We first apply Theorem 2.5. Let V = p* and
Y = Op, with 0 < m < r. Then AL = A} and A} = A} \ Af,,. Using the
Killing form, we can identify the dual of p* with p~. Then C[V] is isomorphic to the
symmetric algebra S(p~). The degree operator Z is —Yp, where Y} is the characteristic
element. Since v; € A}, we have ¢}(Z) =1 for all i.
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We employ a new set of coordinates y;, defined in terms of the original coordinates
by yi = z; + - -+ + T, in the integral in Theorem 2.5. We define ] = ¢; and
ot = @; — i1 for i > 2. Since ¢; = —(71 + - +7), ¥; = —vi. Then the semigroup
A(M) can be expressed as

AM) = {n1@} + -+ np [0 € Zno, 0y 21y > -+ 2}

Next, we define (af,...,al,) = ({(a,¢1),...,{a,¢},)) for a € A"A',I. Then oz +- -+
AmTm = @iy + -+ + al,ym. Clearly, the integral

H (1z1 + - + Ty )dey - - - dTp,

acA},
over the domain
{(z1,...,2m) ER™ |z; 20for 1 < i <m, z191(2)+ - + Tmem(Z) < 1}
is equal to
&) [ L @+ + ) -y
a€EAY,

over the domain

{1y Ym) ER™ |pr 2922 - 2 ym 20, 11901(2) + - + Ymn (Z) < 1}

We next determine A and (o, ...,a’,) for each a € AJ.

Lemma 3.3. — Let e; be the i-th unit vector in R™.
(1) For any a € AY, (of,...,al,) = ({a,—m1), ..., {a, —Ym)) takes one of the fol-
lowing forms:

— ((m1,7M)/2)(ex — e1) with some 1 < k<l < m.

- ({m1,7)/2)e; with some 1 <i < m.

- 0.
(2) For each 1 < k < | < m, the number of a € A} satisfying the condition
(aq,...,al,) = ({(m1,m1)/2)(er — e1) is equal to the root multiplicity 2c of the middle
r00ts.
(3) For each i, the number of a € A} satisfying (o,...,al,) = ((y1,m)/2)e; is
equal to S.,.

Proof. — For m = r, the assertion follows from the identity t, = t~. We next consider
the case for general m.
We define a = ({y1,71)/2) for convenience. For 1 < k <1 < m, we have

{a €A [(ah....a) = afex —e)} = (o€ AF | (@).....0]) = alex = e}
This demonstrate the assertion for the middle roots. For 1 < i < m, the set
{a € A;’- | (ala"-vam) = (16,‘}
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is the disjoint union of

{a € AT | (af,...,0.) = ae;}
and
-
j=1l7ll+1{oz €AY | (af,...,al) = a(e; — ¢j)}.
This shows that s, = s, + 2¢(r — m). O

We now complete the proof of Theorem 3.2. By Lemma 3.3, the number of elements
in A is 2exm(m—1)/2+ms,,. This implies the formula d,,, = m(sp,+1)+(m—1)me.
Also by this lemma, we have the following formula for f’:

m
f/(yl’ L 7ym) =C H(ayi)dim €(tm,€:) H (ayk _ ayl)dim E(tm,.en—er)

i=1 1<k<I<m
=Ca® "y --ym)™  [I (e —w)*,
1<k<I<m
where we denote
C= 1

HaeAj‘\Aj’m (@, pc)
The domain of integral in (1) is

@ Dp={@--ym) ER" 12922 2ym 20, y1 + - +ym < 1}.
Since the integrand of I*(s,m) is symmetric with respect to permutations of the
. F . 1 .
variables (yi,...,Ym), the integral f'(y)dy is equal to - / f'(y)dy. Hence
D!, *Jp,,
the degree of Oy, is equal to d,,!Ca’™~™I%¢(s,,m)/m!. This completes the proof of
Theorem 3.2. O

4. Unitary highest weight modules of the scalar type

4.1. Highest weight modules. — We keep the notation of Section 3. We define
pt = Bpent o and p~ =D, cp-0a. Theng=p~ Gt pT is a graded Lie algebra
with a characteristic element Y;. We next define q = £ ® p*. Then q is a maximal
parabolic subalgebra of g with the commutative nilpotent radical p*. Every maximal
parabolic subalgebra with a commutative nilpotent radical arises in this way.

A weight A € t* is said to be a A}-dominant integral weight if 2(\, @) /(a, @) € Zxq
for all @ € AF. We denote the set of all A}-dominant integral weights of t* by P
Also, we denote the fundamental weight corresponding to the non-compact simple
root 1 by . In other words, the element { € t* is characterized by the conditions

(¢,a) =0for all a € A, and (¢,v1) = (m1,m)/2.

Let p. be equal to half of the sum of roots in A} and p that of A™*.
We denote the irreducible finite dimensional representation of ¢ with the highest
weight A € P by F()\). Through the Levi decomposition q = €& p*, a E-module is
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considered as a g-module on which p* acts trivially. We define the generalized Verma
module (or induced module) by

N(A) =U(g) ®u(q) F(N),

where U(g) is the universal enveloping algebra of g. By definition, N(A) is a highest
weight g-module. It is well known that N (\) has a unique simple quotient L(A). Note
that, as in the definition in Ref. [1], we employ no rho-shift in our definition of an
irreducible highest weight module L()). The infinitesimal character of N(\) and L(\)
isA+pet.

The Poincaré-Birkhoff-Witt theorem implies the isomorphism N(\) & U(p™*) ®c
F()\) as a (U(p™), K)-module. Note that p* is commutitive and that the enveloping
algebra U(p*) is canonically isomorphic to the symmetric algebra S(p™). It is signif-
icant that the module N()\) together with L(X) is not only filtered by U(g) but also
is graded by the action of the characteristic element.

4.2. Unitary highest weight modules. — An irreducible highest weight g-
module L(\) is called unitarizable if it has a go-invariant positive definite sesqui-linear
form. The set of irreducible unitary highest weight modules consists of two classes;
one is the set of induced modules (irreducible generalized Verma modules), and the
other is the set of irreducible unitary highest weight modules which is not induced. In
particular, the latter class with one-dimensional lowest K-types is called the Wallach
set. It is easy to see (e.g., Section 2.2 of Ref. [19]) that the associated cycle of the
generalized Verma module N () is (dim F'(A)) - [p*]. In what follows, we consider the
representation which is not induced.

Let us recall the number ¢ introduced in Section 3.1. For unitary highest weight
modules of the scalar type L(z(), the Wallach set corresponds to the set of parameters
z=0,—c,...,—(r —1)c. It is shown in Ref. [2] that the annihilator is

Anngp-) L(-mc¢) =1(0)

for m = 0,...,r. Since for m = r the Verma module N(—rc() is irreducible, the
unitarizable L(—rc() does not belong to the Wallach set. However, since the situation
is the same for the case m = r, we do not exclude the case m =r. As a (U(p~), K)-
module, we have the isomorphism

L(=me¢) = U(p~)/1(Om) = C[Om].

Thus, the associated variety of L(—mc() is Oy, and the associated cycle of L(—mc()
is [Op]. The Gelfand-Kirillov dimension of L(—mc() is the dimension of the variety
O, and the Bernstein degree of L(—mc() is the degree of O,,.

As a direct consequence of Theorem 3.2, we can determine the Gelfand-Kirillov
dimension and the Bernstein degree of the unitary highest weight module L(—mc()
of the scalar K-type.
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Corollary 4.1. — Let sp,,d,, and Aj:m be the same as in Theorem 3.2. We consider
the representation L(—mc() with m =0,1,...,r.

(1) The Gelfand-Kirillov dimension of L(—mc() is dyp, .
(2) The Bernstein degree of L(—mc() is

dm—m
dm' ((71771)/2) x i'I2C(3m,m)'

HaEAj’\A‘c’:m <a,pc> m

We note that K-type decompositions like that in Lemma 2.4 are given in Ref. [21]
for the generalized Verma module and in Theorem 5.10 of Ref. [28] for the module
L(—mc() in the Wallach set.

5. Further example of the degree of unitary highest weight modules

In the previous section we saw the method introduced in Section 2 is effective for
modules of the scalar type. We now consider its application to modules of non-scalar
type. In this section, we give calculations of the degrees of some unitary highest
weight modules of non-scalar type. These examples are based on the examples in
Ref. [1], and we follow the notation used there for the root system.

Let {a1,...,04} C AT be the set of simple roots and {wy,...,w;} the set of the
corresponding fundamental weights.

5.1. EIII, case II, “the last unitarizable place”. — Let go be of type EIIIL
The corresponding multiplicity-free action is of the type (xi) in the Appendix. The
compact root system A, is of type Ds. Let us consider the At-dominant integral
weight of the form

A =awe + (—a — 4w,

with positive integer a € Z~(. Here, the simple root a; is taken to be non-compact,
and the fundamental weight w; is perpendicular to A.. The weight of this form is
referred to in Ref. [1] as “the last unitarizable place of Case II”. The set Ay = {a €
Ac | (A, o) = 0} is the root system of type D4 whose simple system is {as, as, a4, a5}

We consider the unitary highest weight representation L(A). This is the only
unitary highest weight module L(A) of non-scalar type which is neither induced nor
at ‘the first reduction point’.

Proposition 5.1. — For L(aws + (—a — 4)w1), the Gelfand-Kirillov dimension is 16
and the Bernstein degree is 1.

Proof. — From the K-type decomposition
L)) = @ F(A—nmim —n2y2)

n12n220,n;€Z
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given in Proposition 12.5 of Ref. [1], we have m = 2. Using the realization of the root
system in the standard Euclidean space [1], we have A} = {%e;+¢; | 1 <i < j < 5}
We calculate

At ={ei+e|i=23,4}U{ej —er |2<k <j<4},

which is the root system of type As with the simple system {as, a4, as}. This implies
that (a,A\) = 0 for all @ € Af,,. Then

{a, A+ pc)
II ==t

aeAim

Hence, by Theorem 3.2, the asymptotic of the dimension of the filtered pieces of L(\)
is identical to that of the scalar case with m = 2. The proposition thus follows from
(xi) in the Appendix or (iii) of Lemma 2.1. O

5.2. EVII, case II, the last unitarizable place. — Let go be a Lie algebra
of type EVIL. The corresponding multiplicity-free action is given in (xiii) in the
Appendix. The root system A, is of type Eg. Let us consider the weight

A = kwe + (—2k — 8)wy,

with positive integer k. The fundamental weight w7 corresponds to the non-compact
simple root a7. The weight of this form is called “the last unitarizable place of Case IT”.
The subset Ay = {a € A, | (A\,a) = 0} is the root system of type Ds whose simple
system is {1, az, as, o4, a5 }.

We consider the representation L(A). This is the only unitary highest weight
module of non-scalar type which is neither induced nor at the first reduction point.

Proposition 5.2. — For L(kwg + (—2k — 8)w7), the Gelfand-Kirillov dimension is 26
and the Bernstein degree is
32k + 7)o, (k +1)
7! )
Proof. — The K-type decomposition is given in Proposition 13.10 of Ref. [1]. We
have

L= & F(A—nim —naye —nsd),
n;€Z
n12n2 20
Ognagk
where § = ag+ay. We apply Theorem 2.3 with m = 2 and with X replaced by A —ng3é
for each ng = 0,...,k. Form =2, A}, = {fe;+e; | 1 <i < j < 4}, which is
the root system of type D4 with the simple roots {as, a4, @3, @2}. This implies that

(a,A) =0 for all @ € Azm. Then, for each ng, the contribution to the degree is
(o, A —n3d + pe) a,—n3zd + pc)

@) deg(@s) x [ S aegoy) x [T

acAl, acAl,

)
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Here, the root systems A} and A}, have the following significant relation.
Lemma 5.3. — For any o € Aj’z, we have

<a75) = <Ol, wl,D«;) and (aa pc) = (a, pc,D4)~

Here, pc,p, = e2 + 2e3 + 3e4 is equal to half of the sum of the roots in Aj‘z. The
fundamental weight w1 p, = e4 of the natural representation of s0(8) corresponds to
the simple root a.

This lemma implies that the quantity (3) is equal to the dimension of the irreducible
finite-dimensional representation F'(s0(8),ngw1 p,) of the Lie algebra so(8) with the
highest weight nsw; p,. Its value is

(n3 + 1)(n3 + 2)(n3 + 3)*(ns + 4)(n3 + 5)/(3- 5!) = <n3; 6) + ("3; 5>'

Then, the degree of the representation L()) is d = deg(O,) multiplied by the quantity

Z I (a, n35+Pc):(k+7)+<k+6> @k +7) T (k+z)

(a, pe) 7 7 7!

ng=0 €A+

as is required in the proposition. a
Corollary 5.4. — The associated cycle of L(kwe + (—2k — 8)wr) is

6 .
(2k+17) I;izl(k + 1) < [03].

Remark 5.5. — Vogan [22] has introduced the isotropy representation of the isotropy
subgroup of the generic point of the associated variety on the space of the multiplicity
of a given (g, K)-module. In our case, the Lie algebra of the Levi part of the isotropy
subgroup of a point of the nilpotent orbit O in K is isomorphic to so(9). Let w1,B,
be the fundamental weight corresponding to the natural (vector) representation of
50(9), and F(s0(9), kw1 B,) the irreducible finite-dimensional representation of so0(9)
with highest weight kw; p,. It is easy to see, by the Weyl dimension formula, that

(2k+7)H 1(k+1)
7!
Since the restriction of the irreducible representation F'(so(9), kw1,B,) to the sub-
algebra s0(8) is decomposed as @F__, F(s0(8),nsw1,p,), the proof above may sug-
gest interpreting the number as the dimension of the representation as above.
Hence, it is suggested that the isotropy representation attached to the representa-
tion L(kws + (—2k — 8)wr) is precisely F'(s0(9), kw1,B,).

= dim F'(s0(9), kw1,B,)-
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6. Appendix : List of degrees of orbits
We define the orbit Oy = {0}. The orbit Omax is open dense.

6.1. Hermitian symmetric case. — The following case (i), (ii), (iii), (iv), (xi),
or (xiii) corresponds to the case with Cartan label AIII, CI, DIII, (BI and DI), EIII,
or EVII, respectively. (c.f. Table in §3.1.) We use Theorem 3.2. In the following, we
normalize the inner product (-,-) so that the restriction on A, is induced from the
Killing form on €. For example, (v;,v;) = 4 for the case (i), while {v;,v;) = 2 for
other five cases.

(i) GL, x GL, with p > g¢: Here the orbits are parametrized by {0,1,...,q}.
We apply the following identifications to Theorem 2.5: A is of type Ap_1 X
Ag—1, Ac(ty,) is of type Ap_1_m X Ag_1_m, the denominator of the formula is

[acat\at,, (@ o) = TiZ; ((p—9)g — i)!), and s = p+¢—2m. In this case,

dim(0,,) = m(p + q) — m?
deg(Om) = ol---(m-N!'x(p+q-2m)!---(p+qg—m-2)(p+q—m— 1)!.
(p-m)lp-m+ 1! (p-1Ix(g-m)(g—m+1)!--(g—1)!
This coincides with the Giambelli formula.
(i) S2GL,: Here the orbits are parametrized by {0,1,...,n}. In this case, A, is of
type An—1, Ac(tm) is of type An—1-m, [Taear\at,, (@ pc) = [TiZ;(n —19)!, and
$m = n — m. We then obtain

dim(0,,) = mn — (m — 1)m/2

ot m=1)! (2n—2m)!!(2n ~2m+ ! (2n —m + 1!

ont!t - (m = 1! (n-m)ln—-—m+1)! - (n-1) ’
where {!! =1(l —2)---4-2 for an even integer [, and I!! = (I —2)---3-1 for odd
[. This coincides with the Giambelli formula.

(iii) A2GL,: In this case, we parameterize the orbits by {0,1,2,...,[n/2]}, not
by {0,2,4, ...,2[n/2]}, since our numbering should be compatible with the
enumeration of the Wallach set for the unitary highest weight module of the
scalar K-type. Here, A. is of type An—1, Ac(tm) is of type Ap_1-2m X AT,

2m

HaeAi\Aim (a, pe) =[I;27(n —1)!, and s, = 2n — 4m. We have

deg(Om)

dim(0,,) = 2mn — (2m + 1)m
131 (2m — 1) x (2n — 4m)!(2n — 4m 4+ 2)!-- - (2n — 2m — 2)!
deg(Om) = (n—2m)l-—(n—m+1)(n—m)--- (n—1)!

This coincides with the Giambelli formula.

(iv) Op xGLy: In this case, the orbits are parametrized by {0, 1,2}. Then, A, is the
root system of so(n), As(tz) = Ac(t;) is the root system of so(n — 2), and for
m = 1 the denominator of the formula s [T,ca+\az,, (@ pc) = (n=3)!(3n—1) =
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(xi)

(xiii)
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(n — 2)!/2. Here we have

dim(
deg(

On)=0,n—1,n

On) =1,2,1 for m = 0,1,2, respectively.

Since the closure of the orbit O; is a quadratic hypersurface, the formula above
follows from Lemma, 2.1.

Spinyo x GL;: Here the orbits are parametrized by {0, 1,2}, and in this case
A; = {oi | 2 < i < 6} is of type Ds, Ac(t1) = {a; | i = 2,4,5,6} is of
type A4, and Ac(tz) = {a; | ¢ = 2,4,5} is of type A3. The denominator
[locar\at,, (@ pc) form = 1is 715!/2, and that for m = 2 is 7!5!4!/2. We have

dim(0,,) = 0,11, 16,
Op) =

deg( 1,12,1 for m = 0,1, 2, respectively.

E6 x GLi: Here the orbits are parametrized by {0,1,2 3} and in this case
A; = {a; | 1 <4 < 6} is of type EG, Ac(ti) = {ai | 1 <@ < 5} is of type

Ds, and A (tg) A c(t3) = {a; | 2 <4 < 5} is of type D4 The denominator

HaeA;*‘\A;",m<a’pC> form=11is 11!8!/6, and that for m = 2,3 is 2 - 1118!7!/3.

dim(0,,) = 0,17, 26,27,
deg(0,,) =1,78,3,1 for m = 0,1,2,3, respectively.

Since the hermitian symmetric space of type EVII is of the tube type, it is known
that the orbit O, is a hypersurface, and that the defining equation, which is the
basic relative invariant of the corresponding prehomogeneous vector space, is
cubic. The degree here was known previously, except for the case m = 1.

6.2. Non-hermitian case

(v)

Span X GLy: In this case, the orbit structure is the same as that for GLs, X GL,
which is a special case of case (i).

(ix) Spinyx GL: In this case, the orbit structure is the same as that for O(7) x GL;,

which is a special case of case (iv).

(xii) G9 X GLy: Here, the orbit structure is the same as that for O(7) x GLy, which

is a special case of case (iv).

(vi) Span X GL: In this case, the orbits are parametrized by {(0,0), (1,0), (2,0),

(2,2)}. Comparing with the orbits {Oéi), 09), Ogi)} of case (i) GLap X GLo, we
have

vi vi i) _ n(vi) (vi)
o) = 0§o ()))’ of) = 0(1 0)? of = O(3,0) YU Oz,2)-
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We also know that O(3 ) is a quadratic hypersurface. Then the formula for the
degrees of the closure of orbits can be reduced to that in known cases.

dim(0,,) =0,2n+1,4n — 1,4n
deg(0,,) =1,2n,2,1.

(vii) Sp2n x GL3: In this case, the orbits are parametrized by {(0, 0), (1,0),(2,0),
(2,2),(3,0), (3,2)}. Comparing with the orbits {Of, Og'), oy, Og‘)} of the case
(i) GL2pn x GL3, we have

) _ i) n)) _ »(vi)) (i) _ #~(vi) (vii) (i) _ p(vi) (vii)
O(()l) = 0((\)’::)))7 0y = 0(1,10)7 0, = 0(2,0) U 0(2,2)» 03’ = 0(3,0) U 0(3,12)‘

It is not difficult to see that the variety O(s ) is the complete intersection of
three quadratic hypersurfaces. Thus the degree of the variety for this case,
except for O3 ), was known previously. We have

dim(0,,) = 0,2n+2,4n + 1,4n + 2,6n — 3,6n

deg(On) = 1,n(2n + 1),4n(n — 1),n(2n — 1),8,1

(vili) SpaxGLn: Here, the orbits are parametrized by {(07 0), (1, 0),.(2, 0), (2,2),(3,2),
(4,4)}. Comparing with the orbits {O, 08, 00 00 OV} of the case (i)
GL4 x GL,,, we have

i) A(viil) () _ m(vil) ) _ a(viii) (viii 1) _ n(viil) (i) _ (viii)
0(()) = Ogo,o))’ol = 0(1,0)’02 = 0(2,0) U 0(2,2))70() = 053,2))704) = O§4,4)-

In this case the degree of the variety, except for O3 ), was known previously.
Here we have
dim(0,,) =0,n+3,2n+3,2n +4,3n + 1,4n
deg(On) = 1,n(n+1)(n+2)/6,(n — V)n(n +1)/3, (n — Dn?*(n + 1)/12,
(n —2)(n — 1)n/6,1, respectively.

(x) Sping x GL;: Here, the orbits are parametrized by {0,1,2,2'}. This repre-
sentation is equivalent to the isotropy representation on the tangent space of
the Riemannian symmetric space Fy/Sping of rank one. Thus it has an invari-

ant quadratic form. Comparing the orbits {O§"), OY) O} of the case (iv)
016 X GLl, we find

o = 0f?, 0" = 0 o, 0" = 0.

On the other hand, the representation (x) is the restriction of the representation
(xi). The correspondence between orbits is

o5V = 09,08 = 0 8 = 0 U O,
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Then the formula for the degrees of the closure of orbits can be reduced to that
in cases (iv) and (xi). We obtain

dim(0,,) = 0,11,15,16

deg(0,,) = 1,12,2,1, respectively.

6.3. Examples. — Let us illustrate the calculations necessary to obtain the above
results by considering the spaces (vii) and (viii). In these cases, the group K is a
direct product, say, K = 'K x "K with !K = Sp(n,C) = Spy, and "K = GL(n',C).
We consider the case in which (n,n') = (n,3) or (2,n’). We use the superscript ! or
r to indicate an object corresponding to ‘K or "K. The root system ‘A%, is of type

Cp, and ’Af{ is of type A,/ _1. In the standard realization,
4 ‘AL =f{eitej|1<i<j<n}U{2e|1<i<n},
an
"TAL ={ei—ej|1<i<j<n'}.

We denote the weight e;+- - -+e; = (1,...,1,0,...,0) of K; (resp., K) by l; (resp., r;).
First, we consider the space Spa, X GL3. Here, the set of primitive weights arising
in V is PA+(V) = {¢1,¢2»'¢3,¢’2»W3»¢4’1}, where wl = (ll;rl)7 w2 = (l2;7’2), ¢3 =
(I3;73), ¥y = (0;72), ¥§ = (li;r3) and ¥y = (la;r1 + r3). The generators of the
subsemigroups corresponding to orbits are known:
PAY(0()) = 2; PA+(O(1,0)) = {1} PAY(O(,0)) = {t1,42};
PAY(0(,2) = {¥1,9%2, %5} PAT(Og,0)) = {¥1,%2,%3}.
We consider the degree of the closure of the orbit Y = O(3 ). First, we note that
the lattice A*(O(3,)) is

{n191 + natps + N33 | n; € Zxo}
= {11 + ny(h2 — P1) + n3(Ys —b2) | ny > ny > ny > 0}.
Next, for each a, we set (af,a5,a3) = ({(a,¥1),{a, Y2 — ¢1), (o, Y3 — 1¥2)). Then
Theorem 2.5 implies that the degree of Y is

@) d!

II (@'ox) II (@7pk) /D:n

ae’A; aE"A;

lf(zl,...,scm) "f(xl,...,xm)d:cl-~dxm,

where m = 3, d =m + ['A| + ["AF|, ! f = [lactag (@i + -+ + g, m), and rfis
similar to ! f. The domain of integration is D} of (2), since the degree of 91,92 — ¥
and t3 — s is 1. From the explicit form of 1;, we know that ‘A \'A¥ is the positive
root system of type C,,_3 and ’A¢ ={e1tejeate; |3 < j<n}U{e;tes, 261,262}
We also have "AY, = "A};. Then, with some calculation, we obtain the denominator
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of the formula as
H (a,'pg) = 8(2n — 1)!(2n — 3)!(2n — 5)!, and H (o, "pK) = 2.
a€!'A} ag"AY
The leading polynomials here are
(1, 72,73) = (212223)>" (2} — 23) (2} — 23) (23 — @) (221) (222) (223),
"f@1, 2, x3) = (€1 — 2) (21 — x3) (T2 — T3).

Finally, we recall the evaluation of the integral

(5) d!/D @z (I @im2) s@dn - dan

n 1<i<j<m
=2m(m=1/2(m _ 1)1 1l (r + 2) - (r + 2m — 2)!,

where d = m(r + 1) + 3m(m — 1)/2, and s(z) = [];¢;cj<m (i + ;) is the Schur
function attached to the staircase partition (m — 1,...,1,0). This is a special case
of the formula in Example VI.10.7(c) of Ref. [16]. The right-hand side of (5) equals
2r!(r + 2)! for m = 2, and 167!(r + 2)!(r + 4)! for m = 3. We use the formula (5) for
m = 3 and r = 2n — 5. With this information, we conclude that the degree of m
is 8.

We now consider another orbit, ¥ = O(5,9). The lattice At (O(2,0)) is {nath1 +natps |
ni € Zxo} = {niyh1 + nh(2 — 1) | ni > ny > 0}. Here, we can again use (4), with
m = 2. The denominators and the leading polynomials in this case are

H (o,'pr) = 4(2n — 1)!(2n - 3)!, H (a,"pK) = 2.
a€!Ad acrAY
= (@12)? 4 (21 — @2) (@1 + 22) (221)(222),  "f = z122(21 — 22).
Then, the integral is of the form (5) with m = 2 and r = 2n — 2. Hence, we conclude
that the degree of Oz, is 4n(n — 1).

Finally, we consider the orbit Y = O(3) of the space Sps X GLy. In this case,
the primitive weights are known to be ¥1 = (l1;71), Y2 = (l2;7r2), ¥3 = (l1;73),
Yy = (0;74), ¥y = (0;72), and ¥y = (lp;71 + 73). We also know that PAtT(V) =
{1, 92,93, %0, 95, ¥4}, PAY(O00) = @, PAY(O0) = {1}, PAT(Op0) =
{1,902}, PAT(O(2,2)) = {91, 2,95}, and PAT(O(3,2)) = {1, %2, 3,5, }. Then,
we see that 'AY, =!A} and that "A%; \ "A} is a positive system of type An/_3. We
then find that the denominators and the leading polynomials in the formula giving
the degree are

II @) =4, I (@)= -1 -2),
a€lAY ac™AY :
lf = (21‘1)(2(62)(.’131 - :1,‘2)(.’151 + x3), TfT = (.’1:111)2)“’_2(1‘1 — 7).
Thus we can apply the integral formula (5) with m = 2 and » = n’ — 1. Hence, we
conclude that the degree of O(z) is (n' — 1)n'(n’ +1)/3.
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CONCLUDING REMARKS

Here, we shall pose some problems and consequences of our results in this volume.
We mainly follow the notation in [Intro].

1. Theta correspondence and associated cycles

Let (G, G') be areductive dual pair in the stable range with G’ the smaller member.
We do not assume that G’ is compact. Let G and G’ be the inverse images in the
metaplectic cover. Take an irreducible unitary representation o of G' and denote
its theta lift by 8(c) € Irr(G). Then © = 6(c) is known to be unitary (see [3]) (or
possibly zero).

If G' is compact, the results in this volume tell us that

AC, =dimo-[{0}] and AC,=dimo-[0O;] (7 =20(0)).

From this fact, we expect the following. For non-compact G’, take an irreducible
unitary representation o of G' whose associated variety is irreducible, i.e., AV, = O
for some nilpotent K¢-orbit O). Then it is expected that the associated variety of
7 = 6(0) is also irreducible: AV ; = O, (cf. [7]). Therefore, the associated cycles of
o and 7 can be written as

AC, =my,[0'] and AC, =m.[Ox]

with multiplicities m, and m.

Problem A

(1) When does the equality my = my hold?
(2) Is there a good description for deg O’ and deg O ?
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2. Whittaker vectors and associated cycles

We make here some remarks on the relationship between C~°°-Whittaker vectors
and associated cycles of large representations, which are consequences of the results of
Matumoto [4] and Schmid-Vilonen [6]. To be more precise, let G be a real reductive
linear Lie group, and K be a maximal compact subgroup of G. The corresponding
Lie algebras are denoted by gr and g respectively, and we keep the notation fixed in
[Intro]. Let G = KAN (resp. gr = g + ar + ng) be an Iwasawa decomposition of G
(resp. gr). The Harish-Chandra module X, of an irreducible admissible representa-
tion 7 of G is called large if X has the largest possible Gelfand-Kirillov dimension,
i.e., Dim X, = dim N. We know that X, is large if and only if the action on X, of
the universal enveloping algebra U(n) of n = ng ®g C is torsion free (see [2, Th.3.4]).

Now we assume that X is large. Let X3° be the Fréchet G-module consisting of
all smooth vectors for 7. We write X for the continuous dual space of X2°. For
each principal nilpotent G-orbit OR in gr, we take an admissible unitary character
Yor of the maximal nilpotent Lie subalgebra ng such that Ad(G)yYepr = +/—10R,
where 9or is looked upon as an element of v/—1gr canonically through the Killing
form. Let us consider the space

Wh, (Xx) ={T € X7® | To Z = ~$ox(2)T (Z € ng)}
of all C~>°-Whittaker vectors T for = of type ¥ or. In [4, Th.5.5.1], Matumoto proved
that the asymptotic cycle of X is equal to
D dimWhy | (Xx) - u(O%).
O]R
Here OR runs over the principal nilpotent G-orbits in gg, and u(O®) is a G-invariant
measure on OR with a suitable normalization. This together with a recent result

of Schmid-Vilonen [6, Th.1.4] and also with Theorem 1.4 (2) in [NOT] implies the
following

Theorem B. — The associated cycle and the Bernstein degree of large (g, K)-module
X, are described respectively as

ACr = dimWh§  (X,)-[O],
OIR

_ Wa ; )
Degm = o ZdlmWh - (Xz)-
OIPZ
Here O denotes the principal nilpotent Kc-orbit corresponding to O® through the

Kostant-Sekiguchi correspondence, lg is the number of principal nilpotent G-orbits,
and we write wg for the order of the little Weyl group of G.

This theorem says that the dimension of the space Wh,}’,"ol121 (X7) of C~°°-Whittaker
vectors gives the multiplicity of 7 at 0. We note that if 7 = Ind,G;(a) is a principal

ASTERISQUE 273



3. SUMMATION FORMULA FOR STABLE BRANCHING COEFFICIENTS 161

series induced from an irreducible finite-dimensional representation o of a minimal
parabolic subgroup P of G, one gets

dim Wh3  (X,) = dimo

for every principal nilpotent orbit O®. In this case, two equalities in Theorem B turn
out to be

AC 1pag (o) = Y_ dimo - [O],
[

where O ranges over all principal nilpotent Kc-orbits, and
Deg Ind$(0) = wg - dimo.
See also [NOT, Section 2.6].

For quasi-split case, Theorem B combined with Shalika’s multiplicity one theorem
gives the following remarkable conclusion.

Theorem C. — Suppose that the group G is quasi-split. Let X, be an irreducible large
(g, K)-module. We write l; for the number of principal nilpotent Kc-orbits contained
in the associated variety AV » of 7. Then, the Bernstein degree of X, equals wgly/lg.
In particular, one gets Degm = wg/lg if the variety AV . is irreducible.

We note that, as mentioned in [Intro] and in [Y, Introduction], Matumoto es-
tablished some interesting results on the “holonomicity” of the space of generalized
Whittaker vectors for non-large irreducible representations 7, in connection with the
associated variety of the primitive ideal or the wave front set of .

Last in this section, we should like to say that the present work [Y] reveals a
stronger relationship, similar to the one given in Theorem B, between generalized
Whittaker vectors and associated cycles for unitary highest weight representations,
which are rather small irreducible representations of G.

3. Summation formula for stable branching coefficients

There is a feedback to the summation formula of stable branching coefficients from
our results. We explain it in this section based on an example.
Let (G,G") = (Sp(2n,R),O0(m)). Consider a spherical pair (L,H) = (GL,,0p =
G¢) over C. Then we have
T ==, ., M) €@ | AN =X > 2Ny}, ®@=2M
T (H)={2)\ |\ € ®}, @®(H)=(2Z2)™
For simplicity, we assume that m = 2k + 1 is odd. Then O,, ~ SO,, X Zs is a direct
product, and o € Irr(0,,) is parametrized as
o =0}

(Ee{il}ZZZanduZ(Ml,,,,,uk)EZk7N1 2;#’620)7
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where p denotes the highest weight of 0| so,. and ¢ is a character of Z,. Put 7 = 6(a),
the theta lift of . Then [Intro, Theorem E] tells us that the multiplicity m, in AC .
is given by
Mgy = Z m([A], o),
NeAt/@z)m

since r([A]) = 1 in this case (see also Corollary 8.4 in [NOT]). If n > m, then
A} = A} and A} /(2Z)™ ~ &+ /®(H) holds. So, the above formula is equal to dim o
by Sato’s summation formula.

For n < m, we have the following theorem.

Theorem D. — Assume that n < m. Let AT = {A € 8" | \py1 = -+ = A\, =0} and
o = o}, € Irr(G') as above. Then we have

Z m([\], o) = dim ¢9(Mm—")
et /ez)
where 0™~ is the space of O(m—n)-spherical vectors, and the subgroup O(m—n) C

O(m) is realized as the lower principal diagonal subgroup (cf. [Y, Eq. (5.15)]).

Remark. — If n < m/2, then dim 09(™=") = dim 7, holds, where 7, is the irreducible
finite dimensional representation of GL,, with highest weight u. Thus we have

Z m([A],0) = dim 7,
Neat/(2z)n
which is due to Gelbart ([1]; see also Remark (1) after Theorem 2 in [5]).
Proof. — The left hand side of the formula is equal to the multiplicity m, at O, in

the associated cycle AC by [Intro, Theorem E]. The right hand side is also equal to
my by Theorem 5.14 in [Y]. a
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