Asterisque

AST
Appendix B. Trurston’s hyperbolic Dehn filling theorem

Astérisque, tome 272 (2001), p. 179-196
<http://www.numdam.org/item?id=AST_2001__272_ 179_0>

© Société mathématique de France, 2001, tous droits réservés.

L’acces aux archives de la collection « Astérisque » (http://smf4.emath.fr/
Publications/Asterisque/) implique I’accord avec les conditions générales d’uti-
lisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou
impression systématique est constitutive d’une infraction pénale. Toute copie
ou impression de ce fichier doit contenir la présente mention de copyright.

NuMbDAM
Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=AST_2001__272__179_0
http://smf4.emath.fr/Publications/Asterisque/
http://smf4.emath.fr/Publications/Asterisque/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

APPENDIX B

THURSTON’S HYPERBOLIC DEHN FILLING
THEOREM

We give a proof of Thurston’s hyperbolic Dehn filling theorem for completeness.
In the manifold case, the proof is given in Thurston’s notes [Thul], and it has been
generalized to orbifolds by Dunbar and Meyerhoff [DuM].

We follow Thurston’s proof [Thul], taking care of the smoothness of the variety
of representations. For the smoothness, we use an argument from [Zh1, Zh2]. There
is another approach in [PP] without using these results in the manifold case.

We prove the theorem for manifolds in Section B.1, and for orbifolds in Section B.2.
In Section B.3 we prove it for a special case of manifolds with totally geodesic bound-
ary.

B.1. The manifold case

Let M be a compact 3-manifold with boundary &M = T U---UT? a non-empty
union of tori, whose interior is complete hyperbolic with finite volume. Thurston’s
hyperbolic Dehn filling theorem provides a parametrization of a space of hyperbolic
deformations of this structure on int(M). The parameters for these deformations are
the generalized Dehn filling coefficients, which describe the metric completion of the
ends of int(M).

For each boundary component sz we fix two oriented simple closed curves u; and
A; that generate m;(77). The completion of the structure on the j-th end of int(M)
is described by the generalized Dehn filling coefficients (p;,q;) € R? U {oco} = 52, so
that the structure at the j-th end is complete iff (p;, g;) = co. The interpretation of
the coefficients (pj, g;) € R? is the following:

— If pj,q; € Z are coprime, then the completion at the j-th torus is a non-
singular hyperbolic 3-manifold, which topologically is the Dehn filling with
surgery meridian p;u; + g;\;.

— When p;/q; € QU {00}, let mj,n; € Z be coprime integers such that p;/q; =
mj/n;. The completion is a cone 3-manifold obtained by gluing a torus with
singular core. The surgery meridian is m;u; + n;A; and the cone angle of the
singular component is 27|m;/p;|.
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— When p;/q; € R — Q, then the completion (by equivalence classes of Cauchy
sequences) is not topologically a manifold. These singularities are called of Dehn
type, cf. [Ho2].

Theorem B.1.1 (Thurston’s hyperbolic Dehn filling [Thul]). — There exists a neigh-
borhood of {0, ...,00} in S% x ---x S? such that the complete hyperbolic structure on
int(M) has a space of hyperbolic deformations parametrized by the generalized Dehn
filling coefficients in this neighborhood.

Proof. — The proof has three main steps. The first one is the construction of the
algebraic deformation of the holonomy of the complete structure on int(M). The
second step is to associate generalized Dehn filling coefficients to this deformation and
the third one is the construction of the developing maps with the given holonomies.
These steps are treated in paragraphs B.1.1, B.1.2 and B.1.3 respectively.

B.1.1. Algebraic deformation of the holonomies. — We recall some notation.
Let R(M) = Hom(m (M), SL2(C)) be the variety of representations of w1 (M) into
SLy(C), and X (M) = R(M)//SL2(C) its variety of characters. Both are affine alge-
braic complex varieties (not necessarily irreducible). For a representation p € R(M),
its character x,, is its projection to X (M) and can be viewed as the map x, : 71 (M) —
C defined by x,(v) = trace(p(7)), for every v € I'. Given an element v € (M) we
will also consider the rational function

IL:X(M) — C
Xp — Xp(7) = trace(p(7)).
Recall that p4,...,ux is a family of simple closed curves, one for each boundary
component of M. We will consider the map
I,= T, ., 1I,) : X(M) — C*.

Let po € R(M) be a lift of the holonomy representation of int(M) and let xo €
X (M) denote its character. The main result we need about deformations is the
following:

Theorem B.1.2. — The map I, = (I,,,...,1,) : X(M) — CF is locally bianalytic
at X0-

Proof. — We follow the proofs of [Thul]| and [Zh1, Zh2]. We prove first that I, is
open at xo. Let Xo(M) be any irreducible component of X (M) that contains xo. In
order to prove that I, is open we use the following two facts:
— By an estimate of Thurston [Thul, Thm. 5.6], see also [CS, Thm. 3.2.1],
dim Xo(M) > k.
— The character xo is an isolated point of I, Y(I.(x0)), by Mostow rigidity theo-
rem.
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B.1. THE MANIFOLD CASE 181

By the openness principle [Mum?2], it follows that I, is open at Xo.

Moreover, I, is either locally bianalytic or a branched cover. Let Vo C X (M)
and V; C CF be respective neighborhoods of xo and I,,(xo0) such that the restriction
L.lv, : Vo — Vi is either bianalytic or a branched cover. If I,[|y, was a branched
cover, then the ramification set would be a proper subvariety W C V; such that
I,,(W) would be also a proper subvariety of V1. In addition, if I,|y, was a branched
cover, then the restriction of I,,|v,—w would be a cover of V; —I,(W) of degree d > 1.
Hence it suffices to show that I,|y, has only one preimage in a Zariski dense subset
of V; ¢ Ck. This set is

S = {(612cosl,...,eq2cosl> | my >N0}
ny n

q
for some Ny sufficiently large, where the coeflicients ¢; = +1 are chosen so that
L.(x0) = (€12,...,€42). We have that for x € X(M) in a neighborhood of xo, if
I,(x) € S then x is the character of the holonomy of a hyperbolic orbifold, and
therefore it is unique by Mostow rigidity.

Along this proof we have used twice that deformations of the holonomy imply
deformations of the structure (every time we used Mostow rigidity). The techniques
in Paragraph B.1.3 below apply to construct such deformations of structures. O

Remark B.1.3. — A stronger version of this theorem can be found in Kapovich’s book,
[Kap, Thm. 9.34 and Remark 9.41], where the dimension of certain cohomology
groups with twisted coefficients are computed. These computations are an infinites-
imal rigidity result, similar to rigidity results of Calabi-Weil [Wei], Raghunathan
[Rag] and Garland [Garl], and they imply Theorem B.1.2 above.

B.1.2. Dehn filling coefficients. — In order to define the Dehn filling coeflicients
(pj,45), we must introduce first the holomorphic parameters u; and v;. Following
[Thul], if we view the holonomy of u; and A; as affine transformations of C =
OH® — {0} (0o being a point fixed by u; and A;), u; and v; are branches of the
logarithm of the linear part of the holonomy of p; and A; respectively. For the
definition we use branched coverings.

Definition B.1.4. — Let U C C* be a neighborhood of the origin and W C X(M) a
neighborhood of xo. We define 7 : U — W to be the branched covering such that

I,;m(u) = €;2 cosh(u;/2) for every u = (u1,...,ux) € U,
and ¢; € {£1} is chosen so that I,,;(7(0)) = xo(p;) = trace(po(u;)) = €;2.

Remark B.1.5. — From this definition, u = (u1,...,ux) is just the parameter of a
neighborhood of the origin U C C* and its geometric interpretation comes from the
branched covering 7 : U — V C X(M). We also remark that 7(u) = xo iff u=0.
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182 APPENDIX B. THURSTON’S HYPERBOLIC DEHN FILLING THEOREM

Now we shall associate a representation to each u € U by considering an analytic

section

s:V C X(M) — R(M)
such that s(xo) = po. This section may be constructed easily by using [CS,
Prop. 3.1.2] or [Pol, Prop. 3.2]. We use the notation:

pu = s(m(u)) € R(M) for every u € U.

Lemma B.1.6. — For j = 1,...,k, there is an analytic map A; : U — SL2(C) such
that for every u € U:

ei/? 1

pulis) =5 (V0 b)) )T with =1

Proof. — Let ¢; € {£1} be such that I, (x0) = xo(g;) = €;2. We fix a vector
wo = (wi, w?) € C? that is not an eigenvector for py and we set
wi(w) = (wy(v),w}(w)) = (jpulp;) — e™/%) ws.

Since €je are the eigenvalues for p,(p;), the following is the matrix of a change
of basis that has the required properties for the lemma:

A5(0) = e (M0 ).

\/wl(u)wz—wl(u)wz wi(v) w

:I:’u,j/2

a

Lemma B.1.7. — There exist unique analytic functions v;,7; : U — C such that
v;(0) = 0 and for every u € U:

evj(u)/z Ti(u _
pu) =4, (70 00 )

In addition:

i) 75(0) € C —R;

it) sinh(v;/2) = 7; sinh(u;/2);
i) vj is odd in u; and even in w;, for | # j;
w) v (w) = u;(7;(u) + O(|ul?)).

Proof. — The existence and uniqueness of v; and 7;, as well as point ii), follow
straightforward from the commutativity between A; and p;. We remark that the
uniqueness of v; uses the hypothesis v;(0) = 0, because this fixes the branch of the
logarithm. To prove i) we recall that po(u;) and po();) generate a rank two parabolic
group, because pg is the holonomy of a complete structure. In particular 1 and 7;(0)
generate a lattice in C and therefore 7;(0) € R.

To prove iii) we remark that the points (+u;,tus,...,+ux) project to the same
character in X (M) independently of the signs +, hence:

Uj(:l:ul,ﬂ:’llz, ey :l:uk) = :i:vj(ul,uz, oo ,uk).
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B.1. THE MANIFOLD CASE 183

This equality, combined with points i) and ii) imply that v; is odd in u; and even in
u; for | # j. Finally, iv) follows easily from the previous points. O

Definition B.1.8. — [Thul] For u € U we define the generalized Dehn filling coeffi-
cients of the j-th cusp (pj,q;) € R? U {oo} = S? by the formula:

(pj,q;) = o0 ifu; =0
piu; +qiv; = 2my/—1 if uj #0

The equality v; = u;(j(u) + O(Jul?)), with 7;(0) € C — R, implies:
Proposition B.1.9. — The generalized Dehn filling coefficients are well defined and
U— S?x--x8?
u +— (p1,q1), - - - (Pk> k)

defines a homeomorphism between U and a neighborhood of {0, ..., 00}. O

B.1.3. Deforming developing maps. — Let Dy : int M — H3 be the develop-
ing map for the complete structure on int(M), with holonomy po. The following
proposition completes the proof of Theorem B.1.1.

Proposition B.1.10. — For each u € U there is a developing map D,, : nt M — HB
with holonomy py, such that the completion of int M is given by the generalized Dehn
filling coefficients of u.

Proof. — We write int(M) = NUC, U---UCy, where N = M is a compact core
of int(M), C; 2 T? x [0,+00), C; NN = T? x [0,1] and C; N C; = @ for j # 1. We
construct D, separately for N and for éj, and then glue the pieces. We construct a
family of maps {Dy}uev that will be continuous on u for the compact C*-topology.
This means that if {un}nen is a sequence in U converging to ue € U, then D,
converges to D, uniformly on compact subsets, and the tangent map of D, also
converges to D, uniformly on compact subsets.

Lemma B.1.11. — There exists a family of local diffeomorphism DY : N — H3, which
depends on u € U continuously for the compact C-topology, such that D% is p,-
equivariant and D§ = Dy .

Proof. — This is a particular case of [CEG, Lemma 1.7.2], but we repeat their proof
here because we will use the gluing technique. We fix u € U and we construct D9 a
family continuous on u for the compact C!-topology.

We start with a finite covering {Uy,...,Up} of a neighborhood of N. Let p :

—~—

int(M) — M denote the universal covering projection and let V; be a connected
component of p~1U; = EI_l V1. We define A; : V; — H?3 to be the restriction of D
YETL

and we extend it ps-equivariantly to p~1U; = Eu YW1
RASKSt
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184 APPENDIX B. THURSTON’S HYPERBOLIC DEHN FILLING THEOREM

We would like to define A; : p~1U; — H? in the same way and to construct D? by
gluing Ay, ..., Ay, but we must be careful with the equivariance and the continuity on
u for the compact C!-topology. The next step will be to try to extend A; to a map on
p U1 Np~Us. To be precise, we take {U],...,U"} a shrinking of {U;,...,U,} that
covers N and we will define Az : p~*U; Np~'U; — H? as an extension of Aj|,-1p.
Thus we define Az|,-1y; = Aqp-1p; and we extend it to p~1U} as follows.

We choose V7 a connected component of p~1U, and V4 a connected component of
the smaller neighborhood p~!U} which is contained in V5. In particular

VJ C int(Va).

Let ¢ : V2 — [0,1] a C°°-bump function such that:

— ¢ restricted to Vy Np~1U] is constant equal to 1,

— the closure of the support of ¢ is contained in Vo, Np~1Uj;.
By using ¢, we define f: Vo — H?3 as:

f=¢A1+(1-¢)Dp.

This is, f equals A; on the intersection V, Np~!U] and equals DJ on V, — p~1U;. In
addition f depends continuously on u for the compact C!-topology (we remark that

¢ is independent of u). We define Aglvzl = flv; and we extend it p,-equivariantly
to p~1U, = I€I ~V5. In this way A is p,-equivariant and the construction depends
RASHSE

continuously on u for the compact C!-topology.

Now we can continue by an inductive process and make successive shrinking to get
DY defined on a neighborhood of N. Finally, since DJ is a local diffeomorphism and
N is compact, the compact C*-topology implies that D? is a local diffeomorphism for
u close to 0. O

Lemma B.1.12. — There exists a family of local embeddings Dj, : éj — H3 which is
continuous on u € U for the compact C!-topology, such that D3, is p,-equivariant,
Dg = Do|c~:j and the structure on C; can be completed as described by the generalized
Dehn filling parameters.

Before proving this lemma, we prove the following one, that concludes the proof of
Proposition B.1.10.

Lemma B.1.13. — There exists a family of local embeddings D, : m’\E(M ) — H3 which
depends continuously on u € U for the compact C'-topology, such that D, is py-
equivariant and Dy is the developing map of the complete structure on int(M). In
addition, away from a compact set it coincides with the maps DL, ... DF of Lemma
B.1.12.

Proof of Lemma B.1.13. — We already have D and DJ, defined on the respective
universal coverings of N and C;. We want to glue these maps by using bump functions
again. Recall that C; & T2 x [0,+00) and N N C; = T2 x [0,1]. Thus it suffices to

ASTERISQUE 272



B.1. THE MANIFOLD CASE 185

work with a partition of the unit, subordinate to the covering {[0,3/4),(1/4,1]} of
the interval [0, 1], to glue the maps on the universal coverings. O

Proof of Lemma B.1.12. — The universal covering 5} is homeomorphic to R? x
[0, +00). We suppose that the action of the fundamental group is given by:
pj : R? x [0,+00) — R? x [0, +00) Aj i R% x [0, 4+00) — R? x [0, +00)
ey t)— @+Ly8 (@08 — @y +1,6)
By Lemmas B.1.6 and B.1.7, we may assume that

el /2 1 evi (u)/2 Ts (U)
pulp;) =+ ( 0 e_uj/z) pu(Aj) = % < 0 e—ﬁjw)/z) :
Since the cusp is complete for the initial hyperbolic'structure when u = 0, we also
assume that the restriction of the developing map D{) = DOI & is:
D} : R? x [0, +00) — H3 = C x (0,400)
(z,9,t) =— (z+ 7;(0)y, €")
Here we use the half space model H® = C x (0, +o00) for the hyperbolic space.
We consider the family of maps D, : R? x [0, +00) — H? defined by
eu]-z+vj(u)y -1
DI (z,y,t) = ( eui/2 — g—u; /2’
(z + 7j(u)y, ) if u; =0.

et+Re(uja:+v, (u)y)) if u; # O;

The map D7 is p,-equivariant and it is also a local diffeomorphism. Since v;(u) =
wi(m;(w) + O(Ju|?)), DI varies continuously on u € U for the compact C'-topology.
J\Tj u gy
The following claim finishes the proof of the lemma.

Claim B.1.14. — The hyperbolic structure on C; induced by Dj, is complete iff u; = 0.
If uj # 0 then the metric completion of C; is the completion described by the Dehn
filling parameters.

Proof. — When u; = 0, the structure is complete since it is the quotient of a horoball
by a rank two parabolic group (cf. [BP] or [Rat]).

We assume that u; # 0. For every t € [0,+00), DI (R? x {t}) is the set of points
that are at distance d(t) from the geodesic y having end-point

7N OH? = {Wﬂo} )
The distance d(t) satisfies
sinh(d(t)) 2| sinh(u;/2)le" = 1.
In particular, for a fixed v € U, d(t) — 0 when ¢t — +o0, and
D, (R? x [t,+00)) = Naity(7) =7
where Ny (7) is the tubular neighborhood of vy of radius d(t).
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186 APPENDIX B. THURSTON’S HYPERBOLIC DEHN FILLING THEOREM

We deal first with the case where (p;, ¢;) is a pair of coprime integers. Let r;,s; € Z
be such that p;s; — g;jr; = 1. Consider the linear isomorphism

®:R* — R?
(a,b) — (pja +7;b,q;a + s;b)
The equality p;u; + v;q; = 2my/—1 implies that

. e®2mV—1+bl; _ 1 :
— +b Re(l;)
Di(Q(aa b)at) - ( e“i/2 _ 8‘“1/2 € el

where l; = 7ju; + s;v;. An easy computation shows that
Re(l;) = Im(u;7;)/(27),

which is non-zero, because v;(u) = u;(7;(u) + O(Ju|?) and Im(7;(0)) # 0.

It follows that for every t > 0, D} : R? x [t, +00) — H?® factorizes to a homeomor-

phism

(R x [t,+00)) / (pits5 + 45) = Nao(v) =,
where (p;u;+q;);) denotes the cyclic group generated by p;u;+g¢;A;. In addition, the
holonomy of r;1;+s;\; preserves v and acts on -y as a translation of length Re(l;) # 0.
It follows that the completion of C; is obtained by adding the quotient of v by this
translation, and topologically this is the Dehn filling with meridian p;ju; + g;A;.

Next we study the case where p;/q; € QU {oo}. Let (m;,n;) be a pair of coprime
integers such that m;/n; = p;/q; and set a; = 2rm;/p;. Consider the singular space
]HI:;J_ defined in the first chapter. The developing map D7 : 6~'j — H?3 — « induces a
developing map D, : éj — ng — %, because the universal coverings of H® — v and
of ng — X are isometric. Now the discussion in the precedent case applies, and we
conclude that the completion of C; consist of adding a singular geodesic, with cone
angle a;, and the topological filling meridian is m;p; + njA;.

In the last case, where p;/q; € R — Q, the holonomy of C; acts faithfully on the
geodesic . Since m(C;) = Z @ Z, this action is non discrete. It follows easily that
the completion cannot be Hausdorff.

This finishes the proof of the claim, of Proposition B.1.10 and of Theorem B.1.1. [

The proof yields not only the existence of a one parameter family of cone 3-manifold
structures but also gives a path of corresponding holonomies in the variety R(M)
of representations of w1 (M) into SLy(C). A corollary of the proof of Thurston’s
hyperbolic Dehn filling theorem is the following:

Corollary B.1.15. — For any real numbers oy, ...,ax > 0 there exist € > 0 and a path
v :[0,e) = R(M), such that, for every t € [0,¢), Y(t) is a lift of the holonomy of a
hyperbolic structure on M corresponding to the generalized Dehn filling coefficients

((ph QI), SRR (plw Qk)) = ((27r/(a1t)7 0), LS (277/(akt)7 0))
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B.2. THE ORBIFOLD CASE 187

When «a;t = 0, the structure at the j-th cusp is complete; otherwise its completion
is a cone 3-manifold obtained by adding to Tf a solid torus with meridian curve pu;
and singular core with cone angle o;t.

B.2. The orbifold case

B.2.1. Dehn filling on orbifolds. — Let O be a compact 3-orbifold whose bound-
ary components are Euclidean 2-orbifolds. Each component of O is one of the fol-
lowing:

— a 2-torus T2 = St x S1;

— apillow P = $%(2,2,2,2) ¥ T?/(Z/2Z);

— a turnover S%(ni,ng,n3) with n% + nlz + 7—11; =1.

A turnover cannot bound the quotient of a solid torus, hence we cannot do any
Dehn filling on it. This is coherent with the fact that turnovers are rigid, and do not
allow to define Dehn filling parameters. For a 2-torus T2, we define the Dehn filling
coefficients exactly in the same way as for manifolds. Next we give the details of the
definition for a pillow.

Definition B.2.1. — A solid pillow is a 3-ball with two unknotted singular arcs with
ramification indices 2. In a solid pillow, a meridian disc is a proper non-singular
disc of the solid pillow that splits it into two balls with a singular arc each one (see
Figure 1).

N ERZARRNIVIY

Ficure 1. The solid pillow. Its boundary is the pillow. The figure on the
right represents a meridian disc in the solid pillow.

A meridian disc in a solid pillow is unique up to orbifold isotopy. The solid pillow
is the quotient of the solid torus by Z/2Z, and the meridian disc of the solid pillow
lifts to two parallel meridian discs of the solid torus.

The boundary of the solid pillow is the pillow $2%(2,2,2,2), hence we have the
following definition.

Definition B.2.2. — Let O be a 3-orbifold, let P C d0O be a boundary component
with P = §2%(2,2,2,2), and let u C P be a simple closed curve that splits P into two
discs with two cone points each one. The Dehn filling of O with surgery meridian
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188 APPENDIX B. THURSTON’S HYPERBOLIC DEHN FILLING THEOREM

 is the orbifold O Uy S, where S is a solid pillow and ¢ : P — 8§ is an orbifold
homeomorphism that identifies p with the boundary of a meridian disc.

As for manifolds, the Dehn filling only depends on the orbifold isotopy class of the
surgery meridian. To describe the orbifold isotopy classes of these curves, we need
to recall some elementary facts about the fundamental group of the pillow. Since
52%(2,2,2,2) = T?/(Z/2Z), we have an exact sequence:

1 —Z&Z— m(5%(2,2,2,2)) — Z/2Z — 1.

The sequence splits, and the generator of Z/2Z acts on Z®Z by mapping each element
to its inverse.

We list some elementary properties of the fundamental group of an orbifold in the
following lemma, whose proof is an easy exercise.

Lemma B.2.3. — Given vy € m1(5%(2,2,2,2)) with v # 1, then:
i) Fither v is torsion free or has order two.
ii) The element ~ is torsion free iff v € ker (71(5%(2,2,2,2)) —» Z/2Z) X Z & Z.
1) If v is torsion free, then v is represented by n times a simple closed loop that
splits S2(2,2,2,2) into two discs with two singular points each one. O

Definition B.2.4. — We call ker (m1(5%(2,2,2,2)) — Z/2Z) = Z & Z the torsion free
subgroup of 71(5%(2,2,2,2)).

Remark B.2.5. — For a Dehn filling on a pillow, the surgery meridian gives, up to sign,
a primitive element of the torsion free subgroup of m;(S2(2,2,2,2)). Thus, to describe
a Dehn filling it suffices to give a primitive element of the torsion free subgroup, up
to sign.

B.2.2. The hyperbolic Dehn filling theorem. — Let O be a compact 3-orbifold
with boundary such that int(O) is hyperbolic with finite volume. Each boundary
component of O is a Euclidean 2-orbifold. As for manifolds, the completion of the
deformed hyperbolic structures on int(Q) is described by generalized Dehn filling
parameters. Assume that 00O has

— k non-singular tori,
— [ pillows, and
— m turnovers,

with k +1 > 0. For each torus T? in 8O, we fix p; and ); two generators of 71 (77),
that are represented by two simple loops in T?. For each pillow P? in 8O, we also fix
w; and \; two generators of the torsion free subgroup of 7r1(Pj2), that represent two
simple closed curves in sz (each curve bounds a disc with two cone points).

For a torus T7 (j < k), the interpretation of the the generalized Dehn filling
coefficients is the same as in the manifold case. For a pillow sz (k+1<j<k+1),
we also associate generalized Dehn filling coefficients (p;,q;) € R? U {co} such that
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B.2. THE ORBIFOLD CASE 189

(pj,g;) = oo iff the structure at the j-th cusp is complete. When (p;,q;) € R? the
interpretation is very similar to the manifold case:

- If pj,q; € Z are coprime, then the completion at the j-th end is a non-singular
hyperbolic 3-orbifold, which topologically is the Dehn filling with surgery merid-
ian pjp; + q;A;.

— When p;/q; € QU {0}, let mj,n; € Z be coprime integers such that p;/q; =
m;/n;j. The completion is a cone 3-manifold obtained by gluing a solid pillow
with singular core. This core is a segment with silvered boundary (see Fig-
ure 2), and therefore there are singularities which are not of cyclic type. The
surgery meridian is mju; +n;A; and the cone angle of the singular component
is 2m|m; /p;|.

— When p;/g; € R — Q, the completion (by equivalence classes of Cauchy se-
quences) is not topologically a manifold. These singularities are called of Dehn
type, cf. [Ho2].

F1GURE 2. The solid pillow with a singular soul with cone angle a.

Theorem B.2.6 (Thurston’s hyperbolic Dehn filling for orbifolds [DuM])

There exists a neighborhood of {00, ..., 00} in S2 x -+~ x S? = (§2)*** such that
the complete hyperbolic structure on int(QO) has a space of hyperbolic deformations
parametrized by the generalized Dehn filling coefficients in this neighborhood.

Proof. — The proof has the same steps as in the manifold case, but it is more
involved. We give the three main steps in the next three paragraphs.

B.2.3. Algebraic deformation of holonomies. — The holonomy representation
of m1(O) into PSL2(C) may not lift to a representation into SLs(C), because m; (O)
has elements of finite order which are rotations. One could work with the variety of
representations into PSLy(C), but in order to use some results of Section B.1, we will
work with representations of O — ¥ into SLy(C), where ¥ is the ramification set of O.

Assume that ¥ consists of ng circles and n; arcs (thus it has ng +n; components).
Let v1,.. s Yno+n; € m(O — X) represent meridians of the components of . Let
po : T (O — L) = SLy(C) denote a lift of the restriction of the holonomy of int(O).
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Its character is denoted by xo. We define:
R(O) = {p € R(O — %) | trace(p(y;)) = trace(po(7;)), for j =1,...,n0 +n1},
X(0) = {x € X(O-%) | x(7) = x0(v;), for j =1,...,m0 +n1}.

A representation in R(O) composed with the natural projection SLy(C) — PSLy(C)
factors to a representation m;(O0) — PSLy(C) because the restriction trace(p(v;)) =
trace(po(;)) implies that p(7;) is a rotation of the same angle as po(v;). For the
same reason, if x, € X(O), then p factors to a representation m; (O) — PSLs(C).

The elements p;, ..., uk+i € m1(QO) represent a family of simple closed curves, one
for each boundary component of O different from a turnover. As in the manifold case,
we consider the map

In= Iy, Iyy,) 1 X(0) — CFHL
Let xo be the character of the holonomy py of the complete structure on int O.

Theorem B.2.7. — The map 1, = (I,,...,1,,,,): X(O) — C¥* is locally bianalytic
at xo-

Proof. — The proof or the theorem follows the same scheme as the proof of Theo-
rem B.1.2 in the manifold case. The only difference is the lower bound of the dimension
of Xp(0), where X(O) is a component of X' (O) that contains xo. This is done in the
following lemma.

Lemma B.2.8. — dim(Xo(0)) > k + 1.

Proof of Lemma B.2.8. — Let X(O —X) be a component of X (O —X) that contains
Xo(O). Let N(X) denote a tubular neighborhood of ¥. By Thurston’s estimate
[Thul, Thm 5.6], see also [CS, Thm. 3.2.1], we have that

dim(Xo(0 ~ £)) > k+ o — Sx(3(0 ~ (D)),

because k + ng is the number of torus components of (O — N (X)). Since each pillow
meets 4 singular arcs, each turnover meets 3 singular arcs, and each singular arc meets
the boundary twice, we have that

41 + 3m = 2n;.
In addition the Euler characteristic of the boundary is
x(0(0 =N (X)) = —m — 2.
Combining these equalities, Thurston’s estimate can be reformulated as:
dim(Xo(O - %)) > k+no+ny + 1.

Since Xy(O) is a subset of Xo(O — X) defined by ng + n; equations, lemma B.2.8
follows. This also finishes the proof of Theorem B.2.7 O
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B.2.4. Generalized Dehn filling coefficients. — As in the manifold case, by
using Theorem B.2.7, we choose a neighborhood V' C X(O) of xo, a neighborhood
U C Ck+ of the origin, and a branched covering 7 : U — V C X(O) of order 2%+
defined by

I, (n(u)) = L, (m(ua, . .., uk41)) = €;2 cosh(u;/2) forj=1,...,k+1,

where the coefficients €; € {£1} are chosen so that I,,; (xo) = trace(po(;)) = €;2.

Following the manifold case, we choose an analytic section s : V. — R(O) and we
use the notation p, = s(7(u)) € R(O).

Recall that for j = 1,...,k, the j-th boundary component of O is a torus T; and
w; and \; generate m; (TJZ) For j = k+1,...,k+ 1, the j-th boundary component
of O is a pillow P; and u; and \; generate the torsion free subgroup of 71 (P;). We
choose 6; € m(P;) any element of order two, so that the following is a presentation
of the fundamental group

7T1(P]') = </Jj,)\j,0j | ;Lj)\j = )\j,uj, 912 = 1, Ojujaj = ,U,j_l, GjAjOj = )\]_1>
We recall that m1(P;) is a quotient of 71 (P; — X).

Lemma B.2.9. — Let ﬁj,gj € m(P; — L) be two elements that project to p;,0; €

m(F;).
i) For j =1,...,k +1, there is an analytic map A; : U — PSLy(C) such that for
every u € U:

~ evi/? 1 1
pullty) = €AW (7o a2 ) Al

i) In addition, for j=k+1,...,k+1, A; : U — PSLy(C) satisfies:

0u@) = 24500 (g’ ey 5p) A

where i = \/—1.

Proof. — We give only the proof for pillows, the proof for tori being the proof of
Lemma B.1.6. We fix ws € C? such that ws is not an eigenvector for p,(6;) and
set wo(u) = (pu(6;) — i)ws # 0, so that (p,(6;) + i)wa(u) = 0, because i are the

—1

eigenvalues for p,(6;).

The matrix po(fi;) is parabolic, hence it does not diagonalize. This means that
po(fi;) has only a one dimensional eigenspace with eigenvalue €;. Therefore, up to
replacing i by —i, we have:

ker(po(fi;) — €;1d) Nker(po(8;) + i1d) = {0}.
In particular wo(u) = (w3 (u), w3(u)) is not an eigenvector for po(fz;). As in Lemma

B.1.6, we take wi (u) = (w](u), w}(u)) = (€;pu(p;) — e“/?)ws, where €; = +1 is the
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eigenvalue for po(fz;). We define:
A — 1 () i)
Vul(ww(u) — wi(uwl(uv) \wi(w) wi(u))’
and it is clear from this construction that i) holds.
To prove ii), since (p,(0;) + i)wz(u) = 0, we have that p,(6;) is of the form:
J J

pu@) =00 (1 ) a0

Therefore point ii) follows from the fact that pu(gj) € SL3(C) and from the relation
pu(0)pu(pt3)pu(0; 1) = £pu(p; "), because p, factors to a representation of m(P))
into PSLy(C). O

The following lemma has exactly the same proof as Lemma B.1.7, again because
pu factors to a representation of 7 (P;) into PSLy(C).

Lemma B.2.10. — Let Xj € m(P; — X) be an element that projects to \; € m(P;).
For j = 1,...,k + 1, there exist unique analytic functions vj,7; : U — C such that
v;(0) = 0 and for every u € U:

- /2 .
pul) =2, (70 5 4w

In addition:
i) 7;(0) e C-R;
i) sinh(v;/2) = 7; sinh(u;/2);
i) v; is odd in u; and even in u,, for r # j;
w) v = u;(7;(u) + O(|uf?)). O

Following the manifold case, we define:

Definition B.2.11 ([Thul]). — Foru € U and j = 1,...,k+I[, we define the generalized
Dehn filling coefficients of the j-th cusp (pj,q;) € R? U {oo} = S? by the formula:

(pj,Qj) = o iij =0;
pjuj +qu; = 2my/-1 if u; #0.

The following proposition follows also from Lemma B.2.10 i) and iv).
Proposition B.2.12. — The generalized Dehn filling coefficients are well defined and
U — 52 x 50y g2
ur— (pr,q1); - - -, (Phtt, Th+1)

defines a homeomorphism between U and a neighborhood of {oco,...,00}. O
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B.2.5. Deformation of developing maps. — Let Dozm — H3 be the devel-
oping map for the complete structure on int O, with holonomy po. The following is
the orbifold version of Proposition B.1.10 and completes the proof of Theorem B.2.6.

Proposition B.2.13. — For each u € U there is a developing map D,, : ntO — H3
with holonomy p,, such that the completion of int O is given by the generalized Dehn
filling coefficients of u.

Proof. — The proof is analogous to the proof of Proposition B.1.10, but it needs to
be adapted to orbifolds.

First we need an orbifold version of Lemma B.1.11. In the proof of Lemma B.1.11
we use a finite covering {Ui,...,U,} of a neighborhood of a compact core of the
manifold N C int(M), such that each U; is simply connected. In the orbifold case,
we have to use simply connected subsets U; such that if U; N ¥ # @& then U is
the quotient of a ball by an orthogonal rotation. With this choice of U;, one can
generalize the argument in Lemma B.1.11 by using the fact that, for every torsion
element v € m (O), the fixed point set of p,(v) depends analytically on u € U. By
using these remarks, Lemma B.1.11 can easily be generalized to orbifolds, as well as
Lemma B.1.13.

It only remains to prove a version of Lemma B.1.12 for orbifolds. This lemma gives
the precise developing maps for the ends. In the orbifold case, we have to distinguish
the kind of end of int(Q), according to the associated component of JO. For tori,
Lemma B.1.12 applies. We do not have to worry about turnovers because they are
rigid. Thus we only need an orbifold version of Lemma B.1.12 for pillows. It is
Lemma B.2.14 below, that concludes the proof of Proposition B.2.13. Let C; denote
the j-th end of O. If k+1 < j < k+1 then C; = P; x [0, 4+00), where P; is a pillow.

Lemma B.2.14. — For k+ 1 < j < k + 1, there exists a family of local embeddings
Dj : éj — H3 which is continuous on u € U for the compact C*-topology, such that:
i) D} is p,-equivariant,
i) D} = Doz, and
iii) the structure on C; can be completed as described by the generalized Dehn filling
parameters.

Proof. — The universal covering C; is homeomorphic to R? x [0,+0c). With the
notation above, the group m1(C;) = m1(P;) is generated by u;, A; and 6;. We may

assume that their action on C; by deck transformations is the following:

Nj(xayv t) = (.’1} + 1Ly, t)
Aj(z,y,t) = (z,y + 1,t) for every (z,y,t) € R? x [0, +00).

0;(2,y,t) = (-2, —y,1)
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By Lemmas B.2.9 and B.2.10, we may assume:
u;/2 vj(u)/2 .
evs 1 evi 75 (u)
Pu(ll'j) =% < 0 e_uj/z) ) Pu()‘j) == ( 0 8—3j(u)/2>

i 0
and pu(0;) =+ (—'L’(eu:’/2 —e~%/?) —-i) '
When u = 0, the cusp is complete and therefore the developing map Dg = DOlaj is:

D} : R% x [0,400) — H® = C x (0, +00)
(z,9,t) — (z+7;(0)y, €)

The family of maps D? : R?x [0, +00) — HS3 that proves the lemma is the following:

a(u,t) ewstviWy _ 1 sz .
Di(% y,t) = ( eui/2 — g—u;i/2 ya(u,t) ettRe(uszto; (wy) if u; # 0

(x4 7j(u)y, e') ifu; =0.
/2

where a(u,t) = (1 + e’le%i/? — (3"‘9'/2|)_1 . We remark that in Lemma B.1.13 we
used the same family but with a(u,t) = 1, since we did not require the equivariance
by 0j.

The family DJ, is a family of p,-equivariant local diffeomorphisms that depends
continuously on u € U for the compact C'-topology. The completion of C; for the
structure induced by DJ is the one described by the Dehn coefficients and it can be
proved in the same way as Claim B.1.14.

This concludes the proof of Lemma B.2.14 and of Theorem B.2.6. O

B.3. Dehn filling with totally geodesic turnovers on the boundary

The aim of this last section is to prove Proposition B.3.1, which is a version with
boundary of the hyperbolic Dehn filling theorem, used in Chapter 7.

Let N3 be a three manifold with boundary and let ¥ C N3 be a 1-dimensional
properly embedded submanifold. This is the case for instance when N3 is the under-
lying space of an orbifold and ¥ its branching locus.

We will assume that every component of N3 is a 2-sphere that intersects ¥ in
three points. We define the non-compact 3-manifold with boundary

M3=N3-3%.

Each component of M3 is a disjoint union of 3 times punctured spheres. Each end
of M3 is the product of [0, +00) with a torus or an annulus, according to whether the
corresponding component of ¥ is a circle or an arc.

We also assume that M3 admits a hyperbolic structure with totally geodesic bound-
ary, whose ends are cusps (of rang one or two, according to whether the corresponding

ASTERISQUE 272



B.3. DEHN FILLING WITH TOTALLY GEODESIC TURNOVERS ON THE BOUNDARY 195

component of ¥ is an arc or a circle). As a metric space M? is complete of finite vol-
ume, and the boundary components are three times punctured spheres. The double
of M? along the boundary is a complete hyperbolic manifold with finite volume and
without boundary. Let k& denote the number of connected components of .

Proposition B.3.1. — For any real numbers a1, . .., ar > 0 there exist e > 0 and a path
v :[0,€) — R(M?3), such that, for every t € [0,€), ¥(t) is a lift of the holonomy of a
hyperbolic structure on M3 whose metric completion is a cone manifold structure with
totally geodesic boundary, topological type (N3,X), and cone angles (ai t,. .., axt).

Proof. — We follow the same argument as in the proof of Theorem B.1.1. For the
algebraic part, we choose {f1,. .., ux} C m1(M?3) a system of meridians for £. As in
Theorem B.1.2 we have:

Proposition B.3.2. — The map I, = (I,,...,1..) : X(M?3) — CF¥ is locally bianalytic
at xo, where xo is the character of the lift of holonomy of the complete structure on
M3, 0O

The proof of Proposition B.3.2 follows precisely the same argument as Theorem
B.1.2: Thurston’s estimate gives dim(Xo(M?3)) > k, and one can also apply the
argument about Mostow rigidity to the double of M3. Moreover we use the following
lemma:

Lemma B.3.3. — Let po : m1(S%—{*,*,%}) = SLa(R) be the holonomy of a hyperbolic
turnover or of a hyperbolic 3 times punctured sphere. Let {p;}icjo,c) be a deformation
of po in R(S% — {x,*,%},SL2(C)) such that, for each meridian p € m1(S? — {*,*,})
and for each t € (0,¢), p:(p) is a rotation. Then p; is conjugate to the holonomy of
a hyperbolic turnover (i.e. it is Fuchsian).

Proof. — If po is a holonomy representation, then po is irreducible. Since irre-
ducibility is an open property, we may assume that p; is irreducible. The group
71(S% — {*,*,*}) is free of rank 2, generated by two meridians a and b such that the
product ab is also a meridian. To prove the claim we use the fact that the conju-
gacy class of an irreducible representation is determined by the traces of a, b and ab.
Thus if pt(a), p:(b) and p.(ab) are rotations, then p; is conjugate to the holonomy of
the hyperbolic turnover that has cone angles given by p.(a), p:(b) and p;(ab). This
finishes the proof. O

By using the fact that deformations of holonomy imply deformations of the struc-
ture and Lemma B.3.3 we obtain the following remark:

Remark B.3.4. — When we deform the holonomy of a hyperbolic cone structure on
M? with totally geodesic boundary so that the meridians are mapped to rotations,
then the deformed representations are still the holonomy of a hyperbolic structure
with totally geodesic boundary.

SOCIETE MATHEMATIQUE DE FRANCE 2001



196 APPENDIX B. THURSTON’S HYPERBOLIC DEHN FILLING THEOREM

All the explicit deformations constructed in Section B.1 can be used here, combined
with Lemma B.3.3, to prove Proposition B.3.1. O
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